Science.gov

Sample records for acoustic imaging applied

  1. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow

    PubMed Central

    Sou, In Mei; Layman, Christopher N.; Ray, Chittaranjan

    2013-01-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  2. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow.

    PubMed

    Sou, In Mei; Allen, John S; Layman, Christopher N; Ray, Chittaranjan

    2011-11-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  3. Acoustic microstreaming applied to batch micromixing

    NASA Astrophysics Data System (ADS)

    Manasseh, Richard; Petkovic-Duran, Karolina; Tho, Paul; Zhu, Yonggang; Ooi, Andrew

    2006-01-01

    Experiments are presented in which acoustic microstreaming is investigated and applied to a batch micromixing case appropriate to a point-of-care pathology screening test. The flows presented can be created without complex engineering of contacts or surfaces in the microdevice, which could thus be made disposable. Fundamental flow patterns are measured with a micro-Particle-Image Velocimetry (micro-PIV) system, enabling a quantification of the fluiddynamical processes causing the flows. The design of micromixers based on this principle requires a quantification of the mixing. A simple technique based on digital image processing is presented that enables an assessment of the improvement in mixing due to acoustic microstreaming. The digital image processing technique developed was shown to be non-intrusive, convenient and able to generate useful quantitative data. Preliminary indications are that microstreaming can at least halve the time required to mix quantities of liquid typical of a point-of-care test, and significantly greater improvements seem feasible.

  4. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  5. Volumetric Imaging Using Acoustical Holography

    NASA Astrophysics Data System (ADS)

    Garlick, T. F.; Garlick, G. F.

    Transmission acoustical holography holds tremendous promise for medical imaging applications. As with optical holography, an image is obtained using the interference of two coherent acoustic sources, the transmitted object wave with a reference wave. Although resultant images are true holograms, depth can be difficult to quantify and an entire volume in one image can often result in "too much" information. Since Physicians/Radiologists are often interested in viewing a single plane at a time, techniques have been developed to generate acoustic holograms of "slices" within a volume. These primarily include focused transmission holography with spatial and frequency filtering techniques. These techniques along with an overview and current status of acoustical holography in medical imaging applications will be presented

  6. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    SciTech Connect

    Cheng, Ying; Liu, XiaoJun; Zhou, Chen; Wei, Qi; Wu, DaJian

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  7. Student design projects in applied acoustics.

    PubMed

    Bös, Joachim; Moritz, Karsten; Skowronek, Adam; Thyes, Christian; Tschesche, Johannes; Hanselka, Holger

    2012-03-01

    This paper describes a series of student projects which are intended to complement theoretical education in acoustics and engineering noise control with practical experience. The projects are also intended to enhance the students' ability to work in a team, to manage a project, and to present their results. The projects are carried out in close cooperation with industrial partners so that the students can get a taste of the professional life of noise control engineers. The organization of such a project, its execution, and some of the results from the most recent student project are presented as a demonstrative example. This latest project involved the creation of noise maps of a production hall, the acoustic analysis of a packaging machine, and the acoustic analysis of a spiral vibratory conveyor. Upon completion of the analysis, students then designed, applied, and verified some simple preliminary noise reduction measures to demonstrate the potential of these techniques. PMID:22423803

  8. Imaging of Acoustic Waves in Sand

    SciTech Connect

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  9. Magnetic resonance acoustic radiation force imaging

    PubMed Central

    McDannold, Nathan; Maier, Stephan E.

    2008-01-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are “stiffness weighted” and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery. PMID:18777934

  10. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  11. Acoustic imaging microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  12. Acoustic emission testing applied to tank cars

    SciTech Connect

    Stuart, R.L. )

    1989-01-01

    A major portion of the U.S. chemical and related commodities production is transported in railroad tank cars. Performance of this equipment directly impacts the economic health of the chemical industry; therefore, it is important that tank cars be properly maintained. It is important that every effort be made to minimize the chance of product release. Metallurgical defects, such as cracks and corrosion, are examples of problems that cause downtime, add cost and limit good performance. These type defects, if undetected, have potential for threatening proper product containment. In addition, defective tank cars erode good customer relationships. This issue was studied and it was concluded that an improved nondestructive testing method applied to tank cars could lead to a safer and more efficient fleet. This paper reports on a project established to extend acoustic emission (AE) testing to tank car tanks.

  13. Reflective echo tomographic imaging using acoustic beams

    DOEpatents

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  14. First images of thunder: Acoustic imaging of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  15. Acoustic 3D imaging of dental structures

    SciTech Connect

    Lewis, D.K.; Hume, W.R.; Douglass, G.D.

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  16. Axial resolution of laser opto-acoustic imaging: influence of acoustic attenuation and diffraction

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.; Alma, Herve; Tittel, Frank K.; Oraevsky, Alexander A.

    1998-05-01

    Laser optoacoustic imaging can be applied for characterization of layered and heterogeneous tissue structures in vivo. Accurate tissue characterization may provide: (1) means for medical diagnoses, and (2) pretreatment tissue properties important for therapeutic laser procedures. Axial resolution of the optoacoustic imaging is higher than that of optical imaging. However, the resolution may degrade due to either attenuation of high-frequency ultrasonic waves in tissue, or/and diffraction of low-frequency acoustic waves. The goal of this study was to determine the axial resolution as a function of acoustic attenuation and diffraction upon propagation of laser-induced pressure waves in water with absorbing layer, in breast phantoms, and in biological tissues. Acoustic pressure measurements were performed in absolute values using piezoelectric transducers. A layer or a small sphere of absorbing medium was placed within a medium with lower optical absorption. The distance between the acoustic transducer and the absorbing object was varied, so that the effects of acoustic attenuation and diffraction could be observed. The location of layers or spheres was measured from recorded optoacoustic pressure profiles and compared with real values measured with a micrometer. The experimental results were analyzed using theoretical models for spherical and planar acoustic waves. Our studies demonstrated that despite strong acoustic attenuation of high-frequency ultrasonic waves, the axial resolution of laser optoacoustic imaging may be as high as 20 micrometers for tissue layers located at a 5-mm depth. An axial resolution of 10 micrometers to 20 micrometers was demonstrated for an absorbing layer at a distance of 5 cm in water, when the resolution is affected only by diffraction. Acoustic transducers employed in optoacoustic imaging can have either high sensitivity or fast temporal response. Therefore, a high resolution may not be achieved with sensitive transducers utilized in

  17. The feedback phenomenon applied to underwater acoustics

    NASA Astrophysics Data System (ADS)

    Roux, Philippe; Jordan, Jason E.; Kuperman, W. A.

    2002-11-01

    People are familiar with the feedback phenomenon that results in the loud sound heard when a musician plays an electric instrument directly into a speaker. Feedback occurs when a source and a receiver are connected both acoustically through the propagation medium and electrically through an amplifier in such way that the received signal is simultaneously and continuously added to the emitted signal. A resonance is then obtained when the emitter and the receiver are in phase. The resonant frequency appears to be highly sensitive to fluctuations of the propagation medium. The feedback phenomenon has been experimentally demonstrated as a means to monitor the temperature fluctuation of a shallow water environment [''Acoustic monitoring of the sea medium variability: experimental testing of new methods,'' by A. V. Furduev, Acoust. Phys. 47, No. 3, 361-368 (2001)]. The goal of our work is to reproduce the feedback experiment using an alternative method that decomposes the feedback phenomenon into an iterative process. Successful reproduction of the feedback is accomplished using a step-by-step algorithm which details the evolution of the system from the initial signal to its steady-state form. These experimental and numerical results illustrate the potential of the feedback process for use in narrow-band acoustical tomography.

  18. Imaging marine geophysical environments with vector acoustics.

    PubMed

    Lindwall, Dennis

    2006-09-01

    Using vector acoustic sensors for marine geoacoustic surveys instead of the usual scalar hydrophones enables one to acquire three-dimensional (3D) survey data with instrumentation and logistics similar to current 2D surveys. Vector acoustic sensors measure the sound wave direction directly without the cumbersome arrays that hydrophones require. This concept was tested by a scaled experiment in an acoustic water tank that had a well-controlled environment with a few targets. Using vector acoustic data from a single line of sources, the three-dimensional tank environment was imaged by directly locating the source and all reflectors. PMID:17004497

  19. Pulsed-Source Interferometry in Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.

    2003-01-01

    A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").

  20. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  1. Application of acoustic reflection tomography to sonar imaging.

    PubMed

    Ferguson, Brian G; Wyber, Ron J

    2005-05-01

    Computer-aided tomography is a technique for providing a two-dimensional cross-sectional view of a three-dimensional object through the digital processing of many one-dimensional views (or projections) taken at different look directions. In acoustic reflection tomography, insonifying the object and then recording the backscattered signal provides the projection information for a given look direction (or aspect angle). Processing the projection information for all possible aspect angles enables an image to be reconstructed that represents the two-dimensional spatial distribution of the object's acoustic reflectivity function when projected on the imaging plane. The shape of an idealized object, which is an elliptical cylinder, is reconstructed by applying standard backprojection, Radon transform inversion (using both convolution and filtered backprojections), and direct Fourier inversion to simulated projection data. The relative merits of the various reconstruction algorithms are assessed and the resulting shape estimates compared. For bandpass sonar data, however, the wave number components of the acoustic reflectivity function that are outside the passband are absent. This leads to the consideration of image reconstruction for bandpass data. Tomographic image reconstruction is applied to real data collected with an ultra-wideband sonar transducer to form high-resolution acoustic images of various underwater objects when the sonar and object are widely separated. PMID:15957762

  2. Acoustic imaging systems (for robotic object acquisition)

    NASA Astrophysics Data System (ADS)

    Richardson, J. M.; Martin, J. F.; Marsh, K. A.; Schoenwald, J. S.

    1985-03-01

    The long-term objective of the effort is to establish successful approaches for 3D acoustic imaging of dense solid objects in air to provide the information required for acquisition and manipulation of these objects by a robotic system. The objective of this first year's work was to achieve and demonstrate the determination of the external geometry (shape) of such objects with a fixed sparse array of sensors, without the aid of geometrical models or extensive training procedures. Conventional approaches for acoustic imaging fall into two basic categories. The first category is used exclusively for dense solid objects. It involves echo-ranging from a large number of sensor positions, achieved either through the use of a larger array of transducers or through extensive physical scanning of a small array. This approach determines the distance to specular reflection points from each sensor position; with suitable processing an image can be inferred. The second category uses the full acoustic waveforms to provide an image, but is strictly applicable only to weak inhomogeneities. The most familiar example is medical imaging of the soft tissue portions of the body where the range of acoustic impedance is relatively small.

  3. Underwater imaging with a moving acoustic lens.

    PubMed

    Kamgar-Parsi, B; Rosenblum, L J; Belcher, E O

    1998-01-01

    The acoustic lens is a high-resolution, forward-looking sonar for three dimensional (3-D) underwater imaging. We discuss processing the lens data for recreating and visualizing the scene. Acoustical imaging, compared to optical imaging, is sparse and low resolution. To achieve higher resolution, we obtain a denser sample by mounting the lens on a moving platform and passing over the scene. This introduces the problem of data fusion from multiple overlapping views for scene formation, which we discuss. We also discuss the improvements in object reconstruction by combining data from several passes over an object. We present algorithms for pass registration and show that this process can be done with enough accuracy to improve the image and provide greater detail about the object. The results of in-water experiments show the degree to which size and shape can be obtained under (nearly) ideal conditions. PMID:18267382

  4. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  5. Acoustic Imaging of Snowpack Physical Properties

    NASA Astrophysics Data System (ADS)

    Kinar, N. J.; Pomeroy, J. W.

    2011-12-01

    Measurements of snowpack depth, density, structure and temperature have often been conducted by the use of snowpits and invasive measurement devices. Previous research has shown that acoustic waves passing through snow are capable of measuring these properties. An experimental observation device (SAS2, System for the Acoustic Sounding of Snow) was used to autonomously send audible sound waves into the top of the snowpack and to receive and process the waves reflected from the interior and bottom of the snowpack. A loudspeaker and microphone array separated by an offset distance was suspended in the air above the surface of the snowpack. Sound waves produced from a loudspeaker as frequency-swept sequences and maximum length sequences were used as source signals. Up to 24 microphones measured the audible signal from the snowpack. The signal-to-noise ratio was compared between sequences in the presence of environmental noise contributed by wind and reflections from vegetation. Beamforming algorithms were used to reject spurious reflections and to compensate for movement of the sensor assembly during the time of data collection. A custom-designed circuit with digital signal processing hardware implemented an inversion algorithm to relate the reflected sound wave data to snowpack physical properties and to create a two-dimensional image of snowpack stratigraphy. The low power consumption circuit was powered by batteries and through WiFi and Bluetooth interfaces enabled the display of processed data on a mobile device. Acoustic observations were logged to an SD card after each measurement. The SAS2 system was deployed at remote field locations in the Rocky Mountains of Alberta, Canada. Acoustic snow properties data was compared with data collected from gravimetric sampling, thermocouple arrays, radiometers and snowpit observations of density, stratigraphy and crystal structure. Aspects for further research and limitations of the acoustic sensing system are also discussed.

  6. The surface variational principle applied to an acoustic cavity.

    PubMed

    Franco, F; Cunefare, K A

    2001-06-01

    This paper presents the development and application of the Surface Variational Principle (SVP) for the evaluation of axisymmetric interior acoustic domains. The interior form of the SVP is first developed in the same manner as the existing exterior form. Then, the surface pressure and normal velocity are represented with a Ritz expansion using basis functions that span the entire wetted surface of the object of interest. The resultant formulation is used to analyze the interior acoustic response of a harmonically forced, right circular elastic cylinder. This validation model was chosen as both the structural and acoustic responses can be solved analytically. Results are presented for two models: one with a length to radius ratio of 2.4, and another with a ratio of 12.3. The SVP is shown to well reproduce the analytical solution for this geometry, and displays the asymptotic convergence expected of its variational formulation. The SVP formulation developed here is not restricted to right-circular cylindrical geometries, and may, indeed, be readily applied to any axisymmetric body. PMID:11425122

  7. Method and apparatus for acoustic imaging of objects in water

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2005-01-25

    A method, system and underwater camera for acoustic imaging of objects in water or other liquids includes an acoustic source for generating an acoustic wavefront for reflecting from a target object as a reflected wavefront. The reflected acoustic wavefront deforms a screen on an acoustic side and correspondingly deforms the opposing optical side of the screen. An optical processing system is optically coupled to the optical side of the screen and converts the deformations on the optical side of the screen into an optical intensity image of the target object.

  8. Imaging of acoustic fields using optical feedback interferometry.

    PubMed

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry

    2014-12-01

    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes. PMID:25606963

  9. Comparison of active millimeter-wave and acoustic imaging for weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Collins, H. D.; Gribble, R. Parks; McMakin, Douglas L.

    1997-02-01

    Millimeter-wave holographic imaging techniques have recently been developed for personnel surveillance applications at airports and other high-security checkpoints. Millimeter- wave imaging is useful for this application since millimeter-waves easily pass through common clothing materials yet are reflected from the human body and any items concealed by clothing. This allows a high-resolution imaging system to form an image revealing items concealed on the person imaged. A prototype imaging system developed at Pacific Northwest National Laboratory uses a scanned linear array of millimeter-wave antennas to capture wideband millimeter-wave data in approximately one second. This data is then mathematically reconstructed to form a high- resolution 3D image of the person being scanned. Millimeter- wave imaging has been demonstrated to be effective for detecting concealed weapons on personnel. Another imaging technique which could be applied to the weapon detection problem is acoustic imaging. Like millimeter-waves, ultrasonic acoustic waves can also penetrate clothing, and can be used to form relatively high-resolution images which can reveal concealed weapons on personnel. Acoustic imaging results have been obtained using wideband holographic imaging techniques nearly identical to the imaging techniques used for millimeter-wave imaging. Preliminary imaging results at 50 kHz indicate that acoustic imaging can be used to penetrate some types of common clothing materials. Hard clothing materials, such as leather on vinyl, are essentially opaque to acoustic waves at 50 kHz. In this paper, millimeter-wave and acoustic wave imaging techniques are compared for their effectiveness and suitability in weapon detection imaging systems. Experimental results from both imaging modalities are shown.

  10. Interpreting Underwater Acoustic Images of the Upper Ocean Boundary Layer

    ERIC Educational Resources Information Center

    Ulloa, Marco J.

    2007-01-01

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of…

  11. Passive imaging in nondiffuse acoustic wavefields.

    PubMed

    Mulargia, Francesco; Castellaro, Silvia

    2008-05-30

    A main property of diffuse acoustic wavefields is that, taken any two points, each of them can be seen as the source of waves and the other as the recording station. This property is shown to follow simply from array azimuthal selectivity and Huygens principle in a locally isotropic wavefield. Without time reversal, this property holds approximately also in anisotropic azimuthally uniform wavefields, implying much looser constraints for undistorted passive imaging than those required by a diffuse field. A notable example is the seismic noise field, which is generally nondiffuse, but is found to be compatible with a finite aperture anisotropic uniform wavefield. The theoretical predictions were confirmed by an experiment on seismic noise in the mainland of Venice, Italy. PMID:18518643

  12. Passive Imaging in Nondiffuse Acoustic Wavefields

    SciTech Connect

    Mulargia, Francesco; Castellaro, Silvia

    2008-05-30

    A main property of diffuse acoustic wavefields is that, taken any two points, each of them can be seen as the source of waves and the other as the recording station. This property is shown to follow simply from array azimuthal selectivity and Huygens principle in a locally isotropic wavefield. Without time reversal, this property holds approximately also in anisotropic azimuthally uniform wavefields, implying much looser constraints for undistorted passive imaging than those required by a diffuse field. A notable example is the seismic noise field, which is generally nondiffuse, but is found to be compatible with a finite aperture anisotropic uniform wavefield. The theoretical predictions were confirmed by an experiment on seismic noise in the mainland of Venice, Italy.

  13. Laser-induced acoustic imaging of underground objects

    NASA Astrophysics Data System (ADS)

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  14. Optimization of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J.; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  15. Optimization of a biometric system based on acoustic images.

    PubMed

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  16. Negative refraction induced acoustic concentrator and the effects of scattering cancellation, imaging, and mirage

    NASA Astrophysics Data System (ADS)

    Wei, Qi; Cheng, Ying; Liu, Xiao-jun

    2012-07-01

    We present a three-dimensional acoustic concentrator capable of significantly enhancing the sound intensity in the compressive region with scattering cancellation, imaging, and mirage effects. The concentrator shell is built by isotropic gradient negative-index materials, which together with an exterior host medium slab constructs a pair of complementary media. The enhancement factor, which can approach infinity by tuning the geometric parameters, is always much higher than that of a traditional concentrator made by positive-index materials with the same size. The acoustic scattering theory is applied to derive the pressure field distribution of the concentrator, which is consistent with the numerical full-wave simulations. The inherent acoustic impedance match at the interfaces of the shell as well as the inverse processes of “negative refraction—progressive curvature—negative refraction” for arbitrary sound rays can exactly cancel the scattering of the concentrator. In addition, the concentrator shell can also function as an acoustic spherical magnifying superlens, which produces a perfect image with the same shape, with bigger geometric and acoustic parameters located at a shifted position. Then some acoustic mirages are observed whereby the waves radiated from (scattered by) an object located in the center region may seem to be radiated from (scattered by) its image. Based on the mirage effect, we further propose an intriguing acoustic transformer which can transform the sound scattering pattern of one object into another object at will with arbitrary geometric, acoustic, and location parameters.

  17. Laser Acoustic Imaging of Film Bulk Acoustic Resonator (FBAR) Lateral Mode Dispersion

    SciTech Connect

    Ken L. Telschow

    2004-07-01

    A laser acoustic imaging microscope has been developed that measures acoustic motion with high spatial resolution without scanning. Images are recorded at normal video frame rates and heterodyne principles are used to allow operation at any frequency from Hz to GHz. Fourier transformation of the acoustic amplitude and phase displacement images provides a direct quantitative determination of excited mode wavenumbers at any frequency. Results are presented at frequencies near the first longitudinal thickness mode (~ 900 MHz) demonstrating simultaneous excitation of lateral modes with nonzero wavenumbers in an electrically driven AlN thin film acoustic resonator. Images combined at several frequencies form a direct visualization of lateral mode dispersion relations for the device under test allowing mode identification and a direct measure of specific lateral mode properties. Discussion and analysis of the results are presented in comparison with plate wave modeling of these devices taking account for material anisotropy and multilayer films.

  18. Combined Photoacoustic-Acoustic Technique for Crack Imaging

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.; Chigarev, N.; Tournat, V.; Gusev, V.

    2010-01-01

    Nonlinear imaging of a crack by combination of a common photoacoustic imaging technique with additional acoustic loading has been performed. Acoustic signals at two different fundamental frequencies were launched in the sample, one photoacoustically through heating of the sample surface by the intensity-modulated scanning laser beam and another by a piezoelectrical transducer. The acoustic signal at mixed frequencies, generated due to system nonlinearity, has been detected by an accelerometer. Different physical mechanisms of the nonlinearity contributing to the contrast in linear and nonlinear photoacoustic imaging of the crack are discussed.

  19. Acoustic Radiation Force Impulse (ARFI) Imaging-Based Needle Visualization

    PubMed Central

    Rotemberg, Veronica; Palmeri, Mark; Rosenzweig, Stephen; Grant, Stuart; Macleod, David; Nightingale, Kathryn

    2011-01-01

    Ultrasound-guided needle placement is widely used in the clinical setting, particularly for central venous catheter placement, tissue biopsy and regional anesthesia. Difficulties with ultrasound guidance in these areas often result from steep needle insertion angles and spatial offsets between the imaging plane and the needle. Acoustic Radiation Force Impulse (ARFI) imaging leads to improved needle visualization because it uses a standard diagnostic scanner to perform radiation force based elasticity imaging, creating a displacement map that displays tissue stiffness variations. The needle visualization in ARFI images is independent of needle-insertion angle and also extends needle visibility out of plane. Although ARFI images portray needles well, they often do not contain the usual B-mode landmarks. Therefore, a three-step segmentation algorithm has been developed to identify a needle in an ARFI image and overlay the needle prediction on a coregistered B-mode image. The steps are: (1) contrast enhancement by median filtration and Laplacian operator filtration, (2) noise suppression through displacement estimate correlation coefficient thresholding and (3) smoothing by removal of outliers and best-fit line prediction. The algorithm was applied to data sets from horizontal 18, 21 and 25 gauge needles between 0–4 mm offset in elevation from the transducer imaging plane and to 18G needles on the transducer axis (in plane) between 10° and 35° from the horizontal. Needle tips were visualized within 2 mm of their actual position for both horizontal needle orientations up to 1.5 mm off set in elevation from the transducer imaging plane and on-axis angled needles between 10°–35° above the horizontal orientation. We conclude that segmented ARFI images overlaid on matched B-mode images hold promise for improved needle visibility in many clinical applications. PMID:21608445

  20. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.

    PubMed

    Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric

    2006-07-01

    In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup. PMID:16650447

  1. Acoustic radiation force-based elasticity imaging methods

    PubMed Central

    Palmeri, Mark L.; Nightingale, Kathryn R.

    2011-01-01

    Conventional diagnostic ultrasound images portray differences in the acoustic properties of soft tissues, whereas ultrasound-based elasticity images portray differences in the elastic properties of soft tissues (i.e. stiffness, viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathological lesions. Acoustic radiation force-based elasticity imaging methods use acoustic radiation force to transiently deform soft tissues, and the dynamic displacement response of those tissues is measured ultrasonically and is used to estimate the tissue's mechanical properties. Both qualitative images and quantitative elasticity metrics can be reconstructed from these measured data, providing complimentary information to both diagnose and longitudinally monitor disease progression. Recently, acoustic radiation force-based elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric, and commercial implementations of radiation force-based ultrasonic elasticity imaging are beginning to appear on the commercial market. This article provides an overview of acoustic radiation force-based elasticity imaging, including a review of the relevant soft tissue material properties, a review of radiation force-based methods that have been proposed for elasticity imaging, and a discussion of current research and commercial realizations of radiation force based-elasticity imaging technologies. PMID:22419986

  2. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  3. Microwave de-embedding techniques applied to acoustics.

    PubMed

    Jackson, Charles M

    2005-07-01

    This paper describes the use of the microwave techniques of time domain reflectometry (TDR) and de-embedding in an acoustical application. Two methods of calibrating the reflectometer are presented to evaluate the consistency of the method. Measured and modeled S-parameters of woodwind instruments are presented. The raw measured data is de-embedded to obtain an accurate measurement. The acoustic TDR setup is described. PMID:16212248

  4. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging.

    PubMed

    Thalhammer, Gregor; McDougall, Craig; MacDonald, Michael Peter; Ritsch-Marte, Monika

    2016-04-12

    Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with high-NA imaging in a microfluidic environment. The powerful acoustic trapping within a layered resonator, which is suitable for highly parallel particle handling, is complemented by the flexibility and selectivity of holographic optical tweezers, with the specimens being under high quality optical monitoring at all times. The dual acoustic/optical nature of the system lends itself to optically measure the exact acoustic force map, by means of direct force measurements on an optically trapped particle. For applications with (ultra-)high demand on the precision of the force measurements, the position of the objective used for the high-NA imaging may have significant influence on the acoustic force map in the probe chamber. We have characterized this influence experimentally and the findings were confirmed by model simulations. We show that it is possible to design the chamber and to choose the operating point in such a way as to avoid perturbations due to the objective lens. Moreover, we found that measuring the electrical impedance of the transducer provides an easy indicator for the acoustic resonances. PMID:27025398

  5. Acoustical imaging of spheres above a reflecting surface

    NASA Astrophysics Data System (ADS)

    Chambers, David; Berryman, James

    2003-04-01

    An analytical study using the MUSIC method of subspace imaging is presented for the case of spheres above a reflecting boundary. The field scattered from the spheres and the reflecting boundary is calculated analytically, neglecting interactions between spheres. The singular value decomposition of the response matrix is calculated and the singular vectors divided into signal and noise subspaces. Images showing the estimated sphere locations are obtained by backpropagating the noise vectors using either the free space Green's function or the Green's function that incorporates reflections from the boundary. We show that the latter Green's function improves imaging performance after applying a normalization that compensates for the interference between direct and reflected fields. We also show that the best images are attained in some cases when the number of singular vectors in the signal subspace exceeds the number of spheres. This is consistent with previous analysis showing multiple eigenvalues of the time reversal operator for spherical scatterers [Chambers and Gautesen, J. Acoust. Soc. Am. 109 (2001)]. [Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  6. Nested sampling applied in Bayesian room-acoustics decay analysis.

    PubMed

    Jasa, Tomislav; Xiang, Ning

    2012-11-01

    Room-acoustic energy decays often exhibit single-rate or multiple-rate characteristics in a wide variety of rooms/halls. Both the energy decay order and decay parameter estimation are of practical significance in architectural acoustics applications, representing two different levels of Bayesian probabilistic inference. This paper discusses a model-based sound energy decay analysis within a Bayesian framework utilizing the nested sampling algorithm. The nested sampling algorithm is specifically developed to evaluate the Bayesian evidence required for determining the energy decay order with decay parameter estimates as a secondary result. Taking the energy decay analysis in architectural acoustics as an example, this paper demonstrates that two different levels of inference, decay model-selection and decay parameter estimation, can be cohesively accomplished by the nested sampling algorithm. PMID:23145609

  7. Applied topology optimization of vibro-acoustic hearing instrument models

    NASA Astrophysics Data System (ADS)

    Søndergaard, Morten Birkmose; Pedersen, Claus B. W.

    2014-02-01

    Designing hearing instruments remains an acoustic challenge as users request small designs for comfortable wear and cosmetic appeal and at the same time require sufficient amplification from the device. First, to ensure proper amplification in the device, a critical design challenge in the hearing instrument is to minimize the feedback between the outputs (generated sound and vibrations) from the receiver looping back into the microphones. Secondly, the feedback signal is minimized using time consuming trial-and-error design procedures for physical prototypes and virtual models using finite element analysis. In the present work it is demonstrated that structural topology optimization of vibro-acoustic finite element models can be used to both sufficiently minimize the feedback signal and to reduce the time consuming trial-and-error design approach. The structural topology optimization of a vibro-acoustic finite element model is shown for an industrial full scale model hearing instrument.

  8. Dual-frequency acoustic droplet vaporization detection for medical imaging.

    PubMed

    Arena, Christopher B; Novell, Anthony; Sheeran, Paul S; Puett, Connor; Moyer, Linsey C; Dayton, Paul A

    2015-09-01

    Liquid-filled perfluorocarbon droplets emit a unique acoustic signature when vaporized into gas-filled microbubbles using ultrasound. Here, we conducted a pilot study in a tissue-mimicking flow phantom to explore the spatial aspects of droplet vaporization and investigate the effects of applied pressure and droplet concentration on image contrast and axial and lateral resolution. Control microbubble contrast agents were used for comparison. A confocal dual-frequency transducer was used to transmit at 8 MHz and passively receive at 1 MHz. Droplet signals were of significantly higher energy than microbubble signals. This resulted in improved signal separation and high contrast-to-tissue ratios (CTR). Specifically, with a peak negative pressure (PNP) of 450 kPa applied at the focus, the CTR of B-mode images was 18.3 dB for droplets and -0.4 for microbubbles. The lateral resolution was dictated by the size of the droplet activation area, with lower pressures resulting in smaller activation areas and improved lateral resolution (0.67 mm at 450 kPa). The axial resolution in droplet images was dictated by the size of the initial droplet and was independent of the properties of the transmit pulse (3.86 mm at 450 kPa). In post-processing, time-domain averaging (TDA) improved droplet and microbubble signal separation at high pressures (640 kPa and 700 kPa). Taken together, these results indicate that it is possible to generate high-sensitivity, high-contrast images of vaporization events. In the future, this has the potential to be applied in combination with droplet-mediated therapy to track treatment outcomes or as a standalone diagnostic system to monitor the physical properties of the surrounding environment. PMID:26415125

  9. Combination of acoustical radiosity and the image source method.

    PubMed

    Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho; Jacobsen, Finn

    2013-06-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part. The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated allows for a dynamic control of the image source production, so that no fixed maximum reflection order is required. The model is optimized for energy impulse response predictions in arbitrary polyhedral rooms. The predictions are validated by comparison with published measured data for a real music studio hall. The proposed model turns out to be promising for acoustic predictions providing a high level of detail and accuracy. PMID:23742350

  10. Acoustic imaging in a water filled metallic pipe

    SciTech Connect

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

  11. Time-Reversal Acoustics and Maximum-Entropy Imaging

    SciTech Connect

    Berryman, J G

    2001-08-22

    Target location is a common problem in acoustical imaging using either passive or active data inversion. Time-reversal methods in acoustics have the important characteristic that they provide a means of determining the eigenfunctions and eigenvalues of the scattering operator for either of these problems. Each eigenfunction may often be approximately associated with an individual scatterer. The resulting decoupling of the scattered field from a collection of targets is a very useful aid to localizing the targets, and suggests a number of imaging and localization algorithms. Two of these are linear subspace methods and maximum-entropy imaging.

  12. Acoustic Radiation Force Impulse (ARFI) Imaging: a Review

    PubMed Central

    Nightingale, Kathy

    2012-01-01

    Acoustic radiation force based elasticity imaging methods are under investigation by many groups. These methods differ from traditional ultrasonic elasticity imaging methods in that they do not require compression of the transducer, and are thus expected to be less operator dependent. Methods have been developed that utilize impulsive (i.e. < 1 ms), harmonic (pulsed), and steady state radiation force excitations. The work discussed herein utilizes impulsive methods, for which two imaging approaches have been pursued: 1) monitoring the tissue response within the radiation force region of excitation (ROE) and generating images of relative differences in tissue stiffness (Acoustic Radiation Force Impulse (ARFI) imaging); and 2) monitoring the speed of shear wave propagation away from the ROE to quantify tissue stiffness (Shear Wave Elasticity Imaging (SWEI)). For these methods, a single ultrasound transducer on a commercial ultrasound system can be used to both generate acoustic radiation force in tissue, and to monitor the tissue displacement response. The response of tissue to this transient excitation is complicated and depends upon tissue geometry, radiation force field geometry, and tissue mechanical and acoustic properties. Higher shear wave speeds and smaller displacements are associated with stiffer tissues, and slower shear wave speeds and larger displacements occur with more compliant tissues. ARFI images have spatial resolution comparable to that of B-mode, often with greater contrast, providing matched, adjunctive information. SWEI images provide quantitative information about the tissue stiffness, typically with lower spatial resolution. A review these methods and examples of clinical applications are presented herein. PMID:22545033

  13. Acoustic-optical imaging without immersion

    NASA Technical Reports Server (NTRS)

    Liu, H.

    1979-01-01

    System using membraneous end wall of Bragg cell to separate test specimen from acoustic transmission medium, operates in real time and uses readily available optical components. System can be easily set up and maintained by people with little or no training in holography.

  14. Quantitative Determination of Lateral Mode Dispersion in Film Bulk Acoustic Resonators through Laser Acoustic Imaging

    SciTech Connect

    Ken Telschow; John D. Larson III

    2006-10-01

    Film Bulk Acoustic Resonators are useful for many signal processing applications. Detailed knowledge of their operation properties are needed to optimize their design for specific applications. The finite size of these resonators precludes their use in single acoustic modes; rather, multiple wave modes, such as, lateral wave modes are always excited concurrently. In order to determine the contributions of these modes, we have been using a newly developed full-field laser acoustic imaging approach to directly measure their amplitude and phase throughout the resonator. This paper describes new results comparing modeling of both elastic and piezoelectric effects in the active material with imaging measurement of all excited modes. Fourier transformation of the acoustic amplitude and phase displacement images provides a quantitative determination of excited mode amplitude and wavenumber at any frequency. Images combined at several frequencies form a direct visualization of lateral mode excitation and dispersion for the device under test allowing mode identification and comparison with predicted operational properties. Discussion and analysis are presented for modes near the first longitudinal thickness resonance (~900 MHz) in an AlN thin film resonator. Plate wave modeling, taking account of material crystalline orientation, elastic and piezoelectric properties and overlayer metallic films, will be discussed in relation to direct image measurements.

  15. Acoustic and Elastodynamic Redatuming for VSP Salt Dome Flank Imaging

    NASA Astrophysics Data System (ADS)

    Lu, R.; Willis, M.; Toksoz, N.

    2007-12-01

    We apply an extension of the concept of Time Reversed Acoustics (TRA) for imaging salt dome flanks using Vertical Seismic Profile (VSP) data. We demonstrate its performance and capabilities on both synthetic acoustic and elastic seismic data from a Gulf of Mexico (GOM) model. This target-oriented strategy eliminates the need for the traditional complex process of velocity estimation, model building, and iterative depth migration to remove the effects of the salt canopy and surrounding overburden. In this study, we use data from surface shots recorded in a well from a walkaway VSP survey. The method, called redatuming, creates a geometry as if the source and receiver pairs had been located in the borehole at the positions of the receivers. This process generates effective downhole shot gathers without any knowledge of the overburden velocity structure. The resulting shot gathers are less complex since the VSP ray paths from the surface source are shortened and moved to be as if they started in the borehole, then reflected off the salt flank region and captured in the borehole. After redatuming, we apply multiple passes of prestack migration from the reference datum of the borehole. In our example, the first pass migration, using only simple vertical velocity gradient model, reveals the outline of the salt edge. A second pass of reverse-time prestack depth migration using the full, two-way wave equation, is performed with an updated velocity model that now consists of the velocity gradient and the salt dome. The second pass migration brings out the dipping sediments abutting the salt flank because these reflectors were illuminated by energy that bounced off the salt flank forming prismatic reflections.

  16. Synthetic aperture acoustic imaging of non-metallic cords

    NASA Astrophysics Data System (ADS)

    Glean, Aldo A. J.; Good, Chelsea E.; Vignola, Joseph F.; Judge, John A.; Ryan, Teresa J.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2012-06-01

    This work presents a set of measurements collected with a research prototype synthetic aperture acoustic (SAA) imaging system. SAA imaging is an emerging technique that can serve as an inexpensive alternative or logical complement to synthetic aperture radar (SAR). The SAA imaging system uses an acoustic transceiver (speaker and microphone) to project acoustic radiation and record backscatter from a scene. The backscattered acoustic energy is used to generate information about the location, morphology, and mechanical properties of various objects. SAA detection has a potential advantage when compared to SAR in that non-metallic objects are not readily detectable with SAR. To demonstrate basic capability of the approach with non-metallic objects, targets are placed in a simple, featureless scene. Nylon cords of five diameters, ranging from 2 to 15 mm, and a joined pair of 3 mm fiber optic cables are placed in various configurations on flat asphalt that is free of clutter. The measurements were made using a chirp with a bandwidth of 2-15 kHz. The recorded signal is reconstructed to form a two-dimensional image of the distribution of acoustic scatterers within the scene. The goal of this study was to identify basic detectability characteristics for a range of sizes and configurations of non-metallic cord. It is shown that for sufficiently small angles relative to the transceiver path, the SAA approach creates adequate backscatter for detectability.

  17. Performance evaluation of a biometric system based on acoustic images.

    PubMed

    Izquierdo-Fuente, Alberto; del Val, Lara; Jiménez, María I; Villacorta, Juan J

    2011-01-01

    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications. PMID:22163708

  18. Performance Evaluation of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo-Fuente, Alberto; del Val, Lara; Jiménez, María I.; Villacorta, Juan J.

    2011-01-01

    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications. PMID:22163708

  19. Two-dimensional acoustic metamaterial structure for potential image processing

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Han, Yu; Li, Ying; Pai, Frank

    2015-12-01

    This paper presents modeling, analysis techniques and experiment of for two-Dimensional Acoustic metamaterial Structure for filtering acoustic waves. For a unit cell of an infinite two-Dimensional Acoustic metamaterial Structure, governing equations are derived using the extended Hamilton principle. The concepts of negative effective mass and stiffness and how the spring-mass-damper subsystems create a stopband are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed acoustic metamaterial structure is based on the concept of conventional mechanical vibration absorbers. It uses the incoming wave in the structure to resonate the integrated membrane-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the panel and stop the wave propagation. Moreover, a two-dimension acoustic metamaterial structure consisting of lumped mass and elastic membrane is fabricated in the lab. We do experiments on the model and The results validate the concept and show that, for two-dimension acoustic metamaterial structure do exist two vibration modes. For the wave absorption, the mass of each cell should be considered in the design. With appropriate design calculations, the proposed two-dimension acoustic metamaterial structure can be used for absorption of low-frequency waves. Hence this special structure can be used in filtering the waves, and the potential using can increase the ultrasonic imaging quality.

  20. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  1. Acoustic angiography: a new imaging modality for assessing microvasculature architecture.

    PubMed

    Gessner, Ryan C; Frederick, C Brandon; Foster, F Stuart; Dayton, Paul A

    2013-01-01

    The purpose of this paper is to provide the biomedical imaging community with details of a new high resolution contrast imaging approach referred to as "acoustic angiography." Through the use of dual-frequency ultrasound transducer technology, images acquired with this approach possess both high resolution and a high contrast-to-tissue ratio, which enables the visualization of microvascular architecture without significant contribution from background tissues. Additionally, volumetric vessel-tissue integration can be visualized by using b-mode overlays acquired with the same probe. We present a brief technical overview of how the images are acquired, followed by several examples of images of both healthy and diseased tissue volumes. 3D images from alternate modalities often used in preclinical imaging, contrast-enhanced micro-CT and photoacoustics, are also included to provide a perspective on how acoustic angiography has qualitatively similar capabilities to these other techniques. These preliminary images provide visually compelling evidence to suggest that acoustic angiography may serve as a powerful new tool in preclinical and future clinical imaging. PMID:23997762

  2. Optimal flushing agents for integrated optical and acoustic imaging systems

    PubMed Central

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-01-01

    Abstract. An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging. PMID:25985096

  3. Optimal flushing agents for integrated optical and acoustic imaging systems.

    PubMed

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-05-01

    An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging. PMID:25985096

  4. Optimal flushing agents for integrated optical and acoustic imaging systems

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-05-01

    An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging.

  5. Equivalent Source Method Applied to Launch Acoustic Simulations

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Barad, Michael F.; Kiris, Cetin

    2012-01-01

    Aeroacoustic simulations of the launch environment are described. A hybrid computational fluid dynamics (CFD)/computational aeroacoustic (CAA) approach is developed in order to accurately and efficiently predict the sound pressure level spectrum on the launch vehicle and surrounding structures. The high-fidelity CFD code LAVA (Launch Ascent and Vehicle Analysis), is used to generate pressure time history at select locations in the flow field. A 3D exterior Helmholtz solver is then used to iteratively determine a set of monopole sources which mimic the noise generating mechanisms identified by the CFD solver. The acoustic pressure field generated from the Helmholtz solver is then used to evaluate the sound pressure levels.

  6. Epipolar geometry of opti-acoustic stereo imaging.

    PubMed

    Negahdaripour, Shahriar

    2007-10-01

    Optical and acoustic cameras are suitable imaging systems to inspect underwater structures, both in regular maintenance and security operations. Despite high resolution, optical systems have limited visibility range when deployed in turbid waters. In contrast, the new generation of high-frequency (MHz) acoustic cameras can provide images with enhanced target details in highly turbid waters, though their range is reduced by one to two orders of magnitude compared to traditional low-/midfrequency (10s-100s KHz) sonar systems. It is conceivable that an effective inspection strategy is the deployment of both optical and acoustic cameras on a submersible platform, to enable target imaging in a range of turbidity conditions. Under this scenario and where visibility allows, registration of the images from both cameras arranged in binocular stereo configuration provides valuable scene information that cannot be readily recovered from each sensor alone. We explore and derive the constraint equations for the epipolar geometry and stereo triangulation in utilizing these two sensing modalities with different projection models. Theoretical results supported by computer simulations show that an opti-acoustic stereo imaging system outperforms a traditional binocular vision with optical cameras, particularly for increasing target distance and (or) turbidity. PMID:17699922

  7. Synthetic aperture acoustic imaging of canonical targets with a 2-15 kHz linear FM chirp

    NASA Astrophysics Data System (ADS)

    Vignola, Joseph F.; Judge, John A.; Good, Chelsea E.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2011-06-01

    Synthetic aperture image reconstruction applied to outdoor acoustic recordings is presented. Acoustic imaging is an alternate method having several military relevant advantages such as being immune to RF jamming, superior spatial resolution, capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to 0.5 - 3 GHz ground penetrating radar technologies. Synthetic aperture acoustic imaging is similar to synthetic aperture radar, but more akin to synthetic aperture sonar technologies owing to the nature of longitudinal or compressive wave propagation in the surrounding acoustic medium. The system's transceiver is a quasi mono-static microphone and audio speaker pair mounted on a rail 5meters in length. Received data sampling rate is 80 kHz with a 2- 15 kHz Linear Frequency Modulated (LFM) chirp, with a pulse repetition frequency (PRF) of 10 Hz and an inter-pulse period (IPP) of 50 milliseconds. Targets are positioned within the acoustic scene at slant range of two to ten meters on grass, dirt or gravel surfaces, and with and without intervening metallic chain link fencing. Acoustic image reconstruction results in means for literal interpretation and quantifiable analyses. A rudimentary technique characterizes acoustic scatter at the ground surfaces. Targets within the acoustic scene are first digitally spotlighted and further processed, providing frequency and aspect angle dependent signature information.

  8. Ideal flushing agents for integrated optical acoustic imaging systems

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, K. Kirk; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping

    2015-02-01

    An increased number of integrated optical acoustic intravascular imaging systems have been researched and hold great hope for accurate diagnosing of vulnerable plaques and for guiding atherosclerosis treatment. However, in any intravascular environment, vascular lumen is filled with blood, which is a high-scattering source for optical and high frequency ultrasound signals. Blood must be flushed away to make images clear. To our knowledge, no research has been performed to find the ideal flushing agent that works for both optical and acoustic imaging techniques. We selected three solutions, mannitol, dextran and iohexol, as flushing agents because of their image-enhancing effects and low toxicities. Quantitative testing of these flushing agents was performed in a closed loop circulation model and in vivo on rabbits.

  9. Acoustic Pyrometry Applied to Gas Turbines and Jet Engines

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.

    1999-01-01

    Internal gas temperature is one of the most fundamental parameters related to engine efficiency and emissions production. The most common methods for measuring gas temperature are physical probes, such as thermocouples and thermistors, and optical methods, such as Coherent Anti Stokes Raman Spectroscopy (CARS) or Rayleigh scattering. Probes are relatively easy to use, but they are intrusive, their output must be corrected for errors due to radiation and conduction, and their upper use temperature is limited. Optical methods are nonintrusive, and they measure some intrinsic property of the gas that is directly related to its temperature (e.g., lifetime or the ratio of line strengths). However, optical methods are usually difficult to use, and optical access is not always available. Lately, acoustic techniques have been receiving some interest as a way to overcome these limitations.

  10. Estimation of the Tool Condition by Applying the Wavelet Transform to Acoustic Emission Signals

    SciTech Connect

    Gomez, M. P.; Piotrkowski, R.; Ruzzante, J. E.; D'Attellis, C. E.

    2007-03-21

    This work follows the search of parameters to evaluate the tool condition in machining processes. The selected sensing technique is acoustic emission and it is applied to a turning process of steel samples. The obtained signals are studied using the wavelet transformation. The tool wear level is quantified as a percentage of the final wear specified by the Standard ISO 3685. The amplitude and relevant scale obtained of acoustic emission signals could be related with the wear level.

  11. Cylindrical acoustical holography applied to full-scale jet noise.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M

    2014-09-01

    Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated. PMID:25190387

  12. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  13. Acoustic and photoacoustic microscopy imaging of single leukocytes

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Moore, Michael J.; Kolios, Michael C.

    2016-03-01

    An acoustic/photoacoustic microscope was used to create micrometer resolution images of stained cells from a blood smear. Pulse echo ultrasound images were made using a 1000 MHz transducer with 1 μm resolution. Photoacoustic images were made using a fiber coupled 532 nm laser, where energy losses through stimulated Raman scattering enabled output wavelengths from 532 nm to 620 nm. The laser was focused onto the sample using a 20x objective, and the laser spot co-aligned with the 1000 MHz transducer opposite the laser. The blood smear was stained with Wright-Giemsa, a common metachromatic dye that differentially stains the cellular components for visual identification. A neutrophil, lymphocyte and a monocyte were imaged using acoustic and photoacoustic microscopy at two different wavelengths, 532 nm and 600 nm. Unique features in each imaging modality enabled identification of the different cell types. This imaging method provides a new way of imaging stained leukocytes, with applications towards identifying and differentiating cell types, and detecting disease at the single cell level.

  14. Ultra high frequency imaging acoustic microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  15. HEAVY-ION IMAGING APPLIED TO MEDICINE

    SciTech Connect

    Fabrikant, J.I.; Tobias, C.A.; Capp, M.P.; Benton, E.V.; Holley, W.R.

    1980-02-01

    Heavy particle radiography is a newly developed noninvasive low dose imaging procedure with increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high energy ions, primarily carbon and neon, at the BEVALAC accelerator at the Lawrence Berkeley Laboratory. The research program applied to medicine utilizes heavy-ion radiography for low dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures and brain and spinal neoplasms. The presentation will be illustrated with clinical cases under study. Discussion will include the potential of heavy-ion imaging, and particularly reconstruction tomography, as an adjunct to existing diagnostic imaging procedures in medicine, both for the applications to the diagnosis, management and treatment of clinical cancer in man, but also for the early detection of small soft tissue tumors at low radiation dose.

  16. Vector Acoustics, Vector Sensors, and 3D Underwater Imaging

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2007-12-01

    Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.

  17. a Three-Dimensional Acoustical Imaging System for Zooplankton Observations

    NASA Astrophysics Data System (ADS)

    McGehee, Duncan Ewell

    This dissertation describes the design, testing, and use of a three-dimensional acoustical imaging system, called Fish TV, or FTV, for tracking zooplankton swimming in situ. There is an increasing recognition that three -dimensional tracks of individual plankters are needed for some studies in behavioral ecology including, for example, the role of individual behavior in patch formation and maintenance. Fish TV was developed in part to provide a means of examining zooplankton swimming behavior in a non-invasive way. The system works by forming a set of 64 acoustic beams in an 8 by 8 pattern, each beam 2 ^circ by 2^circ , for a total coverage of 16^circ by 16^circ. The 8 by 8 beams form two dimensions of the image; range provides the third dimension. The system described in the thesis produces three-dimensional images at the rate of approximately one per second. A set of laboratory and field experiments is described that demonstrates the capabilities of the system. The final field experiment was the in situ observation of zooplankton swimming behavior at a site in the San Diego Trough, 15 nautical miles southwest of San Diego. 314 plankters were tracked for one minute. It was observed that there was no connection between the acoustic size of the animals and their repertoire of swimming behaviors. Other contributions of the dissertation include the development of two novel methods for generating acoustic beams with low side lobes. The first is the method of dense random arrays. The second is the optimum mean square quantized aperture method. Both methods were developed originally as ways to "build a better beam pattern" for Fish TV, but also have general significance with respect to aperture theory.

  18. Airframe noise measurements by acoustic imaging

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.

    1977-01-01

    Studies of the noise produced by flow past wind tunnel models are presented. The central objective of these is to find the specific locations within a flow which are noisy, and to identify the fluid dynamic processes responsible, with the expectation that noise reduction principles will be discovered. The models tested are mostly simple shapes which result in types of flow that are similar to those occurring on, for example, aircraft landing gear and wheel cavities. A model landing gear and a flap were also tested. Turbulence has been intentionally induced as appropriate in order to simulate full-scale effects more closely. The principal technique involves use of a highly directional microphone system which is scanned about the flow field to be analyzed. The data so acquired are presented as a pictorial image of the noise source distribution. An important finding is that the noise production is highly variable within a flow field and that sources can be attributed to various fluid dynamic features of the flow. Flow separation was not noisy, but separation closure usually was.

