Sample records for acoustic impulse technique

  1. Refinement and application of acoustic impulse technique to study nozzle transmission characteristics

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.

    1983-01-01

    An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.

  2. What does See the Impulse Acoustic Microscopy inside Nanocomposites?

    NASA Astrophysics Data System (ADS)

    Levin, V. M.; Petronyuk, Y. S.; Morokov, E. S.; Celzard, A.; Bellucci, S.; Kuzhir, P. P.

    The paper presents results of studying bulk microstructure in carbon nanocomposites by impulse acoustic microscopy technique. Nanocomposite materials are in the focus of interest because of their outstanding properties in minimal nanofiller content. Large surface area and high superficial activity cause strong interaction between nanoparticles that can result in formation of fractal conglomerates. This paper involves results of the first direct observation of nanoparticle conglomerates inside the bulk of epoxy-carbon nanocomposites. Diverse types of carbon nanofiller have been under investigation. The impulse acoustic microscope SIAM-1 (Acoustic Microscopy Lab, IBCP RAS) has been employed for 3D imaging bulk microstructure and measuring elastic properties of the nanocomposite specimens. The range of 50-200 MHz allows observing microstructure inside the entire specimen bulk. Acoustic images are obtained in the ultramicroscopic regime; they are formed by the Rayleigh type scattered radiation. It has been found the high-resolution acoustic vision (impulse acoustic microscopy) is an efficient technique to observe mesostructure formed by fractal cluster inside nanocomposites. The clusterization takes its utmost form in nanocomposites with graphite nanoplatelets as nanofiller. The nanoparticles agglomerate into micron-sized conglomerates distributed randomly over the material. Mesostructure in nanocomposites filled with carbon nanotubes is alternation of regions with diverse density of nanotube packing. Regions with alternative density of CNT packing are clearly seen in acoustical images as neighboring pixels of various brightness.

  3. Determination of acoustical transfer functions using an impulse method

    NASA Astrophysics Data System (ADS)

    MacPherson, J.

    1985-02-01

    The Transfer Function of a system may be defined as the relationship of the output response to the input of a system. Whilst recent advances in digital processing systems have enabled Impulse Transfer Functions to be determined by computation of the Fast Fourier Transform, there has been little work done in applying these techniques to room acoustics. Acoustical Transfer Functions have been determined for auditoria, using an impulse method. The technique is based on the computation of the Fast Fourier Transform (FFT) of a non-ideal impulsive source, both at the source and at the receiver point. The Impulse Transfer Function (ITF) is obtained by dividing the FFT at the receiver position by the FFT of the source. This quantity is presented both as linear frequency scale plots and also as synthesized one-third octave band data. The technique enables a considerable quantity of data to be obtained from a small number of impulsive signals recorded in the field, thereby minimizing the time and effort required on site. As the characteristics of the source are taken into account in the calculation, the choice of impulsive source is non-critical. The digital analysis equipment required for the analysis is readily available commercially.

  4. Auditorium acoustics evaluation based on simulated impulse response

    NASA Astrophysics Data System (ADS)

    Wu, Shuoxian; Wang, Hongwei; Zhao, Yuezhe

    2004-05-01

    The impulse responses and other acoustical parameters of Huangpu Teenager Palace in Guangzhou were measured. Meanwhile, the acoustical simulation and auralization based on software ODEON were also made. The comparison between the parameters based on computer simulation and measuring is given. This case study shows that auralization technique based on computer simulation can be used for predicting the acoustical quality of a hall at its design stage.

  5. Bulk microstructure and local elastic properties of carbon nanocomposites studied by impulse acoustic microscopy technique

    NASA Astrophysics Data System (ADS)

    Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.

    2016-05-01

    Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.

  6. Determination of Elastic Moduli of Fiber-Resin Composites Using an Impulse Excitation Technique

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.; Johnson, Jeffrey J.

    1996-01-01

    The elastic moduli of graphite/epoxy and graphite/cyanate ester composite specimens with various laminate lay-ups was determined using an impulse excitation/acoustic resonance technique and compared to those determined using traditional strain gauge and extensometer techniques. The stiffness results were also compared to those predicted from laminate theory using uniaxial properties. The specimen stiffnesses interrogated ranged from 12 to 30 Msi. The impulse excitation technique was found to be a relatively quick and accurate method for determining elastic moduli with minimal specimen preparation and no requirement for mechanical loading frames. The results of this investigation showed good correlation between the elastic modulus determined using the impulse excitation technique, strain gauge and extensometer techniques, and modulus predicted from laminate theory. The flexural stiffness determined using the impulse excitation was in good agreement with that predicted from laminate theory. The impulse excitation/acoustic resonance interrogation technique has potential as a quality control test.

  7. Effects of acoustic impulses on hearing

    NASA Astrophysics Data System (ADS)

    Fleischer, Gerald; Müller, Reinhard; Heppelmann, Guido; Bache, Thomas

    2002-05-01

    It is well known that acoustic impulses are especially dangerous to the ear. In order to understand the damaging mechanisms involved, cases of acute acoustic trauma in man were systematically collected and documented for many years. When possible, the damaging impulses were recreated and measured, to correlate the impulses with the auditory damage they caused. Detailed pure-tone audiometry up to 16 kHz was used to determine the effects on hearing. Together with epidemiological studies on various occupations, three different damaging mechanisms can be discerned. Relatively long and massive impulses (some explosions, some airbags) often lead to damage at low frequencies, from about 0.5 to 1.5 kHz. The typical notch at about 4 to 6 kHz typically is the result of strong peaks, lasting several milliseconds, or longer. There is another notch at 12 to 14 kHz, characteristic of very short, needle-like impulses that are caused by many hand weapons, toy pistols, and firecrackers. Probable mechanisms are discussed.

  8. Acoustic impulse response method as a source of undergraduate research projects and advanced laboratory experiments.

    PubMed

    Robertson, W M; Parker, J M

    2012-03-01

    A straightforward and inexpensive implementation of acoustic impulse response measurement is described utilizing the signal processing technique of coherent averaging. The technique is capable of high signal-to-noise measurements with personal computer data acquisition equipment, an amplifier/speaker, and a high quality microphone. When coupled with simple waveguide test systems fabricated from commercial PVC plumbing pipe, impulse response measurement has proven to be ideal for undergraduate research projects-often of publishable quality-or for advanced laboratory experiments. The technique provides important learning objectives for science or engineering students in areas such as interfacing and computer control of experiments; analog-to-digital conversion and sampling; time and frequency analysis using Fourier transforms; signal processing; and insight into a variety of current research areas such as acoustic bandgap materials, acoustic metamaterials, and fast and slow wave manipulation. © 2012 Acoustical Society of America

  9. Detecting Structural Failures Via Acoustic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Joshi, Sanjay S.

    1995-01-01

    Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.

  10. Differentiation of benign from malignant liver masses with Acoustic Radiation Force Impulse technique.

    PubMed

    Yu, Hojun; Wilson, Stephanie R

    2011-12-01

    The objective of the study was to determine the performance of Acoustic Radiation Force Impulse (ARFI) imaging to differentiate benign from malignant liver masses, both of hepatocellular origin and metastases, by quantification of their stiffness. This study has institutional review board approval and informed consent. Eighty-nine patients (42 female and 47 male patients) with 105 liver masses had ARFI evaluation on ultrasound, S2000 (Siemens, Mountain View, Calif). Mean age of the patients was 53.67 years (range, 27-83 years). Mean diameter of the masses was 2.77 cm (range, 1.0-13.0 cm). Final diagnoses, confirmed by imaging on contrast-enhanced computed tomography, magnetic resonance, or ultrasound or biopsy, include hepatocellular carcinoma (n = 28), metastasis (n = 13), hemangioma (n = 35), focal nodular hyperplasia (n = 15), focal fat sparing (n = 8), focal fat deposit (n = 4), and adenoma (n = 2). Receiver operating characteristic analysis was performed to evaluate the diagnostic accuracy of the ARFI measurement and to extract the optimal cutoff values in the differentiation of benign from malignant disease. Acoustic Radiation Force Impulse values showed a statistically significant difference between benign (1.73 [SD, 0.8] m/sec) and malignant masses (2.57 [SD, 1.01] m/sec) (P < 0.001). However, the area under the receiver operating characteristic curve was 0.744, suggesting only fair accuracy. For differentiation of malignant from benign masses, the sensitivity, specificity, positive predictive value, and negative predictive value were 68% (28/41), 69% (44/64), 58% (28/48), and 77% (44/57), respectively, when 1.9 m/sec was chosen as a cutoff value, reflective of a wide variation of ARFI values in each diagnosis. For differentiation of metastasis from benign masses, sensitivity, specificity, positive predictive value, and NPV were 69% (9/13), 89% (57/64), 56% (9/16), and 93% (57/61), respectively, when 2.72 m/sec was chosen as a cutoff value. Acoustic

  11. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  12. Effects of Acoustic Impulses on the Middle Ear

    DTIC Science & Technology

    2016-10-01

    development of a MEMC detection algorithm for use with the National Health and Nutrition Examination Survey (NHANES) impedance traces. The second specific...Flamme GA, Deiters KK, Tasko SM, Ahroon WA (under review). Acoustic reflexes are common but not pervasive: Evidence from the National Health and Nutrition ...of new (or revising existing) damage risk criteria and health hazard assessment methods for exposure to high-level acoustic impulses such as

  13. Impulse excitation scanning acoustic microscopy for local quantification of Rayleigh surface wave velocity using B-scan analysis

    NASA Astrophysics Data System (ADS)

    Cherry, M.; Dierken, J.; Boehnlein, T.; Pilchak, A.; Sathish, S.; Grandhi, R.

    2018-01-01

    A new technique for performing quantitative scanning acoustic microscopy imaging of Rayleigh surface wave (RSW) velocity was developed based on b-scan processing. In this technique, the focused acoustic beam is moved through many defocus distances over the sample and excited with an impulse excitation, and advanced algorithms based on frequency filtering and the Hilbert transform are used to post-process the b-scans to estimate the Rayleigh surface wave velocity. The new method was used to estimate the RSW velocity on an optically flat E6 glass sample, and the velocity was measured at ±2 m/s and the scanning time per point was on the order of 1.0 s, which are both improvement from the previous two-point defocus method. The new method was also applied to the analysis of two titanium samples, and the velocity was estimated with very low standard deviation in certain large grains on the sample. A new behavior was observed with the b-scan analysis technique where the amplitude of the surface wave decayed dramatically on certain crystallographic orientations. The new technique was also compared with previous results, and the new technique has been found to be much more reliable and to have higher contrast than previously possible with impulse excitation.

  14. A Finite-Element Method Model of Soft Tissue Response to Impulsive Acoustic Radiation Force

    PubMed Central

    Palmeri, Mark L.; Sharma, Amy C.; Bouchard, Richard R.; Nightingale, Roger W.; Nightingale, Kathryn R

    2010-01-01

    Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson’s ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue’s dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers. PMID:16382621

  15. Liver Stiffness Measurements Using Acoustic Radiation Force Impulse in Recipients of Living-Donor and Deceased-Donor Orthotopic Liver Transplant.

    PubMed

    Haberal, Kemal Murat; Turnaoğlu, Hale; Özdemir, Adnan; Uslu, Nihal; Haberal Reyhan, Asuman Nihan; Moray, Gökhan; Haberal, Mehmet

    2017-08-24

    The aim of this study was to evaluate the diagnostic efficiency of the acoustic radiation force impulse (Siemens Medical Solutions, Erlangen, Germany) elastography in assessment of fibrosis in orthotopic liver transplant patients. We enrolled 28 orthotopic liver transplant patients (deceased and living donors), whose biopsy decision had been prospectively given clinically. Ten acoustic radiation force impulse elastographic measurements were applied before the biopsy or within 3 days after the biopsy by 2 radiologists. After the core tissue needle biopsy, specimens of all patients were analyzed according to the modified Ishak scoring system. Measurements of acoustic radiation force impulse elastography and pathology specimen results were compared. From 28 biopsies, fibrosis scores of 4 biopsies were evaluated as F0 (14.3%), 16 as F1 (57.1%), 4 as F2 (14.3%), and 4 as F3 (14.3%). Mean results of acoustic radiation force impulse measurements were calculated as 1.4 ± 0.07 in F0, 1.74 ± 0.57 in F1, 2.19 ± 0.7 in F2, and 2.18 ± 0.35 in F3. There were no significant correlations of mean acoustic radiation force impulse values between the F0 versus F1 (P = .956) and F0 versus F2 stages (P = .234). A statistically significant correlation of mean acoustic radiation force impulse values was found between the F0 and F3 fibrosis stages (P = .046). Acoustic radiation force impulse imaging is a promising screening test for detecting significant liver fibrosis (≥ F3 in modified Ishak) in living-donor or deceased-donor orthotopic liver transplant recipients.

  16. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  17. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  18. Texture measurement of shaped material by impulse acoustic microscopy

    PubMed

    Eyraud; Nadal; Gondard

    2000-03-01

    All the microstructural parameters involved in metallurgical processes are difficult to determine directly on a shaped material. The aim of this paper is to use an impulse line-focus acoustic microscope (LFAM) as a non-destructive alternative to X-ray diffraction for measuring texture of slightly anisotropic materials. We apply it to characterize the rolling and annealing texture for tantalum sheets.

  19. The influence of aminotransferase levels on liver stiffness assessed by Acoustic Radiation Force Impulse Elastography: a retrospective multicentre study.

    PubMed

    Bota, Simona; Sporea, Ioan; Peck-Radosavljevic, Markus; Sirli, Roxana; Tanaka, Hironori; Iijima, Hiroko; Saito, Hidetsugu; Ebinuma, Hirotoshi; Lupsor, Monica; Badea, Radu; Fierbinteanu-Braticevici, Carmen; Petrisor, Ana; Friedrich-Rust, Mireen; Sarrazin, Christoph; Takahashi, Hirokazu; Ono, Naofumi; Piscaglia, Fabio; Marinelli, Sara; D'Onofrio, Mirko; Gallotti, Anna; Salzl, Petra; Popescu, Alina; Danila, Mirela

    2013-09-01

    Acoustic Radiation Force Impulse Elastography is a new method for non-invasive evaluation of liver fibrosis. To evaluate the impact of elevated alanine aminotransferase levels on liver stiffness assessment by Acoustic Radiation Force Impulse Elastography. A multicentre retrospective study including 1242 patients with chronic liver disease, who underwent liver biopsy and Acoustic Radiation Force Impulse. Transient Elastography was also performed in 512 patients. The best Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis was 1.29 m/s in cases with normal alanine aminotransferase levels and 1.44 m/s in patients with alanine aminotransferase levels>5 × the upper limit of normal. The best cut-off for predicting liver cirrhosis were 1.59 and 1.75 m/s, respectively. Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis and cirrhosis were relatively similar in patients with normal alanine aminotransferase and in those with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal: 1.29 m/s vs. 1.36 m/s and 1.59 m/s vs. 1.57 m/s, respectively. For predicting cirrhosis, the Transient Elastography cut-offs were significantly higher in patients with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal compared to those with normal alanine aminotransferase: 12.3 kPa vs. 9.1 kPa. Liver stiffness values assessed by Acoustic Radiation Force Impulse and Transient Elastography are influenced by high aminotransferase levels. Transient Elastography was also influenced by moderately elevated aminotransferase levels. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  20. Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals

    PubMed Central

    2011-01-01

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  1. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube

    PubMed Central

    Murphy, William J.; Fackler, Cameron J.; Berger, Elliott H.; Shaw, Peter B.; Stergar, Mike

    2015-01-01

    Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB), 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH) ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH) ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL. PMID:26356380

  2. Frame Rate Considerations for Real-Time Abdominal Acoustic Radiation Force Impulse Imaging

    PubMed Central

    Fahey, Brian J.; Palmeri, Mark L.; Trahey, Gregg E.

    2008-01-01

    With the advent of real-time Acoustic Radiation Force Impulse (ARFI) imaging, elevated frame rates are both desirable and relevant from a clinical perspective. However, fundamental limitations on frame rates are imposed by thermal safety concerns related to incident radiation force pulses. Abdominal ARFI imaging utilizes a curvilinear scanning geometry that results in markedly different tissue heating patterns than those previously studied for linear arrays or mechanically-translated concave transducers. Finite Element Method (FEM) models were used to simulate these tissue heating patterns and to analyze the impact of tissue heating on frame rates available for abdominal ARFI imaging. A perfusion model was implemented to account for cooling effects due to blood flow and frame rate limitations were evaluated in the presence of normal, reduced and negligible tissue perfusions. Conventional ARFI acquisition techniques were also compared to ARFI imaging with parallel receive tracking in terms of thermal efficiency. Additionally, thermocouple measurements of transducer face temperature increases were acquired to assess the frame rate limitations imposed by cumulative heating of the imaging array. Frame rates sufficient for many abdominal imaging applications were found to be safely achievable utilizing available ARFI imaging techniques. PMID:17521042

  3. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  4. Development of an impulsive noise source to study the acoustic reflection characteristics of hard-walled wind tunnels

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Burrin, R. H.; Ahuja, K. K.; Bartel, H. W.

    1986-01-01

    Two impulsive sound sources, one using multiple acoustic drivers and the other using a spark discharge were developed to study the acoustic reflection characteristics of hard-walled wind tunnels, and the results of laboratory tests are presented. The analysis indicates that though the intensity of the pulse generated by the spark source was higher than that obtained from the acoustic source, the number of averages needed for a particular test may require an unacceptibly long tunnel-run time due to the low spark generation repeat rate because of capacitor charging time. The additional hardware problems associated with the longevity of electrodes and electrode holders in sustaining the impact of repetitive spark discharges, show the multidriver acoustic source to be more suitable for this application.

  5. Human ossicular-joint flexibility transforms the peak amplitude and width of impulsive acoustic stimulia)

    PubMed Central

    Gottlieb, Peter K.; Vaisbuch, Yona

    2018-01-01

    The role of the ossicular joints in the mammalian middle ear is still debated. This work tests the hypothesis that the two synovial joints filter potentially damaging impulsive stimuli by transforming both the peak amplitude and width of these impulses before they reach the cochlea. The three-dimensional (3D) velocity along the ossicular chain in unaltered cadaveric human temporal bones (N = 9), stimulated with acoustic impulses, is measured in the time domain using a Polytec (Waldbronn, Germany) CLV-3D laser Doppler vibrometer. The measurements are repeated after fusing one or both of the ossicular joints with dental cement. Sound transmission is characterized by measuring the amplitude, width, and delay of the impulsive velocity profile as it travels from the eardrum to the cochlea. On average, fusing both ossicular joints causes the stapes velocity amplitude and width to change by a factor of 1.77 (p = 0.0057) and 0.78 (p = 0.011), respectively. Fusing just the incudomalleolar joint has a larger effect on amplitude (a factor of 2.37), while fusing just the incudostapedial joint decreases the stapes velocity on average. The 3D motion of the ossicles is altered by fusing the joints. Finally, the ability of current computational models to predict this behavior is also evaluated.

  6. Acoustic waves from mechanical impulses due to fluorescence resonant energy (Förster) transfer: Blowing a whistle with light

    NASA Astrophysics Data System (ADS)

    Zurita-Sánchez, J. R.; Henkel, C.

    2012-02-01

    We present a momentum transfer mechanism mediated by electromagnetic fields that originates in a system of two nearby molecules: one excited (donor D*) and the other in ground state (acceptor A). An intermolecular force related to fluorescence resonant energy or Förster transfer (FRET) arises in the unstable D*A molecular system, which differs from the equilibrium van der Waals interaction. Due to the its finite lifetime, a mechanical impulse is imparted to the relative motion in the system. We analyze the FRET impulse when the molecules are embedded in free space and find that its magnitude can be much greater than the single recoil photon momentum, getting comparable with the thermal momentum (Maxwell-Boltzmann distribution) at room temperature. In addition, we propose that this FRET impulse can be exploited in the generation of acoustic waves inside a film containing layers of donor and acceptor molecules, when a picosecond laser pulse excites the donors. This acoustic transient is distinguishable from that produced by thermal stress due to laser absorption, and may therefore play a role in photoacoustic spectroscopy. The effect can be seen as exciting a vibrating system like a string or organ pipe with light; it may be used as an opto-mechanical transducer.

  7. Differences in head impulse test results due to analysis techniques.

    PubMed

    Cleworth, Taylor W; Carpenter, Mark G; Honegger, Flurin; Allum, John H J

    2017-01-01

    Different analysis techniques are used to define vestibulo-ocular reflex (VOR) gain between eye and head angular velocity during the video head impulse test (vHIT). Comparisons would aid selection of gain techniques best related to head impulse characteristics and promote standardisation. Compare and contrast known methods of calculating vHIT VOR gain. We examined lateral canal vHIT responses recorded from 20 patients twice within 13 weeks of acute unilateral peripheral vestibular deficit onset. Ten patients were tested with an ICS Impulse system (GN Otometrics) and 10 with an EyeSeeCam (ESC) system (Interacoustics). Mean gain and variance were computed with area, average sample gain, and regression techniques over specific head angular velocity (HV) and acceleration (HA) intervals. Results for the same gain technique were not different between measurement systems. Area and average sample gain yielded equally lower variances than regression techniques. Gains computed over the whole impulse duration were larger than those computed for increasing HV. Gain over decreasing HV was associated with larger variances. Gains computed around peak HV were smaller than those computed around peak HA. The median gain over 50-70 ms was not different from gain around peak HV. However, depending on technique used, the gain over increasing HV was different from gain around peak HA. Conversion equations between gains obtained with standard ICS and ESC methods were computed. For low gains, the conversion was dominated by a constant that needed to be added to ESC gains to equal ICS gains. We recommend manufacturers standardize vHIT gain calculations using 2 techniques: area gain around peak HA and peak HV.

  8. Acoustic Radiation Force Impulse Quantification in the Evaluation of Thyroid Elasticity in Pediatric Patients With Hashimoto Thyroiditis.

    PubMed

    Yucel, Serap; Ceyhan Bilgici, Meltem; Kara, Cengiz; Can Yilmaz, Gulay; Aydin, H Murat; Elmali, Muzaffer; Tomak, Leman; Saglam, Dilek

    2018-05-01

    To evaluate the parenchymal elasticity of the thyroid gland with acoustic radiation force impulse imaging in pediatric patients with Hashimoto thyroiditis and to compare it with healthy volunteers. Twenty-six patients with Hashimoto thyroiditis and 26 healthy volunteers between 6 and 17 years were included. The shear wave velocity (SWV) values of both thyroid lobes in both groups were evaluated. The age and sex characteristics of the controls and patients with Hashimoto thyroiditis were similar. The SWV of the thyroid gland in patients with Hashimoto thyroiditis (mean ± SD, 1.67 ± 0.63 m/s) was significantly higher than that in the control group (1.30 ± 0.13 m/s; P < .001). There was no significant difference between the thyroid lobes in both groups. A receiver operating characteristic curve analyses showed an optimal cutoff value of 1.41 m/s, with 73.1% sensitivity, 80.8% specificity, a 79.2 % positive predictive value, and a 75.0% negative predictive value (area under the curve, 0.806; P < .001). In patients with Hashimoto thyroiditis, there was a positive correlation between the SWV values versus anti-thyroperoxidase (Pearson r = 0.46; P = .038). There were no correlations between age, body mass index, thyroid function test results, and anti-thyroglobulin values and versus SWV values. Also, no significant differences were seen between the groups for gland size, gland vascularity, and l-thyroxine treatment. Acoustic radiation force impulse elastography showed a significant difference in the stiffness of the thyroid gland between children with Hashimoto thyroiditis and the healthy group. Using acoustic radiation force impulse elastography immediately after a standard ultrasound evaluation may predict chronic autoimmune thyroiditis. © 2017 by the American Institute of Ultrasound in Medicine.

  9. Development and evaluation of the impulse transfer function technique

    NASA Technical Reports Server (NTRS)

    Mantus, M.

    1972-01-01

    The development of the test/analysis technique known as the impulse transfer function (ITF) method is discussed. This technique, when implemented with proper data processing systems, should become a valuable supplement to conventional dynamic testing and analysis procedures that will be used in the space shuttle development program. The method can relieve many of the problems associated with extensive and costly testing of the shuttle for transient loading conditions. In addition, the time history information derived from impulse testing has the potential for being used to determine modal data for the structure under investigation. The technique could be very useful in determining the time-varying modal characteristics of structures subjected to thermal transients, where conventional mode surveys are difficult to perform.

  10. Effects of Acoustic Impulses on the Middle Ear

    DTIC Science & Technology

    2015-10-01

    and civilian law enforcement weapon systems, civilian recreational hunting and shooting, and industrial high-level impulsive noises (impacts and...PERSON USAMRMC a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified 19b. TELEPHONE NUMBER (include area code) Standard Form...impulsive noises (impacts and impulses). Keywords: Noise exposure; hearing loss, noise -induced; impulsive noise ; reflex; conditioned response

  11. Acoustic Location of Lightning Using Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Erives, H.; Arechiga, R. O.; Stock, M.; Lapierre, J. L.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    Acoustic arrays have been used to accurately locate thunder sources in lightning flashes. The acoustic arrays located around the Magdalena mountains of central New Mexico produce locations which compare quite well with source locations provided by the New Mexico Tech Lightning Mapping Array. These arrays utilize 3 outer microphones surrounding a 4th microphone located at the center, The location is computed by band-passing the signal to remove noise, and then computing the cross correlating the outer 3 microphones with respect the center reference microphone. While this method works very well, it works best on signals with high signal to noise ratios; weaker signals are not as well located. Therefore, methods are being explored to improve the location accuracy and detection efficiency of the acoustic location systems. The signal received by acoustic arrays is strikingly similar to th signal received by radio frequency interferometers. Both acoustic location systems and radio frequency interferometers make coherent measurements of a signal arriving at a number of closely spaced antennas. And both acoustic and interferometric systems then correlate these signals between pairs of receivers to determine the direction to the source of the received signal. The primary difference between the two systems is the velocity of propagation of the emission, which is much slower for sound. Therefore, the same frequency based techniques that have been used quite successfully with radio interferometers should be applicable to acoustic based measurements as well. The results presented here are comparisons between the location results obtained with current cross correlation method and techniques developed for radio frequency interferometers applied to acoustic signals. The data were obtained during the summer 2013 storm season using multiple arrays sensitive to both infrasonic frequency and audio frequency acoustic emissions from lightning. Preliminary results show that

  12. Using crosscorrelation techniques to determine the impulse response of linear systems

    NASA Technical Reports Server (NTRS)

    Dallabetta, Michael J.; Li, Harry W.; Demuth, Howard B.

    1993-01-01

    A crosscorrelation method of measuring the impulse response of linear systems is presented. The technique, implementation, and limitations of this method are discussed. A simple system is designed and built using discrete components and the impulse response of a linear circuit is measured. Theoretical and software simulation results are presented.

  13. Evaluation of acoustic testing techniques for spacecraft systems

    NASA Technical Reports Server (NTRS)

    Cockburn, J. A.

    1971-01-01

    External acoustic environments, structural responses, noise reductions, and the internal acoustic environments have been predicted for a typical shroud/spacecraft system during lift-off and various critical stages of flight. Spacecraft responses caused by energy transmission from the shroud via mechanical and acoustic paths have been compared and the importance of the mechanical path has been evaluated. Theoretical predictions have been compared extensively with available laboratory and in-flight measurements. Equivalent laboratory acoustic fields for simulation of shroud response during the various phases of flight have been derived and compared in detail. Techniques for varying the time-space correlations of laboratory acoustic fields have been examined, together with methods for varying the time and spatial distribution of acoustic amplitudes. Possible acoustic testing configurations for shroud/spacecraft systems have been suggested and trade-off considerations have been reviewed. The problem of simulating the acoustic environments versus simulating the structural responses has been considered and techniques for testing without the shroud installed have been discussed.

  14. Geo-Acoustic Doppler Spectroscopy: A Novel Acoustic Technique For Surveying The Seabed

    NASA Astrophysics Data System (ADS)

    Buckingham, Michael J.

    2010-09-01

    An acoustic inversion technique, known as Geo-Acoustic Doppler Spectroscopy, has recently been developed for estimating the geo-acoustic parameters of the seabed in shallow water. The technique is unusual in that it utilizes a low-flying, propeller-driven light aircraft as an acoustic source. Both the engine and propeller produce sound and, since they are rotating sources, the acoustic signature of each takes the form of a sequence of narrow-band harmonics. Although the coupling of the harmonics across the air-sea interface is inefficient, due to the large impedance mismatch between air and water, sufficient energy penetrates the sea surface to provide a useable underwater signal at sensors either in the water column or buried in the sediment. The received signals, which are significantly Doppler shifted due to the motion of the aircraft, will have experienced a number of reflections from the seabed and thus they contain information about the sediment. A geo-acoustic inversion of the Doppler-shifted modes associated with each harmonic yields an estimate of the sound speed in the sediment; and, once the sound speed has been determined, the known correlations between it and the remaining geo-acoustic parameters allow all of the latter to be computed. This inversion technique has been applied to aircraft data collected in the shallow water north of Scripps pier, returning values of the sound speed, shear speed, porosity, density and grain size that are consistent with the known properties of the sandy sediment in the channel.

  15. Acoustic Radiation Force Impulse Quantification in the Evaluation of Renal Parenchyma Elasticity in Pediatric Patients With Chronic Kidney Disease: Preliminary Results.

    PubMed

    Bilgici, Meltem Ceyhan; Bekci, Tumay; Genc, Gurkan; Tekcan, Demet; Tomak, Leman

    2017-08-01

    To evaluate renal parenchymal elasticity with acoustic radiation force impulse imaging in pediatric patients with chronic kidney disease (CKD) and compare with healthy volunteers. Thirty-eight healthy volunteers and 30 pediatric CKD patients were enrolled in this prospective study. The shear wave velocity (SW) values of both kidneys in CKD patients and healthy volunteers were evaluated. The mean SW in healthy volunteers was 2.21 ± 0.34 m/s, whereas the same value was 1.81 ± 0.49, 1.72 ± 0.63, 1.66 ± 0.29, 1.48 ± 0.37, and 1.23 ± 0.27 for stages 1, 2, 3, 4, and 5 in CKD patients, respectively. The SW was significantly lower for each stage in the CKD patients compared with healthy volunteers. Acoustic radiation force impulse could not predict the different stages of CKD, with the exception of stage 5. The cut-off value for predicting CKD was 1.81 m/s; at this threshold, sensitivity was 76.5% and specificity was 92.1% (area under the curve = 0.870 [95% confidence interval: 0.750-0.990]; P < .001). Interobserver agreement expressed as intraclass coefficient correlation was 0.65 (95% confidence interval: 0.34 to 0.83; P < .001). Acoustic radiation force impulse may be a potentially useful tool in detecting CKD in pediatric patients. © 2017 by the American Institute of Ultrasound in Medicine.

  16. Air Coupled Acoustic Thermography (ACAT) Inspection Technique

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph; Winfree, William P.; Yost, William T.

    2007-01-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of plus or minus 6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  17. Real-time vehicle noise cancellation techniques for gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, Antonio L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2012-06-01

    Acoustical sniper positioning systems rely on the detection and direction-of-arrival (DOA) estimation of the shockwave and the muzzle blast in order to provide an estimate of a potential snipers location. Field tests have shown that detecting and estimating the DOA of the muzzle blast is a rather difficult task in the presence of background noise sources, e.g., vehicle noise, especially in long range detection and absorbing terrains. In our previous work presented in the 2011 edition of this conference we highlight the importance of improving the SNR of the gunshot signals prior to the detection and recognition stages, aiming at lowering the false alarm and miss-detection rates and, thereby, increasing the reliability of the system. This paper reports on real-time noise cancellation techniques, like Spectral Subtraction and Adaptive Filtering, applied to gunshot signals. Our model assumes the background noise as being short-time stationary and uncorrelated to the impulsive gunshot signals. In practice, relatively long periods without signal occur and can be used to estimate the noise spectrum and its first and second order statistics as required in the spectral subtraction and adaptive filtering techniques, respectively. The results presented in this work are supported with extensive simulations based on real data.

  18. In-flight acoustic testing techniques using the YO-3A Acoustic Research Aircraft

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Watts, M. E.

    1984-01-01

    This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This "Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying position locations, and the test matrices will be discussed. Examples of data taken will also be presented.

  19. In-flight acoustic testing techniques using the YO-3A acoustic research aircraft

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Watts, M. E.

    1983-01-01

    This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in-flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This 'Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying, position locations, and the test matrices will be discussed. Examples of data taken will also be presented.

  20. Assessment of Impulse Noise Level and Acoustic Trauma in Military Personnel

    PubMed Central

    Rezaee, Maryam; Mojtahed, Mohammad; Ghasemi, Mohammad; Saedi, Babak

    2012-01-01

    Background: Military personnel are usually exposed to high levels of impulse noise (IN) which can lead to hearing loss. Objectives: The purpose of this study was to assess the effects of relatively low level exposure of impulse noise (IN) during shooting practice on hearing using pure tone audiometry (PTA) and transiently evoked otoacoustic emission (TEOAE) in military personnel. Materials and Methods: Forty male soldiers (mean age 20.08 years) were recruited for the study. Prior to their first shooting practice, PTA and TEOAE were recorded. After 15 minutes and one week post- practice PTA and TEOAE were compared. Results: Immediately after shooting practice significant differences in PTA at 500, 1000, and 4000 Hz were observed for the right ear and no significant difference at any frequency for the left ear. There was a significant difference in the amplitude of TEOAE 15 minutes after shooting practice at 500, 1000, 2000, 3000, and 4000 Hz in the right ear, while for the left ear the difference was significant at 1000 and 2000 Hz. One week after exposure a significant difference at 500 and 4000 Hz was found only in the right ear and a significant difference in the amplitude of TEOAE was observed at 500, 1000, 2000, 3000, and 4000 Hz. Conclusions: Even exposure lower than permissible levels may lead to acoustic trauma. TEOAE is more sensitive than PTA in detecting early hearing loss after military shooting exercises. Hearing protection equipment and appropriate surveillance programs are recommended. PMID:24749098

  1. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease.

    PubMed

    Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen

    2015-09-01

    Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  3. Role of acoustic radiation force impulse and shear wave velocity in prediction of preterm birth: a prospective study.

    PubMed

    Agarwal, Arjit; Agarwal, Shubhra; Chandak, Shruti

    2018-06-01

    Background Preterm birth is one of the important causes of neonatal morbidity where we rely on subjective criteria such as modified Bishop's scoring and contemporary sonographic measurement of cervical length. Acoustic radiation force impulse (ARFI) is a technological advancement in elastography that can be employed in prediction of cervical softening and preterm labor. Purpose To evaluate the role of ARFI technique and shear wave velocity (SWV) estimates as a predictor of preterm birth and its comparison with other clinical and sono-elastographic measures. Material and Methods Thirty-four pregnant women (gestation age = 28-37 weeks age) showing features suggestive of preterm labor were included and evaluated with modified Bishop's score, cervical length by ultrasound (US), ARFI to derive Elastography index (EI), and SWV of the cervix. The patients were later divided into two groups, using the clinical outcome of preterm or term delivery. Results Twenty patients delivered at term (gestational age > 37 weeks) and 14 were preterm. Receiver operating characteristics (ROC) curves showed SWV with highest sensitivity and specificity (93% and 90%, respectively) for the prediction of preterm birth at a cutoff value of 2.83 m/s. EI and modified Bishop's score were comparable to each other, but were less sensitive techniques. Conclusion Elastographic assessment of antenatal cervix is a novel technique of virtual palpation of internal os and can be utilized as an objective criterion for preterm birth prediction.

  4. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  5. Evaluation of bridge cables corrosion using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ou, Jinping

    2010-04-01

    Owing to the nature of the stress, corrosion of bridge cable may result in catastrophic failure of the structure. However, using electrochemical techniques isn't fully efficient for the detection and control on line of the corrosion phenomenon. A non-destructive testing method based on acoustic emission technique monitoring bridge cable corrosion was explored. The steel strands were placed at room temperature in 5% NaCl solution. Acoustic emission (AE) characteristic parameters were recorded in the whole corrosion experiment process. Based on the plot of cumulated acoustic activity, the bridge cables corrosion included three stages. It can be clearly seen that different stages have different acoustic emission signal characteristics. The AE characteristic parameters would be increased with cables corrosion development. Finally, the bridge cables corrosion experiment with different stress state and different corrosion environment was performed. The results shows that stress magnitude only affects the bridge cable failure time, however, the AE characteristic parameters value has changed a little. It was verified that AE technique can be used to detect the bridge cable early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.

  6. Acoustic radiation force impulse imaging for real-time observation of lesion development during radiofrequency ablation procedures

    NASA Astrophysics Data System (ADS)

    Fahey, Brian J.; Trahey, Gregg E.

    2005-04-01

    When performing radiofrequency ablation (RFA) procedures, physicians currently have little or no feedback concerning the success of the treatment until follow-up assessments are made days to weeks later. To be successful, RFA must induce a thermal lesion of sufficient volume to completely destroy a target tumor or completely isolate an aberrant cardiac pathway. Although ultrasound, computed tomography (CT), and CT-based fluoroscopy have found use in guiding RFA treatments, they are deficient in giving accurate assessments of lesion size or boundaries during procedures. As induced thermal lesion size can vary considerably from patient to patient, the current lack of real-time feedback during RFA procedures is troublesome. We have developed a technique for real-time monitoring of thermal lesion size during RFA procedures utilizing acoustic radiation force impulse (ARFI) imaging. In both ex vivo and in vivo tissues, ARFI imaging provided better thermal lesion contrast and better overall appreciation for lesion size and boundaries relative to conventional sonography. The thermal safety of ARFI imaging for use at clinically realistic depths was also verified through the use of finite element method models. As ARFI imaging is implemented entirely on a diagnostic ultrasound scanner, it is a convenient, inexpensive, and promising modality for monitoring RFA procedures in vivo.

  7. Characterisation of bubbles in liquids using acoustic techniques

    NASA Astrophysics Data System (ADS)

    Ramble, David Gary

    1997-12-01

    This thesis is concerned with the characterisation of air bubbles in a liquid through the use of a range of acoustic techniques, with the ultimate aim of minimising the ambiguity of the result and the complexity of the task. A bubble is particularly amenable to detection by using acoustical methods because there usually exists a large acoustic impedance mismatch between the gas/vapour inside the bubble and that of the surrounding liquid. The bubble also behaves like a single degree-of-freedom oscillator when excited, and as such exhibits a well-defined resonance frequency which is related to its radius. Though techniques which exploit this resonance property of the bubble are straightforward to apply, the results are prone to ambiguities as larger bubbles can geometrically scatter more sound than a smaller resonant bubble. However, these drawbacks can be overcome by using acoustical methods which make use of the nonlinear behaviour of bubbles. A particular nonlinear technique monitors the second harmonic emission of the bubble which is a global maximum at resonance. In addition, a two- frequency excitation technique is used which involves exciting the bubble with a fixed high frequency signal (the imaging signal, ωi) of the order of megahertz, and a lower variable frequency (the pumping signal, ωp) which is tuned to the bubble's resonance. The bubble couples these two sound fields together to produce sum-and-difference terms which peak at resonance. The two most promising combination frequency signals involve the coupling of the bubble's fundamental with the imaging frequency to give rise to a ωi+ωp signal, and the coupling of a subharmonic signal at half the resonance frequency of the bubble to give rise to a ωi/pmωp/2 signal. Initially, theory is studied which outlines the advantages and disadvantages of each of the acoustic techniques available. Experiments are then conducted in a large tank of water on simple bubble populations, ranging from stationary

  8. Investigation of acoustic emission coupling techniques

    NASA Technical Reports Server (NTRS)

    Jolly, W. D.

    1988-01-01

    A three-phase research program was initiated by NASA in 1983 to investigate the use of acoustic monitoring techniques to detect incipient failure in turbopump bearings. Two prototype acoustic coupler probes were designed and evaluated, and four units of the final probe design were fabricated. Success in this program could lead to development of an on-board monitor which could detect bearing damage in flight and reduce or eliminate the need for disassembly after each flight. This final report reviews the accomplishments of the first two phases and presents the results of fabrication and testing completed in the final phase of the research program.