  19. Application of time reversal acoustics focusing for nonlinear imaging ms

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Armen; Sutin, Alexander

    2001-05-01

    Time reversal acoustic (TRA) focusing of ultrasound appears to be an effective tool for nonlinear imaging in industrial and medical applications because of its ability to efficiently concentrate ultrasonic energy (close to diffraction limit) in heterogeneous media. In this study, we used two TRA systems to focus ultrasonic beams with different frequencies in coinciding focal points, thus causing the generation of ultrasonic waves with combination frequencies. Measurements of the intensity of these combination frequency waves provide information on the nonlinear parameter of medium in the focal region. Synchronized stirring of two TRA focused beams enables obtaining 3-D acoustic nonlinearity images of the object. Each of the TRA systems employed an aluminum resonator with piezotransducers glued to its facet. One of the free facets of each resonator was submerged into a water tank and served as a virtual phased array capable of ultrasound focusing and beam steering. To mimic a medium with spatially varying acoustical nonlinearity a simplest model such as a microbubble column in water was used. Microbubbles were generated by electrolysis of water using a needle electrode. An order of magnitude increase of the sum frequency component was observed when the ultrasound beams were focused in the area with bubbles.

  20. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  1. Non-Contact Ultrasound Imaging Applied to Cortical Bone Phantoms

    NASA Astrophysics Data System (ADS)

    Halcrow, Peter; Ganezer, Kenneth

    2011-11-01

    The purpose of this project was to take the initial steps towards applying Non-Contact Ultrasound (NCU) to the in-vivo monitoring of osteoporosis and to quantitative ultrasound imaging (QUS) of the skeleton using cortical bone. This project was also undertaken to find additional applications of NCU beyond its past limited usage in assessing the severity of third degree burns. With an NCU imaging system, a pair of specially designed broadband 1.5 MHz non-contact transducers and cortical bone phantoms we determined bone mineral density, speed of sound (SOS), integrated acoustical response (IR), and ultrasonic transmittance. Air gaps of greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were used to collect data from phantoms of known mass density and bone mineral density (BMD). Significant correlations between known BMD and measured SOS, IR, and transmittance were obtained for all 14 phantoms. At least thirty to forty repeated measurements were collected over a period of 1.5 years of the SOS, thickness, and IR for our phantom set, extending through most of the in-vivo range of BMD found in cortical bone. The collected data showed a small variation in the range of measurements of plus or minus 1-2 %. These NCU results were shown to be in agreement with similar results from contact ultrasound to within 1-2%. This study suggests that NCU might find additional applications in a clinical setting in the near future in medical imaging.

  2. Micro-nondestructive evaluation of microelectronics using three-dimensional acoustic imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Harvey, David M.; Burton, David R.

    2011-02-01

    Holographic-like three-dimensional (3D) acoustic imaging is developed for micro-nondestructive evaluation of microelectronics. It is implemented by stacking all the interface slices together to locate and identify hidden defects. Matching pursuit based acoustic time-frequency domain imaging is proposed to overcome the wavelength limit of axial resolution so that ultra-thin slices are generated. Experiments are performed on 3D acoustic data collected from microelectronic packages. Results show that the proposed technique resolves closely spaced features that are unavailable by conventional acoustic imaging, revealing more image details of defects.

  3. A Dual Communication and Imaging Underwater Acoustic System

    NASA Astrophysics Data System (ADS)

    Fu, Tricia C.

    A dual communication and imaging underwater acoustic system is proposed and developed throughout this dissertation. Due to the wide variation in underwater channel characteristics, the research here focuses more on robustness to multipath in the shallow underwater acoustic environment, rather than high bit-rate applications and signaling schemes. Lower bit-rate (in the hundreds of bits per second (bps) to low kbps), applications such as the transfer of ecological telemetry data, e.g. conductivity or temperature data, are the primary focus of this dissertation. The parallels between direct sequence spread spectrum in digital communication and pulse-echo with pulse compression in imaging, and channel estimation in communication and range profile estimation in imaging are drawn, leading to a unified communications and imaging platform. A digital communication algorithm for channel order and channel coefficient estimation and symbol demodulation using Matching Pursuit (MP) with Generalized Multiple Hypothesis Testing (GMHT) is implemented in programmable DSP in real time with field experiment results in varying underwater environments for the single receiver (Rx), single transmitter (Tx) case. The custom and off-the-shelf hardware used in the single receiver, single transmitter set of experiments are detailed as well. This work is then extended to the single-input multiple-output (SIMO) case, and then to the full multiple-input multiple-output (MIMO) case. The results of channel estimation are used for simple range profile imaging reconstructions. Successful simulated and experimental results for both transducer array configurations are presented and analyzed. Non-real-time symbol demodulation and channel estimation is performed using experimental data from a scaled testing environment. New hardware based on cost-effective fish-finder transducers for a 6 Rx--1 Tx and 6 Rx--4 Tx transducer array is detailed. Lastly, in an application that is neither communication nor

  4. Hot Stuff? Thermal Imaging Applied to Cryocrystallography

    NASA Technical Reports Server (NTRS)

    Snell, E. H.

    2004-01-01

    In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished fiom the loop holding them. These large crystals, originally grown for neutron diffiaction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we present used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different d a r e d transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data fkom initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light mad with h i k e d rdi&tion. The crystals were clearly distinguished from the vitrified solution in the infiared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry

  5. Frequency-space prediction filtering for acoustic clutter and random noise attenuation in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Shin, Junseob; Huang, Lianjie

    2016-04-01

    Frequency-space prediction filtering (FXPF), also known as FX deconvolution, is a technique originally developed for random noise attenuation in seismic imaging. FXPF attempts to reduce random noise in seismic data by modeling only real signals that appear as linear or quasilinear events in the aperture domain. In medical ultrasound imaging, channel radio frequency (RF) signals from the main lobe appear as horizontal events after receive delays are applied while acoustic clutter signals from off-axis scatterers and electronic noise do not. Therefore, FXPF is suitable for preserving only the main-lobe signals and attenuating the unwanted contributions from clutter and random noise in medical ultrasound imaging. We adapt FXPF to ultrasound imaging, and evaluate its performance using simulated data sets from a point target and an anechoic cyst. Our simulation results show that using only 5 iterations of FXPF achieves contrast-to-noise ratio (CNR) improvements of 67 % in a simulated noise-free anechoic cyst and 228 % in a simulated anechoic cyst contaminated with random noise of 15 dB signal-to-noise ratio (SNR). Our findings suggest that ultrasound imaging with FXPF attenuates contributions from both acoustic clutter and random noise and therefore, FXPF has great potential to improve ultrasound image contrast for better visualization of important anatomical structures and detection of diseased conditions.

  6. Observations of Brine Pool Surface Characteristics and Internal Structure Through Remote Acoustic and Structured Light Imaging

    NASA Astrophysics Data System (ADS)

    Smart, C.; Roman, C.; Michel, A.; Wankel, S. D.

    2015-12-01

    Observations and analysis of the surface characteristics and internal structure of deep-sea brine pools are currently limited to discrete in-situ observations. Complementary acoustic and structured light imaging sensors mounted on a remotely operated vehicle (ROV) have demonstrated the ability systematically detect variations in surface characteristics of a brine pool, reveal internal stratification and detect areas of active hydrocarbon activity. The presented visual and acoustic sensors combined with a stereo camera pair are mounted on the 4000m rated ROV Hercules (Ocean Exploration Trust). These three independent sensors operate simultaneously from a typical 3m altitude resulting in visual and bathymetric maps with sub-centimeter resolution. Applying this imaging technology to 2014 and 2015 brine pool surveys in the Gulf of Mexico revealed acoustic and visual anomalies due to the density changes inherent in the brine. Such distinct changes in acoustic impedance allowed the high frequency 1350KHz multibeam sonar to detect multiple interfaces. For instance, distinct acoustic reflections were observed at 3m and 5.5m below the vehicle. Subsequent verification using a CDT and lead line indicated the acoustic return from the brine surface was the signal at 3m, while a thicker muddy and more saline interface occurred at 5.5m, the bottom of the brine pool was not located but is assumed to be deeper than 15m. The multibeam is also capable of remotely detecting emitted gas bubbles within the brine pool, indicative of active hydrocarbon seeps. Bubbles associated with these seeps were not consistently visible above the brine while using the HD camera on the ROV. Additionally, while imaging the surface of brine pool the structured light sheet laser became diffuse, refracting across the main interface. Analysis of this refraction combined with varying acoustic returns allow for systematic and remote detection of the density, stratification and activity levels within and

  7. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments

    SciTech Connect

    C.N. Corrado; J.E. Bondaryk; V. Godino

    1998-08-01

    The Nuclear Regulatory Commission has a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and Ieaktightness of metal containment vessels and steel liners of concrete containment in nuclear power plants. One of the program objectives is to identify a technique(s) for inspection of inaccessible portions of the containment pressure boundary. Acoustic imaging has been identified as one of these potential techniques. A numerical feasibility study investigated the use of high-frequency bistatic acoustic imaging techniques for inspection of inaccessible portions of the metallic pressure boundary of nuclear power plant containment. The range-dependent version of the OASES Code developed at the Massachusetts Institute of Technology was utilized to perform a series of numerical simulations. OASES is a well developed and extensively tested code for evaluation of the acoustic field in a system of stratified fluid and/or elastic layers. Using the code, an arbitrary number of fluid or solid elastic layers are interleaved, with the outer layers modeled as halfspaces. High frequency vibrational sources were modeled to simulate elastic waves in the steel. The received field due to an arbitrary source array can be calculated at arbitrary depth and range positions. In this numerical study, waves that reflect and scatter from surface roughness caused by modeled degradations (e.g., corrosion) are detected and used to identify and map the steel degradation. Variables in the numerical study included frequency, flaw size, interrogation distance, and sensor incident angle.Based on these analytical simulations, it is considered unlikely that acoustic imaging technology can be used to investigate embedded steel liners of reinforced concrete containment. The thin steel liner and high signal losses to the concrete make this application difficult. Results for portions of steel containment

  8. Hyperspectral imaging applied to forensic medicine

    NASA Astrophysics Data System (ADS)

    Malkoff, Donald B.; Oliver, William R.

    2000-03-01

    Remote sensing techniques now include the use of hyperspectral infrared imaging sensors covering the mid-and- long wave regions of the spectrum. They have found use in military surveillance applications due to their capability for detection and classification of a large variety of both naturally occurring and man-made substances. The images they produce reveal the spatial distributions of spectral patterns that reflect differences in material temperature, texture, and composition. A program is proposed for demonstrating proof-of-concept in using a portable sensor of this type for crime scene investigations. It is anticipated to be useful in discovering and documenting the affects of trauma and/or naturally occurring illnesses, as well as detecting blood spills, tire patterns, toxic chemicals, skin injection sites, blunt traumas to the body, fluid accumulations, congenital biochemical defects, and a host of other conditions and diseases. This approach can significantly enhance capabilities for determining the circumstances of death. Potential users include law enforcement organizations (police, FBI, CIA), medical examiners, hospitals/emergency rooms, and medical laboratories. Many of the image analysis algorithms already in place for hyperspectral remote sensing and crime scene investigations can be applied to the interpretation of data obtained in this program.

  9. Multi-crack imaging using nonclassical nonlinear acoustic method

    NASA Astrophysics Data System (ADS)

    Zhang, Lue; Zhang, Ying; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2014-10-01

    Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress—strain relation is established with Preisach—Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR-NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.

  10. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, Kevin F.

    1994-01-01

    The primary goal of this research is to develop a solid-state high definition television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per frame. This imager offers an order of magnitude improvement in speed over CCD designs and will allow for monolithic imagers operating from the IR to the UV. The technical approach of the project focuses on the development of the three basic components of the imager and their integration. The imager chip can be divided into three distinct components: (1) image capture via an array of avalanche photodiodes (APD's), (2) charge collection, storage and overflow control via a charge transfer transistor device (CTD), and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the development of manufacturable designs for each of these component devices. In addition to the development of each of the three distinct components, work towards their integration is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail in Sections 2-4.

  11. Object detection and imaging with acoustic time reversal mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    1993-11-01

    Focusing an acoustic wave on an object of unknown shape through an inhomogeneous medium of any geometrical shape is a challenge in underground detection. Optimal detection and imaging of objects needs the development of such focusing techniques. The use of a time reversal mirror (TRM) represents an original solution to this problem. It realizes in real time a focusing process matched to the object shape, to the geometries of the acoustic interfaces and to the geometries of the mirror. It is a self adaptative technique which compensates for any geometrical distortions of the mirror structure as well as for diffraction and refraction effects through the interfaces. Two real time 64 and 128 channel prototypes have been built in our laboratory and TRM experiments demonstrating the TRM performance through inhomogeneous solid and liquid media are presented. Applications to medical therapy (kidney stone detection and destruction) and to nondestructive testing of metallurgical samples of different geometries are described. Extension of this study to underground detection and imaging will be discussed.

  12. A review of acoustic dampers applied to combustion chambers in aerospace industry

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Li, X. Y.

    2015-04-01

    In engine combustion systems such as rockets, aero-engines and gas turbines, pressure fluctuations are always present, even during normal operation. One of design prerequisites for the engine combustors is stable operation, since large-amplitude self-sustained pressure fluctuations (also known as combustion instability) have the potential to cause serious structural damage and catastrophic engine failure. To dampen pressure fluctuations and to reduce noise, acoustic dampers are widely applied as a passive control means to stabilize combustion/engine systems. However, they cannot respond to the dynamic changes of operating conditions and tend to be effective over certain narrow range of frequencies. To maintain their optimum damping performance over a broad frequency range, extensive researches have been conducted during the past four decades. The present work is to summarize the status, challenges and progress of implementing such acoustic dampers on engine systems. The damping effect and mechanism of various acoustic dampers, such as Helmholtz resonators, perforated liners, baffles, half- and quarter-wave tube are introduced first. A summary of numerical, experimental and theoretical studies are then presented to review the progress made so far. Finally, as an alternative means, ';tunable acoustic dampers' are discussed. Potential, challenges and issues associated with the dampers practical implementation are highlighted.

  13. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.

    1994-01-01

    The primary goal of this research is to develop a solid-state television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels/frame. This imager will offer an order of magnitude improvements in speed over CCD designs and will allow for monolithic imagers operating from the IR to UV. The technical approach of the project focuses on the development of the three basic components of the imager and their subsequent integration. The camera chip can be divided into three distinct functions: (1) image capture via an array of avalanche photodiodes (APD's); (2) charge collection, storage, and overflow control via a charge transfer transistor device (CTD); and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the optimization of each of these component devices. In addition to the development of each of the three distinct components, work towards their integration and manufacturability is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail.

  14. Parametrized mode decomposition for bifurcation analysis applied to a thermo-acoustically oscillating flame

    NASA Astrophysics Data System (ADS)

    Sayadi, Taraneh; Schmid, Peter; Richecoeur, Franck; Durox, Daniel

    2014-11-01

    Thermo-acoustic systems belong to a class of dynamical systems that are governed by multiple parameters. Changing these parameters alters the response of the dynamical system and causes it to bifurcate. Due to their many applications and potential impact on a variety of combustion systems, there is great interest in devising control strategies to weaken or suppress thermo-acoustic instabilities. However, the system dynamics have to be available in reduced-order form to allow the design of such controllers and their operation in real-time. As the dominant modes and their respective frequencies change with varying the system parameters, the dynamical system needs to be analyzed separately for a set of fixed parameter values, before the dynamics can be linked in parameter-space. This two-step process is not only cumbersome, but also ambiguous when applied to systems operating close to a bifurcation point. Here we propose a parametrized decomposition algorithm which is capable of analyzing dynamical systems as they go through a bifurcation, extracting the dominant modes of the pre- and post-bifurcation regime. The algorithm is applied to a thermo-acoustically oscillating flame and to pressure signals from experiments. A few selected mode are capable of reproducing the dynamics.

  15. Ultrasound-Stimulated Acoustic Emission in Thermal Image-Guided HIFU Therapy: A Phantom Study

    SciTech Connect

    Jiang, C. P.; Lin, W. T.; Chen, W. S.

    2006-05-08

    Magnetic resonance image (MRI) is a promising monitoring tool for non-invasive real-time thermal guidance in high intensity focused ultrasound (HIFU) during thermal ablation surgery. However, this approach has two main drawbacks: 1) majority of components need to be redesigned to be MR compatible in order to avoid effecting MR images, and 2) the cost of operating MRI facilities is high. Alternately, ultrasound-stimulated acoustic emission (USAE) method has been applied for detecting thermal variations in tissues. An optical transparent phantom, made from polyacrylamide, containing thermal sensitive indicator protein (Bovine Serum Albumin), was prepared for observing the HIFU-induced denaturalization. A thermal-couple was set up for validation of temperature distribution. Experimental results show that thermal image can be captured clearly under stationary conditions.

  16. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.

    PubMed

    Shih, Cho-Chiang; Lai, Ting-Yu; Huang, Chih-Chung

    2016-08-01

    The ability to measure the elastic properties of plaques and vessels is significant in clinical diagnosis, particularly for detecting a vulnerable plaque. A novel concept of combining intravascular ultrasound (IVUS) imaging and acoustic radiation force impulse (ARFI) imaging has recently been proposed. This method has potential in elastography for distinguishing between the stiffness of plaques and arterial vessel walls. However, the intensity of the acoustic radiation force requires calibration as a standard for the further development of an ARFI-IVUS imaging device that could be used in clinical applications. In this study, a dual-frequency transducer with 11MHz and 48MHz was used to measure the association between the biological tissue displacement and the applied acoustic radiation force. The output intensity of the acoustic radiation force generated by the pushing element ranged from 1.8 to 57.9mW/cm(2), as measured using a calibrated hydrophone. The results reveal that all of the acoustic intensities produced by the transducer in the experiments were within the limits specified by FDA regulations and could still displace the biological tissues. Furthermore, blood clots with different hematocrits, which have elastic properties similar to the lipid pool of plaques, with stiffness ranging from 0.5 to 1.9kPa could be displaced from 1 to 4μm, whereas the porcine arteries with stiffness ranging from 120 to 291kPa were displaced from 0.4 to 1.3μm when an acoustic intensity of 57.9mW/cm(2) was used. The in vitro ARFI images of the artery with a blood clot and artificial arteriosclerosis showed a clear distinction of the stiffness distributions of the vessel wall. All the results reveal that ARFI-IVUS imaging has the potential to distinguish the elastic properties of plaques and vessels. Moreover, the acoustic intensity used in ARFI imaging has been experimentally quantified. Although the size of this two-element transducer is unsuitable for IVUS imaging, the

  17. Method of representation of acoustic spectra and reflection corrections applied to externally blown flap noise

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1975-01-01

    A computer method for obtaining a rational function representation of an acoustic spectrum and for correcting reflection effects is introduced. The functional representation provides a means of compact storage of data and the nucleus of the data analysis method. The method is applied to noise from a full-scale externally blown flap system with a quiet 6:1 bypass ratio turbofan engine and a three-flap wing section designed to simulate the take-off condition of a conceptual STOL aircraft.

  18. Finite element nonlinear random response of beams to acoustic and thermal loads applied simultaneously

    NASA Astrophysics Data System (ADS)

    Chen, Ruixi; Mei, Chuh

    1993-04-01

    A finite element formulation combined with the equivalent linearization technique and the normal mode method is developed for the study of nonlinear random response of beams subjected to simultaneously applied acoustic and thermal loads. Examples include thermally buckled random response of simply supported beam, clamped-clamped beam and simply supported-clamped beam. To compare and validate the present formulation, results are compared with the solutions from existing sequential load method, and significant difference has been found. Results by classical continuum solution and the solution of Fokker-Planck-Kolmogorov equation are also derived and obtained for comparison.

  19. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the sixth quarter of this research project the research team developed a method and the experimental procedures for acquiring the data needed for ultrasonic tomography of rock core samples under triaxial stress conditions as outlined in Task 10. Traditional triaxial compression experiments, where compressional and shear wave velocities are measured, provide little or no information about the internal spatial distribution of mechanical damage within the sample. The velocities measured between platen-to-platen or sensor-to-sensor reflects an averaging of all the velocities occurring along that particular raypath across the boundaries of the rock. The research team is attempting to develop and refine a laboratory equivalent of seismic tomography for use on rock samples deformed under triaxial stress conditions. Seismic tomography, utilized for example in crosswell tomography, allows an imaging of the velocities within a discrete zone within the rock. Ultrasonic or acoustic tomography is essentially the extension of that field technology applied to rock samples deforming in the laboratory at high pressures. This report outlines the technical steps and procedures for developing this technology for use on weak, soft chalk samples. Laboratory tests indicate that the chalk samples exhibit major changes in compressional and shear wave velocities during compaction. Since chalk is the rock type responsible for the severe subsidence and compaction in the North Sea it was selected for the first efforts at tomographic imaging of soft rocks. Field evidence from the North Sea suggests that compaction, which has resulted in over 30 feet of subsidence to date, is heterogeneously distributed within the reservoir. The research team will attempt to image this very process in chalk samples. The initial tomographic studies (Scott et al., 1994a,b; 1998) were accomplished on well cemented, competent rocks such as Berea sandstone. The extension of the technology to weaker samples is

  20. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  1. Bessel filters applied in biomedical image processing

    NASA Astrophysics Data System (ADS)

    Mesa Lopez, Juan Pablo; Castañeda Saldarriaga, Diego Leon

    2014-06-01

    A magnetic resonance is an image obtained by means of an imaging test that uses magnets and radio waves to create body images, however, in some images it's difficult to recognize organs or foreign agents present in the body. With these Bessel filters the objective is to significantly increase the resolution of magnetic resonance images taken to make them much clearer in order to detect anomalies and diagnose the illness. As it's known, Bessel filters appear to solve the Schrödinger equation for a particle enclosed in a cylinder and affect the image distorting the colors and contours of it, therein lies the effectiveness of these filters, since the clear outline shows more defined and easy to recognize abnormalities inside the body.

  2. Acoustic imaging with time reversal methods: From medicine to NDT

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2015-03-01

    This talk will present an overview of the research conducted on ultrasonic time-reversal methods applied to biomedical imaging and to non-destructive testing. We will first describe iterative time-reversal techniques that allow both focusing ultrasonic waves on reflectors in tissues (kidney stones, micro-calcifications, contrast agents) or on flaws in solid materials. We will also show that time-reversal focusing does not need the presence of bright reflectors but it can be achieved only from the speckle noise generated by random distributions of non-resolved scatterers. We will describe the applications of this concept to correct distortions and aberrations in ultrasonic imaging and in NDT. In the second part of the talk we will describe the concept of time-reversal processors to get ultrafast ultrasonic images with typical frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic imaging that has plenty medical applications and can be of great interest in NDT. We will describe some applications in the biomedical domain: Quantitative Elasticity imaging of tissues by following shear wave propagation to improve cancer detection and Ultrafast Doppler imaging that allows ultrasonic functional imaging.

  3. Full-Field Imaging of GHz Film Bulk Acoustic Resonator Motion

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Cottle, David Lynn; Larson III, J. D.

    2003-10-01

    A full-field view laser ultrasonic imaging method has been developed that measures acoustic motion at a surface without scanning. Images are recorded at normal video frame rates by using dynamic holography with photorefractive interferometric detection. By extending the approach to ultra high frequencies, an acoustic microscope has been developed that is capable of operation at gigahertz frequency and micron length scales. Both acoustic amplitude and phase are recorded, allowing full calibration and determination of phases to within a single arbitrary constant. Results are presented of measurements at frequencies of 800-900 MHz, illustrating a multitude of normal mode behavior in electrically driven thin film acoustic resonators. Coupled with microwave electrical impedance measurements, this imaging mode provides an exceptionally fast method for evaluation of electric-to-acoustic coupling of these devices and their performance. Images of 256 /spl times/ 240 pixels are recorded at 18 fps rates synchronized to obtain both in-phase and quadrature detection of the acoustic motion. Simple averaging provides sensitivity to the subnanometer level at each pixel calibrated over the image using interferometry. Identification of specific acoustic modes and their relationship to electrical impedance characteristics show the advantages and overall high speed of the technique.

  4. Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Zou, Qiushun; Yu, Tianbao; Liu, Jiangtao; Liu, Nianhua; Wang, Tongbiao; Liao, Qinghua

    2015-09-01

    We report an acoustic multimode interference effect and self-imaging phenomena in an acoustic multimode waveguide system which consists of M parallel phononic crystal waveguides (M-PnCWs). Results show that the self-imaging principle remains applicable for acoustic waveguides just as it does for optical multimode waveguides. To achieve the dispersions and replicas of the input acoustic waves produced along the propagation direction, we performed the finite element method on M-PnCWs, which support M guided modes within the target frequency range. The simulation results show that single images (including direct and mirrored images) and N-fold images (N is an integer) are identified along the propagation direction with asymmetric and symmetric incidence discussed separately. The simulated positions of the replicas agree well with the calculated values that are theoretically decided by self-imaging conditions based on the guided mode propagation analysis. Moreover, the potential applications based on this self-imaging effect for acoustic wavelength de-multiplexing and beam splitting in the acoustic field are also presented.

  5. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  6. Tracking Energy Flow Using a Volumetric Acoustic Intensity Imager (VAIM)

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas P.

    2006-01-01

    A new measurement device has been invented at the Naval Research Laboratory which images instantaneously the intensity vector throughout a three-dimensional volume nearly a meter on a side. The measurement device consists of a nearly transparent spherical array of 50 inexpensive microphones optimally positioned on an imaginary spherical surface of radius 0.2m. Front-end signal processing uses coherence analysis to produce multiple, phase-coherent holograms in the frequency domain each related to references located on suspect sound sources in an aircraft cabin. The analysis uses either SVD or Cholesky decomposition methods using ensemble averages of the cross-spectral density with the fixed references. The holograms are mathematically processed using spherical NAH (nearfield acoustical holography) to convert the measured pressure field into a vector intensity field in the volume of maximum radius 0.4 m centered on the sphere origin. The utility of this probe is evaluated in a detailed analysis of a recent in-flight experiment in cooperation with Boeing and NASA on NASA s Aries 757 aircraft. In this experiment the trim panels and insulation were removed over a section of the aircraft and the bare panels and windows were instrumented with accelerometers to use as references for the VAIM. Results show excellent success at locating and identifying the sources of interior noise in-flight in the frequency range of 0 to 1400 Hz. This work was supported by NASA and the Office of Naval Research.

  7. Acoustic teaching apparatus before 1929 at the Case School of Applied Science

    NASA Astrophysics Data System (ADS)

    Hoekje, Peter L.; Fickinger, William

    2001-05-01

    The acoustics apparatus found in the Physics Department of the Case School of Applied Science in the first decades of the 20th century included many items common to other acoustical teaching laboratories, such as organ pipes, tuning forks, Helmholtz resonators, sirens, and manometric flame sound analyzers. The European instrument makers Rudolf Koenig and Max Kohl supplied much of this. Equipment built at Case included the phonodeik, which Dayton C. Miller designed in 1908, and the waveform synthesizer. Miller supplied detailed descriptions of the operations of all this equipment in papers and books. In the phonodeik (to show sound), sound deflects a thin glass diaphragm, which by a silk thread turns a mirror on an axle, causing a spot of light to move across film or a projection screen. A working model of the phonodeik has been reconstructed from pieces of two original ones, and will be demonstrated. Photographs of other extant instruments in the collection, and a selection from Millers lantern slides, will be displayed.

  8. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    SciTech Connect

    Han, Jianning; Wen, Tingdun; Yang, Peng; Zhang, Lu

    2014-05-15

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.

  9. Breaking the acoustic diffraction limit in photoacoustic imaging with multiple speckle illumination

    NASA Astrophysics Data System (ADS)

    Chaigne, Thomas; Gateau, Jérôme; Allain, Marc; Katz, Ori; Gigan, Sylvain; Sentenac, Anne; Bossy, Emmanuel

    2016-03-01

    In deep photoacoustic imaging, resolution is inherently limited by acoustic diffraction, and ultrasonic frequencies cannot be arbitrarily increased because of attenuation in tissue. Here we report on the use of multiple speckle illumination to perform super resolution photoacoustic imaging. We show that the analysis of speckle-induced second-order fluctuations of the photoacoustic signal combined with deconvolution enables to resolve optically absorbing structures below the acoustic diffraction limit.

  10. An Acoustic Charge Transport Imager for High Definition Television

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin; May, Gary; Glenn, William E.; Richardson, Mike; Solomon, Richard

    1999-01-01

    This project, over its term, included funding to a variety of companies and organizations. In addition to Georgia Tech these included Florida Atlantic University with Dr. William E. Glenn as the P.I., Kodak with Mr. Mike Richardson as the P.I. and M.I.T./Polaroid with Dr. Richard Solomon as the P.I. The focus of the work conducted by these organizations was the development of camera hardware for High Definition Television (HDTV). The focus of the research at Georgia Tech was the development of new semiconductor technology to achieve a next generation solid state imager chip that would operate at a high frame rate (I 70 frames per second), operate at low light levels (via the use of avalanche photodiodes as the detector element) and contain 2 million pixels. The actual cost required to create this new semiconductor technology was probably at least 5 or 6 times the investment made under this program and hence we fell short of achieving this rather grand goal. We did, however, produce a number of spin-off technologies as a result of our efforts. These include, among others, improved avalanche photodiode structures, significant advancement of the state of understanding of ZnO/GaAs structures and significant contributions to the analysis of general GaAs semiconductor devices and the design of Surface Acoustic Wave resonator filters for wireless communication. More of these will be described in the report. The work conducted at the partner sites resulted in the development of 4 prototype HDTV cameras. The HDTV camera developed by Kodak uses the Kodak KAI-2091M high- definition monochrome image sensor. This progressively-scanned charge-coupled device (CCD) can operate at video frame rates and has 9 gm square pixels. The photosensitive area has a 16:9 aspect ratio and is consistent with the "Common Image Format" (CIF). It features an active image area of 1928 horizontal by 1084 vertical pixels and has a 55% fill factor. The camera is designed to operate in continuous mode

  11. Analysis of Particle Image Velocimetry (PIV) Data for Acoustic Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    Acoustic velocity measurements were taken using Particle Image Velocimetry (PIV) in a Normal Incidence Tube configuration at various frequency, phase, and amplitude levels. This report presents the results of the PIV analysis and data reduction portions of the test and details the processing that was done. Estimates of lower measurement sensitivity levels were determined based on PIV image quality, correlation, and noise level parameters used in the test. Comparison of measurements with linear acoustic theory are presented. The onset of nonlinear, harmonic frequency acoustic levels were also studied for various decibel and frequency levels ranging from 90 to 132 dB and 500 to 3000 Hz, respectively.

  12. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr.; Younane Abousleiman

    2004-04-01

    The research during this project has concentrated on developing a correlation between rock deformation mechanisms and their acoustic velocity signature. This has included investigating: (1) the acoustic signature of drained and undrained unconsolidated sands, (2) the acoustic emission signature of deforming high porosity rocks (in comparison to their low porosity high strength counterparts), (3) the effects of deformation on anisotropic elastic and poroelastic moduli, and (4) the acoustic tomographic imaging of damage development in rocks. Each of these four areas involve triaxial experimental testing of weak porous rocks or unconsolidated sand and involves measuring acoustic properties. The research is directed at determining the seismic velocity signature of damaged rocks so that 3-D or 4-D seismic imaging can be utilized to image rock damage. These four areas of study are described in the report: (1) Triaxial compression experiments have been conducted on unconsolidated Oil Creek sand at high confining pressures. (2) Initial experiments on measuring the acoustic emission activity from deforming high porosity Danian chalk were accomplished and these indicate that the AE activity was of a very low amplitude. (3) A series of triaxial compression experiments were conducted to investigate the effects of induced stress on the anisotropy developed in dynamic elastic and poroelastic parameters in rocks. (4) Tomographic acoustic imaging was utilized to image the internal damage in a deforming porous limestone sample. Results indicate that the deformation damage in rocks induced during laboratory experimentation can be imaged tomographically in the laboratory. By extension the results also indicate that 4-D seismic imaging of a reservoir may become a powerful tool for imaging reservoir deformation (including imaging compaction and subsidence) and for imaging zones where drilling operation may encounter hazardous shallow water flows.

  13. Applying robust multibit watermarks to digital images

    NASA Astrophysics Data System (ADS)

    Tsolis, Dimitrios; Nikolopoulos, Spiridon; Drossos, Lambros; Sioutas, Spyros; Papatheodorou, Theodore

    2009-05-01

    The current work is focusing on the implementation of a robust multibit watermarking algorithm for digital images, which is based on an innovative spread spectrum technique analysis. The paper presents the watermark embedding and detection algorithms, which use both wavelets and the Discrete Cosine Transform and analyzes the arising issues.

  14. ADRPM-VII applied to the long-range acoustic detection problem

    NASA Technical Reports Server (NTRS)

    Shalis, Edward; Koenig, Gerald

    1990-01-01

    An acoustic detection range prediction model (ADRPM-VII) has been written for IBM PC/AT machines running on the MS-DOS operating system. The software allows the user to predict detection distances of ground combat vehicles and their associated targets when they are involved in quasi-military settings. The program can also calculate individual attenuation losses due to spherical spreading, atmospheric absorption, ground reflection and atmospheric refraction due to temperature and wind gradients while varying parameters effecting the source-receiver problem. The purpose here is to examine the strengths and limitations of ADRPM-VII by modeling the losses due to atmospheric refraction and ground absorption, commonly known as excess attenuation, when applied to the long range detection problem for distances greater than 3 kilometers.

  15. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  16. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies

    USGS Publications Warehouse

    Williams, J.H.; Johnson, C.D.

    2004-01-01

    Imaging with acoustic and optical televiewers results in continuous and oriented 360?? views of the borehole wall from which the character, relation, and orientation of lithologic and structural planar features can be defined for studies of fractured-rock aquifers. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing of the character of and relation between lithology, fractures, foliation, and bedding. The most powerful approach is the combined application of acoustic and optical imaging with integrated interpretation. Imaging of the borehole wall provides information useful for the collection and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. ?? 2003 Elsevier B.V. All rights reserved.

  17. High-quality photoacoustic imaging by using of concentration-adjustable glycerin as an acoustic couplant

    NASA Astrophysics Data System (ADS)

    Yang, Sihua; Gu, Huaimin

    2007-01-01

    The influences of mismatch of ultrasonic propagation velocities on photoacoustic imaging are studied. The concentration-adjustable glycerin is used as an ultrasonic couplant to match the ultrasonic velocities in different media in order to eliminate the acoustic refraction, reduce the acoustic reflection, and rectify the acoustic path difference. Two biological phantoms are tested by using water and glycerin as ultrasonic couplant, respectively. The spatial resolution of reconstructed image by experimental evaluation also is estimated to be 0.12mm. The experimental results demonstrate that the high-quality photoacoustic imaging can be obtained by matching the ultrasonic propagation velocities in different media. The contrast of reconstructed image is significantly improved and the image artifacts are obviously reduced after matching ultrasonic velocity. It has potential to promote photoacoustic imaging as a clinical diagnosis technique.

  18. OASIS in the sea: Measurement of the acoustic reflectivity of zooplankton with concurrent optical imaging

    NASA Astrophysics Data System (ADS)

    Jaffe, J. S.; Ohman, M. D.; De Robertis, A.

    A new instrument Optical-Acoustic Submersible Imaging System (OASIS) has been developed for three-dimensional acoustic tracking of zooplankton with concurrent optical imaging to verify the identity of the insonified organisms. OASIS also measures in situ target strengths (TS) of freely swimming zooplankton and nekton of known identity and 3-D orientation. The system consists of a three-dimensional acoustic imaging system (FishTV), a sensitive optical CCD camera with red-filtered strobe illumination, and ancillary oceanographic sensors. The sonar triggers the acquisition of an optical image when it detects the presence of a significant target in the precise location where the camera, strobe and sonar are co-registered. Acoustic TS can then be related to the optical image, which permits identification of the animal and its 3-D aspect. The system was recently deployed (August 1996) in Saanich Inlet, B.C., Canada. Motile zooplankton and nekton were imaged with no evidence of reaction to or avoidance of the OASIS instrument package. Target strengths of many acoustic reflectors were recorded in parallel with the optical images, triggered by the presence of an animal in the correct location of the sonar system. Inspection of the optical images, corroborated with zooplankton sampling with a MOCNESS net, revealed that the joint optically and acoustically sensed taxa at the site were the euphausiid Euphausia pacifica, the gammarid amphipod Orchomene obtusa, and a gadid fish. The simultaneous optical and acoustic images permitted an exact correlation of TS and taxa. Computer simulations from a model of the backscattered strength from euphausiids are in good agreement with the observed data.

  19. The path to COVIS: A review of acoustic imaging of hydrothermal flow regimes

    NASA Astrophysics Data System (ADS)

    Bemis, Karen G.; Silver, Deborah; Xu, Guangyu; Light, Russ; Jackson, Darrell; Jones, Christopher; Ozer, Sedat; Liu, Li

    2015-11-01

    Acoustic imaging of hydrothermal flow regimes started with the incidental recognition of a plume on a routine sonar scan for obstacles in the path of the human-occupied submersible ALVIN. Developments in sonar engineering, acoustic data processing and scientific visualization have been combined to develop technology which can effectively capture the behavior of focused and diffuse hydrothermal discharge. This paper traces the development of these acoustic imaging techniques for hydrothermal flow regimes from their conception through to the development of the Cabled Observatory Vent Imaging Sonar (COVIS). COVIS has monitored such flow eight times a day for several years. Successful acoustic techniques for estimating plume entrainment, bending, vertical rise, volume flux, and heat flux are presented as is the state-of-the-art in diffuse flow detection.

  20. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    PubMed

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26255624

  1. Applying Zeeman Doppler imaging to solar spectra

    NASA Astrophysics Data System (ADS)

    Hussain, G. A. J.; Saar, S. H.; Collier Cameron, A.

    2004-03-01

    A new generation of spectro-polarimeters with high throughput (e.g. CFHT/ESPADONS and LBT/PEPSI) is becoming available. This opportunity can be exploited using Zeeman Doppler imaging (ZDI), a technique that inverts time-series of Stokes V spectra to map stellar surface magnetic fields (Semel 1989). ZDI is assisted by ``Least squares deconvolution'' (LSD), which sums up the signal from 1000's of photospheric lines to produce a mean deconvolved profile with higher S:N (Donati & Collier Cameron 1997).

  2. PhotoAcoustic-guided Focused UltraSound imaging (PAFUSion) for reducing reflection artifacts in photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Singh, Mithun K.; Steenbergen, Wiendelt

    2015-07-01

    Reflection artifacts caused by acoustic reflectors is an important problem in reflection-mode photoacoustic imaging. The light absorbed by skin and superficial optical absorbers may produce high photoacoustic signals, which traverse into the tissue and get reflected from structures having different acoustic impedance. These reflected photoacoustic signals, when reconstructed may appear in the region of interest, which causes complications in interpreting the images. We propose a novel method to identify and reduce reflection artifacts in photoacoustic images by making use of PhotoAcoustic-guided Focused UltraSound [PAFUSion]. Our method ultrasonically mimics the photoacoustic image formation process and thus delivers a clinically feasible way to reduce reflection artifacts. Simulation and phantom measurement results are presented to demonstrate the validity and impact of this method. Results show that PAFUSion technique can identify and differentiate reflection signals from the signals of interest and thus foresees good potential for improving photoacoustic imaging of deep tissue.

  3. Experimental results for a prototype 3-D acoustic imaging system using an ultra-sparse planar array

    NASA Astrophysics Data System (ADS)

    Impagliazzo, John M.; Chiang, Alice M.; Broadstone, Steven R.

    2002-11-01

    A handheld high resolution sonar has been under development to provide Navy Divers with a 3-D acoustic imaging system for mine reconnaissance. An ultra-sparse planar array, consisting of 121 1 mm x1 mm, 2 MHz elements, was fabricated to provide 3-D acoustic images. The array was 10 cm x10 cm. A full array at this frequency with elements at half-wavelength spacing would consist of 16384 elements. The first phase of testing of the planar array was completed in September 2001 with the characterization of the array in the NUWC Acoustic Test Facility (ATF). The center frequency was 2 MHz with a 667 kHz bandwidth. A system-level technology demonstration will be conducted in July 2002 with a real-time beamformer and near real-time 3-D imaging software. The demonstration phase consists of imaging simple targets at a range of 3 m in the ATF. Experimental results obtained will be reported on. [Work supported by the Defense Applied Research Project Agency, Advance Technology Office, Dr. Theo Kooij, Program Manager.

  4. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    NASA Astrophysics Data System (ADS)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2001-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  5. RGB representation of two-dimensional multi-spectral acoustic data for object surface profile imaging

    NASA Astrophysics Data System (ADS)

    Guo, Xinhua; Wada, Yuji; Mizuno, Yosuke; Nakamura, Kentaro

    2013-10-01

    Conventionally, acoustic imaging has been performed using a single frequency or a limited number of frequencies. However, the rich information on surface profiles, structures hidden under surfaces and material properties of objects may exhibit frequency dependence. In this study, acoustic imaging on object surface was conducted over a wide frequency range with a fine frequency step, and a method for displaying the acquired multi-spectral acoustic data was proposed. A complicated rigid surface with different profiles was illuminated by sound waves sweeping over the frequency range from 1 to 20 kHz with a 30 Hz step. The reflected sound was two-dimensionally recorded using a scanning microphone, and processed using a holographic reconstruction method. The two-dimensional distributions of obtained sound pressure at each frequency were defined as ‘multi-spectral acoustic imaging data’. Next, the multi-spectral acoustic data were transformed into a single RGB-based picture for easy understanding of the surface characteristics. The acoustic frequencies were allocated to red, green and blue using the RGB filter technique. The depths of the grooves were identified by their colours in the RGB image.

  6. Evaluation of real-time acoustical holography for breast imaging and biopsy guidance

    NASA Astrophysics Data System (ADS)

    Lehman, Constance D.; Andre, Michael P.; Fecht, Barbara A.; Johansen, Jennifer M.; Shelby, Ronald L.; Shelby, Jerod O.

    1999-05-01

    Ultrasound is an attractive modality for adjunctive characterization of certain breast lesions, but it is not considered specific for cancer and it is not recommended for screening. An imaging technique remarkably different from pulse-echo ultrasound, termed Optical SonographyTM (Advanced Diagnostics, Inc.), uses the through-transmission signal. The method was applied to breast examinations in 41 asymptomatic and symptomatic women ranging in age from 18 to 83 years to evaluate this imaging modality for detection and characterization of breast disease and normal tissue. This approach uses coherent sound and coherent light to produce real-time, large field-of-view images with pronounced edge definition in soft tissues of the body. The system patient interface was modified to improve coupling to the breast and bring the chest wall to within 3 cm of the sound beam. System resolution (full width half maximum of the line-spread function) was 0.5 mm for a swept-frequency beam centered at 2.7 MHz. Resolution degrades slightly in the periphery of the very large 15.2-cm field of view. Dynamic range of the reconstructed 'raw' images (no post processing) was 3000:1. Included in the study population were women with dense parenchyma, palpable ductal carcinoma in situ with negative mammography, superficial and deep fibroadenomas, and calcifications. Successful breast imaging was performed in 40 of 41 women. These images were then compared with images generated using conventional X-ray mammography and pulse-echo ultrasound. Margins of lesions and internal textures were particularly well defined and provided substantial contrast to fatty and dense parenchyma. In two malignant lesions, Optical SonographyTM appeared to approximate more closely tumor extent compared to mammography than pulse-echo sonography. These preliminary studies indicate the method has unique potential for detecting, differentiating, and guiding the biopsy of breast lesions using real-time acoustical holography.

  7. Preliminary study of copper oxide nanoparticles acoustic and magnetic properties for medical imaging

    NASA Astrophysics Data System (ADS)

    Perlman, Or; Weitz, Iris S.; Azhari, Haim

    2015-03-01

    The implementation of multimodal imaging in medicine is highly beneficial as different physical properties may provide complementary information, augmented detection ability, and diagnosis verification. Nanoparticles have been recently used as contrast agents for various imaging modalities. Their significant advantage over conventional large-scale contrast agents is the ability of detection at early stages of the disease, being less prone to obstacles on their path to the target region, and possible conjunction to therapeutics. Copper ions play essential role in human health. They are used as a cofactor for multiple key enzymes involved in various fundamental biochemistry processes. Extremely small size copper oxide nanoparticles (CuO-NPs) are readily soluble in water with high colloidal stability yielding high bioavailability. The goal of this study was to examine the magnetic and acoustic characteristics of CuO-NPs in order to evaluate their potential to serve as contrast imaging agent for both MRI and ultrasound. CuO-NPs 7nm in diameter were synthesized by hot solution method. The particles were scanned using a 9.4T MRI and demonstrated a concentration dependent T1 relaxation time shortening phenomenon. In addition, it was revealed that CuO-NPs can be detected using the ultrasonic B-scan imaging. Finally, speed of sound based ultrasonic computed tomography was applied and showed that CuO-NPs can be clearly imaged. In conclusion, the preliminary results obtained, positively indicate that CuO-NPs may be imaged by both MRI and ultrasound. The results motivate additional in-vivo studies, in which the clinical utility of fused images derived from both modalities for diagnosis improvement will be studied.

  8. Image processing applied to laser cladding process

    SciTech Connect

    Meriaudeau, F.; Truchetet, F.

    1996-12-31

    The laser cladding process, which consists of adding a melt powder to a substrate in order to improve or change the behavior of the material against corrosion, fatigue and so on, involves a lot of parameters. In order to perform good tracks some parameters need to be controlled during the process. The authors present here a low cost performance system using two CCD matrix cameras. One camera provides surface temperature measurements while the other gives information relative to the powder distribution or geometric characteristics of the tracks. The surface temperature (thanks to Beer Lambert`s law) enables one to detect variations in the mass feed rate. Using such a system the authors are able to detect fluctuation of 2 to 3g/min in the mass flow rate. The other camera gives them information related to the powder distribution, a simple algorithm applied to the data acquired from the CCD matrix camera allows them to see very weak fluctuations within both gaz flux (carriage or protection gaz). During the process, this camera is also used to perform geometric measurements. The height and the width of the track are obtained in real time and enable the operator to find information related to the process parameters such as the speed processing, the mass flow rate. The authors display the result provided by their system in order to enhance the efficiency of the laser cladding process. The conclusion is dedicated to a summary of the presented works and the expectations for the future.

  9. Reconstructed imaging of acoustic cloak using time-lapse reversal method

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Cheng, Ying; Xu, Jian-yi; Li, Bo; Liu, Xiao-jun

    2014-08-01

    We proposed and investigated a solution to the inverse acoustic cloak problem, an anti-stealth technology to make cloaks visible, using the time-lapse reversal (TLR) method. The TLR method reconstructs the image of an unknown acoustic cloak by utilizing scattered acoustic waves. Compared to previous anti-stealth methods, the TLR method can determine not only the existence of a cloak but also its exact geometric information like definite shape, size, and position. Here, we present the process for TLR reconstruction based on time reversal invariance. This technology may have potential applications in detecting various types of cloaks with different geometric parameters.

  10. Robustness of speckle imaging techniques applied to horizontal imaging scenarios

    NASA Astrophysics Data System (ADS)

    Bos, Jeremy P.

    Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction to improve the quality of imagery available to operators. To be effective, these systems must operate over significant variations in turbulence conditions while also subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition to robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods are one of a variety of methods recently been proposed for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. This performance evaluation is made possible using a novel technique for simulating anisoplanatic image formation. I find that incorporate as few as 15 image frames and 4 estimates of the object phase per reconstructed frame provide an average reduction of 45% reduction in Mean Squared Error (MSE) and 68% reduction in deviation in MSE. In addition, the Knox-Thompson phase recovery method is demonstrated to produce images in half the time required by the bispectrum. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate reconstruction quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in

  11. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm. PMID:19380272

  12. Liver reserve function assessment by acoustic radiation force impulse imaging

    PubMed Central

    Sun, Xiao-Lan; Liang, Li-Wei; Cao, Hui; Men, Qiong; Hou, Ke-Zhu; Chen, Zhen; Zhao, Ya-E

    2015-01-01

    AIM: To evaluate the utility of liver reserve function by acoustic radiation force impulse (ARFI) imaging in patients with liver tumors. METHODS: Seventy-six patients with liver tumors were enrolled in this study. Serum biochemical indexes, such as aminotransferase (ALT), aspartate aminotransferase (AST), serum albumin (ALB), total bilirubin (T-Bil), and other indicators were observed. Liver stiffness (LS) was measured by ARFI imaging, measurements were repeated 10 times, and the average value of the results was taken as the final LS value. Indocyanine green (ICG) retention was performed, and ICG-K and ICG-R15 were recorded. Child-Pugh (CP) scores were carried out based on patient’s preoperative biochemical tests and physical condition. Correlations among CP scores, ICG-R15, ICG-K and LS values were observed and analyzed using either the Pearson correlation coefficient or the Spearman rank correlation coefficient. Kruskal-Wallis test was used to compare LS values of CP scores, and the receiver-operator characteristic (ROC) curve was used to analyze liver reserve function assessment accuracy. RESULTS: LS in the ICG-R15 10%-20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.19 ± 0.27 vs 1.59 ± 0.32, P < 0.01). LS in the ICG-R15 > 20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.92 ± 0.29 vs 1.59 ± 0.32, P < 0.01). The LS value in patients with CP class A was lower than in patients with CP class B (1.57 ± 0.34 vs 1.86 ± 0.27, P < 0.05), while the LS value in patients with CP class B was lower than in patients with CP class C (1.86 ± 0.27 vs 2.47 ± 0.33, P < 0.01). LS was positively correlated with ICG-R15 (r = 0.617, P < 0.01) and CP score (r = 0.772, P < 0.01). Meanwhile, LS was negatively correlated with ICG-K (r = -0.673, P < 0.01). AST, ALT and T-Bil were positively correlated with LS, while ALB was negatively

  13. Airy-Kaup-Kupershmidt filters applied to digital image processing

    NASA Astrophysics Data System (ADS)

    Hoyos Yepes, Laura Cristina

    2015-09-01

    The Kaup-Kupershmidt operator is applied to the two-dimensional solution of the Airy-diffusion equation and the resulting filter is applied via convolution to image processing. The full procedure is implemented using Maple code with the package ImageTools. Some experiments were performed using a wide category of images including biomedical images generated by magnetic resonance, computarized axial tomography, positron emission tomography, infrared and photon diffusion. The Airy-Kaup-Kupershmidt filter can be used as a powerful edge detector and as powerful enhancement tool in image processing. It is expected that the Airy-Kaup-Kupershmidt could be incorporated in standard programs for image processing such as ImageJ.

  14. Image quality, tissue heating, and frame rate trade-offs in acoustic radiation force impulse imaging.

    PubMed

    Bouchard, Richard R; Dahl, Jeremy J; Hsu, Stephen J; Palmeri, Mark L; Trahey, Gregg E

    2009-01-01

    The real-time application of acoustic radiation force impulse (ARFI) imaging requires both short acquisition times for a single ARFI image and repeated acquisition of these frames. Due to the high energy of pulses required to generate appreciable radiation force, however, repeated acquisitions could result in substantial transducer face and tissue heating. We describe and evaluate several novel beam sequencing schemes which, along with parallel-receive acquisition, are designed to reduce acquisition time and heating. These techniques reduce the total number of radiation force impulses needed to generate an image and minimize the time between successive impulses. We present qualitative and quantitative analyses of the trade-offs in image quality resulting from the acquisition schemes. Results indicate that these techniques yield a significant improvement in frame rate with only moderate decreases in image quality. Tissue and transducer face heating resulting from these schemes is assessed through finite element method modeling and thermocouple measurements. Results indicate that heating issues can be mitigated by employing ARFI acquisition sequences that utilize the highest track-to-excitation ratio possible. PMID:19213633

  15. Smart DNA Fabrication Using Sound Waves: Applying Acoustic Dispensing Technologies to Synthetic Biology.

    PubMed

    Kanigowska, Paulina; Shen, Yue; Zheng, Yijing; Rosser, Susan; Cai, Yizhi

    2016-02-01

    Acoustic droplet ejection (ADE) technology uses focused acoustic energy to transfer nanoliter-scale liquid droplets with high precision and accuracy. This noncontact, tipless, low-volume dispensing technology minimizes the possibility of cross-contamination and potentially reduces the costs of reagents and consumables. To date, acoustic dispensers have mainly been used in screening libraries of compounds. In this paper, we describe the first application of this powerful technology to the rapidly developing field of synthetic biology, for DNA synthesis and assembly at the nanoliter scale using a Labcyte Echo 550 acoustic dispenser. We were able to successfully downscale PCRs and the popular one-pot DNA assembly methods, Golden Gate and Gibson assemblies, from the microliter to the nanoliter scale with high assembly efficiency, which effectively cut the reagent cost by 20- to 100-fold. We envision that acoustic dispensing will become an instrumental technology in synthetic biology, in particular in the era of DNA foundries. PMID:26163567

  16. Quantitative medical imaging: Initial studies of noncontact ultrasound applied to cortical bone phantoms

    NASA Astrophysics Data System (ADS)

    Halcrow, Peter William

    The purpose of this study was to take the initial steps towards applying Noncontact Ultrasound (NCU) to the in vivo monitoring of osteoporosis and to skeletal quantitative ultrasound imaging (QUS) using cortical bone phantoms. This project sought additional applications of NCU beyond its past limited usage in assessing third-degree burns. With this noncontact ultrasound imaging system, noncontact transducers and cortical bone phantoms with known bone mineral density (BMD) were used to determine speed of sound (SOS), integrated acoustical response (IR), and ultrasonic transmittance. Air gaps greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were used to collect data. Significant correlations between BMD and measured SOS, IR, and transmittance were obtained. These NCU results were shown to be in agreement with results from contact ultrasound within 1-2%, which suggests that NCU might find additional applications in a clinical setting in the future in medical imaging.

  17. Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.

    PubMed

    Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine

    2016-05-01

    Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis

  18. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin F.; Summers, Chris J.

    1992-01-01

    In this report we present the progress during the second six month period of the project. This includes both experimental and theoretical work on the acoustic charge transport (ACT) portion of the chip, the theoretical program modelling of both the avalanche photodiode (APD) and the charge transfer and overflow transistor and the materials growth and fabrication part of the program.

  19. Segmentation and classification of shallow subbottom acoustic data, using image processing and neural networks

    NASA Astrophysics Data System (ADS)

    Yegireddi, Satyanarayana; Thomas, Nitheesh

    2014-06-01

    Subbottom acoustic profiler provides acoustic imaging of the subbottom structure constituting the upper sediment layers of the seabed, which is essential for geological and offshore geo-engineering studies. Delineation of the subbottom structure from a noisy acoustic data and classification of the sediment strata is a challenging task with the conventional signal processing techniques. Image processing techniques utilise the spatial variability of the image characteristics, known for their potential in medical imaging and pattern recognition applications. In the present study, they are found to be good in demarcating the boundaries of the sediment layers associated with weak acoustic reflectivity, masked by noisy background. The study deals with application of image processing techniques, like segmentation in identification of subbottom features and extraction of textural feature vectors using grey level co-occurrence matrix statistics. And also attempted classification using Self Organised Map, an unsupervised neural network model utilising these feature vectors. The methodology was successfully demonstrated in demarcating the different sediment layers from the subbottom images and established the sediments constituting the inferred four subsurface sediment layers differ from each other. The network model was also tested for its consistency, with repeated runs of different configuration of the network. Also the ability of simulated network was tested using a few untrained test images representing the similar environment and the classification results show a good agreement with the anticipated.

  20. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  1. Acoustic characterization of ultrasound contrast microbubbles and echogenic liposomes: Applications to imaging and drug-delivery

    NASA Astrophysics Data System (ADS)

    Paul, Shirshendu

    Micron- to nanometer - sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes (ELIPs), are being actively developed for possible clinical implementations in diagnostic imaging and ultrasound mediated drug/gene delivery. The primary objective of this thesis is to characterize the acoustic behavior of and the ultrasound-mediated contents release from these contrast agents for developing multi-functional ultrasound contrast agents. Subharmonic imaging using contrast microbubbles can improve image quality by providing a higher signal to noise ratio. However, the design and development of contrast microbubbles with favorable subharmonic behavior requires accurate mathematical models capable of predicting their nonlinear dynamics. To this goal, 'strain-softening' viscoelastic interfacial models of the encapsulation were developed and subsequently utilized to simulate the dynamics of encapsulated microbubbles. A hierarchical two-pronged approach of modeling --- a model is applied to one set of experimental data to obtain the model parameters (material characterization), and then the model is validated against a second independent experiment --- is demonstrated in this thesis for two lipid coated (SonazoidRTM and DefinityRTM) and a few polymer (polylactide) encapsulated microbubbles. The proposed models were successful in predicting several experimentally observed behaviors e.g., low subharmonic thresholds and "compression-only" radial oscillations. Results indicate that neglecting the polydisperse size distribution of contrast agent suspensions, a common practice in the literature, can lead to inaccurate results. In vitro experimental investigation of the dependence of subharmonic response from these microbubbles on the ambient pressure is also in conformity with the recent numerical investigations, showing both increase or decrease under appropriate excitation conditions. Experimental characterization of the ELIPs and polymersomes was performed

  2. One-class acoustic characterization applied to blood detection in IVUS.

    PubMed

    O'Malley, Sean M; Naghavi, Morteza; Kakadiaris, Ioannis A

    2007-01-01

    Intravascular ultrasound (IVUS) is an invasive imaging modality capable of providing cross-sectional images of the interior of a blood vessel in real time and at normal video framerates (10-30 frames/s). Low contrast between the features of interest in the IVUS imagery remains a confounding factor in IVUS analysis; it would be beneficial therefore to have a method capable of detecting certain physical features imaged under IVUS in an automated manner. We present such a method and apply it to the detection of blood. While blood detection algorithms are not new in this field, we deviate from traditional approaches to IVUS signal characterization in our use of 1-class learning. This eliminates certain problems surrounding the need to provide "foreground" and "background" (or, more generally, n-class) samples to a learner. Applied to the blood-detection problem on 40 MHz recordings made in vivo in swine, we are able to achieve approximately 95% sensitivity with approximately 90% specificity at a radial resolution of approximately 600 microm. PMID:18051060

  3. Enhancement of time-domain acoustic imaging based on generalized cross-correlation and spatial weighting

    NASA Astrophysics Data System (ADS)

    Quaegebeur, Nicolas; Padois, Thomas; Gauthier, Philippe-Aubert; Masson, Patrice

    2016-06-01

    In this paper, an alternative formulation of the time-domain beamforming is proposed using the generalized cross-correlation of measured signals. This formulation uses spatial weighting functions adapted to microphone positions and imaging points. The proposed approach is demonstrated for acoustic source localization using a microphone array, both theoretically and experimentally. An increase in accuracy of acoustic imaging results is shown for both narrow and broadband sources, while a factor of reduction up to 20 in the computation time can be achieved, allowing real-time or volumetric source localization over very large grids.

  4. Apparatus for real-time acoustic imaging of Rayleigh-Benard convection.

    PubMed

    Kuehn, Kerry; Polfer, Jonathan; Furno, Joanna; Finke, Nathan

    2007-11-01

    We have designed and built an apparatus for real-time acoustic imaging of convective flow patterns in optically opaque fluids. This apparatus takes advantage of recent advances in two-dimensional ultrasound transducer array technology; it employs a modified version of a commercially available ultrasound camera, similar to those employed in nondestructive testing of solids. Images of convection patterns are generated by observing the lateral variation of the temperature dependent speed of sound via refraction of acoustic plane waves passing vertically through the fluid layer. The apparatus has been validated by observing convection rolls in both silicone oil and ferrofluid. PMID:18052477

  5. Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials

    NASA Astrophysics Data System (ADS)

    Wen, Jihong; Shen, Huijie; Yu, Dianlong; Wen, Xisen

    2013-11-01

    The present work describes the design of three flat superlens structures for acoustic source imaging and explores an active acoustic metamaterial (AAM) to realise such a design. The first two lenses are constructed via the coordinate transform method (CTM), and their constituent materials are anisotropic. The third lens consists of a material that has both a negative density and a negative bulk modulus. In these lenses, the quality of the images is “clear” and sharp; thus, the diffraction limit of classical lenses is overcome. Finally, a multi-control strategy is developed to achieve the desired parameters and to eliminate coupling effects in the AAM.

  6. Predictive Acoustic Modelling Applied to the Control of Intake/exhaust Noise of Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Davies, P. O. A. L.; Harrison, M. F.

    1997-05-01

    The application of validated acoustic models to intake/exhaust system acoustic design is described with reference to a sequence of specific practical examples. These include large turbocharged diesel generating sets, truck engines and high performance petrol engines. The discussion includes a comparison of frequency domain, time domain and hybrid modelling approaches to design methodology. The calculation of sound emission from open terminations is summarized in an appendix.

  7. Acoustic Imaging of Ferroelectric Domains in BaTiO3 Single Crystals Using Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Zeng, Huarong; Shimamura, Kiyoshi; Kannan, Chinna Venkadasamy; Villora, Encarnacion G.; Takekawa, Shunji; Kitamura, Kenji; Yin, Qingrui

    2007-01-01

    An “alternating-force-modulated” atomic force microscope (AFM) operating in the acoustic mode, generated by launching acoustic waves on the piezoelectric transducer that is attached to the cantilever, was used to visualize the ferroelectric domains in barium titanate (BaTiO3) single crystals by detecting acoustic vibrations generated by the tip and transmitted through the sample placed beneath it to the transducer. The acoustic signal was found to reflect locally elastic microstructures at low frequencies, while high-frequency acoustic images revealed strip like domain configurations of internal substructures in BaTiO3 single crystals. The underlying acoustic imaging mechanism using the AFM was discussed in terms of the interaction between the excited acoustic wave and ferroelectric domains.

  8. Quadratic Time-Frequency Analysis of Hydroacoustic Signals as Applied to Acoustic Emissions of Large Whales

    NASA Astrophysics Data System (ADS)

    Le Bras, Ronan; Victor, Sucic; Damir, Malnar; Götz, Bokelmann

    2014-05-01

    In order to enrich the set of attributes in setting up a large database of whale signals, as envisioned in the Baleakanta project, we investigate methods of time-frequency analysis. The purpose of establishing the database is to increase and refine knowledge of the emitted signal and of its propagation characteristics, leading to a better understanding of the animal migrations in a non-invasive manner and to characterize acoustic propagation in oceanic media. The higher resolution for signal extraction and a better separation from other signals and noise will be used for various purposes, including improved signal detection and individual animal identification. The quadratic class of time-frequency distributions (TFDs) is the most popular set of time-frequency tools for analysis and processing of non-stationary signals. Two best known and most studied members of this class are the spectrogram and the Wigner-Ville distribution. However, to be used efficiently, i.e. to have highly concentrated signal components while significantly suppressing interference and noise simultaneously, TFDs need to be optimized first. The optimization method used in this paper is based on the Cross-Wigner-Ville distribution, and unlike similar approaches it does not require prior information on the analysed signal. The method is applied to whale signals, which, just like the majority of other real-life signals, can generally be classified as multicomponent non-stationary signals, and hence time-frequency techniques are a natural choice for their representation, analysis, and processing. We present processed data from a set containing hundreds of individual calls. The TFD optimization method results into a high resolution time-frequency representation of the signals. It allows for a simple extraction of signal components from the TFD's dominant ridges. The local peaks of those ridges can then be used for the signal components instantaneous frequency estimation, which in turn can be used as

  9. A passive acoustic monitoring method applied to observation and group size estimation of finless porpoises.

    PubMed

    Wang, Kexiong; Wang, Ding; Akamatsu, Tomonari; Li, Songhai; Xiao, Jianqiang

    2005-08-01

    The present study aimed at determining the detection capabilities of an acoustic observation system to recognize porpoises under local riverine conditions and compare the results with sighting observations. Arrays of three to five acoustic data loggers were stationed across the main channel of the Tian-e-zhou Oxbow of China's Yangtze River at intervals of 100-150 m to record sonar signals of free-ranging finless porpoises (Neophocaena phocaenoides). Acoustic observations, concurrent with visual observations, were conducted at two occasions on 20-22 October 2003 and 17-19 October 2004. During a total of 42 h of observation, 316 finless porpoises were sighted and 7041 sonar signals were recorded by loggers. The acoustic data loggers recorded ultrasonic signals of porpoises clearly, and detected the presence of porpoises with a correct detection level of 77.6% and a false alarm level of 5.8% within an effective distance of 150 m. Results indicated that the stationed passive acoustic observation method was effective in detecting the presence of porpoises and showed potential in estimating the group size. A positive linear correlation between the number of recorded signals and the group size of sighted porpoises was indicated, although it is faced with some uncertainty and requires further investigation. PMID:16158672

  10. A passive acoustic monitoring method applied to observation and group size estimation of finless porpoises

    NASA Astrophysics Data System (ADS)

    Wang, Kexiong; Wang, Ding; Akamatsu, Tomonari; Li, Songhai; Xiao, Jianqiang

    2005-08-01

    The present study aimed at determining the detection capabilities of an acoustic observation system to recognize porpoises under local riverine conditions and compare the results with sighting observations. Arrays of three to five acoustic data loggers were stationed across the main channel of the Tian-e-zhou Oxbow of China's Yangtze River at intervals of 100-150 m to record sonar signals of free-ranging finless porpoises (Neophocaena phocaenoides). Acoustic observations, concurrent with visual observations, were conducted at two occasions on 20-22 October 2003 and 17-19 October 2004. During a total of 42 h of observation, 316 finless porpoises were sighted and 7041 sonar signals were recorded by loggers. The acoustic data loggers recorded ultrasonic signals of porpoises clearly, and detected the presence of porpoises with a correct detection level of 77.6% and a false alarm level of 5.8% within an effective distance of 150 m. Results indicated that the stationed passive acoustic observation method was effective in detecting the presence of porpoises and showed potential in estimating the group size. A positive linear correlation between the number of recorded signals and the group size of sighted porpoises was indicated, although it is faced with some uncertainty and requires further investigation.

  11. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties.

    PubMed

    Vogt, William C; Jia, Congxian; Wear, Keith A; Garra, Brian S; Joshua Pfefer, T

    2016-10-01

    Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681

  12. An echolocation model for the restoration of an acoustic image from a single-emission echo

    NASA Astrophysics Data System (ADS)

    Matsuo, Ikuo; Yano, Masafumi

    2004-12-01

    Bats can form a fine acoustic image of an object using frequency-modulated echolocation sound. The acoustic image is an impulse response, known as a reflected-intensity distribution, which is composed of amplitude and phase spectra over a range of frequencies. However, bats detect only the amplitude spectrum due to the low-time resolution of their peripheral auditory system, and the frequency range of emission is restricted. It is therefore necessary to restore the acoustic image from limited information. The amplitude spectrum varies with the changes in the configuration of the reflected-intensity distribution, while the phase spectrum varies with the changes in its configuration and location. Here, by introducing some reasonable constraints, a method is proposed for restoring an acoustic image from the echo. The configuration is extrapolated from the amplitude spectrum of the restricted frequency range by using the continuity condition of the amplitude spectrum at the minimum frequency of the emission and the minimum phase condition. The determination of the location requires extracting the amplitude spectra, which vary with its location. For this purpose, the Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The location is estimated from the temporal changes of the amplitude spectra. .

  13. Applied imaging at the NASA Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Slater, Howard A.; Owens, Jay C.

    1993-01-01

    NASA Lewis Research Center in Cleveland, Ohio has just completed the celebration of its 50th anniversary. `During the past 50 years, Lewis helped win World War II, made jet aircraft safer and more efficient, helped Americans land on the Moon ... and engaged in the type of fundamental research that benefits all of us in our daily lives.' As part of the center's long history, the Photographic and Printing Branch has continued to develop and meet the center's research imaging requirements. As imaging systems continue to advance and researchers more clearly understand the power of imaging, investigators are relying more and more on imaging systems to meet program objectives. Today, the Photographic and Printing Branch supports a research community of over 5,000 including advocacy for NASA Headquarters and other government agencies. Complete classified and unclassified imaging services include high- speed image acquisition, technical film and video documentaries, still imaging, and conventional and unconventional photofinishing operations. These are the foundation of the branch's modern support function. This paper provides an overview of the varied applied imaging programs managed by the Photographic and Printing Branch. Emphasis is placed on recent imaging projects including icing research, space experiments, and an on-line image archive.

  14. An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia

    PubMed Central

    Kidney, Darren; Rawson, Benjamin M.; Borchers, David L.; Stevenson, Ben C.; Marques, Tiago A.; Thomas, Len

    2016-01-01

    Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers’ estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method

  15. An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.

    PubMed

    Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len

    2016-01-01

    Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method

  16. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Owen, Neil (Inventor); Bailey, Michael R. (Inventor); Hossack, James (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  17. Image reconstruction techniques applied to nuclear mass models

    NASA Astrophysics Data System (ADS)

    Morales, Irving O.; Isacker, P. Van; Velazquez, V.; Barea, J.; Mendoza-Temis, J.; Vieyra, J. C. López; Hirsch, J. G.; Frank, A.

    2010-02-01

    A new procedure is presented that combines well-known nuclear models with image reconstruction techniques. A color-coded image is built by taking the differences between measured masses and the predictions given by the different theoretical models. This image is viewed as part of a larger array in the (N,Z) plane, where unknown nuclear masses are hidden, covered by a “mask.” We apply a suitably adapted deconvolution algorithm, used in astronomical observations, to “open the window” and see the rest of the pattern. We show that it is possible to improve significantly mass predictions in regions not too far from measured nuclear masses.

  18. Three-dimensional multistage network applying for facial images decomposition

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid I.; Chepornyuk, Serge V.; Grudin, Maxim A.; Harvey, David M.; Kutaev, Yuri F.; Gertsiy, Alexander A.; Zahoruiko, Lubov V.

    1997-09-01

    The paper presents a novel three-dimensional network and its application to pattern analysis. This is a multistage architecture which investigates partial correlations between structural image components. Initially the image is partitioned to be processed in parallel channels. In each channel, the structural components are transformed and subsequently separated depending on their informational activity, to be mixed with the components from other channels for further processing. An output result is represented as a pattern vector, whose components are computed one at a time to allow the quickest possible response. The paper presents an algorithm applied to facial images decomposition. The input gray-scale image is transformed so that each pixel contains information about the spatial structure of its neighborhood. A three-level representation of gray-scale image is used in order for each pixel to contain the maximum amount of structural information. The most correlated information is extracted first, making the algorithm tolerant to minor structural changes.

  19. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  20. Characterization of acoustic streaming and heating using synchronized infrared thermography and particle image velocimetry.

    PubMed

    Layman, Christopher N; Sou, In Mei; Bartak, Rico; Ray, Chittaranjan; Allen, John S

    2011-09-01

    Real-time measurements of acoustic streaming velocities and surface temperature fields using synchronized particle image velocimetry and infrared thermography are reported. Measurements were conducted using a 20 kHz Langevin type acoustic horn mounted vertically in a model sonochemical reactor of either degassed water or a glycerin-water mixture. These dissipative phenomena are found to be sensitive to small variations in the medium viscosity, and a correlation between the heat flux and vorticity was determined for unsteady convective heat transfer. PMID:21514205

  1. Modern Techniques in Acoustical Signal and Image Processing

    SciTech Connect

    Candy, J V

    2002-04-04

    Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve this goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.

  2. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin F.; Summers, Christopher J.

    1993-01-01

    This report covers: (1) invention of a new, ultra-low noise, low operating voltage APD which is expected to offer far better performance than the existing volume doped APD device; (2) performance of a comprehensive series of experiments on the acoustic and piezoelectric properties of ZnO films sputtered on GaAs which can possibly lead to a decrease in the required rf drive power for ACT devices by 15dB; (3) development of an advanced, hydrodynamic, macroscopic simulator used for evaluating the performance of ACT and CTD devices and aiding in the development of the next generation of devices; (4) experimental development of CTD devices which utilize a p-doped top barrier demonstrating charge storage capacity and low leakage currents; (5) refinements in materials growth techniques and in situ controls to lower surface defect densities to record levels as well as increase material uniformity and quality.

  3. Integrating Acoustic Imaging of Flow Regimes With Bathymetry: A Case Study, Main Endeavor Field

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Rona, P. A.; Jackson, D. R.; Jones, C. D.

    2003-12-01

    A unified view of the seafloor and the hydrothermal flow regimes (plumes and diffuse flow) is constructed for three major vent clusters in the Main Endeavour Field (e.g., Grotto, S&M, and Salut) of the Endeavour Segment, Juan de Fuca Ridge. The Main Endeavour Field is one of RIDGE 2000's Integrated Study Sites. A variety of visualization techniques are used to reconstruct the plumes (3D) and the diffuse flow field (2D) based on our acoustic imaging data set (July 2000 cruise). Plumes are identified as volumes of high backscatter intensity (indicating high particulate content or sharp density contrasts due to temperature variations) that remained high intensity when successive acoustic pings were subtracted (indicating that the acoustic targets producing the backscatter were in motion). Areas of diffuse flow are detected using our acoustic scintillation technique (AST). For the Grotto vent region (where a new Doppler technique was used to estimate vertical velocities in the plume), we estimate the areal partitioning between black smoker and diffuse flow in terms of volume fluxes. The volumetric and areal regions, where plume and diffuse flow were imaged, are registered over the bathymetry and compared to geologic maps of each region. The resulting images provide a unified view of the seafloor by integrating hydrothermal flow with geology.

  4. Investigation of an acoustical holography system for real-time imaging

    NASA Astrophysics Data System (ADS)

    Fecht, Barbara A.; Andre, Michael P.; Garlick, George F.; Shelby, Ronald L.; Shelby, Jerod O.; Lehman, Constance D.

    1998-07-01

    A new prototype imaging system based on ultrasound transmission through the object of interest -- acoustical holography -- was developed which incorporates significant improvements in acoustical and optical design. This system is being evaluated for potential clinical application in the musculoskeletal system, interventional radiology, pediatrics, monitoring of tumor ablation, vascular imaging and breast imaging. System limiting resolution was estimated using a line-pair target with decreasing line thickness and equal separation. For a swept frequency beam from 2.6 - 3.0 MHz, the minimum resolution was 0.5 lp/mm. Apatite crystals were suspended in castor oil to approximate breast microcalcifications. Crystals from 0.425 - 1.18 mm in diameter were well resolved in the acoustic zoom mode. Needle visibility was examined with both a 14-gauge biopsy needle and a 0.6 mm needle. The needle tip was clearly visible throughout the dynamic imaging sequence as it was slowly inserted into a RMI tissue-equivalent breast biopsy phantom. A selection of human images was acquired in several volunteers: a 25 year-old female volunteer with normal breast tissue, a lateral view of the elbow joint showing muscle fascia and tendon insertions, and the superficial vessels in the forearm. Real-time video images of these studies will be presented. In all of these studies, conventional sonography was used for comparison. These preliminary investigations with the new prototype acoustical holography system showed favorable results in comparison to state-of-the-art pulse-echo ultrasound and demonstrate it to be suitable for further clinical study. The new patient interfaces will facilitate orthopedic soft tissue evaluation, study of superficial vascular structures and potentially breast imaging.

  5. Acoustic imaging of a duct spinning mode by the use of an in-duct circular microphone array.

    PubMed

    Wei, Qingkai; Huang, Xun; Peers, Edward

    2013-06-01

    An imaging method of acoustic spinning modes propagating within a circular duct simply with surface pressure information is introduced in this paper. The proposed method is developed in a theoretical way and is demonstrated by a numerical simulation case. Nowadays, the measurements within a duct have to be conducted using in-duct microphone array, which is unable to provide information of complete acoustic solutions across the test section. The proposed method can estimate immeasurable information by forming a so-called observer. The fundamental idea behind the testing method was originally developed in control theory for ordinary differential equations. Spinning mode propagation, however, is formulated in partial differential equations. A finite difference technique is used to reduce the associated partial differential equations to a classical form in control. The observer method can thereafter be applied straightforwardly. The algorithm is recursive and, thus, could be operated in real-time. A numerical simulation for a straight circular duct is conducted. The acoustic solutions on the test section can be reconstructed with good agreement to analytical solutions. The results suggest the potential and applications of the proposed method. PMID:23742352

  6. Trends in optical coherence tomography applied to medical imaging

    NASA Astrophysics Data System (ADS)

    Podoleanu, Adrian G.

    2014-01-01

    The number of publications on optical coherence tomography (OCT) continues to double every three years. Traditionally applied to imaging the eye, OCT is now being extended to fields outside ophthalmology and optometry. Widening its applicability, progress in the core engine of the technology, and impact on development of novel optical sources, make OCT a very active and rapidly evolving field. Trends in the developments of different specific devices, such as optical sources, optical configurations and signal processing will be presented. Encompassing studies on both the configurations as well as on signal processing themes, current research in Kent looks at combining spectral domain with time domain imaging for long axial range and simultaneous imaging at several depths. Results of the collaborative work of the Applied Optics Group in Kent with organisers of this conference will be presented, with reference to 3D monitoring of abfraction.

  7. Hyperspectral imaging applied to medical diagnoses and food safety

    NASA Astrophysics Data System (ADS)

    Carrasco, Oscar; Gomez, Richard B.; Chainani, Arun; Roper, William E.

    2003-08-01

    This paper analyzes the feasibility and performance of HSI systems for medical diagnosis as well as for food safety. Illness prevention and early disease detection are key elements for maintaining good health. Health care practitioners worldwide rely on innovative electronic devices to accurately identify disease. Hyperspectral imaging (HSI) is an emerging technique that may provide a less invasive procedure than conventional diagnostic imaging. By analyzing reflected and fluorescent light applied to the human body, a HSI system serves as a diagnostic tool as well as a method for evaluating the effectiveness of applied therapies. The safe supply and production of food is also of paramount importance to public health illness prevention. Although this paper will focus on imaging and spectroscopy in food inspection procedures -- the detection of contaminated food sources -- to ensure food quality, HSI also shows promise in detecting pesticide levels in food production (agriculture.)

  8. Phase Time and Envelope Time in Time-Distance Analysis and Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Chou, Dean-Yi; Duvall, Thomas L.; Sun, Ming-Tsung; Chang, Hsiang-Kuang; Jimenez, Antonio; Rabello-Soares, Maria Cristina; Ai, Guoxiang; Wang, Gwo-Ping; Goode Philip; Marquette, William; Ehgamberdiev, Shuhrat; Landenkov, Oleg

    1999-01-01

    Time-distance analysis and acoustic imaging are two related techniques to probe the local properties of solar interior. In this study, we discuss the relation of phase time and envelope time between the two techniques. The location of the envelope peak of the cross correlation function in time-distance analysis is identified as the travel time of the wave packet formed by modes with the same w/l. The phase time of the cross correlation function provides information of the phase change accumulated along the wave path, including the phase change at the boundaries of the mode cavity. The acoustic signals constructed with the technique of acoustic imaging contain both phase and intensity information. The phase of constructed signals can be studied by computing the cross correlation function between time series constructed with ingoing and outgoing waves. In this study, we use the data taken with the Taiwan Oscillation Network (TON) instrument and the Michelson Doppler Imager (MDI) instrument. The analysis is carried out for the quiet Sun. We use the relation of envelope time versus distance measured in time-distance analyses to construct the acoustic signals in acoustic imaging analyses. The phase time of the cross correlation function of constructed ingoing and outgoing time series is twice the difference between the phase time and envelope time in time-distance analyses as predicted. The envelope peak of the cross correlation function between constructed ingoing and outgoing time series is located at zero time as predicted for results of one-bounce at 3 mHz for all four data sets and two-bounce at 3 mHz for two TON data sets. But it is different from zero for other cases. The cause of the deviation of the envelope peak from zero is not known.

  9. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Kazuyoshi Mori,; Hanako Ogasawara,; Toshiaki Nakamura,; Takenobu Tsuchiya,; Nobuyuki Endoh,

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object’s reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel’s color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  10. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object's reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel's color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  11. The Effects of Nonlinear Propagation on Acoustic Source Imaging in One-Dimension

    NASA Astrophysics Data System (ADS)

    Shepherd, Micah; Gee, Kent L.

    2006-10-01

    The acoustics of finite-amplitude (nonlinear) sound sources, such as rockets and jets, are not well understood. Characterization of sound pressure amplitudes, aeroacoustic source locations and frequency dependence of these sources is needed to assess the impact of the acoustic field on the launch equipment and surrounding environment. Nonlinear propagation of high-amplitude sound is being studied to determine if a source-imaging method called near-field acoustical holography (NAH), which is based on linear assumptions, can be used to estimate the source information mentioned. A one-dimensional numerical algorithm is being used to linearly and nonlinearly propagate the radiation from a monofrequency source. NAH is used to reconstruct the source information from the simulated data and the error is determined in decibels.

  12. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  13. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    SciTech Connect

    Xiong, Jichuan; Xu, Xiaodong E-mail: christ.glorieux@fys.kuleuven.be; Glorieux, Christ E-mail: christ.glorieux@fys.kuleuven.be; Matsuda, Osamu; Cheng, Liping

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  14. Multi-acoustic lens design methodology for a low cost C-scan photoacoustic imaging camera

    NASA Astrophysics Data System (ADS)

    Chinni, Bhargava; Han, Zichao; Brown, Nicholas; Vallejo, Pedro; Jacobs, Tess; Knox, Wayne; Dogra, Vikram; Rao, Navalgund

    2016-03-01

    We have designed and implemented a novel acoustic lens based focusing technology into a prototype photoacoustic imaging camera. All photoacoustically generated waves from laser exposed absorbers within a small volume get focused simultaneously by the lens onto an image plane. We use a multi-element ultrasound transducer array to capture the focused photoacoustic signals. Acoustic lens eliminates the need for expensive data acquisition hardware systems, is faster compared to electronic focusing and enables real-time image reconstruction. Using this photoacoustic imaging camera, we have imaged more than 150 several centimeter size ex-vivo human prostate, kidney and thyroid specimens with a millimeter resolution for cancer detection. In this paper, we share our lens design strategy and how we evaluate the resulting quality metrics (on and off axis point spread function, depth of field and modulation transfer function) through simulation. An advanced toolbox in MATLAB was adapted and used for simulating a two-dimensional gridded model that incorporates realistic photoacoustic signal generation and acoustic wave propagation through the lens with medium properties defined on each grid point. Two dimensional point spread functions have been generated and compared with experiments to demonstrate the utility of our design strategy. Finally we present results from work in progress on the use of two lens system aimed at further improving some of the quality metrics of our system.

  15. Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission

    PubMed Central

    Fatemi, Mostafa; Greenleaf, James F.

    1999-01-01

    We describe theoretical principles of an imaging modality that uses the acoustic response of an object to a highly localized dynamic radiation force of an ultrasound field. In this method, named ultrasound-stimulated vibro-acoustography (USVA), ultrasound is used to exert a low-frequency (in kHz range) force on the object. In response, a portion of the object vibrates sinusoidally in a pattern determined by its viscoelastic properties. The acoustic emission field resulting from object vibration is detected and used to form an image that represents both the ultrasonic and low-frequency (kHz range) mechanical characteristics of the object. We report the relation between the emitted acoustic field and the incident ultrasonic pressure field in terms of object parameters. Also, we present the point-spread function of the imaging system. The experimental images in this report have a resolution of about 700 μm, high contrast, and high signal-to-noise ratio. USVA is sensitive enough to detect object motions on the order of nanometers. Possible applications include medical imaging and material evaluation. PMID:10359758

  16. Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection.

    PubMed

    Guo, Bin; Li, Jian; Zmuda, Henry; Sheplak, Mark

    2007-11-01

    Microwave-induced thermal acoustic imaging (TAI) is a promising early breast cancer detection technique, which combines the advantages of microwave stimulation and ultrasound imaging and offers a high imaging contrast, as well as high spatial resolution at the same time. A new multifrequency microwave-induced thermal acoustic imaging scheme for early breast cancer detection is proposed in this paper. Significantly more information about the human breast can be gathered using multiple frequency microwave stimulation. A multifrequency adaptive and robust technique (MART) is presented for image formation. Due to its data-adaptive nature, MART can achieve better resolution and better interference rejection capability than its data-independent counterparts, such as the delay-and-sum method. The effectiveness of this procedure is shown by several numerical examples based on 2-D breast models. The finite-difference time-domain method is used to simulate the electromagnetic field distribution, the absorbed microwave energy density, and the thermal acoustic field in the breast model. PMID:18018695

  17. Acoustical and optical scattering and imaging of tissues: an overview

    NASA Astrophysics Data System (ADS)

    Ishimaru, Akira

    2001-05-01

    This talk will first give a general discussion on the ultrasound media characteristics of blood and spectral densities of tissues. The first-order scattering theory, multiple scattering theory, Doppler spectrum, cw and pulse scattering, focused beam, beam spot-size, speckle, texture, and rough interface effects will be presented. Imaging through tissues will then be discussed in terms of temporal and spatial resolutions, contrast, MTF (modulation transfer function), SAR and confocal imaging techniques, tomographic and holographic imaging, and inverse scattering. Next, we discuss optical diffusion in blood and tissues, radiative transfer theory, photon density waves, and polarization effects.

  18. Nonuniform FFTs (NUFFT) algorithms applied to SAR imaging

    NASA Astrophysics Data System (ADS)

    Subiza, Begona; Gimeno-Nieves, Encarna; Lopez-Sanchez, Juan M.; Fortuny-Guasch, Joaquim

    2004-01-01

    Some recently developed algorithms known as Non-Uniform FFT's (NUFFT), which enable the computation of efficient FFT's with unequally spaced data in the time or frequency domain, have been applied to SAR imaging in this study. The main objective has been to analyze the potential improvement of the computational efficiency and/or image accuracy of seismic migration SAR processing techniques, like the ω-k algorithm. Our approach consists in substituting both the Stolt interpolation and the final range inverse FFT by a single NUFFT. Numerical simulations illustrate the performance of the new method and the influence of the selection of NUFFT parameters in the precision and computation time of the SAR imaging algorithm. The new method is especially suited for near-field wide-band configurations, such as inverse SAR (ISAR) and ground-based systems, where a very precise imaging algorithm is required.

  19. Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Berson, Arganthaël; Michard, Marc; Blanc-Benon, Philippe

    2008-06-01

    Thermoacoustic refrigeration systems generate cooling power from a high-amplitude acoustic standing wave. There has recently been a growing interest in this technology because of its simple and robust architecture and its use of environmentally safe gases. With the prospect of commercialization, it is necessary to enhance the efficiency of thermoacoustic cooling systems and more particularly of some of their components such as the heat exchangers. The characterization of the flow field at the end of the stack plates is a crucial step for the understanding and optimization of heat transfer between the stack and the heat exchangers. In this study, a specific particle image velocimetry measurement is performed inside a thermoacoustic refrigerator. Acoustic velocity is measured using synchronization and phase-averaging. The measurement method is validated inside a void resonator by successfully comparing experimental data with an acoustic plane wave model. Velocity is measured inside the oscillating boundary layers, between the plates of the stack, and compared to a linear model. The flow behind the stack is characterized, and it shows the generation of symmetric pairs of counter-rotating vortices at the end of the stack plates at low acoustic pressure level. As the acoustic pressure level increases, detachment of the vortices and symmetry breaking are observed.

  20. Methods And Systems For Using Reference Images In Acoustic Image Processing

    DOEpatents

    Moore, Thomas L.; Barter, Robert Henry

    2005-01-04

    A method and system of examining tissue are provided in which a field, including at least a portion of the tissue and one or more registration fiducials, is insonified. Scattered acoustic information, including both transmitted and reflected waves, is received from the field. A representation of the field, including both the tissue and the registration fiducials, is then derived from the received acoustic radiation.

  1. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    SciTech Connect

    Pinton, Gianmarco

    2015-10-28

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  2. Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging

    NASA Astrophysics Data System (ADS)

    Haynes, Mark Spencer

    Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self

  3. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Pinton, Gianmarco

    2015-10-01

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  4. Non-Harmonic Analysis Applied to Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Cao, Xu; Uchida, Tetsuya; Hirobayashi, Shigeki; Chong, Changho; Morosawa, Atsushi; Totsuka, Koki; Suzuki, Takuya

    2012-02-01

    A new processing technique called non-harmonic analysis (NHA) is proposed for optical coherence tomography (OCT) imaging. Conventional Fourier-domain OCT employs the discrete Fourier transform (DFT), which depends on the window function and length. The axial resolution of the OCT image, calculated by using DFT, is inversely proportional to the full width at half maximum (FWHM) of the wavelength range. The FWHM of wavelength range is limited by the sweeping range of the source in swept-source OCT and it is limited by the number of CCD pixels in spectral-domain OCT. However, the NHA process does not have such constraints; NHA can resolve high frequencies irrespective of the window function and the frame length of the sampled data. In this study, the NHA process is described and it is applied to OCT imaging. It is compared with OCT images based on the DFT. To demonstrate the benefits of using NHA for OCT, we perform OCT imaging with NHA of an onion skin. The results reveal that NHA can achieve an image resolution equivalent that of a 100-nm sweep range using a significantly reduced wavelength range. They also reveal the potential of using this technique to achieve high-resolution imaging without using a broadband source. However, the long calculation times required for NHA must be addressed if it is to be used in clinical applications.

  5. Focused acoustic beam imaging of grain structure and local Young's modulus with Rayleigh and surface skimming longitudinal waves

    SciTech Connect

    Martin, R. W.; Sathish, S.; Blodgett, M. P.

    2013-01-25

    The interaction of a focused acoustic beam with materials generates Rayleigh surface waves (RSW) and surface skimming longitudinal waves (SSLW). Acoustic microscopic investigations have used the RSW amplitude and the velocity measurements, extensively for grain structure analysis. Although, the presence of SSLW has been recognized, it is rarely used in acoustic imaging. This paper presents an approach to perform microstructure imaging and local elastic modulus measurements by combining both RSW and SSLW. The acoustic imaging of grain structure was performed by measuring the amplitude of RSW and SSLW signal. The microstructure images obtained on the same region of the samples with RSW and SSLW are compared and the difference in the contrast observed is discussed based on the propagation characteristics of the individual surface waves. The velocity measurements are determined by two point defocus method. The surface wave velocities of RSW and SSLW of the same regions of the sample are combined and presented as average Young's modulus image.

  6. Quantitative high-resolution acoustic imaging of the seafloor

    NASA Astrophysics Data System (ADS)

    Holland, C. W.; Dettmer, J.; Steininger, G.; Dosso, S. E.

    2013-12-01

    Quantifying the properties of the seafloor interface and near surface (a few tens of meters) is of considerable interest to science as well as industry. Scales of interest range from the order of tens of kilometers (survey size) down to less than a centimeter. These scales can be probed using an AUV equipped with a broadband source and a short streamer. The data are processed for energy (rather than peak) reflection coefficients and scattering cross-section versus bi-static angle. In order to tackle spatial scales ranging over 8 orders of magnitude of, it is useful to divide the parameter space into deterministic and stochastic parameters. The energy reflection coefficients contain information on deterministic properties including sound speed, density and attenuation vs depth in the upper tens of meters of sediment. Vertical resolution is a function of depth, but typically of order 0.1 m near surface. The statistical properties of the smaller scales, i.e., seafloor roughness and/or volume heterogeneities are obtained from the bi-static scattering data. Physics-based models are used to relate the sediment micro-structure (the Buckingham model) and sediment fluctuations (the Von Karman spectrum) to the acoustic observables. Quantitative parameter and inter-parameter uncertainties are obtained from Bayesian methods for both deterministic and stochastic parameters.

  7. Analysis and verification of dominant factor to obtain the high resolution photo-acoustic imaging

    NASA Astrophysics Data System (ADS)

    Hirasawa, T.; Ishihara, M.; Kitagaki, M.; Bansaku, I.; Fujita, M.; Kikuchi, M.

    2011-03-01

    Our goal is to develop a photo-acoustic imaging (PAI) system which offers functional image of living tissues and organs with high resolution. In order to obtain high resolution image, we implemented the Fourier transform reconstruction algorithm which determines an optical absorption distribution from photo-acoustic (PA) signals. However, resolutions of reconstructed images were restricted by the sensor directionality, finite scan width and frequency band width. There was an essential requirement to optimize the sensor specification. In this study, we demonstrated relationship between image resolution and sensor specification by simulation and experiment. In our experimental system, PA signals were acquired by line scanning of our fabricated P(VDF/TrFE) film sensor. As results of simulations and experiments, lateral resolutions of PA images were restricted by the directionality of sensor. Furthermore, by limiting scan width and frequency band width, lateral resolution is decreased at deep region. The optimum sensor specification depends on the imaging region due to some trade-offs, for example, a sensor with wider directionality has less sensitivity, wider scan in same step increases acquisition time. Therefore, the results could indicate the possibility of optimizing sensor directionality, scan width and frequency band width for various depths and volumes of imaging region.

  8. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  9. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-01-31

    During this phase of the project the research team concentrated on acquisition of acoustic emission data from the high porosity rock samples. The initial experiments indicated that the acoustic emission activity from high porosity Danian chalk were of a very low amplitude. Even though the sample underwent yielding and significant plastic deformation the sample did not generate significant AE activity. This was somewhat surprising. These initial results call into question the validity of attempting to locate AE activity in this weak rock type. As a result the testing program was slightly altered to include measuring the acoustic emission activity from many of the rock types listed in the research program. The preliminary experimental results indicate that AE activity in the sandstones is much higher than in the carbonate rocks (i.e., the chalks and limestones). This observation may be particularly important for planning microseismic imaging of reservoir rocks in the field environment. The preliminary results suggest that microseismic imaging of reservoir rock from acoustic emission activity generated from matrix deformation (during compaction and subsidence) would be extremely difficult to accomplish.

  10. Acoustic Reciprocity of Spatial Coherence in Ultrasound Imaging

    PubMed Central

    Bottenus, Nick; Üstüner, Kutay F.

    2015-01-01

    A conventional ultrasound image is formed by transmitting a focused wave into tissue, time-shifting the backscattered echoes received on an array transducer and summing the resulting signals. The van Cittert-Zernike theorem predicts a particular similarity, or coherence, of these focused signals across the receiving array. Many groups have used an estimate of the coherence to augment or replace the B-mode image in an effort to suppress noise and stationary clutter echo signals, but this measurement requires access to individual receive channel data. Most clinical systems have efficient pipelines for producing focused and summed RF data without any direct way to individually address the receive channels. We describe a method for performing coherence measurements that is more accessible for a wide range of coherence-based imaging. The reciprocity of the transmit and receive apertures in the context of coherence is derived and equivalence of the coherence function is validated experimentally using a research scanner. The proposed method is implemented on a Siemens ACUSON SC2000™ultrasound system and in vivo short-lag spatial coherence imaging is demonstrated using only summed RF data. The components beyond the acquisition hardware and beamformer necessary to produce a real-time ultrasound coherence imaging system are discussed. PMID:25965679

  11. Digital image correlation techniques applied to LANDSAT multispectral imagery

    NASA Technical Reports Server (NTRS)

    Bonrud, L. O. (Principal Investigator); Miller, W. J.

    1976-01-01

    The author has identified the following significant results. Automatic image registration and resampling techniques applied to LANDSAT data achieved accuracies, resulting in mean radial displacement errors of less than 0.2 pixel. The process method utilized recursive computational techniques and line-by-line updating on the basis of feedback error signals. Goodness of local feature matching was evaluated through the implementation of a correlation algorithm. An automatic restart allowed the system to derive control point coordinates over a portion of the image and to restart the process, utilizing this new control point information as initial estimates.

  12. Three-dimensional ghost imaging using acoustic transducer

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Guo, Shuxu; Guan, Jian; Cao, Junsheng; Gao, Fengli

    2016-06-01

    We propose a novel three-dimensional (3D) ghost imaging method using unfocused ultrasonic transducer, where the transducer is used as the bucket detector to collect the total photoacoustic signal intensity from spherical surfaces with different radius circling the transducer. This collected signal is a time sequence corresponding to the optic absorption information on the spherical surfaces, and the values at the same moments in all the sequences are used as the bucket signals to restore the corresponding spherical images, which are assembled as the object 3D reconstruction. Numerical experiments show this method can effectively accomplish the 3D reconstruction and by adding up each sequence on time domain as a bucket signal it can also realize two dimensional (2D) ghost imaging. The influence of the measurement times on the 3D and 2D reconstruction is analyzed with Peak Signal to Noise Ratio (PSNR) as the yardstick, and the transducer as a bucket detector is also discussed.

  13. A multi-band spectral subtraction-based algorithm for real-time noise cancellation applied to gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2013-06-01

    Acoustical sniper positioning is based on the detection and direction-of-arrival estimation of the shockwave and the muzzle blast acoustical signals. In real-life situations, the detection and direction-of-arrival estimation processes is usually performed under the influence of background noise sources, e.g., vehicles noise, and might result in non-negligible inaccuracies than can affect the system performance and reliability negatively, specially when detecting the muzzle sound under long range distance and absorbing terrains. This paper introduces a multi-band spectral subtraction based algorithm for real-time noise reduction, applied to gunshot acoustical signals. The ballistic shockwave and the muzzle blast signals exhibit distinct frequency contents that are affected differently by additive noise. In most real situations, the noise component is colored and a multi-band spectral subtraction approach for noise reduction contributes to reducing the presence of artifacts in denoised signals. The proposed algorithm is tested using a dataset generated by combining signals from real gunshots and real vehicle noise. The noise component was generated using a steel tracked military tank running on asphalt and includes, therefore, the sound from the vehicle engine, which varies slightly in frequency over time according to the engine's rpm, and the sound from the steel tracks as the vehicle moves.

  14. Automated detection framework of the calcified plaque with acoustic shadowing in IVUS images.

    PubMed

    Gao, Zhifan; Guo, Wei; Liu, Xin; Huang, Wenhua; Zhang, Heye; Tan, Ning; Hau, William Kongto; Zhang, Yuan-Ting; Liu, Huafeng

    2014-01-01

    Intravascular Ultrasound (IVUS) is one ultrasonic imaging technology to acquire vascular cross-sectional images for the visualization of the inner vessel structure. This technique has been widely used for the diagnosis and treatment of coronary artery diseases. The detection of the calcified plaque with acoustic shadowing in IVUS images plays a vital role in the quantitative analysis of atheromatous plaques. The conventional method of the calcium detection is manual drawing by the doctors. However, it is very time-consuming, and with high inter-observer and intra-observer variability between different doctors. Therefore, the computer-aided detection of the calcified plaque is highly desired. In this paper, an automated method is proposed to detect the calcified plaque with acoustic shadowing in IVUS images by the Rayleigh mixture model, the Markov random field, the graph searching method and the prior knowledge about the calcified plaque. The performance of our method was evaluated over 996 in-vivo IVUS images acquired from eight patients, and the detected calcified plaques are compared with manually detected calcified plaques by one cardiology doctor. The experimental results are quantitatively analyzed separately by three evaluation methods, the test of the sensitivity and specificity, the linear regression and the Bland-Altman analysis. The first method is used to evaluate the ability to distinguish between IVUS images with and without the calcified plaque, and the latter two methods can respectively measure the correlation and the agreement between our results and manual drawing results for locating the calcified plaque in the IVUS image. High sensitivity (94.68%) and specificity (95.82%), good correlation and agreement (>96.82% results fall within the 95% confidence interval in the Student t-test) demonstrate the effectiveness of the proposed method in the detection of the calcified plaque with acoustic shadowing in IVUS images. PMID:25372784

  15. Near-Field Imaging with Sound: An Acoustic STM Model

    ERIC Educational Resources Information Center

    Euler, Manfred

    2012-01-01

    The invention of scanning tunneling microscopy (STM) 30 years ago opened up a visual window to the nano-world and sparked off a bunch of new methods for investigating and controlling matter and its transformations at the atomic and molecular level. However, an adequate theoretical understanding of the method is demanding; STM images can be…

  16. HF Doppler Acoustic Imaging of the Ocean Surface and Interior

    NASA Astrophysics Data System (ADS)

    Pinkel, Robert; Smith, Jerome A.