  9. Acoustically swept rotor. [helicopter noise reduction

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Boxwell, D. A.; Vause, R. (Inventor)

    1979-01-01

    Impulsive noise reduction is provided in a rotor blade by acoustically sweeping the chord line from root to tip so that the acoustic radiation resulting from the summation of potential singularities used to model the flow about the blade tend to cancel for all times at an observation point in the acoustic far field.

  10. Modification of an impulse-factoring orbital transfer technique to account for orbit determination and maneuver execution errors

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Green, R. N.; Young, G. R.; Kelly, M. G.

    1974-01-01

    A method has previously been developed to satisfy terminal rendezvous and intermediate timing constraints for planetary missions involving orbital operations. The method uses impulse factoring in which a two-impulse transfer is divided into three or four impulses which add one or two intermediate orbits. The periods of the intermediate orbits and the number of revolutions in each orbit are varied to satisfy timing constraints. Techniques are developed to retarget the orbital transfer in the presence of orbit-determination and maneuver-execution errors. Sample results indicate that the nominal transfer can be retargeted with little change in either the magnitude (Delta V) or location of the individual impulses. Additonally, the total Delta V required for the retargeted transfer is little different from that required for the nominal transfer. A digital computer program developed to implement the techniques is described.

  11. Hepatic and Splenic Acoustic Radiation Force Impulse Shear Wave Velocity Elastography in Children with Liver Disease Associated with Cystic Fibrosis

    PubMed Central

    Cañas, Teresa; Maciá, Araceli; Muñoz-Codoceo, Rosa Ana; Fontanilla, Teresa; González-Rios, Patricia; Miralles, María; Gómez-Mardones, Gloria

    2015-01-01

    Background. Liver disease associated with cystic fibrosis (CFLD) is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI) imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF) were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence. PMID:26609528

  12. Hepatic and Splenic Acoustic Radiation Force Impulse Shear Wave Velocity Elastography in Children with Liver Disease Associated with Cystic Fibrosis.

    PubMed

    Cañas, Teresa; Maciá, Araceli; Muñoz-Codoceo, Rosa Ana; Fontanilla, Teresa; González-Rios, Patricia; Miralles, María; Gómez-Mardones, Gloria

    2015-01-01

    Liver disease associated with cystic fibrosis (CFLD) is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI) imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF) were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence.

  13. The Micromorphological Research of the Internal Structure of Chairside CAD/CAM Materials by the Method of Scanning Impulse Acoustic Microscopy (SIAM).

    PubMed

    Goryainova, Kristina E; Morokov, Egor S; Retinskaja, Marina V; Rusanov, Fedor S; Apresyan, Samvel V; Lebedenko, Igor Yu

    2018-01-01

    The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research.

  14. Measurement of transmission loss characteristics using acoustic intensity techniques at the KU-FRL Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1983-01-01

    The transmission loss characteristics of panels using the acoustic intensity technique is presented. The theoretical formulation, installation of hardware, modifications to the test facility, and development of computer programs and test procedures are described. A listing of all the programs is also provided. The initial test results indicate that the acoustic intensity technique is easily adapted to measure transmission loss characteristics of panels. Use of this method will give average transmission loss values. The fixtures developed to position the microphones along the grid points are very useful in plotting the intensity maps of vibrating panels.

  15. The application of acoustic emission technique to fatigue crack measurement. [in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Crews, J. H., Jr.

    1974-01-01

    The applicability of acoustic emission technique to measure fatigue cracks in aluminum alloy specimens was investigated. There are several variables, such as the metallurgical and the physical treatment of the specimen, that can affect the level of acoustic activity of a fatigue specimen. It is therefore recommended that the acoustic emission technique be supplemented by other nondestructive evaluation methods to obtain quantitative data on crack growth.

  16. Differential diagnosis of idiopathic granulomatous mastitis and breast cancer using acoustic radiation force impulse imaging.

    PubMed

    Teke, Memik; Teke, Fatma; Alan, Bircan; Türkoğlu, Ahmet; Hamidi, Cihad; Göya, Cemil; Hattapoğlu, Salih; Gumus, Metehan

    2017-01-01

    Differentiation of idiopathic granulomatous mastitis (IGM) from carcinoma with routine imaging methods, such as ultrasonography (US) and mammography, is difficult. Therefore, we evaluated the value of a newly developed noninvasive technique called acoustic radiation force impulse imaging in differentiating IGM versus malignant lesions in the breast. Four hundred and eighty-six patients, who were referred to us with a presumptive diagnosis of a mass, underwent Virtual Touch tissue imaging (VTI; Siemens) and Virtual Touch tissue quantification (VTQ; Siemens) after conventional gray-scale US. US-guided percutaneous needle biopsy was then performed on 276 lesions with clinically and radiologically suspicious features. Malignant lesions (n = 122) and IGM (n = 48) were included in the final study group. There was a statistically significant difference in shear wave velocity marginal and internal values between the IGM and malignant lesions. The median marginal velocity for IGM and malignant lesions was 3.19 m/s (minimum-maximum 2.49-5.82) and 5.05 m/s (minimum-maximum 2.09-8.46), respectively (p < 0.001). The median internal velocity for IGM and malignant lesions was 2.76 m/s (minimum-maximum 1.14-4.12) and 4.79 m/s (minimum-maximum 2.12-8.02), respectively (p < 0.001). The combination of VTI and VTQ as a complement to conventional US provides viscoelastic properties of tissues, and thus has the potential to increase the specificity of US.

  17. Impulse noise generated by starter pistols

    PubMed Central

    Meinke, Deanna K.; Finan, Donald S.; Soendergaard, Jacob; Flamme, Gregory A.; Murphy, William J.; Lankford, James E.; Stewart, Michael

    2015-01-01

    Objective This study describes signals generated by .22 and .32 caliber starter pistols in the context of noise-induced hearing loss risk for sports officials and athletes. Design Acoustic comparison of impulses generated from typical .22 and .32 caliber starter pistols firing blanks were made to impulses generated from comparable firearms firing both blanks and live rounds. Acoustic characteristics are described in terms of directionality and distance from the shooter in a simulated outdoor running track. Metrics include peak sound pressure levels (SPL), A-weighted equivalent 8-hour level (LeqA8), and maximum permissible number of individual shots, or maximum permissible exposures (MPE) for the unprotected ear. Results Starter pistols produce peak SPLs above 140 dB. The numbers of MPEs are as few as five for the .22-caliber starter pistol, and somewhat higher (≤25) for the .32-caliber pistol. Conclusion The impulsive sounds produced by starter pistols correspond to MPE numbers that are unacceptably small for unprotected officials and others in the immediate vicinity of the shooter. At the distances included in this study, the risk to athletes appears to be low (when referencing exposure criteria for adults), but the sound associated with the starter pistol will contribute to the athlete’s overall noise exposure. PMID:23373743

  18. A theoretical study of inertial cavitation from acoustic radiation force impulse (ARFI) imaging and implications for the mechanical index

    PubMed Central

    Church, Charles C.; Labuda, Cecille; Nightingale, Kathryn

    2014-01-01

    The mechanical index (MI) attempts to quantify the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a nonthermal mechanism. The current formulation of the MI implicitly assumes that the acoustic field is generated using the short pulse durations appropriate to B-mode imaging. However, acoustic radiation force impulse (ARFI) imaging employs high-intensity pulses up to several hundred acoustic periods long. The effect of increased pulse durations on the thresholds for inertial cavitation was studied computationally in water, urine, blood, cardiac and skeletal muscle, brain, kidney, liver and skin. The results show that while the effect of pulse duration on cavitation thresholds in the three liquids can be considerable, reducing them by, e.g., 6% – 24% at 1 MHz, the effect in tissue is minor. More importantly, the frequency dependence of the MI appears to be unnecessarily conservative, i.e., that the magnitude of the exponent on frequency could be increased to 0.75. Comparison of these theoretical results with experimental measurements suggests that some tissues do not contain the pre-existing, optimally sized bubbles assumed for the MI. This means that in these tissues the MI is not necessarily a strong predictor of the probability for an adverse biological effect. PMID:25592457

  19. Acoustic characteristics of 1/20-scale model helicopter rotors

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.; Kohlhepp, Fred W.; Leighton, Kenneth P.

    1986-01-01

    A wind tunnel test to study the effects of geometric scale on acoustics and to investigate the applicability of very small scale models for the study of acoustic characteristics of helicopter rotors was conducted in the United Technologies Research Center Acoustic Research Tunnel. The results show that the Reynolds number effects significantly alter the Blade-Vortex-Interaction (BVI) Noise characteristics by enhancing the lower frequency content and suppressing the higher frequency content. In the time domain this is observed as an inverted thickness noise impulse rather than the typical positive-negative impulse of BVI noise. At higher advance ratio conditions, in the absence of BVI, the 1/20 scale model acoustic trends with Mach number follow those of larger scale models. However, the 1/20 scale model acoustic trends appear to indicate stall at higher thrust and advance ratio conditions.

  20. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.

    PubMed

    Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa

    2013-10-15

    The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.

  1. Acoustic Emission Analysis of Shuttle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Lane, John; Hooker, Jeffery; Immer, Christopher; Walker, James

    2004-01-01

    Acoustic emission (AE) signals generated from projectile impacts on reinforced and advanced carbon/carbon (RCC and ACC) panels, fired from a compressed-gas gun, identify the type and severity of damage sustained by the target. This type of testing is vital in providing the required "return to flight" (RTF) data needed to ensure continued and safe operation of NASA's Space Shuttle fleet. The gas gun at Kennedy Space Center is capable of propelling 12-inch by 3-inch cylinders of external tank (ET) foam at exit velocities exceeding 1,000 feet per second. Conventional AE analysis techniques require time domain processing of impulse data, along with amplitude distribution analysis. It is well known that identical source excitations can produce a wide range of AE signals amplitudes. In order to satisfy RTF goals, it is necessary to identify impact energy levels above and below damage thresholds. Spectral analysis techniques involving joint time frequency analysis (JTFA) are used to reinforce time domain AE analysis. JTFA analysis of the AE signals consists of short-time Fourier transforms (STFT) and the Huang-Hilbert transform (HHT). The HHT provides a very good measure of the instantaneous frequency of impulse events dominated by a single component. Identifying failure modes and cracking of fibers from flexural and/or extensional mode acoustic signals will help support in-flight as well as postflight impact analysis.

  2. The Micromorphological Research of the Internal Structure of Chairside CAD/CAM Materials by the Method of Scanning Impulse Acoustic Microscopy (SIAM)

    PubMed Central

    Goryainova, Kristina E.; Morokov, Egor S.; Retinskaja, Marina V.; Rusanov, Fedor S.; Apresyan, Samvel V.; Lebedenko, Igor Yu.

    2018-01-01

    Aim: The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Methods: Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). Results: The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Conclusion: Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research. PMID:29492178

  3. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks.

    PubMed

    Chen, Wu-Hua; Lu, Xiaomei; Zheng, Wei Xing

    2015-04-01

    This paper investigates the problems of impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks (DDNNs). Two types of DDNNs with stabilizing impulses are studied. By introducing the time-varying Lyapunov functional to capture the dynamical characteristics of discrete-time impulsive delayed neural networks (DIDNNs) and by using a convex combination technique, new exponential stability criteria are derived in terms of linear matrix inequalities. The stability criteria for DIDNNs are independent of the size of time delay but rely on the lengths of impulsive intervals. With the newly obtained stability results, sufficient conditions on the existence of linear-state feedback impulsive controllers are derived. Moreover, a novel impulsive synchronization scheme for two identical DDNNs is proposed. The novel impulsive synchronization scheme allows synchronizing two identical DDNNs with unknown delays. Simulation results are given to validate the effectiveness of the proposed criteria of impulsive stabilization and impulsive synchronization of DDNNs. Finally, an application of the obtained impulsive synchronization result for two identical chaotic DDNNs to a secure communication scheme is presented.

  4. Spectral analysis of hearing protector impulsive insertion loss.

    PubMed

    Fackler, Cameron J; Berger, Elliott H; Murphy, William J; Stergar, Michael E

    2017-01-01

    To characterise the performance of hearing protection devices (HPDs) in impulsive-noise conditions and to compare various protection metrics between impulsive and steady-state noise sources with different characteristics. HPDs were measured per the impulsive test methods of ANSI/ASA S12.42- 2010 . Protectors were measured with impulses generated by both an acoustic shock tube and an AR-15 rifle. The measured data were analysed for impulse peak insertion loss (IPIL) and impulsive spectral insertion loss (ISIL). These impulsive measurements were compared to insertion loss measured with steady-state noise and with real-ear attenuation at threshold (REAT). Tested HPDs included a foam earplug, a level-dependent earplug and an electronic sound-restoration earmuff. IPIL for a given protector varied between measurements with the two impulse noise sources, but ISIL agreed between the two sources. The level-dependent earplug demonstrated level-dependent effects both in IPIL and ISIL. Steady-state insertion loss and REAT measurements tended to provide a conservative estimate of the impulsively-measured attenuation. Measurements of IPIL depend strongly on the source used to measure them, especially for HPDs with less attenuation at low frequencies. ISIL provides an alternative measurement of impulse protection and appears to be a more complete description of an HPD's performance.

  5. A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft.

    PubMed

    Jayachandran, V; Bonilha, M W

    2003-03-01

    This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.

  6. The hearing threshold of a harbor porpoise (Phocoena phocoena) for impulsive sounds (L).

    PubMed

    Kastelein, Ronald A; Gransier, Robin; Hoek, Lean; de Jong, Christ A F

    2012-08-01

    The distance at which harbor porpoises can hear underwater detonation sounds is unknown, but depends, among other factors, on the hearing threshold of the species for impulsive sounds. Therefore, the underwater hearing threshold of a young harbor porpoise for an impulsive sound, designed to mimic a detonation pulse, was quantified by using a psychophysical technique. The synthetic exponential pulse with a 5 ms time constant was produced and transmitted by an underwater projector in a pool. The resulting underwater sound, though modified by the response of the projection system and by the pool, exhibited the characteristic features of detonation sounds: A zero to peak sound pressure level of at least 30 dB (re 1 s(-1)) higher than the sound exposure level, and a short duration (34 ms). The animal's 50% detection threshold for this impulsive sound occurred at a received unweighted broadband sound exposure level of 60 dB re 1 μPa(2)s. It is shown that the porpoise's audiogram for short-duration tonal signals [Kastelein et al., J. Acoust. Soc. Am. 128, 3211-3222 (2010)] can be used to estimate its hearing threshold for impulsive sounds.

  7. Combination of elastography and tissue quantification using the acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses.

    PubMed

    Tozaki, Mitsuhiro; Isobe, Sachiko; Sakamoto, Masaaki

    2012-10-01

    We evaluated the diagnostic performance of elastography and tissue quantification using acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses. There were 161 mass lesions. First, lesion correspondence on ARFI elastographic images to those on the B-mode images was evaluated: no findings on ARFI images (pattern 1), lesions that were bright inside (pattern 2), lesions that were dark inside (pattern 4), lesions that contained both bright and dark areas (pattern 3). In addition, pattern 4 was subdivided into 4a (dark area same as B-mode lesion) and 4b (dark area larger than lesion). Next, shear wave velocity (SWV) was measured using virtual touch tissue quantification. There were 13 pattern 1 lesions and five pattern 2 lesions; all of these lesions were benign, whereas all pattern 4b lesions (n = 43) were malignant. When the value of 3.59 m/s was chosen as the cutoff value, the combination of elastography and tissue quantification showed 91 % (83-91) sensitivity, 93 % (65-70) specificity, and 92 % (148-161) accuracy. The combination of elastography and tissue quantification is thought to be a promising ultrasound technique for differential diagnosis of breast-mass lesions.

  8. Time domain localization technique with sparsity constraint for imaging acoustic sources

    NASA Astrophysics Data System (ADS)

    Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain

    2017-09-01

    This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.

  9. Comparison of strain and acoustic radiation force impulse elastography of breast lesions by qualitative evaluation.

    PubMed

    Zhao, Qing; Wang, Xiao-Lei; Sun, Jia-Wei; Jiang, Zhao-Peng; Tao, Lin; Zhou, Xian-Li

    2018-04-13

    To compare the diagnostic performance of conventional strain elastography (CSE) and acoustic radiation force impulse (ARFI) induced SE for qualitative assessment of breast lesions and evaluate the additional value of the two techniques combined with Breast Imaging Reporting and Data System (BI-RADS) respectively for the differentiation of benign and malignant breast lesions. In a cohort of 110 women, the conventional ultrasound (US) features and the elasticity scores of CSE and ARFI induced SE were recorded. The diagnostic performances of BI-RADS, elastography and BI-RADS plus elastography were evaluated, including the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity and accuracy. Pathologically, there were forty-eight malignant and sixty-two benign breast lesions in the final analysis. The AUCs for CSE and ARFI induced SE are similar (CSE, 0.807; ARFI induced SE, 0.846; p > 0.05), however, the specificity of the latter method was significantly higher than that of CSE (83.9% vs. 58.1%, p = 0.004) in differentiating breast lesions. The accuracy and specificity of BI-RADS plus ARFI induced SE (84.5%, 80.6%, respectively) were significantly higher than BI-RADS alone (73.6%, 54.8%, respectively) and BI-RADS plus conventional SE (72.7%, 56.5%, respectively), respectively (p < 0.05) without loss of sensitivity. Our study showed that BI-RADS plus ARFI induced SE had a better diagnostic performance in the diagnosis of breast lesions in comparison with BI-RADS alone or BI-RADS plus CSE.

  10. Acoustic Techniques for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  11. ADAPTATION OF A TECHNIQUE FOR PREDICTING LARGE SOLID ROCKET MOTOR SPECIFIC IMPULSE FROM DATA OBTAINED IN MICROMOTORS.

    DTIC Science & Technology

    Laboratory. The purpose of this technique is to predict specific impulse in large solid rocket motors based on data obtained in micromotors . As little as 2...concerning performance of a propellant in a large solid motor. Predictions, based on data obtained in micromotors , were within 0.6% of the delivered impulse in 6-pound motors and 70-pound BATES motors. (Author)

  12. Spectral analysis of hearing protector impulsive insertion loss

    PubMed Central

    Fackler, Cameron J.; Berger, Elliott H.; Murphy, William J.; Stergar, Michael E.

    2017-01-01

    Objective To characterize the performance of hearing protection devices in impulsive-noise conditions and to compare various protection metrics between impulsive and steady-state noise sources with different characteristics. Design Hearing protectors were measured per the impulsive test methods of ANSI/ASA S12.42-2010. Protectors were measured with impulses generated by both an acoustic shock tube and an AR-15 rifle. The measured data were analyzed for impulse peak insertion loss (IPIL) and impulsive spectral insertion loss (ISIL). These impulsive measurements were compared to insertion loss measured with steady-state noise and with real-ear attenuation at threshold (REAT). Study Sample Tested devices included a foam earplug, a level-dependent earplug, and an electronic sound-restoration earmuff. Results IPIL for a given protector varied between measurements with the two impulse noise sources, but ISIL agreed between the two sources. The level-dependent earplug demonstrated level-dependent effects both in IPIL and ISIL. Steady-state insertion loss and REAT measurements tended to provide a conservative estimate of the impulsively-measured attenuation. Conclusions Measurements of IPIL depend strongly on the source used to measure them, especially for hearing protectors with less attenuation at low frequencies. ISIL provides an alternative measurement of impulse protection and appears to be a more complete description of an HPD’s performance. PMID:27885881

  13. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    PubMed

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  14. Value of in vitro acoustic radiation force impulse application on uterine adenomyosis.

    PubMed

    Bildaci, Tevfik Berk; Cevik, Halime; Yilmaz, Birnur; Desteli, Guldeniz Aksan

    2017-11-24

    Adenomyosis is the presence of endometrial glandular and stromal tissue in the myometrium. This phenomenon can be the cause of excessive bleeding and menstrual pain in premenopausal women. Diagnosis of adenomyosis may present difficulty with conventional methods such as ultrasound and magnetic resonance imaging. Frequently, diagnosis is accomplished retrospectively based on the hysterectomy specimen. This is a prospective case control study done in vitro on 90 patients' hysterectomy specimens. Acoustic radiation force impulse (ARFI) and color elastography were used to determine the elasticity of hysterectomy specimens of patients undergoing indicated surgeries. Based on histopathological examinations, two groups were formed: a study group (n = 28-with adenomyosis) and a control group (n = 62-without adenomyosis). Elasticity measurements of tissue with adenomyosis were observed to be significantly higher than measurements of normal myometrial tissue (p < 0.01). Uterine fibroids were found to have higher values on ARFI study compared to normal myometrial tissues (p < 0.01). The findings lead to the conclusion that adenomyosis tissue is significantly softer than the normal myometrium. ARFI was found to be beneficial in differentiating myometrial tissue with adenomyosis from normal myometrial tissue. It was found to be feasible and beneficial to implement ARFI in daily gynecology practice for diagnosis of adenomyosis.

  15. Laser acoustic emission thermal technique (LAETT): a technique for generating acoustic emission in dental composites.

    PubMed

    Duray, S J; Lee, S Y; Menis, D L; Gilbert, J L; Lautenschlager, E P; Greener, E H

    1996-01-01

    This study was designed to investigate a new method for generating interfacial debonding between the resin matrix and filler particles of dental composites. A pilot study was conducted to evaluate laser-induced acoustic emission in dental resins filled with varying quantities of particles. Model systems of 50/50 BisGMA/TEGDMA resin reinforced with 0, 25, and 75 wt% 5-10 micrometers silanated BaSiO(6) were analyzed. The sample size was 3.5 mm diameter x 0.25-0.28 mm thick. A continuous wave CO2 laser (Synrad Infrared Gas Laser Model 48-1) was used to heat the composite samples. Acoustic events were detected, recorded and processed by a model 4610 Smart Acoustic Monitor (SAM) with a 1220A preamp (Physical Acoustic Corp.) as a function of laser power. Initially, the acoustic signal from the model composites produced a burst pattern characteristic of fracturing, about 3.7 watts laser power. Acoustic emission increased with laser power up to about 6 watts. At laser powers above 6 watts, the acoustic emission remained constant. The amount of acoustic emission followed the trend: unfilled resin > composite with 25 wt% BaSiO(6) > composite with 75 wt% BaSiO(6). Acoustic emission generated by laser thermal heating is dependent on the weight percent of filler particles in the composite and the amount of laser power. For this reason, laser thermal acoustic emission might be useful as a nondestructive form of analysis of dental composites.

  16. A combined microphone and camera calibration technique with application to acoustic imaging.

    PubMed

    Legg, Mathew; Bradley, Stuart

    2013-10-01

    We present a calibration technique for an acoustic imaging microphone array, combined with a digital camera. Computer vision and acoustic time of arrival data are used to obtain microphone coordinates in the camera reference frame. Our new method allows acoustic maps to be plotted onto the camera images without the need for additional camera alignment or calibration. Microphones and cameras may be placed in an ad-hoc arrangement and, after calibration, the coordinates of the microphones are known in the reference frame of a camera in the array. No prior knowledge of microphone positions, inter-microphone spacings, or air temperature is required. This technique is applied to a spherical microphone array and a mean difference of 3 mm was obtained between the coordinates obtained with this calibration technique and those measured using a precision mechanical method.

  17. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  18. Effect of signal jitter on the spectrum of rotor impulsive noise

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    1987-01-01

    The effect of randomness or jitter of the acoustic waveform on the spectrum of rotor impulsive noise is studied because of its importance for data interpretation. An acoustic waveform train is modelled representing rotor impulsive noise. The amplitude, shape, and period between occurrences of individual pulses are allowed to be randomized assuming normal probability distributions. Results, in terms of the standard deviations of the variable quantities, are given for the autospectrum as well as special processed spectra designed to separate harmonic and broadband rotor noise components. Consideration is given to the effect of accuracy in triggering or keying to a rotor one per revolution signal. An example is given showing the resultant spectral smearing at the high frequencies due to the pulse signal period variability.

  19. Effect of signal jitter on the spectrum of rotor impulsive noise

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    1988-01-01

    The effect of randomness or jitter of the acoustic waveform on the spectrum of rotor impulsive noise is studied because of its importance for data interpretation. An acoustic waveform train is modeled representing rotor impulsive noise. The amplitude, shape, and period between occurrences of individual pulses are allowed to be randomized assuming normal probability distributions. Results, in terms of the standard deviations of the variable quantities, are given for the autospectrum as well as special processed spectra designed to separate harmonic and broadband rotor noise components. Consideration is given to the effect of accuracy in triggering or keying to a rotor one per revolution signal. An example is given showing the resultant spectral smearing at the high frequencies due to the pulse signal period variability.

  20. Acoustic Radiation Force Impulse Elastography for Efficacy Evaluation after Hepatocellular Carcinoma Radiofrequency Ablation: A Comparative Study with Contrast-Enhanced Ultrasound

    PubMed Central

    Xu, Xiaohong; Luo, Liangping; Chen, Jiexin; Wang, Jiexin; Zhou, Honglian; Li, Mingyi; Jin, Zhanqiang; Chen, Nianping; Miao, Huilai; Lin, Manzhou; Dai, Wei; Ahuja, Anil T.; Wang, Yi-Xiang J.

    2014-01-01

    Aim. To explore acoustic radiation force impulse (ARFI) elastography in assessing residual tumors of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA). Materials and Methods. There were 83 HCC lesions among 72 patients. All patients were examined with ARFI, contrast enhanced ultrasound (CEUS), and CT or MRI. Tumor brightness on virtual touch tissue imaging (VTI) and shear wave velocity (SWV) were assessed before and approximately one month after RFA. Results. There were 14 residual tumors after RFA. VTI showed that all the tumors were darker after RFA. VTI was not able to distinguish the ablated lesions and the residual tumors. 13 residual tumor lesions were detected by CEUS. All completely ablated nodules had SWV demonstration of x.xx., while with those residual nodules, 6 tumors had x.xx measurement and 8 tumors had measurable SWV. nine lesions with residual tumors occurred in cirrhosis subjects and 5 lesions with residual tumors occurred in fibrosis subjects; there was no residual tumor in the normal liver subjects. Conclusion. VTI technique cannot demonstrate residual tumor post RFA. While SWV measurement of less than x.xx is likely associated with residual tumors, measurement of less than x.xx cannot exclude residual tumors. Liver cirrhosis is associated with decreased chance of a complete ablation. PMID:24895624

  1. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  2. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow?

    PubMed

    Asano, Kenichiro; Ogata, Ai; Tanaka, Keiko; Ide, Yoko; Sankoda, Akiko; Kawakita, Chieko; Nishikawa, Mana; Ohmori, Kazuyoshi; Kinomura, Masaru; Shimada, Noriaki; Fukushima, Masaki

    2014-05-01

    The aim of this study was to identify the main influencing factor of the shear wave velocity (SWV) of the kidneys measured by acoustic radiation force impulse elastography. The SWV was measured in the kidneys of 14 healthy volunteers and 319 patients with chronic kidney disease. The estimated glomerular filtration rate was calculated by the serum creatinine concentration and age. As an indicator of arteriosclerosis of large vessels, the brachial-ankle pulse wave velocity was measured in 183 patients. Compared to the degree of interobserver and intraobserver deviation, a large variance of SWV values was observed in the kidneys of the patients with chronic kidney disease. Shear wave velocity values in the right and left kidneys of each patient correlated well, with high correlation coefficients (r = 0.580-0.732). The SWV decreased concurrently with a decline in the estimated glomerular filtration rate. A low SWV was obtained in patients with a high brachial-ankle pulse wave velocity. Despite progression of renal fibrosis in the advanced stages of chronic kidney disease, these results were in contrast to findings for chronic liver disease, in which progression of hepatic fibrosis results in an increase in the SWV. Considering that a high brachial-ankle pulse wave velocity represents the progression of arteriosclerosis in the large vessels, the reduction of elasticity succeeding diminution of blood flow was suspected to be the main influencing factor of the SWV in the kidneys. This study indicates that diminution of blood flow may affect SWV values in the kidneys more than the progression of tissue fibrosis. Future studies for reducing data variance are needed for effective use of acoustic radiation force impulse elastography in patients with chronic kidney disease.

  3. Resonant-type MEMS transducers excited by two acoustic emission simulation techniques

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2004-07-01

    Acoustic emission testing is a passive nondestructive testing technique used to identify the onset and characteristics of damage through the detection and analysis of transient stress waves. Successful detection and implementation of acoustic emission requires good coupling, high transducer sensitivity and ability to discriminate noise from real signals. We report here detection of simulated acoustic emission signals using a MEMS chip fabricated in the multi-user polysilicon surface micromachining (MUMPs) process. The chip includes 18 different transducers with 10 different resonant frequencies in the range of 100 kHz to 1 MHz. It was excited by two different source simulation techniques; pencil lead break and impact loading. The former simulation was accomplished by breaking 0.5 mm lead on the ceramic package. Four transducer outputs were collected simultaneously using a multi-channel oscilloscope. The impact loading was repeated for five different diameter ball bearings. Traditional acoustic emission waveform analysis methods were applied to both data sets to illustrate the identification of different source mechanisms. In addition, a sliding window Fourier transform was performed to differentiate frequencies in time-frequency-amplitude domain. The arrival and energy contents of each resonant frequency were investigated in time-magnitude plots. The advantages of the simultaneous excitation of resonant transducers on one chip are discussed and compared with broadband acoustic emission transducers.

  4. Laboratory studies of near-grazing impulsive sound propagating over rough water.

    PubMed

    Qin, Qin; Lukaschuk, Sergei; Attenborough, Keith

    2008-08-01

    Acoustic impulses due to an electrical spark source (main acoustic energy near 15 kHz) have been measured after propagating near to the water surface in a shallow container resting on a vibrating platform. Control of the platform vibration enabled control of water wave amplitudes. Analysis of the results reveals systematic variations in the received acoustic waveforms as the mean trough-to-crest water wave amplitude is increased up to 7 mm. The amplitudes of the peaks corresponding to specular reflections are reduced and the variability in the tails of the waveforms is increased.

  5. Nonlinear acoustic spectroscopy of cracked flaws and disbonds: Fundamentals, techniques, and applications

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.; Solodov, I. Yu.

    2000-05-01

    Classical nonlinear acoustics of solids operates with distributed material nonlinearity related to unharmonicity of molecular interaction forces. Weakening of molecular bonds in a defect area or intermittent lack of elastic coupling between the faces of a vibrating crack or unbond ("clapping") results in anomalously high local contact acoustic nonlinearity (CAN). CAN properties and spectral features are different from those of the classical analog and important to develop new acoustic NDE techniques. Three approaches to nonlinear NDE methodology have been experimentally verified: low-frequency (hundreds of Hz) vibration technique, intermediate-frequency (hundreds of kHz) standing wave and high-frequency (tens of MHz) propagation modes. Low-frequency nonlinear contact vibrations revealed multiple sub- and super-harmonics generation featuring non-monotonous (sinx/x type) spectra. Parametric instability observed in resonator with a nonlinear contact leads to the output spectrum splitting up into successive sub-harmonics as the wave amplitude increases. High-frequency experiments demonstrated abnormal increases in the third harmonic amplitude: 3 or 4 order enhancement of the 3-ω nonlinear parameter was measured for the nonlinear contact. The CAN spectral features in both acoustic and vibration modes were used for nonlinear NDE of simulated and realistic flaws in glass, metal welds, etc. The sensitivities of the techniques are compared and their practical applicability assessed.

  6. Optical tracking of acoustic radiation force impulse-induced dynamics in a tissue-mimicking phantom

    PubMed Central

    Bouchard, Richard R.; Palmeri, Mark L.; Pinton, Gianmarco F.; Trahey, Gregg E.; Streeter, Jason E.; Dayton, Paul A.

    2009-01-01

    Optical tracking was utilized to investigate the acoustic radiation force impulse (ARFI)-induced response, generated by a 5-MHz piston transducer, in a translucent tissue-mimicking phantom. Suspended 10-μm microspheres were tracked axially and laterally at multiple locations throughout the field of view of an optical microscope with 0.5-μm displacement resolution, in both dimensions, and at frame rates of up to 36 kHz. Induced dynamics were successfully captured before, during, and after the ARFI excitation at depths of up to 4.8 mm from the phantom’s proximal boundary. Results are presented for tracked axial and lateral displacements resulting from on-axis and off-axis (i.e., shear wave) acquisitions; these results are compared to matched finite element method modeling and independent ultrasonically based empirical results and yielded reasonable agreement in most cases. A shear wave reflection, generated by the proximal boundary, consistently produced an artifact in tracked displacement data later in time (i.e., after the initial ARFI-induced displacement peak). This tracking method provides high-frame-rate, two-dimensional tracking data and thus could prove useful in the investigation of complex ARFI-induced dynamics in controlled experimental settings. PMID:19894849

  7. Acoustic Full Waveform Inversion to Characterize Near-surface Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A. J.

    2015-12-01

    Recent high-quality, atmospheric overpressure data from chemical high-explosive experiments provide a unique opportunity to characterize near-surface explosions, specifically estimating yield and source time function. Typically, yield is estimated from measured signal features, such as peak pressure, impulse, duration and/or arrival time of acoustic signals. However, the application of full waveform inversion to acoustic signals for yield estimation has not been fully explored. In this study, we apply a full waveform inversion method to local overpressure data to extract accurate pressure-time histories of acoustics sources during chemical explosions. A robust and accurate inversion technique for acoustic source is investigated using numerical Green's functions that take into account atmospheric and topographic propagation effects. The inverted pressure-time history represents the pressure fluctuation at the source region associated with the explosion, and thus, provides a valuable information about acoustic source mechanisms and characteristics in greater detail. We compare acoustic source properties (i.e., peak overpressure, duration, and non-isotropic shape) of a series of explosions having different emplacement conditions and investigate the relationship of the acoustic sources to the yields of explosions. The time histories of acoustic sources may refine our knowledge of sound-generation mechanisms of shallow explosions, and thereby allow for accurate yield estimation based on acoustic measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Acoustic noise generation by the DOE/NASA MOD-1 wind turbine

    NASA Technical Reports Server (NTRS)

    Kelley, N. D.

    1981-01-01

    The results of a series of measurements taken over the past year of the acoustic emissions from the DOE/NASA MOD-1 Wind Turbine show the maximum acoustic energy is concentrated in the low frequency range, often below 100 Hz. The temporal as well as the frequency characteristics of the turbine sounds have been shown to be important since the MOD-1 is capable of radiating both coherent and incoherent noise. The coherent sounds are usually impulsive and are manifested in an averaged frequency domain plot as large numbers of discrete energy bands extending from the blade passage frequency to beyond 50 Hz on occasion. It is these impulsive sounds which are identified as the principal source of the annoyance to a dozen families living within 3 km of the turbine. The source of the coherent noise appears to be the rapid, unsteady blade loads encountered as the blade passes through the wake of the tower structure. Annoying levels are occasionally reached at nearby homes due to the interaction of the low frequency, high energy peaks in the acoustic impulses and the structural modes of the homes as well as by direct radiation outdoors. The peak levels of these impulses can be enhanced or subdued through complete propagation.

  9. Distributed acoustic sensing technique and its field trial in SAGD well

    NASA Astrophysics Data System (ADS)

    Han, Li; He, Xiangge; Pan, Yong; Liu, Fei; Yi, Duo; Hu, Chengjun; Zhang, Min; Gu, Lijuan

    2017-10-01

    Steam assisted gravity drainage (SAGD) is a very promising way for the development of heavy oil, extra heavy oil and tight oil reservoirs. Proper monitoring of the SAGD operations is essential to avoid operational issues and improve efficiency. Among all the monitoring techniques, micro-seismic monitoring and related interpretation method can give useful information about the steam chamber development and has been extensively studied. Distributed acoustic sensor (DAS) based on Rayleigh backscattering is a newly developed technique that can measure acoustic signal at all points along the sensing fiber. In this paper, we demonstrate a DAS system based on dual-pulse heterodyne demodulation technique and did field trial in SAGD well located in Xinjiang Oilfield, China. The field trail results validated the performance of the DAS system and indicated its applicability in steam-chamber monitoring and hydraulic monitoring.

  10. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    NASA Astrophysics Data System (ADS)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2004-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  11. Acoustic analysis in Mudejar-Gothic churches: Experimental results

    NASA Astrophysics Data System (ADS)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. .

  12. Acoustic analysis in Mudejar-Gothic churches: experimental results.

    PubMed

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria.

  13. Laser Techniques on Acoustically Levitated Droplets

    NASA Astrophysics Data System (ADS)

    Cannuli, Antonio; Caccamo, Maria Teresa; Castorina, Giuseppe; Colombo, Franco; Magazù, Salvatore

    2018-01-01

    This work reports the results of an experimental study where laser techniques are applied to acoustically levitated droplets of trehalose aqueous solutions in order to perform spectroscopic analyses as a function of concentration and to test the theoretical diameter law. The study of such systems is important in order to better understand the behaviour of trehalose-synthesizing extremophiles that live in extreme environments. In particular, it will be shown how acoustic levitation, combined with optical spectroscopic instruments allows to explore a wide concentration range and to test the validity of the diameter law as a function of levitation lag time, i.e. the D2 vs t law. On this purpose a direct diameter monitoring by a video camera and a laser pointer was first performed; then the diameter was also evaluated by an indirect measure through an OH/CH band area ratio analysis of collected Raman and Infrared spectra. It clearly emerges that D2 vs t follows a linear trend for about 20 minutes, reaching then a plateau at longer time. This result shows how trehalose is able to avoid total water evaporation, this property being essential for the surviving of organisms under extreme environmental conditions.

  14. Viscoelastic assessment of anal canal function using acoustic reflectometry: a clinically useful technique.

    PubMed

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J; Hosker, Gordon L; Lose, Gunnar; Kiff, Edward S

    2012-02-01

    Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis. The aim of this study was to assess whether the parameters measured in anal acoustic reflectometry are clinically valid between continent and fecally incontinent subjects. This was an age- and sex-matched study of continent and incontinent women. The study was conducted at a university teaching hospital. One hundred women (50 with fecal incontinence and 50 with normal bowel control) were included in the study. Subjects were age matched to within 5 years. Parameters measured with anal acoustic reflectometry and manometry were compared between incontinent and continent groups using a paired t test. Diagnostic accuracy was assessed by the use of receiver operator characteristic curves. Four of the 5 anal acoustic reflectometry parameters at rest were significantly different between continent and incontinent women (eg, opening pressure in fecally incontinent subjects was 31.6 vs 51.5 cm H2O in continent subjects, p = 0.0001). Both anal acoustic reflectometry parameters of squeeze opening pressure and squeeze opening elastance were significantly reduced in the incontinent women compared with continent women (50 vs 99.1 cm H2O, p = 0.0001 and 1.48 vs 1.83 cm H2O/mm, p = 0.012). In terms of diagnostic accuracy, opening pressure at rest measured by reflectometry was significantly superior in discriminating between continent and incontinent women in comparison with resting pressure measured with manometry (p = 0.009). Anal acoustic reflectometry is a new, clinically valid technique in the assessment of continent and incontinent subjects. This technique, which assesses the response of the anal canal to distension and relaxation, provides a detailed viscoelastic assessment of anal canal function. This technique

  15. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source.

    PubMed

    Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi

    2014-01-20

    The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.

  16. Ocean Variability Effects on Underwater Acoustic Communications

    DTIC Science & Technology

    2007-09-30

    sea surface was rougher. To recover the transmitted symbols which have been passed through the time-varying multi-path acoustic channels, a new ...B is about 6 dB higher than that during enviromental case A. Due to the large aperture and deployment range of the MPL array, the channel impulse...environmental fluctuations and the performance of coherent underwater acoustic communications presents new insights into the operational effectiveness of

  17. The Use of Structural-Acoustic Techniques to Assess Potential Structural Damage From Sonic Booms

    NASA Technical Reports Server (NTRS)

    Garrelick, Joel; Martini, Kyle

    1996-01-01

    The potential impact of supersonic operations includes structural damage from the sonic boom overpressure. This paper describes a study of how structural-acoustic modeling and testing techniques may be used to assess the potential for such damage in the absence of actual flyovers. Procedures are described whereby transfer functions relating structural response to sonic boom signature may be obtained with a stationary acoustic source and appropriate data processing. Further, by invoking structural-acoustic reciprocity, these transfer functions may also be acquired by measuring the radiated sound from the structure under a mechanical drive. The approach is based on the fundamental assumption of linearity, both with regard to the (acoustic) propagation of the boom in the vicinity of the structure and to the structure's response. Practical issues revolve around acoustic far field and source directivity requirements. The technique was implemented on a specially fabricated test structure at Edwards AFB, CA with the support of Wyle Laboratories, Inc. Blank shots from a cannon served as our acoustic source and taps from an instrumented hammer generated the mechanical drive. Simulated response functions were constructed. Results of comparisons with corresponding measurements recorded during dedicated supersonic flyovers with F-15 aircraft are presented for a number of sensor placements.

  18. Acoustic Radiation Force Impulse Elastography in Determining the Effects of Type 1 Diabetes on Pancreas and Kidney Elasticity in Children.

    PubMed

    Sağlam, Dilek; Bilgici, Meltem Ceyhan; Kara, Cengiz; Yılmaz, Gülay Can; Çamlıdağ, İlkay

    2017-11-01

    The aim of this study is to determine the effects of type 1 diabetes on pancreas and kidney elasticity in children, using acoustic radiation force impulse ultrasound elastography. Sixty autoantibody-positive patients with type 1 diabetes (45% girls; mean [± SD] age, 11.7 ± 4.4 years; range, 1.9-19.3 years) admitted to the pediatric endocrinology outpatient clinic and 32 healthy children (50% girls; mean age, 10.2 ± 3.8 years; range, 2.1-17.3 years) were included in the study. Acoustic radiation force impulse elastography measurements were performed of the kidneys and pancreas in both groups. Body mass index, duration of diabetes, HbA1c levels, and insulin dosage of patients with type 1 diabetes were recorded. The mean shear-wave velocities of the pancreas were 0.99 ± 0.25 m/s in patients with type 1 diabetes and 1.09 ± 0.22 m/s in healthy control subjects; the difference was not significant (p = 0.08). The median shear-wave velocities of the right and left kidneys in patients with type 1 diabetes were 2.43 ± 0.29 and 2.47 ± 0.25 m/s, respectively. There were no significant differences in the shear-wave velocities of the right and left kidneys between the patients with type 1 diabetes and the healthy control subjects (p = 0.91 and p = 0.73, respectively). Correlation analysis showed no correlation between the shear-wave velocities of the pancreas and kidney versus HbA1c level, duration of diabetes, insulin dosage, height, weight, and body mass index of the patients with type 1 diabetes. The current study showed no significant difference in the shear-wave velocity of kidneys in children with type 1 diabetes with normoalbuminuria compared with the healthy control subjects. We also observed that the shear-wave velocity of the pancreas in children with type 1 diabetes and healthy control subjects did not differ significantly.

  19. The determination of acoustic reflection coefficients by using cepstral techniques, II: Extensions of the technique and considerations of accuracy

    NASA Astrophysics Data System (ADS)

    Bolton, J. S.; Gold, E.

    1986-10-01

    In a companion paper the cepstral technique for the measurement of reflection coefficients was described. In particular the concepts of extraction noise and extraction delay were introduced. They are considered further here, and, in addition, a means of extending the cepstral technique to accommodate surfaces having lengthy impulse responses is described. The character of extraction noise, a cepstral component which interferes with reflection measurements, is largely determined by the spectrum of the signal radiated from the source loudspeaker. Here the origin and effects of extraction noise are discussed and it is shown that inverse filtering techniques may be used to reduce extraction noise without making impractical demands of the electrical test signal or the source loudspeaker. The extraction delay, a factor which is introduced when removing the reflector impulse response from the power cepstrum, has previously been estimated by a cross-correlation technique. Here the importance of estimating the extraction delay accurately is emphasized by showing the effect of small spurious delays on the calculation of the normal impedance of a reflecting surface. The effects are shown to accord with theory, and it was found that the real part of the estimated surface normal impedance is very nearly maximized when the spurious delay is eliminated; this has suggested a new way of determining the extraction delay itself. Finally, the basic cepstral technique is suited only to the measurement of surfaces whose impulse responses are shorter than τ, the delay between the arrival of the direct and specularly reflected components at the measurement position. Here it is shown that this restriction can be eliminated, by using a process known as cepstral inversion, when the direct cepstrum has a duration less than τ and cepstral aliasing is insignificant. It is also possible to use this technique to deconvolve a signal from an echo sequence in the time domain, an operation

  20. Quantitative shear wave optical coherence elastography (SW-OCE) with acoustic radiation force impulses (ARFI) induced by phase array transducer

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.

  1. Effects of melody and technique on acoustical and musical features of western operatic singing voices.

    PubMed

    Larrouy-Maestri, Pauline; Magis, David; Morsomme, Dominique

    2014-05-01

    The operatic singing technique is frequently used in classical music. Several acoustical parameters of this specific technique have been studied but how these parameters combine remains unclear. This study aims to further characterize the Western operatic singing technique by observing the effects of melody and technique on acoustical and musical parameters of the singing voice. Fifty professional singers performed two contrasting melodies (popular song and romantic melody) with two vocal techniques (with and without operatic singing technique). The common quality parameters (energy distribution, vibrato rate, and extent), perturbation parameters (standard deviation of the fundamental frequency, signal-to-noise ratio, jitter, and shimmer), and musical features (fundamental frequency of the starting note, average tempo, and sound pressure level) of the 200 sung performances were analyzed. The results regarding the effect of melody and technique on the acoustical and musical parameters show that the choice of melody had a limited impact on the parameters observed, whereas a particular vocal profile appeared depending on the vocal technique used. This study confirms that vocal technique affects most of the parameters examined. In addition, the observation of quality, perturbation, and musical parameters contributes to a better understanding of the Western operatic singing technique. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  2. Acoustic simulation in architecture with parallel algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xiaohong; Zhang, Xinrong; Li, Dan

    2004-03-01

    In allusion to complexity of architecture environment and Real-time simulation of architecture acoustics, a parallel radiosity algorithm was developed. The distribution of sound energy in scene is solved with this method. And then the impulse response between sources and receivers at frequency segment, which are calculated with multi-process, are combined into whole frequency response. The numerical experiment shows that parallel arithmetic can improve the acoustic simulating efficiency of complex scene.

  3. Fontan Circulation in Adult Patients: Acoustic Radiation Force Impulse Elastography as a Useful Tool for Liver Assessment.

    PubMed

    Melero-Ferrer, Josep Lluís; Osa-Sáez, Ana; Buendía-Fuentes, Francisco; Ballesta-Cuñat, Antonio; Flors, Lucía; Rodríguez-Serrano, María; Calvillo-Batllés, Pilar; Arnau-Vives, Miguel-Ángel; Palencia-Pérez, Miguel A; Rueda-Soriano, Joaquín

    2014-07-01

    The development of liver fibrosis and cirrhosis due to long-standing liver congestion is known to occur in adult patients with Fontan circulation. Hepatic elastography has shown to be a useful tool for the noninvasive assessment and staging of liver fibrosis in chronic liver diseases, although the utility of this technique in Fontan patients remains to be adequately studied. Twenty-one patients with Fontan circulation underwent an abdominal ultrasound and an acoustic radiation force impulse (ARFI) elastography. In order to compare the results from this group, a cohort of 14 healthy controls and another group containing 17 patients with cirrhosis were included. The association between the velocity values measured with elastography and clinical and analytical parameters were also studied. Mean shear waves propagation velocity in liver tissue in the Fontan group was 1.86 ± 0.5 m/s, with 76% of patients over the cirrhosis threshold (1.55 m/s). The control group had a mean velocity of 1.09 ± 0.06 m/s, while the cirrhotic group obtained 2.71 ± 0.51 m/s. Seven patients with Fontan circulation had increased liver enzymes. Liver ultrasound showed evidence of chronic liver disease in six patients. Velocity values obtained in the presence or absence of analytical or liver ultrasound abnormalities showed significant differences in the univariate analysis (P = .04 and P = .03 respectively). In conclusion, ARFI elastography showed increased wave propagation velocity values in the Fontan population suggesting increased liver stiffness which could be related to advanced fibrosis. A statistically significant association between ARFI values and the presence of analytical and ultrasound abnormalities has been demonstrated. © The Author(s) 2014.

  4. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition.

    PubMed

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo

    2013-04-01

    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  5. Theoretical detection threshold of the proton-acoustic range verification technique.

    PubMed

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-10-01

    Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1-10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. The calculated noise in the transducer was 12-28 mPa, depending on the transducer central frequency (70-380 kHz). The minimum number of protons detectable by the technique was on the order of 3-30 × 10(6) per pulse, with 30-800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5

  6. Evaluation of Stiffness of the Spastic Lower Extremity Muscles in Early Spinal Cord Injury by Acoustic Radiation Force Impulse Imaging

    PubMed Central

    Cho, Kang Hee

    2015-01-01

    Objective To investigate intrinsic viscoelastic changes using shear wave velocities (SWVs) of spastic lower extremity muscles in patients with early spinal cord injury (SCI) via acoustic radiation force impulse (ARFI) imaging and to evaluate correlation between the SWV values and spasticity. Methods Eighteen patients with SCI within 3 months and 10 healthy adults participated. We applied the ARFI technique to measure SWV of gastrocnemius muscle (GCM) and long head of biceps femoris muscle. Spasticity of ankle and knee joint was assessed by original Ashworth Scale. Results Ten patients with SCI had spasticity. Patients with spasticity had significantly faster SWV for GCM and biceps femoris muscle than those without spasticity (Mann-Whitney U test, p=0.007 and p=0.008) and normal control (p=0.011 and p=0.037, respectively). The SWV values of GCM correlated with the ankle spasticity (Spearman rank teat, p=0.026). There was significant correlation between the SWV values for long head of biceps femoris muscle and knee spasticity (Spearman rank teat, p=0.022). Conclusion ARFI demonstrated a difference in muscle stiffness in the GCM between patients with spastic SCI and those without spasticity. This finding suggested that stiffness of muscles increased in spastic lower extremity of early SCI patients. ARFI imaging is a valuable tool for noninvasive assessment of the stiffness of the spastic muscle and has the potential to identify pathomechanical changes of the tissue associated with SCI. PMID:26161345

  7. Comparison of Acoustic Impedance Eduction Techniques for Locally-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Parrott, T. L.; Watson, W. R.

    2003-01-01

    Typical acoustic liners used in current aircraft inlets and aft-fan ducts consist of some type of perforated facesheet bonded to a honeycomb core. A number of techniques for determining the acoustic impedance of these locallyreacting liners have been developed over the last five decades. In addition, a number of models have been developed to predict the acoustic impedance of locallyreacting liners in the presence of grazing flow, and to use that information together with aeroacoustic propagation codes to assess the noise absorption provided by these liners. These prediction models have incorporated the results from databases acquired with specific impedance eduction techniques. Thus, while these prediction models are acceptable for liners that are similar to those tested in these databases, their application to new liner configurations must be viewed with caution. The primary purpose of this paper is to provide a comparison of impedance eduction techniques that have been implemented at various aerospace research laboratories in the United States (NASA Langley Research Center, General Electric Aircraft Engines, B. F. Goodrich and Boeing). A secondary purpose is to provide data for liner configurations that extend the porosity range beyond that which has been previously used in common aircraft engine nacelles. Two sets of liners were designed to study the effects of three parameters: perforate hole diameter, facesheet thickness and porosity. These two sets of liners were constructed for testing in each of the laboratories listed above. The first set of liners was designed to fit into the NASA Langley and Boeing test facilities. The second set was designed to fit into the General Electric Aircraft Engines and B. F. Goodrich test facilities. By using the same parent material, both sets of liners were identical to within the limits of material and fabrication variability. Baseline data were obtained in the normal incidence impedance tubes at NASA Langley and B. F

  8. Damage Source Identification of Reinforced Concrete Structure Using Acoustic Emission Technique

    PubMed Central

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures. PMID:23997681

  9. Damage source identification of reinforced concrete structure using acoustic emission technique.

    PubMed

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures.

  10. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.

  11. Changes in metal properties after thermal and electric impulse processing

    NASA Astrophysics Data System (ADS)

    Shaburova, N. A.

    2015-04-01

    The results of the experiments on processing metal melts by powerful electromagnetic impulses are given. The generator used in the experiments has the following characteristics: pulse height - 10KV, duration - 1ns, leading edge - 0.1ns, repetition rate - 1KHz, the output - 100KWt. The duration of the processing is 10-15min. The comparative analysis of the processed and unprocessed samples results in the changes of structure, increase of density, solidity, plasticity and resilience of cast metal. The result analysis of different external physical processing methods on alloys shows full agreement with the results of the ultrasonic processing of metals. The hypothesis of ultrasonic shock wave formation at the pulse front was adopted as the main mechanism of the electromagnetic impulse impact on alloys. The theoretical part of the research describes the transformation process of electromagnetic impulses into acoustic ones.

  12. The influence of hepatic steatosis on the evaluation of fibrosis with non-alcoholic fatty liver disease by acoustic radiation force impulse.

    PubMed

    Yanrong Guo; Haoming Lin; Xinyu Zhang; Huiying Wen; Siping Chen; Xin Chen

    2017-07-01

    Acoustic radiation force impulse (ARFI) elastography is a non-invasive method for the assessment of liver by measuring liver stiffness. The aim of this study is to evaluate the accuracy of ARFI for the diagnosis of liver fibrosis and to assess impact of steatosis on liver fibrosis stiffness measurement, in rats model of non-alcoholic fatty liver disease (NAFLD). The rat models were conducted in 59 rats. The right liver lobe was processed and embedded in a fabricated gelatin solution. Liver mechanics were measured using shear wave velocity (SWV) induced by acoustic radiation force. In rats with NAFLD, the diagnostic performance of ARFI elastography in predicting severe fibrosis (F ≥ 3) and cirrhosis (F ≥ 4) had the areas under the receiver operating characteristic curves (AUROC) of 0.993 and 0.985. Among rats mean SWV values were significantly higher in rats with severe steatosis by histology compared to those mild or without steatosis for F0-F2 fibrosis stages (3.07 versus 2.51 m/s, P = 0.01). ARFI elastography is a promising method for staging hepatic fibrosis with NAFLD in rat models. The presence of severe steatosis is a significant factor for assessing the lower stage of fibrosis.

  13. Measurement Techniques for Flow Diagnostic in ITAM Impulse Wind Tunnels

    DTIC Science & Technology

    2010-04-01

    time of wind - tunnel operation, so that oscillations caused by initial shock loads could decay and a comparatively long time period with constant flow...Flow Diagnostic in ITAM Impulse Wind Tunnels 7 - 4 RTO-EN-AVT-186 A strain-gauge pressure probe is an elastic element (membrane) in a sealed...Diagnostic in ITAM Impulse Wind Tunnels RTO-EN-AVT-186 7 - 5 probes are individually calibrated. Piezoelectric pressure gauges are based

  14. Extending the impulse response in order to reduce errors due to impulse noise and signal fading

    NASA Technical Reports Server (NTRS)

    Webb, Joseph A.; Rolls, Andrew J.; Sirisena, H. R.

    1988-01-01

    A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel.

  15. The Latent Structure of Impulsivity: Impulsive Choice, Impulsive Action, and Impulsive Personality Traits

    PubMed Central

    MacKillop, James; Weafer, Jessica; Gray, Joshua; Oshri, Assaf; Palmer, Abraham; de Wit, Harriet

    2016-01-01

    Rationale Impulsivity has been strongly linked to addictive behaviors, but can be operationalized in a number of ways that vary considerably in overlap, suggesting multidimensionality. Objective This study tested the hypothesis that the latent structure among multiple measures of impulsivity would reflect three broad categories: impulsive choice, reflecting discounting of delayed rewards; impulsive action, reflecting ability to inhibit a prepotent motor response; and impulsive personality traits, reflecting self-reported attributions of self-regulatory capacity. Methods The study used a cross-sectional confirmatory factor analysis of multiple impulsivity assessments. Participants were 1252 young adults (62% female) with low levels of addictive behavior who were assessed in individual laboratory rooms at the University of Chicago and the University of Georgia. The battery comprised a delay discounting task, Monetary Choice Questionnaire, Conners Continuous Performance Test, Go/NoGo Task, Stop Signal Task, Barratt Impulsivity Scale, and the UPPS-P Impulsive Behavior Scale. Results The hypothesized three-factor model provided the best fit to the data, although Sensation Seeking was excluded from the final model. The three latent factors were largely unrelated to each other and were variably associated with substance use. Conclusions These findings support the hypothesis that diverse measures of impulsivity can broadly be organized into three categories that are largely distinct from one another. These findings warrant investigation among individuals with clinical levels of addictive behavior and may be applied to understanding the underlying biological mechanisms of these categories. PMID:27449350

  16. The a priori SDR Estimation Techniques with Reduced Speech Distortion for Acoustic Echo and Noise Suppression

    NASA Astrophysics Data System (ADS)

    Thoonsaengngam, Rattapol; Tangsangiumvisai, Nisachon

    This paper proposes an enhanced method for estimating the a priori Signal-to-Disturbance Ratio (SDR) to be employed in the Acoustic Echo and Noise Suppression (AENS) system for full-duplex hands-free communications. The proposed a priori SDR estimation technique is modified based upon the Two-Step Noise Reduction (TSNR) algorithm to suppress the background noise while preserving speech spectral components. In addition, a practical approach to determine accurately the Echo Spectrum Variance (ESV) is presented based upon the linear relationship assumption between the power spectrum of far-end speech and acoustic echo signals. The ESV estimation technique is then employed to alleviate the acoustic echo problem. The performance of the AENS system that employs these two proposed estimation techniques is evaluated through the Echo Attenuation (EA), Noise Attenuation (NA), and two speech distortion measures. Simulation results based upon real speech signals guarantee that our improved AENS system is able to mitigate efficiently the problem of acoustic echo and background noise, while preserving the speech quality and speech intelligibility.

  17. Employment of adaptive learning techniques for the discrimination of acoustic emissions

    NASA Astrophysics Data System (ADS)

    Erkes, J. W.; McDonald, J. F.; Scarton, H. A.; Tam, K. C.; Kraft, R. P.

    1983-11-01

    The following aspects of this study on the discrimination of acoustic emissions (AE) were examined: (1) The analytical development and assessment of digital signal processing techniques for AE signal dereverberation, noise reduction, and source characterization; (2) The modeling and verification of some aspects of key selected techniques through a computer-based simulation; and (3) The study of signal propagation physics and their effect on received signal characteristics for relevant physical situations.

  18. UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Good, Morris S.; Smith, Leon E.; Warren, Glen A.

    A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using amore » surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.« less

  19. Theoretical detection threshold of the proton-acoustic range verification technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method.more » Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic

  20. Theoretical detection threshold of the proton-acoustic range verification technique

    PubMed Central

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-01-01

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range

  1. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    NASA Technical Reports Server (NTRS)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  2. Physics of thermo-acoustic sound generation

    NASA Astrophysics Data System (ADS)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  3. Acoustic radiation force impulse (ARFI) elastography for detection of renal damage in children.

    PubMed

    Göya, Cemil; Hamidi, Cihad; Ece, Aydın; Okur, Mehmet Hanifi; Taşdemir, Bekir; Çetinçakmak, Mehmet Güli; Hattapoğlu, Salih; Teke, Memik; Şahin, Cahit

    2015-01-01

    Acoustic radiation force impulse (ARFI) imaging is a promising method for noninvasive evaluation of the renal parenchyma. To investigate the contribution of ARFI quantitative US elastography for the detection of renal damage in kidneys with and without vesicoureteral reflux (VUR). One hundred seventy-six kidneys of 88 children (46 male, 42 female) who had been referred for voiding cystourethrography and 20 healthy controls were prospectively investigated. Patients were assessed according to severity of renal damage on dimercaptosuccinic acid (DMSA) scintigraphy. Ninety-eight age- and gender-matched healthy children constituted the control group. Quantitative shear wave velocity (SWV) measurements were performed in the upper and lower poles and in the interpolar region of each kidney. DMSA scintigraphy was performed in 62 children (124 kidneys). Comparisons of SWV values of kidneys with and without renal damage and/or VUR were done. Significantly higher SWV values were found in non-damaged kidneys. Severely damaged kidneys had the lowest SWV values (P < 0.001). High-grade (grade V-IV) refluxing kidneys had the lowest SWV values, while non-refluxing kidneys had the highest values (P < 0.05). Significant negative correlations were found between the mean quantitative US elastography values and DMSA scarring score (r = -0.788, P < 0.001) and VUR grade (r = -0.634, P < 0.001). SWV values of the control kidneys were significantly higher than those of damaged kidneys (P < 0.05). Our findings suggest decreasing SWV of renal units with increasing grades of vesicoureteric reflux, increasing DMSA-assessed renal damage and decreasing DMSA-assessed differential function.

  4. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques

    NASA Astrophysics Data System (ADS)

    Delvecchio, S.; Bonfiglio, P.; Pompoli, F.

    2018-01-01

    This paper deals with the state-of-the-art strategies and techniques based on vibro-acoustic signals that can monitor and diagnose malfunctions in Internal Combustion Engines (ICEs) under both test bench and vehicle operating conditions. Over recent years, several authors have summarized what is known in critical reviews mainly focused on reciprocating machines in general or on specific signal processing techniques: no attempts to deal with IC engine condition monitoring have been made. This paper first gives a brief summary of the generation of sound and vibration in ICEs in order to place further discussion on fault vibro-acoustic diagnosis in context. An overview of the monitoring and diagnostic techniques described in literature using both vibration and acoustic signals is also provided. Different faulty conditions are described which affect combustion, mechanics and the aerodynamics of ICEs. The importance of measuring acoustic signals, as opposed to vibration signals, is due since the former seem to be more suitable for implementation on on-board monitoring systems in view of their non-intrusive behaviour, capability in simultaneously capturing signatures from several mechanical components and because of the possibility of detecting faults affecting airborne transmission paths. In view of the recent needs of the industry to (-) optimize component structural durability adopting long-life cycles, (-) verify the engine final status at the end of the assembly line and (-) reduce the maintenance costs monitoring the ICE life during vehicle operations, monitoring and diagnosing system requests are continuously growing up. The present review can be considered a useful guideline for test engineers in understanding which types of fault can be diagnosed by using vibro-acoustic signals in sufficient time in both test bench and operating conditions and which transducer and signal processing technique (of which the essential background theory is here reported) could be

  5. Impulse Testing of Corporate-Fed Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F.

    2011-01-01

    This paper discusses a novel method for detecting faults in antenna arrays. The method, termed Impulse Testing, was developed for corporate-fed patch arrays where the element is fed by a probe and is shorted at its center. Impulse Testing was devised to supplement conventional microwave measurements in order to quickly verify antenna integrity. The technique relies on exciting each antenna element in turn with a fast pulse (or impulse) that propagates through the feed network to the output port of the antenna. The resulting impulse response is characteristic of the path through the feed network. Using an oscilloscope, a simple amplitude measurement can be made to detect faults. A circuit model of the antenna elements and feed network was constructed to assess various fault scenarios and determine fault-detection thresholds. The experimental setup and impulse measurements for two patch array antennas are presented. Advantages and limitations of the technique are discussed along with applications to other antenna array topologies

  6. Impulsive spherical gravitational waves

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Nutku, Y.

    2001-03-01

    Penrose's identification with warp provides the general framework for constructing the continuous form of impulsive gravitational wave metrics. We present the two-component spinor formalism for the derivation of the full family of impulsive spherical gravitational wave metrics which brings out the power in identification with warp and leads to the simplest derivation of exact solutions. These solutions of the Einstein vacuum field equations are obtained by cutting Minkowski space into two pieces along a null cone and re-identifying them with warp which is given by an arbitrary nonlinear holomorphic transformation. Using two-component spinor techniques we construct a new metric describing an impulsive spherical gravitational wave where the vertex of the null cone lies on a worldline with constant acceleration.

  7. Two-dimensional directional synthetic aperture focusing technique using acoustic-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Jeon, Seungwan; Park, Jihoon; Kim, Chulhong

    2018-02-01

    Photoacoustic microscopy (PAM) is a hybrid imaging technology using optical illumination and acoustic detection. PAM is divided into two types: optical-resolution PAM (OR-PAM) and acoustic-resolution photoacoustic microscopy (AR-PAM). Among them, AR-PAM has a great advantage in the penetration depth compared to OR-PAM because ARPAM relies on the acoustic focus, which is much less scattered in biological tissue than optical focus. However, because the acoustic focus is not as tight as the optical focus with a same numerical aperture (NA), the AR-PAM requires acoustic NA higher than optical NA. The high NA of the acoustic focus produces good image quality in the focal zone, but significantly degrades spatial resolution and signal-to-noise ratio (SNR) in the out-of-focal zone. To overcome the problem, synthetic aperture focusing technique (SAFT) has been introduced. SAFT improves the degraded image quality in terms of both SNR and spatial resolution in the out-of-focus zone by calculating the time delay of the corresponding signals and combining them. To extend the dimension of correction effect, several 2D SAFTs have been introduced, but there was a problem that the conventional 2D SAFTs cannot improve the degraded SNR and resolution as 1D SAFT can do. In this study, we proposed a new 2D SAFT that can compensate the distorted signals in x and y directions while maintaining the correction performance as the 1D SAFT.

  8. Power cepstrum technique with application to model helicopter acoustic data

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Burley, C. L.

    1986-01-01

    The application of the power cepstrum to measured helicopter-rotor acoustic data is investigated. A previously applied correction to the reconstructed spectrum is shown to be incorrect. For an exact echoed signal, the amplitude of the cepstrum echo spike at the delay time is linearly related to the echo relative amplitude in the time domain. If the measured spectrum is not entirely from the source signal, the cepstrum will not yield the desired echo characteristics and a cepstral aliasing may occur because of the effective sample rate in the frequency domain. The spectral analysis bandwidth must be less than one-half the echo ripple frequency or cepstral aliasing can occur. The power cepstrum editing technique is a useful tool for removing some of the contamination because of acoustic reflections from measured rotor acoustic spectra. The cepstrum editing yields an improved estimate of the free field spectrum, but the correction process is limited by the lack of accurate knowledge of the echo transfer function. An alternate procedure, which does not require cepstral editing, is proposed which allows the complete correction of a contaminated spectrum through use of both the transfer function and delay time of the echo process.

  9.  Usefulness of acoustic radiation force impulse and fibrotest in liver fibrosis assessment after liver transplant.

    PubMed

    Bignulin, Sara; Falleti, Edmondo; Cmet, Sara; Cappello, Dario; Cussigh, Annarosa; Lenisa, Ilaria; Dissegna, Denis; Pugliese, Fabio; Vivarelli, Cinzia; Fabris, Carlo; Fabris, Carlo; Toniutto, Pierluigi

    2016-01-01

     Background and rationale. Acoustic radiation force impulse (ARFI) is a non-invasive tool used in the evaluation of liver fibrosis in HCV positive immune-competent patients. This study aimed to assess the accuracy of ARFI in discriminating liver transplanted patients with different graft fibrosis severity and to verify whether ARFI, eventually combined with non-invasive biochemical tests, could spare liver biopsies. This prospective study included 51 HCV positive liver transplanted patients who consecutively underwent to annual liver biopsy concomitantly with ARFI and blood chemistry tests measurements needed to calculate several non-invasive liver fibrosis tests. Overall ARFI showed an AUC of 0.885 in discriminating between patients without or with significant fibrosis (Ishak score 0-2vs. 3-6). Using a cut-off of 1.365 m/s, ARFI possesses a negative predictive value of 100% in identifying patients without significant fibrosis. AUC for Fibrotest was 0.848 in discriminating patients with Ishak fibrosis score 0-2 vs. 3-6. The combined assessment of ARFI and Fibro-test did not improve the results obtained by ARFI alone. ARFI measurement in HCV positive liver transplanted patients can be considered an easy and accurate non-invasive tool in identify patients with a benign course of HCV recurrence.

  10. Reduced order modeling of head related transfer functions for virtual acoustic displays

    NASA Astrophysics Data System (ADS)

    Willhite, Joel A.; Frampton, Kenneth D.; Grantham, D. Wesley

    2003-04-01

    The purpose of this work is to improve the computational efficiency in acoustic virtual applications by creating and testing reduced order models of the head related transfer functions used in localizing sound sources. State space models of varying order were generated from zero-elevation Head Related Impulse Responses (HRIRs) using Kungs Single Value Decomposition (SVD) technique. The inputs to the models are the desired azimuths of the virtual sound sources (from minus 90 deg to plus 90 deg, in 10 deg increments) and the outputs are the left and right ear impulse responses. Trials were conducted in an anechoic chamber in which subjects were exposed to real sounds that were emitted by individual speakers across a numbered speaker array, phantom sources generated from the original HRIRs, and phantom sound sources generated with the different reduced order state space models. The error in the perceived direction of the phantom sources generated from the reduced order models was compared to errors in localization using the original HRIRs.

  11. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, S.; Adams, D. E.; Sohn, H.

    2013-01-01

    As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.

  12. Self-reported impulsivity, but not behavioral choice or response impulsivity, partially mediates the effect of stress on drinking behavior.

    PubMed

    Hamilton, Kristen R; Ansell, Emily B; Reynolds, Brady; Potenza, Marc N; Sinha, Rajita

    2013-01-01

    Stress and impulsivity contribute to alcohol use, and stress may also act via impulsivity to increase drinking behavior. Impulsivity represents a multi-faceted construct and self-report and behavioral assessments may effectively capture distinct clinically relevant factors. The present research investigated whether aspects of impulsivity mediate the effect of stress on alcohol use. A community-based sample of 192 men and women was assessed on measures of cumulative stress, alcohol use, self-reported impulsivity, and behavioral choice and response impulsivity. Data were analyzed using regression and bootstrapping techniques to estimate indirect effects of stress on drinking via impulsivity. Cumulative adversity exhibited both direct effects and indirect effects (via self-reported impulsivity) on drinking behavior. Additional models examining specific types of stress indicated direct and indirect effects of trauma and recent life events, and indirect effects of major life events and chronic stressors on drinking behavior. Overall, cumulative stress was associated with increased drinking behavior, and this effect was partially mediated by self-reported impulsivity. Self-reported impulsivity also mediated the effects of different types of stress on drinking behavior. These findings highlight the value of mediation models to examine the pathways through which different types of stress increase drinking behavior. Treatment and prevention strategies should focus on enhancing stress management and self-control.

  13. Self-reported impulsivity, but not behavioral choice or response impulsivity, partially mediates the effect of stress on drinking behavior

    PubMed Central

    HAMILTON, KRISTEN R.; ANSELL, EMILY B.; REYNOLDS, BRADY; POTENZA, MARC N.; SINHA, RAJITA

    2013-01-01

    Stress and impulsivity contribute to alcohol use, and stress may also act via impulsivity to increase drinking behavior. Impulsivity represents a multi-faceted construct and self-report and behavioral assessments may effectively capture distinct clinically relevant factors. The present research investigated whether aspects of impulsivity mediate the effect of stress on alcohol use. A community-based sample of 192 men and women was assessed on measures of cumulative stress, alcohol use, self-reported impulsivity, and behavioral choice and response impulsivity. Data were analyzed using regression and bootstrapping techniques to estimate indirect effects of stress on drinking via impulsivity. Cumulative adversity exhibited both direct effects and indirect effects (via self-reported impulsivity) on drinking behavior. Additional models examining specific types of stress indicated direct and indirect effects of trauma and recent life events, and indirect effects of major life events and chronic stressors on drinking behavior. Overall, cumulative stress was associated with increased drinking behavior, and this effect was partially mediated by self-reported impulsivity. Self-reported impulsivity also mediated the effects of different types of stress on drinking behavior. These findings highlight the value of mediation models to examine the pathways through which different types of stress increase drinking behavior. Treatment and prevention strategies should focus on enhancing stress management and self-control. PMID:22376044

  14. Comparison of acoustic radiation force impulse imaging (ARFI) to liver biopsy histologic scores in the evaluation of chronic liver disease: A pilot study.

    PubMed

    Haque, Mazhar; Robinson, Charlotte; Owen, David; Yoshida, Eric M; Harris, Alison

    2010-01-01

    Acoustic Radiation Force Impulse Imaging (ARFI) is a novel non invasive technique studying the localized mechanical properties of tissue by utilising short, high intensity acoustic pulses (shear wave pulses) to assess the mechanical response (tissue displacement), providing a measure of tissue elasticity. The aim of this study is to investigate the feasibility of ARFI imaging as a non-invasive method for the assessment of liver fibrosis compared to liver biopsy scores. A prospective blind comparison study of ARFI elastography (Virtual Touch Imaging., ACUSON S2000 Ultrasound Unit, Siemens, Mountain View CA) in a consecutive series of patients who underwent liver biopsy for assessment of fibrosis in chronic liver disease. ARFI shear-wave propagation velocity was measured in meters per second. Mean ARFI velocities were compared with both Batts-Ludwig (F0 to F4) and Modified Ishak scores (F0 to F4) for fibrosis in liver biopsy findings. Twenty-one patients with chronic liver disease (Hepatitis C (HCV) =16, Hepatitis B (HBV) = 1, both HCV and HBV = 1 Alcoholic liver disease (ALD) = 1, others = 2) underwent ARFI and liver biopsy on the same day. The Spearman correlation coefficients between the median values of the ARFI measurements and the histological fibrosis stage of the Modified Ishak score and Batts-Lud- (3) wig score were both highly significant (p < 0.01) with rho = 0.69 and rho = 0.72 respectively. The median ARFI (total 180 replications; minimum 5, maximum 10 measurements per patients) velocities for our study population range from 0.92 to 4.17 m/sec. Areas under the receiver operating characteristic curve for the accuracy of ARFI imaging was 1.00 and 0.35, for the diagnosis of moderate fibrosis (histologic fibrosis stage, F (3) 2) and 0.85 and 0.85 respectively for Ishak and Batts-Ludwig score, for the diagnosis of cirrhosis. ARFI imaging has a strong correlation with the fibrosis stage of both Batts-Ludwig and shak score in chronic liver disease. It

  15. Primary biliary cirrhosis degree assessment by acoustic radiation force impulse imaging and hepatic fibrosis indicators

    PubMed Central

    Zhang, Hai-Chun; Hu, Rong-Fei; Zhu, Ting; Tong, Ling; Zhang, Qiu-Qin

    2016-01-01

    AIM: To evaluate the assessment of primary biliary cirrhosis degree by acoustic radiation force impulse imaging (ARFI) and hepatic fibrosis indicators. METHODS: One hundred and twenty patients who developed liver cirrhosis secondary to primary biliary cirrhosis were selected as the observation group, with the degree of patient liver cirrhosis graded by Child-Pugh (CP) score. Sixty healthy individuals were selected as the control group. The four indicators of hepatic fibrosis were detected in all research objects, including hyaluronic acid (HA), laminin (LN), type III collagen (PC III), and type IV collagen (IV-C). The liver parenchyma hardness value (LS) was then measured by ARFI technique. LS and the four indicators of liver fibrosis (HA, LN, PC III, and IV-C) were observed in different grade CP scores. The diagnostic value of LS and the four indicators of liver fibrosis in determining liver cirrhosis degree with PBC, whether used alone or in combination, were analyzed by receiver operating characteristic (ROC) curve. RESULTS: LS and the four indicators of liver fibrosis within the three classes (A, B, and C) of CP scores in the observation group were higher than in the control group, with C class > B class > A class; the differences were statistically significant (P < 0.01). Although AUC values of LS within the three classes of CP scores were higher than in the four indicators of liver fibrosis, sensitivity and specificity were unstable. The ROC curves of LS combined with the four indicators of liver fibrosis revealed that: AUC and sensitivity in all indicators combined in the A class of CP score were higher than in LS alone, albeit with slightly decreased specificity; AUC and specificity in all indicators combined in the B class of CP score were higher than in LS alone, with unchanged sensitivity; AUC values (0.967), sensitivity (97.4%), and specificity (90%) of all indicators combined in the C class of CP score were higher than in LS alone (0.936, 92.1%, 83

  16. Primary biliary cirrhosis degree assessment by acoustic radiation force impulse imaging and hepatic fibrosis indicators.

    PubMed

    Zhang, Hai-Chun; Hu, Rong-Fei; Zhu, Ting; Tong, Ling; Zhang, Qiu-Qin

    2016-06-14

    To evaluate the assessment of primary biliary cirrhosis degree by acoustic radiation force impulse imaging (ARFI) and hepatic fibrosis indicators. One hundred and twenty patients who developed liver cirrhosis secondary to primary biliary cirrhosis were selected as the observation group, with the degree of patient liver cirrhosis graded by Child-Pugh (CP) score. Sixty healthy individuals were selected as the control group. The four indicators of hepatic fibrosis were detected in all research objects, including hyaluronic acid (HA), laminin (LN), type III collagen (PC III), and type IV collagen (IV-C). The liver parenchyma hardness value (LS) was then measured by ARFI technique. LS and the four indicators of liver fibrosis (HA, LN, PC III, and IV-C) were observed in different grade CP scores. The diagnostic value of LS and the four indicators of liver fibrosis in determining liver cirrhosis degree with PBC, whether used alone or in combination, were analyzed by receiver operating characteristic (ROC) curve. LS and the four indicators of liver fibrosis within the three classes (A, B, and C) of CP scores in the observation group were higher than in the control group, with C class > B class > A class; the differences were statistically significant (P < 0.01). Although AUC values of LS within the three classes of CP scores were higher than in the four indicators of liver fibrosis, sensitivity and specificity were unstable. The ROC curves of LS combined with the four indicators of liver fibrosis revealed that: AUC and sensitivity in all indicators combined in the A class of CP score were higher than in LS alone, albeit with slightly decreased specificity; AUC and specificity in all indicators combined in the B class of CP score were higher than in LS alone, with unchanged sensitivity; AUC values (0.967), sensitivity (97.4%), and specificity (90%) of all indicators combined in the C class of CP score were higher than in LS alone (0.936, 92.1%, 83.3%). The diagnostic value

  17. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    van Capel, P. J. S.; Turchinovich, D.; Porte, H. P.; Lahmann, S.; Rossow, U.; Hangleiter, A.; Dijkhuis, J. I.

    2011-08-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlated with electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured spectral intensity of the detected Brillouin signal corresponds to a maximum strain amplitude of generated acoustic pulses of 2%. This value coincides with the static lattice-mismatch-induced strain in In0.2Ga0.8N/GaN, demonstrating the total release of static strain in MQWs via impulsive THz acoustic emission. This confirms the ultrafast dynamical screening mechanism in MQWs as a highly efficient method for impulsive strain generation.

  18. Acoustic levitation technique for containerless processing at high temperatures in space

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.; Danley, Thomas J.

    1988-01-01

    High temperature processing of a small specimen without a container has been demonstrated in a set of experiments using an acoustic levitation furnace in the microgravity of space. This processing technique includes the positioning, heating, melting, cooling, and solidification of a material supported without physical contact with container or other surface. The specimen is supported in a potential energy well, created by an acoustic field, which is sufficiently strong to position the specimen in the microgravity environment of space. This containerless processing apparatus has been successfully tested on the Space Shuttle during the STS-61A mission. In that experiment, three samples wer successfully levitated and processed at temperatures from 600 to 1500 C. Experiment data and results are presented.

  19. New acoustic techniques for leak detection in fossil fuel plant components

    NASA Astrophysics Data System (ADS)

    Parini, G.; Possa, G.

    Two on-line acoustic monitoring techniques for leak detection in feedwater preheaters and boilers of fossil fuel power plants are presented. The leak detection is based on the acoustic noise produced by the turbulent leak outflow. The primary sensors are piezoelectric pressure transducers, installed near the feedwater preheater inlets, in direct contact with the water, or mounted on boiler observation windows. The frequency band of the auscultation ranges from a few kHz, to 10 to 15 kHz. The signals are characterized by their rms value, continuously recorded by means of potentiometric strip chart recorders. The leak occurrence is signalled by the signal rms overcoming predetermined threshold levels. Sensitivity, reliability, acceptance in plant control practice, and costs-benefits balance are satisfactory.

  20. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  1. Fundamental and assessment of concrete structure monitoring by using acoustic emission technique testing: A review

    NASA Astrophysics Data System (ADS)

    Desa, M. S. M.; Ibrahim, M. H. W.; Shahidan, S.; Ghadzali, N. S.; Misri, Z.