    2004-11-01

    HF phased array Doppler sonar represents a new tool for obtaining Three-dimensional (r,q,t) images of the oceanic surface and interior velocity field. While the capabilities of the approach are unique, the design constraints are also unusual. Examples of both are presented in this work.

  17. Single-molecule localization software applied to photon counting imaging.

    PubMed

    Hirvonen, Liisa M; Kilfeather, Tiffany; Suhling, Klaus

    2015-06-01

    Centroiding in photon counting imaging has traditionally been accomplished by a single-step, noniterative algorithm, often implemented in hardware. Single-molecule localization techniques in superresolution fluorescence microscopy are conceptually similar, but use more sophisticated iterative software-based fitting algorithms to localize the fluorophore. Here, we discuss common features and differences between single-molecule localization and photon counting imaging and investigate the suitability of single-molecule localization software for photon event localization. We find that single-molecule localization software packages designed for superresolution microscopy-QuickPALM, rapidSTORM, and ThunderSTORM-can work well when applied to photon counting imaging with a microchannel-plate-based intensified camera system: photon event recognition can be excellent, fixed pattern noise can be low, and the microchannel plate pores can easily be resolved. PMID:26192667

  18. Applied methods of testing and evaluation for IR imaging system

    NASA Astrophysics Data System (ADS)

    Liao, Xiao-yue; Lu, Jin

    2009-07-01

    Different methods of testing and evaluation for IR imaging system are used with the application of the 2nd and the 3rd generation infrared detectors. The performance of IR imaging system can be reflected by many specifications, such as Noise Equivalent Temperature Difference (NETD), Nonuniformity, system Modulation Transfer Function (MTF), Minimum Resolvable Temperature Difference (MRTD), and Minimum Detectable Temperature Difference (MRTD) etc. The sensitivity of IR sensors is estimated by NETD. The sensitivity of thermal imaging sensors and space resolution are evaluated by MRTD, which is the chief specification of system. In this paper, the theoretical analysis of different testing methods is introduced. The characteristics of them are analyzed and compared. Based on discussing the factors that affect measurement results, an applied method of testing NETD and MRTD for IR system is proposed.

  19. Image analysis technique applied to lock-exchange gravity currents

    NASA Astrophysics Data System (ADS)

    Nogueira, Helena I. S.; Adduce, Claudia; Alves, Elsa; Franca, Mário J.

    2013-04-01

    An image analysis technique is used to estimate the two-dimensional instantaneous density field of unsteady gravity currents produced by full-depth lock-release of saline water. An experiment reproducing a gravity current was performed in a 3.0 m long, 0.20 m wide and 0.30 m deep Perspex flume with horizontal smooth bed and recorded with a 25 Hz CCD video camera under controlled light conditions. Using dye concentration as a tracer, a calibration procedure was established for each pixel in the image relating the amount of dye uniformly distributed in the tank and the greyscale values in the corresponding images. The results are evaluated and corrected by applying the mass conservation principle within the experimental tank. The procedure is a simple way to assess the time-varying density distribution within the gravity current, allowing the investigation of gravity current dynamics and mixing processes.

  20. Applying Echoes Mean Frequency Shift for Attenuation Imaging in Tissue

    NASA Astrophysics Data System (ADS)

    Litniewski, J.; Klimonda, Z.; Nowicki, A.

    The purpose of this study was to develop the attenuation parametric imaging technique and to apply it for in vivo characterization of tissue. Local attenuation coefficient was determined by evaluating the frequency downshift that encounters the amplitude spectrum of the interrogating ultrasonic pulse during propagation in the absorbing tissue. Operation and accuracy of the processing methods were verified by assessing the size-independent region of interest (ROI) for attenuation determination and calculating the attenuation coefficient distribution for experimentally recorded tissue-phantom scattered waveforms. The Siemens Antares scanner equipped with Ultrasound Research Interface unit allowing for direct radiofrequency (RF) signals recording was used for B-scan imaging of the tissue- mimicking phantom in vitro and liver in vivo. RF data were processed to determine attenuation coefficient along the B-scan lines. Also, the preliminary studies of backscattered signals from skin recorded using a skin scanner were performed to calculate parametric-attenuation images.

  1. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing

    PubMed Central

    Yan, Huichen; Xu, Jia; Long, Teng; Zhang, Xudong

    2015-01-01

    Matched field processing (MFP) is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP) model from wave propagation theory by using randomly deployed sensors. In addition, the model’s recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP) algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method. PMID:26457708

  2. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing.

    PubMed

    Yan, Huichen; Xu, Jia; Long, Teng; Zhang, Xudong

    2015-01-01

    Matched field processing (MFP) is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP) model from wave propagation theory by using randomly deployed sensors. In addition, the model's recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP) algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method. PMID:26457708

  3. Three-Dimensional Acoustic Tissue Model: A Computational Tissue Phantom for Image Analyses

    NASA Astrophysics Data System (ADS)

    Mamou, J.; Oelze, M. L.; O'Brien, W. D.; Zachary, J. F.

    A novel methodology to obtain three-dimensional (3D) acoustic tissue models (3DATMs) is introduced. 3DATMs can be used as computational tools for ultrasonic imaging algorithm development and analysis. In particular, 3D models of biological structures can provide great benefit to better understand fundamentally how ultrasonic waves interact with biological materials. As an example, such models were used to generate ultrasonic images that characterize tumor tissue microstructures. 3DATMs can be used to evaluate a variety of tissue types. Typically, excised tissue is fixed, embedded, serially sectioned, and stained. The stained sections are digitally imaged (24-bit bitmap) with light microscopy. Contrast of each stained section is equalized and an automated registration algorithm aligns consecutive sections. The normalized mutual information is used as a similarity measure, and simplex optimization is conducted to find the best alignment. Both rigid and non-rigid registrations are performed. During tissue preparation, some sections are generally lost; thus, interpolation prior to 3D reconstruction is performed. Interpolation is conducted after registration using cubic Hermite polynoms. The registered (with interpolated) sections yield a 3D histologic volume (3DHV). Acoustic properties are then assigned to each tissue constituent of the 3DHV to obtain the 3DATMs. As an example, a 3D acoustic impedance tissue model (3DZM) was obtained for a solid breast tumor (EHS mouse sarcoma) and used to estimate ultrasonic scatterer size. The 3DZM results yielded an effective scatterer size of 32.9 (±6.1) μm. Ultrasonic backscatter measurements conducted on the same tumor tissue in vivo yielded an effective scatterer size of 33 (±8) μm. This good agreement shows that 3DATMs may be a powerful modeling tool for acoustic imaging applications

  4. Perceptual thresholds for detecting modifications applied to the acoustical properties of a violin.

    PubMed

    Fritz, Claudia; Cross, Ian; Moore, Brian C J; Woodhouse, Jim

    2007-12-01

    This study is the first step in the psychoacoustic exploration of perceptual differences between the sounds of different violins. A method was used which enabled the same performance to be replayed on different "virtual violins," so that the relationships between acoustical characteristics of violins and perceived qualities could be explored. Recordings of real performances were made using a bridge-mounted force transducer, giving an accurate representation of the signal from the violin string. These were then played through filters corresponding to the admittance curves of different violins. Initially, limits of listener performance in detecting changes in acoustical characteristics were characterized. These consisted of shifts in frequency or increases in amplitude of single modes or frequency bands that have been proposed previously to be significant in the perception of violin sound quality. Thresholds were significantly lower for musically trained than for nontrained subjects but were not significantly affected by the violin used as a baseline. Thresholds for the musicians typically ranged from 3 to 6 dB for amplitude changes and 1.5%-20% for frequency changes. Interpretation of the results using excitation patterns showed that thresholds for the best subjects were quite well predicted by a multichannel model based on optimal processing. PMID:18247771

  5. Finite element modelling for the investigation of edge effect in acoustic micro imaging of microelectronic packages

    NASA Astrophysics Data System (ADS)

    Shen Lee, Chean; Zhang, Guang-Ming; Harvey, David M.; Ma, Hong-Wei; Braden, Derek R.

    2016-02-01

    In acoustic micro imaging of microelectronic packages, edge effect is often presented as artifacts of C-scan images, which may potentially obscure the detection of defects such as cracks and voids in the solder joints. The cause of edge effect is debatable. In this paper, a 2D finite element model is developed on the basis of acoustic micro imaging of a flip-chip package using a 230 MHz focused transducer to investigate acoustic propagation inside the package in attempt to elucidate the fundamental mechanism that causes the edge effect. A virtual transducer is designed in the finite element model to reduce the coupling fluid domain, and its performance is characterised against the physical transducer specification. The numerical results showed that the under bump metallization (UBM) structure inside the package has a significant impact on the edge effect. Simulated wavefields also showed that the edge effect is mainly attributed to the horizontal scatter, which is observed in the interface of silicon die-to-the outer radius of solder bump. The horizontal scatter occurs even for a flip-chip package without the UBM structure.

  6. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels

    PubMed Central

    2014-01-01

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined. Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production. PMID:25060583

  7. Acoustic radiation pressure: A 'phase contrast' agent for x-ray phase contrast imaging

    SciTech Connect

    Bailat, Claude J.; Hamilton, Theron J.; Rose-Petruck, Christoph; Diebold, Gerald J.

    2004-11-08

    We show that the radiation pressure exerted by a beam of ultrasound can be used for contrast enhancement in high-resolution x-ray imaging of tissue and soft materials. Interfacial features of objects are highlighted as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. The potential of the method is demonstrated by imaging microscopic tumor phantoms embedded into tissue with a thickness typically presented in mammography. The detection limit of micrometer size masses exceeds the resolution of currently available mammography imaging systems. The directionality of the acoustic radiation force and its localization in space permits the imaging of ultrasound-selected tissue volumes. The results presented here suggest that the method may permit the detection of tumors in soft tissue in their early stage of development.

  8. Iterative electromagnetic Born inversion applied to earth conductivity imaging

    SciTech Connect

    Alumbaugh, D.L.

    1993-08-01

    This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (< 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.

  9. Acoustic property reconstruction of a pygmy sperm whale (Kogia breviceps) forehead based on computed tomography imaging.

    PubMed

    Song, Zhongchang; Xu, Xiao; Dong, Jianchen; Xing, Luru; Zhang, Meng; Liu, Xuecheng; Zhang, Yu; Li, Songhai; Berggren, Per

    2015-11-01

    Computed tomography (CT) imaging and sound experimental measurements were used to reconstruct the acoustic properties (density, velocity, and impedance) of the forehead tissues of a deceased pygmy sperm whale (Kogia breviceps). The forehead was segmented along the body axis and sectioned into cross section slices, which were further cut into sample pieces for measurements. Hounsfield units (HUs) of the corresponding measured pieces were obtained from CT scans, and regression analyses were conducted to investigate the linear relationships between the tissues' HUs and velocity, and HUs and density. The distributions of the acoustic properties of the head at axial, coronal, and sagittal cross sections were reconstructed, revealing that the nasal passage system was asymmetric and the cornucopia-shaped spermaceti organ was in the right nasal passage, surrounded by tissues and airsacs. A distinct dense theca was discovered in the posterior-dorsal area of the melon, which was characterized by low velocity in the inner core and high velocity in the outer region. Statistical analyses revealed significant differences in density, velocity, and acoustic impedance between all four structures, melon, spermaceti organ, muscle, and connective tissue (p < 0.001). The obtained acoustic properties of the forehead tissues provide important information for understanding the species' bioacoustic characteristics. PMID:26627786

  10. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  11. Propagation of large-wavevector acoustic phonons new perspectives from phonon imaging

    NASA Astrophysics Data System (ADS)

    Wolfe, James P.

    Within the last decade a number of attempts have been made to observe the ballistic propagation of large wavevector acoustic phonons in crystals at low temperatures. Time-of-flight heat-pulse methods have difficulty in distinguishing between scattered phonons and ballistic phonons which travel dispersively at subsonic velocities. Fortunately, ballistic phonons can be identified by their highly anisotropic flux, which is observed by phonon imaging techniques. In this paper, several types of phonon imaging experiments are described which reveal the dispersive propagation of large-wavevector phonons and expose interesting details of the phonon scattering processes.

  12. Multiresolution active contour model applied on lung and colon images

    NASA Astrophysics Data System (ADS)

    Dehmeshki, Jamshid; Siddique, Musib; Wong, Wing; Chis Ster, Irina

    2004-05-01

    This paper deploys a wavelet based scale-space approach to extract the boundary of the object of interest in medical CT images. The classical approach of the active contour models consists of starting with an initial contour, to deform it under the action of some forces attracting the contour towards the edges by means of a set of forces. The mathematical model involves in the minimisation of an objective function called energy functional, which depends on the geometry of the contour as well as of the image characteristics. Various strategies could be used for the formulation of the energy functional and its optimisation. In this study, a wavelet based scale-space approach has been adopted. The coarsest scale is able to enlarge the capture region surrounding an object and avoids the trapping of contour into weak edges. The finer scales are used to refine the contour as close as possible to the boundary of the object. An adaptive scale coefficient for the balloon energy has been introduced. Four levels of resolution have been applied in order to get reproducibility of the contour despite poor different initialisations. The scheme has been applied to segment the regions of interest in CT lung and colon images. The result has been shown to be accurate and reproducible for the cases containing fat, holes and other small high intensity objects inside lung nodules as well as colon polyps.

  13. A comparison of traffic estimates of nocturnal flying animals using radar, thermal imaging, and acoustic recording.

    PubMed

    Horton, Kyle G; Shriver, W Gregory; Buler, Jeffrey J

    2015-03-01

    There are several remote-sensing tools readily available for the study of nocturnally flying animals (e.g., migrating birds), each possessing unique measurement biases. We used three tools (weather surveillance radar, thermal infrared camera, and acoustic recorder) to measure temporal and spatial patterns of nocturnal traffic estimates of flying animals during the spring and fall of 2011 and 2012 in Lewes, Delaware, USA. Our objective was to compare measures among different technologies to better understand their animal detection biases. For radar and thermal imaging, the greatest observed traffic rate tended to occur at, or shortly after, evening twilight, whereas for the acoustic recorder, peak bird flight-calling activity was observed just prior to morning twilight. Comparing traffic rates during the night for all seasons, we found that mean nightly correlations between acoustics and the other two tools were weakly correlated (thermal infrared camera and acoustics, r = 0.004 ± 0.04 SE, n = 100 nights; radar and acoustics, r = 0.14 ± 0.04 SE, n = 101 nights), but highly variable on an individual nightly basis (range = -0.84 to 0.92, range = -0.73 to 0.94). The mean nightly correlations between traffic rates estimated by radar and by thermal infrared camera during the night were more strongly positively correlated (r = 0.39 ± 0.04 SE, n = 125 nights), but also were highly variable for individual nights (range = -0.76 to 0.98). Through comparison with radar data among numerous height intervals, we determined that flying animal height above the ground influenced thermal imaging positively and flight call detections negatively. Moreover, thermal imaging detections decreased with the presence of cloud cover and increased with mean ground flight speed of animals, whereas acoustic detections showed no relationship with cloud cover presence but did decrease with increased flight speed. We found sampling methods to be positively correlated when comparing mean nightly

  14. Comparison of Modal Analysis Methods Applied to a Vibro-Acoustic Test Article

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn; Pappa, Richard; Buehrle, Ralph; Grosveld, Ferdinand

    2001-01-01

    Modal testing of a vibro-acoustic test article referred to as the Aluminum Testbed Cylinder (ATC) has provided frequency response data for the development of validated numerical models of complex structures for interior noise prediction and control. The ATC is an all aluminum, ring and stringer stiffened cylinder, 12 feet in length and 4 feet in diameter. The cylinder was designed to represent typical aircraft construction. Modal tests were conducted for several different configurations of the cylinder assembly under ambient and pressurized conditions. The purpose of this paper is to present results from dynamic testing of different ATC configurations using two modal analysis software methods: Eigensystem Realization Algorithm (ERA) and MTS IDEAS Polyreference method. The paper compares results from the two analysis methods as well as the results from various test configurations. The effects of pressurization on the modal characteristics are discussed.

  15. Mapped orthogonal functions method applied to acoustic waves-based devices

    NASA Astrophysics Data System (ADS)

    Lefebvre, J. E.; Yu, J. G.; Ratolojanahary, F. E.; Elmaimouni, L.; Xu, W. J.; Gryba, T.

    2016-06-01

    This work presents the modelling of acoustic wave-based devices of various geometries through a mapped orthogonal functions method. A specificity of the method, namely the automatic incorporation of boundary conditions into equations of motion through position-dependent physical constants, is presented in detail. Formulations are given for two classes of problems: (i) problems with guided mode propagation and (ii) problems with stationary waves. The method's interest is demonstrated by several examples, a seven-layered plate, a 2D rectangular resonator and a 3D cylindrical resonator, showing how it is easy to obtain either dispersion curves and field profiles for devices with guided mode propagation or electrical response for devices with stationary waves. Extensions and possible further developments are also given.

  16. Hyperspectral-imaging-based techniques applied to wheat kernels characterization

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Cesare, Daniela; Bonifazi, Giuseppe

    2012-05-01

    Single kernels of durum wheat have been analyzed by hyperspectral imaging (HSI). Such an approach is based on the utilization of an integrated hardware and software architecture able to digitally capture and handle spectra as an image sequence, as they results along a pre-defined alignment on a surface sample properly energized. The study was addressed to investigate the possibility to apply HSI techniques for classification of different types of wheat kernels: vitreous, yellow berry and fusarium-damaged. Reflectance spectra of selected wheat kernels of the three typologies have been acquired by a laboratory device equipped with an HSI system working in near infrared field (1000-1700 nm). The hypercubes were analyzed applying principal component analysis (PCA) to reduce the high dimensionality of data and for selecting some effective wavelengths. Partial least squares discriminant analysis (PLS-DA) was applied for classification of the three wheat typologies. The study demonstrated that good classification results were obtained not only considering the entire investigated wavelength range, but also selecting only four optimal wavelengths (1104, 1384, 1454 and 1650 nm) out of 121. The developed procedures based on HSI can be utilized for quality control purposes or for the definition of innovative sorting logics of wheat.

  17. The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization.

    PubMed

    Allen, Jason D; Ham, Katherine L; Dumont, Douglas M; Sileshi, Bantayehu; Trahey, Gregg E; Dahl, Jeremy J

    2011-08-01

    Stroke is the third leading cause of death and long-term disability in the USA. Currently, surgical intervention decisions in asymptomatic patients are based upon the degree of carotid artery stenosis. While there is a clear benefit of endarterectomy for patients with severe (> 70%) stenosis, in those with high/moderate (50-69%) stenosis the evidence is less clear. Evidence suggests ischemic stroke is associated less with calcified and fibrous plaques than with those containing softer tissue, especially when accompanied by a thin fibrous cap. A reliable mechanism for the identification of individuals with atherosclerotic plaques which confer the highest risk for stroke is fundamental to the selection of patients for vascular interventions. Acoustic radiation force impulse (ARFI) imaging is a new ultrasonic-based imaging method that characterizes the mechanical properties of tissue by measuring displacement resulting from the application of acoustic radiation force. These displacements provide information about the local stiffness of tissue and can differentiate between soft and hard areas. Because arterial walls, soft tissue, atheromas, and calcifications have a wide range in their stiffness properties, they represent excellent candidates for ARFI imaging. We present information from early phantom experiments and excised human limb studies to in vivo carotid artery scans and provide evidence for the ability of ARFI to provide high-quality images which highlight mechanical differences in tissue stiffness not readily apparent in matched B-mode images. This allows ARFI to identify soft from hard plaques and differentiate characteristics associated with plaque vulnerability or stability. PMID:21447606

  18. Working with images: applying writing principles to photography

    SciTech Connect

    Silverstein, A.P.

    1982-01-05

    Photography and writing are two media with the power to communicate. Both use a language: photogrphy uses images, writing uses words. Recognizing this similarity can help the writer/editor who knows very little about photography. If you regard a photography assignment in the same light as a writing assignment, you can apply the general principles of writing to photography. For instance, before you begin to create in any medium you need to consider your audience, your purpose, and your format. Next, you need to get to know your equipment, overcome your anxieties, and get started (often the most difficult step of the whole process). As you create and while you edit, remember these simple rules which hold true for words and images: Keep it clear and simple, beware of jargon, and choose the active voice.

  19. Image Classification Applied to High Energy Physics Events

    NASA Astrophysics Data System (ADS)

    Timcheck, Jonathan; Hughes, Richard; Merz, Garrett; Winer, Brian

    2015-04-01

    We present a method for applying image classification algorithms to signal discrimination in high energy physics events. Deep Convolutional Neural Networks (DCNNs), state-of-the-art computational models inspired by the visual cortex, are trained to distinguish top-quark pair events from W +4jets events by looking at the electromagnetic and hadronic calorimeters of a generalized detector as an unrolled, flat image. DCNNs are capable of learning compact hierarchical representations, i.e., the important features in these events, and subsequently aggregate these features to perform classification. Our method yields performance competitive with that of traditional analyses and may be a useful tool in the upcoming higher-energy, higher-luminosity environment at the LHC due to its lack of dependence on isolated objects. Computational resources provided by the Ohio Supercomputer Center.

  20. Autoionization widths by Stieltjes imaging applied to Lanczos pseudospectra

    SciTech Connect

    Kopelke, S.; Gokhberg, K.; Cederbaum, L. S.; Tarantelli, F.; Averbukh, V.

    2011-01-14

    Excited states of atoms and molecules lying above the ionization threshold can decay by electron emission in a process commonly known as autoionization. The autoionization widths can be calculated conveniently using Fano formalism and discretized atomic and molecular spectra by a standard procedure referred to as Stieltjes imaging. The Stieltjes imaging procedure requires the use of the full discretized spectrum of the final states of the autoionization, making its use for poly-atomic systems described by high-quality basis sets impractical. Following our previous work on photoionization cross-sections, here we show that also in the case of autoionization widths, the full diagonalization bottleneck can be overcome by the use of Lanczos pseudospectra. We test the proposed method by calculating the well-documented autoionization widths of inner-valence-excited neon and apply the new technique to autoionizing states of hydrofluoric acid and benzene.

  1. Microstructure Imaging Using Frequency Spectrum Spatially Resolved Acoustic Spectroscopy F-Sras

    NASA Astrophysics Data System (ADS)

    Sharples, S. D.; Li, W.; Clark, M.; Somekh, M. G.

    2010-02-01

    Material microstructure can have a profound effect on the mechanical properties of a component, such as strength and resistance to creep and fatigue. SRAS—spatially resolved acoustic spectroscopy—is a laser ultrasonic technique which can image microstructure using highly localized surface acoustic wave (SAW) velocity as a contrast mechanism, as this is sensitive to crystallographic orientation. The technique is noncontact, nondestructive, rapid, can be used on large components, and is highly tolerant of acoustic aberrations. Previously, the SRAS technique has been demonstrated using a fixed frequency excitation laser and a variable grating period (к-vector) to determine the most efficiently generated SAWs, and hence the velocity. Here, we demonstrate an implementation which uses a fixed grating period with a broadband laser excitation source. The velocity is determined by analyzing the measured frequency spectrum. Experimental results using this "frequency spectrum SRAS" (f-SRAS) method are presented. Images of microstructure on an industrially relevant material are compared to those obtained using the previous SRAS method ("k-SRAS"), excellent agreement is observed. Moreover, f-SRAS is much simpler and potentially much more rapid than k-SRAS as the velocity can be determined at each sample point in one single laser shot, rather than scanning the grating period.

  2. Eigenfunction analysis of stochastic backscatter for characterization of acoustic aberration in medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varslot, Trond; Krogstad, Harald; Mo, Eirik; Angelsen, Bjørn A.

    2004-06-01

    Presented here is a characterization of aberration in medical ultrasound imaging. The characterization is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. Aberration correction based on this characterization takes the form of an aberration correction filter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wavelength of the transmit pulse. The scatterer distribution is therefore assumed to be δ correlated. This paper shows how maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction are presented for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtainable using data from a simulated point source.

  3. Reducing the Impacts of Hydroelectric Dams on Juvenile Anadromous Fishes: Bioengineering Evaluations Using Acoustic Imaging in the Columbia River, USA

    SciTech Connect

    Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.; Khan, Fenton; Mueller, Robert P.; Nagy, William T.; Richmond, Marshall C.; Weiland, Mark A.

    2008-07-29

    Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to merging and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.

  4. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

    PubMed Central

    Hui, Jie; Li, Rui; Phillips, Evan H.; Goergen, Craig J.; Sturek, Michael; Cheng, Ji-Xin

    2016-01-01

    The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology. PMID:27069873

  5. Enhanced characterization of calcified areas in intravascular ultrasound virtual histology images by quantification of the acoustic shadow: validation against computed tomography coronary angiography.

    PubMed

    Broersen, Alexander; de Graaf, Michiel A; Eggermont, Jeroen; Wolterbeek, Ron; Kitslaar, Pieter H; Dijkstra, Jouke; Bax, Jeroen J; Reiber, Johan H C; Scholte, Arthur J

    2016-04-01

    We enhance intravascular ultrasound virtual histology (VH) tissue characterization by fully automatic quantification of the acoustic shadow behind calcified plaque. VH is unable to characterize atherosclerosis located behind calcifications. In this study, the quantified acoustic shadows are considered calcified to approximate the real dense calcium (DC) plaque volume. In total, 57 patients with 108 coronary lesions were included. A novel post-processing step is applied on the VH images to quantify the acoustic shadow and enhance the VH results. The VH and enhanced VH results are compared to quantitative computed tomography angiography (QTA) plaque characterization as reference standard. The correlation of the plaque types between enhanced VH and QTA differs significantly from the correlation with unenhanced VH. For DC, the correlation improved from 0.733 to 0.818. Instead of an underestimation of DC in VH with a bias of 8.5 mm(3), there was a smaller overestimation of 1.1 mm(3) in the enhanced VH. Although tissue characterization within the acoustic shadow in VH is difficult, the novel algorithm improved the DC tissue characterization. This algorithm contributes to accurate assessment of calcium on VH and could be applied in clinical studies. PMID:26667446

  6. Acoustic Image Models for Obstacle Avoidance with Forward-Looking Sonar

    NASA Astrophysics Data System (ADS)

    Masek, T.; Kölsch, M.

    Long-range forward-looking sonars (FLS) have recently been deployed in autonomous unmanned vehicles (AUV). We present models for various features in acoustic images, with the goal of using this sensor for altitude maintenance, obstacle detection and obstacle avoidance. First, we model the backscatter and FLS noise as pixel-based, spatially-varying intensity distributions. Experiments show that these models predict noise with an accuracy of over 98%. Next, the presence of acoustic noise from two other sources including a modem is reliably detected with a template-based filter and a threshold learned from training data. Lastly, the ocean floor location and orientation is estimated with a gradient-descent method using a site-independent template, yielding sufficiently accurate results in 95% of the frames. Temporal information is expected to further improve the performance.

  7. Online image corrections applied to a dedicated breast PET

    NASA Astrophysics Data System (ADS)

    Moliner, L.; González, A. J.; Correcher, C.; Benlloch, J. M.

    2016-03-01

    In this work, we present the online implementation of attenuation, scatter and random corrections using the LMEM algorithm for the dedicated breast PET named MAMMI. The attenuation correction is based on image segmentation, the random correction is derived from the rate estimation of single photon events and the scatter correction is determined by the dual energy window method. These three corrections are estimated and implemented in the reconstruction process without almost increasing the reconstruction time. The image quality is evaluated in terms of image uniformity and contrast using the reconstructed images of two custom-designed phantoms. When we apply the three corrections, the measured uniformity in the whole field of view is (10± 1)% compared to (17± 1)% without corrections. The adapted recovery contrast coefficients (normalized to 1) are approximately (0.80± 0.02) in hot areas, improving the value of (0.66± 0.07) obtained without corrections. The reconstruction processing time is also studied, finding an increment of around 7% when the three corrections are simultaneously included. Finally, 25 breast image datasets are also analyzed. The average acquisition time per patient is around 1200 seconds and the reconstruction times with corrections vary from 100 to 400 seconds using (1× 1× 1) mm3 voxel size and from 300 to 1800 seconds using (0.5× 0.5× 0.5) mm3 voxel size. These reconstructions are performed with a virtual pixel size of (1.6× 1.6) mm2 and twelve iterations.

  8. Acoustic imaging of the Mediterranean water outflowing through the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Biescas Gorriz, Berta; Carniel, Sandro; Sallarès, Valentí; Rodriguez Ranero, Cesar

    2016-04-01

    Acoustic imaging of the Mediterranean water outflowing through the Strait of Gibraltar Berta Biescas (1), Sandro Carniel (2) , Valentí Sallarès (3) and Cesar R. Ranero(3) (1) Istituto di Scienze Marine, CNR, Bologna, Italy (2) Istituto di Scienze Marine, CNR, Venice, Italy (3) Institut de Ciències del Mar, CSIC, Barcelona, Spain Acoustic reflectivity acquired with multichannel seismic reflection (MCS) systems allow to detect and explore the thermohaline structure in the ocean with vertical and lateral resolutions in the order of 10 m, covering hundreds of kilometers in the lateral dimension and the full-depth water column. In this work we present a MCS 2D profile that crosses the Strait of Gibraltar, from the Alboran Sea to the internal Gulf of Cadiz (NE Atlantic Ocean). The MCS data was acquired during the Topomed-Gassis Cruise (European Science Foundation TopoEurope), which was carried out on board of the Spanish R/V Sarmiento de Gamboa in October 2011. The strong thermohaline contrast between the Mediterranean water and the Atlantic water, characterizes this area and allows to visualize, with unprecedented resolution, the acoustic reflectivity associated to the dense flow of the Mediterranean water outflowing through the prominent slope of the Strait of Gibraltar. During the first kilometers, the dense flow drops attached to the continental slope until it reaches the buoyancy depth at 700 m. Then, it detaches from the sea floor and continues flowing towards the Atlantic Ocean, occupying the layer at 700-1500 m deep and developing clear staircase layers. The reflectivity images display near seabed reflections that could well correspond to turbidity layers. The XBT data acquired coincident in time and space with the MCS data will help us in the interpretation and analysis of the acoustic data.

  9. Imaging living cells with a combined high-resolution multi-photon-acoustic microscope

    NASA Astrophysics Data System (ADS)

    Schenkl, Selma; Weiss, Eike; Stark, Martin; Stracke, Frank; Riemann, Iris; Lemor, Robert; König, Karsten

    2007-02-01

    With increasing demand for in-vivo observation of living cells, microscope techniques that do not need staining become more and more important. In this talk we present a combined multi-photon-acoustic microscope with the possibility to measure synchronously properties addressed by ultrasound and two-photon fluorescence. Ultrasound probes the local mechanical properties of a cell, while the high resolution image of the two-photon fluorescence delivers insight in cell morphology and activity. In the acoustic part of the microscope an ultrasound wave, with a frequency of GHz, is focused by an acoustic sapphire lens and detected by a piezo electric transducer assembled to the lens. The achieved lateral resolution is in the range of 1μm. Contrast in the images arises mainly from the local absorption of sound in the cells, related to properties, such as mass density, stiffness and viscose damping. Additionally acoustic microscopy can access the cell shape and the state of the cell membrane as it is a intrinsic volume scanning technique.The optical part bases on the emission of fluorescent biomolecules naturally present in cells (e.g. NAD(P)H, protophorphyrin IX, lipofuscin, melanin). The nonlinear effect of two-photon absorption provides a high lateral and axial resolution without the need of confocal detection. In addition, in the near-IR cell damages are drastically reduced in comparison to direct excitation in the visible or UV. Both methods can be considered as minimal invasive, as they relay on intrinsic contrast mechanisms and dispense with the need of staining. First results on living cells are presented and discussed.

  10. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the seven quarter of the project the research team analyzed some of the acoustic velocity data and rock deformation data. The goal is to create a series of ''deformation-velocity maps'' which can outline the types of rock deformational mechanisms which can occur at high pressures and then associate those with specific compressional or shear wave velocity signatures. During this quarter, we began to analyze both the acoustical and deformational properties of the various rock types. Some of the preliminary velocity data from the Danian chalk will be presented in this report. This rock type was selected for the initial efforts as it will be used in the tomographic imaging study outlined in Task 10. This is one of the more important rock types in the study as the Danian chalk is thought to represent an excellent analog to the Ekofisk chalk that has caused so many problems in the North Sea. Some of the preliminary acoustic velocity data obtained during this phase of the project indicates that during pore collapse and compaction of this chalk, the acoustic velocities can change by as much as 200 m/s. Theoretically, this significant velocity change should be detectable during repeated successive 3-D seismic images. In addition, research continues with an analysis of the unconsolidated sand samples at high confining pressures obtained in Task 9. The analysis of the results indicate that sands with 10% volume of fines can undergo liquefaction at lower stress conditions than sand samples which do not have fines added. This liquefaction and/or sand flow is similar to ''shallow water'' flows observed during drilling in the offshore Gulf of Mexico.

  11. Voice assessment: Updates on perceptual, acoustic, aerodynamic, and endoscopic imaging methods

    PubMed Central

    Mehta, Daryush D.; Hillman, Robert E.

    2013-01-01

    Purpose of review This paper describes recent advances in perceptual, acoustic, aerodynamic, and endoscopic imaging methods for assessing voice production. Recent findings Perceptual assessment Speech-language pathologists are being encouraged to use the new CAPE-V inventory for auditory perceptual assessment of voice quality, and recent studies have provided new insights into listener reliability issues that have plagued subjective perceptual judgments of voice quality. Acoustic assessment Progress is being made on the development of algorithms that are more robust for analyzing disordered voices, including the capability to extract voice quality-related measures from running speech segments. Aerodynamic assessment New devices for measuring phonation threshold air pressures and air flows have the potential to serve as sensitive indices of glottal phonatory conditions, and recent developments in aeroacoustic theory may provide new insights into laryngeal sound production mechanisms. Endoscopic imaging The increased light sensitivity of new ultra high-speed color digital video processors is enabling high-quality endoscopic imaging of vocal fold tissue motion at unprecedented image capture rates, which promises to provide new insights into mechanisms of normal and disordered voice production. Summary Some of the recent research advances in voice quality assessment could be more readily adopted into clinical practice, while others will require further development. PMID:18475073

  12. Array model interpolation and subband iterative adaptive filters applied to beamforming-based acoustic echo cancellation.

    PubMed

    Bai, Mingsian R; Chi, Li-Wen; Liang, Li-Huang; Lo, Yi-Yang

    2016-02-01

    In this paper, an evolutionary exposition is given in regard to the enhancing strategies for acoustic echo cancellers (AECs). A fixed beamformer (FBF) is utilized to focus on the near-end speaker while suppressing the echo from the far end. In reality, the array steering vector could differ considerably from the ideal freefield plane wave model. Therefore, an experimental procedure is developed to interpolate a practical array model from the measured frequency responses. Subband (SB) filtering with polyphase implementation is exploited to accelerate the cancellation process. Generalized sidelobe canceller (GSC) composed of an FBF and an adaptive blocking module is combined with AEC to maximize cancellation performance. Another enhancement is an internal iteration (IIT) procedure that enables efficient convergence in the adaptive SB filters within a sample time. Objective tests in terms of echo return loss enhancement (ERLE), perceptual evaluation of speech quality (PESQ), word recognition rate for automatic speech recognition (ASR), and subjective listening tests are conducted to validate the proposed AEC approaches. The results show that the GSC-SB-AEC-IIT approach has attained the highest ERLE without speech quality degradation, even in double-talk scenarios. PMID:26936567

  13. Improved source reconstruction in Fourier-based Near-field Acoustic Holography applied to small apertures

    NASA Astrophysics Data System (ADS)

    Lopez Arteaga, I.; Scholte, R.; Nijmeijer, H.

    2012-10-01

    It is well known that Fourier-based Near-field Acoustic Holography fails to produce good source reconstructions when the aperture size of the microphone array is smaller than the source size. In this paper this problem is overcome by pre-conditioning the spatial hologram data using Linear Predictive Border Padding (LPBP) before it is Fourier-transformed to the wave-number domain. It is shown that LPBP allows for very small aperture sizes with a good reconstruction accuracy. An exhaustive analysis of LPBP is presented based on numerical experiments and measured data. The numerical experiments are performed on two different source types: modal patterns and point sources. These two types of sources represent the two limit situations that one can find in practice: modal patterns have a tonal spectrum in the spatial wave-number domain and are relatively easy to reconstruct accurately, while point sources have a broad-band wave-number spectrum which makes them very challenging to reconstruct. In order to illustrate the accuracy of the method in practice, results of measurements on a hard disk drive are presented as well. For a given distance to the source, the position and size of the hologram plane apertures is varied and the reconstructed source information is compared to the original source data. The reconstructed sources are compared both qualitatively and quantitatively. The results show that LPBP is an efficient and accurate extrapolation method, which leads to accurate reconstructions even for very small aperture sizes.

  14. Hyperspectral imaging applied to complex particulate solids systems

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia

    2008-04-01

    HyperSpectral Imaging (HSI) is based on the utilization of an integrated hardware and software (HW&SW) platform embedding conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Although HSI was originally developed for remote sensing, it has recently emerged as a powerful process analytical tool, for non-destructive analysis, in many research and industrial sectors. The possibility to apply on-line HSI based techniques in order to identify and quantify specific particulate solid systems characteristics is presented and critically evaluated. The originally developed HSI based logics can be profitably applied in order to develop fast, reliable and lowcost strategies for: i) quality control of particulate products that must comply with specific chemical, physical and biological constraints, ii) performance evaluation of manufacturing strategies related to processing chains and/or realtime tuning of operative variables and iii) classification-sorting actions addressed to recognize and separate different particulate solid products. Case studies, related to recent advances in the application of HSI to different industrial sectors, as agriculture, food, pharmaceuticals, solid waste handling and recycling, etc. and addressed to specific goals as contaminant detection, defect identification, constituent analysis and quality evaluation are described, according to authors' originally developed application.

  15. Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging

    PubMed Central

    Huettner, Andrew M.; Mickevicius, Nikolai J.; Ersoz, Ali; Koch, Kevin M.; Muftuler, L. Tugan; Nencka, Andrew S.

    2015-01-01

    A new method for designing radiofrequency (RF) pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS) spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS) acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging. PMID:26517262

  16. Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.

    PubMed

    Huettner, Andrew M; Mickevicius, Nikolai J; Ersoz, Ali; Koch, Kevin M; Muftuler, L Tugan; Nencka, Andrew S

    2015-01-01

    A new method for designing radiofrequency (RF) pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS) spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS) acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging. PMID:26517262

  17. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    NASA Astrophysics Data System (ADS)

    Lafford, T. A.; Villanova, J.; Plassat, N.; Dubois, S.; Camel, D.

    2013-03-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  18. Using numerical models and volume rendering to interpret acoustic imaging of hydrothermal flow

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Bennett, K.; Takle, J.; Rona, P. A.; Silver, D.

    2009-12-01

    Our acoustic imaging system will be installed onto the Neptune Canada observatory at the Main Endeavour Field, Juan de Fuca Ridge, which is a Ridge 2000 Integrated Study Site. Thereafter, 16-30 Gb of acoustic imaging data will be collected daily. We are developing a numerical model of merging plumes that will be used to guide expectations and volume rendering software that transforms volumetric acoustic data into photo-like images. Hydrothermal flow is modeled as a combination of merged point sources which can be configured in any geometry. The model stipulates the dissipation or dilution of the flow and uses potential fields and complex analysis to combine the entrainment fields produced by each source. The strengths of this model are (a) the ability to handle a variety of scales especially the small scale as the potential fields can be specified with an effectively infinite boundary condition, (b) the ability to handle line, circle and areal source configurations, and (c) the ability to handle both high temperature focused flow and low temperature diffuse flow. This model predicts the vertical and horizontal velocities and the spatial distribution of effluent from combined sources of variable strength in a steady ambient velocity field. To verify the accuracy of the model’s results, we compare the model predictions of plume centerlines for the merging of two relatively strong point sources with the acoustic imaging data collected at Clam Acres, Southwest Vent Field, EPR 21°N in 1990. The two chimneys are 3.5 m apart and the plumes emanating from their tops merge approximately 18 mab. The model is able to predict the height of merging and the bending of the centerlines. Merging is implicitly observed at Grotto Vent, Main Endeavour Field, in our VIP 2000 data from July 2000: although there are at least 5 vigorous black smokers only a single plume is discernable in the acoustic imaging data. Furthermore, the observed Doppler velocity data increases with height

  19. Sensing the delivery and endocytosis of nanoparticles using magneto-photo-acoustic imaging

    PubMed Central

    Qu, M.; Mehrmohammadi, M.; Emelianov, S.Y.

    2015-01-01

    Many biomedical applications necessitate a targeted intracellular delivery of the nanomaterial to specific cells. Therefore, a non-invasive and reliable imaging tool is required to detect both the delivery and cellular endocytosis of the nanoparticles. Herein, we demonstrate that magneto-photo-acoustic (MPA) imaging can be used to monitor the delivery and to identify endocytosis of magnetic and optically absorbing nanoparticles. The relationship between photoacoustic (PA) and magneto-motive ultrasound (MMUS) signals from the in vitro samples were analyzed to identify the delivery and endocytosis of nanoparticles. The results indicated that during the delivery of nanoparticles to the vicinity of the cells, both PA and MMUS signals are almost linearly proportional. However, accumulation of nanoparticles within the cells leads to nonlinear MMUS-PA relationship, due to non-linear MMUS signal amplification. Therefore, through longitudinal MPA imaging, it is possible to monitor the delivery of nanoparticles and identify the endocytosis of the nanoparticles by living cells. PMID:26640773

  20. Breaking the acoustic diffraction limit via nonlinear effect and thermal confinement for potential deep-tissue high-resolution imaging

    PubMed Central

    Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth

    2013-01-01

    Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498

  1. Contribution of the supraglottic larynx to the vocal product: imaging and acoustic analysis

    NASA Astrophysics Data System (ADS)

    Gracco, L. Carol

    1996-04-01

    Horizontal supraglottic laryngectomy is a surgical procedure to remove a mass lesion located in the region of the pharynx superior to the true vocal folds. In contrast to full or partial laryngectomy, patients who undergo horizontal supraglottic laryngectomy often present with little or nor involvement to the true vocal folds. This population provides an opportunity to examine the acoustic consequences of altering the pharynx while sparing the laryngeal sound source. Acoustic and magnetic resonance imaging (MRI) data were acquired in a group of four patients before and after supraglottic laryngectomy. Acoustic measures included the identification of vocal tract resonances and the fundamental frequency of the vocal fold vibration. 3D reconstruction of the pharyngeal portion of each subjects' vocal tract were made from MRIs taken during phonation and volume measures were obtained. These measures reveal a variable, but often dramatic difference in the surgically-altered area of the pharynx and changes in the formant frequencies of the vowel/i/post surgically. In some cases the presence of the tumor created a deviation from the expected formant values pre-operatively with post-operative values approaching normal. Patients who also underwent radiation treatment post surgically tended to have greater constriction in the pharyngeal area of the vocal tract.

  2. Acoustic Property Reconstruction of a Neonate Yangtze Finless Porpoise's (Neophocaena asiaeorientalis) Head Based on CT Imaging

    PubMed Central

    Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W. L.; Zhang, Yu

    2015-01-01

    The reconstruction of the acoustic properties of a neonate finless porpoise’s head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise’s head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier’s beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise’s melon. PMID:25856588

  3. Acoustic property reconstruction of a neonate Yangtze finless porpoise's (Neophocaena asiaeorientalis) head based on CT imaging.

    PubMed

    Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W L; Zhang, Yu

    2015-01-01

    The reconstruction of the acoustic properties of a neonate finless porpoise's head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise's head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier's beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise's melon. PMID:25856588

  4. The concept of cyclic sound intensity and its application to acoustical imaging

    NASA Astrophysics Data System (ADS)

    Lafon, B.; Antoni, J.; Sidahmed, M.; Polac, L.

    2011-04-01

    This paper demonstrates how to take advantage of the cyclostationarity property of engine signals to define a new acoustical quantity, the cyclic sound intensity, which displays the instantaneous flux of acoustical energy in the angle-frequency domain during an average engine cycle. This quantity is attractive in that it possesses the ability of being instantaneous and averaged at the same time, thus reconciling two conflicting properties into a rigourous and unambiguous framework. Cyclic sound intensity is a rich concept with several original ramifications. Among other things, it returns a unique decomposition into instantaneous active and reactive parts. Associated to acoustical imaging techniques, it allows the construction of sound radiation movies that evolve within the engine cycle and whose each frame is a sound intensity map calculated at a specific time - or crankshaft angle - in the engine cycle. This enables the accurate localisation of sources in space, in frequency and in time (crankshaft angle). Furthermore, associated to cyclic Wiener filtering, this methodology makes it possible to decompose the overall radiated sound into several noise source contributions whose cyclic sound intensities can then be analysed independently.

  5. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    PubMed

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz. PMID:26026514

  6. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P. Oshkai; M. Geveci; D. Rockwell; M. Pollack

    2002-12-12

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of,these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  7. Investigating the emotional response to room acoustics: A functional magnetic resonance imaging study.

    PubMed

    Lawless, M S; Vigeant, M C

    2015-10-01

    While previous research has demonstrated the powerful influence of pleasant and unpleasant music on emotions, the present study utilizes functional magnetic resonance imaging (fMRI) to assess the positive and negative emotional responses as demonstrated in the brain when listening to music convolved with varying room acoustic conditions. During fMRI scans, subjects rated auralizations created in a simulated concert hall with varying reverberation times. The analysis detected activations in the dorsal striatum, a region associated with anticipation of reward, for two individuals for the highest rated stimulus, though no activations were found for regions associated with negative emotions in any subject. PMID:26520354

  8. Air-coupled acoustic thermography for in-situ evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor); Yost, William T. (Inventor)

    2010-01-01

    Acoustic thermography uses a housing configured for thermal, acoustic and infrared radiation shielding. For in-situ applications, the housing has an open side adapted to be sealingly coupled to a surface region of a structure such that an enclosed chamber filled with air is defined. One or more acoustic sources are positioned to direct acoustic waves through the air in the enclosed chamber and towards the surface region. To activate and control each acoustic source, a pulsed signal is applied thereto. An infrared imager focused on the surface region detects a thermal image of the surface region. A data capture device records the thermal image in synchronicity with each pulse of the pulsed signal such that a time series of thermal images is generated. For enhanced sensitivity and/or repeatability, sound and/or vibrations at the surface region can be used in feedback control of the pulsed signal applied to the acoustic sources.

  9. Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence.

    PubMed

    Park, Jinhyoung; Lee, Jungwoo; Lau, Sien Ting; Lee, Changyang; Huang, Ying; Lien, Ching-Ling; Kirk Shung, K

    2012-04-01

    Acoustic radiation force impulse (ARFI) imaging has been developed as a non-invasive method for quantitative illustration of tissue stiffness or displacement. Conventional ARFI imaging (2-10 MHz) has been implemented in commercial scanners for illustrating elastic properties of several organs. The image resolution, however, is too coarse to study mechanical properties of micro-sized objects such as cells. This article thus presents a high-frequency coded excitation ARFI technique, with the ultimate goal of displaying elastic characteristics of cellular structures. Tissue mimicking phantoms and zebrafish embryos are imaged with a 100-MHz lithium niobate (LiNbO₃) transducer, by cross-correlating tracked RF echoes with the reference. The phantom results show that the contrast of ARFI image (14 dB) with coded excitation is better than that of the conventional ARFI image (9 dB). The depths of penetration are 2.6 and 2.2 mm, respectively. The stiffness data of the zebrafish demonstrate that the envelope is harder than the embryo region. The temporal displacement change at the embryo and the chorion is as large as 36 and 3.6 μm. Consequently, this high-frequency ARFI approach may serve as a remote palpation imaging tool that reveals viscoelastic properties of small biological samples. PMID:22101757

  10. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  11. APPLYING A SPATIOTEMPORAL MODEL FOR LONGITUDINAL CARDIAC IMAGING DATA

    PubMed Central

    George, Brandon; Denney, Thomas; Gupta, Himanshu; Dell’Italia, Louis; Aban, Inmaculada

    2016-01-01

    Longitudinal imaging studies have both spatial and temporal correlation among the multiple outcome measurements from a subject. Statistical methods of analysis must properly account for this autocorrelation. In this work we discuss how a linear model with a separable parametric correlation structure could be used to analyze data from such a study. The goal of this paper is to provide an easily understood description of how such a model works and discuss how it can be applied to real data. Model assumptions are discussed and the process of selecting a working correlation structure is thoroughly discussed. The steps necessitating collaboration between statistical and scientific investigators have been highlighted, as have considerations for missing data or uneven follow-up. The results from a completed longitudinal cardiac imaging study were considered for illustration purposes. The data comes from a clinical trial for medical therapy for patients with mitral regurgitation, with repeated measurements taken at sixteen locations from the left ventricle to measure disease progression. The spatiotemporal correlation model was compared to previously used summary measures to demonstrate improved power as well as increased flexibility in the use of time- and space-varying predictors. PMID:27087884

  12. Laser-Induced Thermal Acoustics Theory and Expected Experimental Errors when Applied to a Scramjet Isolator Model

    NASA Technical Reports Server (NTRS)

    Middleton, Troy F.; Balla, Robert Jeffrey; Baurle, Robert A.; Wilson, Lloyd G.

    2011-01-01

    A scramjet isolator model test apparatus is being assembled in the Isolator Dynamics Research Lab (IDRL) at the NASA Langley Research Center in Hampton, Virginia. The test apparatus is designed to support multiple measurement techniques for investigating the flow field in a scramjet isolator model. The test section is 1-inch high by 2-inch wide by 24-inch long and simulates a scramjet isolator with an aspect ratio of two. Unheated, dry air at a constant stagnation pressure and temperature is delivered to the isolator test section through a Mach 2.5 planar nozzle. The isolator test section is mechanically back-pressured to contain the resulting shock train within the 24-inch isolator length and supports temperature, static pressure, and high frequency pressure measurements at the wall. Additionally, nonintrusive methods including laser-induced thermal acoustics (LITA), spontaneous Raman scattering, particle image velocimetry, and schlieren imaging are being incorporated to measure off-wall fluid dynamic, thermodynamic, and transport properties of the flow field. Interchangeable glass and metallic sidewalls and optical access appendages permit making multiple measurements simultaneously. The measurements will be used to calibrate computational fluid dynamics turbulence models and characterize the back-pressured flow of a scramjet isolator. This paper describes the test apparatus, including the optical access appendages; the physics of the LITA method; and estimates of LITA measurement uncertainty for measurements of the speed of sound and temperature.