    2018-04-01

    Acoustic emission (AE) technique is one of the non-destructive (NDT) testing, where it can be used to determine the damage of concrete structures such as crack, corrosion, stability, sensitivity, as structure monitoring and energy formed within cracking opening growth in the concrete structure. This article gives a comprehensive review of the acoustic emission (AE) technique testing due to its application in concrete structure for structural health monitoring (SHM). Assessment of AE technique used for structural are reviewed to give the perception of its structural engineering such as dam, bridge and building, where the previous research has been reviewed based on AE application. The assessment of AE technique focusing on basic fundamental of parametric and signal waveform analysis during analysis process and its capability in structural monitoring. Moreover, the assessment and application of AE due to its function have been summarized and highlighted for future references

  2. Acoustic emission and acousto-ultrasonic techniques for wood and wood-based composites: a review

    Treesearch

    Sumire Kawamoto; R. Sam Williams

    2002-01-01

    This review focuses on the feasibility of acoustic emission (AE) and acousto-ultrasonic (AU) techniques for monitoring defects in wood, particularly during drying. The advantages and disadvantages of AE and AU techniques are described. Particular emphasis is placed on the propagation and attenuation of ultrasonic waves in wood and the associated measurement problems....

  3. Application of a methodology for categorizing and differentiating urban soundscapes using acoustical descriptors and semantic-differential attributes.

    PubMed

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, A F

    2013-07-01

    A subjective and physical categorization of an ambient sound is the first step to evaluate the soundscape and provides a basis for designing or adapting this ambient sound to match people's expectations. For this reason, the main goal of this work is to develop a categorization and differentiation analysis of soundscapes on the basis of acoustical and perceptual variables. A hierarchical cluster analysis, using 15 semantic-differential attributes and acoustical descriptors to include an equivalent sound-pressure level, maximum-minimum sound-pressure level, impulsiveness of the sound-pressure level, sound-pressure level time course, and spectral composition, was conducted to classify soundscapes into different typologies. This analysis identified 15 different soundscape typologies. Furthermore, based on a discriminant analysis the acoustical descriptors, the crest factor (impulsiveness of the sound-pressure level), and the sound level at 125 Hz were found to be the acoustical variables with the highest impact in the differentiation of the recognized types of soundscapes. Finally, to determine how the different soundscape typologies differed from each other, both subjectively and acoustically, a study was performed.

  4. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    NASA Astrophysics Data System (ADS)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time

  5. Preliminary Results of Acoustic Radiation Force Impulse Imaging by Combined Qualitative and Quantitative Analyses for Evaluation of Breast Lesions.

    PubMed

    Wang, Lin; Wan, Cai-Feng; Du, Jing; Li, Feng-Hua

    2018-04-15

    The purpose of this study was to evaluate the application of a new elastographic technique, acoustic radiation force impulse (ARFI) imaging, and its diagnostic performance for characterizing breast lesions. One hundred consecutive female patients with 126 breast lesions were enrolled in our study. After routine breast ultrasound examinations, the patients underwent ARFI elasticity imaging. Virtual Touch tissue imaging (VTI) and Virtual Touch tissue quantification (Siemens Medical Solutions, Mountain View, CA) were used to qualitatively and quantitatively analyze the elasticity and hardness of tumors. A receiver operating characteristic curve analysis was performed to evaluate the diagnostic performance of ARFI for discrimination between benign and malignant breast lesions. Pathologic analysis revealed 40 lesions in the malignant group and 86 lesions in the benign group. Different VTI patterns were observed in benign and malignant breast lesions. Eighty lesions (93.0%) of benign group had pattern 1, 2, or 3, whereas all pattern 4b lesions (n = 20 [50.0%]) were malignant. Regarding the quantitative analysis, the mean VTI-to-B-mode area ratio, internal shear wave velocity, and marginal shear wave velocity of benign lesions were statistically significantly lower than those of malignant lesions (all P < .001). The cutoff point for a scoring system constructed to evaluate the diagnostic performance of ARFI was estimated to be between 3 and 4 points for malignancy, with sensitivity of 77.5%, specificity of 96.5%, accuracy of 90.5%, and an area under the curve of 0.933. The application of ARFI technology has shown promising results by noninvasively providing substantial complementary information and could potentially serve as an effective diagnostic tool for differentiation between benign and malignant breast lesions. © 2018 by the American Institute of Ultrasound in Medicine.

  6. Electromagnetically induced acoustic emission—novel NDT technique for damage evaluation

    NASA Astrophysics Data System (ADS)

    Finkel, P.; Godinez, V.; Miller, R.; Finlayson, R.

    2001-04-01

    A recently developed electromagnetically induced acoustic emission technique (EM AE) which can be used for damage assessment of thin walled conducting structures is described. This technique allows a structure to be loaded locally by applying an electromagnetic field in order to produce an AE response, which may be captured by conventional or fiber optic (FO) AE sensors. The advantage of this technique is that the localized dynamic stresses induced by a short current pulse in the presence of an external magnetic field aid in the detection of cracks. Also, it is shown that electromagnetic stimulation can be applied to enhance conventional ultrasonics by modulation of the scattered signal from the defect (EM UT). Experimental data is presented for the case of a fatigue crack near rivet holes in thin walled aluminum structures.

  7. Health diagnosis of arch bridge suspender by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ou, Jinping

    2007-01-01

    Conventional non-destructive methods can't be dynamically monitored the suspenders' damage levels and types, so acoustic emission (AE) technique is proposed to monitor its activity. The validity signals are determined by the relationship with risetime and duration. The ambient noise is eliminated using float threshold value and placing a guard sensor. The cement mortar and steel strand damage level is analyzed by AE parameter method and damage types are judged by waveform analyzing technique. Based on these methods, all the suspenders of Sichuan Ebian Dadu river arch bridge have been monitored using AE techniques. The monitoring results show that AE signal amplitude, energy, counts can visually display the suspenders' damage levels, the difference of waveform and frequency range express different damage type. The testing results are well coincide with the practical situation.

  8. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  9. A Randomized Controlled Trial of a Novel Self-Help Technique for Impulse Control Disorders: A Study on Nail-Biting

    ERIC Educational Resources Information Center

    Moritz, Steffen; Treszl, Andras; Rufer, Michael

    2011-01-01

    Nail-biting is currently classified as an impulse control disorder not otherwise specified. Although seldom targeted as a primary symptom, nail-biting is often associated with somatic complications and decreased quality of life. The present study assessed the effectiveness of an innovative self-help technique, titled decoupling (DC). DC aims at…

  10. Acoustic reflection log in transversely isotropic formations

    NASA Astrophysics Data System (ADS)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.

    2018-01-01

    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  11. The Video Head Impulse Test.

    PubMed

    Halmagyi, G M; Chen, Luke; MacDougall, Hamish G; Weber, Konrad P; McGarvie, Leigh A; Curthoys, Ian S

    2017-01-01

    In 1988, we introduced impulsive testing of semicircular canal (SCC) function measured with scleral search coils and showed that it could accurately and reliably detect impaired function even of a single lateral canal. Later we showed that it was also possible to test individual vertical canal function in peripheral and also in central vestibular disorders and proposed a physiological mechanism for why this might be so. For the next 20 years, between 1988 and 2008, impulsive testing of individual SCC function could only be accurately done by a few aficionados with the time and money to support scleral search-coil systems-an expensive, complicated and cumbersome, semi-invasive technique that never made the transition from the research lab to the dizzy clinic. Then, in 2009 and 2013, we introduced a video method of testing function of each of the six canals individually. Since 2009, the method has been taken up by most dizzy clinics around the world, with now close to 100 refereed articles in PubMed. In many dizzy clinics around the world, video Head Impulse Testing has supplanted caloric testing as the initial and in some cases the final test of choice in patients with suspected vestibular disorders. Here, we consider seven current, interesting, and controversial aspects of video Head Impulse Testing: (1) introduction to the test; (2) the progress from the head impulse protocol (HIMPs) to the new variant-suppression head impulse protocol (SHIMPs); (3) the physiological basis for head impulse testing; (4) practical aspects and potential pitfalls of video head impulse testing; (5) problems of vestibulo-ocular reflex gain calculations; (6) head impulse testing in central vestibular disorders; and (7) to stay right up-to-date-new clinical disease patterns emerging from video head impulse testing. With thanks and appreciation we dedicate this article to our friend, colleague, and mentor, Dr Bernard Cohen of Mount Sinai Medical School, New York, who since his first

  12. Innovative acoustic techniques for studying new materials and new developments in solid state physics

    NASA Astrophysics Data System (ADS)

    Maynard, Julian D.

    1994-06-01

    The goals of this project involve the use of innovative acoustic techniques to study new materials and new developments in solid state physics. Major accomplishments include (a) the preparation and publication of a number of papers and book chapters, (b) the measurement and new analysis of more samples of aluminum quasicrystal and its cubic approximant to eliminate the possibility of sample artifacts, (c) the use of resonant ultrasound to measure acoustic attenuation and determine the effects of heat treatment on ceramics, (d) the extension of our technique for measuring even lower (possibly the lowest) infrared optical absorption coefficient, and (e) the measurement of the effects of disorder on the propagation of a nonlinear pulse, and (f) the observation of statistical effects in measurements of individual bond breaking events in fracture.

  13. Unique aspects of impulsive traits in substance use and overeating: specific contributions of common assessments of impulsivity.

    PubMed

    Beaton, Derek; Abdi, Hervé; Filbey, Francesca M

    2014-11-01

    Abstract Background: Impulsivity is a complex trait often studied in substance abuse and overeating disorders, but the exact nature of impulsivity traits and their contribution to these disorders are still debated. Thus, understanding how to measure impulsivity is essential for comprehending addictive behaviors. Identify unique impulsivity traits specific to substance use and overeating. Impulsive Sensation Seeking (ImpSS) and Barratt's Impulsivity scales (BIS) Scales were analyzed with a non-parametric factor analytic technique (discriminant correspondence analysis) to identify group-specific traits on 297 individuals from five groups: Marijuana (n = 88), Nicotine (n = 82), Overeaters (n = 27), Marijuauna + Nicotine (n = 63), and CONTROLs (n = 37). A significant overall factor structure revealed three components of impulsivity that explained respectively 50.19% (pperm < 0.0005), 24.18% (pperm < 0.0005), and 15.98% (pperm < 0.0005) of the variance. All groups were significantly different from one another. When analyzed together, the BIS and ImpSS produce a multi-factorial structure that identified the impulsivity traits specific to these groups. The group specific traits are (1) CONTROL: low impulse, avoids thrill-seeking behaviors; (2) Marijuana: seeks mild sensation, is focused and attentive; (3) Marijuana + Nicotine: pursues thrill-seeking, lacks focus and attention; (4) Nicotine: lacks focus and planning; (5) Overeating: lacks focus, but plans (short and long term). Our results reveal impulsivity traits specific to each group. This may provide better criteria to define spectrums and trajectories - instead of categories - of symptoms for substance use and eating disorders. Defining symptomatic spectrums could be an important step forward in diagnostic strategies.

  14. Unique aspects of impulsive traits in substance use and overeating: specific contributions of common assessments of impulsivity

    PubMed Central

    Beaton, Derek; Abdi, Hervé; Filbey, Francesca M.

    2015-01-01

    Background Impulsivity is a complex trait often studied in substance abuse and overeating disorders, but the exact nature of impulsivity traits and their contribution to these disorders are still debated. Thus, understanding how to measure impulsivity is essential for comprehending addictive behaviors. Objectives Identify unique impulsivity traits specific to substance use and overeating. Methods Impulsive Sensation Seeking (ImpSS) and Barratt’s Impulsivity scales (BIS) Scales were analyzed with a non-parametric factor analytic technique (discriminant correspondence analysis) to identify group-specific traits on 297 individuals from five groups: Marijuana (n = 88), Nicotine (n = 82), Overeaters (n = 27), Marijuauna + Nicotine (n = 63), and Controls (n = 37). Results A significant overall factor structure revealed three components of impulsivity that explained respectively 50.19% (pperm<0.0005), 24.18% (pperm<0.0005), and 15.98% (pperm<0.0005) of the variance. All groups were significantly different from one another. When analyzed together, the BIS and ImpSS produce a multi-factorial structure that identified the impulsivity traits specific to these groups. The group specific traits are (1) Control: low impulse, avoids thrill-seeking behaviors; (2) Marijuana: seeks mild sensation, is focused and attentive; (3) Marijuana + Nicotine: pursues thrill-seeking, lacks focus and attention; (4) Nicotine: lacks focus and planning; (5) Overeating: lacks focus, but plans (short and long term). Conclusions Our results reveal impulsivity traits specific to each group. This may provide better criteria to define spectrums and trajectories – instead of categories – of symptoms for substance use and eating disorders. Defining symptomatic spectrums could be an important step forward in diagnostic strategies. PMID:25115831

  15. Medium-frequency impulsive-thrust-activated liquid hydrogen reorientation with Geyser

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1992-01-01

    Efficient technique are studied for accomplishing propellant resettling through the minimization of propellant usage through impulsive thrust. A comparison between the use of constant-thrust and impulsive-thrust accelerations for the activation of propellant resettlement shows that impulsive thrust is superior to constant thrust for liquid reorientation in a reduced-gravity environment. This study shows that when impulsive thrust with 0.1-1.0-, and 10-Hz frequencies for liquid-fill levels in the range between 30-80 percent is considered, the selection of 1.0-Hz-frequency impulsive thrust over the other frequency ranges of impulsive thrust is the optimum. Characteristics of the slosh waves excited during the course of 1.0-Hz-frequency impulsive-thrust liquid reorientation were also analyzed.

  16. Sex differences in impulsive action and impulsive choice.

    PubMed

    Weafer, Jessica; de Wit, Harriet

    2014-11-01

    Here, we review the evidence for sex differences in behavioral measures of impulsivity for both humans and laboratory animals. We focus on two specific components of impulsivity: impulsive action (i.e., difficulty inhibiting a prepotent response) and impulsive choice (i.e., difficulty delaying gratification). Sex differences appear to exist on these measures, but the direction and magnitude of the differences vary. In laboratory animals, impulsive action is typically greater in males than females, whereas impulsive choice is typically greater in females. In humans, women discount more steeply than men, but sex differences on measures of impulsive action depend on tasks and subject samples. We discuss implications of these findings as they relate to drug addiction. We also point out the major gaps in this research to date, including the lack of studies designed specifically to examine sex differences in behavioral impulsivity, and the lack of consideration of menstrual or estrous phase or sex hormone levels in the studies. © 2013.

  17. Sex differences in impulsive action and impulsive choice

    PubMed Central

    Weafer, Jessica; de Wit, Harriet

    2013-01-01

    Here, we review the evidence for sex differences in behavioral measures of impulsivity for both humans and laboratory animals. We focus on two specific components of impulsivity: impulsive action (i.e., difficulty inhibiting a prepotent response) and impulsive choice (i.e., difficulty delaying gratification). Sex differences appear to exist on these measures, but the direction and magnitude of the differences vary. In laboratory animals, impulsive action is typically greater in males than females, whereas impulsive choice is typically greater in females. In humans, women discount more steeply than men, but sex differences on measures of impulsive action depend on tasks and subject samples. We discuss implications of these findings as they relate to drug addiction. We also point out the major gaps in this research to date, including the lack of studies designed specifically to examine sex differences in behavioral impulsivity, and the lack of consideration of menstrual or estrous phase or sex hormone levels in the studies. PMID:24286704

  18. Impulse response method for characterization of echogenic liposomes.

    PubMed

    Raymond, Jason L; Luan, Ying; van Rooij, Tom; Kooiman, Klazina; Huang, Shao-Ling; McPherson, David D; Versluis, Michel; de Jong, Nico; Holland, Christy K

    2015-04-01

    An optical characterization method is presented based on the use of the impulse response to characterize the damping imparted by the shell of an air-filled ultrasound contrast agent (UCA). The interfacial shell viscosity was estimated based on the unforced decaying response of individual echogenic liposomes (ELIP) exposed to a broadband acoustic impulse excitation. Radius versus time response was measured optically based on recordings acquired using an ultra-high-speed camera. The method provided an efficient approach that enabled statistical measurements on 106 individual ELIP. A decrease in shell viscosity, from 2.1 × 10(-8) to 2.5 × 10(-9) kg/s, was observed with increasing dilatation rate, from 0.5 × 10(6) to 1 × 10(7) s(-1). This nonlinear behavior has been reported in other studies of lipid-shelled UCAs and is consistent with rheological shear-thinning. The measured shell viscosity for the ELIP formulation used in this study [κs = (2.1 ± 1.0) × 10(-8) kg/s] was in quantitative agreement with previously reported values on a population of ELIP and is consistent with other lipid-shelled UCAs. The acoustic response of ELIP therefore is similar to other lipid-shelled UCAs despite loading with air instead of perfluorocarbon gas. The methods described here can provide an accurate estimate of the shell viscosity and damping for individual UCA microbubbles.

  19. The sensitivity of hearing-impaired adults to acoustic attributes in simulated rooms

    PubMed Central

    Whitmer, William M.; McShefferty, David; Akeroyd, Michael A.

    2016-01-01

    In previous studies we have shown that older hearing-impaired individuals are relatively insensitive to changes in the apparent width of broadband noises when those width changes were based on differences in interaural coherence [W. Whitmer, B. Seeber and M. Akeroyd, J. Acoust. Soc. Am. 132, 369-379 (2012)]. This insensitivity has been linked to senescent difficulties in resolving binaural fine-structure differences. It is therefore possible that interaural coherence, despite its widespread use, may not be the best acoustic surrogate of spatial perception for the aged and impaired. To test this, we simulated the room impulse responses for various acoustic scenarios with differing coherence and lateral (energy) fraction attributes using room modelling software (ODEON). Bilaterally impaired adult participants were asked to sketch the perceived size of speech tokens and musical excerpts that were convolved with these impulse responses and presented to them in a sound-dampened enclosure through a 24-loudspeaker array. Participants’ binaural acuity was also measured using an interaural phase discrimination task. Corroborating our previous findings, the results showed less sensitivity to interaural coherence in the auditory source width judgments of older hearing-impaired individuals, indicating that alternate acoustic measurements in the design of spaces for the elderly may be necessary. PMID:27213028

  20. The sensitivity of hearing-impaired adults to acoustic attributes in simulated rooms.

    PubMed

    Whitmer, William M; McShefferty, David; Akeroyd, Michael A

    2013-06-02

    In previous studies we have shown that older hearing-impaired individuals are relatively insensitive to changes in the apparent width of broadband noises when those width changes were based on differences in interaural coherence [W. Whitmer, B. Seeber and M. Akeroyd, J. Acoust. Soc. Am. 132, 369-379 (2012)]. This insensitivity has been linked to senescent difficulties in resolving binaural fine-structure differences. It is therefore possible that interaural coherence, despite its widespread use, may not be the best acoustic surrogate of spatial perception for the aged and impaired. To test this, we simulated the room impulse responses for various acoustic scenarios with differing coherence and lateral (energy) fraction attributes using room modelling software (ODEON). Bilaterally impaired adult participants were asked to sketch the perceived size of speech tokens and musical excerpts that were convolved with these impulse responses and presented to them in a sound-dampened enclosure through a 24-loudspeaker array. Participants' binaural acuity was also measured using an interaural phase discrimination task. Corroborating our previous findings, the results showed less sensitivity to interaural coherence in the auditory source width judgments of older hearing-impaired individuals, indicating that alternate acoustic measurements in the design of spaces for the elderly may be necessary.

  1. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    PubMed Central

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878

  2. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake: Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  3. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake - Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  4. Minimum impulse three-body trajectories.

    NASA Technical Reports Server (NTRS)

    D'Amario, L.; Edelbaum, T. N.

    1973-01-01

    A rapid and accurate method of calculating optimal impulsive transfers in the restricted problem of three bodies has been developed. The technique combines a multi-conic method of trajectory integration with primer vector theory and an accelerated gradient method of trajectory optimization. A unique feature is that the state transition matrix and the primer vector are found analytical without additional integrations or differentiations. The method has been applied to the determination of optimal two and three impulse transfers between the L2 libration point and circular orbits about both the earth and the moon.

  5. Razumikhin-Type Stability Criteria for Differential Equations with Delayed Impulses.

    PubMed

    Wang, Qing; Zhu, Quanxin

    2013-01-01

    This paper studies stability problems of general impulsive differential equations where time delays occur in both differential and difference equations. Based on the method of Lyapunov functions, Razumikhin technique and mathematical induction, several stability criteria are obtained for differential equations with delayed impulses. Our results show that some systems with delayed impulses may be exponentially stabilized by impulses even if the system matrices are unstable. Some less restrictive sufficient conditions are also given to keep the good stability property of systems subject to certain type of impulsive perturbations. Examples with numerical simulations are discussed to illustrate the theorems. Our results may be applied to complex problems where impulses depend on both current and past states.

  6. Evaluation of Acoustic Radiation Force Impulse (ARFI) for Fibrosis Staging in Chronic Liver Diseases.

    PubMed

    Gani, Rino Alvani; Hasan, Irsan; Sanityoso, Andri; Lesmana, Cosmas Rinaldi A; Kurniawan, Juferdy; Jasirwan, Chyntia Olivia Maurine; Kalista, Kemal Fariz; Lutfie, Lutfie

    2017-04-01

    acoustic radiation force impulse (ARFI) is a new proposed noninvasive method for liver fibrosis staging. Integrated with B-mode ultrasonography, ARFI can be used to assess liver tissue condition. However its diagnostic accuracy is still being continuously evaluated. Also, there is lack of data regarding the utilization of ARFI in our population. This study aimed to evaluate the diagnostic value of ARFI as an alternative noninvasive modality for fibrosis staging in chronic hepatitis B and hepatitis C patients in our population. we conducted cross-sectional comparison of ARFI imaging and transient elastography on patients who underwent liver biopsy at Cipto Mangunkusumo Hospital. Fibrosis staging using METAVIR scoring system presented as standard reference. A total of 43 patients underwent liver biopsy was evaluated by ARFI imaging and transient elastography. Cut-off values were determined using receiver-operating characteristic (ROC). both liver stiffness determined by ARFI and transient elastography (TE) were moderately correlated with METAVIR score with value of 0.581 and 0.613, respectively (both P<0.01). Diagnostic accuracy of ARFI predicted significant fibrosis (F≥2) with area under receiver operating characteristic curve (AUROC) of 0.773 (95% CI 0.616-0.930) and even better for cirrhosis (F4 fibrosis), expressed as AUROC of 0.856 (95% CI 0.736-0.975). Transient elastography was better for significant fibrosis with AUROC of 0.761 (95% CI 0.601-0.920) and was best for prediction of cirrhosis, expressed as AUROC of 0.845 (95% CI 0.722-0.968). ARFI is provided with more convenient evaluation of liver tissue condition, and its diagnostic accuracy is not significantly different from TE for staging liver fibrosis.

  7. Perceptually relevant parameters for virtual listening simulation of small room acoustics

    PubMed Central

    Zahorik, Pavel

    2009-01-01

    Various physical aspects of room-acoustic simulation techniques have been extensively studied and refined, yet the perceptual attributes of the simulations have received relatively little attention. Here a method of evaluating the perceptual similarity between rooms is described and tested using 15 small-room simulations based on binaural room impulse responses (BRIRs) either measured from a real room or estimated using simple geometrical acoustic modeling techniques. Room size and surface absorption properties were varied, along with aspects of the virtual simulation including the use of individualized head-related transfer function (HRTF) measurements for spatial rendering. Although differences between BRIRs were evident in a variety of physical parameters, a multidimensional scaling analysis revealed that when at-the-ear signal levels were held constant, the rooms differed along just two perceptual dimensions: one related to reverberation time (T60) and one related to interaural coherence (IACC). Modeled rooms were found to differ from measured rooms in this perceptual space, but the differences were relatively small and should be easily correctable through adjustment of T60 and IACC in the model outputs. Results further suggest that spatial rendering using individualized HRTFs offers little benefit over nonindividualized HRTF rendering for room simulation applications where source direction is fixed. PMID:19640043

  8. Interferometric imaging of acoustical phenomena using high-speed polarization camera and 4-step parallel phase-shifting technique

    NASA Astrophysics Data System (ADS)

    Ishikawa, K.; Yatabe, K.; Ikeda, Y.; Oikawa, Y.; Onuma, T.; Niwa, H.; Yoshii, M.

    2017-02-01

    Imaging of sound aids the understanding of the acoustical phenomena such as propagation, reflection, and diffraction, which is strongly required for various acoustical applications. The imaging of sound is commonly done by using a microphone array, whereas optical methods have recently been interested due to its contactless nature. The optical measurement of sound utilizes the phase modulation of light caused by sound. Since light propagated through a sound field changes its phase as proportional to the sound pressure, optical phase measurement technique can be used for the sound measurement. Several methods including laser Doppler vibrometry and Schlieren method have been proposed for that purpose. However, the sensitivities of the methods become lower as a frequency of sound decreases. In contrast, since the sensitivities of the phase-shifting technique do not depend on the frequencies of sounds, that technique is suitable for the imaging of sounds in the low-frequency range. The principle of imaging of sound using parallel phase-shifting interferometry was reported by the authors (K. Ishikawa et al., Optics Express, 2016). The measurement system consists of a high-speed polarization camera made by Photron Ltd., and a polarization interferometer. This paper reviews the principle briefly and demonstrates the high-speed imaging of acoustical phenomena. The results suggest that the proposed system can be applied to various industrial problems in acoustical engineering.

  9. Stage acoustics for musicians: A multidimensional approach using 3D ambisonic technology

    NASA Astrophysics Data System (ADS)

    Guthrie, Anne

    In this research, a method was outlined and tested for the use of 3D Ambisonic technology to inform stage acoustics research and design. Stage acoustics for musicians as a field has yet to benefit from recent advancements in auralization and spatial acoustic analysis. This research attempts to address common issues in stage acoustics: subjective requirements for performers in relation to feelings of support, quality of sound, and ease of ensemble playing in relation to measurable, objective characteristics that can be used to design better stage enclosures. While these issues have been addressed in previous work, this research attempts to use technological advancements to improve the resolution and realism of the testing and analysis procedures. Advancements include measurement of spatial impulse responses using a spherical microphone array, higher-order ambisonic encoding and playback for real-time performer auralization, high-resolution spatial beamforming for analysis of onstage impulse responses, and multidimensional scaling procedures to determine subjective musician preferences. The methodology for implementing these technologies into stage acoustics research is outlined in this document and initial observations regarding implications for stage enclosure design are proposed. This research provides a robust method for measuring and analyzing performer experiences on multiple stages without the costly and time-intensive process of physically surveying orchestras on different stages, with increased repeatability while maintaining a high level of immersive realism and spatial resolution. Along with implications for physical design, this method provides possibilities for virtual teaching and rehearsal, parametric modeling and co-located performance.

  10. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    PubMed

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  11. Opto-acoustic thrombolysis

    DOEpatents

    Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Fitch, Pat

    2000-01-01

    This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.

  12. Estimates of auditory risk from outdoor impulse noise. II: Civilian firearms.

    PubMed

    Flamme, Gregory A; Wong, Adam; Liebe, Kevin; Lynd, James

    2009-01-01

    Firearm impulses are common noise exposures in the United States. This study records, describes and analyzes impulses produced outdoors by civilian firearms with respect to the amount of auditory risk they pose to the unprotected listener under various listening conditions. Risk estimates were obtained using three contemporary damage risk criteria (DRC) including a waveform parameter-based approach (peak SPL and B-duration), an energy-based criterion (A-weighted SEL and equivalent continuous level) and a physiological model (AHAAH). Results from these DRC were converted into a number of maximum permissible unprotected exposures to facilitate interpretation. Acoustic characteristics of firearm impulses differed substantially across guns, ammunition, and microphone location. The type of gun, ammunition and the microphone location all significantly affected estimates of auditory risk from firearms. Vast differences in maximum permissible exposures were observed; the rank order of the differences varied with the source of the impulse. Unprotected exposure to firearm noise is not recommended, but people electing to fire a gun without hearing protection should be advised to minimize auditory risk through careful selection of ammunition and shooting environment. Small-caliber guns with long barrels and guns loaded with the least powerful ammunition tend to be associated with the least auditory risk.

  13. The Video Head Impulse Test

    PubMed Central

    Halmagyi, G. M.; Chen, Luke; MacDougall, Hamish G.; Weber, Konrad P.; McGarvie, Leigh A.; Curthoys, Ian S.

    2017-01-01

    In 1988, we introduced impulsive testing of semicircular canal (SCC) function measured with scleral search coils and showed that it could accurately and reliably detect impaired function even of a single lateral canal. Later we showed that it was also possible to test individual vertical canal function in peripheral and also in central vestibular disorders and proposed a physiological mechanism for why this might be so. For the next 20 years, between 1988 and 2008, impulsive testing of individual SCC function could only be accurately done by a few aficionados with the time and money to support scleral search-coil systems—an expensive, complicated and cumbersome, semi-invasive technique that never made the transition from the research lab to the dizzy clinic. Then, in 2009 and 2013, we introduced a video method of testing function of each of the six canals individually. Since 2009, the method has been taken up by most dizzy clinics around the world, with now close to 100 refereed articles in PubMed. In many dizzy clinics around the world, video Head Impulse Testing has supplanted caloric testing as the initial and in some cases the final test of choice in patients with suspected vestibular disorders. Here, we consider seven current, interesting, and controversial aspects of video Head Impulse Testing: (1) introduction to the test; (2) the progress from the head impulse protocol (HIMPs) to the new variant—suppression head impulse protocol (SHIMPs); (3) the physiological basis for head impulse testing; (4) practical aspects and potential pitfalls of video head impulse testing; (5) problems of vestibulo-ocular reflex gain calculations; (6) head impulse testing in central vestibular disorders; and (7) to stay right up-to-date—new clinical disease patterns emerging from video head impulse testing. With thanks and appreciation we dedicate this article to our friend, colleague, and mentor, Dr Bernard Cohen of Mount Sinai Medical School, New York, who since his

  14. Ten Ways To Provide a High-Quality Acoustical Environment in Schools.

    ERIC Educational Resources Information Center

    Siebein, Gary W.; Gold, Martin A.; Siebein, Glenn W.; Ermann, Michael G.

    2000-01-01

    A study used impulse response measures and observations in 10 Florida classrooms to develop 10 recommendations for improving the acoustical environment in schools. Recommendations include improving air-conditioning systems, limiting room volume, providing sound-absorbing surfaces, using carpeting, reducing distance between teachers and students,…

  15. Acoustic radiation force impulse shear wave elastography (ARFI) of acute and chronic pancreatitis and pancreatic tumor.

    PubMed

    Goertz, Ruediger S; Schuderer, Johanna; Strobel, Deike; Pfeifer, Lukas; Neurath, Markus F; Wildner, Dane

    2016-12-01

    Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. A total of 195 patients were included in the study. Healthy parenchyma (n=21) and lipomatosis (n=30) showed similar shear wave velocities of about 1.3m/s. Acute pancreatitis (n=35), chronic pancreatitis (n=53) and adenocarcinoma (n=52) showed consecutively increasing ARFI values, respectively. NET (n=4) revealed the highest shear wave velocities amounting to 3.62m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  17. Liver reserve function assessment by acoustic radiation force impulse imaging

    PubMed Central

    Sun, Xiao-Lan; Liang, Li-Wei; Cao, Hui; Men, Qiong; Hou, Ke-Zhu; Chen, Zhen; Zhao, Ya-E

    2015-01-01

    AIM: To evaluate the utility of liver reserve function by acoustic radiation force impulse (ARFI) imaging in patients with liver tumors. METHODS: Seventy-six patients with liver tumors were enrolled in this study. Serum biochemical indexes, such as aminotransferase (ALT), aspartate aminotransferase (AST), serum albumin (ALB), total bilirubin (T-Bil), and other indicators were observed. Liver stiffness (LS) was measured by ARFI imaging, measurements were repeated 10 times, and the average value of the results was taken as the final LS value. Indocyanine green (ICG) retention was performed, and ICG-K and ICG-R15 were recorded. Child-Pugh (CP) scores were carried out based on patient’s preoperative biochemical tests and physical condition. Correlations among CP scores, ICG-R15, ICG-K and LS values were observed and analyzed using either the Pearson correlation coefficient or the Spearman rank correlation coefficient. Kruskal-Wallis test was used to compare LS values of CP scores, and the receiver-operator characteristic (ROC) curve was used to analyze liver reserve function assessment accuracy. RESULTS: LS in the ICG-R15 10%-20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.19 ± 0.27 vs 1.59 ± 0.32, P < 0.01). LS in the ICG-R15 > 20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.92 ± 0.29 vs 1.59 ± 0.32, P < 0.01). The LS value in patients with CP class A was lower than in patients with CP class B (1.57 ± 0.34 vs 1.86 ± 0.27, P < 0.05), while the LS value in patients with CP class B was lower than in patients with CP class C (1.86 ± 0.27 vs 2.47 ± 0.33, P < 0.01). LS was positively correlated with ICG-R15 (r = 0.617, P < 0.01) and CP score (r = 0.772, P < 0.01). Meanwhile, LS was negatively correlated with ICG-K (r = -0.673, P < 0.01). AST, ALT and T-Bil were positively correlated with LS, while ALB was negatively

  18. Continued Investigation of the Acoustics of Marine Sediments Using Impedance Tube and Acoustic Resonator Techniques

    DTIC Science & Technology

    2009-09-30

    seagrass , which in turn benefits buried object detection, sonar operation and acoustic communications in shallow water. Another goal for the out years...bottom sediments, including multiphase materials such as gas- bearing sediments and seagrass . These measurements are conducted using an acoustic...such as gas-bearing sediments and seagrass , which in turn benefits buried object detection, sonar operation and acoustic communications in shallow

  19. Normal values of spleen stiffness in healthy children assessed by acoustic radiation force impulse imaging (ARFI): comparison between two ultrasound transducers.

    PubMed

    Cañas, Teresa; Fontanilla, Teresa; Miralles, María; Maciá, Araceli; Malalana, Ana; Román, Enriqueta

    2015-08-01

    Portal hypertension, a major complication of hepatic fibrosis, can affect the stiffness of the spleen. To suggest normal values of spleen stiffness determined by acoustic radiation force impulse imaging in healthy children and to compare measurements using two different US probes. In a prospective study, 60 healthy children between 1 day and 14 years of age were assigned to four age groups with 15 children in each. Measurements were performed using two transducers (convex 4C1 and linear 9L4), and 10 measurements were obtained in each child, 5 with each probe. The mean splenic shear wave velocities were 2.17 m/s (SD 0.35, 95% CI 2.08-2.26) with the 4C1 probe and 2.15 m/s (SD 0.23, 95% CI 2.09-2.21) with the 9L4 probe (not significant). We found normal values for spleen stiffness with no difference in the mean values obtained using two types of US transducers, but with higher variability using a convex compared to a linear transducer.

  20. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    NASA Astrophysics Data System (ADS)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  1. Measurement of impulse peak insertion loss for four hearing protection devices in field conditions

    PubMed Central

    Murphy, William J.; Flamme, Gregory A.; Meinke, Deanna K.; Sondergaard, Jacob; Finan, Donald S.; Lankford, James E.; Khan, Amir; Vernon, Julia; Stewart, Michael

    2015-01-01

    Objective In 2009, the U.S. Environmental Protection Agency (EPA) proposed an impulse noise reduction rating (NRR) for hearing protection devices based upon the impulse peak insertion loss (IPIL) methods in the ANSI S12.42-2010 standard. This study tests the ANSI S12.42 methods with a range of hearing protection devices measured in field conditions. Design The method utilizes an acoustic test fixture and three ranges for impulse levels: 130–134, 148–152, and 166–170 dB peak SPL. For this study, four different models of hearing protectors were tested: Bilsom 707 Impact II electronic earmuff, E·A·R Pod Express, E·A·R Combat Arms version 4, and the Etymotic Research, Inc. Electronic BlastPLG™ EB1. Study sample Five samples of each protector were fitted on the fixture or inserted in the fixture's ear canal five times for each impulse level. Impulses were generated by a 0.223 caliber rifle. Results The average IPILs increased with peak pressure and ranged between 20 and 38 dB. For some protectors, significant differences were observed across protector examples of the same model, and across insertions. Conclusions The EPA's proposed methods provide consistent and reproducible results. The proposed impulse NRR rating should utilize the minimum and maximum protection percentiles as determined by the ANSI S12.42-2010 methods. PMID:22176308

  2. Effects of Hermetic Storage on Adult Sitophilus oryzae L. (Coleoptera: Curculionidae) Acoustic Activity Patterns and Mortality

    PubMed Central

    Njoroge, A W; Smith, B W; Baributsa, D

    2017-01-01

    Abstract Hermetic storage is of interest to farmers and warehouse managers as a method to control insect pests in small storage facilities. To develop improved understanding of effects of hermetic storage on insect pest activity and mortality over time, oxygen levels, acoustic signals, and observations of visual movement were recorded from replicates of 25, 50, and 100 adult Sitophilus oryzae (L.) (Coleoptera: Curculionidae) hermetically sealed in 500- and 1,000-ml glass jars. Recordings were done for 28 d; twice daily for the first 6 d and twice weekly thereafter. Insect sounds were analyzed as short bursts (trains) of impulses with spectra that matched average spectra (profiles) of previously verified insect sound impulses. Oxygen consumption was highest in treatments of 100 insects/500-ml jar and lowest in 25/1000-ml jars. The rates of bursts per insect, number of impulses per burst, and rates of burst impulses per insect decreased as the residual oxygen levels decreased in each treatment. Activity rates <0.02 bursts s−1, the acoustic detection threshold, typically occurred as oxygen fell below 5%. Mortality was observed at 2% levels. The time to obtain these levels of insect activity and oxygen depletion ranged from 3–14 d depending on initial infestation levels. Acoustic detection made it possible to estimate the duration required for reduction of insect activity to levels resulting in negligible damage to the stored product under hermetic conditions. Such information is of value to farmers and warehouse managers attempting to reduce pest damage in stored crops. PMID:29045682

  3. High temperature acoustic and hybrid microwave/acoustic levitators for materials processing

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin

    1990-01-01

    The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.

  4. Energetic electrons in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Batchelor, D. A.

    1984-01-01

    A new analysis was made of a thermal flare model proposed by Brown, Melrose, and Spicer (1979) and Smith and Lilliequist (1979). They assumed the source of impulsive hard X-rays to be a plasma at a temperature of order 10 to the 8th power K, initially located at the apex of a coronal arch, and confined by ion-acoustic turbulence in a collisionless conduction front. Such a source would expand at approximately the ion-sound speed, C sub S = square root of (k T sub e/m sub i), until it filled the arch. Brown, Melrose, and Spicer and Smith and Brown (1980) argued that the source assumed in this model would not explain the simultaneous impulsive microwave emission. In contrast, the new results presented herein suggest that this model leads to the development of a quasi-Maxwellian distribution of electrons that explains both the hard X-ray and microwave emissions. This implies that the source sizes can be determined from observations of the optically-thick portions of microwave spectra and the temperatures obtained from associated hard X-ray observations. In this model, the burst emission would rise to a maximum in a time, t sub r, approximately equal to L/c sub s, where L is the half-length of the arch. New observations of these impulsive flare emissions were analyzed herein to test this prediction of the model. Observations made with the Solar Maximum Mission spacecraft and the Bern Radio Observatory are in good agreement with the model.

  5. Evaluating the Feasibility of Acoustic Radiation Force Impulse Shear Wave Elasticity Imaging of the Uterine Cervix With an Intracavity Array: A Simulation Study

    PubMed Central

    Feltovich, Helen; Homyk, Andrew D.; Carlson, Lindsey C.; Hall, Timothy J.