  13. Compressive sensing beamforming based on covariance for acoustic imaging with noisy measurements.

    PubMed

    Zhong, Siyang; Wei, Qingkai; Huang, Xun

    2013-11-01

    Compressive sensing, a newly emerging method from information technology, is applied to array beamforming and associated acoustic applications. A compressive sensing beamforming method (CSB-II) is developed based on sampling covariance matrix, assuming spatially sparse and incoherent signals, and then examined using both simulations and aeroacoustic measurements. The simulation results clearly show that the proposed CSB-II method is robust to sensing noise. In addition, aeroacoustic tests of a landing gear model demonstrate the good performance in terms of resolution and sidelobe rejection. PMID:24181989

  14. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis

    PubMed Central

    Tsui, Po-Hsiang; Ho, Ming-Chih; Tai, Dar-In; Lin, Ying-Hsiu; Wang, Chiao-Yin; Ma, Hsiang-Yang

    2016-01-01

    Acoustic structure quantification (ASQ) is a recently developed technique widely used for detecting liver fibrosis. Ultrasound Nakagami parametric imaging based on the Nakagami distribution has been widely used to model echo amplitude distribution for tissue characterization. We explored the feasibility of using ultrasound Nakagami imaging as a model-based ASQ technique for assessing liver fibrosis. Standard ultrasound examinations were performed on 19 healthy volunteers and 91 patients with chronic hepatitis B and C (n = 110). Liver biopsy and ultrasound Nakagami imaging analysis were conducted to compare the METAVIR score and Nakagami parameter. The diagnostic value of ultrasound Nakagami imaging was evaluated using receiver operating characteristic (ROC) curves. The Nakagami parameter obtained through ultrasound Nakagami imaging decreased with an increase in the METAVIR score (p < 0.0001), representing an increase in the extent of pre-Rayleigh statistics for echo amplitude distribution. The area under the ROC curve (AUROC) was 0.88 for the diagnosis of any degree of fibrosis (≥F1), whereas it was 0.84, 0.69, and 0.67 for ≥F2, ≥F3, and ≥F4, respectively. Ultrasound Nakagami imaging is a model-based ASQ technique that can be beneficial for the clinical diagnosis of early liver fibrosis. PMID:27605260

  15. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis.

    PubMed

    Tsui, Po-Hsiang; Ho, Ming-Chih; Tai, Dar-In; Lin, Ying-Hsiu; Wang, Chiao-Yin; Ma, Hsiang-Yang

    2016-01-01

    Acoustic structure quantification (ASQ) is a recently developed technique widely used for detecting liver fibrosis. Ultrasound Nakagami parametric imaging based on the Nakagami distribution has been widely used to model echo amplitude distribution for tissue characterization. We explored the feasibility of using ultrasound Nakagami imaging as a model-based ASQ technique for assessing liver fibrosis. Standard ultrasound examinations were performed on 19 healthy volunteers and 91 patients with chronic hepatitis B and C (n = 110). Liver biopsy and ultrasound Nakagami imaging analysis were conducted to compare the METAVIR score and Nakagami parameter. The diagnostic value of ultrasound Nakagami imaging was evaluated using receiver operating characteristic (ROC) curves. The Nakagami parameter obtained through ultrasound Nakagami imaging decreased with an increase in the METAVIR score (p < 0.0001), representing an increase in the extent of pre-Rayleigh statistics for echo amplitude distribution. The area under the ROC curve (AUROC) was 0.88 for the diagnosis of any degree of fibrosis (≥F1), whereas it was 0.84, 0.69, and 0.67 for ≥F2, ≥F3, and ≥F4, respectively. Ultrasound Nakagami imaging is a model-based ASQ technique that can be beneficial for the clinical diagnosis of early liver fibrosis. PMID:27605260

  16. Acoustic quasi-holographic images of scattering by vertical cylinders from one-dimensional bistatic scans.

    PubMed

    Baik, Kyungmin; Dudley, Christopher; Marston, Philip L

    2011-12-01

    When synthetic aperture sonar (SAS) is used to image elastic targets in water, subtle features can be present in the images associated with the dynamical response of the target being viewed. In an effort to improve the understanding of such responses, as well as to explore alternative image processing methods, a laboratory-based system was developed in which targets were illuminated by a transient acoustic source, and bistatic responses were recorded by scanning a hydrophone along a rail system. Images were constructed using a relatively conventional bistatic SAS algorithm and were compared with images based on supersonic holography. The holographic method is a simplification of one previously used to view the time evolution of a target's response [Hefner and Marston, ARLO 2, 55-60 (2001)]. In the holographic method, the space-time evolution of the scattering was used to construct a two-dimensional image with cross range and time as coordinates. Various features for vertically hung cylindrical targets were interpreted using high frequency ray theory. This includes contributions from guided surface elastic waves, as well as transmitted-wave features and specular reflection. PMID:22225041

  17. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  18. Negative refraction and imaging of acoustic waves in a two-dimensional square chiral lattice structure

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Dong; Wang, Yue-Sheng

    2016-05-01

    The negative refraction behavior and imaging effect for acoustic waves in a kind of two-dimensional square chiral lattice structure are studied in this paper. The unit cell of the proposed structure consists of four zigzag arms connected through a thin circular ring at the central part. The relation of the symmetry of the unit cell and the negative refraction phenomenon is investigated. Using the finite element method, we calculate the band structures and the equi-frequency surfaces of the system, and confirm the frequency range where the negative refraction is present. Due to the rotational symmetry of the unit cell, a phase difference is induced to the waves propagating from a point source through the structure to the other side. The phase difference is related to the width of the structure and the frequency of the source, so we can get a tunable deviated imaging. This kind of phenomenon is also demonstrated by the numerical simulation of two Gaussian beams that are symmetrical about the interface normal with the same incident angle, and the different negative refractive indexes are presented. Based on this special performance, a double-functional mirror-symmetrical slab is proposed for realizing acoustic focusing and beam separation. xml:lang="fr"

  19. Image formation and system analysis of a scanning tomographic acoustic microscope

    NASA Astrophysics Data System (ADS)

    Kent, Samuel Davis, III

    This dissertation focuses on research that has been conducted to implement an automated Scanning Tomographic Acoustic Microscope (STAM), and research that has been performed to increase the understanding of the performance characteristics of the STAM. STAM technology permits high resolution microscopy which yields important information on the internal structure and acoustic properties of thick specimens, provided that technology is utilized in a cohesive manner. Prior to the research conducted for this dissertation, only a proof-of-concept STAM had been developed; actual STAM imaging was difficult and impractical. This dissertation describes the hardware and software development that has led to the first automated STAM. It focuses on significant problems that were encountered and their solutions. Specifically, accurate data acquisition necessitated the development of special-purpose data acquisition hardware, rotational controls, frequency controls, and automation controls. Inaccuracies in the laser scanning hardware were identified as a significant source of reconstruction error. This error was removed by estimation and correction algorithms. Rotation of the specimen for multiple-angle tomography required the development of a noise-tolerant projection-pose estimation algorithm. An iterative technique for image enhancement is also presented. The resulting STAM system is evaluated to determine its performance characteristics. A component-wise resolution analysis is presented that specifies the resolution-limit in both range and cross-range. The dependency of reconstruction quality on accurate representation of the magnitude and phase of the detected wave fields is also provided.

  20. Renal elasticity quantification by acoustic radiation force impulse applied to the evaluation of kidney diseases: a review.

    PubMed

    Zaffanello, Marco; Piacentini, Giorgio; Bruno, Costanza; Brugnara, Milena; Fanos, Vassilios

    2015-04-01

    For centuries, clinicians have used palpation to evaluate abdominal organs. After exploring almost all the different methods of interaction between x-rays, ultrasound, and magnetic fields on tissues, recent interest has focused on the evaluation of their mechanical properties.Acoustic radiation force impulse (ARFI) is a recent, established ultrasound-based diagnostic technique that allows physicians to obtain a measure of the elastic properties of an organ. Shear wave velocity, obtained by the ARFI technique, depends on the elasticity of tissues.To date, there are studies on the ARFI technique applied to normal kidneys, chronic kidney diseases, and kidney transplants. Mechanical properties of the kidney, such as stiffness and deformity, depend on various conditions that alter its histology, in particular the amount of fibrosis in the renal parenchyma; urinary pressure and renal blood perfusion may be other important contributing factors. Unfortunately, the ARFI technique applied to native renal pathologies is still limited, and not all studies are comparable because they used different methods. Therefore, the results reported in recent literature encourage further improvement of this method and the drawing up of standardized guidelines of investigation. PMID:25738649

  1. A novel imaging technique based on the spatial coherence of backscattered waves: demonstration in the presence of acoustical clutter

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Pinton, Gianmarco F.; Lediju, Muyinatu; Trahey, Gregg E.

    2011-03-01

    In the last 20 years, the number of suboptimal and inadequate ultrasound exams has increased. This trend has been linked to the increasing population of overweight and obese individuals. The primary causes of image degradation in these individuals are often attributed to phase aberration and clutter. Phase aberration degrades image quality by distorting the transmitted and received pressure waves, while clutter degrades image quality by introducing incoherent acoustical interference into the received pressure wavefront. Although significant research efforts have pursued the correction of image degradation due to phase aberration, few efforts have characterized or corrected image degradation due to clutter. We have developed a novel imaging technique that is capable of differentiating ultrasonic signals corrupted by acoustical interference. The technique, named short-lag spatial coherence (SLSC) imaging, is based on the spatial coherence of the received ultrasonic wavefront at small spatial distances across the transducer aperture. We demonstrate comparative B-mode and SLSC images using full-wave simulations that include the effects of clutter and show that SLSC imaging generates contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) that are significantly better than B-mode imaging under noise-free conditions. In the presence of noise, SLSC imaging significantly outperforms conventional B-mode imaging in all image quality metrics. We demonstrate the use of SLSC imaging in vivo and compare B-mode and SLSC images of human thyroid and liver.

  2. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.

    PubMed

    Lamprecht, Andreas; Lakämper, Stefan; Baasch, Thierry; Schaap, Iwan A T; Dual, Jurg

    2016-07-01

    Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 μm beads, resulting in an effective stiffness of 2.6 nN m(-1) for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs. PMID:27302661

  3. Green's Function Retrieval and Marchenko Imaging in a Dissipative Acoustic Medium.

    PubMed

    Slob, Evert

    2016-04-22

    Single-sided Marchenko equations for Green's function construction and imaging relate the measured reflection response of a lossless heterogeneous medium to an acoustic wave field inside this medium. I derive two sets of single-sided Marchenko equations for the same purpose, each in a heterogeneous medium, with one medium being dissipative and the other a corresponding medium with negative dissipation. Double-sided scattering data of the dissipative medium are required as input to compute the surface reflection response in the corresponding medium with negative dissipation. I show that each set of single-sided Marchenko equations leads to Green's functions with a virtual receiver inside the medium: one exists inside the dissipative medium and one in the medium with negative dissipation. This forms the basis of imaging inside a dissipative heterogeneous medium. I relate the Green's functions to the reflection response inside each medium, from which the image can be constructed. I illustrate the method with a one-dimensional example that shows the image quality. The method has a potentially wide range of imaging applications where the material under test is accessible from two sides. PMID:27152808

  4. Green's Function Retrieval and Marchenko Imaging in a Dissipative Acoustic Medium

    NASA Astrophysics Data System (ADS)

    Slob, Evert

    2016-04-01

    Single-sided Marchenko equations for Green's function construction and imaging relate the measured reflection response of a lossless heterogeneous medium to an acoustic wave field inside this medium. I derive two sets of single-sided Marchenko equations for the same purpose, each in a heterogeneous medium, with one medium being dissipative and the other a corresponding medium with negative dissipation. Double-sided scattering data of the dissipative medium are required as input to compute the surface reflection response in the corresponding medium with negative dissipation. I show that each set of single-sided Marchenko equations leads to Green's functions with a virtual receiver inside the medium: one exists inside the dissipative medium and one in the medium with negative dissipation. This forms the basis of imaging inside a dissipative heterogeneous medium. I relate the Green's functions to the reflection response inside each medium, from which the image can be constructed. I illustrate the method with a one-dimensional example that shows the image quality. The method has a potentially wide range of imaging applications where the material under test is accessible from two sides.

  5. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    NASA Astrophysics Data System (ADS)

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.

  6. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography.

    PubMed

    Ma, Jianguo; Martin, K Heath; Li, Yang; Dayton, Paul A; Shung, K Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers. PMID:25856384

  7. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-01-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with the low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for design of intravascular acoustic angiography transducers. PMID:25856384

  8. Restricted Acoustic Modal Analysis Applied to Internal Combustor Spectra and Cross-Spectra Measurements

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    A treatment of the modal decomposition of the pressure field in a combustor as determined by two Kulite pressure measurements is developed herein. It is applied to a Pratt & Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the new part of the treatment is the assumption that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present than circumferential mode m 2 is not. Consequently, in the analysis used herein at frequencies above the first cut-off mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. A new result is that the successful use of the same modal span frequencies over a range of operating conditions for this particular engine suggests that the temperature, T, and the velocity, v, of the flow at each operating condition are related by c(sup 2)-v(sup 2) = a constant where c is the speed of sound.

  9. Hyperspectral imaging applied to end-of-life concrete recycling

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Bonifazi, Giuseppe

    2014-03-01

    In this paper a new technology, based on HyperSpectral Imaging (HSI) sensors, and related detection architectures, is investigated in order to develop suitable and low cost strategies addressed to: i) preliminary detection and characterization of the composition of the structure to dismantle and ii) definition and implementation of innovative smart detection engines for sorting and/or demolition waste flow stream quality control. The proposed sensing architecture is fast, accurate, affordable and it can strongly contribute to bring down the economic threshold above which recycling is cost efficient. Investigations have been carried out utilizing an HSI device working in the range 1000-1700 nm: NIR Spectral Camera™, embedding an ImSpector™ N17E (SPECIM Ltd, Finland). Spectral data analysis was carried out utilizing the PLS_Toolbox (Version 6.5.1, Eigenvector Research, Inc.) running inside Matlab® (Version 7.11.1, The Mathworks, Inc.), applying different chemometric techniques, selected depending on the materials under investigation. The developed procedure allows assessing the characteristics, in terms of materials identification, such as recycled aggregates and related contaminants, as resulting from end-of-life concrete processing. A good classification of the different classes of material was obtained, being the model able to distinguish aggregates from other materials (i.e. glass, plastic, tiles, paper, cardboard, wood, brick, gypsum, etc.).

  10. Advanced imaging systems for diagnostic investigations applied to Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Peccenini, E.; Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M. P.; Petrucci, F.

    2014-12-01

    The diagnostic investigations are an important resource in the studies on Cultural Heritage to enhance the knowledge on execution techniques, materials and conservation status of a work of art. In this field, due to the great historical and artistic value of the objects, preservation is the main concern; for this reason, new technological equipment has been designed and developed in the Physics Departments of the Universities of Ferrara and Bologna to enhance the non-invasive approach to the study of pictorial artworks and other objects of cultural interest. Infrared (IR) reflectography, X-ray radiography and computed tomography (CT), applied to works of art, are joined by the same goal: to get hidden information on execution techniques and inner structure pursuing the non-invasiveness of the methods, although using different setup and physical principles. In this work transportable imaging systems to investigate large objects in museums and galleries are presented. In particular, 2D scanning devices for IR reflectography and X-ray radiography, CT systems and some applications to the Cultural Heritage are described.

  11. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Musharraf Zaman, Ph.D.; Younane Abousleiman, Ph.D.

    2001-04-01

    The oil and gas industry has encountered significant problems in the production of oil and gas from weak rocks (such as chalks and limestones) and from unconsolidated sand formations. Problems include subsidence, compaction, sand production, and catastrophic shallow water sand flows during deep water drilling. Together these cost the petroleum industry hundreds of millions of dollars annually. The goals of this first quarterly report is to document the progress on the project to provide data on the acoustic imaging and mechanical properties of soft rock and marine sediments. The project is intended to determine the geophysical (acoustic velocities) rock properties of weak, poorly cemented rocks and unconsolidated sands. In some cases these weak formations can create problems for reservoir engineers. For example, it cost Phillips Petroleum 1 billion dollars to repair of offshore production facilities damaged during the unexpected subsidence and compaction of the Ekofisk Field in the North Sea (Sulak 1991). Another example is the problem of shallow water flows (SWF) occurring in sands just below the seafloor encountered during deep water drilling operations. In these cases the unconsolidated sands uncontrollably flow up around the annulus of the borehole resulting in loss of the drill casing. The $150 million dollar loss of the Ursa development project in the U.S. Gulf Coast resulted from an uncontrolled SWF (Furlow 1998a,b; 1999a,b). The first three tasks outlined in the work plan are: (1) obtain rock samples, (2) construct new acoustic platens, (3) calibrate and test the equipment. These have been completed as scheduled. Rock Mechanics Institute researchers at the University of Oklahoma have obtained eight different types of samples for the experimental program. These include: (a) Danian Chalk, (b) Cordoba Cream Limestone, (c) Indiana Limestone, (d) Ekofisk Chalk, (e) Oil Creek Sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand

  12. Variable ultrasound trigger delay for improved magnetic resonance acoustic radiation force imaging

    NASA Astrophysics Data System (ADS)

    Mougenot, Charles; Waspe, Adam; Looi, Thomas; Drake, James M.

    2016-01-01

    Magnetic resonance acoustic radiation force imaging (MR-ARFI) allows the quantification of microscopic displacements induced by ultrasound pulses, which are proportional to the local acoustic intensity. This study describes a new method to acquire MR-ARFI maps, which reduces the measurement noise in the quantification of displacement as well as improving its robustness in the presence of motion. Two MR-ARFI sequences were compared in this study. The first sequence ‘variable MSG’ involves switching the polarity of the motion sensitive gradient (MSG) between odd and even image frames. The second sequence named ‘static MSG’ involves a variable ultrasound trigger delay to sonicate during the first or second MSG for odd and even image frames, respectively. As previously published, the data acquired with a variable MSG required the use of reference data acquired prior to any sonication to process displacement maps. In contrary, data acquired with a static MSG were converted to displacement maps without using reference data acquired prior to the sonication. Displacement maps acquired with both sequences were compared by performing sonications for three different conditions: in a polyacrylamide phantom, in the leg muscle of a freely breathing pig and in the leg muscle of pig under apnea. The comparison of images acquired at even image frames and odd image frames indicates that the sequence with a static MSG provides a significantly better steady state (p  <  0.001 based on a Student’s t-test) than the images acquired with a variable MSG. In addition no reference data prior to sonication were required to process displacement maps for data acquired with a static MSG. The absence of reference data prior to sonication provided a 41% reduction of the spatial distribution of noise (p  <  0.001 based on a Student’s t-test) and reduced the sensitivity to motion for displacements acquired with a static MSG. No significant differences were expected and

  13. Evaluation of Stiffness of the Spastic Lower Extremity Muscles in Early Spinal Cord Injury by Acoustic Radiation Force Impulse Imaging

    PubMed Central

    Cho, Kang Hee

    2015-01-01

    Objective To investigate intrinsic viscoelastic changes using shear wave velocities (SWVs) of spastic lower extremity muscles in patients with early spinal cord injury (SCI) via acoustic radiation force impulse (ARFI) imaging and to evaluate correlation between the SWV values and spasticity. Methods Eighteen patients with SCI within 3 months and 10 healthy adults participated. We applied the ARFI technique to measure SWV of gastrocnemius muscle (GCM) and long head of biceps femoris muscle. Spasticity of ankle and knee joint was assessed by original Ashworth Scale. Results Ten patients with SCI had spasticity. Patients with spasticity had significantly faster SWV for GCM and biceps femoris muscle than those without spasticity (Mann-Whitney U test, p=0.007 and p=0.008) and normal control (p=0.011 and p=0.037, respectively). The SWV values of GCM correlated with the ankle spasticity (Spearman rank teat, p=0.026). There was significant correlation between the SWV values for long head of biceps femoris muscle and knee spasticity (Spearman rank teat, p=0.022). Conclusion ARFI demonstrated a difference in muscle stiffness in the GCM between patients with spastic SCI and those without spasticity. This finding suggested that stiffness of muscles increased in spastic lower extremity of early SCI patients. ARFI imaging is a valuable tool for noninvasive assessment of the stiffness of the spastic muscle and has the potential to identify pathomechanical changes of the tissue associated with SCI. PMID:26161345

  14. Basic investigation on acoustic velocity change imaging method for quantitative assessment of fat content in human liver

    NASA Astrophysics Data System (ADS)

    Mano, Kazune; Tanigawa, Shohei; Hori, Makoto; Yokota, Daiki; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2016-07-01

    Fatty liver is a disease caused by the excess accumulation of fat in the human liver. The early diagnosis of fatty liver is very important, because fatty liver is the major marker linked to metabolic syndrome. We already proposed the ultrasonic velocity change imaging method to diagnose fatty liver by using the fact that the temperature dependence of ultrasonic velocity is different in water and in fat. For the diagonosis of a fatty liver stage, we attempted a feasibility study of the quantitative assessment of the fat content in the human liver using our ultrasonic velocity change imaging method. Experimental results showed that the fat content in the tissue mimic phantom containing lard was determined by its ultrasonic velocity change in the flat temperature region formed by a circular warming ultrasonic transducer with an acoustic lens having an appropriate focal length. By considering the results of our simulation using a thermal diffusion equation, we determined whether this method could be applied to fatty liver assessment under the condition that the tissue had the thermal relaxation effect caused by blood flow.

  15. A new visible watermarking technique applied to CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Yu, Pingping; Shang, Yan; Li, Chunming

    2013-10-01

    This paper presents a new visible watermarking solution for CMOS image sensor which can enhance secure features of captured images. Visible watermarks are embedded in the Bayer format image data and can be transferred by the subsequent interpolation process. A piecewise function is setup based on the gray scale resolution characteristics of human eyes. Watermark stretch factor can be adaptively chosen according to the gray value of the current pixel. The advantage of this algorithm is that the watermark has the same visibility in different image brightness region. A number of color images have been used to test the method. In order to check the robustness of watermarked images, we conducted adding noise and filtering experiments, results show that the visibility of watermark is also good after the experiments. The approach allows a digital watermark to be embedded in an image immediately upon its capture, before leaving the imaging chip.

  16. The utility of acoustic radiation force impulse imaging in diagnosing acute appendicitis and staging its severity

    PubMed Central

    Göya, Cemil; Hamidi, Cihad; Okur, Mehmet Hanifi; İçer, Mustafa; Oğuz, Abdullah; Hattapoğlu, Salih; Çetinçakmak, Mehmet Güli; Teke, Memik

    2014-01-01

    PURPOSE The aim of this study was to investigate the feasibility of using acoustic radiation force impulse (ARFI) imaging to diagnose acute appendicitis. METHODS Abdominal ultrasonography (US) and ARFI imaging were performed in 53 patients that presented with right lower quadrant pain, and the results were compared with those obtained in 52 healthy subjects. Qualitative evaluation of the patients was conducted by Virtual Touch™ tissue imaging (VTI), while quantitative evaluation was performed by Virtual Touch™ tissue quantification (VTQ) measuring the shear wave velocity (SWV). The severity of appendix inflammation was observed and rated using ARFI imaging in patients diagnosed with acute appendicitis. Alvarado scores were determined for all patients presenting with right lower quadrant pain. All patients diagnosed with appendicitis received appendectomies. The sensitivity and specificity of ARFI imaging relative to US was determined upon confirming the diagnosis of acute appendicitis via histopathological analysis. RESULTS The Alvarado score had a sensitivity and specificity of 70.8% and 20%, respectively, in detecting acute appendicitis. Abdominal US had 83.3% sensitivity and 80% specificity, while ARFI imaging had 100% sensitivity and 98% specificity, in diagnosing acute appendicitis. The median SWV value was 1.11 m/s (range, 0.6–1.56 m/s) for healthy appendix and 3.07 m/s (range, 1.37–4.78 m/s) for acute appendicitis. CONCLUSION ARFI imaging may be useful in guiding the clinical management of acute appendicitis, by helping its diagnosis and determining the severity of appendix inflammation. PMID:25323836

  17. A method for the frequency control in time-resolved two-dimensional gigahertz surface acoustic wave imaging

    SciTech Connect

    Kaneko, Shogo; Tomoda, Motonobu; Matsuda, Osamu

    2014-01-15

    We describe an extension of the time-resolved two-dimensional gigahertz surface acoustic wave imaging based on the optical pump-probe technique with periodic light source at a fixed repetition frequency. Usually such imaging measurement may generate and detect acoustic waves with their frequencies only at or near the integer multiples of the repetition frequency. Here we propose a method which utilizes the amplitude modulation of the excitation pulse train to modify the generation frequency free from the mentioned limitation, and allows for the first time the discrimination of the resulted upper- and lower-side-band frequency components in the detection. The validity of the method is demonstrated in a simple measurement on an isotropic glass plate covered by a metal thin film to extract the dispersion curves of the surface acoustic waves.

  18. Full-Wave Iterative Image Reconstruction in Photoacoustic Tomography With Acoustically Inhomogeneous Media

    PubMed Central

    Huang, Chao; Wang, Kun; Nie, Liming; Wang, Lihong V.; Anastasio, Mark A.

    2014-01-01

    Existing approaches to image reconstruction in photoacoustic computed tomography (PACT) with acoustically heterogeneous media are limited to weakly varying media, are computationally burdensome, and/or cannot effectively mitigate the effects of measurement data incompleteness and noise. In this work, we develop and investigate a discrete imaging model for PACT that is based on the exact photoacoustic (PA) wave equation and facilitates the circumvention of these limitations. A key contribution of the work is the establishment of a procedure to implement a matched forward and backprojection operator pair associated with the discrete imaging model, which permits application of a wide-range of modern image reconstruction algorithms that can mitigate the effects of data incompleteness and noise. The forward and backprojection operators are based on the k-space pseudospectral method for computing numerical solutions to the PA wave equation in the time domain. The developed reconstruction methodology is investigated by use of both computer-simulated and experimental PACT measurement data. PMID:23529196

  19. Acoustically active liposome-nanobubble complexes for enhanced ultrasonic imaging and ultrasound-triggered drug delivery.

    PubMed

    Nguyen, An T; Wrenn, Steven P

    2014-01-01

    Ultrasound is well known as a safe, reliable imaging modality. A historical limitation of ultrasound, however, was its inability to resolve structures at length scales less than nominally 20 µm, which meant that classical ultrasound could not be used in applications such as echocardiography and angiogenesis where one requires the ability to image small blood vessels. The advent of ultrasound contrast agents, or microbubbles, removed this limitation and ushered in a new wave of enhanced ultrasound applications. In recent years, the microbubbles have been designed to achieve yet another application, namely ultrasound-triggered drug delivery. Ultrasound contrast agents are thus tantamount to 'theranostic' vehicles, meaning they can do both therapy (drug delivery) and imaging (diagnostics). The use of ultrasound contrast agents as drug delivery vehicles, however, is perhaps less than ideal when compared to traditional drug delivery vehicles (e.g., polymeric microcapsules and liposomes) which have greater drug carrying capacities. The drawback of the traditional drug delivery vehicles is that they are not naturally acoustically active and cannot be used for imaging. The notion of a theranostic vehicle is sufficiently intriguing that many attempts have been made in recent years to achieve a vehicle that combines the echogenicity of microbubbles with the drug carrying capacity of liposomes. The attempts can be classified into three categories, namely entrapping, tethering, and nesting. Of these, nesting is the newest-and perhaps the most promising. PMID:24459007

  20. Photoacoustic and ultrasound imaging with a gas-coupled laser acoustic line detector

    NASA Astrophysics Data System (ADS)

    Johnson, Jami L.; van Wijk, Kasper; Caron, James N.; Timmerman, Miriam

    2016-03-01

    Conventional contacting transducers are highly sensitive and readily available for ultrasonic and photoacoustic imaging. On the other hand, optical detection can be advantageous when a small sensor footprint, large bandwidth and no contact are essential. However, most optical methods utilizing interferometry or Doppler vibrometry rely on the reflection of light from the object. We present a non-contact detection method for photoacoustic and ultrasound imaging--termed Gas-Coupled Laser Acoustic Detection (GCLAD)--that does not involve surface reflectivity. GCLAD measures the displacement along a line in the air parallel to the object. Information about point displacements along the line is lost with this method, but resolution is increased over techniques that utilize finite point-detectors when used as an integrating line detector. In this proceeding, we present a formula for quantifying surface displacement remotely with GCLAD. We will validate this result by comparison with a commercial vibrometer. Finally, we will present two-dimensional imaging results using GCLAD as a line detector for photoacoustic and laser-ultrasound imaging.

  1. Imaging of 3D Ocean Turbulence Microstructure Using Low Frequency Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Minakov, Alexander; Kolyukhin, Dmitriy; Keers, Henk

    2015-04-01

    In the past decade the technique of imaging the ocean structure with low-frequency signal (Hz), produced by air-guns and typically employed during conventional multichannel seismic data acquisition, has emerged. The method is based on extracting and stacking the acoustic energy back-scattered by the ocean temperature and salinity micro- and meso-structure (1 - 100 meters). However, a good understanding of the link between the scattered wavefield utilized by the seismic oceanography and physical processes in the ocean is still lacking. We describe theory and the numerical implementation of a 3D time-dependent stochastic model of ocean turbulence. The velocity and temperature are simulated as homogeneous Gaussian isotropic random fields with the Kolmogorov-Obukhov energy spectrum in the inertial subrange. Numerical modeling technique is employed for sampling of realizations of random fields with a given spatial-temporal spectral tensor. The model used is shown to be representative for a wide range of scales. Using this model, we provide a framework to solve the forward and inverse acoustic scattering problem using marine seismic data. Our full-waveform inversion method is based on the ray-Born approximation which is specifically suitable for the modelling of small velocity perturbations in the ocean. This is illustrated by showing a good match between synthetic seismograms computed using ray-Born and synthetic seismograms produced with a more computationally expensive finite-difference method.

  2. Measurement of microbubble-induced acoustic microstreaming using microparticle image velocimetry

    NASA Astrophysics Data System (ADS)

    Tho, Paul; Zhu, Yonggang; Manasseh, Richard; Ooi, Andrew

    2005-02-01

    Micro particle image velocimetry (PIV) measurements of the velocity fields around oscillating gas bubbles in microfluidic geometries were undertaken. Two sets of experiments were performed. The first measured the acoustic microstreaming around a gas bubble with a radius of 195 μm attached to a wall in a chamber of 30 mm× 30 mm× 0.66 mm. Under acoustic excitation, vigorous streaming in the form of a circulation around on the bubble was observed. The streaming flow was highest near the surface of the bubble with velocities around 1mm/s measured. The velocity magnitude decreased rapidly with increasing distance from the bubble. The velocity field determined by micro-PIV matched the streaklines of the fluorescent particles very well. The second set of experiments measured the streaming at the interface between a trapped air bubble and water inside a microchannel of cross section 100 μm × 90 μm. The streaming flow was limited to within a short distance from the interface and was observed as a looping flow, moving towards the interface from the top and being circulated back from the bottom of the channel. The characteristic streaming velocity was in the order of 100 μm/s.

  3. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; Hynynen, Kullervo

    2016-01-01

    Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n  =  4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections

  4. Enhanced delivery of gold nanoparticles by acoustic cavitation for photoacoustic imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Hsin; Liao, Ai-Ho; Lin, Jia-Yu; Lee, Cheng-Ru; Wu, Cheng-Ham; Liu, Tzu-Min; Wang, Churng-Ren; Li, Pai-Chi

    2013-03-01

    Gold-nanorods incorporated with microbubbles (AuMBs) were introduced as a photoacoustic/ultrasound dual- modality contrast agent in our previous study. The application can be extended to theragnosis purpose. With the unique physical characteristics of AuMBs, we propose an enhanced delivery method for the encapsulated particles. For example, laser thermotherapy mediated by plasmonic nanoparticles can be made more effective by using microbubbles as a targeted carrier and acoustic cavitation for enhanced sonoporation. The hypothesis was experimentally tested. Firts, these AuMBs first act as molecular probes with binding to specific ligands. The improved targeting efficacy was macroscopically observed by an ultrasound system. The extended retention of targeted AuMB was observed and recorded for 30 minutes in a CT-26 tumor bearing mouse. Secondly, cavitation induced by time-varying acoustic field was also applied to disrupt the microbubbles and cause increased transient cellular permeability (a.k.a., sonoporation). Multimodal optical microscope based on a Cr:forsterite laser was used to directly observe these effects. The microscope can acquired third-harmonic generation (THG) and two-photon fluorescent (2PF) signals produced by the AuMBs. In vitro examination shows approximately a 60% improvement in terms of fluorescence signals from the cellular uptake of gold nanoparticles after sonoporation treatment. Therefore, we conclude that the controlled release is feasible and can further improve the therapeutic effects of the nanoparticles.

  5. Failure prediction in ceramic composites using acoustic emission and digital image correlation

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis; Jones, Eric; Przybyla, Craig

    2016-02-01

    The objective of the work performed here was to develop a methodology for linking in-situ detection of localized matrix cracking to the final failure location in continuous fiber reinforced CMCs. First, the initiation and growth of matrix cracking are measured and triangulated via acoustic emission (AE) detection. High amplitude events at relatively low static loads can be associated with initiation of large matrix cracks. When there is a localization of high amplitude events, a measurable effect on the strain field can be observed. Full field surface strain measurements were obtained using digital image correlation (DIC). An analysis using the combination of the AE and DIC data was able to predict the final failure location.

  6. Digital image processing of sectorial oscillations for acoustically levitated drops and surface tension measurement

    NASA Astrophysics Data System (ADS)

    Shen, Changle; Xie, Wenjun; Wei, Bingbo

    2010-12-01

    A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a digital image processing method. They are demonstrated to be the third mode sectorial oscillations, and their frequencies are found to decrease with the increase of equatorial radius of the drops, which can be described by a modified Rayleigh equation. These oscillations decay exponentially after the cessation of ultrasound field modulation. The decaying rates agree reasonably with Lamb's prediction. The rotating rate of the drops accompanying the shape oscillations is found to be less than 1.5 rounds per second. The surface tension of aqueous ethanol has been measured according to the modified Rayleigh equation. The results agree well with previous reports, which demonstrates the possible application of this kind of sectorial oscillations in noncontact measurement of liquid surface tension.

  7. Damage Detection in Plate Structures Using Sparse Ultrasonic Transducer Arrays and Acoustic Wavefield Imaging

    SciTech Connect

    Michaels, T.E.; Michaels, J.E.; Mi, B.; Ruzzene, M.

    2005-04-09

    A methodology is presented for health monitoring and subsequent inspection of critical structures. Algorithms have been developed to detect and approximately locate damaged regions by analyzing signals recorded from a permanently mounted, sparse array of transducers. Followup inspections of suspected flaw locations are performed using a dual transducer ultrasonic approach where a permanently mounted transducer is the source and an externally scanned transducer is the receiver. Scan results are presented as snapshots of the propagating ultrasonic wavefield radiating out from the attached transducers. This method, referred to here as Acoustic Wavefield Imaging (AWI), provides an excellent visual representation of the interaction of propagating ultrasonic waves with the structure. Pre-flaw and post-flaw ultrasonic waveforms are analyzed from an aluminum plate specimen with artificially induced damage, and the AWI results show the location and spatial extent of all of the defects.

  8. A Spinal Cord Window Chamber Model for In Vivo Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model

    PubMed Central

    Maeda, Azusa; Conroy, Leigh; McMullen, Jesse D.; Silver, Jason I.; Stapleton, Shawn; Vitkin, Alex; Lindsay, Patricia; Burrell, Kelly; Zadeh, Gelareh; Fehlings, Michael G.; DaCosta, Ralph S.

    2013-01-01

    In vivo and direct imaging of the murine spinal cord and its vasculature using multimodal (optical and acoustic) imaging techniques could significantly advance preclinical studies of the spinal cord. Such intrinsically high resolution and complementary imaging technologies could provide a powerful means of quantitatively monitoring changes in anatomy, structure, physiology and function of the living cord over time after traumatic injury, onset of disease, or therapeutic intervention. However, longitudinal in vivo imaging of the intact spinal cord in rodent models has been challenging, requiring repeated surgeries to expose the cord for imaging or sacrifice of animals at various time points for ex vivo tissue analysis. To address these limitations, we have developed an implantable spinal cord window chamber (SCWC) device and procedures in mice for repeated multimodal intravital microscopic imaging of the cord and its vasculature in situ. We present methodology for using our SCWC to achieve spatially co-registered optical-acoustic imaging performed serially for up to four weeks, without damaging the cord or induction of locomotor deficits in implanted animals. To demonstrate the feasibility, we used the SCWC model to study the response of the normal spinal cord vasculature to ionizing radiation over time using white light and fluorescence microscopy combined with optical coherence tomography (OCT) in vivo. In vivo power Doppler ultrasound and photoacoustics were used to directly visualize the cord and vascular structures and to measure hemoglobin oxygen saturation through the complete spinal cord, respectively. The model was also used for intravital imaging of spinal micrometastases resulting from primary brain tumor using fluorescence and bioluminescence imaging. Our SCWC model overcomes previous in vivo imaging challenges, and our data provide evidence of the broader utility of hybridized optical-acoustic imaging methods for obtaining multiparametric and rich

  9. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P Oshkai; M Geveci; D Rockwell; M Pollack

    2004-05-24

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe, which give rise to flow tones, are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  10. Improved Bat Algorithm Applied to Multilevel Image Thresholding

    PubMed Central

    2014-01-01

    Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed. PMID:25165733

  11. Improved bat algorithm applied to multilevel image thresholding.

    PubMed

    Alihodzic, Adis; Tuba, Milan

    2014-01-01

    Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed. PMID:25165733

  12. Microfiber interferometric acoustic transducers.

    PubMed

    Wang, Xiuxin; Jin, Long; Li, Jie; Ran, Yang; Guan, Bai-Ou

    2014-04-01

    Acoustic and ultrasonic transducers are key components in biomedical information technology, which has been applied in medical diagnosis, photoacoustic endoscopy and photoacoustic imaging. In this paper, an acoustic transducer based on Fabry-Perot interferometer (FPI) fabricated in a microscaled optical fiber is demonstrated. The transducer is fabricated by forming two wavelength-matched Bragg gratings into the microfiber by means of side illumination with a 193nm excimer laser. When placing the transducer in water, the applied acoustic signal periodically changes the refractive index (RI) of the surrounding liquid and modulates the transmission of the FPI based on the evanescent-field interaction between the liquid and the transmitting light. As a result, the acoustic signal can be constructed with a tunable laser whose output wavelength is located at the slope of the inteferometric fringes. The transducer presents a sensitivity of 10 times higher than the counterparts fabricated in conventional singlemode fibers and has great potential to achieve higher resolution for photoacoustic imaging due to its reduced diameter. PMID:24718189

  13. SIMULTANEOUS BILATERAL REAL-TIME 3-D TRANSCRANIAL ULTRASOUND IMAGING AT 1 MHZ THROUGH POOR ACOUSTIC WINDOWS

    PubMed Central

    Lindsey, Brooks D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2013-01-01

    Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%–29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging—the ultrasound brain helmet—and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field. PMID:23415287

  14. Image enhancement techniques applied to solar feature detection

    NASA Astrophysics Data System (ADS)

    Kowalski, Artur J.

    This dissertation presents the development of automatic image enhancement techniques for solar feature detection. The new method allows for detection and tracking of the evolution of filaments in solar images. Series of H-alpha full-disk images are taken in regular time intervals to observe the changes of the solar disk features. In each picture, the solar chromosphere filaments are identified for further evolution examination. The initial preprocessing step involves local thresholding to convert grayscale images into black-and-white pictures with chromosphere granularity enhanced. An alternative preprocessing method, based on image normalization and global thresholding is presented. The next step employs morphological closing operations with multi-directional linear structuring elements to extract elongated shapes in the image. After logical union of directional filtering results, the remaining noise is removed from the final outcome using morphological dilation and erosion with a circular structuring element. Experimental results show that the developed techniques can achieve excellent results in detecting large filaments and good detection rates for small filaments. The final chapter discusses proposed directions of the future research and applications to other areas of solar image processing, in particular to detection of solar flares, plages and sunspots.

  15. Applying image quality in cell phone cameras: lens distortion

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  16. SAW-Modulated Image Device

    NASA Technical Reports Server (NTRS)

    Benz, H. F.

    1985-01-01

    Imaging device uses surface-acoustic-wave (SAW) charge transfer for image readout. Spatial resolution of image changed electronically by changing frequency of applied signal. Surface acoustic waves create traveling longitudinal electric fields. These fields create potential wells that carry along stored charges. Charges injected into wells by photoelectric conversion when light strikes device.

  17. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  18. The problem of applying information theory to efficient image transmission.

    NASA Technical Reports Server (NTRS)

    Sakrison, D. J.

    1973-01-01

    The main ideas of Shannon's (1948, 1960) theory of source encoding with a fidelity constraint, more commonly known as rate distortion theory, are summarized. The theory was specifically intended to provide a theoretical basis for efficient transmission of information such as images. What the theory has to contribute to the problem is demonstrated. Difficulties that impeded application of the theory to image transmission, and current efforts to solve these difficulties are discussed.

  19. Analysis of soil images applying Laplacian Pyramidal techniques

    NASA Astrophysics Data System (ADS)

    Ballesteros, F.; de Castro, J.; Tarquis, A. M.; Méndez, A.

    2012-04-01

    The Laplacian pyramid is a technique for image encoding in which local operators of many scales but identical shape are the basis functions. Our work describes some properties of the filters of the Laplacian pyramid. Specially, we pay attention to Gaussian and fractal behaviour of these filters, and we determine the normal and fractal ranges in the case of single parameter filters, while studying the influence of these filters in soil image processing. One usual property of any image is that neighboring pixels are highly correlated. This property makes inefficient to represent the image directly in terms of the pixel values, because most of the encoded information would be redundant. Burt and Adelson designed a technique, named Laplacian pyramid, for removing image correlation which combines features of predictive and transform methods. This technique is non causal, and its computations are simple and local. The predicted value for each pixel is computed as a local weighted average, using a unimodal weighting function centred on the pixel itself. Pyramid construction is equivalent to convolving the original image with a set of weighting functions determined by a parameter that defines the filter. According to the parameter values, these filters have a behaviour that goes from the Gaussian shape to the fractal. Previous works only analyze Gaussian filters, but we determine the Gaussian and fractal intervals and study the energy of the Laplacian pyramid images according to the filter types. The different behaviour, qualitatively, involves a significant change in statistical characteristics at different levels of iteration, especially the fractal case, which can highlight specific information from the images. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  20. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-04-30

    Three major goals were accomplished during this phase. First, a study was completed of the effects of stress-induced changes in anisotropic elastic moduli in sandstone. Second, a new method for measuring the anisotropic poroelastic moduli from acoustic data was developed. Third, a series of triaxial experiments were conducted on unconsolidated sands to identify pressure/stress conditions where liquefaction occurs under high confining pressures. Stress-induced changes in anisotropic Young's moduli and shear moduli were observed during deformational pathway experiments. A new method was made for the acquisition of compressional and shear wave velocities along a series of 3-dimensional raypaths through a core sample as it is subjected to deformation. Three different deformational pathway experiments were conducted. During the hydrostatic deformation experiment, little or no anisotropy was observed in either the Young's moduli or shear moduli. Significant deformational anisotropies were observed in both moduli during the uniaxial strain test and the triaxial compression experiment but each had a different nature. During the triaxial experiment the axial and lateral Young's moduli and shear moduli continued to diverge as load was applied. During the uniaxial strain experiment the anisotropy was ''locked in'' early in the loading phase but then remained steady as both the confining pressure and axial stress were applied. A new method for measuring anisotropic Biot's effective stress parameters has also been developed. The method involves measuring the compressional and shear wave velocities in the aforementioned acoustic velocity experiments while varying stress paths. For a stress-induced transversely isotropic medium the acoustic velocity data are utilized to calculate the five independent elastic stiffness components. Once the elastic stiffness components are determined these can be used to calculate the anisotropic Biot's effective stress parameters, {alpha}{sub v

  1. Opto-acoustic imaging system for early breast cancer diagnostics: experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Khokhlova, Tanya D.; Zharinov, Alexei M.; Kozhushko, Viktor V.; Pelivanov, Ivan M.; Karabutov, Alexander A.

    2006-03-01

    Optoacoustic (OA) imaging is based on the generation of thermoelastic stress waves by heating an object in an optically heterogeneous medium with a short laser pulse. The stress waves contain information on the distribution of structures with enhanced optical absorption that can be used for early cancer diagnostics. This technique has already been applied in-vivo for breast cancer diagnostics and yielded higher contrast of obtained images than that of X-ray or ultrasonic images. The resolution was comparable with that yielded by ultrasonic imaging. Therefore, OA imaging is a very promising technique and it is being rapidly developed. Research in the area is now mostly targeted to the development of OA wave detection systems and image reconstruction algorithms. In this work a new design of receiving array transducer, that allows to enhance image resolution is proposed. The array consists of 64 focused piezo-elements made of PVDF slabs imposed on a spherical surface. Resolution yielded by the array in different directions is determined. Several tissue irradiation geometries and laser wavelengths are considered for optimization of the OA image contrast. Obtained results are used for maximum imaging depth studies. All the investigations include both numerical modelling and experiment.

  2. Image remapping strategies applied as protheses for the visually impaired

    NASA Technical Reports Server (NTRS)

    Johnson, Curtis D.

    1993-01-01

    Maculopathy and retinitis pigmentosa (rp) are two vision defects which render the afflicted person with impaired ability to read and recognize visual patterns. For some time there has been interest and work on the use of image remapping techniques to provide a visual aid for individuals with these impairments. The basic concept is to remap an image according to some mathematical transformation such that the image is warped around a maculopathic defect (scotoma) or within the rp foveal region of retinal sensitivity. NASA/JSC has been pursuing this research using angle invariant transformations with testing of the resulting remapping using subjects and facilities of the University of Houston, College of Optometry. Testing is facilitated by use of a hardware device, the Programmable Remapper, to provide the remapping of video images. This report presents the results of studies of alternative remapping transformations with the objective of improving subject reading rates and pattern recognition. In particular a form of conformal transformation was developed which provides for a smooth warping of an image around a scotoma. In such a case it is shown that distortion of characters and lines of characters is minimized which should lead to enhanced character recognition. In addition studies were made of alternative transformations which, although not conformal, provide for similar low character distortion remapping. A second, non-conformal transformation was studied for remapping of images to aid rp impairments. In this case a transformation was investigated which allows remapping of a vision field into a circular area representing the foveal retina region. The size and spatial representation of the image are selectable. It is shown that parametric adjustments allow for a wide variation of how a visual field is presented to the sensitive retina. This study also presents some preliminary considerations of how a prosthetic device could be implemented in a practical sense, vis

  3. Quantitative observations of a deep-sea hydrothermal plume using an acoustic imaging sonar

    NASA Astrophysics Data System (ADS)

    Xu, Guangyu

    The Cabled Observatory Vent Imaging Sonar (COVIS) is used to quantitatively monitor the hydrothermal discharge from the Grotto mound, a venting sulfide structure on the Endeavour Segment of the Juan de Fuca Ridge. Since its deployment in September 2010, COVIS has recorded a multi-year long, near-continuous acoustic backscatter dataset. Further analysis of this dataset sheds light on the backscattering mechanisms within the buoyant plumes above Grotto and yields quantitative information on the influences of oceanic, atmospheric, and geological processes on the dynamics and heat source of the plumes. An investigation of the acoustic scattering mechanisms within the buoyant plumes issuing from Grotto suggests the dominant scattering mechanism within the plumes is the temperature fluctuations caused by the turbulent mixing of the buoyant plumes with the ambient seawater. In comparison, the backscatter from plume particles is negligible at lower levels of the plume but can potentially be significant at higher levels. Furthermore, this finding demonstrates the potential of inverting the acoustic backsatter to estimate the temperature fluctuations within the plumes. Processing the backscatter dataset recorded by COVIS yields time-series measurements of the vertical flow rate, volume transport, expansion rate of the largest buoyant plume above Grotto. Further analysis of those time-series measurements suggests the rate at which the ambient seawater is entrained into the plume increases with the magnitude of the ambient ocean currents---the current-driven entrainment. Furthermore, the oscillations in the ambient ocean currents that are driven by tidal and atmospheric forcing are introduced into the flow field within the plume through the current-driven entrainment. An inverse method has been developed to estimate the source heat transport driving the largest plume above Grotto from its volume transport estimates. The result suggests the heat transport driving the plume was

  4. Differentiation applied to lossless compression of medical images.

    PubMed

    Nijim, Y W; Stearns, S D; Mikhael, W B

    1996-01-01

    Lossless compression of medical images using a proposed differentiation technique is explored. This scheme is based on computing weighted differences between neighboring pixel values. The performance of the proposed approach, for the lossless compression of magnetic resonance (MR) images and ultrasonic images, is evaluated and compared with the lossless linear predictor and the lossless Joint Photographic Experts Group (JPEG) standard. The residue sequence of these techniques is coded using arithmetic coding. The proposed scheme yields compression measures, in terms of bits per pixel, that are comparable with or lower than those obtained using the linear predictor and the lossless JPEG standard, respectively, with 8-b medical images. The advantages of the differentiation technique presented here over the linear predictor are: 1) the coefficients of the differentiator are known by the encoder and the decoder, which eliminates the need to compute or encode these coefficients, and 21 the computational complexity is greatly reduced. These advantages are particularly attractive in real time processing for compressing and decompressing medical images. PMID:18215936

  5. A Compressive Multi-Frequency Linear Sampling Method for Underwater Acoustic Imaging.

    PubMed

    Alqadah, Hatim F

    2016-06-01

    This paper investigates the use of a qualitative inverse scattering method known as the linear sampling method (LSM) for imaging underwater scenes using limited aperture receiver configurations. The LSM is based on solving a set of unstable integral equations known as the far-field equations and whose stability breaks down even further for under-sampled observation aperture data. Based on the results of a recent study concerning multi-frequency LSM imaging, we propose an iterative inversion method that is founded upon a compressive sensing framework. In particular, we leverage multi-frequency diversity in the data by imposing a partial frequency variation prior on the solution which we show is justified when the frequency bandwidth is sampled finely enough. We formulate an alternating direction method of multiplier approach to minimize the proposed cost function. Proof of concept is established through numerically generated data as well as experimental acoustic measurements taken in a shallow pool facility at the U.S Naval Research Laboratory. PMID:27093719

  6. Personal Computer (PC) based image processing applied to fluid mechanics

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.; Mclachlan, B. G.

    1987-01-01

    A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.

  7. Medical workstations for applied imaging and graphics research.

    PubMed

    Ehricke, H H; Grunert, T; Buck, T; Kolb, R; Skalej, M

    1994-01-01

    We present a medical workstation for the efficient implementation of research ideas related to image processing and computer graphics. Based on standard hardware platforms the software system encompasses two major components: A turnkey application system provides a functionally kernel for a broad community of clinical users working with digital imaging devices, including methods of noise suppression, interactive and automatic segmentation, 3D surface reconstruction and multi-modal registration. A development toolbox allows new algorithms and applications to be efficiently implemented and consistently integrated with the common framework of the turnkey system. The platform is based on an elaborate object class structure describing objects for image processing, computer graphics, study handling and user interface control. Thus expertise of computer scientists familiar with this application domain is brought into the hospital and can be readily used by clinical researchers. PMID:7850734

  8. Inferences of Particle Size and Composition From Video-like Images Based on Acoustic Data: Grotto Plume, Main Endeavor Field

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Rona, P. A.; Santilli, K.; Dastur, J.; Silver, D.

    2004-12-01

    Optical and acoustic scattering from particles in a seafloor hydrothermal plume can be related if the particle properties and scattering mechanisms are known. We assume Rayleigh backscattering of sound and Mie forward scattering of light. We then use the particle concentrations implicit in the observed acoustic backscatter intensity to recreate the optical image a camera would see given a particular lighting level. The motivation for this study is to discover what information on particle size and composition in the buoyant plume can be inferred from a comparison of the calculated optical images (based on acoustic data) with actual video images from the acoustic acquisition cruise and the IMAX film "Volcanoes of the Deep Sea" (Stephen Low Productions, Inc.). Because the geologists, biologists and oceanographers involved in the study of seafloor hydrothermal plumes all "see" plumes in different ways, an additional motivation is to create more realistic plume images from the acoustic data. By using visualization techniques, with realistic lighting models, we can convert the plume image from mechanical waves (sound) to electromagnetic waves (light). The resulting image depends on assumptions about the particle size distribution and composition. Conversion of the volume scattering coefficients from Rayleigh to Mie scattering is accomplished by an extinction scale factor that depends on the wavelengths of light and sound and on the average particle size. We also make an adjustment to the scattered light based on the particles reflectivity (albedo) and color. We present a series of images of acoustic data for Grotto Plume, Main Endeavour Field (within the Endeavour ISS Site) using both realistic lighting models and traditional visualization techniques to investigate the dependence of the images on assumptions about particle composition and size. Sensitivity analysis suggests that the visibility of the buoyant plume increases as the intensity of supplied light increases

  9. In vivo study of transverse carpal ligament stiffness using acoustic radiation force impulse (ARFI) imaging.

    PubMed

    Shen, Zhilei Liu; Vince, D Geoffrey; Li, Zong-Ming

    2013-01-01

    The transverse carpal ligament (TCL) forms the volar boundary of the carpal tunnel and may provide mechanical constraint to the median nerve, leading to carpal tunnel syndrome. Therefore, the mechanical properties of the TCL are essential to better understand the etiology of carpal tunnel syndrome. The purpose of this study was to investigate the in vivo TCL stiffness using acoustic radiation force impulse (ARFI) imaging. The shear wave velocity (SWV) of the TCL was measured using Virtual Touch IQ(TM) software in 15 healthy, male subjects. The skin and the thenar muscles were also examined as reference tissues. In addition, the effects of measurement location and ultrasound transducer compression on the SWV were studied. The SWV of the TCL was dependent on the tissue location, with greater SWV values within the muscle-attached region than those outside of the muscle-attached region. The SWV of the TCL was significantly smaller without compression (5.21 ± 1.08 m/s) than with compression (6.62 ± 1.18 m/s). The SWV measurements of the skin and the thenar muscles were also affected by transducer compression, but to different extents than the SWV of the TCL. Therefore to standardize the ARFI imaging procedure, it is recommended that a layer of ultrasound gel be maintained to minimize the effects of tissue compression. This study demonstrated the feasibility of ARFI imaging for assessing the stiffness characteristics of the TCL in vivo, which has the potential to identify pathomechanical changes of the tissue. PMID:23861919

  10. The performance of acoustic radiation force impulse imaging in predicting liver fibrosis in chronic liver diseases.

    PubMed

    Lin, Yi-Hung; Yeh, Ming-Lun; Huang, Ching-I; Yang, Jeng-Fu; Liang, Po-Cheng; Huang, Chung-Feng; Dai, Chia-Yen; Lin, Zu-Yau; Chen, Shinn-Cherng; Huang, Jee-Fu; Yu, Ming-Lung; Chuang, Wan-Long

    2016-07-01

    Sonography-based noninvasive liver fibrosis assessment is promising in the prediction of treatment efficacy and prognosis in chronic liver disease (CLD) patients. Acoustic radiation force impulse imaging (ARFI) is a newly-developed transient elastography (TE) method integrated into a conventional ultrasound machine. The study aimed to assess the performance of ARFI imaging in the diagnosis of liver fibrosis in Taiwanese CLD patients. We also aimed to search for the optimal cut-off values in different fibrosis stages. A total of 60 CLD patients (40 males; mean age, 51.8±11 years) were consecutively included. They received standard ARFI measurement within 2 weeks at the time of liver biopsy. There were eight patients with Metavir fibrosis stage 0 (F0), 16 patients with F1, 20 patients with F2, eight patients with F3, and eight patients with F4, respectively. The mean values among patient with F0, F1, F2, F3, and F4 were 1.17±0.13, 1.30±0.17, 1.31±0.24, 2.01±0.45, and 2.69±0.91, respectively (p<0.001). The optimal cut-off ARFI value for significant fibrosis (F≥2) was 1.53 with the accuracy of 0.733, while it was 1.66 for advanced fibrosis (F≥3) with the accuracy of 0.957. Our study demonstrated that ARFI imaging is competent for fibrosis diagnosis, particularly in CLD patients with advanced fibrosis. PMID:27450025

  11. Fast image processing with a microcomputer applied to speckle photography

    NASA Astrophysics Data System (ADS)

    Erbeck, R.

    1985-11-01

    An automated image recognition system is described for speckle photography investigations in fluid dynamics. The system is employed for characterizing the pattern of interference fringes obtained using speckle interferometry. A rotating ground glass serves as a screen on which laser light passing through a specklegraph plate, the flow and a compensation plate (CP) is shone to produce a compensated Young's pattern. The image produced on the ground glass is photographed by a video camera whose signal is digitized and processed through a microcomputer using a 6502 CPU chip. The normalized correlation function of the intensity is calculated in two directions of the recorded pattern to obtain the wavelength and the light deflection angle. The system has a capability of one picture every two seconds. Sample data are provided for a free jet of CO2 issuing into air in both laminar and turbulent form.

  12. LANDSAT image studies as applied to petroleum exploration in Kenya

    NASA Technical Reports Server (NTRS)

    Miller, J. B.

    1975-01-01

    The Chevron-Kenya oil license, acquired in 1972, covers an area at the north end of the Lamu Embayment. Immediately after acquisition, a photogeologic study of the area was made followed by a short field inspection. An interpretation of LANDSAT-1 images as a separate attempt to improve geological knowledge was completed. The method used in the image study, the multispectral characteristics of rock units and terrain, and the observed anomalous features as seen in the LANDSAT imagery are described. It was found that the study helped to define the relationship of the Lamu Embayment and its internal structure with surrounding regional features, such as the East Africa rifting, the Rudolf Trough, the Bur Acaba structural ridge, and the Ogaden Basin.

  13. Scanning tomographic particle image velocimetry applied to a turbulent jet

    NASA Astrophysics Data System (ADS)

    Casey, T. A.; Sakakibara, J.; Thoroddsen, S. T.

    2013-02-01

    We introduce a modified tomographic PIV technique using four high-speed video cameras and a scanning pulsed laser-volume. By rapidly illuminating adjacent subvolumes onto separate video frames, we can resolve a larger total volume of velocity vectors, while retaining good spatial resolution. We demonstrate this technique by performing time-resolved measurements of the turbulent structure of a round jet, using up to 9 adjacent volume slices. In essence this technique resolves more velocity planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise image planes, showing time-resolved evolution of the large-scale vortical structures for a turbulent jet of Re up to 10 000.

  14. Applying galactic archeology to massive galaxies using deep imaging surveys

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain

    2015-04-01

    Various programs aimed at exploring the still largely unknown low surface brightness Universe with deep imaging optical surveys have recently started. They open a new window for studies of galaxy evolution, pushing the technique of galactic archeology outside the Local Group (LG). The method, based on the detection and analysis of the diffuse light emitted by collisional debris or extended stellar halos (rather than on stellar counts as done for LG systems), faces however a number of technical difficulties, like the contamination of the images by reflection halos and Galactic cirrus. I review here the on-going efforts to address them and highlight the preliminary promising results obtained with a systematic survey with MegaCam on the CFHT of nearby massive early-type galaxies done as part of the ATLAS3D, NGVS and MATLAS collaborations.

  15. Applying a PC accelerator board for medical imaging.

    PubMed

    Gray, J; Grenzow, F; Siedband, M

    1990-01-01

    An AT-compatible computer was used to expand X-ray images that had been compressed and stored on optical data cards. Initially, execution time for expansion of a single X-ray image was 25 min. The requirements were for an expansion time of under 10 s and costs of under $1000 for computing hardware. This meant a computational speed increase of over 150 times was needed. Tests showed that incorporating an 80287 coprocessor would only give a speed increase of five times. The DSP32-PC-160 floating-point accelerator board was selected as a cost-effective solution to the need for more computing power. This board provided adequate processor speed, onboard memory, and data bus width; floating-point math precision; and a high-level language compiler for code development. PMID:18238350

  16. Content-based image retrieval applied to bone age assessment

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Brosig, André; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.

    2010-03-01

    Radiological bone age assessment is based on local image regions of interest (ROI), such as the epiphysis or the area of carpal bones. These are compared to a standardized reference and scores determining the skeletal maturity are calculated. For computer-aided diagnosis, automatic ROI extraction and analysis is done so far mainly by heuristic approaches. Due to high variations in the imaged biological material and differences in age, gender and ethnic origin, automatic analysis is difficult and frequently requires manual interactions. On the contrary, epiphyseal regions (eROIs) can be compared to previous cases with known age by content-based image retrieval (CBIR). This requires a sufficient number of cases with reliable positioning of the eROI centers. In this first approach to bone age assessment by CBIR, we conduct leaving-oneout experiments on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the USC hand atlas. The similarity of the eROIs is assessed by cross-correlation of 16x16 scaled eROIs. The effects of the number of eROIs, two age computation methods as well as the number of considered CBIR references are analyzed. The best results yield an error rate of 1.16 years and a standard deviation of 0.85 years. As the appearance of the hand varies naturally by up to two years, these results clearly demonstrate the applicability of the CBIR approach for bone age estimation.

  17. Statistical methods for texture analysis applied to agronomical images

    NASA Astrophysics Data System (ADS)

    Cointault, F.; Journaux, L.; Gouton, P.

    2008-02-01

    For activities of agronomical research institute, the land experimentations are essential and provide relevant information on crops such as disease rate, yield components, weed rate... Generally accurate, they are manually done and present numerous drawbacks, such as penibility, notably for wheat ear counting. In this case, the use of color and/or texture image processing to estimate the number of ears per square metre can be an improvement. Then, different image segmentation techniques based on feature extraction have been tested using textural information with first and higher order statistical methods. The Run Length method gives the best results closed to manual countings with an average error of 3%. Nevertheless, a fine justification of hypothesis made on the values of the classification and description parameters is necessary, especially for the number of classes and the size of analysis windows, through the estimation of a cluster validity index. The first results show that the mean number of classes in wheat image is of 11, which proves that our choice of 3 is not well adapted. To complete these results, we are currently analysing each of the class previously extracted to gather together all the classes characterizing the ears.

  18. High resolution imaging beyond the acoustic diffraction limit in deep tissue via ultrasound-switchable NIR fluorescence

    NASA Astrophysics Data System (ADS)

    Pei, Yanbo; Wei, Ming-Yuan; Cheng, Bingbing; Liu, Yuan; Xie, Zhiwei; Nguyen, Kytai; Yuan, Baohong

    2014-04-01

    Fluorescence imaging in deep tissue with high spatial resolution is highly desirable because it can provide details about tissue's structural, functional, and molecular information. Unfortunately, current fluorescence imaging techniques are limited either in penetration depth (microscopy) or spatial resolution (diffuse light based imaging) as a result of strong light scattering in deep tissue. To overcome this limitation, we developed an ultrasound-switchable fluorescence (USF) imaging technique whereby ultrasound was used to switch on/off the emission of near infrared (NIR) fluorophores. We synthesized and characterized unique NIR USF contrast agents. The excellent switching properties of these agents, combined with the sensitive USF imaging system developed in this study, enabled us to image fluorescent targets in deep tissue with spatial resolution beyond the acoustic diffraction limit.

  19. Advanced imaging microscope tools applied to microgravity research investigations

    NASA Astrophysics Data System (ADS)

    Peterson, L.; Samson, J.; Conrad, D.; Clark, K.

    1998-01-01

    The inability to observe and interact with experiments on orbit has been an impediment for both basic research and commercial ventures using the shuttle. In order to open the frontiers of space, the Center for Microgravity Automation Technology has developed a unique and innovative system for conducting experiments at a distance, the ``Remote Scientist.'' The Remote Scientist extends laboratory automation capability to the microgravity environment. While the Remote Scientist conceptually encompasses a broad spectrum of elements and functionalities, the development approach taken is to: • establish a baseline capability that is both flexible and versatile • incrementally augment the baseline with additional functions over time. Since last year, the application of the Remote Scientist has changed from protein crystal growth to tissue culture, specifically, the development of skeletal muscle under varying levels of tension. This system includes a series of bioreactor chambers that allow for three-dimensional growth of muscle tissue on a membrane suspended between the two ends of a programmable force transducer that can provide automated or investigator-initiated tension on the developing tissue. A microscope objective mounted on a translation carriage allows for high-resolution microscopy along a large area of the tissue. These images will be mosaiced on orbit to detect features and structures that span multiple images. The use of fluorescence and pseudo-confocal microscopy will maximize the observational capabilities of this system. A series of ground-based experiments have been performed to validate the bioreactor, the force transducer, the translation carriage and the image acquisition capabilities of the Remote Scientist. • The bioreactor is capable of sustaining three dimensional tissue culture growth over time. • The force transducer can be programmed to provide static tension on cells or to simulate either slow or fast growth of underlying tissues in

  20. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    NASA Astrophysics Data System (ADS)

    Cassiède, M.; Shaw, J. M.

    2015-04-01

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [-35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  1. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    SciTech Connect

    Cassiède, M.; Shaw, J. M.

    2015-04-15

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  2. Decision theory applied to image quality control in radiology

    PubMed Central

    Lessa, Patrícia S; Caous, Cristofer A; Arantes, Paula R; Amaro, Edson; de Souza, Fernando M Campello

    2008-01-01

    Background The present work aims at the application of the decision theory to radiological image quality control (QC) in diagnostic routine. The main problem addressed in the framework of decision theory is to accept or reject a film lot of a radiology service. The probability of each decision of a determined set of variables was obtained from the selected films. Methods Based on a radiology service routine a decision probability function was determined for each considered group of combination characteristics. These characteristics were related to the film quality control. These parameters were also framed in a set of 8 possibilities, resulting in 256 possible decision rules. In order to determine a general utility application function to access the decision risk, we have used a simple unique parameter called r. The payoffs chosen were: diagnostic's result (correct/incorrect), cost (high/low), and patient satisfaction (yes/no) resulting in eight possible combinations. Results Depending on the value of r, more or less risk will occur related to the decision-making. The utility function was evaluated in order to determine the probability of a decision. The decision was made with patients or administrators' opinions from a radiology service center. Conclusion The model is a formal quantitative approach to make a decision related to the medical imaging quality, providing an instrument to discriminate what is really necessary to accept or reject a film or a film lot. The method presented herein can help to access the risk level of an incorrect radiological diagnosis decision. PMID:19014545

  3. Pulmonary imaging after stereotactic radiotherapy-does RECIST still apply?

    PubMed

    Mattonen, Sarah A; Ward, Aaron D; Palma, David A

    2016-09-01

    The use of stereotactic ablative radiotherapy (SABR) for the treatment of primary lung cancer and metastatic disease is rapidly increasing. However, the presence of benign fibrotic changes on CT imaging makes response assessment following SABR a challenge, as these changes develop with an appearance similar to tumour recurrence. Misclassification of benign fibrosis as local recurrence has resulted in unnecessary interventions, including biopsy and surgical resection. Response evaluation criteria in solid tumours (RECIST) are widely used as a universal set of guidelines to assess tumour response following treatment. However, in the context of non-spherical and irregular post-SABR fibrotic changes, the RECIST criteria can have several limitations. Positron emission tomography can also play a role in response assessment following SABR; however, false-positive results in regions of inflammatory lung post-SABR can be a major clinical issue and optimal standardized uptake values to distinguish fibrosis and recurrence have not been determined. Although validated CT high-risk features show a high sensitivity and specificity for predicting recurrence, most recurrences are not detected until more than 1-year post-treatment. Advanced quantitative radiomic analysis on CT imaging has demonstrated promise in distinguishing benign fibrotic changes from local recurrence at earlier time points, and more accurately, than physician assessment. Overall, the use of RECIST alone may prove inferior to novel metrics of assessing response. PMID:27245137

  4. Testicular microlithiasis and preliminary experience of acoustic radiation force impulse imaging

    PubMed Central

    Osther, Palle Jørn Sloth; Rafaelsen, Søren Rafael

    2016-01-01

    Background Elastography of the testis can be used as a part of multiparametric examination of the scrotum. Purpose To determine the testicular stiffness using acoustic radiation force impulse imaging (ARFI) technique in men with testicular microlithiasis (TML). Material and Methods In 2013, 12 patients with diagnosed testicular microlithiasis in 2008 (mean age, 51 years; age range, 25–76 years) underwent a 5-year follow-up B-mode ultrasonography with three ARFI elastography measurements of each testis. We used a Siemens Acuson S3000 machine. Results No malignancy was found at the 5-year follow-up B-mode and elastography in 2013. However, we found an increase in TML; in the previous ultrasonography in 2008, eight men had bilateral TML, whereas in 2013, 10 men were diagnosed with bilateral TML. The mean elasticity of testicles with TML was 0.82 m/s (interquartile range [IQR], 0.72–0.88 m/s; range, 65–1.08 m/s). Conclusion Elastography velocity of testis with TML seems to be in the same velocity range as in men with normal testis tissue. PMID:27504193

  5. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.

    PubMed

    Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2012-10-01

    The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit. PMID:23039546

  6. Optimization of real-time acoustical and mechanical monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for high focused ultrasound (HMIFU).

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2013-01-01

    Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95. PMID:24111176

  7. Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms.

    PubMed

    Marbjerg, Gerd; Brunskog, Jonas; Jeong, Cheol-Ho; Nilsson, Erling

    2015-09-01

    A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse reflections with complex-valued and angle-dependent boundary conditions. This paper mainly describes the combination of the two models and the implementation of the angle-dependent boundary conditions. It furthermore describes how a pressure impulse response is obtained from the energy-based acoustical radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber ceiling. Results from the full model are compared with results from other simulation tools and with measurements. The comparisons of the full model are done for real-valued and angle-independent surface properties. The proposed model agrees well with both the measured results and the alternative theories, and furthermore shows a more realistic spatial variation than energy-based methods due to the fact that interference is considered. PMID:26428783

  8. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool

    NASA Astrophysics Data System (ADS)

    Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong

    2016-06-01

    The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.

  9. Study of consolidating materials applied on wood by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Bonifazi, G.; Serranti, S.; Capobianco, G.; Agresti, G.; Calienno, L.; Picchio, R.; Lo Monaco, A.; Santamaria, U.; Pelosi, C.

    2016-05-01

    The focus of this study was addressed to investigate the potentiality of HyperSpectral Imaging (HSI) in the monitoring of commercial consolidant products applied on wood samples. Poplar (Populus Sp.) and walnut (Juglans Regia L.) were chosen for the consolidant application. Both traditional and innovative products were selected, based on acrylic, epoxy and aliphatic compounds. Wood samples were stresses by freeze/thaw cycles in order to cause material degradation. Then the consolidants were applied under vacuum. The samples were finally artificially aged for 168 hours in a solar box chamber. The samples were acquired in the SWIR (1000-2500 nm) range by SISUChema XL™ device (Specim, Finland) after 168 hours of irradiation. As comparison, color measurement was also used as economic, simple and noninvasive technique to evaluate the deterioration and consolidation effects on wood. All data were then processed adopting a chemometric approach finalized to define correlation models, HSI based, between consolidating materials, wood species and short time ageing effects.

  10. A simulation technique for 3D MR-guided acoustic radiation force imaging

    PubMed Central

    Payne, Allison; de Bever, Josh; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  11. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  12. Single- and Multiple- Track Location Shear Wave and Acoustic Radiation Force Impulse Imaging: Matched Comparison of Contrast, CNR, and Resolution

    PubMed Central

    Hollender, Peter J.; Rosenzweig, Stephen J.; Nightingale, Kathryn R.; Trahey, Gregg E.

    2014-01-01

    Acoustic radiation force impulse (ARFI) imaging and shear wave elasticity imaging (SWEI) use the dynamic response of tissue to impulsive mechanical stimulus to characterize local elasticity. A variant of conventional, multiple track location SWEI (MTL-SWEI), denoted single track location SWEI (STL-SWEI) offers the promise of creating speckle-free shear wave images. This work compares the three imaging modalities using a high push and track beam density combined acquisition sequence to image inclusions of different sizes and contrasts. STL-SWEI is shown to have significantly higher CNR than MTL-SWEI, allowing for operation at higher resolution. ARFI and STL-SWEI perform similarly in the larger inclusions, with STL-SWEI providing better visualization of small targets ≤2.5 mm in diameter. The processing of each modality introduces different trade-offs between smoothness and resolution of edges and structures; these are discussed in detail. PMID:25701531

  13. Experimental verification of the asymtotic modal analysis method as applied to a rectangular acoustic cavity excited by structural vibration

    NASA Technical Reports Server (NTRS)

    Peretti, L. F.; Dowell, E. H.

    1992-01-01

    An experiment was performed on a rigid wall rectangular acoustic cavity driven by a flexible plate mounted in a quarter of one end wall and excited by white noise. The experiment was designed so that the assumptions of Asymptotic Modal Analysis (AMA) were satisfied for certain bandwidths and center frequencies. Measurements of sound pressure levels at points along the boundaries and incrementally into tbe interior were taken. These were compared with the theoretical results predicted with AMA, and found to be in good agreement, particularly for moderate (1/3 octave) bandwidths and sufficiently high center frequencies. Sound pressure level measurements were also taken well into the cavity interior at various points along the 5 totally rigid walls. The AMA theory, including boundary intensification effects, was shown to be accurate provided the assumption of large number of acoustic modes is satisfied, and variables such as power spectra of the wall acceleration, frequency, and damping are slowly varying in the frequency of bandwidth.

  14. Quantitative phase imaging applied to laser damage detection and analysis.

    PubMed

    Douti, Dam-Bé L; Chrayteh, Mhamad; Aknoun, Sherazade; Doualle, Thomas; Hecquet, Christophe; Monneret, Serge; Gallais, Laurent

    2015-10-01

    We investigate phase imaging as a measurement method for laser damage detection and analysis of laser-induced modification of optical materials. Experiments have been conducted with a wavefront sensor based on lateral shearing interferometry associated with a high-magnification optical microscope. The system has been used for the in-line observation of optical thin films and bulk samples, laser irradiated in two different conditions: 500 fs pulses at 343 and 1030 nm, and millisecond to second irradiation with a CO2 laser at 10.6 μm. We investigate the measurement of the laser-induced damage threshold of optical material by detection and phase changes and show that the technique realizes high sensitivity with different optical path measurements lower than 1 nm. Additionally, the quantitative information on the refractive index or surface modification of the samples under test that is provided by the system has been compared to classical metrology instruments used for laser damage or laser ablation characterization (an atomic force microscope, a differential interference contrast microscope, and an optical surface profiler). An accurate in-line measurement of the morphology of laser-ablated sites, from few nanometers to hundred microns in depth, is shown. PMID:26479612

  15. Fuzzy clustering of infrared images applied in air leak localization

    NASA Astrophysics Data System (ADS)

    Ge, Nan; Peng, Guang-zheng; Jiang, Mu-zhou

    2009-07-01

    Most current research into the localization of leaks is focused on leaks of petroleum and natural gas pipelines, while there is very little new work being done on the leakage of vessels. A novel air-leak diagnosis and localization method based on infrared thermography is described in this paper, which is developed in an attempt to overcome the disadvantages of low efficiency and poor anti-jamming ability associated with the traditional approaches to localization of leaks from a vessel. The method achieves leak positioning through a factor θ based kernelized fuzzy clustering segmentation done to weighted differential thermal images of the test objects. The temperature difference factor θ is inventively built as a parameter changed with temperature range of the target region, in order to enhance the robustness and the interference proof ability of the algorithm. Heat transfer simulation with air-leak flow is addressed by the finite element analysis. The experimental results indicate that the method proposed is effective and sensitive. The purpose of air-leak localization has been reached.

  16. Hyperspectral imaging based procedures applied to bottom ash characterization

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia

    2007-09-01

    Bottom ash from Municipal Solid Waste Incinerators (MSWIs) is mainly land filled or used as material for the foundation of road in European countries. Bottom ash is usually first crushed to below 40 mm and separated magnetically to recover the steel scrap. The remaining material contains predominantly sand, sinters and pieces of stone, glass and ceramics, which could be used as building material if strict technical and environmental requirements are respected. The main problem is the presence of residual organic matter in the ash and the large surface area presented by the fine fraction that creates leaching values, for elements such as copper, that are above the accepted levels for standard building materials. Main aim of the study was to evaluate the possibility offered by hyperspectral imaging to identify organic matter inside the residues in order to develop control/selection strategies to be implemented inside the bottom ash recycling plant. Reflectance spectra of selected bottom ash samples have been acquired in the VIS-NIR field (400- 1000 nm). Results showed as the organic content of the different samples influences the spectral signatures, in particular an inverse correlation between reflectance level and organic matter content was found.

  17. Remote Imaging Applied to Schistosomiasis Control: The Anning River Project

    NASA Technical Reports Server (NTRS)

    Seto, Edmund Y. W.; Maszle, Don R.; Spear, Robert C.; Gong, Peng

    1997-01-01

    The use of satellite imaging to remotely detect areas of high risk for transmission of infectious disease is an appealing prospect for large-scale monitoring of these diseases. The detection of large-scale environmental determinants of disease risk, often called landscape epidemiology, has been motivated by several authors (Pavlovsky 1966; Meade et al. 1988). The basic notion is that large-scale factors such as population density, air temperature, hydrological conditions, soil type, and vegetation can determine in a coarse fashion the local conditions contributing to disease vector abundance and human contact with disease agents. These large-scale factors can often be remotely detected by sensors or cameras mounted on satellite or aircraft platforms and can thus be used in a predictive model to mark high risk areas of transmission and to target control or monitoring efforts. A review of satellite technologies for this purpose was recently presented by Washino and Wood (1994) and Hay (1997) and Hay et al. (1997).

  18. Two-dimensional null subspace algorithm applied for blind optical images deconvolution

    NASA Astrophysics Data System (ADS)

    Berezovskiy, Andrey; Goriachkin, Oleg

    2016-03-01

    The article deals with the image blind identification algorithm applied for optical images restoration. The proposed solution is based on the polynomial transform of the signals and allows to reduce multichannel blind image identification to the linear equation solving with the number of equations, equal to the number of the unknown PSF samples. The outcome of the simulation for different SNR is examined during the simulation; the real images, restored by the proposed algorithm are shown.

  19. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  20. Innovative acoustic reflection imaging techniques and application to clinical breast tomography

    NASA Astrophysics Data System (ADS)

    Schmidt, Steve P.

    Conventional ultrasound techniques use beam-formed, constant sound speed ray models for fast image reconstruction. However, these techniques are inadequate for the emerging new field of ultrasound tomography (UST). We present a new technique for reconstruction of reflection images from UST data. We have extended the planar Kirchhoff migration method used in geophysics, and combined it with sound speed and attenuation data obtained from the transmission signals to create reflection ultrasound images that are corrected for refractive and attenuative effects. The resulting techniques were applied to simulated numerical phantom data, physical phantom data and in-vivo breast data obtained with an experimental ring transducer prototype. Additionally, the ring transducer was customized to test compatibility with an existing ultrasound workstation. We were able to obtain independently recorded radio-frequency (RF) data for individual transmit-receive pair combinations for all 128 transducers. The signal data was then successfully reconstructed into reflection data using the Kirchhoff migration techniques. The results from the use of sound speed and attenuation corrections lead to significant improvements in image quality, particularly in dense tissues where the refractive and scattering effects are the greatest. The procedure was applied to a variety of breast densities and masses of different natures. The resulting reflection images successfully resolved boundaries and textures. The reflection characteristics of tomographic ultrasound maintain an indispensible position in the quantification of proper mass identification. The results of this project indicate the clinical significance of the invocation of properly compensated Kirchhoff based reconstruction method with the use of sound speed and attenuation parameters for the visualization and classification of masses and tissue.

  1. Effectiveness of imaging seismic attenuation using visco-acoustic full waveform tomography: Examples from the Seattle Fault Zone and Northern Perth Basin

    NASA Astrophysics Data System (ADS)

    Takam Takougang, E.; Calvert, A. J.

    2012-12-01

    Attenuation characterizes the decrease in amplitude of seismic waves as they propagate away from the source. A seismic wave propagating in the subsurface will suffer from two types of attenuation: Intrinsic attenuation and scattering attenuation. Scattering attenuation is due to small scale heterogeneity in the subsurface, whereas intrinsic attenuation arises from inelastic rock properties. Intrinsic attenuation can provide key information about the subsurface, which can be of value to the mining as well as the oil and gas industry. However, accurate imaging of intrinsic seismic attenuation using visco-acoustic full-waveform tomography is not straight forward. Attenuation models recovered by visco-acoustic waveform tomography are often contain contaminated by scattering effects as well as elastic mode conversion artefacts due to the inability of the visco-acoustic approximation to perfectly predict the amplitude of visco-elastic field data. The effect of scattering can be reduced if a velocity model with a high resolution is used. This usually necessitates a two-step inversion approach consisting of first recovering the velocity model and later, the attenuation model. In this study, we present a specific preconditioning of the data based on matching the amplitude variation with offset (AVO) of the field and modelled visco-acoustic data, and a specific inversion approach based on a sequential recovering of the seismic velocity and attenuation models using the visco-acoustic approximation. Our purpose is to improve the quality of the recovered attenuation model by decoupling the reconstruction of velocity and attenuation, thus reducing artefacts. We apply the method to two different areas: The Seattle Fault Zone in Puget Sound in the northwestern USA, using marine seismic reflection data from the Seismic Hazards investigation in Puget Sound (SHIPS) survey collected in 1998, and the Allanooka area within the Northern Perth Basin using high resolution seismic

  2. Elasticity imaging of speckle-free tissue regions with moving acoustic radiation force and phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng; Wang, Ruikang; O'Donnell, Matthew

    2016-03-01

    Phase-sensitive optical coherence tomography (PhS-OCT) can be utilized for quantitative shear-wave elastography using speckle tracking. However, current approaches cannot directly reconstruct elastic properties in speckle-less or speckle-free regions, for example within the crystalline lens in ophthalmology. Investigating the elasticity of the crystalline lens could improve understanding and help manage presbyopia-related pathologies that change biomechanical properties. We propose to reconstruct the elastic properties in speckle-less regions by sequentially launching shear waves with moving acoustic radiation force (mARF), and then detecting the displacement at a specific speckle-generating position, or limited set of positions, with PhS-OCT. A linear ultrasound array (with a center frequency of 5 MHz) interfaced with a programmable imaging system was designed to launch shear waves by mARF. Acoustic sources were electronically translated to launch shear waves at laterally shifted positions, where displacements were detected by speckle tracking images produced by PhS-OCT operating in M-B mode with a 125-kHz A-line rate. Local displacements were calculated and stitched together sequentially based on the distance between the acoustic source and the detection beam. Shear wave speed, and the associated elasticity map, were then reconstructed based on a time-of-flight algorithm. In this study, moving-source shear wave elasticity imaging (SWEI) can highlight a stiff inclusion within an otherwise homogeneous phantom but with a CNR increased by 3.15 dB compared to a similar image reconstructed with moving-detector SWEI. Partial speckle-free phantoms were also investigated to demonstrate that the moving-source sequence could reconstruct the elastic properties of speckle-free regions. Results show that harder inclusions within the speckle-free region can be detected, suggesting that this imaging method may be able to detect the elastic properties of the crystalline lens.

  3. Acoustic radiation force impulse imaging for assessing liver fibrosis in alcoholic liver disease

    PubMed Central

    Kiani, Anita; Brun, Vanessa; Lainé, Fabrice; Turlin, Bruno; Morcet, Jeff; Michalak, Sophie; Le Gruyer, Antonia; Legros, Ludivine; Bardou-Jacquet, Edouard; Gandon, Yves; Moirand, Romain

    2016-01-01

    AIM: To evaluate the performance of elastography by ultrasound with acoustic radiation force impulse (ARFI) in determining fibrosis stage in patients with alcoholic liver disease (ALD) undergoing alcoholic detoxification in relation to biopsy. METHODS: Eighty-three patients with ALD undergoing detoxification were prospectively enrolled. Each patient underwent ARFI imaging and a liver biopsy on the same day. Fibrosis was staged according to the METAVIR scoring system. The median of 10 valid ARFI measurements was calculated for each patient. RESULTS: Sixty-nine males and thirteen females (one patient excluded due to insufficient biopsy size) were assessed with a mean alcohol consumption of 132.4 ± 128.8 standard drinks per week and mean cumulative year duration of 17.6 ± 9.5 years. Sensitivity and specificity were respectively 82.4% (0.70-0.95) and 83.3% (0.73-0.94) (AUROC = 0.87) for F ≥ 2 with a cut-off value of 1.63m/s; 82.4% (0.64-1.00) and 78.5% (0.69-0.89) (AUROC = 0.86) for F ≥ 3 with a cut-off value of 1.84m/s; and 92.3% (0.78-1.00] and 81.6% (0.72-0.90) (AUROC = 0.89) for F = 4 with a cut-off value of 1.94 m/s. CONCLUSION: ARFI is an accurate, non-invasive and easy method for assessing liver fibrosis in patients with ALD undergoing alcoholic detoxification. PMID:27239119

  4. Breast Lesions Evaluated by Color-Coded Acoustic Radiation Force Impulse (ARFI) Imaging.

    PubMed

    Zhou, JianQiao; Yang, ZhiFang; Zhan, WeiWei; Zhang, JingWen; Hu, Na; Dong, YiJie; Wang, YingYing

    2016-07-01

    The goal of our study was to investigate the value of color-coded Virtual Touch tissue imaging (VTI) using acoustic radiation force impulse (ARFI) technology in the characterization of breast lesions and to compare it with conventional ultrasound (US). Conventional US and color-coded VTI were performed in 196 solid breast lesions in 196 consecutive women (age range 17-91 y; mean 48.17 ± 14.46 y). A four-point scale VTI score was assigned for each lesion according to the color pattern both in the lesion and in the surrounding breast tissue. The mean VTI score was significantly higher for malignant lesions (3.80 ± 0.66, range 1-4) than for benign ones (2.02 ± 1.20, range 1-4) (p < 0.001), and the optimal cut-off value was between score 3 and score 4. The area under the receiver operating characteristic (ROC) curve for combined conventional US and VTI (0.945) was significantly higher than that for conventional US (0.902) and for VTI (0.871) (p = 0.0021 and p < 0.001, respectively). It was concluded that color-coded VTI with the proposed four-point scale score system combined with conventional US might have the potential to aid in the characterization of benign and malignant breast lesions. PMID:27131841

  5. An analysis and retrofit of the acoustics at Image Creators Health and Beauty Salon

    NASA Astrophysics Data System (ADS)

    Ellis, Donna

    2002-11-01

    This paper discusses the analysis and retrofit of the acoustics in a high-volume beauty salon in Severna Park, MD. The major issues in what was designed to be a serene environment are reverberation times of 1-1.68 s in the mid- to upper-frequency range. Employee and customer complaints include heightened stress, vocal strain, headaches, and poor intelligibility. Existing analysis and acoustical retrofit solutions will be demonstrated.

  6. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  7. Human vision model for the objective evaluation of perceived image quality applied to MRI and image restoration

    NASA Astrophysics Data System (ADS)

    Salem, Kyle A.; Wilson, David L.

    2002-12-01

    We are developing a method to objectively quantify image quality and applying it to the optimization of interventional magnetic resonance imaging (iMRI). In iMRI, images are used for live-time guidance of interventional procedures such as the minimally invasive treatment of cancer. Hence, not only does one desire high quality images, but they must also be acquired quickly. In iMRI, images are acquired in the Fourier domain, or k-space, and this allows many creative ways to image quickly such as keyhole imaging where k-space is preferentially subsampled, yielding suboptimal images at very high frame rates. Other techniques include spiral, radial, and the combined acquisition technique. We have built a perceptual difference model (PDM) that incorporates various components of the human visual system. The PDM was validated using subjective image quality ratings by naive observers and task-based measures defined by interventional radiologists. Using the PDM, we investigated the effects of various imaging parameters on image quality and quantified the degradation due to novel imaging techniques. Results have provided significant information about imaging time versus quality tradeoffs aiding the MR sequence engineer. The PDM has also been used to evaluate other applications such as Dixon fat suppressed MRI and image restoration. In image restoration, the PDM has been used to evaluate the Generalized Minimal Residual (GMRES) image restoration method and to examine the ability to appropriately determine a stopping condition for such iterative methods. The PDM has been shown to be an objective tool for measuring image quality and can be used to determine the optimal methodology for various imaging applications.

  8. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation.

    PubMed

    Chen, Jiangang; Hou, Gary Y; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R² = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm(-1) MHz(-1), which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm(-1) MHz(-1)) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation. PMID:26371501

  9. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation

    NASA Astrophysics Data System (ADS)

    Chen, Jiangang; Hou, Gary Y.; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n=5 ) and in vitro canine livers (n=3 ) were tested, as well as HIFU lesions in in vitro canine livers (n=5 ). Results demonstrated that attenuations obtained from the phantoms showed a good correlation ({{R}2}=0.976 ) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm-1 MHz-1, which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm-1 MHz-1) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.

  10. 3-D Ultrafast Doppler Imaging Applied to the Noninvasive and Quantitative Imaging of Blood Vessels in Vivo

    PubMed Central

    Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.

    2016-01-01

    Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  11. Finite-bandwidth Kramers-Kronig relations for acoustic group velocity and attenuation derivative applied to encapsulated microbubble suspensions.

    PubMed

    Mobley, Joel

    2007-04-01

    Kramers-Kronig (KK) analyses of experimental data are complicated by the conflict between the inherently bandlimited data and the requirement of KK integrals for a complete infinite spectrum of input information. For data exhibiting localized extrema, KK relations can provide accurate transforms over finite bandwidths due to the local-weighting properties of the KK kernel. Recently, acoustic KK relations have been derived for the determination of the group velocity (cg) and the derivative of the attenuation coefficient (alpha') (components of the derivative of the acoustic complex wave number). These relations are applicable to bandlimited data exhibiting resonant features without extrapolation or unmeasured parameters. In contrast to twice-subtracted finite-bandwidth KK predictions for phase velocity and attenuation coefficient (components of the undifferentiated wave number), these more recently derived relations for cg and alpha' provide stricter tests of causal consistency because the resulting shapes are invariant with respect to subtraction constants. The integrals in these relations can be formulated so that they only require the phase velocity and attenuation coefficient data without differentiation. Using experimental data from suspensions of encapsulated microbubbles, the finite-bandwidth KK predictions for cg and alpha' are found to provide an accurate mapping of the primary wave number quantities onto their derivatives. PMID:17471707

  12. Comparative study on several blind deconvolution algorithms applied to underwater image restoration

    NASA Astrophysics Data System (ADS)

    Fan, Fan; Yang, Kecheng; Xia, Min; Li, Wei; Fu, Bo; Zhang, Wei

    2010-05-01

    Although the use of blind deconvolution of image restoration is a widely known concept, only few reports have discussed in detail its application to solving problem of restoration of underwater range-gated laser images. A comparative study of underwater image restoration using the Richardson-Lucy algorithm, the least-squares algorithm, and the multiplicative iterative algorithm for blind deconvolution is presented. All the deconvolution approaches use denoised underwater images and Wells’ small angle approximation theory of derived point spread function as the initial object and degradation guess, respectively. Owing the underwater no-reference imaging environment, image quality judgment based on the blur metric method is incorporated in our comparison to determine the appropriate deconvolution iteration number for each algorithm, which objectively evaluates the image restoration results. The performance of the three algorithms applied to underwater image restoration is discussed and reported.

  13. Efficient lossless coding model for medical images by applying integer-to-integer wavelet transform to segmented images

    NASA Astrophysics Data System (ADS)

    Yang, Shuyu; Zamora, Gilberto; Wilson, Mark; Mitra, Sunanda

    2000-06-01

    Existing lossless coding models yield only up to 3:1 compression. However, a much higher lossless compression can be achieved for certain medical images when the images are segmented prior to applying integer to integer wavelet transform and lossless coding. The methodology used in this research work is to apply a contour detection scheme to segment the image first. The segmented image is then wavelet transformed with integer to integer mapping to obtain a lower weighted entropy than the original. An adaptive arithmetic model is then applied to code the transformed image losslessly. For the male visible human color image set, the overall average lossless compression using the above scheme is around 10:1 whereas the compression ratio of an individual slice can be as high as 16:1. The achievable compression ratio depends on the actual bit rate of the segmented images attained by lossless coding as well as the compression obtainable from segmentation alone. The computational time required by the entire process is fast enough for application on large medical images.

  14. Status of thermal imaging technology as applied to conservation-update 1

    SciTech Connect

    Snow, F.J.; Wood, J.T.; Barthle, R.C.

    1980-07-01

    This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

  15. Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection

    SciTech Connect

    Kuehn, Kerry, K.

    2008-10-28

    We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii) they

  16. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.

    PubMed

    Berry, Gearóid P; Bamber, Jeffrey C; Miller, Naomi R; Barbone, Paul E; Bush, Nigel L; Armstrong, Cecil G

    2006-12-01

    Soft biological tissue contains mobile fluid. The volume fraction of this fluid and the ease with which it may be displaced through the tissue could be of diagnostic significance and may also have consequences for the validity with which strain images can be interpreted according to the traditional idealizations of elastography. In a previous paper, under the assumption of frictionless boundary conditions, the spatio-temporal behavior of the strain field inside a compressed cylindrical poroelastic sample was predicted (Berry et al. 2006). In this current paper, experimental evidence is provided to confirm these predictions. Finite element modeling was first used to extend the previous predictions to allow for the existence of contact friction between the sample and the compressor plates. Elastographic techniques were then applied to image the time-evolution of the strain inside cylindrical samples of tofu (a suitable poroelastic material) during sustained unconfined compression. The observed experimental strain behavior was found to be consistent with the theoretical predictions. In particular, every sample studied confirmed that reduced values of radial strain advance with time from the curved cylindrical surface inwards towards the axis of symmetry. Furthermore, by fitting the predictions of an analytical model to a time sequence of strain images, parametric images of two quantities, each related to one or more of three poroelastic material constants were produced. The two parametric images depicted the Poisson's ratio (nu(s)) of the solid matrix and the product of the aggregate modulus (H(A)) of the solid matrix with the permeability (k) of the solid matrix to the pore fluid. The means of the pixel values in these images, nu(s) = 0.088 (standard deviation 0.023) and H(A)k = 1.449 (standard deviation 0.269) x 10(-7) m(2) s(-1), were in agreement with values derived from previously published data for tofu (Righetti et al. 2005). The results provide the first

  17. Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide

    NASA Astrophysics Data System (ADS)

    Simandoux, Olivier; Stasio, Nicolino; Gateau, Jérome; Huignard, Jean-Pierre; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2015-03-01

    We demonstrate the ability to guide high-frequency photoacoustic waves through thick tissue with a water-filled silica-capillary (150 μm inner diameter and 30 mm long). An optical-resolution photoacoustic image of a 30 μm diameter absorbing nylon thread was obtained by guiding the acoustic waves in the capillary through a 3 cm thick fat layer. The transmission loss through the capillary was about -20 dB, much lower than the -120 dB acoustic attenuation through the fat layer. The overwhelming acoustic attenuation of high-frequency acoustic waves by biological tissue can therefore be avoided by the use of a small footprint capillary acoustic waveguide for remote detection. We finally demonstrate that the capillary can be used as a dual optical-in acoustic-out waveguide, paving the way for the development of minimally invasive optical-resolution photoacoustic endoscopes free of any acoustic or optical elements at their imaging tip.

  18. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  19. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.

    PubMed

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping

    2015-05-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan. PMID:25927794

  20. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method

    PubMed Central

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2015-01-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan. PMID:25927794

  1. Acoustic impedance microscopy for biological tissue characterization.

    PubMed

    Kobayashi, Kazuto; Yoshida, Sachiko; Saijo, Yoshifumi; Hozumi, Naohiro

    2014-09-01

    A new method for two-dimensional acoustic impedance imaging for biological tissue characterization with micro-scale resolution was proposed. A biological tissue was placed on a plastic substrate with a thickness of 0.5mm. A focused acoustic pulse with a wide frequency band was irradiated from the "rear side" of the substrate. In order to generate the acoustic wave, an electric pulse with two nanoseconds in width was applied to a PVDF-TrFE type transducer. The component of echo intensity at an appropriate frequency was extracted from the signal received at the same transducer, by performing a time-frequency domain analysis. The spectrum intensity was interpreted into local acoustic impedance of the target tissue. The acoustic impedance of the substrate was carefully assessed prior to the measurement, since it strongly affects the echo intensity. In addition, a calibration was performed using a reference material of which acoustic impedance was known. The reference material was attached on the same substrate at different position in the field of view. An acoustic impedance microscopy with 200×200 pixels, its typical field of view being 2×2 mm, was obtained by scanning the transducer. The development of parallel fiber in cerebella cultures was clearly observed as the contrast in acoustic impedance, without staining the specimen. The technique is believed to be a powerful tool for biological tissue characterization, as no staining nor slicing is required. PMID:24852259

  2. A rapid magnetic resonance acoustic radiation force imaging sequence for ultrasonic refocusing

    NASA Astrophysics Data System (ADS)

    Mougenot, Charles; Pichardo, Samuel; Engler, Steven; Waspe, Adam; Constanciel Colas, Elodie; Drake, James M.

    2016-08-01

    Magnetic resonance guided acoustic radiation force imaging (MR-ARFI) is being used to correct for aberrations induced by tissue heterogeneities when using high intensity focusing ultrasound (HIFU). A compromise between published MR-ARFI adaptive solutions is proposed to achieve efficient refocusing of the ultrasound beam in under 10 min. In addition, an ARFI sequence based on an EPI gradient echo sequence was used to simultaneously monitor displacement and temperature with a large SNR and low distortion. This study was conducted inside an Achieva 3T clinical MRI using a Philips Sonalleve MR-HIFU system to emit a 1 ms pulsed sonication with duty cycle of 2.3% at 300 Wac inside a polymer phantom. Virtual elements defined by a Hadamard array with sonication patterns composed of 6 phase steps were used to characterize 64 groups of 4 elements to find the optimal phase of the 256 elements of the transducer. The 384 sonication patterns were acquired in 580 s to identify the set of phases that maximize the displacement at the focal point. Three aberrators (neonatal skull, 8 year old skull and a checkered pattern) were added to each sonication pattern to evaluate the performance of this refocusing algorithm (n  =  4). These aberrators reduced the relative intensities to 95.3%, 69.6% and 25.5% for the neonatal skull, 8 year old skull, and checkered pattern virtual aberrators respectively. Using a 10 min refocusing algorithm, relative intensities of 101.6%, 91.3% and 93.3% were obtained. Better relative intensities of 103.9%, 94.3% and 101% were achieved using a 25 min refocusing algorithm. An average temperature increase of 4.2 °C per refocusing test was induced for the 10 min refocusing algorithm, resulting in a negligible thermal dose of 2 EM. A rapid refocusing of the beam can be achieved while keeping thermal effects to a minimum.