    2015-01-01

    The uterine cervix softens, shortens, and dilates throughout pregnancy in response to progressive disorganization of its layered collagen microstructure. This process is an essential part of normal pregnancy, but premature changes are associated with preterm birth. Clinically, there are no reliable noninvasive methods to objectively measure cervical softening or assess cervical microstructure. The goal of these preliminary studies was to evaluate the feasibility of using an intracavity ultrasound array to generate acoustic radiation force impulse (ARFI) excitations in the uterine cervix through simulation, and to optimize the acoustic radiation force (ARF) excitation for shear wave elasticity imaging (SWEI) of the tissue stiffness. The cervix is a unique soft tissue target for SWEI because it has significantly greater acoustic attenuation (α = 1.3 to 2.0 dB·cm−1·MHz−1) than other soft tissues, and the pathology being studied tends to lead to an increase in tissue compliance, with healthy cervix being relatively stiff compared with other soft tissues (E ≈ 25 kPa). Additionally, the cervix can only be accessed in vivo using a transvaginal or catheter-based array, which places additional constraints on the excitation focal characteristics that can be used during SWEI. Finite element method (FEM) models of SWEI show that larger-aperture, catheter-based arrays can utilize excitation frequencies up to 7 MHz to generate adequate focal gain up to focal depths 10 to 15 mm deep, with higher frequencies suffering from excessive amounts of near-field acoustic attenuation. Using full-aperture excitations can yield ~40% increases in ARFI-induced displacements, but also restricts the depth of field of the excitation to ~0.5 mm, compared with 2 to 6 mm, which limits the range that can be used for shear wave characterization of the tissue. The center-frequency content of the shear wave particle velocity profiles ranges from 1.5 to 2.5 kHz, depending on the focal

  6. Periodicity and stability for variable-time impulsive neural networks.

    PubMed

    Li, Hongfei; Li, Chuandong; Huang, Tingwen

    2017-10-01

    The paper considers a general neural networks model with variable-time impulses. It is shown that each solution of the system intersects with every discontinuous surface exactly once via several new well-proposed assumptions. Moreover, based on the comparison principle, this paper shows that neural networks with variable-time impulse can be reduced to the corresponding neural network with fixed-time impulses under well-selected conditions. Meanwhile, the fixed-time impulsive systems can be regarded as the comparison system of the variable-time impulsive neural networks. Furthermore, a series of sufficient criteria are derived to ensure the existence and global exponential stability of periodic solution of variable-time impulsive neural networks, and to illustrate the same stability properties between variable-time impulsive neural networks and the fixed-time ones. The new criteria are established by applying Schaefer's fixed point theorem combined with the use of inequality technique. Finally, a numerical example is presented to show the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

    PubMed

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

  8. Dynamics of cholera epidemics with impulsive vaccination and disinfection.

    PubMed

    Sisodiya, Omprakash Singh; Misra, O P; Dhar, Joydip

    2018-04-01

    Waterborne diseases have a tremendous influence on human life. The contaminated drinking water causes water-borne disease like cholera. Pulse vaccination is an important and effective strategy for the elimination of infectious diseases. A waterborne disease like cholera can also be controlled by using impulse technique. In this paper, we have proposed a delayed SEIRB epidemic model with impulsive vaccination and disinfection. We have studied the pulse vaccination strategy and sanitation to control the cholera disease. The existence and stability of the disease-free and endemic periodic solution are investigated both analytically and numerically. It is shown that there exists an infection-free periodic solution, using the impulsive dynamical system defined by the stroboscopic map. It is observed that the infection-free periodic solution is globally attractive when the impulse period is less than some critical value. From the analysis of the model, we have obtained a sufficient condition for the permanence of the epidemic with pulse vaccination. The main highlight of this paper is to introduce impulse technique along with latent period into the SEIRB epidemic model to investigate the role of pulse vaccination and disinfection on the dynamics of the cholera epidemics. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Monitoring fatigue damage in carbon fiber composites using an acoustic impact technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.; Raju, P.K.

    1998-06-01

    The acoustic impact technique (AIT) of nondestructive testing (NDT) has been used to identify the damage that results from the compressive and tension-compression cycle loading around a circular notch of quasiisotropic carbon-fiber composites. This method involves applying a low velocity impact to the test specimen and evaluating the resulting localized acoustic response. Results indicate that AIT can be applied for identification of both compressive and fatigue damage in composite laminates. The gross area of compressive and fatigue damage is detected through an increase in the pulse width, and a decrease in the amplitude, of the force-time signal. The response obtainedmore » in AIT is sensitive to the frequency of the impactor and the amplitude of the impact force and requires careful monitoring of these values to achieve repeatability of results.« less

  10. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  11. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  12. Elasticity standard values of the Achilles tendon assessed with acoustic radiation force impulse elastography on healthy volunteers: a cross section study.

    PubMed

    Wakker, Jonas; Kratzer, Wolfgang; Graeter, Tilmann; Schmidberger, Julian

    2018-05-09

    To determine normal values for acoustic radiation force impulse (ARFI) shear wave elastography of the Achilles tendon. Using the VTIQ mode with the Acuson S3000™ (Siemens Healthcare, Erlangen, Germany), we measured the shear wave velocity (SWV) in m/s and the diameter in mm of both Achilles tendons in 182 healthy volunteers. The tendon was displayed in a sagittal view with a relaxed tendon. The parameters were tested for correlations with the anthropometric data of the subjects, between the genders and different age groups, as well as information obtained from the history, such as smoking and sporting activities. Using a sagittal acoustic window, we determined a mean SWV of 9.09 ± 0.71 m/s for the left Achilles tendon and 9.17 ± 0.61 m/s for the right. There was a significant difference between the results for the right and left side (p < 0.05). The diameter on the left was 4.7 ± 0.9 mm. On the right, it was 4.8 ± 0.9 mm. Likewise there was a significant difference between the results for the diameter of the left and right side (p < 0.05). Neither gender, body mass index (BMI) nor age had a significant effect on either of the measured parameters (p > 0.05). The same goes for the consumption of tobacco and alcohol (p > 0.05). Age, gender, BMI, smoking or the consumption of alcohol did not affect either the elasticity or the diameter of the Achilles tendon.

  13. A Triadic Reflective-Impulsive-Interoceptive Awareness Model of General and Impulsive Information System Use: Behavioral Tests of Neuro-Cognitive Theory

    PubMed Central

    Turel, Ofir; Bechara, Antoine

    2016-01-01

    This study examines a behavioral tripartite model developed in the field of addiction, and applies it here to understanding general and impulsive information technology use. It suggests that technology use is driven by two information-processing brain systems: reflective and impulsive, and that their effects on use are modulated by interoceptive awareness processes. The resultant reflective-impulsive-interoceptive awareness model is tested in two behavioral studies. Both studies employ SEM techniques to time-lagged self-report data from n1 = 300 and n2 = 369 social networking site users. Study 1 demonstrated that temptations augment the effect of habit on technology use, and reduce the effect of satisfaction on use. Study 2 showed that temptations strengthen the effect of habit on impulsive technology use, and weaken the effect of behavioral expectations on impulsive technology use. Hence, the results consistently support the notion that information technology users' behaviors are influenced by reflective and impulsive information processing systems; and that the equilibrium of these systems is determined, at least in part, by one's temptations. These results can serve as a basis for understanding the etiology of modern day addictions. PMID:27199834

  14. A Triadic Reflective-Impulsive-Interoceptive Awareness Model of General and Impulsive Information System Use: Behavioral Tests of Neuro-Cognitive Theory.

    PubMed

    Turel, Ofir; Bechara, Antoine

    2016-01-01

    This study examines a behavioral tripartite model developed in the field of addiction, and applies it here to understanding general and impulsive information technology use. It suggests that technology use is driven by two information-processing brain systems: reflective and impulsive, and that their effects on use are modulated by interoceptive awareness processes. The resultant reflective-impulsive-interoceptive awareness model is tested in two behavioral studies. Both studies employ SEM techniques to time-lagged self-report data from n 1 = 300 and n 2 = 369 social networking site users. Study 1 demonstrated that temptations augment the effect of habit on technology use, and reduce the effect of satisfaction on use. Study 2 showed that temptations strengthen the effect of habit on impulsive technology use, and weaken the effect of behavioral expectations on impulsive technology use. Hence, the results consistently support the notion that information technology users' behaviors are influenced by reflective and impulsive information processing systems; and that the equilibrium of these systems is determined, at least in part, by one's temptations. These results can serve as a basis for understanding the etiology of modern day addictions.

  15. Modern Techniques in Acoustical Signal and Image Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J V

    2002-04-04

    Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve thismore » goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.« less

  16. Combination of acoustical radiosity and the image source method.

    PubMed

    Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho; Jacobsen, Finn

    2013-06-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part. The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated allows for a dynamic control of the image source production, so that no fixed maximum reflection order is required. The model is optimized for energy impulse response predictions in arbitrary polyhedral rooms. The predictions are validated by comparison with published measured data for a real music studio hall. The proposed model turns out to be promising for acoustic predictions providing a high level of detail and accuracy.

  17. Impulsive action: emotional impulses and their control

    PubMed Central

    Frijda, Nico H.; Ridderinkhof, K. Richard; Rietveld, Erik

    2014-01-01

    This paper presents a novel theoretical view on impulsive action, integrating thus far separate perspectives on non-reflective action, motivation, emotion regulation, and impulse control. We frame impulsive action in terms of directedness of the individual organism toward, away, or against other givens – toward future states and away from one’s present state. First, appraisal of a perceived or thought-of event or object on occasion, rapidly and without premonition or conscious deliberation, triggers a motive to modify one’s relation to that event or object. Situational specifics of the event as perceived and appraised motivate and guide selection of readiness for a particular kind of purposive action. Second, perception of complex situations can give rise to multiple appraisals, multiple motives, and multiple simultaneous changes in action readiness. Multiple states of action readiness may interact in generating action, by reinforcing or attenuating each other, thereby yielding impulse control. We show how emotion control can itself result from a motive state or state of action readiness. Our view links impulsive action mechanistically to states of action readiness, which is the central feature of what distinguishes one kind of emotion from another. It thus provides a novel theoretical perspective to the somewhat fragmented literature on impulsive action. PMID:24917835

  18. Experimental system for in-situ measurement of temperature rise in animal tissue under exposure to acoustic radiation force impulse.

    PubMed

    Nitta, Naotaka; Ishiguro, Yasunao; Sasanuma, Hideki; Taniguchi, Nobuyuki; Akiyama, Iwaki

    2015-01-01

    Acoustic radiation force impulse (ARFI) has recently been used for tissue elasticity measurement and imaging. On the other hand, it is predicted that a rise in temperature occurs. In-situ measurement of temperature rise in animal experiments is important, yet measurement using thermocouples has some problems such as position mismatch of the temperature measuring junction of the thermocouple and the focal point of ultrasound. Therefore, an in-situ measurement system for solving the above problems was developed in this study. The developed system is composed mainly of an ultrasound irradiation unit including a custom-made focused transducer with a through hole for inserting a thin-wire thermocouple, and a temperature measurement unit including the thermocouple. The feasibility of the developed system was evaluated by means of experiments using a tissue-mimicking material (TMM), a TMM containing a bone model or a chicken bone, and an extracted porcine liver. The similarity between the experimental results and the results of simulation using a finite element method (FEM) implied the reasonableness of in-situ temperature rise measured by the developed system. The developed system will become a useful tool for measuring in-situ temperature rise in animal experiments and obtaining findings with respect to the relationship between ultrasound irradiation conditions and in-situ temperature rise.

  19. Exponential stability preservation in semi-discretisations of BAM networks with nonlinear impulses

    NASA Astrophysics Data System (ADS)

    Mohamad, Sannay; Gopalsamy, K.

    2009-01-01

    This paper demonstrates the reliability of a discrete-time analogue in preserving the exponential convergence of a bidirectional associative memory (BAM) network that is subject to nonlinear impulses. The analogue derived from a semi-discretisation technique with the value of the time-step fixed is treated as a discrete-time dynamical system while its exponential convergence towards an equilibrium state is studied. Thereby, a family of sufficiency conditions governing the network parameters and the impulse magnitude and frequency is obtained for the convergence. As special cases, one can obtain from our results, those corresponding to the non-impulsive discrete-time BAM networks and also those corresponding to continuous-time (impulsive and non-impulsive) systems. A relation between the Lyapunov exponent of the non-impulsive system and that of the impulsive system involving the size of the impulses and the inter-impulse intervals is obtained.

  20. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  1. Flow velocity profiling using acoustic time of flight flow metering based on wide band signals and adaptive beam-forming techniques

    NASA Astrophysics Data System (ADS)

    Murgan, I.; Candel, I.; Ioana, C.; Digulescu, A.; Bunea, F.; Ciocan, G. D.; Anghel, A.; Vasile, G.

    2016-11-01

    In this paper, we present a novel approach to non-intrusive flow velocity profiling technique using multi-element sensor array and wide-band signal's processing methods. Conventional techniques for the measurements of the flow velocity profiles are usually based on intrusive instruments (current meters, acoustic Doppler profilers, Pitot tubes, etc.) that take punctual velocity readings. Although very efficient, these choices are limited in terms of practical cases of applications especially when non-intrusive measurements techniques are required and/or a spatial accuracy of the velocity profiling is required This is due to factors related to hydraulic machinery down time, the often long time duration needed to explore the entire section area, the frequent cumbersome number of devices that needs to be handled simultaneously, or the impossibility to perform intrusive tests. In the case of non-intrusive flow profiling methods based on acoustic techniques, previous methods concentrated on using a large number of acoustic transducers placed around the measured section. Although feasible, this approach presents several major drawbacks such as a complicated signal timing, transmission, acquisition and recording system, resulting in a relative high cost of operation. In addition, because of the geometrical constraints, a desired number of sensors may not be installed. Recent results in acoustic flow metering based on wide band signals and adaptive beamforming proved that it is possible to achieve flow velocity profiles using less acoustic transducers. In a normal acoustic time of flight path the transducers are both emitters and receivers, sequentially changing their roles. In the new configuration, proposed in this paper, two new receivers are added on each side. Since the beam angles of each acoustic transducer are wide enough the newly added transducers can receive the transmitted signals and additional time of flight estimation can be done. Thus, several flow

  2. Fixed-time stabilization of impulsive Cohen-Grossberg BAM neural networks.

    PubMed

    Li, Hongfei; Li, Chuandong; Huang, Tingwen; Zhang, Wanli

    2018-02-01

    This article is concerned with the fixed-time stabilization for impulsive Cohen-Grossberg BAM neural networks via two different controllers. By using a novel constructive approach based on some comparison techniques for differential inequalities, an improvement theorem of fixed-time stability for impulsive dynamical systems is established. In addition, based on the fixed-time stability theorem of impulsive dynamical systems, two different control protocols are designed to ensure the fixed-time stabilization of impulsive Cohen-Grossberg BAM neural networks, which include and extend the earlier works. Finally, two simulations examples are provided to illustrate the validity of the proposed theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Determining Equilibrium Position For Acoustical Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  4. Performance analysis of passive time reversal communication technique for multipath interference in shallow sea acoustic channel

    NASA Astrophysics Data System (ADS)

    Kida, Yukihiro; Shimura, Takuya; Deguchi, Mitsuyasu; Watanabe, Yoshitaka; Ochi, Hiroshi; Meguro, Koji

    2017-07-01

    In this study, the performance of passive time reversal (PTR) communication techniques in multipath rich underwater acoustic environments is investigated. It is recognized empirically and qualitatively that a large number of multipath arrivals could generally raise the demodulation result of PTR. However, the relationship between multipath and the demodulation result is hardly evaluated quantitatively. In this study, the efficiency of the PTR acoustic communication techniques for multipath interference cancelation was investigated quantitatively by applying a PTR-DFE (decision feed-back filter) scheme to a synthetic dataset of a horizontal underwater acoustic channel. Mainly, in this study, we focused on the relationship between the signal-to-interference ratio (SIR) of datasets and the output signal-to-noise ratio (OSNR) of demodulation results by a parametric study approach. As a result, a proportional relation between SIR and OSNR is confirmed in low-SNR datasets. It was also found that PTR has a performance limitation, that is OSNR converges to a typical value depending on the number of receivers. In conclusion, results indicate that PTR could utilize the multipath efficiently and also withstand the negative effects of multipath interference at a given limitation.

  5. Oxygen Consumption and Acoustic Activity of Adult Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae) during Hermetic Storage.

    PubMed

    Njoroge, Anastasia W; Mankin, Richard W; Smith, Bradley W; Baributsa, Dieudonne

    2018-04-20

    Acoustic monitoring was applied to consider hermetic exposure durations and oxygen levels required to stop adult Callosobruchus maculatus activity and economic damage on cowpea. A 15-d study was conducted with six treatments of 25, 50, and 100 C. maculatus adults in 500 and 1000 mL jars using acoustic probes inserted through stoppers sealing the jars. Acoustic activity as a result of locomotion, mating, and egg-laying was measured by identifying sound impulses with frequency spectra representative of known insect sounds, and counting trains (bursts) of impulses separated by intervals of <200 ms, that typically are produced only by insects. By the end of the first week of storage in all treatments, oxygen levels declined to levels below 4%, which has been demonstrated to cause mortality in previous studies. Concomitantly, insect sound burst rates dropped below an acoustic detection threshold of 0.02 bursts s −1 , indicating that the insects had ceased feeding. Statistically significant relationships were obtained between two different measures of the acoustic activity and the residual oxygen level. Based on the experimental results, a simple equation can be used to estimate the time needed for oxygen to decline to levels that limit insect feeding damage and thus grain losses in hermetic storage containers of different insect population levels and various volumes.

  6. Spatial filtering of audible sound with acoustic landscapes

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun; Cheng, Jianchun

    2017-07-01

    Acoustic metasurfaces manipulate waves with specially designed structures and achieve properties that natural materials cannot offer. Similar surfaces work in audio frequency range as well and lead to marvelous acoustic phenomena that can be perceived by human ears. Being intrigued by the famous Maoshan Bugle phenomenon, we investigate large scale metasurfaces consisting of periodic steps of sizes comparable to the wavelength of audio frequency in both time and space domains. We propose a theoretical method to calculate the scattered sound field and find that periodic corrugated surfaces work as spatial filters and the frequency selective character can only be observed at the same side as the incident wave. The Maoshan Bugle phenomenon can be well explained with the method. Finally, we demonstrate that the proposed method can be used to design acoustical landscapes, which transform impulsive sound into famous trumpet solos or other melodious sound.

  7. Adaptive Noise Reduction Techniques for Airborne Acoustic Sensors

    DTIC Science & Technology

    2012-01-01

    and Preamplifiers . . . . . . . . . . . . . . . . . . . . 16 3.3.2 Audio Recorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 iv 4...consuming less energy than active systems such as radar, lidar, or sonar [5]. Ground and marine-based acoustic arrays are currently employed in a variety of...factors for the performance of an airborne acoustic array. 3.3.1 Audio Microphones and Preamplifiers An audio microphone is a transducer that converts

  8. Effects of Impulsive Pile-Driving Exposure on Fishes.

    PubMed

    Casper, Brandon M; Carlson, Thomas J; Halvorsen, Michele B; Popper, Arthur N

    2016-01-01

    Six species of fishes were tested under aquatic far-field, plane-wave acoustic conditions to answer several key questions regarding the effects of exposure to impulsive pile driving. The issues addressed included which sound levels lead to the onset of barotrauma injuries, how these levels differ between fishes with different types of swim bladders, the recovery from barotrauma injuries, and the potential effects exposure might have on the auditory system. The results demonstrate that the current interim criteria for pile-driving sound exposures are 20 dB or more below the actual sound levels that result in the onset of physiological effects on fishes.

  9. Seismo-acoustic signals associated with degassing explosions recorded at Shishaldin Volcano, Alaska, 2003-2004

    USGS Publications Warehouse

    Petersen, T.

    2007-01-01

    In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.

  10. "Impulsive" youth suicide attempters are not necessarily all that impulsive.

    PubMed

    Witte, Tracy K; Merrill, Katherine A; Stellrecht, Nadia E; Bernert, Rebecca A; Hollar, Daniel L; Schatschneider, Christopher; Joiner, Thomas E

    2008-04-01

    The relationship between impulsivity and suicide has been conceptualized in the literature as a direct one. In contrast, Joiner's [Joiner, T.E., 2005. Why people die by suicide. Harvard University Press, Cambridge, MA.] theory posits that this relationship is indirect in that impulsive individuals are more likely to engage in suicidal behavior because impulsivity makes one more likely to be exposed to painful and provocative stimuli. Adolescents were selected from the Youth Risk Behavior Survey (YRBS) sample between the years of 1993-2003 who had planned for a suicide attempt but did not actually attempt (n=5685), who did not plan but did attempt ("impulsive attempters;" n=1172), and who both planned and attempted (n=4807). Items were selected from the YRBS to assess demographic variables, suicidal behaviors, and impulsive behaviors. Participants who had planned suicide without attempting were significantly less impulsive than those who had attempted without planning and than those who had both planned and attempted. Crucially, participants who had made a suicide attempt without prior planning were less impulsive than those who had planned and attempted. We were unable to conduct a multi-method assessment (i.e., measures were self-report); the measure of impulsivity consisted of items pulled from the YRBS rather than a previously validated impulsivity measure. The notion that the most impulsive individuals are more likely to plan for suicide attempts is an important one for many reasons both theoretical and clinical, including that it may refine risk assessment and attendant clinical decision-making.

  11. On measurement of the acoustic nonlinearity parameter using the finite amplitude insertion substitution (FAIS) technique

    NASA Astrophysics Data System (ADS)

    Zeqiri, Bajram; Cook, Ashley; Rétat, Lise; Civale, John; ter Haar, Gail

    2015-04-01

    The acoustic nonlinearity parameter, B/A, is an important parameter which defines the way a propagating finite amplitude acoustic wave progressively distorts when travelling through any medium. One measurement technique used to determine its value is the finite amplitude insertion substitution (FAIS) method which has been applied to a range of liquid, tissue and tissue-like media. Importantly, in terms of the achievable measurement uncertainties, it is a relative technique. This paper presents a detailed study of the method, employing a number of novel features. The first of these is the use of a large area membrane hydrophone (30 mm aperture) which is used to record the plane-wave component of the acoustic field. This reduces the influence of diffraction on measurements, enabling studies to be carried out within the transducer near-field, with the interrogating transducer, test cell and detector positioned close to one another, an attribute which assists in controlling errors arising from nonlinear distortion in any intervening water path. The second feature is the development of a model which estimates the influence of finite-amplitude distortion as the acoustic wave travels from the rear surface of the test cell to the detector. It is demonstrated that this can lead to a significant systematic error in B/A measurement whose magnitude and direction depends on the acoustic property contrast between the test material and the water-filled equivalent cell. Good qualitative agreement between the model and experiment is reported. B/A measurements are reported undertaken at (20 ± 0.5) °C for two fluids commonly employed as reference materials within the technical literature: Corn Oil and Ethylene Glycol. Samples of an IEC standardised agar-based tissue-mimicking material were also measured. A systematic assessment of measurement uncertainties is presented giving expanded uncertainties in the range ±7% to ±14%, expressed at a confidence level close to 95

  12. Acoustic radiation force impulse elastography in evaluation of triple-negative breast cancer: A preliminary experience.

    PubMed

    Wan, Jing; Wu, Rong; Yao, Minghua; Xu, Guang; Liu, Hui; Pu, Huan; Xiang, Lihua; Zhang, Shupin

    2018-05-19

    To assess the elastographic features of triple-negative breast cancers and evaluate the diagnostic value of acoustic radiation force impulse imaging (ARFI) for the characterization of triple-negative breast cancers. This study analyzed data from 234 women with breast cancer. Patients were categorized into three groups; 1) triple-negative breast cancers (n = 48); 2) ER-positive tumors (n = 128) and 3) HER2-positive tumors (n = 58). Mean tumor stiffness was evaluated by virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ) and quantified as both qualitative scores (1-5) and shear wave velocity (SWV) (m/s). The relationship between mean SWV and tumor parameters, including tumor size, tumor type, histologic grade and lymph node status, were investigated using multiple linear regression. Triple-negative tumor were more likely to have a large invasive size (p = 0.002), high histological grade (p < 0.001), lymph node involvement (p = 0.022) and strong ki-67 expression (p < 0.001). The highest mean SWV value were recorded in triple-negative tumors (7.36 m/s±1.83), followed by HER2+ tumors (6.65 m/s±2.26) and ER+ tumors (6.60 m/s±2.35) (p = 0.122). Triple-negative tumors were also associated with increased stiffness than ER+ tumors and HER2+ tumors (p = 0.016), as measured by qualitative VTI scores. Tumor size was independently associated with mean SWV value on adjusted regression (p < 0.001). Triple-negative breast cancer is associated with high stiffness scores and SWV in ARFI. The latter may be considered a useful complementary tool in evaluation of triple-negative breast cancer.

  13. Transient airload computer analysis for simulating wind induced impulsive noise conditions of a hovering helicopter rotor

    NASA Technical Reports Server (NTRS)

    Hall, G. F.

    1975-01-01

    A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.

  14. Effects of sound source location and direction on acoustic parameters in Japanese churches.

    PubMed

    Soeta, Yoshiharu; Ito, Ken; Shimokura, Ryota; Sato, Shin-ichi; Ohsawa, Tomohiro; Ando, Yoichi

    2012-02-01

    In 1965, the Catholic Church liturgy changed to allow priests to face the congregation. Whereas Church tradition, teaching, and participation have been much discussed with respect to priest orientation at Mass, the acoustical changes in this regard have not yet been examined scientifically. To discuss acoustic desired within churches, it is necessary to know the acoustical characteristics appropriate for each phase of the liturgy. In this study, acoustic measurements were taken at various source locations and directions using both old and new liturgies performed in Japanese churches. A directional loudspeaker was used as the source to provide vocal and organ acoustic fields, and impulse responses were measured. Various acoustical parameters such as reverberation time and early decay time were analyzed. The speech transmission index was higher for the new Catholic liturgy, suggesting that the change in liturgy has improved speech intelligibility. Moreover, the interaural cross-correlation coefficient and early lateral energy fraction were higher and lower, respectively, suggesting that the change in liturgy has made the apparent source width smaller. © 2012 Acoustical Society of America

  15. Effects of cumulative stress and impulsivity on smoking status.

    PubMed

    Ansell, Emily B; Gu, Peihua; Tuit, Keri; Sinha, Rajita

    2012-03-01

    The stress-vulnerability model of addiction predicts that environmental factors, such as cumulative stress, will result in individual adaptations that decrease self-control, increase impulsivity, and increase risk for addiction. Impulsivity and cumulative stress are risk factors for tobacco smoking that are rarely examined simultaneously in research. We examined the indirect and direct effects of cumulative adversity in a community sample consisting of 291 men and women who participated in an assessment of cumulative stress, self-reported impulsivity, and smoking history. Data were analyzed using bootstrapping techniques to estimate indirect effects of stress on smoking via impulsivity. Cumulative adversity is associated with smoking status via direct effects and indirect effects through impulsivity scores. Additional models examining specific types of stress indicate contributions of traumatic stress and recent life events as well as chronic relationship stressors. Overall, cumulative stress is associated with increased risk of smoking via increased impulsivity and via pathways independent of impulsivity. These findings support the stress-vulnerability model and highlight the utility of mediation models in assessing how, and for whom, cumulative stress increases risk of current cigarette smoking. Increasing self-control is a target for interventions with individuals who have experienced cumulative adversity. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Effects of cumulative stress and impulsivity on smoking status

    PubMed Central

    Ansell, Emily B.; Gu, Peihua; Tuit, Keri; Sinha, Rajita

    2013-01-01

    Objective The stress-vulnerability model of addiction predicts that environmental factors, such as cumulative stress, will result in individual adaptations that decrease self-control, increase impulsivity, and increase risk for addiction. Impulsivity and cumulative stress are risk factors for tobacco smoking that are rarely examined simultaneously in research. Methods We examined the indirect and direct effects of cumulative adversity in a community sample consisting of 291 men and women who participated in an assessment of cumulative stress, self-reported impulsivity, and smoking history. Data were analyzed using bootstrapping techniques to estimate indirect effects of stress on smoking via impulsivity. Results Cumulative adversity is associated with smoking status via direct effects and indirect effects through impulsivity scores. Additional models examining specific types of stress indicate contributions of traumatic stress and recent life events as well as chronic relationship stressors. Conclusions Overall, cumulative stress is associated with increased risk of smoking via increased impulsivity and via pathways independent of impulsivity. These findings support the stress-vulnerability model and highlight the utility of mediation models in assessing how, and for whom, cumulative stress increases risk of current cigarette smoking. Increasing self-control is a target for interventions with individuals who have experienced cumulative adversity. PMID:22389084

  17. Acoustic Waves in a Three-Dimensional Stratified Atmosphere

    NASA Astrophysics Data System (ADS)

    Kalkofen, W.; Massaglia, S.; Bodo, G.; Rossi, P.

    2000-05-01

    We investigate the propagation of acoustic waves in a three-dimensional, nonmagnetic, isothermal atmosphere stratified in plane-parallel layers in a study of oscillations in chromospheric calcium bright points. We present analytic results for the linear and numerical results for the nonlinear evolution of a disturbance. An impulsively excited acoustic disturbance emanates from a point source and propagates outward as a spherical acoustic wave, amplifying exponentially in the upward direction. A significant wave amplitude is found only in a relatively narrow cone about the vertical. The amplitude of the wave and the opening angle of the cone decrease with time. Because of the lateral spread of the upward-propagating energy, the decay is faster in 2D and 3D simulations than in 1D. We discuss observational consequences of this scenario, some of which are not anticipated from 1D calculations. We acknowledge support from NASA, NSF and the Ministero per l'Università e la Ricerca Scientifica e Tecnologica.

  18. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  19. Impulsive and non-impulsive suicide attempts in patients treated for alcohol dependence.

    PubMed

    Wojnar, Marcin; Ilgen, Mark A; Czyz, Ewa; Strobbe, Stephen; Klimkiewicz, Anna; Jakubczyk, Andrzej; Glass, Jennifer; Brower, Kirk J

    2009-05-01

    Suicidal behavior has been recognized as an increasing problem among alcohol-dependent subjects. The aim of the study was to identify correlates of impulsive and non-impulsive suicide attempts among a treated population of alcohol-dependent patients. A total of 154 patients with alcohol dependence consecutively admitted for addiction treatment participated in the study. Suicidal behavior was assessed together with severity of alcohol dependence, childhood abuse, impulsivity, and family history. A stop-signal procedure was used as a behavioral measure of impulsivity. Lifetime suicide attempts were reported by 43% of patients in alcohol treatment; of which 62% were impulsive. Compared to patients without a suicide attempt, those with a non-impulsive attempt were more likely to have a history of sexual abuse (OR=7.17), a family history of suicide (OR=4.09), and higher scores on a personality measure of impulsiveness (OR=2.27). The only significant factor that distinguished patients with impulsive suicide attempts from patients without a suicide attempt and from patients with a non-impulsive suicide attempt was a higher level of behavioral impulsivity (OR=1.84-2.42). Retrospective self-report of suicide attempts and family history. Lack of diagnostic measure.

  20. Acoustic detection of Oryctes rhinoceros (Coleoptera: Scarabaeidae: Dynastinae) and Nasutitermes luzonicus (Isoptera: Termitidae) in palm trees in urban Guam.

    PubMed

    Mankin, R W; Moore, A

    2010-08-01

    Adult and larval Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae: Dynastinae) were acoustically detected in live and dead palm trees and logs in recently invaded areas of Guam, along with Nasutitermes luzonicus Oshima (Isoptera: Termitidae), and other small, sound-producing invertebrates and invertebrates. The low-frequency, long-duration sound-impulse trains produced by large, active O. rhinoceros and the higher frequency, shorter impulse trains produced by feeding N. luzonicus had distinctive spectral and temporal patterns that facilitated their identification and discrimination from background noise, as well as from roaches, earwigs, and other small sound-producing organisms present in the trees and logs. The distinctiveness of the O. rhinoceros sounds enables current usage of acoustic detection as a tactic in Guam's ongoing O. rhinoceros eradication program.

  1. Impulse propagation in the nocturnal boundary layer: analysis of the geometric component.

    PubMed

    Blom, Philip; Waxler, Roger

    2012-05-01

    On clear dry nights over flat land, a temperature inversion and stable nocturnal wind jet lead to an acoustic duct in the lowest few hundred meters of the atmosphere. An impulsive signal propagating in such a duct is received at long ranges from the source as an extended wave train consisting of a series of weakly dispersed distinct arrivals followed by a strongly dispersed low-frequency tail. The leading distinct arrivals have been previously shown to be well modeled by geometric acoustics. In this paper, the geometric acoustics approximation for the leading arrivals is investigated. Using the solutions of the eikonal and transport equations, travel times, amplitudes, and caustic structures of the distinct arrivals have been determined. The time delay between and relative amplitudes of the direct-refracted and single ground reflection arrivals have been investigated as parameters for an inversion scheme. A two parameter quadratic approximation to the effective sound speed profile has been fit and found to be in strong agreement with meteorological measurements from the time of propagation.

  2. Comparison of perioperative outcomes between endoscope-assisted technique and handheld acoustic Doppler for perforator identification in fasciocutaneous flaps.

    PubMed

    Huang, Jen-Wu; Huang, Chih-Sheng; Shih, Yu-Chung; Perng, Cherng-Kang; Lin, Yi-Ying; Wu, Szu-Hsien

    2018-06-01

    The endoscopic technique has been utilized to harvest muscle flaps and detect perforators of fasciocutaneous flaps. This study aimed to compare the perioperative outcomes between the endoscope-assisted technique and handheld acoustic Doppler for perforator identification in fasciocutaneous flaps.This retrospective case-control study included patients who underwent fasciocutaneous flap reconstruction for traumatic soft tissue defects. In the case group, perforator identification was assisted by the endoscope-assisted technique. In the control group, age- and sex-matched patients received handheld acoustic Doppler to detect perforators. Perioperative outcomes, flap characteristics, and postoperative complications were compared.There were 12 patients in the case group and 12 in the control group. Compared with the control group, the case group had a significantly shorter length of donor-site wounds (9 cm vs 12 cm, P = .023) and a significantly smaller proportion of patients receiving skin grafting at the donor sites (0% vs 41.7%, P = .037). The case group had a longer operative time, but the difference was not statistically significant (180 minutes vs 150 minutes, P = .367). The amount of blood loss, the time length of postoperative drainage, and complications did not significantly differ between the 2 groups.The endoscope-assisted technique for perforator identification of fasciocutaneous flaps provided less donor-site morbidity and a significantly shorter length of donor-site wounds than the conventional handheld acoustic Doppler, which suggests that this technique could be a valuable alternative when a precise design is indicated.

  3. An analysis of blade vortex interaction aerodynamics and acoustics

    NASA Technical Reports Server (NTRS)

    Lee, D. J.

    1985-01-01

    The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.

  4. Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1991-01-01

    The purpose of present study is to investigate the most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0, and 10 Hz frequencies for liquid-filled level in the range between 30 to 80 percent shows that the selection of a medium frequency of 1.0 Hz impulsive thrust over the other frequency ranges of impulsive thrust is the most proper.

  5. A Neurogenetic Approach to Impulsivity

    PubMed Central

    Congdon, Eliza; Canli, Turhan

    2008-01-01

    Impulsivity is a complex and multidimensional trait that is of interest to both personality psychologists and to clinicians. For investigators seeking the biological basis of personality traits, the use of neuroimaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) revolutionized personality psychology in less than a decade. Now, another revolution is under way, and it originates from molecular biology. Specifically, new findings in molecular genetics, the detailed mapping and the study of the function of genes, have shown that individual differences in personality traits can be related to individual differences within specific genes. In this article, we will review the current state of the field with respect to the neural and genetic basis of trait impulsivity. PMID:19012655

  6. Direct Field Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Larkin, Paul; Goldstein, Bob

    2008-01-01

    This paper presents an update to the methods and procedures used in Direct Field Acoustic Testing (DFAT). The paper will discuss some of the recent techniques and developments that are currently being used and the future publication of a reference standard. Acoustic testing using commercial sound system components is becoming a popular and cost effective way of generating a required acoustic test environment both in and out of a reverberant chamber. This paper will present the DFAT test method, the usual setup and procedure and the development and use of a closed-loop, narrow-band control system. Narrow-band control of the acoustic PSD allows all standard techniques and procedures currently used in random control to be applied to acoustics and some examples are given. The paper will conclude with a summary of the development of a standard practice guideline that is hoped to be available in the first quarter of next year.

  7. Impulsive and non-impulsive suicide attempts in patients treated for alcohol dependence

    PubMed Central

    Wojnar, Marcin; Ilgen, Mark A.; Czyz, Ewa; Strobbe, Stephen; Klimkiewicz, Anna; Jakubczyk, Andrzej; Glass, Jennifer; Brower, Kirk J.

    2009-01-01

    Background Suicidal behavior has been recognized as an increasing problem among alcohol-dependent subjects. The aim of the study was to identify correlates of impulsive and non-impulsive suicide attempts among a treated population of alcohol-dependent patients. Methods A total of 154 patients with alcohol dependence consecutively admitted for addiction treatment participated in the study. Suicidal behavior was assessed together with severity of alcohol dependence, childhood abuse, impulsivity, and family history. A stop-signal procedure was used as a behavioral measure of impulsivity. Results and conclusions Lifetime suicide attempts were reported by 43% of patients in alcohol treatment; of which 62% were impulsive. Compared to patients without a suicide attempt, those with a non-impulsive attempt were more likely to have a history of sexual abuse (OR = 7.17), a family history of suicide (OR = 4.09), and higher scores on a personality measure of impulsiveness (OR = 2.27). The only significant factor that distinguished patients with impulsive suicide attempts from patients without a suicide attempt and from patients with a non-impulsive suicide attempt was a higher level of behavioral impulsivity (OR = 1.84 – 2.42). Limitations Retrospective self-report of suicide attempts and family history. Lack of diagnostic measure. PMID:18835498

  8. Application of hierarchical cascading technique to finite element method simulation in bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Li, Xinyi; Bao, Jingfu; Huang, Yulin; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2018-07-01

    In this paper, we propose the use of the hierarchical cascading technique (HCT) for the finite element method (FEM) analysis of bulk acoustic wave (BAW) devices. First, the implementation of this technique is presented for the FEM analysis of BAW devices. It is shown that the traveling-wave excitation sources proposed by the authors are fully compatible with the HCT. Furthermore, a HCT-based absorbing mechanism is also proposed to replace the perfectly matched layer (PML). Finally, it is demonstrated how the technique is much more efficient in terms of memory consumption and execution time than the full FEM analysis.

  9. Electrochemical Processes Enhanced by Acoustic Liquid Manipulation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2004-01-01

    Acoustic liquid manipulation is a family of techniques that employ the nonlinear acoustic effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. Researchers at the NASA Glenn Research Center are exploring new methods of manipulating liquids for a variety of space applications, and we have found that acoustic techniques may also be used in the normal Earth gravity environment to enhance the performance of existing fluid processes. Working in concert with the NASA Commercial Technology Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation (Elgin, IL), researchers at Glenn have applied nonlinear acoustic principles to industrial applications. Collaborating with Alchemitron Corporation, we have adapted the devices to create acoustic streaming in a conventional electroplating process.

  10. Comparison principle for impulsive functional differential equations with infinite delays and applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaodi; Shen, Jianhua; Akca, Haydar; Rakkiyappan, R.

    2018-04-01

    We introduce the Razumikhin technique to comparison principle and establish some comparison results for impulsive functional differential equations (IFDEs) with infinite delays, where the infinite delays may be infinite time-varying delays or infinite distributed delays. The idea is, under the help of Razumikhin technique, to reduce the study of IFDEs with infinite delays to the study of scalar impulsive differential equations (IDEs) in which the solutions are easy to deal with. Based on the comparison principle, we study the qualitative properties of IFDEs with infinite delays , which include stability, asymptotic stability, exponential stability, practical stability, boundedness, etc. It should be mentioned that the developed results in this paper can be applied to IFDEs with not only infinite delays but also persistent impulsive perturbations. Moreover, even for the special cases of non-impulsive effects or/and finite delays, the criteria prove to be simpler and less conservative than some existing results. Finally, two examples are given to illustrate the effectiveness and advantages of the proposed results.

  11. Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1991-01-01

    The purpose of present study is to investigate most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement, it shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0 and 10 Hz frequencies for liquid filled level in the range between 30 to 80 percent, it shows that the selection of 1.0 Hz frequency impulsive thrust over the other frequency ranges of impulsive thrust is most proper based on the present study.