  3. Primary biliary cirrhosis degree assessment by acoustic radiation force impulse imaging and hepatic fibrosis indicators

    PubMed Central

    Zhang, Hai-Chun; Hu, Rong-Fei; Zhu, Ting; Tong, Ling; Zhang, Qiu-Qin

    2016-01-01

    AIM: To evaluate the assessment of primary biliary cirrhosis degree by acoustic radiation force impulse imaging (ARFI) and hepatic fibrosis indicators. METHODS: One hundred and twenty patients who developed liver cirrhosis secondary to primary biliary cirrhosis were selected as the observation group, with the degree of patient liver cirrhosis graded by Child-Pugh (CP) score. Sixty healthy individuals were selected as the control group. The four indicators of hepatic fibrosis were detected in all research objects, including hyaluronic acid (HA), laminin (LN), type III collagen (PC III), and type IV collagen (IV-C). The liver parenchyma hardness value (LS) was then measured by ARFI technique. LS and the four indicators of liver fibrosis (HA, LN, PC III, and IV-C) were observed in different grade CP scores. The diagnostic value of LS and the four indicators of liver fibrosis in determining liver cirrhosis degree with PBC, whether used alone or in combination, were analyzed by receiver operating characteristic (ROC) curve. RESULTS: LS and the four indicators of liver fibrosis within the three classes (A, B, and C) of CP scores in the observation group were higher than in the control group, with C class > B class > A class; the differences were statistically significant (P < 0.01). Although AUC values of LS within the three classes of CP scores were higher than in the four indicators of liver fibrosis, sensitivity and specificity were unstable. The ROC curves of LS combined with the four indicators of liver fibrosis revealed that: AUC and sensitivity in all indicators combined in the A class of CP score were higher than in LS alone, albeit with slightly decreased specificity; AUC and specificity in all indicators combined in the B class of CP score were higher than in LS alone, with unchanged sensitivity; AUC values (0.967), sensitivity (97.4%), and specificity (90%) of all indicators combined in the C class of CP score were higher than in LS alone (0.936, 92.1%, 83

  4. A rapid magnetic resonance acoustic radiation force imaging sequence for ultrasonic refocusing.

    PubMed

    Mougenot, Charles; Pichardo, Samuel; Engler, Steven; Waspe, Adam; Colas, Elodie Constanciel; Drake, James M

    2016-08-01

    Magnetic resonance guided acoustic radiation force imaging (MR-ARFI) is being used to correct for aberrations induced by tissue heterogeneities when using high intensity focusing ultrasound (HIFU). A compromise between published MR-ARFI adaptive solutions is proposed to achieve efficient refocusing of the ultrasound beam in under 10 min. In addition, an ARFI sequence based on an EPI gradient echo sequence was used to simultaneously monitor displacement and temperature with a large SNR and low distortion. This study was conducted inside an Achieva 3T clinical MRI using a Philips Sonalleve MR-HIFU system to emit a 1 ms pulsed sonication with duty cycle of 2.3% at 300 Wac inside a polymer phantom. Virtual elements defined by a Hadamard array with sonication patterns composed of 6 phase steps were used to characterize 64 groups of 4 elements to find the optimal phase of the 256 elements of the transducer. The 384 sonication patterns were acquired in 580 s to identify the set of phases that maximize the displacement at the focal point. Three aberrators (neonatal skull, 8 year old skull and a checkered pattern) were added to each sonication pattern to evaluate the performance of this refocusing algorithm (n  =  4). These aberrators reduced the relative intensities to 95.3%, 69.6% and 25.5% for the neonatal skull, 8 year old skull, and checkered pattern virtual aberrators respectively. Using a 10 min refocusing algorithm, relative intensities of 101.6%, 91.3% and 93.3% were obtained. Better relative intensities of 103.9%, 94.3% and 101% were achieved using a 25 min refocusing algorithm. An average temperature increase of 4.2 °C per refocusing test was induced for the 10 min refocusing algorithm, resulting in a negligible thermal dose of 2 EM. A rapid refocusing of the beam can be achieved while keeping thermal effects to a minimum. PMID:27401452

  5. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing

  6. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  7. Direct curvature correction for noncontact imaging modalities applied to multispectral imaging

    PubMed Central

    Kainerstorfer, Jana M.; Amyot, Franck; Ehler, Martin; Hassan, Moinuddin; Demos, Stavros G.; Chernomordik, Victor; Hitzenberger, Christoph K.; Gandjbakhche, Amir H.; Riley, Jason D.

    2010-01-01

    Noncontact optical imaging of curved objects can result in strong artifacts due to the object’s shape, leading to curvature biased intensity distributions. This artifact can mask variations due to the object’s optical properties, and makes reconstruction of optical∕physiological properties difficult. In this work we demonstrate a curvature correction method that removes this artifact and recovers the underlying data, without the necessity of measuring the object’s shape. This method is applicable to many optical imaging modalities that suffer from shape-based intensity biases. By separating the spatially varying data (e.g., physiological changes) from the background signal (dc component), we show that the curvature can be extracted by either averaging or fitting the rows and columns of the images. Numerical simulations show that our method is equivalent to directly removing the curvature, when the object’s shape is known, and accurately recovers the underlying data. Experiments on phantoms validate the numerical results and show that for a given image with 16.5% error due to curvature, the method reduces that error to 1.2%. Finally, diffuse multispectral images are acquired on forearms in vivo. We demonstrate the enhancement in image quality on intensity images, and consequently on reconstruction results of blood volume and oxygenation distributions. PMID:20799815

  8. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    PubMed

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  9. Integration of Acoustic Radiation Force and Optical Imaging for Blood Plasma Clot Stiffness Measurement

    PubMed Central

    Wang, Caroline W.; Perez, Matthew J.; Helmke, Brian P.; Viola, Francesco; Lawrence, Michael B.

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  10. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  11. Acoustic profiles and images of the Palos Verdes Margin: Implications concerning deposition from the White's Point outfall

    SciTech Connect

    Hampton, M A.; Karl, H; Murray, Christopher J. )

    2001-12-01

    Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km{sup 2}, which encompasses a volume of about 3.2 million m{sup 3}. The deposit's basal reflector is acoustically distinct over most of the mapped area, implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30 m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs.

  12. Acoustic profiles and images of the Palos Verdes margin: Implications concerning deposition from the White's Point outfall

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Murray, C.J.

    2002-01-01

    Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes Shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km2, which encompasses a volume of about 3.2 million m3. The deposit's basal reflector is acoustically distinct over most of the mapped area. implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs. ?? 2002 Elsevier Science Ltd. All rights

  13. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  14. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images

    PubMed Central

    Hesford, Andrew J.; Tillett, Jason C.; Astheimer, Jeffrey P.; Waag, Robert C.

    2014-01-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast. PMID:25096103

  15. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images.

    PubMed

    Hesford, Andrew J; Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C

    2014-08-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast. PMID:25096103

  16. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

    2009-07-01

    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  17. Scanning probe acoustic microscopy of extruded starch materials: direct visual evidence of starch crystal.

    PubMed

    Liu, Zhongdong; Liu, Boxiang; Li, Mengxing; Wei, Min; Li, Hua; Liu, Peng; Wan, Tuo

    2013-10-15

    Scanning probe acoustic microscopy (SPAM) has been successfully used to study inorganic and keratin biomaterials. However, few studies have attempted to apply SPAM to structural study of non-keratin organic materials such as starch based materials. This study investigated hardness and surface finish to establish sample preparation method suitable for SPAM imaging and acquired clear acoustic images of extruded starch materials. Acquired acoustic images directly exhibited certain structure of starch materials and provided visual evidence of starch material components and aggregates. In addition, through correlating acoustic images with X-ray diffraction data, crystal-structural information in nano-scale was obtained and acoustic image contrast showed a linear relationship with starch amylose content in extruded starch materials. PMID:23987357

  18. Digital imaging and remote sensing image generator (DIRSIG) as applied to NVESD sensor performance modeling

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.

    2016-05-01

    The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.

  19. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  20. The Acoustic Lens Design and in Vivo Use of a Multifunctional Catheter Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Sahn, David

    2009-01-01

    A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter’s unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. PMID:18407850

  1. Detecting Shape of Weld Defect Image on X-ray Film by Image Processing Applied Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Aoki, Kimiya; Suga, Yasuo

    Several types of non-destructive testing methods are used for detecting weld defects. Because the X-ray radiographic testing method is particularly useful in inspecting the inside of a weld metal, it is often used in industry. However, since the number of skilled inspectors for X-ray radiographic testing has been gradually decreasing, recently, several methods to detect weld defects from films automatically have been investigated to improve the quality of the detection results. However, X-ray film images contain much noise, and defect images show very low contrast and various shapes in spite of the same kind of defect. Moreover, boundaries between a defect image and the background are unclear, making it difficult to automate the inspection of X-ray films. If the type of defect image were to be judged by an expert system or a neural network which learns the rules of professional inspectors, the boundaries of the defect image would have to be detected in a manner similar to recognition by a human's (or an inspector's) sense of vision. Therefore, in this study, a new image processing method applied genetic algorithms that were a method of optimization, was constructed and applied to the detection of defect boundaries in detail.

  2. Evaluation of a Wobbling Method Applied to Correcting Defective Pixels of CZT Detectors in SPECT Imaging.

    PubMed

    Xie, Zhaoheng; Li, Suying; Yang, Kun; Xu, Baixuan; Ren, Qiushi

    2016-01-01

    In this paper, we propose a wobbling method to correct bad pixels in cadmium zinc telluride (CZT) detectors, using information of related images. We build up an automated device that realizes the wobbling correction for small animal Single Photon Emission Computed Tomography (SPECT) imaging. The wobbling correction method is applied to various constellations of defective pixels. The corrected images are compared with the results of conventional interpolation method, and the correction effectiveness is evaluated quantitatively using the factor of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In summary, the proposed wobbling method, equipped with the automatic mechanical system, provides a better image quality for correcting defective pixels, which could be used for all pixelated detectors for molecular imaging. PMID:27240368

  3. Evaluation of a Wobbling Method Applied to Correcting Defective Pixels of CZT Detectors in SPECT Imaging

    PubMed Central

    Xie, Zhaoheng; Li, Suying; Yang, Kun; Xu, Baixuan; Ren, Qiushi

    2016-01-01

    In this paper, we propose a wobbling method to correct bad pixels in cadmium zinc telluride (CZT) detectors, using information of related images. We build up an automated device that realizes the wobbling correction for small animal Single Photon Emission Computed Tomography (SPECT) imaging. The wobbling correction method is applied to various constellations of defective pixels. The corrected images are compared with the results of conventional interpolation method, and the correction effectiveness is evaluated quantitatively using the factor of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In summary, the proposed wobbling method, equipped with the automatic mechanical system, provides a better image quality for correcting defective pixels, which could be used for all pixelated detectors for molecular imaging. PMID:27240368

  4. [Image quality evaluation of new image reconstruction methods applying the iterative reconstruction].

    PubMed

    Takata, Tadanori; Ichikawa, Katsuhiro; Hayashi, Hiroyuki; Mitsui, Wataru; Sakuta, Keita; Koshida, Haruka; Yokoi, Tomohiro; Matsubara, Kousuke; Horii, Jyunsei; Iida, Hiroji

    2012-01-01

    The purpose of this study was to evaluate the image quality of an iterative reconstruction method, the iterative reconstruction in image space (IRIS), which was implemented in a 128-slices multi-detector computed tomography system (MDCT), Siemens Somatom Definition Flash (Definition). We evaluated image noise by standard deviation (SD) as many researchers did before, and in addition, we measured modulation transfer function (MTF), noise power spectrum (NPS), and perceptual low-contrast detectability using a water phantom including a low-contrast object with a 10 Hounsfield unit (HU) contrast, to evaluate whether the noise reduction of IRIS was effective. The SD and NPS were measured from the images of a water phantom. The MTF was measured from images of a thin metal wire and a bar pattern phantom with the bar contrast of 125 HU. The NPS of IRIS was lower than that of filtered back projection (FBP) at middle and high frequency regions. The SD values were reduced by 21%. The MTF of IRIS and FBP measured by the wire phantom coincided precisely. However, for the bar pattern phantom, the MTF values of IRIS at 0.625 and 0.833 cycle/mm were lower than those of FBP. Despite the reduction of the SD and the NPS, the low-contrast detectability study indicated no significant difference between IRIS and FBP. From these results, it was demonstrated that IRIS had the noise reduction performance with exact preservation for high contrast resolution and slight degradation of middle contrast resolution, and could slightly improve the low contrast detectability but with no significance. PMID:22516592

  5. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish

    PubMed Central

    Correia, Teresa; Yin, Jun; Ramel, Marie-Christine; Andrews, Natalie; Katan, Matilda; Bugeon, Laurence; Dallman, Margaret J.; McGinty, James; Frankel, Paul; French, Paul M. W.; Arridge, Simon

    2015-01-01

    Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections—achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds. PMID:26308086

  6. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish.

    PubMed

    Correia, Teresa; Lockwood, Nicola; Kumar, Sunil; Yin, Jun; Ramel, Marie-Christine; Andrews, Natalie; Katan, Matilda; Bugeon, Laurence; Dallman, Margaret J; McGinty, James; Frankel, Paul; French, Paul M W; Arridge, Simon

    2015-01-01

    Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections-achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds. PMID:26308086

  7. Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Held, Philipp; Feldens, Peter; Wilken, Dennis

    2016-04-01

    This study reports an adaptation of a parametric echosounder system using 15 kHz as secondary frequency to investigate the angular response of sub-bottom backscatter strength of layered mud, providing a new method for enhanced acoustic detection of buried targets. Adaptions to achieve both vertical (0°) and non-vertical inclination (1-15°, 30°, 45° and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. Data were acquired at 18 m water depth at a study site characterized by a flat, muddy seafloor where a 0.1 m diameter power cable lies 1-2 m below the seafloor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud decreases strongly at >3±0.5° incidence and the layered mud echo pattern vanishes beyond 5°. As a consequence, the backscatter pattern of the buried cable is very pronounced in acoustic images gathered at 15°, 30°, 45° and 60° incidence. The size of the cable echo pattern increases linearly with incidence. These effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Data analyses support the visual impression of superior detection of the cable with an up to 2.6-fold increase of the signal-to-noise ratio at 40° incidence compared to the vertical incidence case.

  8. A Picture Is Worth a Thousand Words: Applying Image-Based Learning to Course Design

    ERIC Educational Resources Information Center

    Whitley, Cameron T.

    2013-01-01

    Although images are often used in the classroom to communicate difficult concepts, students have little input into their selection and application. This approach can create a passive experience for students and represents a missed opportunity for instructors to engage participation. By applying concepts found in visual sociology to techniques…

  9. IMAGE information monitoring and applied graphics software environment. Volume 2. Software description

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent.

  10. Remote Sensing Image Classification Applied to the First National Geographical Information Census of China

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Wen, Zongyong; Zhu, Zhaorong; Xia, Qiang; Shun, Lan

    2016-06-01

    Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.

  11. Investigation of the acoustic field in a standing wave thermoacoustic refrigerator using time-resolved particule image velocimetry

    NASA Astrophysics Data System (ADS)

    Blanc-Benon, Ph.; Poignand, G.; Jondeau, E.

    2012-09-01

    In thermoacoustic devices, the full understanding of the heat transfer between the stack and the heat exchangers is a key issue to improve the global efficiency of these devices. The goal of this paper is to investigate the vortex structures, which appear at the stack plates extremities and may impact the heat transfer. Here, the aerodynamic field between a stack and a heat exchanger is characterised with a time-resolved particle image velocimetry (TR- PIV) set-up. Measurements are performed in a standing wave thermoacoustic refrigerator operating at a frequency of 200 Hz. The employed TR-PIV set-up offers the possibility to acquire 3000 instantaneous velocity fields at a frequency of 3125 Hz (15 instantaneous velocity fields per acoustic period). Measurements show that vortex shedding can occur at high pressure level, when a nonlinear acoustic regime preveals, leading to an additional heating generated by viscous dissipation in the gap between the stack and the heat exchangers and a loss of efficiency.

  12. Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation.

    PubMed

    Tsangouri, E; Aggelis, D G; Van Tittelboom, K; De Belie, N; Van Hemelrijck, D

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process. PMID:24381518

  13. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-Tao; Zhang, Xiao-Hui; Ge, Wei-Long

    2011-11-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  14. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  15. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    PubMed

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells. PMID:23458301

  16. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  17. Invariant correlation to position and rotation using a binary mask applied to binary and gray images

    NASA Astrophysics Data System (ADS)

    Álvarez-Borrego, Josué; Solorza, Selene; Bueno-Ibarra, Mario A.

    2013-05-01

    In this paper more alternative ways to generate the binary ring masks are studied and a new methodology is presented when in the analysis the image come with some distortion due to rotation. This new algorithm requires low computational cost. Signature vectors of the target so like signature vectors of the object to be recognized in the problem image are obtained using a binary ring mask constructed in accordance with the real or the imaginary part of their Fourier transform analyzing two different conditions in each one. In this manner, each image target or problem image, will have four unique binary ring masks. The four ways are analyzed and the best is chosen. In addition, due to any image with rotation include some distortion, the best transect is chosen in the Fourier plane in order to obtain the best signature through the different ways to obtain the binary mask. This methodology is applied to two cases: to identify different types of alphabetic letters in Arial font and to identify different fossil diatoms images. Considering the great similarity between diatom images the results obtained are excellent.

  18. Pore Size Distribution Estimates Compared: Available software applied to soil CT and synthetic images.

    NASA Astrophysics Data System (ADS)

    Houston, Alasdair N.; Falconer, Ruth E.; Otten, Wilfred; Hapca, Simona M.

    2015-04-01

    The Pore Size Distribution (PSD) has been widely used as a means of characterising porous media and, in conjunction with knowledge of pore space connectivity, has been used to infer hydrological properties. There exist various strategies to estimate PSD from a segmented image and each strategy typically involves a sequence of algorithms that transform image information. Some of these algorithms may be explicitly parameterised, requiring decisions by a knowledgeable operator. As a result PSD estimates may be quite variable between software applications and operators. In order to better understand these differences, a constrained boolean model was used to construct synthetic images whose pore structure is without ambiguity and whose properties can be analytically determined. Applying to such images a selection of analysis procedures in the form of readily available software applications, reveals differences between PSD estimates and analytic information. In some cases it is possible to attribute these differences to artifacts visible within map images generated by the analysis procedures, permitting correction procedures to be devised. In the case of soil CT images which exhibit complex interconnected pore structure, differences in the PSD estimate between analysis procedures are very great in some cases. Inspection of map images can again help in identifying the cause of such problems, but this may result from a fundamental property of the procedure with respect to complex pore structure. Based on the evidence presented, we conclude that some readily available software will produce PSD estimates that can usefully characterise geomaterials.

  19. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments: Phase II

    SciTech Connect

    Rudzinsky, J.; Bondaryk, J.; Conti, M.

    1999-07-01

    The nuclear power industry is concerned with corrosive thinning of portions of the metallic pressure boundary, particularly in areas that are not directly accessible for inspection. This study investigated the feasibility of detecting these thickness degradations using ultrasonic imaging. A commercial ultrasonic system was used to carry out several full-scale, controlled laboratory experiments. Measurements of 0.5 MHz shear wave levels propagated in 25-mm-thick steel plate embedded in concrete showed 1.4-1.6 dB of signal loss for each centimeter of two-way travel in the steel plate (compared to previous numerical predictions of 3-4 dB), and 1.3 dB of signal loss per centimeter of two-way travel in steel plates embedded in concrete prior to setting of the concrete (i.e., plastic). Negligible losses were measured in plates with a decoupling treatment applied between the steel and concrete to simulate the unbonded portions of the pressure boundary. Scattered signals from straight slots of different size and shape were investigated. The return from a 4-mm-deep rectangular slots exhibited levels 23 dB down relative to incidence and 4-6 dB higher than those obtained from both ''v'' shaped and rounded slots of similar depth. The system displayed an input/output dynamic range of 125 dB and measurement variability less than 1-2dB. Based on these results, a 4-mm-deep, rounded degradation embedded 30 cm in concrete has expected returns of -73dB relative to the input and should therefore be detectable. Results of this and a prior study indicate that the technique has merit and should be developed more fully and demonstrated in the field.

  20. Applying the algorithm "assessing quality using image registration circuits" (AQUIRC) to multi-atlas segmentation

    NASA Astrophysics Data System (ADS)

    Datteri, Ryan; Asman, Andrew J.; Landman, Bennett A.; Dawant, Benoit M.

    2014-03-01

    Multi-atlas registration-based segmentation is a popular technique in the medical imaging community, used to transform anatomical and functional information from a set of atlases onto a new patient that lacks this information. The accuracy of the projected information on the target image is dependent on the quality of the registrations between the atlas images and the target image. Recently, we have developed a technique called AQUIRC that aims at estimating the error of a non-rigid registration at the local level and was shown to correlate to error in a simulated case. Herein, we extend upon this work by applying AQUIRC to atlas selection at the local level across multiple structures in cases in which non-rigid registration is difficult. AQUIRC is applied to 6 structures, the brainstem, optic chiasm, left and right optic nerves, and the left and right eyes. We compare the results of AQUIRC to that of popular techniques, including Majority Vote, STAPLE, Non-Local STAPLE, and Locally-Weighted Vote. We show that AQUIRC can be used as a method to combine multiple segmentations and increase the accuracy of the projected information on a target image, and is comparable to cutting edge methods in the multi-atlas segmentation field.

  1. Near-infrared absorbing polymer nano-particle as a sensitive contrast agent for photo-acoustic imaging.

    PubMed

    Aoki, Hiroyuki; Nojiri, Mayumi; Mukai, Rieko; Ito, Shinzaburo

    2015-01-01

    Polymer nano-particles (PNPs) with a near-infrared (NIR) light absorption were prepared by the nano-emulsion method to develop contrast agents for photo-acoustic (PA) imaging. The PNP containing silicon naphthalocyanine showed a high absorption coefficient up to 10(10) M(-1) cm(-1). This is comparable to plasmonic gold nano-particles, which have been studied as PA contrast agents. For the PNP larger than 100 nm, the enhancement of the PA signal was observed compared to the gold nano-particle with a similar absorption coefficient and size. In the case of the PNP, the heat by the light absorption is confined in the particle due to the low thermal diffusivity of polymer materials. We showed that the strong thermal confinement effect of PNP results in the enhancement of the efficiency of the PA signal generation and that the PA intensity can be enhanced by the increase of the Grüneisen parameter of the matrix polymer of PNP. The PA signal from the PNP of poly(methyl methacrylate) was 9-fold larger than that of gold nano-particles with the same absorption coefficient. We demonstrated that in the in vivo PA imaging the detection limit of PNP was of the order of 10(-13) M. The NIR absorbing PNP will be a promising candidate of a sensitive contrast agent for PA imaging. PMID:25407911

  2. Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Jami L.; van Wijk, Kasper; Caron, James N.; Timmerman, Miriam

    2016-02-01

    Conventional contacting transducers for ultrasonic wave detection are highly sensitive and tuned for real-time imaging with fixed array geometries. However, optical detection provides an alternative to contacting transducers when a small sensor footprint, a large frequency bandwidth, or non-contacting detection is required. Typical optical detection relies on a Doppler-shifted reflection of light from the target, but gas coupled-laser acoustic detection (GCLAD) provides an alternative optical detection method for photoacoustic (PA) and ultrasound imaging that does not involve surface reflectivity. Instead, GCLAD is a line-detector that measures the deflection of an optical beam propagating parallel to the sample, as the refractive index of the air near the sample is affected by particle displacement on the sample surface. We describe the underlying principles of GCLAD and derive a formula for quantifying the surface displacement from a remote GCLAD measurement. We discuss a design for removing the location-dependent displacement bias along the probe beam and a method for measuring the attenuation coefficient of the surrounding air. GCLAD results are used to quantify the surface displacement in a laser-ultrasound experiment, which shows 94% agreement to line-integrated data from a commercial laser vibrometer point detector. Finally, we demonstrate the feasibility of PA imaging of an artery-sized absorber using a detector 5.8 cm from a phantom surface.

  3. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  4. IMAGE information monitoring and applied graphics software environment. Volume 1. Executive overview

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent. This four volume report includes an Executive Overview of the IMAGE package (Volume 1), followed by Software Description (Volume II), User's Guide (Volume III), and Description of Example Applications (Volume IV).

  5. IMAGE information monitoring and applied graphics software environment. Volume 4. Applications description

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent. This four volume report includes an Executive Overview of the IMAGE package (Volume 1), followed by Software Description (Volume II), User's Guide (Volume III), and Description of Example Applications (Volume IV).

  6. IMAGE information monitoring and applied graphics software environment. Volume 3. User's guide

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be host computer and graphic device independent. This four volume report includes an Executive Overview of the IMAGE package (Volume 1), followed by Software Description (Volume II), User's Guide (Volume III), and Description of Example Applications (Volume IV).

  7. Applying high resolution remote sensing image and DEM to falling boulder hazard assessment

    NASA Astrophysics Data System (ADS)

    Huang, Changqing; Shi, Wenzhong; Ng, K. C.

    2005-10-01

    Boulder fall hazard assessing generally requires gaining the boulder information. The extensive mapping and surveying fieldwork is a time-consuming, laborious and dangerous conventional method. So this paper proposes an applying image processing technology to extract boulder and assess boulder fall hazard from high resolution remote sensing image. The method can replace the conventional method and extract the boulder information in high accuracy, include boulder size, shape, height and the slope and aspect of its position. With above boulder information, it can be satisfied for assessing, prevention and cure boulder fall hazard.

  8. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  9. Laser-speckle-visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  10. Applying Enhancement Filters in the Pre-processing of Images of Lymphoma

    NASA Astrophysics Data System (ADS)

    Henrique Silva, Sérgio; Zanchetta do Nascimento, Marcelo; Alves Neves, Leandro; Ramos Batista, Valério

    2015-01-01

    Lymphoma is a type of cancer that affects the immune system, and is classified as Hodgkin or non-Hodgkin. It is one of the ten types of cancer that are the most common on earth. Among all malignant neoplasms diagnosed in the world, lymphoma ranges from three to four percent of them. Our work presents a study of some filters devoted to enhancing images of lymphoma at the pre-processing step. Here the enhancement is useful for removing noise from the digital images. We have analysed the noise caused by different sources like room vibration, scraps and defocusing, and in the following classes of lymphoma: follicular, mantle cell and B-cell chronic lymphocytic leukemia. The filters Gaussian, Median and Mean-Shift were applied to different colour models (RGB, Lab and HSV). Afterwards, we performed a quantitative analysis of the images by means of the Structural Similarity Index. This was done in order to evaluate the similarity between the images. In all cases we have obtained a certainty of at least 75%, which rises to 99% if one considers only HSV. Namely, we have concluded that HSV is an important choice of colour model at pre-processing histological images of lymphoma, because in this case the resulting image will get the best enhancement.

  11. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  12. Pre- and post-stimulation characterization of geothermal well GRT-1, Rittershoffen, France: insights from acoustic image logs of hard fractured rock

    NASA Astrophysics Data System (ADS)

    Vidal, Jeanne; Genter, Albert; Schmittbuhl, Jean

    2016-08-01

    Geothermal well GRT-1 (Rittershoffen, Alsace) was drilled in 2012. Its open-hole section (extending down to a depth of 2.6 km) penetrated fractured sandstones and granite. In 2013, the well was subjected to Thermal, Chemical and Hydraulic (TCH) stimulation, which improved the injectivity index fivefold. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation well-logging (acoustic and temperature [T] logs) and mud-logging data. This comparison revealed modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement, and the post-stimulation T logs are important for characterizing this enhancement. Chemical alteration due to mechanical erosion at the tops and bottoms of the fractures was observed in the sandstones. These zones display indications of very small new permeability after the TCH stimulation. Because a major fault zone caved extensively where it crosses the borehole, it was not imaged in the acoustic logs. However, this originally permeable zone was enhanced as demonstrated by the T logs. Based on the natural injectivity of this fault zone, hydraulic erosion and thermal microcracking of its internal quartz veins are associated with this permeability enhancement. Although local changes in the borehole wall observed in the acoustic images cannot be directly linked to the improved injectivity index, the comparison of the acoustic image logs allows for identification of fracture zones impacted by the TCH stimulation.

  13. Fast photo-acoustic imaging based on multi-element linear transducer array

    NASA Astrophysics Data System (ADS)

    Yin, Bangzheng; Xing, Da; Yang, Diwu; Tan, Yi; Chen, Qun

    2005-04-01

    Photoacoustic imaging combines the contrast advantage of pure optical imaging and the resolution advantage of pure ultrasonic imaging. It has become a popular research subject at present. A fast photoacoustic imaging system based on multi-element linear transducer array and phase-controlled focus method was developed and tested on phantoms and tissues. A Q switched Nd:YAG laser operating at 532nm was used in our experiment as thermal source. The multi-element linear transducer array consists of 320 elements. By phase-controlled focus method, 64 signals, one of which gathered by 11-group element, make up of an image. Experiment results can map the distribution of the optical absorption correctly. The same transducer array also can operate as a conventional phase array and produced ultrasound imaging. Compared to other existing technology and algorithm, the PA imaging based on transducer array was characterize by speediness and convenience. It can provide a new approach for tissue functional imaging in vivo, and may have potentials in developing into an appliance for clinic diagnosis.

  14. XUV laser grid image refractometry applied in laser hole boring experiments

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenjiro; Kodama, Ryosuke; Tanaka, Kazuo A.; Hashimoto, Hiroyuki; Kato, Yoshiaki; Mima, Kunioki; Murai, Kensuki; Weber, Franz A.; Barbee, Troy W., Jr.; Celliers, Peter M.; Da Silva, Luiz B.

    1997-11-01

    We measured laser channeling into an overdense plasma by using a 19.6 nm Ne-like Ge XUV laser. One micrometer/100 ps laser light at 1017 W/cm2 interacted with a long scale length plasma preformed on a CH slab target. Grid image refractometry (GIR) with the x-ray laser was applied to obtain the deflection information in the plasma, which provided two dimensional density profiles (2-D) of the overdense plasmas.

  15. Automatic three-dimensional segmentation of MR images applied to the rat uterus

    NASA Astrophysics Data System (ADS)

    Akselrod-Ballin, Ayelet; Eyal, Erez; Galun, Meirav; Furman-Haran, Edna; Gomori, John M.; Basri, Ronen; Degani, Hadassa; Brandt, Achi

    2006-03-01

    We introduce an automatic 3D multiscale automatic segmentation algorithm for delineating specific organs in Magnetic Resonance images (MRI). The algorithm can process several modalities simultaneously, and handle both isotropic and anisotropic data in only linear time complexity. It produces a hierarchical decomposition of MRI scans. During this segmentation process a rich set of features describing the segments in terms of intensity, shape and location are calculated, reflecting the formation of the hierarchical decomposition. We show that this method can delineate the entire uterus of the rat abdomen in 3D MR images utilizing a combination of scanning protocols that jointly achieve high contrast between the uterus and other abdominal organs and between inner structures of the rat uterus. Both single and multi-channel automatic segmentation demonstrate high correlation to a manual segmentation. While the focus here is on the rat uterus, the general approach can be applied to recognition in 2D, 3D and multi-channel medical images.

  16. Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors

    SciTech Connect

    Avila, C.; Lopez, J.; Sanabria, J. C.; Baldazzi, G.; Bollini, D.; Gombia, M.; Cabal, A.E.; Ceballos, C.; Diaz Garcia, A.; Gambaccini, M.; Taibi, A.; Sarnelli, A.; Tuffanelli, A.; Giubellino, P.; Marzari-Chiesa, A.; Prino, F.; Tomassi, E.; Grybos, P.; Idzik, M.; Swientek, K.

    2005-12-15

    Dual-energy mammographic imaging experimental tests have been performed using a compact dichromatic imaging system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon detector equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. Images have been collected with three different pairs of x-ray energies: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated data to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one.

  17. Data processing method applying principal component analysis and spectral angle mapper for imaging spectroscopic sensors

    NASA Astrophysics Data System (ADS)

    García-Allende, P. B.; Conde, O. M.; Mirapeix, J.; Cubillas, A. M.; López-Higuera, J. M.

    2007-07-01

    A data processing method for hyperspectral images is presented. Each image contains the whole diffuse reflectance spectra of the analyzed material for all the spatial positions along a specific line of vision. This data processing method is composed of two blocks: data compression and classification unit. Data compression is performed by means of Principal Component Analysis (PCA) and the spectral interpretation algorithm for classification is the Spectral Angle Mapper (SAM). This strategy of classification applying PCA and SAM has been successfully tested on the raw material on-line characterization in the tobacco industry. In this application case the desired raw material (tobacco leaves) should be discriminated from other unwanted spurious materials, such as plastic, cardboard, leather, candy paper, etc. Hyperspectral images are recorded by a spectroscopic sensor consisting of a monochromatic camera and a passive Prism- Grating-Prism device. Performance results are compared with a spectral interpretation algorithm based on Artificial Neural Networks (ANN).

  18. Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors.

    PubMed

    Avila, C; Lopez, J; Sanabria, J C; Baldazzi, G; Bollini, D; Gombia, M; Cabal, A E; Ceballos, C; Diaz Garcia, A; Gambaccini, M; Taibi, A; Sarnelli, A; Tuffanelli, A; Giubellino, P; Marzari-Chiesa, A; Prino, F; Tomassi, E; Grybos, P; Idzik, M; Swientek, K; Wiacek, P; Montaño, L M; Ramello, L; Sitta, M

    2005-12-01

    Dual-energy mammographic imaging experimental tests have been performed using a compact dichromatic imaging system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon detector equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. Images have been collected with three different pairs of x-ray energies: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated data to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one. PMID:16475775

  19. SAR Image Segmentation Using Voronoi Tessellation and Bayesian Inference Applied to Dark Spot Feature Extraction

    PubMed Central

    Zhao, Quanhua; Li, Yu; Liu, Zhenggang

    2013-01-01

    This paper presents a new segmentation-based algorithm for oil spill feature extraction from Synthetic Aperture Radar (SAR) intensity images. The proposed algorithm combines a Voronoi tessellation, Bayesian inference and Markov Chain Monte Carlo (MCMC) scheme. The shape and distribution features of dark spots can be obtained by segmenting a scene covering an oil spill and/or look-alikes into two homogenous regions: dark spots and their marine surroundings. The proposed algorithm is applied simultaneously to several real SAR intensity images and simulated SAR intensity images which are used for accurate evaluation. The results show that the proposed algorithm can extract the shape and distribution parameters of dark spot areas, which are useful for recognizing oil spills in a further classification stage. PMID:24233074

  20. Efficient super-resolution image reconstruction applied to surveillance video captured by small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry

    2008-04-01

    The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.

  1. The creation of inter-ethnic images for studies in applied psychology.

    PubMed

    Vanezis, Maria; Vanezis, Peter; Minnis, Helen; McMillan, Alison; Gillies, Marjorie; Smith, Shubulade

    2003-10-01

    The facial transformation programme, is an integral part of the computerised three-dimensional facial reconstruction system, employed at the University of Glasgow for forensic and historical cases. It was applied to the creation of inter-ethnic images for use in studies to assess the response of various groups to facial appearance in the assessment of racial stereotyping. We initially acquired a three-dimensional facial image from a young black (Negroid) male volunteer, using our optical laser scanning system. This image was then used as a template over a Caucasian skull to produce a reconstruction using facial criteria applicable to white (Caucasian) males. The other image used was that of the facial template of the black male. A commercially available electronic identikit system, E-FIT was then used to add appropriate hair styles and open eyes to both images. In addition, on the 'Caucasian reconstruction' we were able to reduce the contrast and lighting on the face. This was relatively straightforward as we were using greyscale images rather than colour. The shape of the nose and lips on the white male were also altered to be more in keeping with Caucasoid average measurements. The resulting images were shown to a group of second-year clinical psychology students and their responses are discussed. Similar images may also be used in studies of racial stereotyping in different categories of professionals such as police, prison personnel, probation officers, social workers, potential employers, doctors, and others, in order to assess the response to individuals by facial appearance. PMID:14655960

  2. Pattern recognition applied to infrared images for early alerts in fog

    NASA Astrophysics Data System (ADS)

    Boucher, Vincent; Marchetti, Mario; Dumoulin, Jean; Cord, Aurélien

    2014-09-01

    Fog conditions are the cause of severe car accidents in western countries because of the poor induced visibility. Its forecast and intensity are still very difficult to predict by weather services. Infrared cameras allow to detect and to identify objects in fog while visibility is too low for eye detection. Over the past years, the implementation of cost effective infrared cameras on some vehicles has enabled such detection. On the other hand pattern recognition algorithms based on Canny filters and Hough transformation are a common tool applied to images. Based on these facts, a joint research program between IFSTTAR and Cerema has been developed to study the benefit of infrared images obtained in a fog tunnel during its natural dissipation. Pattern recognition algorithms have been applied, specifically on road signs which shape is usually associated to a specific meaning (circular for a speed limit, triangle for an alert, …). It has been shown that road signs were detected early enough in images, with respect to images in the visible spectrum, to trigger useful alerts for Advanced Driver Assistance Systems.

  3. B-Mode and Acoustic Radiation Force Impulse (ARFI) Imaging of Prostate Zonal Anatomy: Comparison with 3T T2-Weighted MR Imaging

    PubMed Central

    Palmeri, Mark L.; Miller, Zachary A.; Glass, Tyler J.; Garcia-Reyes, Kirema; Gupta, Rajan T.; Rosenzweig, Stephen J.; Kauffman, Christopher; Polascik, Thomas J.; Buck, Andrew; Kulbacki, Evan; Madden, John; Lipman, Samantha L.; Rouze, Ned C.; Nightingale, Kathryn R.

    2015-01-01

    Prostate cancer (PCa) is the most common non-cutaneous malignancy among men in the United States and the second leading cause of cancer-related death. Multi-parametric magnetic resonance imaging (mpMRI) has gained recent popularity to characterize PCa. Acoustic Radiation Force Impulse (ARFI) imaging has the potential to aid PCa diagnosis and management by using tissue stiffness to evaluate prostate zonal anatomy and lesions. MR and B-mode/ARFI in vivo imaging datasets were compared with one another and with gross pathology measurements made immediately after radical prostatectomy. Images were manually segmented in 3D Slicer to delineate the central gland (CG) and prostate capsule, and 3D models were rendered to evaluate zonal anatomy dimensions and volumes. Both imaging modalities showed good correlation between estimated organ volume and gross pathologic weights. Ultrasound and MR total prostate volumes were well correlated (R2 = 0.77), but B-mode images yielded prostate volumes that were larger (16.82% ± 22.45%) than MR images, due to overestimation of the lateral dimension (18.4% ± 13.9%), with less significant differences in the other dimensions (7.4% ± 17.6%, anterior-to-posterior, and −10.8% ± 13.9%, apex-to-base). ARFI and MR CG volumes were also well correlated (R2 = 0.85). CG volume differences were attributed to ARFI underestimation of the apex-to-base axis (−28.8% ± 9.4%) and ARFI overestimation of the lateral dimension (21.5% ± 14.3%). B-mode/ARFI imaging yielded prostate volumes and dimensions that were well correlated with MR T2-weighted image (T2WI) estimates, with biases in the lateral dimension due to poor contrast caused by extraprostatic fat. B-mode combined with ARFI imaging is a promising low-cost, portable, real-time modality that can complement mpMRI for PCa diagnosis, treatment planning, and management. PMID:25060914

  4. B-mode and acoustic radiation force impulse (ARFI) imaging of prostate zonal anatomy: comparison with 3T T2-weighted MR imaging.

    PubMed

    Palmeri, Mark L; Miller, Zachary A; Glass, Tyler J; Garcia-Reyes, Kirema; Gupta, Rajan T; Rosenzweig, Stephen J; Kauffman, Christopher; Polascik, Thomas J; Buck, Andrew; Kulbacki, Evan; Madden, John; Lipman, Samantha L; Rouze, Ned C; Nightingale, Kathryn R

    2015-01-01

    Prostate cancer (PCa) is the most common non-cutaneous malignancy among men in the United States and the second leading cause of cancer-related death. Multi-parametric magnetic resonance imaging (mpMRI) has gained recent popularity to characterize PCa. Acoustic Radiation Force Impulse (ARFI) imaging has the potential to aid PCa diagnosis and management by using tissue stiffness to evaluate prostate zonal anatomy and lesions. MR and B-mode/ARFI in vivo imaging datasets were compared with one another and with gross pathology measurements made immediately after radical prostatectomy. Images were manually segmented in 3D Slicer to delineate the central gland (CG) and prostate capsule, and 3D models were rendered to evaluate zonal anatomy dimensions and volumes. Both imaging modalities showed good correlation between estimated organ volume and gross pathologic weights. Ultrasound and MR total prostate volumes were well correlated (R(2) = 0.77), but B-mode images yielded prostate volumes that were larger (16.82% ± 22.45%) than MR images, due to overestimation of the lateral dimension (18.4% ± 13.9%), with less significant differences in the other dimensions (7.4% ± 17.6%, anterior-to-posterior, and -10.8% ± 13.9%, apex-to-base). ARFI and MR CG volumes were also well correlated (R(2) = 0.85). CG volume differences were attributed to ARFI underestimation of the apex-to-base axis (-28.8% ± 9.4%) and ARFI overestimation of the lateral dimension (21.5% ± 14.3%). B-mode/ARFI imaging yielded prostate volumes and dimensions that were well correlated with MR T2-weighted image (T2WI) estimates, with biases in the lateral dimension due to poor contrast caused by extraprostatic fat. B-mode combined with ARFI imaging is a promising low-cost, portable, real-time modality that can complement mpMRI for PCa diagnosis, treatment planning, and management. PMID:25060914

  5. Characterization of a Broadband All-Optical Ultrasound Transducer—From Optical and Acoustical Properties to Imaging

    PubMed Central

    Hou, Yang; Kim, Jin-Sung; Huang, Sheng-Wen; Ashkenazi, Shai; Guo, L. Jay; O’Donnell, Matthew

    2009-01-01

    A broadband all-optical ultrasound transducer has been designed, fabricated, and evaluated for high-frequency ultrasound imaging. The device consists of a 2-D gold nanostructure imprinted on top of a glass substrate, followed by a 3 μm PDMS layer and a 30 nm gold layer. A laser pulse at the resonance wavelength of the gold nanostructure is focused onto the surface for ultrasound generation, while the gold nanostructure, together with the 30 nm thick gold layer and the PDMS layer in between, forms an etalon for ultrasound detection, which uses a CW laser at a wavelength far from resonance as the probing beam. The center frequency of a pulse-echo signal recorded in the far field of the transducer is 40 MHz with -6 dB bandwidth of 57 MHz. The signal to noise ratio (SNR) from a 70 μm diameter transmit element combined with a 20 μm diameter receive element probing a near perfect reflector positioned 1.5 mm from the transducer surface is more than 10 dB and has the potential to be improved by at least another 40 dB. A high-frequency ultrasound array has been emulated using multiple measurements from the transducer while mechanically scanning an imaging target. Characterization of the device’s optical and acoustical properties, as well as preliminary imaging results, strongly suggest that all-optical ultrasound transducers can be used to build high-frequency arrays for real-time high-resolution ultrasound imaging. PMID:18986929

  6. Active and passive acoustic imaging inside a large-scale polyaxial hydraulic fracture test

    SciTech Connect

    Glaser, S.D.; Dudley, J.W. II; Shlyapobersky, J.

    1999-07-01

    An automated laboratory hydraulic fracture experiment has been assembled to determine what rock and treatment parameters are crucial to improving the efficiency and effectiveness of field hydraulic fractures. To this end a large (460 mm cubic sample) polyaxial cell, with servo-controlled X,Y,Z, pore pressure, crack-mouth-opening-displacement, and bottom hole pressure, was built. Active imaging with embedded seismic diffraction arrays images the geometry of the fracture. Preliminary tests indicate fracture extent can be imaged to within 5%. Unique embeddible high-fidelity particle velocity AE sensors were designed and calibrated to allow determination of fracture source kinematics.

  7. Imaging Acoustic Phonon Dynamics on the Nanometer-Femtosecond Spatiotemporal Length-Scale with Ultrafast Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Plemmons, Dayne; Flannigan, David

    Coherent collective lattice oscillations known as phonons dictate a broad range of physical observables in condensed matter and act as primary energy carriers across a wide range of material systems. Despite this omnipresence, analysis of phonon dynamics on their ultrashort native spatiotemporal length scale - that is, the combined nanometer (nm), spatial and femtosecond (fs), temporal length-scales - has largely remained experimentally inaccessible. Here, we employ ultrafast electron microscopy (UEM) to directly image discrete acoustic phonons in real-space with combined nm-fs resolution. By directly probing electron scattering in the image plane (as opposed to the diffraction plane), we retain phase information critical for following the evolution, propagation, scattering, and decay of phonons in relation to morphological features of the specimen (i.e. interfaces, grain boundaries, voids, ripples, etc.). We extract a variety of morphologically-specific quantitative information from the UEM videos including phonon frequencies, phase velocities, and decays times. We expect these direct manifestations of local elastic properties in the vicinity of material defects and interfaces will aide in the understanding and application of phonon-mediated phenomena in nanostructures. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.

  8. Ultrasonic imaging of an object at the presence of Fourier and non-Fourier transformation in the transmitted through the object acoustic field.

    PubMed

    Andreeva, A; Burova, M; Burov, J

    2007-06-01

    A metal object is computer visualized by registration of the amplitudes of the transmitted through the object short acoustic pulses. The pulses are separated by time, because of the presence of holes and internal compact components in the longitudinal section (structure along the propagation direction of acoustic wave). The acoustic field transmitted through the object is composited from a field presenting Fourier transformation of the hole shape and field, transmitted through the metal components in the longitudinal section of the object. A computer Fourier transformation of the digital data of the amplitude fields transmitted through the object components is performed instead of converging lens. The Fourier series of the object obtained as digital data after the transformation is multiplied with a term, describing the angle distribution of the field on spatial frequencies. The reconstruction of the image of the metal components is performed by reverse transformation, i.e. summing up in all spatial frequencies. 3D visualization of the transmitted through the hole acoustic field determines the hole geometry (circular, square, rectangular). It is shown that at the transmission of a short acoustic pulse through the components with different thicknesses and holes, presenting Fourier and non-Fourier transformation can be registered separately in contrast to the optics. PMID:17395232

  9. Statement of capabilities: Micropower Impulse Radar (MIR) technology applied to mine detection and imaging

    SciTech Connect

    Azevedo, S.G.; Gavel, D.T.; Mast, J.E.; Warhus, J.P.

    1995-03-13

    The Lawrence Livermore National Laboratory (LLNL) has developed radar and imaging technologies with potential applications in mine detection by the armed forces and other agencies involved in demining efforts. These new technologies use a patented ultra-wideband (impulse) radar technology that is compact, low-cost, and low power. Designated as Micropower Impulse Radar, these compact, self-contained radars can easily be assembled into arrays to form complete ground penetrating radar imaging systems. LLNL has also developed tomographic reconstruction and signal processing software capable of producing high-resolution 2-D and 3-D images of objects buried in materials like soil or concrete from radar data. Preliminary test results have shown that a radar imaging system using these technologies has the ability to image both metallic and plastic land mine surrogate targets buried in 5 to 10 cm of moist soil. In dry soil, the system can detect buried objects to a depth of 30 cm and more. This report describes LLNL`s unique capabilities and technologies that can be applied to the demining problem.

  10. Nonlinear acoustic enhancement in photoacoustic imaging with wideband absorptive nanoemulsion beads

    NASA Astrophysics Data System (ADS)

    Wei, Chen-wei; Lombardo, Michael; Xia, Jinjun; Pelivanov, Ivan; Perez, Camilo; Larson-Smith, Kjersta; Matula, Thomas J.; Pozzo, Danilo; O'Donnell, Matthew

    2014-03-01

    A nanoemulsion contrast agent with a perfluorohexane core and optically absorptive gold nanospheres (GNSs) assembled on the surface, is presented to improve the specificity of photoacoustic (PA) molecular imaging in differentiating targeted cells or aberrant regions from heterogeneous background signals. Compared to distributed GNSs, clustered GNSs at the emulsion oil-water interface produce a red-shifted and broadened absorption spectrum, exhibiting fairly high absorption in the near-infrared region commonly used for deep tissue imaging. Above a certain laser irradiation fluence threshold, a phase transition creating a microbubble in the emulsion core leads to more than 10 times stronger PA signals compared with conventional thermal-expansion-induced PA signals. These signals are also strongly non-linear, as verified by a differential scheme using recorded PA images at different laser fluences. Assuming a linear relation between laser fluence and the PA signal amplitude, differential processing results in nearly perfect suppression of linear sources, but retains a significant residue for the non-linear nanoemulsion with more than 35 dB enhancement. This result demonstrates that contrast specificity can be improved using the nanoemulsion as a targeting agent in PA molecular imaging by suppressing all background signals related to a linear PA response. Furthermore, combined with a system providing simultaneous laser/ultrasound excitation, cavitation-generated bubbles have the potential to be a highly specific contrast agent for ultrasound molecular imaging and harmonic imaging, as well as a targeted means for noninvasive ultrasound-based therapies.

  11. Optical Image Analysis Applied to Pore Network Quantification of Sandstones Under Experimental CO2 Injection

    NASA Astrophysics Data System (ADS)

    Berrezueta, E.; González, L.; Ordóñez, B.; Luquot, L.; Quintana, L.; Gallastegui, G.; Martínez, R.; Olaya, P.; Breitner, D.

    2015-12-01

    This research aims to propose a protocol for pore network quantification in sandstones applying the Optical Image Analysis (OIA) procedure, which guarantees the measurement reproducibility and its reliability. Two geological formations of sandstone, located in Spain and potentially suitable for CO2 sequestration, were selected for this study: a) the Cretaceous Utrillas unit, at the base of the Cenozoic Duero Basin and b) a Triassic unit at the base of the Cenozoic Guadalquivir Basin. Sandstone samples were studied before and after the CO2 experimental injection using Optical and scanning electronic microscopy (SEM), while the quantification of petrographic changes was done with OIA. The first phase of the rersearch consisted on a detailed mineralogical and petrographic study of the sandstones (before and after CO2-injection), for which we observed thin sections. Later, the methodological and experimental processes of the investigation were focused on i) adjustment and calibration of OIA tools; ii) data acquisition protocol based on image capture with different polarization conditions (synchronized movement of polarizers), using 7 images of the same mineral scene (6 in crossed polarizer and 1 in parallel polarizer); and iii) automated identification and segmentation of pore in 2D mineral images, generating applications by executable macros. Finally, once the procedure protocols had been, the compiled data was interpreted through an automated approach and the qualitative petrography was carried out. The quantification of changes in the pore network through OIA (porosity increase ≈ 2.5%) has allowed corroborate the descriptions obtained by SEM and microscopic techniques, which consisted in an increase in the porosity when CO2 treatment occurs. Automated-image identification and quantification of minerals, pores and textures together with petrographic analysis can be applied to improve pore system characterization in sedimentary rocks. This research offers numerical

  12. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.

    PubMed

    Berry, Gearóid P; Bamber, Jeffrey C; Armstrong, Cecil G; Miller, Naomi R; Barbone, Paul E

    2006-04-01

    The ultrasonic measurement and imaging of tissue elasticity is currently under wide investigation and development as a clinical tool for the assessment of a broad range of diseases, but little account in this field has yet been taken of the fact that soft tissue is porous and contains mobile fluid. The ability to squeeze fluid out of tissue may have implications for conventional elasticity imaging, and may present opportunities for new investigative tools. When a homogeneous, isotropic, fluid-saturated poroelastic material with a linearly elastic solid phase and incompressible solid and fluid constituents is subjected to stress, the behaviour of the induced internal strain field is influenced by three material constants: the Young's modulus (E(s)) and Poisson's ratio (nu(s)) of the solid matrix and the permeability (k) of the solid matrix to the pore fluid. New analytical expressions were derived and used to model the time-dependent behaviour of the strain field inside simulated homogeneous cylindrical samples of such a poroelastic material undergoing sustained unconfined compression. A model-based reconstruction technique was developed to produce images of parameters related to the poroelastic material constants (E(s), nu(s), k) from a comparison of the measured and predicted time-dependent spatially varying radial strain. Tests of the method using simulated noisy strain data showed that it is capable of producing three unique parametric images: an image of the Poisson's ratio of the solid matrix, an image of the axial strain (which was not time-dependent subsequent to the application of the compression) and an image representing the product of the aggregate modulus E(s)(1-nu(s))/(1+nu(s))(1-2nu(s)) of the solid matrix and the permeability of the solid matrix to the pore fluid. The analytical expressions were further used to numerically validate a finite element model and to clarify previous work on poroelastography. PMID:16616601

  13. Application of computed tomography to the acoustic imaging of sea mines at safe standoff distances

    NASA Astrophysics Data System (ADS)

    Wyber, Ron; Ferguson, Brian

    2002-05-01

    Typical imaging sonars make use of very high frequencies and arrays with a large number of sensors to provide high angular resolution. With such arrays the spatial resolution degrades and high propagation losses occur as the sonar is moved away from the target being imaged and operational ranges are generally 5 m or less. An alternative imaging technique has been implemented using computed tomography in which the target is insonified with a broad beam from multiple aspects. The spatial resolution achievable with this method is determined only by the bandwidth of the test signal and not by the beamwidth of the sonar or the distance of the sonar from the target. Results are presented showing clear images of mines and mine-like objects in which a spatial resolution of better than 2 cm is achieved at a range of 60 m, even for low target strength mines. Features are evident in the images that are related to both the internal and external shape of the targets as well as structural waves propagating within the targets. This offers the potential to provide unambiguous classification of mines from long ranges, even in a harsh operational environment.

  14. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease.

    PubMed

    Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen

    2015-09-01

    Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis. PMID:26116161

  15. Quantification of applied dose in irradiated citrus fruits by DNA Comet Assay together with image analysis.

    PubMed

    Cetinkaya, Nurcan; Ercin, Demet; Özvatan, Sümer; Erel, Yakup

    2016-02-01

    The experiments were conducted for quantification of applied dose for quarantine control in irradiated citrus fruits. Citrus fruits exposed to doses of 0.1 to 1.5 kGy and analyzed by DNA Comet Assay. Observed comets were evaluated by image analysis. The tail length, tail moment and tail DNA% of comets were used for the interpretation of comets. Irradiated citrus fruits showed the separated tails from the head of the comet by increasing applied doses from 0.1 to 1.5 kGy. The mean tail length and mean tail moment% levels of irradiated citrus fruits at all doses are significantly different (p < 0.01) from control even for the lowest dose at 0.1 kGy. Thus, DNA Comet Assay may be a practical quarantine control method for irradiated citrus fruits since it has been possible to estimate the applied low doses as small as 0.1 kGy when it is combined with image analysis. PMID:26304361

  16. Stroke prognosis by applying double thresholds on CT-perfusion-brain images

    NASA Astrophysics Data System (ADS)

    Chokchaitam, Somchart; Santipromwong, Nittaya; Muengtaweepongsa, Sombat

    2013-03-01

    The CT-perfusion image shows information of brain abnormalities such as its size and location. Generally, neurologist diagnoses stroke disease using CT-perfusion images such as Cerebral blood flow (CBF), cerebral blood volume (CBV). In our previous report, we applied threshold technique to divide amount of CBV and CBF into low and high level. Then, their levels are applied to identify normal tissue areas, dead tissue areas (infract core) and blood-cot tissue areas (infract penumbra). However, it's not totally correct, if the same threshold is applied to the whole area (it must depend on size of blood vessel in that area. In this report, we propose double thresholds to divided CBV and CBF into 3 levels: very low, medium and very high levels. Very low and very high levels are definitely implied to bad areas and good areas, respectively. The proposed double thresholds makes stroke prognosis more accurate. The simulation results confirm that our proposed results closed to results defined from neurologist comparing to the conventional results.

  17. The monocular visual imaging technology model applied in the airport surface surveillance

    NASA Astrophysics Data System (ADS)

    Qin, Zhe; Wang, Jian; Huang, Chao

    2013-08-01

    At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.

  18. Multivariate Curve Resolution Applied to Hyperspectral Imaging Analysis of Chocolate Samples.

    PubMed

    Zhang, Xin; de Juan, Anna; Tauler, Romà

    2015-08-01

    This paper shows the application of Raman and infrared hyperspectral imaging combined with multivariate curve resolution (MCR) to the analysis of the constituents of commercial chocolate samples. The combination of different spectral data pretreatment methods allowed decreasing the high fluorescent Raman signal contribution of whey in the investigated chocolate samples. Using equality constraints during MCR analysis, estimations of the pure spectra of the chocolate sample constituents were improved, as well as their relative contributions and their spatial distribution on the analyzed samples. In addition, unknown constituents could be also resolved. White chocolate constituents resolved from Raman hyperspectral image indicate that, at macro scale, sucrose, lactose, fat, and whey constituents were intermixed in particles. Infrared hyperspectral imaging did not suffer from fluorescence and could be applied for white and milk chocolate. As a conclusion of this study, micro-hyperspectral imaging coupled to the MCR method is confirmed to be an appropriate tool for the direct analysis of the constituents of chocolate samples, and by extension, it is proposed for the analysis of other mixture constituents in commercial food samples. PMID:26162693

  19. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    SciTech Connect

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie; Santos-Villalobos, Hector J

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  20. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    SciTech Connect

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie; Santos-Villalobos, Hector J

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  1. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    NASA Astrophysics Data System (ADS)

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  2. Photo-acoustic imaging of blue nanoparticle targeted brain tumor for intra-operative glioma delineation

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Wang, Xueding; Koo Lee, Yong-Eun; Hah, HoeJin; Kim, Gwangseong; Chen, Thomas; Orrienger, Daniel; Sagher, Oren; Kopelman, Raoul

    2011-07-01

    Distinguishing the tumor from the background neo-plastic tissue is challenging for cancer surgery such as surgical resection of glioma. Attempts have been made to use visible or fluorescent markers to delineate the tumors during surgery. However, the systemic injection of the dyes requires high dose, resulting in negative side effects. A novel method to delineate rat brain tumors intra-operatively, as well as post-operatively, using a highly sensitive photoacoustic imaging technique enhanced by tumor targeting blue nanoparticle as contrast agent is demonstrated. The nanoparticles are made of polyacrylamide (PAA) matrix with covalently linked Coomassie-Blue dye. They contain 7.0% dye and the average size is 80nm. Their surface was conjugated with F3 peptide for active tumor targeting. These nanoparticles are nontoxic, chemically inert and have long plasma circulation lifetime, making them suitable as nanodevices for imaging using photoacoustics. Experiments on phantoms and rat brains tumors ex-vivo demonstrate the high sensitivity of photoacoustic imaging in delineating the tumor, containing contrast agent at concentrations too low to be visualized by eye. The control tumors without nanoparticles did not show any enhanced signal. This study shows that photoacoustic imaging facilitated with the nanoparticle contrast agent could contribute to future surgical procedures for glioma.

  3. ZnSe-material phase mask applied to athermalization of infrared imaging systems.

    PubMed

    Feng, Bin; Shi, Zelin; Xu, Baoshu; Zhang, Chengshuo; Zhang, Xiaodong

    2016-07-20

    This paper reports a ZnSe-material phase mask that is applied to athermalization of a conventional infrared imaging system. Its principle, design, manufacture, measurement, and performance validation are successively discussed. This paper concludes that a ZnSe-material phase mask has a permissible manufacturing error 2.14 times as large as a Ge-material phase mask. By constructing and solving an optimization problem, the ZnSe-material phase mask is optimally designed. The optimal phase mask is manufactured and measured with a form manufacturing error of 1.370 μm and a surface roughness value of 9.926 nm. Experiments prove that the wavefront coding athermalized longwave infrared (LWIR) imaging system works well over the temperature range from -40°C to +60°C. PMID:27463928

  4. Object detection and classification using image moment functions in the applied to video and imagery analysis

    NASA Astrophysics Data System (ADS)

    Mise, Olegs; Bento, Stephen

    2013-05-01

    This paper proposes an object detection algorithm and a framework based on a combination of Normalized Central Moment Invariant (NCMI) and Normalized Geometric Radial Moment (NGRM). The developed framework allows detecting objects with offline pre-loaded signatures and/or using the tracker data in order to create an online object signature representation. The framework has been successfully applied to the target detection and has demonstrated its performance on real video and imagery scenes. In order to overcome the implementation constraints of the low-powered hardware, the developed framework uses a combination of image moment functions and utilizes a multi-layer neural network. The developed framework has been shown to be robust to false alarms on non-target objects. In addition, optimization for fast calculation of the image moments descriptors is discussed. This paper presents an overview of the developed framework and demonstrates its performance on real video and imagery scenes.

  5. Fractal Analysis of Laplacian Pyramidal Filters Applied to Segmentation of Soil Images

    PubMed Central

    de Castro, J.; Méndez, A.; Tarquis, A. M.

    2014-01-01

    The laplacian pyramid is a well-known technique for image processing in which local operators of many scales, but identical shape, serve as the basis functions. The required properties to the pyramidal filter produce a family of filters, which is unipara metrical in the case of the classical problem, when the length of the filter is 5. We pay attention to gaussian and fractal behaviour of these basis functions (or filters), and we determine the gaussian and fractal ranges in the case of single parameter a. These fractal filters loose less energy in every step of the laplacian pyramid, and we apply this property to get threshold values for segmenting soil images, and then evaluate their porosity. Also, we evaluate our results by comparing them with the Otsu algorithm threshold values, and conclude that our algorithm produce reliable test results. PMID:25114957

  6. Fractal analysis of laplacian pyramidal filters applied to segmentation of soil images.

    PubMed

    de Castro, J; Ballesteros, F; Méndez, A; Tarquis, A M

    2014-01-01

    The laplacian pyramid is a well-known technique for image processing in which local operators of many scales, but identical shape, serve as the basis functions. The required properties to the pyramidal filter produce a family of filters, which is unipara metrical in the case of the classical problem, when the length of the filter is 5. We pay attention to gaussian and fractal behaviour of these basis functions (or filters), and we determine the gaussian and fractal ranges in the case of single parameter a. These fractal filters loose less energy in every step of the laplacian pyramid, and we apply this property to get threshold values for segmenting soil images, and then evaluate their porosity. Also, we evaluate our results by comparing them with the Otsu algorithm threshold values, and conclude that our algorithm produce reliable test results. PMID:25114957

  7. Evaluation of clip localization for different kilovoltage imaging modalities as applied to partial breast irradiation setup

    SciTech Connect

    Buehler, Andreas; Ng, Sook-Kien; Lyatskaya, Yulia; Stsepankou, Dzmitry; Hesser, Jurgen; Zygmanski, Piotr

    2009-03-15

    Surgical clip localization and image quality were evaluated for different types of kilovoltage cone beam imaging modalities as applied to partial breast irradiation (PBI) setup. These modalities included (i) clinically available radiographs and cone beam CT (CB-CT) and (ii) various alternative modalities based on partial/sparse/truncated CB-CT. An anthropomorphic torso-breast phantom with surgical clips was used for the imaging studies. The torso phantom had artificial lungs, and the attached breast phantom was a mammographic phantom with realistic shape and tissue inhomogeneities. Three types of clips of variable size were used in two orthogonal orientations to assess their in-/cross-plane characteristics for image-guided setup of the torso-breast phantom in supine position. All studies were performed with the Varian on-board imaging (OBI, Varian) system. CT reconstructions were calculated with the standard Feldkamp-Davis-Kress algorithm. First, the radiographs were studied for a wide range of viewing angles to characterize image quality for various types of body anatomy in the foreground/background of the clips. Next, image reconstruction quality was evaluated for partial/sparse/truncated CB-CT. Since these modalities led to reconstructions with strong artifacts due to insufficient input data, a knowledge-based CT reconstruction method was also tested. In this method, the input data to the reconstruction algorithm were modified by combining complementary data sets selected from the treatment and reference projections. Different partial/sparse/truncated CB-CT scan types were studied depending on the total arc angle, angular increment between the consequent views (CT projections), orientation of the arc center with respect to the imaged breast and chest wall, and imaging field size. The central angles of the viewing arcs were either tangential or orthogonal to the chest wall. Several offset positions of the phantom with respect to the reference position were

  8. Acoustic mapping velocimetry

    NASA Astrophysics Data System (ADS)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  9. Lean Six Sigma applied to a process innovation in a mexican health institute's imaging department.

    PubMed

    Garcia-Porres, J; Ortiz-Posadas, M R; Pimentel-Aguilar, A B

    2008-01-01

    Delivery of services to a patient has to be given with an acceptable measure of quality that can be monitored through the patient's satisfaction. The objective of this work was to innovate processes eliminating waste and non value-added work in processes done at the Imaging Department in the National Institute of Respiratory Diseases (INER for its Spanish acronym) in Mexico City, to decrease the time a patient spends in a study and increase satisfaction. This innovation will be done using Lean Six Sigma tools and applied in a pilot program. PMID:19163870

  10. Applying latent semantic analysis to large-scale medical image databases.

    PubMed

    Stathopoulos, Spyridon; Kalamboukis, Theodore

    2015-01-01

    Latent Semantic Analysis (LSA) although has been used successfully in text retrieval when applied to CBIR induces scalability issues with large image collections. The method so far has been used with small collections due to the high cost of storage and computational time for solving the SVD problem for a large and dense feature matrix. Here we present an effective and efficient approach of applying LSA skipping the SVD solution of the feature matrix and overcoming in this way the deficiencies of the method with large scale datasets. Early and late fusion techniques are tested and their performance is calculated. The study demonstrates that early fusion of several composite descriptors with visual words increase retrieval effectiveness. It also combines well in a late fusion for mixed (textual and visual) ad hoc and modality classification. The results reported are comparable to state of the art algorithms without including additional knowledge from the medical domain. PMID:24934416

  11. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  12. Bioacoustic systems: insights for acoustical imaging and pattern recognition (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Altes, Richard A.

    1987-09-01

    Standard performance measures and statistical tests must be altered for research on animal sonar. The narrowband range-Doppler ambiguity function must be redefined to analyze wideband signals. A new range, cross-range ambiguity function is needed to represent angle estimation and spatial resolution properties of animal sonar systems. Echoes are transformed into time-frequency (spectrogram-like) representations by the peripheral auditory system. Detection, estimation, and pattern recognition capabilities of animals should thus be analyzed in terms of operations on spectrograms. The methods developed for bioacoustic research yield new insights into the design of man-made imaging and pattern recognition systems. The range, cross-range ambiguity function can be used to improve imaging performance. Important features for echo pattern recognition are illustrated by time-frequency plots showing (i) principal components for spectrograms and (ii) templates for optimum discrimination between data classes.

  13. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  14. Optimization of contrast-to-tissue ratio through pulse windowing in dual-frequency “acoustic angiography” imaging

    PubMed Central

    Lindsey, Brooks D.; Shelton, Sarah E.; Dayton, Paul A.

    2016-01-01

    Early-stage tumors in many cancers are characterized by vascular remodeling, indicative of transformations in cell function. We have previously presented a high-resolution ultrasound imaging approach for detecting these changes which is based on microbubble contrast agents. In this technique, images are formed from only the higher harmonics of microbubble contrast agents, producing images of vasculature alone with 100–200 μm resolution. In this article, shaped transmit pulses are applied to imaging the higher broadband harmonic echoes of microbubble contrast agents, and the effects of varying pulse window and phasing on microbubble and tissue harmonic echoes are evaluated using a dual-frequency transducer in vitro and in vivo. An increase in contrast-to-tissue ratio of 6.8 ± 2.3 dB was observed in vitro by using an inverted pulse with a cosine window relative to a non-inverted pulse with a rectangular window. The increase in mean image intensity due to contrast enhancement in vivo in five rodents was 13.9 ± 3.0 dB greater for an inverted cosine-windowed pulse and 17.8 ± 3.6 dB greater for a non-inverted Gaussian-windowed relative to a non-inverted pulse with a rectangular window. Implications for pre-clinical and diagnostic imaging are also discussed. PMID:25819467

  15. Pre- and post-stimulation characterization of geothermal well GRT-1, Rittershoffen, France: insights from acoustic image logs of hard fractured rock

    NASA Astrophysics Data System (ADS)

    Vidal, Jeanne; Genter, Albert; Schmittbuhl, Jean

    2016-05-01

    Geothermal well GRT-1 (Rittershoffen, Alsace) was drilled in 2012. Its open-hole section (extending down to a depth of 2.6 km) penetrated fractured sandstones and granite. In 2013, the well was subjected to Thermal, Chemical and Hydraulic (TCH) stimulation, which improved the injectivity index five-fold. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation logs and well-logging (temperature [T] log) and mud-logging data. This comparison revealed modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement, and the post-stimulation T logs are important for characterizing this enhancement. Chemical alteration due to mechanical erosion at the tops and bottoms of the fractures was observed in the sandstones. These zones display indications of very small new permeability after the TCH stimulation. Because a major fault zone caved extensively where it crosses the borehole, it was not imaged in the acoustic logs. However, this originally permeable zone was enhanced as demonstrated by the T logs. Based on the natural injectivity of this fault zone, hydraulic erosion and thermal microcracking of its internal quartz veins are associated with this permeability enhancement. Although local changes in the borehole wall observed in the acoustic images cannot be directly linked to the improved injectivity index, the comparison of the acoustic image logs allows for identification of fracture zones impacted by the TCH stimulation.

  16. Subharmonic phased array for crack evaluation using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Ouchi, Akihiro; Sugawara, Azusa; Ohara, Yoshikazu; Yamanaka, Kazushi

    2015-07-01

    To accurately measure closed crack length, we proposed an imaging method using a subharmonic phased array for crack evaluation using surface acoustic waves (SAW SPACE) with water immersion. We applied SAW SPACE to the hole specimen in a fundamental array (FA) image. The hole was imaged with high resolution. Subsequently, SAW SPACE was applied to fatigue crack and stress corrosion crack (SCC) specimens. A fatigue crack was imaged in FA and subharmonic array (SA) images, and the length of this particular fatigue crack measured in the images was almost the same as that measured by optical observation. The SCC was imaged and its length was accurately measured in the SA image, whereas it was underestimated in the FA image and by optical observation. Thus, we demonstrated that SAW SPACE with water immersion is useful for the accurate measurement of closed crack length and for imaging the distribution of open and closed parts of cracks with high resolution.

  17. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging

    PubMed Central

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J. Alexander; Bargmann, Cornelia I.

    2016-01-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a “precise color” MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  18. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging.

    PubMed

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J Alexander; Bargmann, Cornelia I

    2016-03-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  19. Acoustic microscopy of living cells.

    PubMed Central

    Hildebrand, J A; Rugar, D; Johnston, R N; Quate, C F

    1981-01-01

    This paper reports preliminary results of the observation by acoustic microscopy of living cells in vitro. The scanning acoustic microscope uses high-frequency sound waves to produce images with submicrometer resolution. The contrast observed in acoustic micrographs of living cells depends on the acoustic properties (i.e., density, stiffness, and attenuation) and on the topographic contour of the cell. Variation in distance separating the acoustic lens and the viewed cell also has a profound effect on the image. When the substratum is located at the focal plane, thick regions of the cell show a darkening that can be related to cellular acoustic attenuation (a function of cytoplasmic viscosity). When the top of the cell is placed near the focal plane, concentric bright and dark rings appear in the image. The location of the rings can be related to cell topography, and the ring contrast can be correlated to the stiffness and density of the cell. In addition, the character of the images of single cells varies dramatically when the substratum upon which they are grown is changed to a different material. By careful selection of the substratum, the information content of the acoustic images can be increased. Our analysis of acoustic images of actively motile cells indicates that leading lamella are less dense or stiff than the quiescent trailing processes of the cells. Images PMID:6940179

  20. Acoustic Radiation Force Impulse Imaging: A New Tool for the Diagnosis of Papillary Thyroid Microcarcinoma

    PubMed Central

    Zhang, Yi-Feng; Xu, Jun-Mei; Zhang, Jing; Liu, Lin-Na; Xu, Xiao-Hong

    2014-01-01

    Purpose. To evaluate the diagnostic performance of ARFI imaging in differentiating between benign and malignant thyroid nodules <1 cm. Materials and Methods. 173 pathologically proven thyroid nodules (77 benign, 96 malignant) in 157 patients were included in this study. Receiver-operating characteristic curve (ROC) analyses were performed to assess the diagnostic performance of conventional ultrasound (US) and ARFI imaging in papillary thyroid microcarcinoma (PTMC). The independent risk factors for predicting PTMC were evaluated. Results. The mean SWV value of benign and malignant thyroid nodules were 2.57 ± 0.79 m/s (range: 0.90–4.92 m/s) and 3.88 ± 2.24 m/s (range: 1.49–9.00 m/s) (P = 0.000). Az for VTI elastography score was higher than that for hypoechoic, absence of halo sign, and type III vascularity (P < 0.05). The optimal cut-offs for VTI elastography score and SWV were score 4 and 3.10 m/s. Gender, hypoechoic, taller than wide, VTI elastography score ≥ 4, and SWV > 3.10 m/s had been found to be independent risk factors for predicting PTMC. Conclusion. ARFI elastography can provide elasticity information of PTMC quantitatively (VTQ) and directly reflects the overall elastic properties (VTI). Gender, hypoechogenicity, taller than wide, VTI elastography score ≥ 4, and SWV > 3.10 m/s are independent risk factors for predicting PTMC. ARFI elastography seems to be a new tool for the diagnosis of PTMC. PMID:25045673

  1. Scanning Tomographic Acoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Wade, G.; Meyyappan, A.

    1988-07-01

    The technology for "seeing" with sound has an important and interesting history. Some of nature's creatures have been using sound waves for many millenia to image otherwise unobservable objects. The human species, lacking this natural ability, have overcome this deficiency by developing several different ultrasonic imaging techniques. acoustic microscopy is one such technique, which produces high resolution images of detailed structure of small objects in a non-destructive fashion. Two types of acoustic microscopes have evolved for industrial exploitation. They are the scanning laser acoustic microscope (SLAM) and the scanning acoustic microscope (SAM). In this paper, we review the principles of SLAM and describe how we use elements of SLAM to realize the scanning tomographic acoustic microscope (STAM). We describe the data acquisition process and the image reconstruction procedure. We also describe techniques to obtain projection data from different angles of wave incidence enabling us to reconstruct different planes of a complex specimen tomo-graphically. Our experimental results show that STAM is capable of producing high-quality high-resolution subsurface images.

  2. Determination of the transport properties of ultrasonic waves traveling in piezoelectric crystals by imaging with Coulomb coupling

    NASA Astrophysics Data System (ADS)

    Habib, A.; Shelke, A.; Pietsch, U.; Kundu, T.; Grill, W.

    2012-04-01

    Coulomb coupling has been applied for imaging of bulk and guided acoustic waves propagating in a 0.5 mm thick, z cut Lithium Niobate single-crystal. The excitation and detection of acoustic waves was performed by localized electrical field probes. The developed scheme has been applied to imaging of the transport properties of skimming longitudinal and guided acoustic waves. A short pulse of 20 ns has been used for the excitation of acoustic waves. Broadband coupling is achieved since neither mechanical nor electrical resonances are involved. The attenuation of acoustic waves in piezoelectric crystals is studied by this method. A thin film of conductive silver paint was deposited on the surface of the crystal acting as an acoustic attenuator inducing also mass loading effects and shortening of electrical fields. The group velocities of the propagating acoustic waves for both conditions, with and without the conductive silver paint film, are determined from the propagation of the acoustic wave fronts.

  3. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  4. Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-07-01

    We present a 26 day time series (October 2010) of physical properties (volume flux, flow velocity, expansion rate) of a vigorous deep-sea hydrothermal plume measured using our Cabled Observatory Vent Imaging Sonar (COVIS), which is connected to the Northeast Pacific Time Series Underwater Experiment Canada Cabled Observatory at the Main Endeavour Field on the Juan de Fuca Ridge. COVIS quantitatively monitors the initial buoyant rise of the plume from ˜5 m to ˜15 m above the vents. The time series exhibits temporal variations of the plume vertical volume flux (1.93-5.09 m3/s ), centerline vertical velocity component (0.11-0.24 m/s ) and expansion rate (0.082-0.21 m/m ); these variations have major spectral peaks at semidiurnal (˜2 cycle/day) and inertial oscillation (˜1.5 cycle/day) frequencies. The plume expansion rate (average ˜0.14 m/m ) is inversely proportional to the plume centerline vertical velocity component (coefficient of determination R2˜0.5). This inverse proportionality, as well as the semidiurnal frequency, indicates interaction between the plume and ambient ocean currents consistent with an entrainment of ambient seawater that increases with the magnitude of ambient currents. The inertial oscillations observed in the time series provide evidence for the influence of surface storms on the dynamics of hydrothermal plumes.

  5. A method of construction of information images of the acoustic signals of the human bronchopulmonary system

    NASA Astrophysics Data System (ADS)

    Bureev, A. Sh.; Zhdanov, D. S.; Zemlyakov, I. Yu.; Kiseleva, E. Yu.; Khokhlova, L. A.

    2015-11-01

    The present study focuses on the development of a method of identification of respiratory sounds and noises of a human naturally and in various pathological conditions. The existing approaches based on a simple method of frequency and time signal analysis, have insufficient specificity, efficiency and unambiguous interpretation of the results of a clinical study. An algorithm for a phase selection of respiratory cycles and analysis of respiratory sounds resulting from bronchi examination of a patient has been suggested. The algorithm is based on the method of phase timing analysis of bronchi phonograms. The results of the phase-frequency algorithm with high resolution reflects a time position of the traceable signals and the individual structure of recorded signals. This allows using the proposed method for the formation of information images (models) of the diagnostically significant fragments. A weight function, frequency parameters of which can be selectively modified, is used for this purpose. The vision of the weighting function is specific to each type of respiratory noise, traditionally referred to quality characteristics (wet or dry noise, crackling, etc.).

  6. Applying fluorescence lifetime imaging microscopy to evaluate the efficacy of anticancer drugs

    NASA Astrophysics Data System (ADS)

    Kawanabe, Satoshi; Araki, Yoshie; Uchimura, Tomohiro; Imasaka, Totaro

    2015-06-01

    Fluorescence lifetime imaging microscopy was applied to evaluate the efficacy of anticancer drugs. A decrease in the fluorescence lifetime of the nucleus in apoptotic cancer cells stained by SYTO 13 dye was detected after treatment with antitumor antibiotics such as doxorubicin or epirubicin. It was confirmed that the change in fluorescence lifetime occurred earlier than morphological changes in the cells. We found that the fluorescence lifetime of the nucleus in the cells treated with epirubicin decreased more rapidly than that of the cells treated with doxorubicin. This implies that epirubicin was more efficacious than doxorubicin in the treatment of cancer cells. The change in fluorescence lifetime was, however, not indicated when the cells were treated with cyclophosphamide. The decrease in fluorescence lifetime was associated with the processes involving caspase activation and chromatin condensation. Therefore, this technique would provide useful information about apoptotic cells, particularly in the early stages.

  7. Variation of Magnetic Particle Imaging Tracer Performance With Amplitude and Frequency of the Applied Magnetic Field

    PubMed Central

    Khandhar, Amit P.; Kemp, Scott J.; Ota, Satoshi; Nakamura, Kosuke; Takemura, Yasushi; Krishnan, Kannan M.

    2015-01-01

    The magnetic response of magnetic particle imaging (MPI) tracers varies with the slew rate of the applied magnetic field, as well as with the tracer's average magnetic core size. Currently, 25 kHz and 20 mT/μ0 drive fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. We studied how several different sizes of monodisperse MPI tracers behaved under different drive field amplitude and frequency, using magnetic particle spectrometry and ac hysteresis for drive field conditions at 16, 26, and 40 kHz, with field amplitudes from 5 to 40 mT/μ0. We observed that both field amplitude and frequency can influence the tracer behavior, but that the magnetic behavior is consistent when the slew rate (the product of field amplitude and frequency) is consistent. However, smaller amplitudes provide a correspondingly smaller field of view, sometimes resulting in excitation of a minor hysteresis loop. PMID:26023242

  8. Evaluation of multichannel Wiener filters applied to fine resolution passive microwave images of first-year sea ice

    NASA Technical Reports Server (NTRS)

    Full, William E.; Eppler, Duane T.

    1993-01-01

    The effectivity of multichannel Wiener filters to improve images obtained with passive microwave systems was investigated by applying Wiener filters to passive microwave images of first-year sea ice. Four major parameters which define the filter were varied: the lag or pixel offset between the original and the desired scenes, filter length, the number of lines in the filter, and the weight applied to the empirical correlation functions. The effect of each variable on the image quality was assessed by visually comparing the results. It was found that the application of multichannel Wiener theory to passive microwave images of first-year sea ice resulted in visually sharper images with enhanced textural features and less high-frequency noise. However, Wiener filters induced a slight blocky grain to the image and could produce a type of ringing along scan lines traversing sharp intensity contrasts.

  9. Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates

    NASA Astrophysics Data System (ADS)

    Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.

    2016-06-01

    There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.

  10. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles

    PubMed Central

    Wang, Yu Winston; Kang, Soyoung; Khan, Altaz; Bao, Philip Q.; Liu, Jonathan T.C.

    2015-01-01

    The biological investigation and detection of esophageal cancers could be facilitated with an endoscopic technology to screen for the molecular changes that precede and accompany the onset of cancer. Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to improve cancer detection and investigation through the sensitive and multiplexed detection of cell-surface biomarkers. Here, we demonstrate that the topical application and endoscopic imaging of a multiplexed cocktail of receptor-targeted SERS NPs enables the rapid detection of tumors in an orthotopic rat model of esophageal cancer. Antibody-conjugated SERS NPs were topically applied on the lumenal surface of the rat esophagus to target EGFR and HER2, and a miniature spectral endoscope featuring rotational scanning and axial pull-back was employed to comprehensively image the NPs bound on the lumen of the esophagus. Ratiometric analyses of specific vs. nonspecific binding enabled the visualization of tumor locations and the quantification of biomarker expression in agreement with immunohistochemistry and flow cytometry validation data. PMID:26504623

  11. Threshold thickness for applying diffusion equation in thin tissue optical imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong

    2014-08-01

    We investigated the suitability of the semi-infinite model of the diffusion equation when using diffuse optical imaging (DOI) to image thin tissues with double boundaries. Both diffuse approximation and Monte Carlo methods were applied to simulate light propagation in the thin tissue model with variable optical parameters and tissue thicknesses. A threshold value of the tissue thickness was defined as the minimum thickness in which the semi-infinite model exhibits the same reflected intensity as that from the double-boundary model and was generated as the final result. In contrast to our initial hypothesis that all optical properties would affect the threshold thickness, our results show that only absorption coefficient is the dominant parameter and the others are negligible. The threshold thickness decreases from 1 cm to 4 mm as the absorption coefficient grows from 0.01 mm-1 to 0.2 mm-1. A look-up curve was derived to guide the selection of the appropriate model during the optical diagnosis of thin tissue cancers. These results are useful in guiding the development of the endoscopic DOI for esophageal, cervical and colorectal cancers, among others.

  12. Applied region restriction and noncausal algorithm for line process of image sequence

    NASA Astrophysics Data System (ADS)

    Kohno, Yasuhisa; Ebine, Takumi; Hamada, Nozomu

    2000-12-01

    The precise estimation of optical flow is a key technology in computer vision and moving image processing. Due to the inherent feature of apparent motion occlusion and uncovered phenomena, flow estimation is erroneous at moving object's boundary. The line field lattice process(i.e. Gibbs/Markov random field model of discontinuity) is a well-known solution to this problem.The binary-valued line is used to separate regions with respect to motion. This paper proposes two improvements to the conventional line field estimation process. One is to reduce the computational burden by the following idea. At the MAP estimation algorithm for region segmentation, the applied region of line setting is restricted solely within motion boundary area which is specified by thresholding the residue of optical flow constraints. The second improvement is to refine the estimation accuracy at the recursive minimization of energy function. Since the previous pel-recursive line estimation procedure uses causal scanning, it tends to give undesirable lines such as cracked or isolated lines.Our proposal algorithm adopts non-causal scan process. The effect of the proposed methods are examined for artificial and a real moving image. In consequence, only 14 of computational time of previous method is necessary to generate the line. In addition, undesirable line setting is effectively omitted.

  13. Applying vertebral boundary semantics to CBIR of digitized spine x-ray images

    NASA Astrophysics Data System (ADS)

    Antani, Sameer K.; Long, L. Rodney; Thoma, George R.

    2004-12-01

    There is a growing research interest in reliable content-based image retrieval (CBIR) techniques specialized for biomedical image retrieval. Applicable feature representation and similarity algorithms have to balance conflicting goals of efficient and effective retrieval while allowing queries on important and often subtle biomedical features. In a collection of digitized X-rays of the spine, such as that from the second National Health and Nutrition Examination Survey (NHANES II) maintained by the National Library of Medicine, a typical user may be interested in only a small region of the vertebral boundary pertinent to the pathology: for this experiment, the Anterior Osteophyte (AO). A previous experiment in pathology-based retrieval using partial shape matching (PSM) on a subset from the above collection; about 89% normal vertebrae were correctly retrieved. In contrast only 45% of moderate and severe cases were correctly retrieved, and on the average only 46% of the pathology classes were correctly determined. Further analysis revealed that mere shape matching is insufficient for semantically correct retrieval of pathological cases. This paper describes an automatic 9 point localization algorithm that incorporates reasoning about boundary semantics equivalent to that applied by the content-expert as a step in our enhancements to PSM, and results from initial experiments.

  14. Applying vertebral boundary semantics to CBIR of digitized spine x-ray images

    NASA Astrophysics Data System (ADS)

    Antani, Sameer K.; Long, L. Rodney; Thoma, George R.

    2005-01-01

    There is a growing research interest in reliable content-based image retrieval (CBIR) techniques specialized for biomedical image retrieval. Applicable feature representation and similarity algorithms have to balance conflicting goals of efficient and effective retrieval while allowing queries on important and often subtle biomedical features. In a collection of digitized X-rays of the spine, such as that from the second National Health and Nutrition Examination Survey (NHANES II) maintained by the National Library of Medicine, a typical user may be interested in only a small region of the vertebral boundary pertinent to the pathology: for this experiment, the Anterior Osteophyte (AO). A previous experiment in pathology-based retrieval using partial shape matching (PSM) on a subset from the above collection; about 89% normal vertebrae were correctly retrieved. In contrast only 45% of moderate and severe cases were correctly retrieved, and on the average only 46% of the pathology classes were correctly determined. Further analysis revealed that mere shape matching is insufficient for semantically correct retrieval of pathological cases. This paper describes an automatic 9 point localization algorithm that incorporates reasoning about boundary semantics equivalent to that applied by the content-expert as a step in our enhancements to PSM, and results from initial experiments.

  15. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  16. Eigenspace-Based Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging.

    PubMed

    Li, Jiake; Chen, Xiaodong; Wang, Yi; Li, Wei; Yu, Daoyin

    2016-01-01

    The use of a generalized sidelobe canceler (GSC) can significantly improve the lateral resolution of medical ultrasound systems, but the contrast improvement isn't satisfactory. Thus a new Eigenspace-based generalized sidelobe canceler (EBGSC) approach is proposed for medical ultrasound imaging, which can improve both the lateral resolution and contrast of the system. The weight vector of the EBGSC is obtained by projecting the GSC weight vector onto a vector subspace constructed from the eigenstructure of the covariance matrix, and using the new weight vector instead of the GSC ones leads to reduced sidelobe level and improved contrast. Simulated and experimental data are used to evaluate the performance of the proposed method. The Field II software is applied to obtain the simulated echo data of scattering points and circular cysts. Imaging of scattering points show that EBGSC has the same full width at half maximum (FWHM) as GSC, while the lateral resolution improves by 35.3% and 52.7% compared with synthetic aperture (SA) and delay-and-sum (DS), respectively. Compared with GSC, SA and DS, EBGSC improves the peak sidelobe level (PSL) by 23.55, 33.11 and 50.38 dB, respectively. Also the cyst contrast increase by EBGSC was calculated as 16.77, 12.43 and 26.73 dB, when compared with GSC, SA and DS, respectively. Finally, an experiment is conducted on the basis of the complete echo data collected by a medical ultrasonic imaging system. Results show that the proposed method can produce better lateral resolution and contrast than non-adaptive beamformers. PMID:27483272

  17. Land use mapping from CBERS-2 images with open source tools by applying different classification algorithms

    NASA Astrophysics Data System (ADS)

    Sanhouse-García, Antonio J.; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth; García-Ferrer, Alfonso; Mesas-Carrascosa, Francisco J.

    2016-02-01

    Land cover classification is often based on different characteristics between their classes, but with great homogeneity within each one of them. This cover is obtained through field work or by mean of processing satellite images. Field work involves high costs; therefore, digital image processing techniques have become an important alternative to perform this task. However, in some developing countries and particularly in Casacoima municipality in Venezuela, there is a lack of geographic information systems due to the lack of updated information and high costs in software license acquisition. This research proposes a low cost methodology to develop thematic mapping of local land use and types of coverage in areas with scarce resources. Thematic mapping was developed from CBERS-2 images and spatial information available on the network using open source tools. The supervised classification method per pixel and per region was applied using different classification algorithms and comparing them among themselves. Classification method per pixel was based on Maxver algorithms (maximum likelihood) and Euclidean distance (minimum distance), while per region classification was based on the Bhattacharya algorithm. Satisfactory results were obtained from per region classification, where overall reliability of 83.93% and kappa index of 0.81% were observed. Maxver algorithm showed a reliability value of 73.36% and kappa index 0.69%, while Euclidean distance obtained values of 67.17% and 0.61% for reliability and kappa index, respectively. It was demonstrated that the proposed methodology was very useful in cartographic processing and updating, which in turn serve as a support to develop management plans and land management. Hence, open source tools showed to be an economically viable alternative not only for forestry organizations, but for the general public, allowing them to develop projects in economically depressed and/or environmentally threatened areas.

  18. Acoustic Radiation Force Impulse Imaging (ARFI) on an IVUS Circular Array

    PubMed Central

    Patel, Vivek; Dahl, Jeremy; Bradway, David; Doherty, Joshua; Lee, Seung Yun; Smith, Stephen

    2014-01-01

    Our long-term goal is the detection and characterization of vulnerable plaque in the coronary arteries of the heart using IVUS catheters. Vulnerable plaque, characterized by a thin fibrous cap and a soft, lipid-rich, necrotic core is a pre-cursor to heart attack and stroke. Early detection of such plaques may potentially alter the course of treatment of the patient in order to prevent ischemic events. We have previously described the characterization of carotid plaques using external linear arrays operating at 9 MHz. In addition, we previously modified circular array IVUS catheters by short-circuiting several neighboring elements to produce fixed beam-widths for intra-vascular hyperthermia applications. In this paper we modified Volcano Visions 8.2 French, 9 MHz catheters and Volcano Platinum 3.5 French, 20 MHz catheters by short circuiting portions of the array for ARFI applications. The catheters had an effective transmit aperture size of 2 mm and 1.5 mm respectively. The catheters were connected to a Verasonics scanner and driven with pushing pulses of 180 V p-p to acquire ARFI data from a soft gel phantom with a Young’s modulus of 2.9 kPa. The dynamic response of the tissue-mimicking material demonstrates a typical ARFI motion of 1–2 microns as the gel phantom displaces away and recovers back to its normal position. The hardware modifications applied to our IVUS catheters mimic potential beamforming modifications that could be implemented on IVUS scanners. Our results demonstrate that the generation of radiation force from IVUS catheters and the development of intra-vascular ARFI may be feasible. PMID:24554291

  19. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  20. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  1. Acoustic levitator for containerless measurements on low temperature liquids

    SciTech Connect

    Benmore, Chris J; Weber, Richard; Neuefeind, Joerg C; Rey, Charles A A

    2009-01-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops at temperatures from -40 to +40 C. The levitator consisted of: (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) a acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ~ 22 kHz and could produce sound pressure levels up to 160 dB. The force applied by the acoustic field could be modulated using a frequency generator to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  2. Acoustic levitator for structure measurements on low temperature liquid droplets.

    PubMed

    Weber, J K R; Rey, C A; Neuefeind, J; Benmore, C J

    2009-08-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 degrees C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of approximately 22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids. PMID:19725664

  3. Modification of Kirchhoff migration with variable sound speed and attenuation for acoustic imaging of media and application to tomographic imaging of the breast

    PubMed Central

    Schmidt, Steven; Duric, Nebojsa; Li, Cuiping; Roy, Olivier; Huang, Zhi-Feng

    2011-01-01

    Purpose: To explore the feasibility of improving cross-sectional reflection imaging of the breast using refractive and attenuation corrections derived from ultrasound tomography data. Methods: The authors have adapted the planar Kirchhoff migration method, commonly used in geophysics to reconstruct reflection images, for use in ultrasound tomography imaging of the breast. Furthermore, the authors extended this method to allow for refractive and attenuative corrections. Using clinical data obtained with a breast imaging prototype, the authors applied this method to generate cross-sectional reflection images of the breast that were corrected using known distributions of sound speed and attenuation obtained from the same data. Results: A comparison of images reconstructed with and without the corrections showed varying degrees of improvement. The sound speed correction resulted in sharpening of detail, while the attenuation correction reduced the central darkening caused by path length dependent losses. The improvements appeared to be greatest when dense tissue was involved and the least for fatty tissue. These results are consistent with the expectation that denser tissues lead to both greater refractive effects and greater attenuation. Conclusions: Although conventional ultrasound techniques use time-gain control to correct for attenuation gradients, these corrections lead to artifacts because the true attenuation distribution is not known. The use of constant sound speed leads to additional artifacts that arise from not knowing the sound speed distribution. The authors show that in the context of ultrasound tomography, it is possible to construct reflection images of the breast that correct for inhomogeneous distributions of both sound speed and attenuation. PMID:21452737

  4. Vibro-acoustography and Multifrequency Image Compounding

    PubMed Central

    Urban, Matthew W.; Alizad, Azra; Fatemi, Mostafa

    2011-01-01

    Vibro-acoustography is an ultrasound based imaging modality that can visualize normal and abnormal soft tissue through mapping the acoustic response of the object to a harmonic radiation force at frequency Δf induced by focused ultrasound. In this method, the ultrasound energy is converted from high ultrasound frequencies to a low acoustic frequency (acoustic emission) that is often two orders of magnitude smaller than the ultrasound frequency. The acoustic emission is normally detected by a hydrophone. Depending on the setup, this low frequency sound may reverberate by object boundaries or other structures present in the acoustic paths before it reaches the hydrophone. This effect produces an artifact in the image in the form of gradual variations in image intensity that may compromise image quality. The use of tonebursts with finite length yields acoustic emission at Δf and at sidebands centered about Δf. Multiple images are formed by selectively applying bandpass filters on the acoustic emission at Δf and the associated sidebands. The data at these multiple frequencies are compounded through both coherent and incoherent processes to reduce the acoustic emission reverberation artifacts. Experimental results from a urethane breast phantom are described. The coherent and incoherent compounding of multifrequency data show, both qualitatively and quantitatively, the efficacy of this reverberation reduction method. This paper presents theory describing the physical origin of this artifact and use of image data created using multifrequency vibro-acoustography for reducing reverberation artifacts. PMID:21377181

  5. Taking advantage of acoustic inhomogeneities in photoacoustic measurements

    NASA Astrophysics Data System (ADS)

    Da Silva, Anabela; Handschin, Charles; Riedinger, Christophe; Piasecki, Julien; Mensah, Serge; Litman, Amélie; Akhouayri, Hassan

    2016-03-01

    Photoacoustic offers promising perspectives in probing and imaging subsurface optically absorbing structures in biological tissues. The optical uence absorbed is partly dissipated into heat accompanied with microdilatations that generate acoustic pressure waves, the intensity which is related to the amount of fluuence absorbed. Hence the photoacoustic signal measured offers access, at least potentially, to a local monitoring of the absorption coefficient, in 3D if tomographic measurements are considered. However, due to both the diffusing and absorbing nature of the surrounding tissues, the major part of the uence is deposited locally at the periphery of the tissue, generating an intense acoustic pressure wave that may hide relevant photoacoustic signals. Experimental strategies have been developed in order to measure exclusively the photoacoustic waves generated by the structure of interest (orthogonal illumination and detection). Temporal or more sophisticated filters (wavelets) can also be applied. However, the measurement of this primary acoustic wave carries a lot of information about the acoustically inhomogeneous nature of the medium. We propose a protocol that includes the processing of this primary intense acoustic wave, leading to the quantification of the surrounding medium sound speed, and, if appropriate to an acoustical parametric image of the heterogeneities. This information is then included as prior knowledge in the photoacoustic reconstruction scheme to improve the localization and quantification.

  6. Acoustic microscopy with mixed-mode transducers

    SciTech Connect

    Chou, C.H.; Parent, P.; Khuri-Yakub, B.T.

    1988-12-31

    The new amplitude-phase acoustic microscope is versatile; it operates in a wide frequency range 1--200 MHz, with selection of longitudinal, shear, and mixed modes. This enables it to be used in many NDE applications for different kinds of materials. Besides the application examples presented in this paper (bulk defect imaging of lossy materials or at deep locations; leads of IC chip in epoxy package; amplitude images of surface crack on Si nitride ball bearing; thin Au film on quartz), this system can also be applied for residual stress and anisotropy mapping with high accuracy and good spatial resolution. 7 refs, 6 figs.

  7. Forward model of thermally-induced acoustic signal specific to intralumenal detection geometry

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sovanlal; Bunting, Charles F.; Piao, Daqing

    2011-03-01

    This work investigates a forward model associated with intra-lumenal detection of acoustic signal originated from transient thermal-expansion of the tissue. The work is specific to intra-lumenal thermo-acoustic tomography (TAT) which detects the contrast of tissue dielectric properties with ultrasonic resolution, but it is also extendable to intralumenal photo-acoustic tomography (PAT) which detects the contrast of light absorption properties of tissue with ultrasound resolution. Exact closed-form frequency-domain or time-domain forward model of thermally-induced acoustic signal have been studied rigorously for planar geometry and two other geometries, including cylindrical and spherical geometries both of which is specific to external-imaging, i.e. breast or brain imaging using an externally-deployed applicator. This work extends the existing studies to the specific geometry of internal or intra-lumenal imaging, i.e., prostate imaging by an endo-rectally deployed applicator. In this intra-lumenal imaging geometry, both the source that excites the transient thermal-expansion of the tissue and the acoustic transducer that acquires the thermally-induced acoustic signal are assumed enclosed by the tissue and on the surface of a long cylindrical applicator. The Green's function of the frequency-domain thermo-acoustic equation in spherical coordinates is expanded to cylindrical coordinates associated with intra-lumenal geometry. Inverse Fourier transform is then applied to obtain a time-domain solution of the thermo-acoustic pressure wave for intra-lumenal geometry. Further employment of the boundary condition to the "convex" applicator-tissue interface would render an exact forward solution toward accurate reconstruction for intra-lumenal thermally-induced acoustic imaging.

  8. Evaluating the Acoustic Effect of Over-the-Rotor Foam-Metal Liner Installed on a Low Speed Fan Using Virtual Rotating Microphone Imaging

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Dougherty, Robert P.; Walker, Bruce E.

    2010-01-01

    An in-duct beamforming technique for imaging rotating broadband fan sources has been used to evaluate the acoustic characteristics of a Foam-Metal Liner installed over-the-rotor of a low-speed fan. The NASA Glenn Research Center s Advanced Noise Control Fan was used as a test bed. A duct wall-mounted phased array consisting of several rings of microphones was employed. The data are mathematically resampled in the fan rotating reference frame and subsequently used in a conventional beamforming technique. The steering vectors for the beamforming technique are derived from annular duct modes, so that effects of reflections from the duct walls are reduced.

  9. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    SciTech Connect

    Tittmann, B. R.; Xi, X.

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  10. A study and evaluation of image analysis techniques applied to remotely sensed data

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.; Dasarathy, B. V.; Lybanon, M.; Ramapriyan, H. K.

    1976-01-01

    An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented.

  11. Comparison of infrared and 3D digital