  12. Unified multiphase modeling for evolving, acoustically coupled systems consisting of acoustic, elastic, poroelastic media and septa

    NASA Astrophysics Data System (ADS)

    Lee, Joong Seok; Kang, Yeon June; Kim, Yoon Young

    2012-12-01

    This paper presents a new modeling technique that can represent acoustically coupled systems in a unified manner. The proposed unified multiphase (UMP) modeling technique uses Biot's equations that are originally derived for poroelastic media to represent not only poroelastic media but also non-poroelastic ones ranging from acoustic and elastic media to septa. To recover the original vibro-acoustic behaviors of non-poroelastic media, material parameters of a base poroelastic medium are adjusted depending on the target media. The real virtue of this UMP technique is that interface coupling conditions between any media can be automatically satisfied, so no medium-dependent interface condition needs to be imposed explicitly. Thereby, the proposed technique can effectively model any acoustically coupled system having locally varying medium phases and evolving interfaces. A typical situation can occur in an iterative design process. Because the proposed UMP modeling technique needs theoretical justifications for further development, this work is mainly focused on how the technique recovers the governing equations of non-poroelastic media and expresses their interface conditions. We also address how to describe various boundary conditions of the media in the technique. Some numerical studies are carried out to demonstrate the validity of the proposed modeling technique.

  13. Environmental Acoustical Modelling at Supreme Allied Commander, Atlantic, Anti-Submarine Warfare Research Center (SACLANTCEN),

    DTIC Science & Technology

    1979-11-01

    the RAIBAC computer model. Journal Acoustical Society America 59, 1976: 31-38. 13. HASTRUP , O.F. Reflection of plane waves from a solid multilayered...damping bottom, SACLANTCEN TR-50. La Spezia, Italy, SACLANT ASW Research Centre, 1966. [AD 479 4371 14. HASTRUP , O.F. Impulse response of a layered

  14. Measurement of thin films using very long acoustic wavelengths

    NASA Astrophysics Data System (ADS)

    Clement, G. T.; Nomura, H.; Adachi, H.; Kamakura, T.

    2013-12-01

    A procedure for measuring material thickness by means of necessarily long acoustic wavelengths is examined. The approach utilizes a temporal phase lag caused by the impulse time of wave momentum transferred through a thin layer that is much denser than its surrounding medium. In air, it is predicted that solid or liquid layers below approximately 1/2000 of the acoustic wavelength will exhibit a phase shift with an arctangent functional dependence on thickness and layer density. The effect is verified for thin films on the scale of 10 μm using audible frequency sound (7 kHz). Soap films as thin as 100 nm are then measured using 40 kHz air ultrasound. The method's potential for imaging applications is demonstrated by combining the approach with near-field holography, resulting in reconstructions with sub-wavelength resolution in both the depth and lateral directions. Potential implications at very high and very low acoustic frequencies are discussed.

  15. Acoustic Radiation Force Impulse Technology in the Differential Diagnosis of Solid Breast Masses with Different Sizes: Which Features Are Most Efficient?

    PubMed

    Bai, Min; Zhang, Hui-Ping; Xing, Jin-Fang; Shi, Qiu-Sheng; Gu, Ji-Ying; Li, Fan; Chen, Hui-Li; Zhang, Xue-Mei; Fang, Yun; Du, Lian-Fang

    2015-01-01

    To evaluate diagnostic performance of acoustic radiation force impulse (ARFI) technology for solid breast masses with different sizes and determine which features are most efficient. 271 solid breast masses in 242 women were examined with ARFI, and their shear wave velocities (SWVs), Virtual Touch tissue imaging (VTI) patterns, and area ratios (ARs) were measured and compared with their histopathological outcomes. Receiver operating characteristic curves (ROC) were calculated to assess diagnostic performance of ARFI for small masses (6-14 mm) and big masses (15-30 mm). SWV of mass was shown to be positively associated with mass size (P < 0.001). For small masses, area under ROC (Az) of AR was larger than that of SWV (P < 0.001) and VTI pattern (P < 0.001); no significant difference was found between Az of SWV and that of VTI pattern (P = 0.906). For big masses, Az of VTI pattern was less than that of SWV (P = 0.008) and AR (P = 0.002); no significant difference was identified between Az of SWV and that of AR (P = 0.584). For big masses, SWV and AR are both efficient measures; nevertheless, for small masses, AR seems to be the best feature.

  16. Instantaneous Impulses.

    ERIC Educational Resources Information Center

    Erlichson, Herman

    2000-01-01

    Describes an experiment that extends Newton's instantaneous-impulse method of orbital analysis to a graphical method of orbit determination. Discusses the experiment's usefulness for teaching both horizontal projectile motion and instantaneous impulse. (WRM)

  17. Innovative techniques for analyzing the three-dimensional behavioral results from acoustically tagged fish

    NASA Astrophysics Data System (ADS)

    Steig, Tracey W.; Timko, Mark A.

    2005-04-01

    Acoustic tags were used to monitor the swimming patterns of downstream migrating salmon smolts approaching various dams on the Columbia River, USA. Downstream migrating yearling chinook (Oncorhynchus tshawytscha), steelhead (Oncorhynchus mykiss), sockeye (Oncorhynchus nerka), and sub-yearling chinook smolts were surgically implanted with acoustic tags. Fish were tracked in three-dimensions as they approached and passed into the turbine intakes, spillways, and surface bypass channel entrances at the dams during the 2004 spring and summer outmigrations. A number of advances in the analysis techniques and software have been made over the past few years. Some of these improvements include the development of various fish density algorithms, stream trace modeling analysis, and advances of three-dimensional animation programs. Three-dimensional tracks of fish approaching the turbine intakes, spillways, and surface bypass channel entrances will be presented. Concentrations of fish passage will be presented as three-dimensional fish densities superimposed over dam structures. Stream trace modeling animation will be presented showing predicted fish passage routes.

  18. Acoustic levitation of an object larger than the acoustic wavelength.

    PubMed

    Andrade, Marco A B; Okina, Fábio T A; Bernassau, Anne L; Adamowski, Julio C

    2017-06-01

    Levitation and manipulation of objects by sound waves have a wide range of applications in chemistry, biology, material sciences, and engineering. However, the current acoustic levitation techniques are mainly restricted to particles that are much smaller than the acoustic wavelength. In this work, it is shown that acoustic standing waves can be employed to stably levitate an object much larger than the acoustic wavelength in air. The levitation of a large slightly curved object weighting 2.3 g is demonstrated by using a device formed by two 25 kHz ultrasonic Langevin transducers connected to an aluminum plate. The sound wave emitted by the device provides a vertical acoustic radiation force to counteract gravity and a lateral restoring force that ensure horizontal stability to the levitated object. In order to understand the levitation stability, a numerical model based on the finite element method is used to determine the acoustic radiation force that acts on the object.

  19. Acoustic and Auditory Perception Effects of the Voice Therapy Technique Finger Kazoo in Adult Women.

    PubMed

    Christmann, Mara Keli; Cielo, Carla Aparecida

    2017-05-01

    This study aimed to verify and to correlate acoustic and auditory-perceptual measures of glottic source after the performance of finger kazoo (FK) technique. This is an experimental, cross-sectional, and qualitative study. We made an analysis of the vowel [a:] in 46 adult women with neither vocal complaints nor laryngeal alterations, through the Multi-Dimensional Voice Program Advanced and RASATI scale, before and immediately after performing three series of FK and 5 minutes after a period of silence. Kappa, Friedman, Wilcoxon, and Spearman tests were used. We found significant increase in fundamental frequency, reduction of amplitude variation, and degree of sub-harmonics immediately after performing FK. Positive correlations were measures of frequency and its perturbation, measures of amplitude, of soft phonation index, of degree and number of unvoiced segments with aspects of RASATI. Negative correlations were voice turbulence index, measures of frequency and its perturbation, and measures of soft phonation index with aspects of RASATI. There was fundamental frequency increase, within normal limits, and reduction of acoustic measures related to presence of noise and instability. In general, acoustic measures, suggestive of noise and instability, were reduced according to the decrease of perceptive-auditory aspects of vocal alteration. It shows that both instruments are complementary and that the acoustic vocal effect was positive. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  20. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  1. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  2. Campground marketing - the impulse camper

    Treesearch

    Wilbur F. LaPage; Dale P. Ragain

    1972-01-01

    Impulse or unplanned campground visits may account for one-fourth to one-half of all camping activity. The concepts of impulse travel and impulse camping appear to be potentially useful extensions of the broader concept of impulse purchasing, which has become an important influence in retail marketing. Impulse campers may also be impulse buyers; they were found to...

  3. Introduction to acoustic emission

    NASA Technical Reports Server (NTRS)

    Possa, G.

    1983-01-01

    Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.

  4. Acoustic radiation force impulse elastography for differentiation of benign and malignant thyroid nodules with concurrent Hashimoto's thyroiditis.

    PubMed

    Liu, Bo-Ji; Xu, Hui-Xiong; Zhang, Yi-Feng; Xu, Jun-Mei; Li, Dan-Dan; Bo, Xiao-Wan; Li, Xiao-Long; Guo, Le-Hang; Xu, Xiao-Hong; Qu, Shen

    2015-03-01

    The purpose of the study was to explore the diagnostic performance of acoustic radiation force impulse (ARFI) elastography in differential diagnosis between benign and malignant thyroid nodules in patients with coexistent Hashimoto's thyroiditis (HT). A total of 141 pathological proven nodules in 141 HT patients (7 males and 134 females, mean age 50.1 years, range 23-75 years) received conventional ultrasound (US), elasticity imaging (EI) and ARFI elastography, including virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ), before surgery. Shear wave velocity (SWV) and SWV ratio were measured for each nodule on VTQ. The US, EI and ARFI elastography features were compared between benign and malignant nodules in HT patients. Receiver operating characteristic curve (ROC) analyses and area under curve (AUC) were performed to assess the diagnostic performance. Pathologically, 70 nodules were benign and 71 nodules were malignant. Significant differences were found between benign and malignant nodules in HT patients for EI (EI score) and ARFI (VTI grade and SWV) (all P value <0.05). The AUCs for EI, VTI, SWV and SWV ratio were 0.68 [95% confidence interval (CI): 0.59-0.77], 0.90 (95% CI: 0.84-0.95), 0.77 (95%CI: 0.70-0.85) and 0.74 (95%CI: 0.66-0.82), respectively. The cut-off points were EI score ≥3, VTI grade ≥4, SWV ≥2.58 m/s and SWV ratio ≥1.03, respectively. In conclusion, ARFI elastography is useful for differentiation between benign and malignant thyroid nodules in HT patients. The diagnostic performance of ARFI elastography is better than EI.

  5. Virtual touch tissue quantification using acoustic radiation force impulse technology: initial clinical experience with solid breast masses.

    PubMed

    Bai, Min; Du, Lianfang; Gu, Jiying; Li, Fan; Jia, Xiao

    2012-02-01

    The purpose of this study was to investigate the clinical usage of Virtual Touch tissue quantification (VTQ; Siemens Medical Solutions, Mountain View, CA) implementing sonographic acoustic radiation force impulse technology for differentiation between benign and malignant solid breast masses. A total of 143 solid breast masses were examined with VTQ, and their shear wave velocities (SWVs) were measured. From all of the masses, 30 were examined by two independent operators to evaluate the reproducibility of the results of VTQ measurement. All masses were later surgically resected, and the histologic results were correlated with the SWV results. A receiver operating characteristic curve was calculated to assess the diagnostic performance of VTQ. A total of 102 benign lesions and 41 carcinomas were diagnosed on the basis of histologic examination. The VTQ measurements performed by the two independent operators yielded a correlation coefficient of 0.885. Applying a cutoff point of 3.065 m/s, a significant difference (P < .001) was found between the SWVs of the benign (mean ± SD, 2.25 ± 0.59 m/s) and malignant (5.96 ± 2.96 m/s) masses. The sensitivity, specificity, and area under the receiver operating characteristic curve for the differentiation were 75.6%, 95.1%, and 85.6%, respectively. When the repeated non-numeric result X.XX of the SWV measurements was designated as an indicator of malignancy, the sensitivity, specificity, and accuracy were 63.4%, 100%, and 89.5%. Virtual Touch tissue quantification can yield reproducible and quantitative diagnostic information on solid breast masses and serve as an effective diagnostic tool for differentiation between benign and malignant solid masses.

  6. Longitudinal monitoring of liver stiffness by acoustic radiation force impulse imaging in patients with chronic hepatitis B receiving entecavir.

    PubMed

    Wu, Sheng-Di; Ding, Hong; Liu, Li-Li; Zhuang, Yuan; Liu, Yun; Cheng, Li-Sha; Wang, Si-Qi; Tseng, Yu-Jen; Wang, Ji-Yao; Jiang, Wei

    2018-06-01

    Acoustic radiation force impulse (ARFI) imaging measures liver stiffness (LS), which significantly correlates with the stage of liver fibrosis in treatment-naive patients with chronic hepatitis B (CHB). We aimed to prospectively assess the clinical usefulness of ARFI during long-term antiviral therapy in CHB. Seventy-one CHB patients were consecutively recruited and paired liver biopsies were performed in 27 patients. LS was assessed by ARFI semiannually during entecavir therapy. LS gradually decreased with treatment and continued to decrease after normalization of alanine aminotransaminase. Overall, 97.2% patients achieved improvement of LS, whereas 19.7% patients had more than 30% reduction in LS values between baseline and week 104. Multivariate linear regression analysis showed that the degree of LS reduction significantly correlated with the baseline levels of LS value, platelet and cholinesterase. In the 27 patients who underwent paired liver biopsies, LS significantly correlated with stage of fibrosis and inflammatory grade at baseline. LS values decreased more significantly in patients with fibrosis regression than those with static histological fibrosis. In CHB patients, LS assessed by ARFI was gradually reduced during antiviral therapy. Longitudinal monitoring of LS may be a promising noninvasive assessment of fibrosis regression during long-term antiviral therapy in CHB. Further large sample studies are needed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  8. Diagnostic Techniques to Elucidate the Aerodynamic Performance of Acoustic Liners

    NASA Technical Reports Server (NTRS)

    June, Jason; Bertolucci, Brandon; Ukeiley, Lawrence; Cattafesta, Louis N., III; Sheplak, Mark

    2017-01-01

    In support of Topic A.2.8 of NASA NRA NNH10ZEA001N, the University of Florida (UF) has investigated the use of flow field optical diagnostic and micromachined sensor-based techniques for assessing the wall shear stress on an acoustic liner. Stereoscopic particle image velocimetry (sPIV) was used to study the velocity field over a liner in the Grazing Flow Impedance Duct (GFID). The results indicate that the use of a control volume based method to determine the wall shear stress is prone to significant error. The skin friction over the liner as measured using velocity curve fitting techniques was shown to be locally reduced behind an orifice, relative to the hard wall case in a streamwise plane centered on the orifice. The capacitive wall shear stress sensor exhibited a linear response for a range of shear stresses over a hard wall. PIV over the liner is consistent with lifting of the near wall turbulent structure as it passes over an orifice, followed by a region of low wall shear stress.

  9. Acoustically-Enhanced Direct Contact Vapor Bubble Condensation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2017-11-01

    Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.

  10. Acoustic radiation force impulse elastosonography of placenta in maternal red blood cell alloimmunization: a preliminary and descriptive study.

    PubMed

    Cetin, Orkun; Karaman, Erbil; Arslan, Harun; Akbudak, Ibrahim; Yıldızhan, Recep; Kolusarı, Ali

    2017-01-31

    Maternal red blood cell alloimmunization is an important cause of fetal morbidity and mortality in the perinatal period, despite well-organized prophylaxis programs. The objective of the study was to evaluate placental elasticity by using Acoustic Radiation Force Impulse (ARFI) in Rhesus (Rh) alloimmunized pregnant women with hydropic and nonhydropic fetuses and to compare those with healthy pregnant women. This case-control and descriptive study comprised twenty-eight healthy pregnant women, 14 Rh alloimmunized pregnant women with nonhydropic fetuses, and 16 Rh alloimmunized pregnant women with hydropic fetuses in the third trimester of pregnancy. Placental elasticity measurements were performed by ARFI elastosonography at the day of delivery. The maternal characteristics and neonatal outcomes of the patients were also noted. The highest mean placental ARFI scores were observed in Rh alloimmunized pregnant women with hydropic fetuses (1.13 m/s) (p=0.001). Healthy controls and Rh alloimmunized pregnant women with nonhydropic fetuses had similar mean placenta ARFI scores (0.84 m/s, 0.88 m/s, respectively) (p<0.05). Based on the present findings, the placenta becomes stiffer in Rh alloimmunized pregnancies complicated with hydrops fetalis. The increased placental ARFI scores may be a supplemental marker for adverse pregnancy outcomes, additional to Doppler evaluation of middle cerebral artery. This data should be confirmed with a large sample size and prospective studies by using serial measurements of ARFI elastosonography in maternal red blood cell alloimmunization.

  11. Impact of Virtual Touch Quantification in Acoustic Radiation Force Impulse for Skeletal Muscle Mass Loss in Chronic Liver Diseases

    PubMed Central

    Nishikawa, Hiroki; Nishimura, Takashi; Enomoto, Hirayuki; Iwata, Yoshinori; Ishii, Akio; Miyamoto, Yuho; Ishii, Noriko; Yuri, Yukihisa; Takata, Ryo; Hasegawa, Kunihiro; Nakano, Chikage; Yoh, Kazunori; Aizawa, Nobuhiro; Sakai, Yoshiyuki; Ikeda, Naoto; Takashima, Tomoyuki; Nishiguchi, Shuhei; Iijima, Hiroko

    2017-01-01

    Background and aims: We sought to clarify the relationship between virtual touch quantification (VTQ) in acoustic radiation force impulse and skeletal muscle mass as assessed by bio-electronic impedance analysis in patients with chronic liver diseases (CLDs, n = 468, 222 males and 246 females, median age = 62 years). Patients and methods: Decreased skeletal muscle index (D-SMI) was defined as skeletal muscle index (SMI) <7.0 kg/m2 for males and as SMI <5.7 kg/m2 for females, according to the recommendations in current Japanese guidelines. We examined the correlation between SMI and VTQ levels and investigated factors linked to D-SMI in the univariate and multivariate analyses. The area under the receiver operating curve (AUROC) for the presence of D-SMI was also calculated. Results: In patients with D-SMI, the median VTQ level was 1.64 meters/second (m/s) (range, 0.93–4.32 m/s), while in patients without D-SMI, the median VTQ level was 1.11 m/s (range, 0.67–4.09 m/s) (p < 0.0001). In the multivariate analysis, higher VTQ was found to be an independent predictor linked to the presence of D-SMI (p < 0.0001). In receiver operating characteristic analysis, body mass index had the highest AUROC (0.805), followed by age (0.721) and VTQ (0.706). Conclusion: VTQ levels can be useful for predicting D-SMI in patients with CLDs. PMID:28621757

  12. The acoustics of the echo cornet

    NASA Astrophysics Data System (ADS)

    Pyle, Robert W., Jr.; Klaus, Sabine K.

    2002-11-01

    The echo cornet was an instrument produced by a number of makers in several countries from about the middle of the nineteenth to the early twentieth centuries. It consists of an ordinary three-valve cornet to which a fourth valve has been added, downstream of the three normal valves. The extra valve diverts the airstream from the normal bell to an ''echo'' bell that gives a muted tone quality. Although the air column through the echo bell is typically 15 cm longer than the path through the normal bell, there is no appreciable change of playing pitch when the echo bell is in use. Acoustic input impedance and impulse response measurements and consideration of the standing-wave pattern within the echo bell show how this can be so. Acoustically, the echo bell is more closely related to hand-stopping on the French horn than to the mutes commonly used on the trumpet and cornet.

  13. [Liver stiffness measured by acoustic radiation force impulse imaging in assessing hepatic functional reserve in patients with space-occupying lesions in the liver].

    PubMed

    Yan, Hui-tong; Luo, Yu-kun; Tang, Wen-bo; Jiao, Zi-yu; Yao, Chun-xiao; Lv, Fa-qin; Tang, Jie

    2013-04-01

    To investigate the value of liver stiffness measured by acoustic radiation force impulse imaging(ARFI) in assessing hepatic functional reserve in patients with space-occupying lesions in the liver. Sixty-three patients with space-occupying lesions in the liver were enrolled. Liver stiffness (LS) measurements with ARFI and indocyanine green(ICG) retention test were performed in the same day, and plasma clearance rate of indocyanine green(ICG-K), ICG retention at 15 minutes(ICGR15) as well as 10 effective values of LS were recorded. The correlation between Child-Pugh score, ICGR15, ICG-K, and LS were evaluated. The LS measurements with ARFI failed in one patient. A strong correlation between LS and ICGR15(r=0.789, P<0.01) and an inverse correlation between LS and ICG-K(r=-0.738, P<0.01) were observed. Besides, there was a significant correlation between LS measurements and Child-Pugh score(r=0.929, P<0.01) . The LS significantly differed among patients with Child-Pugh class A, B, and C(P<0.01) . ARFI is a simple, feasible and non-invasive method for assessing hepatic functional reserve in patients with space-occupying lesions in the liver.

  14. Acoustic Emission Detected by Matched Filter Technique in Laboratory Earthquake Experiment

    NASA Astrophysics Data System (ADS)

    Wang, B.; Hou, J.; Xie, F.; Ren, Y.

    2017-12-01

    Acoustic Emission in laboratory earthquake experiment is a fundamental measures to study the mechanics of the earthquake for instance to characterize the aseismic, nucleation, as well as post seismic phase or in stick slip experiment. Compared to field earthquake, AEs are generally recorded when they are beyond threshold, so some weak signals may be missing. Here we conducted an experiment on a 1.1m×1.1m granite with a 1.5m fault and 13 receivers with the same sample rate of 3MHz are placed on the surface. We adopt continues record and a matched filter technique to detect low-SNR signals. We found there are too many signals around the stick-slip and the P- arrival picked by manual may be time-consuming. So, we combined the short-term average to long-tem-average ratio (STA/LTA) technique with Autoregressive-Akaike information criterion (AR-AIC) technique to pick the arrival automatically and found mostly of the P- arrival accuracy can satisfy our demand to locate signals. Furthermore, we will locate the signals and apply a matched filter technique to detect low-SNR signals. Then, we can see if there is something interesting in laboratory earthquake experiment. Detailed and updated results will be present in the meeting.

  15. Time-fixed rendezvous by impulse factoring with an intermediate timing constraint. [for transfer orbits

    NASA Technical Reports Server (NTRS)

    Green, R. N.; Kibler, J. F.; Young, G. R.

    1974-01-01

    A method is presented for factoring a two-impulse orbital transfer into a three- or four-impulse transfer which solves the rendezvous problem and satisfies an intermediate timing constraint. Both the time of rendezvous and the intermediate time of a alinement are formulated as any element of a finite sequence of times. These times are integer multiples of a constant plus an additive constant. The rendezvous condition is an equality constraint, whereas the intermediate alinement is an inequality constraint. The two timing constraints are satisfied by factoring the impulses into collinear parts that vectorially sum to the original impulse and by varying the resultant period differences and the number of revolutions in each orbit. Five different types of solutions arise by considering factoring either or both of the two impulses into two or three parts with a limit for four total impulses. The impulse-factoring technique may be applied to any two-impulse transfer which has distinct orbital periods.

  16. Bifurcation Analysis and Application for Impulsive Systems with Delayed Impulses

    NASA Astrophysics Data System (ADS)

    Church, Kevin E. M.; Liu, Xinzhi

    In this article, we present a systematic approach to bifurcation analysis of impulsive systems with autonomous or periodic right-hand sides that may exhibit delayed impulse terms. Methods include Lyapunov-Schmidt reduction and center manifold reduction. Both methods are presented abstractly in the context of the stroboscopic map associated to a given impulsive system, and are illustrated by way of two in-depth examples: the analysis of a SIR model of disease transmission with seasonality and unevenly distributed moments of treatment, and a scalar logistic differential equation with a delayed census impulsive harvesting effort. It is proven that in some special cases, the logistic equation can exhibit a codimension two bifurcation at a 1:1 resonance point.

  17. Acoustic emission strand burning technique for motor burning rate prediction

    NASA Technical Reports Server (NTRS)

    Christensen, W. N.

    1978-01-01

    An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.

  18. Comparison of two underwater acoustic communications techniques for multi-user access

    NASA Astrophysics Data System (ADS)

    Hursky, Paul; Siderius, T. Martin; Kauaiex Group

    2004-05-01

    Frequency hopped frequency shift keying (FHFSK) and code division multiple access (CDMA) are two different modulation techniques for multiple users to communicate with a single receiver simultaneously. In July 2003, these two techniques were tested alongside each other in a shallow water coastal environment off the coast of Kauai. A variety of instruments were used to measure the prevailing oceanography, enabling detailed modeling of the channel. The channel was acoustically probed using LFM waveforms and m-sequences as well. We will present the results of demodulating the FHFSK and CDMA waveforms and discuss modeling the channel for the purpose of predicting multi-user communications performance. a)Michael B. Porter, Paul Hursky, Martin Siderius (SAIC), Mohsen Badiey (UD), Jerald Caruthers (USM), William S. Hodgkiss, Kaustubha Raghukumar (SIO), Dan Rouseff, Warren Fox (APL-UW), Christian de Moustier, Brian Calder, Barbara J. Kraft (UNH), Keyko McDonald (SPAWARSSC), Peter Stein, James K. Lewis, and Subramaniam Rajan (SSI).

  19. Application of scanning acoustic microscopy to advanced structural ceramics

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1987-01-01

    A review is presentod of research investigations of several acoustic microscopy techniques for application to structural ceramics for advanced heat engines. Results obtained with scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM) are compared. The techniques were evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described with emphasis on statistics of detectability of flaws that constitute potential fracture origins.

  20. Acoustic Modifications of the Ames 40x80 Foot Wind Tunnel and Test Techniques for High-Speed Research Model Testing

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Olson, Larry (Technical Monitor)

    1995-01-01

    The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.

  1. Soldier detection using unattended acoustic and seismic sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Hengy, S.; Hamery, P.

    2012-06-01

    During recent military conflicts, as well as for security interventions, the urban zone has taken a preponderant place. Studies have been initiated in national and in international programs to stimulate the technical innovations for these specific scenarios. For example joint field experiments have been organized by the NATO group SET-142 to evaluate the capability for the detection and localization of snipers, mortars or artillery guns using acoustic devices. Another important operational need corresponds to the protection of military sites or buildings. In this context, unattended acoustic and seismic sensors are envisaged to contribute to the survey of specific points by the detection of approaching enemy soldiers. This paper describes some measurements done in an anechoic chamber and in free field to characterize typical sounds generated by the soldier activities (walking, crawling, weapon handling, radio communication, clothing noises...). Footstep, speech and some specific impulsive sounds are detectable at various distances from the source. Such detection algorithms may be easily merged with the existing weapon firing detection algorithms to provide a more generic "battlefield acoustic" early warning system. Results obtained in various conditions (grassy terrain, gravel path, road, forest) will be presented. A method to extrapolate the distances of detection has been developed, based on an acoustic propagation model and applied to the laboratory measurements.

  2. Genetics of impulsive behaviour

    PubMed Central

    Bevilacqua, Laura; Goldman, David

    2013-01-01

    Impulsivity, defined as the tendency to act without foresight, comprises a multitude of constructs and is associated with a variety of psychiatric disorders. Dissecting different aspects of impulsive behaviour and relating these to specific neurobiological circuits would improve our understanding of the etiology of complex behaviours for which impulsivity is key, and advance genetic studies in this behavioural domain. In this review, we will discuss the heritability of some impulsivity constructs and their possible use as endophenotypes (heritable, disease-associated intermediate phenotypes). Several functional genetic variants associated with impulsive behaviour have been identified by the candidate gene approach and re-sequencing, and whole genome strategies can be implemented for discovery of novel rare and common alleles influencing impulsivity. Via deep sequencing an uncommon HTR2B stop codon, common in one population, was discovered, with implications for understanding impulsive behaviour in both humans and rodents and for future gene discovery. PMID:23440466

  3. Rethinking impulsivity in suicide.

    PubMed

    Klonsky, E David; May, Alexis

    2010-12-01

    Elevated impulsivity is thought to facilitate the transition from suicidal thoughts to suicidal behavior. Therefore, impulsivity should distinguish those who have attempted suicide (attempters) from those who have only considered suicide (ideators-only). This hypothesis was examined in three large nonclinical samples: (1) 2,011 military recruits, (2) 1,296 college students, and (3) 399 high school students. In sample 1, contrary to traditional models of suicide risk, a unidimensional measure of impulsivity failed to distinguish attempters from ideators-only. In samples 2 and 3, which were administered a multidimensional measure of impulsivity (i.e., the UPPS impulsive behavior scale; Whiteside & Lynam, 2001), different impulsivity-related traits characterized attempters and ideators-only. Whereas both attempters and ideators-only exhibited high urgency (the tendency to act impulsive in the face of negative emotions), only attempters exhibited poor premeditation (a diminished ability to think through the consequences of one's actions). Neither attempters nor ideators-only exhibited high sensation seeking or lack of perseverance. Future research should continue to distinguish impulsivity-related traits that predict suicide ideation from those that predict suicide attempts, and models of suicide risk should be revised accordingly.

  4. Pathological gambling: an impulse control disorder? Measurement of impulsivity using neurocognitive tests.

    PubMed

    Dannon, Pinhas N; Shoenfeld, Netta; Rosenberg, Oded; Kertzman, Semion; Kotler, Moshe

    2010-04-01

    Pathological gambling is classified in the DSM-IV-TR (Diagnostic and Statistical Manual of Mental Disorders) and in the ICD-10 (International Classification of Disease) as an impulse control disorder. The association between impulsivity and pathological gambling remains a matter of debate: some researchers find high levels of impulsivity within pathological gamblers, others report no difference compared to controls, and yet others even suggest that it is lower. In this review we examine the relationship between pathological gambling and impulsivity assessed by various neurocognitive tests. These tests--the Stroop task, the Stop Signal Task, the Matching Familiar Figures Task, the Iowa Gambling Task, the Wisconsin Card Sorting Test, the Tower of London test, and the Continuous Performance Test--demonstrated less impulsivity in gambling behavior. The differences in performance between pathological gamblers and healthy controls on the neurocognitive tasks could be due to addictive behavior features rather than impulsive behavior.

  5. Internal Acoustics of the ISS and Other Spacecraft

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2017-01-01

    It is important to control the acoustic environment inside spacecraft and space habitats to protect for astronaut communications, alarm audibility, and habitability, and to reduce astronauts' risk for sleep disturbance, and hear-ing loss. But this is not an easy task, given the various design trade-offs, and it has been difficult, historically, to achieve. Over time it has been found that successful control of spacecraft acoustic levels is achieved by levying firm requirements at the system-level, using a systems engineering approach for design and development, and then validating these requirements with acoustic testing. In the systems engineering method, the system-level requirements must be flowed down to sub-systems and component noise sources, using acoustic analysis and acoustic modelling to develop allocated requirements for the sub-systems and components. Noise controls must also be developed, tested, and implemented so the sub-systems and components can achieve their allocated limits. It is also important to have management support for acoustics efforts to maintain their priority against the various trade-offs, including mass, volume, power, cost, and schedule. In this extended abstract and companion presentation, the requirements, approach, and results for controlling acoustic levels in most US spacecraft since Apollo will be briefly discussed. The approach for controlling acoustic levels in the future US space vehicle, Orion Multipurpose Crew Vehicle (MPCV), will also be briefly discussed. These discussions will be limited to the control of continuous noise inside the space vehicles. Other types of noise, such as launch, landing, and abort noise, intermittent noise, Extra-Vehicular Activity (EVA) noise, emergency operations/off-nominal noise, noise exposure, and impulse noise are important, but will not be discussed because of time limitations.

  6. Acoustic sounding of wind velocity profiles in a stratified moving atmosphere.

    PubMed

    Ostashev, V E; Georges, T M; Clifford, S F; Goedecke, G H

    2001-06-01

    The paper deals with analytical and numerical studies of the effects of atmospheric stratification on acoustic remote sensing of wind velocity profiles by sodars. Both bistatic and monostatic schemes are considered. Formulas for the Doppler shift of an acoustic echo signal scattered by atmospheric turbulence advected with the mean wind in a stratified moving atmosphere are derived. Numerical studies of these formulas show that errors in retrieving wind velocity can be of the order of 1 m/s if atmospheric stratification is ignored. Formulas for the height at which wind velocity is retrieved are also derived. Approaches are proposed which allow one to take into account the effects of atmospheric stratification when restoring the wind velocity profile from measured values of the Doppler shift and the time interval of acoustic impulse propagation from a sodar to the scattering volume and back to the ground.

  7. Acoustic analysis of trill sounds.

    PubMed

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.

  8. Effect of aging and direction of impulse in video head impulse test.

    PubMed

    Kim, Tae Hwan; Kim, Min-Beom

    2017-09-12

    The aim of this study was to identify the difference of gain value in the video head impulse test (vHIT) according to the age of the patient and the direction of the impulse. All participants were subjected to vHIT with horizontal semicircular canal (HSCC). vHIT with vertical canal (posterior and anterior semicircular canal [PSCC and ASCC]) additionally was performed in 434 participants. The mean vestibulo-ocular reflex (VOR) gain was maintained in patients in the HSCC at below 70 years (1.025 ± 0.08) and in the vertical canal at below 80 years (PSCC: 0.965 ± 0.12, ASCC: 0.975 ± 0.14). However, the decrease of VOR gain was significant in patients over 70 years in the HSCC (0.978 ± 0.35, P < .001) and in patients over 80 years in the vertical canal (PSCC: 0.828 ± 0.16, ASCC: 0.851 ± 0.13, P < .001). In addition, a VOR gain of rightward impulse was higher than the leftward impulse, but there was no difference based on the direction of impulse in the vertical impulse test. VOR gain declines with increasing age, over 70 years on the horizontal canal, and over 80 years on the vertical canal. Additionally, horizontal VOR gain of rightward impulse was higher than the leftward impulse in right-eye recordings only, but the vertical canal showed no difference of gain according to the direction of impulse. 2b. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  9. An approximate inverse scattering technique for reconstructing blockage profiles in water pipelines using acoustic transients.

    PubMed

    Jing, Liwen; Li, Zhao; Wang, Wenjie; Dubey, Amartansh; Lee, Pedro; Meniconi, Silvia; Brunone, Bruno; Murch, Ross D

    2018-05-01

    An approximate inverse scattering technique is proposed for reconstructing cross-sectional area variation along water pipelines to deduce the size and position of blockages. The technique allows the reconstructed blockage profile to be written explicitly in terms of the measured acoustic reflectivity. It is based upon the Born approximation and provides good accuracy, low computational complexity, and insight into the reconstruction process. Numerical simulations and experimental results are provided for long pipelines with mild and severe blockages of different lengths. Good agreement is found between the inverse result and the actual pipe condition for mild blockages.

  10. PVT Degradation Studies: Acoustic Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, Gerges; Tucker, Brian J.; Kouzes, Richard T.

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regionsmore » with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.« less

  11. An Impulse Based Substructuring approach for impact analysis and load case simulations

    NASA Astrophysics Data System (ADS)

    Rixen, Daniel J.; van der Valk, Paul L. C.

    2013-12-01

    In the present paper we outline the basic theory of assembling substructures for which the dynamics are described as Impulse Response Functions. The assembly procedure computes the time response of a system by evaluating per substructure the convolution product between the Impulse Response Functions and the applied forces, including the interface forces that are computed to satisfy the interface compatibility. We call this approach the Impulse Based Substructuring method since it transposes to the time domain the Frequency Based Substructuring approach. In the Impulse Based Substructuring technique the Impulse Response Functions of the substructures can be gathered either from experimental tests using a hammer impact or from time-integration of numerical submodels. In this paper the implementation of the method is outlined for the case when the impulse responses of the substructures are computed numerically. A simple bar example is shown in order to illustrate the concept. The Impulse Based Substructuring allows fast evaluation of impact response of a structure when the impulse response of its components is known. It can thus be used to efficiently optimize designs of consumer products by including impact behavior at the early stage of the design, but also for performing substructured simulations of complex structures such as offshore wind turbines.

  12. Impulsive force on the head during performance of typical ukemi techniques following different judo throws.

    PubMed

    Hashimoto, Toshihiko; Ishii, Takanori; Okada, Naoyuki; Itoh, Masahiro

    2015-01-01

    In this study, eight judo athletes who are major candidates for the Japan national team were recruited as participants. Kinematic analysis of exemplary ukemi techniques was carried out using two throws, o-soto-gari, a throw linked to frequent injury, and o-uchi-gari. The aim of this study was to kinematically quantify the timing patterns of exemplary ukemi techniques and to obtain kinematic information of the head, in a sequence of ukemi from the onset of the throw to the completion of ukemi. The results indicated that the vertical velocity with which the uke's head decelerated was reduced by increasing the body surface exposed to the collision with the tatami and by increasing the elapsed time. In particular, overall upper limb contact with the tatami is greatly associated with deceleration. In o-soto-gari, the impulsive force on the faller's head as the head reached the lowest point was 204.82 ± 19.95 kg m · s(-2) while in o-uchi-gari it was 118.46 ± 63.62 kg m · s(-2), z = -1.75, P = 0.08, and it did present a large-sized effect with r = 0.78. These findings indicate that the exemplary o-soto-gari as compared to o-uchi-gari is the technique that causes more significant damage to the uke's head.

  13. Impulsivity in borderline personality disorder: a matter of disturbed impulse control or a facet of emotional dysregulation?

    PubMed

    Sebastian, Alexandra; Jacob, Gitta; Lieb, Klaus; Tüscher, Oliver

    2013-02-01

    Impulsivity is regarded as a clinical, diagnostic and pathophysiological hallmark of borderline personality disorder (BPD). Self-report measures of impulsivity consistently support the notion of higher impulsive traits in BPD patients as compared to healthy control subjects. Laboratory tests of impulsivity, i.e. neuropsychological tests of impulse control render weak and inconsistent results both across different cognitive components of impulse control and within the same cognitive component of impulse control. One important factor worsening impulsive behaviors and impulse control deficits in BPD is comorbid attention-deficit/hyperactivity disorder (ADHD). In addition, emotional dysregulation interacts with impulse control especially for BPD salient emotions. In sum, although basic mechanisms of impulse control seem not to be disturbed in BPD, clinically well observed impulsive behaviors may be explained by comorbid ADHD or may be the consequence of dysregulation of BPD salient emotions.

  14. Acoustic Liquid Manipulation Used to Enhance Electrochemical Processes

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2005-01-01

    Working in concert with the NASA Technology Transfer and Partnership Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation of Elgin, Illinois, the NASA Glenn Research Center has applied nonlinear acoustic principles to industrial applications. High-intensity ultrasonic beam techniques employ the effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. This includes propelling liquids, moving bubbles, and ejecting liquids as droplets and fountains. Since these effects can be accomplished without mechanical pumps or moving parts, we are exploring how these techniques could be used to manipulate liquids in space applications. Some of these acoustic techniques could be used both in normal Earth gravity and in the microgravity of space.

  15. Using Complementary Acoustic and Optical Techniques for Quantitative Monitoring of Biomolecular Adsorption at Interfaces

    PubMed Central

    Konradi, Rupert; Textor, Marcus; Reimhult, Erik

    2012-01-01

    The great wealth of different surface sensitive techniques used in biosensing, most of which claim to measure adsorbed mass, can at first glance look unnecessary. However, with each technique relying on a different transducer principle there is something to be gained from a comparison. In this tutorial review, different optical and acoustic evanescent techniques are used to illustrate how an understanding of the transducer principle of each technique can be exploited for further interpretation of hydrated and extended polymer and biological films. Some of the most commonly used surface sensitive biosensor techniques (quartz crystal microbalance, optical waveguide spectroscopy and surface plasmon resonance) are briefly described and five case studies are presented to illustrate how different biosensing techniques can and often should be combined. The case studies deal with representative examples of adsorption of protein films, polymer brushes and lipid membranes, and describe e.g., how to deal with strongly vs. weakly hydrated films, large conformational changes and ordered layers of biomolecules. The presented systems and methods are compared to other representative examples from the increasing literature on the subject. PMID:25586027

  16. Acoustic classification of zooplankton

    NASA Astrophysics Data System (ADS)

    Martin Traykovski, Linda V.

    1998-11-01

    Work on the forward problem in zooplankton bioacoustics has resulted in the identification of three categories of acoustic scatterers: elastic-shelled (e.g. pteropods), fluid-like (e.g. euphausiids), and gas-bearing (e.g. siphonophores). The relationship between backscattered energy and animal biomass has been shown to vary by a factor of ~19,000 across these categories, so that to make accurate estimates of zooplankton biomass from acoustic backscatter measurements of the ocean, the acoustic characteristics of the species of interest must be well-understood. This thesis describes the development of both feature based and model based classification techniques to invert broadband acoustic echoes from individual zooplankton for scatterer type, as well as for particular parameters such as animal orientation. The feature based Empirical Orthogonal Function Classifier (EOFC) discriminates scatterer types by identifying characteristic modes of variability in the echo spectra, exploiting only the inherent characteristic structure of the acoustic signatures. The model based Model Parameterisation Classifier (MPC) classifies based on correlation of observed echo spectra with simplified parameterisations of theoretical scattering models for the three classes. The Covariance Mean Variance Classifiers (CMVC) are a set of advanced model based techniques which exploit the full complexity of the theoretical models by searching the entire physical model parameter space without employing simplifying parameterisations. Three different CMVC algorithms were developed: the Integrated Score Classifier (ISC), the Pairwise Score Classifier (PSC) and the Bayesian Probability Classifier (BPC); these classifiers assign observations to a class based on similarities in covariance, mean, and variance, while accounting for model ambiguity and validity. These feature based and model based inversion techniques were successfully applied to several thousand echoes acquired from broadband (~350 k

  17. Impulse Pump

    DTIC Science & Technology

    2016-06-17

    APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention relates to an impulse pump for generating...impulse pump 15. The sleeve bearings 98 are affixed to the head block 90 to ease axial motion while the plunger 72 is under torsional loads. [0041

  18. Reference value of impulse oscillometry in taiwanese preschool children.

    PubMed

    Lai, Shen-Hao; Yao, Tsung-Chieh; Liao, Sui-Ling; Tsai, Ming-Han; Hua, Men-Chin; Yeh, Kuo-Wei; Huang, Jing-Long

    2015-06-01

    Impulse oscillometry is a potential technique for assessing the respiratory mechanism-which includes airway resistance and reactance during tidal breathing-in minimally cooperative young children. The reference values available in Asian preschool children are limited, especially in children of Chinese ethnicity. This study aimed to develop reference equations for lung function measurements using impulse oscillometry in Taiwanese children for future clinical application and research exploitation. Impulse oscillometry was performed in 150 healthy Taiwanese children (aged 2-6 years) to measure airway resistance and reactance at various frequencies. We used regression analysis to generate predictive equations separately by age, body height, body weight, and gender. The stepwise regression model revealed that body height was the most significant determinant of airway resistance and reactance in preschool young children. With the growth in height, a decrease in airway resistance and a paradoxical increase in reactance occurred at different frequencies. The regression curve of resistance at 5 Hz was comparable to previous reference values. This study provided reference values for several variables of the impulse oscillometry measurements in healthy Taiwanese children aged 2-6 years. With these reference data, clinical application of impulse oscillometry would be expedient in diagnosing respiratory diseases in preschool children. Copyright © 2014. Published by Elsevier B.V.

  19. Suppression of radiating harmonics Electro-Impulse Deicing (EIDI) systems

    NASA Astrophysics Data System (ADS)

    Zieve, Peter; Ng, James; Fiedberg, Robert

    1991-10-01

    The electromagnetic compatibility (EMC) of two different configurations of electromagnetic deicing systems is discussed. Both Electro-Impulse Deicing (EIDI) and Eddy Current Repulsion Deicing Strip (EDS) are investigated. With EIDI, rigid coils are mounted behind the wing; while with EDS, the impulse coils are built thin and flexible with printed circuit board technology. An important consideration in the certification of electromagnetic impulse deicing systems is electromagnetic compatibility (EMC). When the capacitor bank discharges, a large current pulse travels down a transmission line to the coil. The coil is one source of radiation. Another source is the cabling and connections to the coil. In work conducted for the FAA in 1988, it was found that excessive electromagnetic emissions resulted from the operation of a Low Voltage Electro-Impulse Deicer (LVEID) in conjunction with a composite wing. The goal of this project was to investigate and develop techniques for controlling emissions without the benefit of shielding. In this study it was determined that both EIDI and EDS could be brought within the RTCA/DO-160B standards through proper shielding and termination of the pulse power cable. An alternative topology of EDS with the impulse coil on the wing exterior surface did not meet the standard.

  20. Acoustic Transmitters for Underwater Neutrino Telescopes

    PubMed Central

    Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  1. Test-retest reliability of behavioral measures of impulsive choice, impulsive action, and inattention

    PubMed Central

    Weafer, Jessica; Baggott, Matthew J.; de Wit, Harriet

    2014-01-01

    Behavioral measures of impulsivity are widely used in substance abuse research, yet relatively little attention has been devoted to establishing their psychometric properties, especially their reliability over repeated administration. The current study examined the test-retest reliability of a battery of standardized behavioral impulsivity tasks, including measures of impulsive choice (delay discounting, probability discounting, and the Balloon Analogue Risk Task), impulsive action (the stop signal task, the go/no-go task, and commission errors on the continuous performance task), and inattention (attention lapses on a simple reaction time task and omission errors on the continuous performance task). Healthy adults (n=128) performed the battery on two separate occasions. Reliability estimates for the individual tasks ranged from moderate to high, with Pearson correlations within the specific impulsivity domains as follows: impulsive choice (r = .76 - .89, ps < .001); impulsive action (r = .65 - .73, ps < .001); and inattention (r = .38-.42, ps < .001). Additionally, the influence of day-to-day fluctuations in mood as measured by the Profile of Mood States was assessed in relation to variability in performance on each of the behavioral tasks. Change in performance on the delay discounting task was significantly associated with change in positive mood and arousal. No other behavioral measures were significantly associated with mood. In sum, the current analysis demonstrates that behavioral measures of impulsivity are reliable measures and thus can be confidently used to assess various facets of impulsivity as intermediate phenotypes for drug abuse. PMID:24099351

  2. A higher harmonic control test in the DNW to reduce impulsive BVI noise

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1994-01-01

    A model rotor acoustic test was performed to examine the benefit of higher control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulse noise. A 40-percent dynamically scaled, four-bladed model of a BO-105 main rotor was tested in the German-Dutch Wind Tunnel (DNW). Acoustic measurements were made in a large plane underneath the rotor employing a traversing in-flow microphone array in the anechoic environment of the open test section. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules (different modes, amplitudes, phases) were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with HHC phase variations are found. Compared to the baseline conditions (without HHD), significant mid-frequency noise reductions of as much as 6 dB are obtained for low speed descent conditions where BVI is most intensive. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. Low frequency loading noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  3. A simulation technique for 3D MR-guided acoustic radiation force imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Allison, E-mail: apayne@ucair.med.utah.edu; Bever, Josh de; Farrer, Alexis

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation forcemore » field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through

  4. Acoustic Characteristics of a Model Isolated Tiltrotor in DNW

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; McCluer, Megan; Tadghighi, Hormoz

    1999-01-01

    An aeroacoustic wind tunnel test was conducted using a scaled isolated tiltrotor model. Acoustic data were acquired using an in-flow microphone wing traversed beneath the model to map the directivity of the near-field acoustic radiation of the rotor for a parametric variation of rotor angle-of-attack, tunnel speed, and rotor thrust. Acoustic metric data were examined to show trends of impulsive noise for the parametric variations. BVISPL maximum noise levels were found to increase with alpha for constant mu and C(sub T), although the maximum BVI levels were found at much higher a than for a typical helicopter. BVISPL levels were found to increase with mu for constant alpha and C(sub T. BVISPL was found to decrease with increasing CT for constant a and m, although BVISPL increased with thrust for a constant wake geometry. Metric data were also scaled for M(sub up) to evaluate how well simple power law scaling could be used to correct metric data for M(sub up) effects.

  5. Material and Phonon Engineering for Next Generation Acoustic Devices

    NASA Astrophysics Data System (ADS)

    Kuo, Nai-Kuei

    -wide bandwidth (˜10%) was achieved by implementing slanted finger transducers (SFIT) in thin film AIN. The impulse response and coupling of modes (COM) models commonly used for surface acoustic wave (SAW) devices were developed to design the operating frequency and bandwidth of the LWTs. These techniques enabled access to fast frequency solutions (impulse response method) and good pass-band ripple estimation (COM) for any piezoelectric Lamb-wave based device. The conventional and IABG unit cell designs were explored for the making of cavity resonators. A PnC cavity made with conventional design exhibits a Q of 675 at 665 MHz. Despite the low Q, its value is very high when the volume of the cavity is taken into account ( Q per unit volume of 3.1017/m3). In order to understand the limited value of Q a detailed finite element analysis is performed to unveil its dependence on the specific design of the transducer. The capabilities of the X-shaped PnCs were harvested for synthesizing a method to suppress the sidelobe response of an AIN Lamb wave (SFIT) delay line. 10 dB of sidelobe magnitude reduction was attained while leaving the pass-band unaltered. Although at a very preliminary stage, the theoretical and experimental work on AIN PnC has demonstrated that new acoustic capabilities are enabled by these metamaterials. Future electroacoustic devices that perform frequency control functions in a compact and low loss fashion can now be envisioned.

  6. Capturing thermal, mechanical, and acoustic effects of the diode (980 nm) laser in stapedotomy.

    PubMed

    Kamalski, Digna M A; de Boorder, Tjeerd; Bittermann, Arnold J N; Wegner, Inge; Vincent, Robert; Grolman, Wilko

    2014-07-01

    The diode laser, with a wavelength of 980 nm, has promising characteristics for being used for the fenestration during stapedotomy. It is known that at this wavelength absorption in pigmented tissues is high, and absorption in water is relatively low compared with medical lasers in the infrared, making it theoretically an applicable laser for stapes surgery in patients with otosclerosis. Another important advantage is that, with respect to other lasers, this device is relatively inexpensive. Despite the potential advantages, the available literature only shows limited reports of this laser being used in stapes surgery. The present article evaluates the thermal, mechanical, and acoustic properties of the diode laser during stapes surgery. For the mechanical effects, high-speed imaging with a frame rate up to 4000 f/s (=250 μs resolution) was performed in an inner ear model. For thermal effects, the high-speed Schlieren technique was used. Acoustics were recorded by a hydrophone, incorporated in the model. Pulse settings were 100 ms, 3 W, which are the same settings used during stapes surgery. The application of the diode laser resulted in limited mechanical and thermal effects. Impulse noise was low with an average of 52 (SD, 7.8) dB (A). Before carbonization of the tip of the delivery laser, fiber enhances ablation of the footplate. The 980-nm diode laser is a useful tool for laser-assisted stapedotomy in patients with otosclerosis. Mechanical, thermal, and acoustic effects are limited and well within the safety limits.

  7. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    NASA Astrophysics Data System (ADS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-04-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation.

  8. The importance of acoustic radiation force impulse (ARFI) elastography in the diagnosis and clinical course of acute pancreatitis.

    PubMed

    Kaya, Muhsin; Değirmenci, Serdar; Göya, Cemil; Tuncel, Elif Tuba; Uçmak, Feyzullah; Kaplan, Mehmet Ali

    2018-05-01

    Acute pancreatitis (AP) is characterized by acute inflammation of the pancreas and it has a highly variable clinical course. The aim of our study was to evaluate the value of acoustic radiation force impulse (ARFI) elastography in the diagnosis and clinical course of AP. Consecutive patients with a diagnosis of AP (patients group) and healthy subject (control group) were prospectively enrolled to the study. Demographic features and clinical, laboratory, and radiological data were recorded. Virtual Touch Tissue Quantification (VTQ) was used to implement ARFI elastography. The tissue elasticity is proportional to the square of the wave velocity (SWV). A total of 108 patients (age, 57±1.8 y) and 79 healthy subjects (age, 53.6±1.81 y) were included in the study. There were 100 (92.5%) edematous and 8 (7.4%) necrotizing AP. The mean SWV was significantly higher in the patient group than in the control group (2.43±0.08 vs. 1.27±0.025 m/s, p < 0.001). There was not significant difference between patient and control group regarding age and gender. SWV cutoff value of 1.63 m/s was associated with 100% sensitivity and 98% specificity for the diagnosis of AP. There was not significant difference between patients with and without complications and patients with edematous and necrotizing AP regarding mean SWV value. There was also not significant correlation between mean SWV value and age, mean length of hospital stay, and mean amylase level. ARFI elastography may be a feasible method for the diagnosis of AP, but it has no value for the prediction of clinical course of AP.

  9. Changes in liver stiffness measurement using acoustic radiation force impulse elastography after antiviral therapy in patients with chronic hepatitis C.

    PubMed

    Chen, Sheng-Hung; Lai, Hsueh-Chou; Chiang, I-Ping; Su, Wen-Pang; Lin, Chia-Hsin; Kao, Jung-Ta; Chuang, Po-Heng; Hsu, Wei-Fan; Wang, Hung-Wei; Chen, Hung-Yao; Huang, Guan-Tarn; Peng, Cheng-Yuan

    2018-01-01

    To compare on-treatment and off-treatment parameters acquired using acoustic radiation force impulse elastography, the Fibrosis-4 (FIB-4) index, and aspartate aminotransferase-to-platelet ratio index (APRI) in patients with chronic hepatitis C (CHC). Patients received therapies based on pegylated interferon or direct-acting antiviral agents. The changes in paired patient parameters, including liver stiffness (LS) values, the FIB-4 index, and APRI, from baseline to sustained virologic response (SVR) visit (24 weeks after the end of treatment) were compared. Multiple regression models were used to identify significant factors that explained the correlations with LS, FIB-4, and APRI values and SVR. A total of 256 patients were included, of which 219 (85.5%) achieved SVR. The paired LS values declined significantly from baseline to SVR visit in all groups and subgroups except the nonresponder subgroup (n = 10). Body mass index (P = 0.0062) and baseline LS (P < 0.0001) were identified as independent factors that explained the LS declines. Likewise, the baseline FIB-4 (P < 0.0001) and APRI (P < 0.0001) values independently explained the declines in the FIB-4 index and APRI, respectively. Moreover, interleukin-28B polymorphisms, baseline LS, and rapid virologic response were identified as independent correlates with SVR. Paired LS measurements in patients treated for CHC exhibited significant declines comparable to those in FIB-4 and APRI values. These declines may have correlated with the resolution of necroinflammation. Baseline LS values predicted SVR.

  10. Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7

    NASA Astrophysics Data System (ADS)

    Walker, R.

    1984-12-01

    The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.

  11. Nonlinear acoustic techniques for landmine detection.

    PubMed

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.

  12. The effect of applied transducer force on acoustic radiation force impulse quantification within the left lobe of the liver.

    PubMed

    Porra, Luke; Swan, Hans; Ho, Chien

    2015-08-01

    Introduction: Acoustic Radiation Force Impulse (ARFI) Quantification measures shear wave velocities (SWVs) within the liver. It is a reliable method for predicting the severity of liver fibrosis and has the potential to assess fibrosis in any part of the liver, but previous research has found ARFI quantification in the right lobe more accurate than in the left lobe. A lack of standardised applied transducer force when performing ARFI quantification in the left lobe of the liver may account for some of this inaccuracy. The research hypothesis of this present study predicted that an increase in applied transducer force would result in an increase in SWVs measured. Methods: ARFI quantification within the left lobe of the liver was performed within a group of healthy volunteers (n = 28). During each examination, each participant was subjected to ARFI quantification at six different levels of transducer force applied to the epigastric abdominal wall. Results: A repeated measures ANOVA test showed that ARFI quantification was significantly affected by applied transducer force (p = 0.002). Significant pairwise comparisons using Bonferroni correction for multiple comparisons showed that with an increase in applied transducer force, there was a decrease in SWVs. Conclusion: Applied transducer force has a significant effect on SWVs within the left lobe of the liver and it may explain some of the less accurate and less reliable results in previous studies where transducer force was not taken into consideration. Future studies in the left lobe of the liver should take this into account and control for applied transducer force.

  13. Acoustic radiation force impulse (ARFI) elastography in the evaluation of renal parenchymal stiffness in patients with ureteropelvic junction obstruction.

    PubMed

    Habibi, Hatice Arioz; Cicek, Rumeysa Yasemin; Kandemirli, Sedat Giray; Ure, Emel; Ucar, Ayse Kalyoncu; Aslan, Mine; Caliskan, Salim; Adaletli, Ibrahim

    2017-04-01

    To investigate the role of acoustic radiation force impulse (ARFI) elastography in the detection of renal parenchymal damage in kidneys with and without ureteropelvic junction obstruction (UPJO). Twenty-five pediatric patients with a diagnosis of UPJO who underwent surgery and 15 pediatric patients with conservatively managed UPJO were prospectively evaluated with ARFI elastography. Sixteen healthy volunteers constituted the control group. Shear wave velocity (SWV) measurements in the upper, mid, and lower poles of the affected kidney were performed. SWV values of kidneys based on presence of UPJO and hydronephrosis grade were compared. The correlation of SWV values with residual renal function obtained from diethylenetriaminepentaacetic acid or mercaptoacetyltriglycine-3 renal scan was evaluated. Significantly, higher SWV values were found in control kidneys compared to kidneys affected by UPJO. The median SWVs were 2.82 (2.51-3.07) m/s for the control kidneys and 2.36 (2.09-2.53) m/s for the kidneys in the UPJO group (p < 0.001). When UPJO patients were grouped according to the grade of hydronephrosis, grade 0 hydronephrotic kidneys [2.35 (2.11-2.50) m/s] and grade 3-4 hydronephrotic kidneys [1.86 (1.96-2.25) m/s] had significantly lower SWV values compared to grade 1-2 hydronephrotic kidneys [2.62 (2.37-2.90) m/s] (p < 0.05). ARFI as a noninvasive, radiation-free procedure for evaluating parenchymal stiffness may prove useful in the diagnostic work-up and follow-up of children with UPJO-induced renal disease.

  14. Comparison of acoustic radiation force impulse elastography and transient elastography for prediction of hepatocellular carcinoma recurrence after radiofrequency ablation.

    PubMed

    Yoon, Jun Sik; Lee, Yu Rim; Kweon, Young-Oh; Tak, Won Young; Jang, Se Young; Park, Soo Young; Hur, Keun; Park, Jung Gil; Lee, Hye Won; Chun, Jae Min; Han, Young Seok; Lee, Won Kee

    2018-05-23

    To compare the clinical value of acoustic radiation force impulse (ARFI) elastography and transient elastography (TE) for hepatocellular carcinoma (HCC) recurrence prediction after radiofrequency ablation (RFA) and to investigate other predictors of HCC recurrence. Between 2011 and 2016, 130 patients with HCC who underwent ARFI elastography and TE within 6 months before curative RFA were prospectively enrolled. Independent predictors of HCC recurrence were analyzed separately using ARFI elastography and TE. ARFI elastography and TE accuracy to predict HCC recurrence was determined by receiver operating characteristic curve analysis. Of all included patients (91 men; mean age, 63.5 years; range: 43-84 years), 51 (42.5%) experienced HCC recurrence during the follow-up period (median, 21.9 months). In multivariable analysis using ARFI velocity, serum albumin and ARFI velocity [hazard ratios: 2.873; 95% confidence interval (CI): 1.806-4.571; P<0.001] were independent predictors of recurrence, and in multivariable analysis using TE value, serum albumin and TE value (hazard ratios: 1.028; 95% CI: 1.013-1.043; P<0.001) were independent predictors of recurrence. The area under the receiver operating characteristic curve of ARFI elastography (0.821; 95% CI: 0.747-0.895) was not statistically different from that of TE (0.793; 95% CI: 0.712-0.874) for predicting HCC recurrence (P=0.827). The optimal ARFI velocity and TE cutoff values were 1.6 m/s and 14 kPa, respectively. ARFI elastography and TE yield comparable predictors of HCC recurrence after RFA.

  15. Review and analysis of the DNW/Model 360 rotor acoustic data base

    NASA Technical Reports Server (NTRS)

    Zinner, R. A.; Boxwell, D. A.; Spencer, R. H.

    1989-01-01

    A comprehensive model rotor aeroacoustic data base was collected in a large anechoic wind tunnel in 1986. Twenty-six microphones were positioned around the azimuth to collect acoustic data for approximately 150 different test conditions. A dynamically scaled, blade-pressure-instrumented model of the forward rotor of the BH360 helicopter simultaneously provided blade pressures for correlation with the acoustic data. High-speed impulsive noise, blade-vortex interaction noise, low-frequency noise, and broadband noise were all captured in this extensive data base. Trends are presentes for each noise source, with important parametric variations. The purpose of this paper is to introduce this data base and illustrate its potential for predictive code validation.

  16. Observation of low-frequency acoustic surface waves in the nocturnal boundary layer.

    PubMed

    Talmadge, Carrick L; Waxler, Roger; Di, Xiao; Gilbert, Kenneth E; Kulichkov, Sergey

    2008-10-01

    A natural terrain surface, because of its porosity, can support an acoustic surface wave that is a mechanical analog of the familiar vertically polarized surface wave in AM radio transmission. At frequencies of several hundred hertz, the acoustic surface wave is attenuated over distances of a few hundred meters. At lower frequencies (e.g., below approximately 200 Hz) the attenuation is much less, allowing surface waves to propagate thousands of meters. At night, a low-frequency surface wave is generally present at long ranges even when downward refraction is weak. Thus, surface waves represent a ubiquitous nighttime transmission mode that exists even when other transmission modes are weak or absent. Data from recent nighttime field experiments and theoretical calculations are presented, demonstrating the persistence of the surface wave under different meteorological conditions. The low-frequency surface wave described here is the "quasiharmonical" tail observed previously in nighttime measurements but not identified by S. Kulichkov and his colleagues (Chunchuzov, I. P. et al. 1990. "On acoustical impulse propagation in a moving inhomogeneous atmospheric layer," J. Acoust. Soc. Am. 88, 455-461).

  17. Impulse Response Measurements Over Space-Earth Paths Using the GPS Coarse/Acquisition Codes

    NASA Technical Reports Server (NTRS)

    Lemmon, J. J.; Papazian, P. B.

    1995-01-01

    The impulse responses of radio transmission channels over space-earth paths were measured using the course/acquisition code signals from the Global Positioning System of satellites. The data acquisition system and signal processing techniques used to develop the impulse responses are described. Examples of impulse response measurements are presented. The results indicate that this measurement approach enables detection of multipath signals that are 20 dB or more below the power of the direct arrival. Channel characteristics that could be investigated with additional measurements and analyses are discussed.

  18. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +}more » rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.« less

  19. Test-retest reliability of behavioral measures of impulsive choice, impulsive action, and inattention.

    PubMed

    Weafer, Jessica; Baggott, Matthew J; de Wit, Harriet

    2013-12-01

    Behavioral measures of impulsivity are widely used in substance abuse research, yet relatively little attention has been devoted to establishing their psychometric properties, especially their reliability over repeated administration. The current study examined the test-retest reliability of a battery of standardized behavioral impulsivity tasks, including measures of impulsive choice (i.e., delay discounting, probability discounting, and the Balloon Analogue Risk Task), impulsive action (i.e., the stop signal task, the go/no-go task, and commission errors on the continuous performance task), and inattention (i.e., attention lapses on a simple reaction time task and omission errors on the continuous performance task). Healthy adults (n = 128) performed the battery on two separate occasions. Reliability estimates for the individual tasks ranged from moderate to high, with Pearson correlations within the specific impulsivity domains as follows: impulsive choice (r range: .76-.89, ps < .001); impulsive action (r range: .65-.73, ps < .001); and inattention (r range: .38-.42, ps < .001). Additionally, the influence of day-to-day fluctuations in mood, as measured by the Profile of Mood States, was assessed in relation to variability in performance on each of the behavioral tasks. Change in performance on the delay discounting task was significantly associated with change in positive mood and arousal. No other behavioral measures were significantly associated with mood. In sum, the current analysis demonstrates that behavioral measures of impulsivity are reliable measures and thus can be confidently used to assess various facets of impulsivity as intermediate phenotypes for drug abuse.

  20. Impulsive social influence increases impulsive choices on a temporal discounting task in young adults.

    PubMed

    Gilman, Jodi M; Curran, Max T; Calderon, Vanessa; Stoeckel, Luke E; Evins, A Eden

    2014-01-01

    Adolescents and young adults who affiliate with friends who engage in impulsive behavior are more likely to engage in impulsive behaviors themselves, and those who associate with prosocial (i.e. more prudent, future oriented) peers are more likely to engage in prosocial behavior. However, it is difficult to disentangle the contribution of peer influence vs. peer selection (i.e., whether individuals choose friends with similar traits) when interpreting social behaviors. In this study, we combined a novel social manipulation with a well-validated delay discounting task assessing impulsive behavior to create a social influence delay discounting task, in which participants were exposed to both impulsive (smaller, sooner or SS payment) and non-impulsive (larger, later or LL payment) choices from their peers. Young adults in this sample, n = 51, aged 18-25 had a higher rate of SS choices after exposure to impulsive peer influence than after exposure to non-impulsive peer influence. Interestingly, in highly susceptible individuals, the rate of non-impulsive choices did not increase after exposure to non-impulsive influence. There was a positive correlation between self-reported suggestibility and degree of peer influence on SS choices. These results suggest that, in young adults, SS choices appear to be influenced by the choices of same-aged peers, especially for individuals who are highly susceptible to influence.

  1. Impulsive Social Influence Increases Impulsive Choices on a Temporal Discounting Task in Young Adults

    PubMed Central

    Gilman, Jodi M.; Curran, Max T.; Calderon, Vanessa; Stoeckel, Luke E.; Evins, A. Eden

    2014-01-01

    Adolescents and young adults who affiliate with friends who engage in impulsive behavior are more likely to engage in impulsive behaviors themselves, and those who associate with prosocial (i.e. more prudent, future oriented) peers are more likely to engage in prosocial behavior. However, it is difficult to disentangle the contribution of peer influence vs. peer selection (i.e., whether individuals choose friends with similar traits) when interpreting social behaviors. In this study, we combined a novel social manipulation with a well-validated delay discounting task assessing impulsive behavior to create a social influence delay discounting task, in which participants were exposed to both impulsive (smaller, sooner or SS payment) and non-impulsive (larger, later or LL payment) choices from their peers. Young adults in this sample, n = 51, aged 18–25 had a higher rate of SS choices after exposure to impulsive peer influence than after exposure to non-impulsive peer influence. Interestingly, in highly susceptible individuals, the rate of non-impulsive choices did not increase after exposure to non-impulsive influence. There was a positive correlation between self-reported suggestibility and degree of peer influence on SS choices. These results suggest that, in young adults, SS choices appear to be influenced by the choices of same-aged peers, especially for individuals who are highly susceptible to influence. PMID:24988440

  2. Review of Progress in Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2018-04-01

    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  3. Acoustic nonreciprocity in a lattice incorporating nonlinearity, asymmetry, and internal scale hierarchy: Experimental study

    NASA Astrophysics Data System (ADS)

    Bunyan, Jonathan; Moore, Keegan J.; Mojahed, Alireza; Fronk, Matthew D.; Leamy, Michael; Tawfick, Sameh; Vakakis, Alexander F.

    2018-05-01

    In linear time-invariant systems acoustic reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and it can be broken only by odd external biases, nonlinearities, or time-dependent properties. Recently it was shown that one-dimensional lattices composed of a finite number of identical nonlinear cells with internal scale hierarchy and asymmetry exhibit nonreciprocity both locally and globally. Considering a single cell composed of a large scale nonlinearly coupled to a small scale, local dynamic nonreciprocity corresponds to vibration energy transfer from the large to the small scale, but absence of energy transfer (and localization) from the small to the large scale. This has been recently proven both theoretically and experimentally. Then, considering the entire lattice, global acoustic nonreciprocity has been recently proven theoretically, corresponding to preferential energy transfer within the lattice under transient excitation applied at one of its boundaries, and absence of similar energy transfer (and localization) when the excitation is applied at its other boundary. This work provides experimental validation of the global acoustic nonreciprocity with a one-dimensional asymmetric lattice composed of three cells, with each cell incorporating nonlinearly coupled large and small scales. Due to the intentional asymmetry of the lattice, low impulsive excitations applied to one of its boundaries result in wave transmission through the lattice, whereas when the same excitations are applied to the other end, they lead in energy localization at the boundary and absence of wave transmission. This global nonreciprocity depends critically on energy (i.e., the intensity of the applied impulses), and reduced-order models recover the nonreciprocal acoustics and clarify the nonlinear mechanism generating nonreciprocity in this system.

  4. Acoustic emission from composite materials. [nondestructive tests

    NASA Technical Reports Server (NTRS)

    Visconti, I. C.; Teti, R.

    1979-01-01

    The two basic areas where the acoustic emission (AE) technique can be applied are materials research and the evaluation of structural reliability. This experimental method leads to a better understanding of fracture mechanisms and is an NDT technique particularly well suited for the study of propagating cracks. Experiments are described in which acoustic emissions were unambiguously correlated with microstructural fracture mechanisms. The advantages and limitations of the AE technique are noted.

  5. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  6. Electro-impulse de-icing electrodynamic solution by discrete elements

    NASA Technical Reports Server (NTRS)

    Bernhart, W. D.; Schrag, R. L.

    1988-01-01

    This paper describes a technique for analyzing the electrodynamic phenomena associated with electro-impulse deicing. The analysis is done in the time domain and utilizes a discrete element formulation concept expressed in state variable form. Calculated results include coil current, eddy currents in the target (aircraft leading edge skin), pressure distribution on the target, and total force and impulse on the target. Typical results are presented and described. Some comparisons are made between calculated and experimental results, and also between calculated values from other theoretical approaches. Application to the problem of a nonrigid target is treated briefly.

  7. Solar flare impulsive phase emission observed with SDO/EVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Michael B.; Milligan, Ryan O.; Mathioudakis, Mihalis

    2013-12-10

    Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T{sub e} = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermalmore » structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.« less

  8. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  9. Damage characterization in engineering materials using a combination of optical, acoustic, and thermal techniques

    NASA Astrophysics Data System (ADS)

    Tragazikis, I. K.; Exarchos, D. A.; Dalla, P. T.; Matikas, T. E.

    2016-04-01

    This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.

  10. Noncontacting acoustics-based temperature measurement techniques in rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Lee, Yong J.; Chou, Ching-Hua; Khuri-Yakub, Butrus T.; Saraswat, Krishna C.

    1991-04-01

    Temperature measurement of silicon wafers based on the temperature dependence of acoustic waves is studied. The change in the temperature-dependent dispersion relations of the plate modes through the wafer can be exploited to provide a viable temperature monitoring scheme with advantages over both thermocouples and pyrometers. Velocity measurements of acoustic waves through a thin layer of ambient directly above the wafer provides the temperature of the wafer-ambient interface. 1.

  11. Numerical modeling of on-orbit propellant motion resulting from an impulsive acceleration

    NASA Technical Reports Server (NTRS)

    Aydelott, John C.; Mjolsness, Raymond C.; Torrey, Martin D.; Hochstein, John I.

    1987-01-01

    In-space docking and separation maneuvers of spacecraft that have large fluid mass fractions may cause undesirable spacecraft motion in response to the impulsive-acceleration-induced fluid motion. An example of this potential low gravity fluid management problem arose during the development of the shuttle/Centaur vehicle. Experimentally verified numerical modeling techniques were developed to establish the propellant dynamics, and subsequent vehicle motion, associated with the separation of the Centaur vehicle from the shuttle orbiter cargo bay. Although the shuttle/Centaur development activity was suspended, the numerical modeling techniques are available to predict on-orbit liquid motion resulting from impulsive accelerations for other missions and spacecraft.

  12. Carbon disulfide potentiates the effects of impulse noise on the organ of Corti.

    PubMed

    Carreres Pons, Maria; Chalansonnet, Monique; Venet, Thomas; Thomas, Aurélie; Nunge, Hervé; Merlen, Lise; Cosnier, Frédéric; Llorens, Jordi; Campo, Pierre

    2017-03-01

    Occupational noise can damage workers' hearing, and the phenomenon is even more dangerous when noise is associated with an ototoxic solvent. Aromatic solvents are known to provoke chemical-induced hearing loss, but little is known about the effects on hearing of carbon disulfide (CS 2 ) when combined with noise. Co-exposure to CS 2 and noise may have a harmful effect on hearing, but the mechanisms involved are not well understood. For instance, CS 2 is not thought to have a cochleotoxic effect, but rather it is thought to cause retrocochlear hearing impairment. In other words, CS 2 could have a distal neuropathic effect on the auditory pathway. However, a possible pharmacological effect of CS 2 on the central nervous system (CNS) has never been mentioned in the literature. The aim of this study was to assess, in rats, the effects of a noise (continuous vs. impulse), associated with a low concentration of CS 2 [(short-term threshold limit value) x 10 as a safety factor] on the peripheral auditory receptor. The noise, whatever its nature, was an octave band noise centered at 8kHz, and the 250-ppm CS 2 exposure lasted 15min per hour, 6h per day, for 5 consecutive days. The impact of the different experimental conditions on hearing loss was assessed using distortion product oto-acoustic emissions and histological analyses. Although the LEX,8h (8-h time-weighted average exposure) for the impulse noise was lower (84dB SPL) than that for the continuous noise (89dB SPL), it appeared more damaging to the organ of Corti, in particular to the outer hair cells. CS 2 exposure alone did not have any effect on the organ of Corti, but co-exposure to continuous noise with CS 2 was less damaging than exposure to continuous noise alone. In contrast, the cochleo-traumatic effects of impulse noise were significantly enhanced by co-exposure to CS 2 . Therefore, CS 2 can clearly modulate the middle-ear reflex function. In fact, CS 2 may have two distinct effects: firstly, it has a

  13. The Minimum Impulse Thruster

    NASA Technical Reports Server (NTRS)

    Parker, J. Morgan; Wilson, Michael J.

    2005-01-01

    The Minimum Impulse Thruster (MIT) was developed to improve the state-of-the-art minimum impulse capability of hydrazine monopropellant thrusters. Specifically, a new fast response solenoid valve was developed, capable of responding to a much shorter electrical pulse width, thereby reducing the propellant flow time and the minimum impulse bit. The new valve was combined with the Aerojet MR-103, 0.2 lbf (0.9 N) thruster and put through an extensive Delta-qualification test program, resulting in a factor of 5 reduction in the minimum impulse bit, from roughly 1.1 milli-lbf-seconds (5 milliNewton seconds) to - 0.22 milli-lbf-seconds (1 mN-s). To maintain it's extensive heritage, the thruster itself was left unchanged. The Minimum Impulse Thruster provides mission and spacecraft designers new design options for precision pointing and precision translation of spacecraft.

  14. Acoustic Source Bearing Estimation (ASBE) computer program development

    NASA Technical Reports Server (NTRS)

    Wiese, Michael R.

    1987-01-01

    A new bearing estimation algorithm (Acoustic Source Analysis Technique - ASAT) and an acoustic analysis computer program (Acoustic Source Bearing Estimation - ASBE) are described, which were developed by Computer Sciences Corporation for NASA Langley Research Center. The ASBE program is used by the Acoustics Division/Applied Acoustics Branch and the Instrument Research Division/Electro-Mechanical Instrumentation Branch to analyze acoustic data and estimate the azimuths from which the source signals radiated. Included are the input and output from a benchmark test case.

  15. Leap and strike kinetics of an acoustically 'hunting' barn owl (Tyto alba).

    PubMed

    Usherwood, James R; Sparkes, Emily L; Weller, Renate

    2014-09-01

    Barn owls are effective hunters of small rodents. One hunting technique is a leap from the ground followed by a brief flight and a plummeting 'strike' onto an acoustically targeted - and potentially entirely hidden - prey. We used forceplate measurements to derive kinetics of the leap and strike. Leaping performance was similar to reported values for guinea fowl. This is likely achieved despite the owl's considerably smaller size because of its relatively long legs and use of wing upstroke. Strikes appear deliberately forceful: impulses could have been spread over larger periods during greater deflections of the centre of mass, as observed in leaping and an alighting landing measurement. The strike, despite forces around 150 times that of a mouse body weight, is not thought to be crucial to the kill; rather, forceful strikes may function primarily to enable rapid penetration of leaf litter or snow cover, allowing grasping of hidden prey. © 2014. Published by The Company of Biologists Ltd.

  16. ImpulseDE: detection of differentially expressed genes in time series data using impulse models.

    PubMed

    Sander, Jil; Schultze, Joachim L; Yosef, Nir

    2017-03-01

    Perturbations in the environment lead to distinctive gene expression changes within a cell. Observed over time, those variations can be characterized by single impulse-like progression patterns. ImpulseDE is an R package suited to capture these patterns in high throughput time series datasets. By fitting a representative impulse model to each gene, it reports differentially expressed genes across time points from a single or between two time courses from two experiments. To optimize running time, the code uses clustering and multi-threading. By applying ImpulseDE , we demonstrate its power to represent underlying biology of gene expression in microarray and RNA-Seq data. ImpulseDE is available on Bioconductor ( https://bioconductor.org/packages/ImpulseDE/ ). niryosef@berkeley.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. Acoustical characteristics of the NASA Langley full scale wind tunnel test section

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.; Kasper, P. K.; Pappa, R. S.

    1975-01-01

    The full-scale wind tunnel at NASA-Langley Research Center was designed for low-speed aerodynamic testing of aircraft. Sound absorbing treatment has been added to the ceiling and walls of the tunnel test section to create a more anechoic condition for taking acoustical measurements during aerodynamic tests. The results of an experimental investigation of the present acoustical characteristics of the tunnel test section are presented. The experimental program included measurements of ambient nosie levels existing during various tunnel operating conditions, investigation of the sound field produced by an omnidirectional source, and determination of sound field decay rates for impulsive noise excitation. A comparison of the current results with previous measurements shows that the added sound treatment has improved the acoustical condition of the tunnel test section. An analysis of the data indicate that sound reflections from the tunnel ground-board platform could create difficulties in the interpretation of actual test results.

  18. Sonification of acoustic emission data

    NASA Astrophysics Data System (ADS)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  19. The efficiency of acoustic radiation force impulse (ARFI) elastography in the diagnosis and staging of carpal tunnel syndrome.

    PubMed

    Arslan, Harun; Yavuz, Alpaslan; İlgen, Ferda; Aycan, Abdurrahman; Ozgokce, Mesut; Akdeniz, Hüseyin; Batur, Abdussamet

    2018-01-12

    The aim of the present study was to quantify the stiffness of the median nerve (MN) at the carpal tunnel inlet by acoustic radiation force impulse (ARFI) elastography and to evaluate whether ARFI can be used in diagnosis and staging of carpal tunnel syndrome (CTS). Sonographic examinations of 96 wrists in 50 patients were included in the study. The cross-sectional area and stiffness of the MN were quantitatively measured by B-mode ultrasonography (USG) and ARFI. The findings of CTS were assigned to four groups: (I) normal (n = 21), (II) mild (n = 39), (III) moderate (n = 38), and (IV) severe (n = 19). The differences between CTS patients and controls and the differences in electrodiagnostic tests among subgroups were statistically compared. ROC analysis was performed to determine the cut-off values between subgroups. Bilateral CTS was present in 46 patients (92 wrists) and unilateral CTS in four patients. Of the 96 nerves in the 50 symptomatic "idiopathic CTS" patients (48 women, 2 men; mean age 45.9 years, range 23-73 years), 39 (40.4%) were mild, 38 (39.8%) were moderate, and 19 (19.8%) were severely affected. When compared to controls, MN stiffness was significantly higher in the CTS group (P < 0.001); furthermore, it was higher in the severe or extreme severity group than the mild or moderate severity group (P < 0.001). A 3.250 m/s cut-off value on ARFI revealed sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 81, 82, 95.1, 50, and 82%, respectively. The MN stiffness measured by ARFI elastography is significantly higher in patients with CTS then in controls. ARFI elastography appears to be a highly efficient imaging modality for the diagnosis and staging of these patients.

  20. Heart sounds as a result of acoustic dipole radiation of heart valves

    NASA Astrophysics Data System (ADS)

    Kasoev, S. G.

    2005-11-01

    Heart sounds are associated with impulses of force acting on heart valves at the moment they close under the action of blood-pressure difference. A unified model for all the valves represents this impulse as an acoustic dipole. The near pressure field of this dipole creates a distribution of the normal velocity on the breast surface with features typical of auscultation practice: a pronounced localization of heart sound audibility areas, an individual area for each of the valves, and a noncoincidence of these areas with the projections of the valves onto the breast surface. In the framework of the dipole theory, the optimum size of the stethoscope’s bell is found and the spectrum of the heart sounds is estimated. The estimates are compared with the measured spectrum.

  1. Cannabinoid CB1 Receptor Activation Mediates the Opposing Effects of Amphetamine on Impulsive Action and Impulsive Choice

    PubMed Central

    Wiskerke, Joost; Stoop, Nicky; Schetters, Dustin; Schoffelmeer, Anton N. M.; Pattij, Tommy

    2011-01-01

    It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior. PMID:22016780

  2. Impulse Plasma In Surface Engineering - a review

    NASA Astrophysics Data System (ADS)

    Zdunek, K.; Nowakowska-Langier, K.; Chodun, R.; Okrasa, S.; Rabinski, M.; Dora, J.; Domanowski, P.; Halarowicz, J.

    2014-11-01

    The article describes the view of the plasma surface engineering, assuming the role of non-thermal energy effects in the synthesis of materials and coatings deposition. In the following study it was underlined that the vapor excitation through the application of an electric field during coatings deposition gives new possibilities for coatings formation. As an example the IPD method was chosen. During the IPD (Impulse Plasma Deposition) the impulse plasma is generated in the coaxial accelerator by strong periodic electrical pulses. The impulse plasma is distributed in the form of energetic plasma pockets. Due to the almost completely ionization of gas, the nucleation of new phases takes place on ions directly in the plasma itself. As a result the coatings of metastable materials with nano-amorphous structure and excellent adhesion to the non-heated intentionally substrates could be deposited. Recently the novel way of impulse plasma generation during the coatings deposition was proposed and developed by our group. An efficient tool for plasma process control, the plasma forming gas injection to the interelectrode space was used. Periodic changing the gas pressure results in increasing both the degree of dispersion and the dynamics of the plasma pulses. The advantage of the new technique in deposition of coatings with exceptionally good properties has been demonstrated in the industrial scale not only in the case of the IPD method but also in the case of very well known magnetron sputtering method.

  3. Nondestructive evaluation of fatigue damage on low alloy steel by magnetomechanical acoustic emission technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraasawa, T.; Saito, K.; Komura, I.

    1995-08-01

    A modified magnetomechanical acoustic emission (MAE) technique, denoted Pulse-MAE, in which the magnetization by current pulse was adopted, was newly developed and its applicability was assessed for the nondestructive detection and evaluation of fatigue damage in reactor pressure vessel steel SFVV2 and SA508 class2. MAE signals were measured with both conventional MAE and Pulse-MAE technique for fatigue damaged specimens having several damage fractions, and peak voltage ratio Vp/Vo, where Vp and Vo were the peak voltage for damaged and undamaged specimen respectively, was chosen as a measure. Vp/Vo was found to increase monotonously at the early stage of fatigue processmore » and the rate of increase in Vp/Vo during the fatigue process was larger in Pulse-MAE than conventional MAE. Therefore, Pulse-MAE technique proved to have higher sensitivity for the detection of fatigue damage compared with the conventional MAE and to have the potential of a practical technique for nondestructive detection and evaluation of fatigue damage in actual components.« less

  4. Acoustic radiation force impulse tissue characterization of the anterior talofibular ligament: A promising non-invasive approach in ankle imaging.

    PubMed

    Hotfiel, Thilo; Heiss, Rafael; Janka, Rolf; Forst, Raimund; Raithel, Martine; Lutter, Christoph; Gelse, Kolja; Pachowsky, Milena; Golditz, Tobias

    2018-06-09

    The anterior talofibular ligament (ATFL) is the most frequently injured ligament during inversion strains of the ankle. The purpose of this study was to evaluate the feasibility of acoustic radiation force impulse (ARFI) elastography and to determine the in vivo mechanical properties of the ATFL in healthy athletes. Fifty-one healthy athletes (32 female, 28 male; 29 ±2 years) were recruited from the medical and sports faculty. ARFI values, represented as shear wave velocities (SWV) as well as conventional ultrasound were obtained for the ATFL in neutral ankle position. A clinical assessment was performed in which the American Orthopaedic Foot & Ankle Society (AOFAS) Ankle-Hindfoot Score and the functional ankle ability measure (FAAM) were collected. Interobserver and intraobserver reliability (repeated sessions and repeated days) were assessed using an intra class correlation coefficient (ICC) and typical error (TE) calculation in absolute (TE) and relative units as coefficient of the variation (CV). SWV values of the ATFL had an average velocity of 1.79±0.34 m/s for all participants, with an average of 1.72±0.36 m/s for females and 1.85±0.31 m/s for males. The interobserver and intraobserver reliability revealed an ICC of 0.902 and 0.933 (TE of 0.67 (CV: 5.2 % and 0.51 m/s (CV: 3.83 %), respectively. FAAM and AOFAS revealed the best possible scores. ARFI seems to be a valuable diagnostic modality and represents a promising imaging marker for the assessment and monitoring of ankle ligaments in the context of acute and chronic ankle instabilities; ARFI could also be used to investigate loading or sport dependent adaptions.

  5. Differences between Impulsive and Non-Impulsive Suicide Attempts among Individuals Treated in Emergency Rooms of South Korea

    PubMed Central

    Lim, Meerae; Lee, Soojung

    2016-01-01

    Objective A considerable proportion of suicide attempts are the result of sudden desires. Understanding such impulsive suicide attempts is necessary for effective interventions. We evaluated the impulsivity of suicide attempters treated in emergency rooms. The aim of the study was to identify the characteristics of impulsive suicide attempts by comparing these individuals to those who attempted to commit suicide in a non-impulsive manner. Methods This study analyzed suicide attempters who visited the emergency departments of seven selected university hospitals. A total of 269 medical records in which impulsivity of suicide attempt were confirmed were subject to be analyzed. The impulsivity of the suicide attempt was examined using a summative score of items 6 and 15 on the Suicide Intent Scale. Results A total of 48.0% of the participants were impelled by sudden inclinations to attempt suicide. Impulsive attempters were younger, unmarried and less physical illness than non-impulsive attempters, whereas no significant differences were found on psychiatric history and previous suicide history. Impulsive suicide attempters had suicide ideations that were not as severe (χ2=55.33, p<0.001) or intense (t=-8.38, p<0.001) as their counterparts'. Furthermore, medical results of impulsive suicide attempts were better than non-impulsive suicide attempts (t=-3.77, p<0.001). Conclusion The results suggested that a considerable proportion of suicide attempts were the result of sudden inclinations. Impulsive attempts were made in relatively earlier stages of suicide ideation; consequently, they have less intent than non-impulsive attempts. PMID:27482239

  6. Acoustic radiation force impulse imaging with Virtual Touch™ tissue quantification: mean shear wave velocity of malignant and benign breast masses.

    PubMed

    Wojcinski, Sebastian; Brandhorst, Kathrin; Sadigh, Gelareh; Hillemanns, Peter; Degenhardt, Friedrich

    2013-01-01

    Acoustic radiation force impulse imaging (ARFI) with Virtual Touch™ tissue quantification (VTTQ) enables the determination of shear wave velocity (SWV) in meters per second (m/s). The aim of our study was to describe the mean SWV in normal breast tissue and various breast masses. We performed measurements of SWV with ARFI VTTQ in 145 breast masses (57 malignant, 88 benign) and in the adjacent breast parenchyma and adipose tissue. The mean SWV as well as the rate of successful measurements were analyzed. The difference between adipose tissue and parenchyma was statistically significant (3.05 versus 3.65 m/s) (P < 0.001). Focusing on breast masses, numerous measurements exceeded the upper limit of possible measurement (≥9.10 m/s, indicated as "X.XX m/s"). Nevertheless, the difference between the malignant and benign masses was statistically significant (8.38 ± 1.99 m/s versus 5.39 ± 2.95 m/s) (P < 0.001). The best diagnostic accuracy (75.9%) was achieved when the cutoff point for malignancy was set to 9.10 m/s in ARFI VTTQ. This implies that the SWV was regarded as suspicious when the upper limit of possible measurement was exceeded and the machine returned the value X.XX m/s. In conclusion, ARFI VTTQ is a feasible method for measurement of SWV in a region of interest. Furthermore, we propose the event of a highly elevated SWV as a significant criterion for malignancy. However, the method is technically not yet fully developed, and the problem of unsuccessful measurements must still be solved.

  7. Examination on the use of acoustic emission for monitoring metal forging process: A study using simulation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, W.M.; Irwin, R.D.; Malas, J.C. III

    The aim of this study is to determine the feasibility of using acoustic emission as a monitoring technique for metal forging operations. From the sensor development paradigm proposed by McClean et al. the most likely approach to determining feasibility for application is through signal recognition. For this reason, signature prediction and analysis was chosen to determine the suitability for forging applications.

  8. Acoustic emission beamforming for enhanced damage detection

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.

    2008-03-01

    As civil infrastructure ages, the early detection of damage in a structure becomes increasingly important for both life safety and economic reasons. This paper describes the analysis procedures used for beamforming acoustic emission techniques as well as the promising results of preliminary experimental tests on a concrete bridge deck. The method of acoustic emission offers a tool for detecting damage, such as cracking, as it occurs on or in a structure. In order to gain meaningful information from acoustic emission analyses, the damage must be localized. Current acoustic emission systems with localization capabilities are very costly and difficult to install. Sensors must be placed throughout the structure to ensure that the damage is encompassed by the array. Beamforming offers a promising solution to these problems and permits the use of wireless sensor networks for acoustic emission analyses. Using the beamforming technique, the azmuthal direction of the location of the damage may be estimated by the stress waves impinging upon a small diameter array (e.g. 30mm) of acoustic emission sensors. Additional signal discrimination may be gained via array processing techniques such as the VESPA process. The beamforming approach requires no arrival time information and is based on very simple delay and sum beamforming algorithms which can be easily implemented on a wireless sensor or mote.

  9. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  10. Numerical modeling of the exterior-to-interior transmission of impulsive sound through three-dimensional, thin-walled elastic structures

    NASA Astrophysics Data System (ADS)

    Remillieux, Marcel C.; Pasareanu, Stephanie M.; Svensson, U. Peter

    2013-12-01

    Exterior propagation of impulsive sound and its transmission through three-dimensional, thin-walled elastic structures, into enclosed cavities, are investigated numerically in the framework of linear dynamics. A model was developed in the time domain by combining two numerical tools: (i) exterior sound propagation and induced structural loading are computed using the image-source method for the reflected field (specular reflections) combined with an extension of the Biot-Tolstoy-Medwin method for the diffracted field, (ii) the fully coupled vibro-acoustic response of the interior fluid-structure system is computed using a truncated modal-decomposition approach. In the model for exterior sound propagation, it is assumed that all surfaces are acoustically rigid. Since coupling between the structure and the exterior fluid is not enforced, the model is applicable to the case of a light exterior fluid and arbitrary interior fluid(s). The structural modes are computed with the finite-element method using shell elements. Acoustic modes are computed analytically assuming acoustically rigid boundaries and rectangular geometries of the enclosed cavities. This model is verified against finite-element solutions for the cases of rectangular structures containing one and two cavities, respectively.

  11. Probing biomolecular interaction forces using an anharmonic acoustic technique for selective detection of bacterial spores.

    PubMed

    Ghosh, Sourav K; Ostanin, Victor P; Johnson, Christian L; Lowe, Christopher R; Seshia, Ashwin A

    2011-11-15

    Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats.

    PubMed

    Steele, Catherine C; Pirkle, Jesseca R A; Kirkpatrick, Kimberly

    2017-01-01

    Impulsive choice is a common charactertistic among individuals with gambling problems, obesity, and substance abuse issues. Impulsive choice has been classified as a trans-disease process, and understanding the etiology of trait impulsivity could help to understand how diseases and disorders related to impulsive choice are manifested. The Western diet is a possible catalyst of impulsive choice as individuals who are obese and who eat diets high in fat and sugar are typically more impulsive. However, such correlational evidence is unable to discern the direction and causal nature of the relationship. The present study sought to determine how diet may directly contribute to impulsive choice. After 8 weeks of dietary exposure (high-fat, high-sugar, chow), the rats were tested on an impulsive choice task, which presented choices between a smaller-sooner reward (SS) and a larger-later reward (LL). Then, the rats were transferred to a chow diet and retested on the impulsive choice task. The high-sugar and high-fat groups made significantly more impulsive choices than the chow group. Both groups became more self-controlled when they were off the diet, but there were some residual effects of the diet on choice behavior. These results suggest that diet, specifically one high in processed fat or sugar, induces impulsive choice. This diet-induced impulsivity could be a precursor to other disorders that are characterized by impulsivity, such as diet-induced obesity, and could offer potential understanding of the trans-disease nature of impulsive choice.

  13. The annoyance of impulsive helicopter noise

    NASA Technical Reports Server (NTRS)

    Karamcheti, K.

    1981-01-01

    A total of 96 impulsive and non-impulsive sounds were rated for annoyance by 10 subjects. The signals had the same amplitude spectrum with a maximum frequency of 4.75 kHz. By changing the phase of the spectral components different levels of impulsivity were obtained. The signals had coefficients of impulsivity of 10,8, 7,9, and -0.2 respectively. Further, signals had intensity levels 89 and 95 dBA, pulse repetition rates 10 and 20 Hz, and half the signals had pink noise added at a level 12 dBA lower than the level of the sound. The significant results were: The four females and six male subjects rated the impulsive sounds respectively 3.7 dB less annoying and 2.6 dB more annoying than the non-impulsive sounds. Overall, impulsivity had no effect. The hish pulse repetition rate increased annoyance by 2.2 dB. Addition of pink noise increased annoyance of the non-impulsive sounds 1.2 dB, but decreased the annoyance of the impulsive sounds 0.5 dB.

  14. Impulse oscillometry in the evaluation of diseases of the airways in children

    PubMed Central

    Komarow, Hirsh D.; Myles, Ian A.; Uzzaman, Ashraf; Metcalfe, Dean D.

    2012-01-01

    Objective To provide an overview of impulse oscillometry and its application to the evaluation of children with diseases of the airways. Data Sources Medline and PubMed search, limited to English language and human disease, with keywords forced oscillation, impulse oscillometry, and asthma. Study Selections The opinions of the authors were used to select studies for inclusion in this review. Results Impulse oscillometry is a noninvasive and rapid technique requiring only passive cooperation by the patient. Pressure oscillations are applied at the mouth to measure pulmonary resistance and reactance. It is employed by health care professionals to help diagnose pediatric pulmonary diseases such asthma and cystic fibrosis; assess therapeutic responses; and measure airway resistance during provocation testing. Conclusions Impulse oscillometry provides a rapid, noninvasive measure of airway impedance. It may be easily employed in the diagnosis and management of diseases of the airways in children. PMID:21354020

  15. Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response.

    PubMed

    Fazenda, Bruno; Scarre, Chris; Till, Rupert; Pasalodos, Raquel Jiménez; Guerra, Manuel Rojo; Tejedor, Cristina; Peredo, Roberto Ontañón; Watson, Aaron; Wyatt, Simon; Benito, Carlos García; Drinkall, Helen; Foulds, Frederick

    2017-09-01

    During the 1980 s, acoustic studies of Upper Palaeolithic imagery in French caves-using the technology then available-suggested a relationship between acoustic response and the location of visual motifs. This paper presents an investigation, using modern acoustic measurement techniques, into such relationships within the caves of La Garma, Las Chimeneas, La Pasiega, El Castillo, and Tito Bustillo in Northern Spain. It addresses methodological issues concerning acoustic measurement at enclosed archaeological sites and outlines a general framework for extraction of acoustic features that may be used to support archaeological hypotheses. The analysis explores possible associations between the position of visual motifs (which may be up to 40 000 yrs old) and localized acoustic responses. Results suggest that motifs, in general, and lines and dots, in particular, are statistically more likely to be found in places where reverberation is moderate and where the low frequency acoustic response has evidence of resonant behavior. The work presented suggests that an association of the location of Palaeolithic motifs with acoustic features is a statistically weak but tenable hypothesis, and that an appreciation of sound could have influenced behavior among Palaeolithic societies of this region.

  16. Beamforming array techniques for acoustic emission monitoring of large concrete structures

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.

    2010-06-01

    This paper introduces a novel method of acoustic emission (AE) analysis which is particularly suited for field applications on large plate-like reinforced concrete structures, such as walls and bridge decks. Similar to phased-array signal processing techniques developed for other non-destructive evaluation methods, this technique adapts beamforming tools developed for passive sonar and seismological applications for use in AE source localization and signal discrimination analyses. Instead of relying on the relatively weak P-wave, this method uses the energy-rich Rayleigh wave and requires only a small array of 4-8 sensors. Tests on an in-service reinforced concrete structure demonstrate that the azimuth of an artificial AE source can be determined via this method for sources located up to 3.8 m from the sensor array, even when the P-wave is undetectable. The beamforming array geometry also allows additional signal processing tools to be implemented, such as the VESPA process (VElocity SPectral Analysis), whereby the arrivals of different wave phases are identified by their apparent velocity of propagation. Beamforming AE can reduce sampling rate and time synchronization requirements between spatially distant sensors which in turn facilitates the use of wireless sensor networks for this application.

  17. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  18. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats

    PubMed Central

    Pirkle, Jesseca R. A.; Kirkpatrick, Kimberly

    2017-01-01

    Impulsive choice is a common charactertistic among individuals with gambling problems, obesity, and substance abuse issues. Impulsive choice has been classified as a trans-disease process, and understanding the etiology of trait impulsivity could help to understand how diseases and disorders related to impulsive choice are manifested. The Western diet is a possible catalyst of impulsive choice as individuals who are obese and who eat diets high in fat and sugar are typically more impulsive. However, such correlational evidence is unable to discern the direction and causal nature of the relationship. The present study sought to determine how diet may directly contribute to impulsive choice. After 8 weeks of dietary exposure (high-fat, high-sugar, chow), the rats were tested on an impulsive choice task, which presented choices between a smaller-sooner reward (SS) and a larger-later reward (LL). Then, the rats were transferred to a chow diet and retested on the impulsive choice task. The high-sugar and high-fat groups made significantly more impulsive choices than the chow group. Both groups became more self-controlled when they were off the diet, but there were some residual effects of the diet on choice behavior. These results suggest that diet, specifically one high in processed fat or sugar, induces impulsive choice. This diet-induced impulsivity could be a precursor to other disorders that are characterized by impulsivity, such as diet-induced obesity, and could offer potential understanding of the trans-disease nature of impulsive choice. PMID:28662133

  20. Diffraction of three-colour radiation on an acoustic wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotov, V M

    We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)

  1. Optimal Suturing Technique and Number of Sutures for Surgical Implantation of Acoustic Transmitters in Juvenile Salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deters, Katherine A.; Brown, Richard S.; Boyd, James W.

    2012-01-02

    The size reduction of acoustic transmitters has led to a reduction in the length of incision needed to implant a transmitter. Smaller suture knot profiles and fewer sutures may be adequate for closing an incision used to surgically implant an acoustic microtransmitter. As a result, faster surgery times and reduced tissue trauma could lead to increased survival and decreased infection for implanted fish. The objective of this study was to assess the effects of five suturing techniques on mortality, tag and suture retention, incision openness, ulceration, and redness in juvenile Chinook salmon Oncorhynchus tshawytscha implanted with acoustic microtransmitters. Suturing wasmore » performed by three surgeons, and study fish were held at two water temperatures (12°C and 17°C). Mortality was low and tag retention was high for all treatments on all examination days (7, 14, 21, and 28 days post-surgery). Because there was surgeon variation in suture retention among treatments, further analyses included only the one surgeon who received feedback training in all suturing techniques. Incision openness and tissue redness did not differ among treatments. The only difference observed among treatments was in tissue ulceration. Incisions closed with a horizontal mattress pattern had more ulceration than other treatments among fish held for 28 days at 17°C. Results from this study suggest that one simple interrupted 1 × 1 × 1 × 1 suture is adequate for closing incisions on fish under most circumstances. However, in dynamic environments, two simple interrupted 1 × 1 × 1 × 1 sutures should provide adequate incision closure. Reducing bias in survival and behavior tagging studies is important when making comparisons to the migrating salmon population. Therefore, by minimizing the effects of tagging on juvenile salmon (reduced tissue trauma and reduced surgery time), researchers can more accurately estimate survival and behavior.« less

  2. Magneto-photo-acoustic imaging

    PubMed Central

    Qu, Min; Mallidi, Srivalleesha; Mehrmohammadi, Mohammad; Truby, Ryan; Homan, Kimberly; Joshi, Pratixa; Chen, Yun-Sheng; Sokolov, Konstantin; Emelianov, Stanislav

    2011-01-01

    Magneto-photo-acoustic imaging, a technique based on the synergy of magneto-motive ultrasound, photoacoustic and ultrasound imaging, is introduced. Hybrid nanoconstructs, liposomes encapsulating gold nanorods and iron oxide nanoparticles, were used as a dual-contrast agent for magneto-photo-acoustic imaging. Tissue-mimicking phantom and macrophage cells embedded in ex vivo porcine tissue were used to demonstrate that magneto-photo-acoustic imaging is capable of visualizing the location of cells or tissues labeled with dual-contrast nanoparticles with sufficient contrast, excellent contrast resolution and high spatial resolution in the context of the anatomical structure of the surrounding tissues. Therefore, magneto-photo-acoustic imaging is capable of identifying the nanoparticle-labeled pathological regions from the normal tissue, providing a promising platform to noninvasively diagnose and characterize pathologies. PMID:21339883

  3. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    NASA Astrophysics Data System (ADS)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However

  4. Pulse echo and combined resonance techniques: a full set of LGT acoustic wave constants and temperature coefficients.

    PubMed

    Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira

    2009-04-01

    This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.

  5. Leap and strike kinetics of an acoustically ‘hunting’ barn owl (Tyto alba)

    PubMed Central

    Usherwood, James R.; Sparkes, Emily L.; Weller, Renate

    2014-01-01

    Barn owls are effective hunters of small rodents. One hunting technique is a leap from the ground followed by a brief flight and a plummeting ‘strike’ onto an acoustically targeted – and potentially entirely hidden – prey. We used forceplate measurements to derive kinetics of the leap and strike. Leaping performance was similar to reported values for guinea fowl. This is likely achieved despite the owl's considerably smaller size because of its relatively long legs and use of wing upstroke. Strikes appear deliberately forceful: impulses could have been spread over larger periods during greater deflections of the centre of mass, as observed in leaping and an alighting landing measurement. The strike, despite forces around 150 times that of a mouse body weight, is not thought to be crucial to the kill; rather, forceful strikes may function primarily to enable rapid penetration of leaf litter or snow cover, allowing grasping of hidden prey. PMID:24948629

  6. Partial sleep deprivation impacts impulsive action but not impulsive decision-making.

    PubMed

    Demos, K E; Hart, C N; Sweet, L H; Mailloux, K A; Trautvetter, J; Williams, S E; Wing, R R; McCaffery, J M

    2016-10-01

    Sleep deprivation may lead to increased impulsivity, however, previous literature has focused on examining effects of total sleep deprivation (TSD) rather than the more common condition, partial sleep deprivation (PSD) or 'short sleep'. Moreover, it has been unclear whether PSD impacts impulse-related cognitive processes, and specifically if it differentially affects impulsive action versus impulsive decision-making. We sought to determine if short compared to long sleep (6 vs. 9h/night) impacts impulsive action via behavioral inhibition (Go/No-Go), and/or impulsive decision-making processes of risk taking (Balloon Analogue Risk Task [BART]) and preferences for immediate over delayed rewards (Delay Discounting). In a within-subject design, 34 participants (71% female, mean age=37.0years, SD=10.54) were assigned to four consecutive nights of 6h/night (short sleep) and 9h/night (long sleep) in their own home in random counterbalanced order. Sleep was measured via wrist-worn actigraphs to confirm adherence to the sleep schedules (mean short sleep=5.9h, SD=0.3; mean long sleep=8.6h, SD=0.3, p<0.001). The Go/No-Go, BART, and Delay Discounting tasks were completed following both sleep conditions. Participants had more inhibition errors on the Go/No-Go task after short (mean false alarms=19.79%, SD=14.51) versus long sleep (mean=15.97%, SD=9.51, p=0.039). This effect was strongest in participants reporting longer habitual time in bed (p=0.04). There were no differences in performance following long- versus short-sleep for either delay discounting or the BART (p's>0.4). Overall, these results indicate that four days of PSD diminishes behavioral inhibition abilities, but may not alter impulsive decision-making. These findings contribute to the emerging understanding of how partial sleep deprivation, currently an epidemic, impacts cognitive ability. Future research should continue to explore the connection between PSD and cognitive functions, and ways to minimize the

  7. Partial sleep deprivation impacts impulsive action but not impulsive decision-making

    PubMed Central

    Demos, K.E.; Hart, C.N.; Sweet, LH.; Mailloux, K.A.; Trautvetter, J.; Williams, S.E.; Wing, R.R.; McCaffery, J.M.

    2017-01-01

    Sleep deprivation may lead to increased impulsivity, however, previous literature has focused on examining effects of total sleep deprivation (TSD) rather than the more common condition, partial sleep deprivation (PSD) or ‘short sleep’. Moreover, it has been unclear whether PSD impacts impulse-related cognitive processes, and specifically if it differentially affects impulsive action versus impulsive decision-making. We sought to determine if short compared to long sleep (6 vs. 9 h/night) impacts impulsive action via behavioral inhibition (Go/No-Go), and/or impulsive decision-making processes of risk taking (Balloon Analogue Risk Task [BART]) and preferences for immediate over delayed rewards (Delay Discounting). In a within-subject design, 34 participants (71% female, mean age = 37.0 years, SD = 10.54) were assigned to four consecutive nights of 6 h/night (short sleep) and 9 h/night (long sleep) in their own home in random counterbalanced order. Sleep was measured via wrist-worn actigraphs to confirm adherence to the sleep schedules (mean short sleep = 5.9 h, SD = 0.3; mean long sleep = 8.6 h, SD = 0.3, p < 0.001). The Go/No-Go, BART, and Delay Discounting tasks were completed following both sleep conditions. Participants had more inhibition errors on the Go/No-Go task after short (mean false alarms = 19.79%, SD = 14.51) versus long sleep (mean = 15.97%, SD = 9.51, p = 0.039). This effect was strongest in participants reporting longer habitual time in bed (p = 0.04). There were no differences in performance following long- versus short-sleep for either delay discounting or the BART (p’s > 0.4). Overall, these results indicate that four days of PSD diminishes behavioral inhibition abilities, but may not alter impulsive decision-making. These findings contribute to the emerging understanding of how partial sleep deprivation, currently an epidemic, impacts cognitive ability. Future research should continue to explore the connection between PSD and cognitive

  8. Holograms for acoustics.

    PubMed

    Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer

    2016-09-22

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  9. Differential effects of co-administration of oxotremorine with SCH 23390 on impulsive choice in high-impulsive rats and low-impulsive rats.

    PubMed

    Tian, Lin; Qin, Xingna; Sun, Jinling; Li, Xinwang; Wei, Li

    2016-03-01

    The effect of acetylcholine on impulsive choice is thought to be due to interactions between cholinergic and dopaminergic systems, but this hypothesis has not been proven. This study investigated whether D1-like receptors were involved in the effects of the muscarinic cholinergic agonist oxotremorine on impulsive choice in high-impulsive rats (HI rats, n=8) and low-impulsive rats (LI rats, n=8) characterized by basal levels of impulsive choice in a delay-discounting task. The results revealed that oxotremorine (0.05mg/kg) significantly increased the choice of the large reinforcer in HI rats, whereas decreased the choice of the large reinforcer in LI rats. The D1-like antagonist SCH 23390 produced significant reductions in the large-reinforcer choice in HI rats (0.01mg/kg) and LI rats (0.005, 0.0075, and 0.01mg/kg). SCH 23390 significantly inhibited the increase in the choice of the large reinforcer induced by oxotremorine (0.05mg/kg) in HI rats at doses of 0.005 and 0.0075mg/kg, but enhanced the effect of oxotremorine in LI rats only at the dose of 0.0075mg/kg. These findings suggested that D1-like receptors might be involved in the differential effects of oxotremorine on impulsive choice between HI rats and LI rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. [Impulse control in addiction: a translational perspective].

    PubMed

    Schmaal, L; Broos, N; Joos, L; Pattij, T; Goudriaan, A E

    2013-01-01

    Impulsivity is a hallmark of addiction and predicts treatment response and relapse. Impulsivity is, however, a complex construct. Translational cross-species research is needed to give us greater insight into the neurobiology and the role of impulsivity in addiction and to help with the development of new treatment strategies for improving patients' impulse control. To review recent evidence concerning the concept of impulsivity and the role of impulsivity in addiction. The concept and neurobiology of impulsivity are reviewed from a translational perspective. The role of impulsivity in addiction and implications for treatment are discussed. Our recent translational cross-species study indicates that impulsivity is made up of several, separate independent features with partly distinct underlying neurobiological substrates. There are also indications that these features make a unique and independent contribution to separate stages of the addiction cycle. In addition, the improvement of impulse control is a promising new target area for treatments that could lead to better results. However, those involved in developing new treatment strategies will have to take into account the complexity and multidimensional character of impulsivity.

  11. Impulsive behavior in adults with attention deficit/ hyperactivity disorder: characterization of attentional, motor and cognitive impulsiveness.

    PubMed

    Malloy-Diniz, L; Fuentes, D; Leite, W Borges; Correa, H; Bechara, A

    2007-07-01

    Attention-deficit/hyperactivity disorder (ADHD) is characterized by inattention and/or hyperactivity/impulsivity. Impulsivity persists in adults with ADHD and might be the basis of much of the impairment observed in the daily lives of such individuals. The objective of this study was to address the presence, and more importantly, the three dimensions of impulsivity: attentional, non-planning and motor, in how they may relate to neuropsychological mechanisms of impulse control. We studied a sample of 50 adults with ADHD and 51 healthy comparison controls using the Barratt Impulsivity Scale Version 11 (BIS), and neuropsychological tasks, namely the Continuous Performance Task (CPT-II) and the Iowa Gambling Task (IGT). The ADHD group showed more signs of impulsivity on the three dimensions of BIS, committed more errors of omission and commission on the CPT-II, and made more disadvantageous choices on the IGT. These results support the existence of deficits related to three components of impulsivity: motor, cognitive, and attentional among adults with ADHD. Most importantly, this study also highlights the complementary nature of self-report questionnaires and neuropsychological tasks in the assessment of impulsivity in ADHD adults.

  12. Bubbles in an acoustic field: an overview.

    PubMed

    Ashokkumar, Muthupandian; Lee, Judy; Kentish, Sandra; Grieser, Franz

    2007-04-01

    Acoustic cavitation is the fundamental process responsible for the initiation of most of the sonochemical reactions in liquids. Acoustic cavitation originates from the interaction between sound waves and bubbles. In an acoustic field, bubbles can undergo growth by rectified diffusion, bubble-bubble coalescence, bubble dissolution or bubble collapse leading to the generation of primary radicals and other secondary chemical reactions. Surface active solutes have been used in association with a number of experimental techniques in order to isolate and understand these activities. A strobe technique has been used for monitoring the growth of a single bubble by rectified diffusion. Multibubble sonoluminescence has been used for monitoring the growth of the bubbles as well as coalescence between bubbles. The extent of bubble coalescence has also been monitored using a newly developed capillary technique. An overview of the various experimental results has been presented in order to highlight the complexities involved in acoustic cavitation processes, which on the other hand arise from a simple, mechanical interaction between sound waves and bubbles.

  13. Caffeine's influence on gambling behavior and other types of impulsivity.

    PubMed

    Grant, Jon E; Chamberlain, Samuel R

    2018-01-01

    Young adulthood is a developmental period frequently associated with occurrence of impulsive behaviors including gambling. It is estimated that 73% of children and 87% of adults in the United States regularly use caffeine. Questions remain, however, concerning the role of caffeine in the development and maintenance of impulsive behaviors such as gambling. Sixty-one young adults with at least some degree of disordered gambling were recruited from two Mid-Western university communities in the United States using media advertisements. Caffeine intake over the preceding month was quantified using the Caffeine Use Questionnaire. Clinician rating scales, questionnaires, and cognitive tests germane to impulsivity were completed. Relationships between caffeine intake and demographic, gambling symptom, and neurocognitive measures were evaluated using the statistical technique of partial least squares (PLS). Average weekly caffeine intake in the gamblers was 1218.5mg (a figure higher than previously reported in the general population). PLS yielded an optimal model with one latent factor, which explained 14.8% of variation in demographic/clinical/cognitive measures and 32.3% of variation in caffeine intake. In this model, higher caffeine intake was significantly associated with earlier age at first gambling, higher personality-related impulsiveness, more nicotine consumption, older age, and more impulsive decision-making. These data suggest a particularly strong relationship between caffeine intake, earlier age of first gambling, and certain types of impulsivity in gamblers. Providing education about healthy caffeine use may be especially valuable in gamblers. Future work should explore whether the relationship between caffeine use and gambling is due to a common predisposing factor (impulsive tendencies) or, rather, constitutes a form of self-medication in gamblers (or a means of sustaining gambling habits for longer). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Prefrontal Cortex and Impulsive Decision Making

    PubMed Central

    Kim, Soyoun; Lee, Daeyeol

    2010-01-01

    Impulsivity refers to a set of heterogeneous behaviors that are tuned suboptimally along certain temporal dimensions. Impulsive inter-temporal choice refers to the tendency to forego a large but delayed reward and to seek an inferior but more immediate reward, whereas impulsive motor responses also result when the subjects fail to suppress inappropriate automatic behaviors. In addition, impulsive actions can be produced when too much emphasis is placed on speed rather than accuracy in a wide range of behaviors, including perceptual decision making. Despite this heterogeneous nature, the prefrontal cortex and its connected areas, such as the basal ganglia, play an important role in gating impulsive actions in a variety of behavioral tasks. Here, we describe key features of computations necessary for optimal decision making, and how their failures can lead to impulsive behaviors. We also review the recent findings from neuroimaging and single-neuron recording studies on the neural mechanisms related to impulsive behaviors. Converging approaches in economics, psychology, and neuroscience provide a unique vista for better understanding the nature of behavioral impairments associated with impulsivity. PMID:20728878

  15. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Acoustic Parametric Array for Identifying Standoff Targets

    NASA Astrophysics Data System (ADS)

    Hinders, M. K.; Rudd, K. E.

    2010-02-01

    An integrated simulation method for investigating nonlinear sound beams and 3D acoustic scattering from any combination of complicated objects is presented. A standard finite-difference simulation method is used to model pulsed nonlinear sound propagation from a source to a scattering target via the KZK equation. Then, a parallel 3D acoustic simulation method based on the finite integration technique is used to model the acoustic wave interaction with the target. Any combination of objects and material layers can be placed into the 3D simulation space to study the resulting interaction. Several example simulations are presented to demonstrate the simulation method and 3D visualization techniques. The combined simulation method is validated by comparing experimental and simulation data and a demonstration of how this combined simulation method assisted in the development of a nonlinear acoustic concealed weapons detector is also presented.

  17. Effect of geometrical parameters on pressure distributions of impulse manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Brune, Ryan Carl

    Impulse manufacturing techniques constitute a growing field of methods that utilize high-intensity pressure events to conduct useful mechanical operations. As interest in applying this technology continues to grow, greater understanding must be achieved with respect to output pressure events in both magnitude and distribution. In order to address this need, a novel pressure measurement has been developed called the Profile Indentation Pressure Evaluation (PIPE) method that systematically analyzes indentation patterns created with impulse events. Correlation with quasi-static test data and use of software-assisted analysis techniques allows for colorized pressure maps to be generated for both electromagnetic and vaporizing foil actuator (VFA) impulse forming events. Development of this technique aided introduction of a design method for electromagnetic path actuator systems, where key geometrical variables are considered using a newly developed analysis method, which is called the Path Actuator Proximal Array (PAPA) pressure model. This model considers key current distribution and proximity effects and interprets generated pressure by considering the adjacent conductor surfaces as proximal arrays of individual conductors. According to PIPE output pressure analysis, the PAPA model provides a reliable prediction of generated pressure for path actuator systems as local geometry is changed. Associated mechanical calculations allow for pressure requirements to be calculated for shearing, flanging, and hemming operations, providing a design process for such cases. Additionally, geometry effect is investigated through a formability enhancement study using VFA metalworking techniques. A conical die assembly is utilized with both VFA high velocity and traditional quasi-static test methods on varied Hasek-type sample geometries to elicit strain states consistent with different locations on a forming limit diagram. Digital image correlation techniques are utilized to measure

  18. Femtosecond imaging of nonlinear acoustics in gold.

    PubMed

    Pezeril, Thomas; Klieber, Christoph; Shalagatskyi, Viktor; Vaudel, Gwenaelle; Temnov, Vasily; Schmidt, Oliver G; Makarov, Denys

    2014-02-24

    We have developed a high-sensitivity, low-noise femtosecond imaging technique based on pump-probe time-resolved measurements with a standard CCD camera. The approach used in the experiment is based on lock-in acquisitions of images generated by a femtosecond laser probe synchronized to modulation of a femtosecond laser pump at the same rate. This technique allows time-resolved imaging of laser-excited phenomena with femtosecond time resolution. We illustrate the technique by time-resolved imaging of the nonlinear reshaping of a laser-excited picosecond acoustic pulse after propagation through a thin gold layer. Image analysis reveals the direct 2D visualization of the nonlinear acoustic propagation of the picosecond acoustic pulse. Many ultrafast pump-probe investigations can profit from this technique because of the wealth of information it provides over a typical single diode and lock-in amplifier setup, for example it can be used to image ultrasonic echoes in biological samples.

  19. Mechanisms of CFR composites destruction studying with pulse acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Petronyuk, Y. S.; Morokov, E. S.; Levin, V. M.; Ryzhova, T. B.; Chernov, A. V.

    2016-05-01

    Non-destructive inspection of carbon-fiber-reinforced (CFR) composites applied in aerospace industry attracts a wide attention. In the paper, high frequency focused ultrasound (50-100 MHz) has been applied to study the bulk microstructure of the CFR material and mechanisms of its destruction under the mechanical loading. It has been shown impulse acoustic microscopy provides detecting the areas of adhesion loss at millimeter and micron level. Behavior of the CFR laminate structure fabricated by prepreg or infusion technology has been investigated under the tensile and impact loading.

  20. Multichannel myopic deconvolution in underwater acoustic channels via low-rank recovery

    PubMed Central

    Tian, Ning; Byun, Sung-Hoon; Sabra, Karim; Romberg, Justin

    2017-01-01

    This paper presents a technique for solving the multichannel blind deconvolution problem. The authors observe the convolution of a single (unknown) source with K different (unknown) channel responses; from these channel outputs, the authors want to estimate both the source and the channel responses. The authors show how this classical signal processing problem can be viewed as solving a system of bilinear equations, and in turn can be recast as recovering a rank-1 matrix from a set of linear observations. Results of prior studies in the area of low-rank matrix recovery have identified effective convex relaxations for problems of this type and efficient, scalable heuristic solvers that enable these techniques to work with thousands of unknown variables. The authors show how a priori information about the channels can be used to build a linear model for the channels, which in turn makes solving these systems of equations well-posed. This study demonstrates the robustness of this methodology to measurement noises and parametrization errors of the channel impulse responses with several stylized and shallow water acoustic channel simulations. The performance of this methodology is also verified experimentally using shipping noise recorded on short bottom-mounted vertical line arrays. PMID:28599565

  1. Acoustic holography: Problems associated with construction and reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    The implications of the difference between the inspecting and interrogating radiations are discussed. For real-time, distortionless, sound viewing, it is recommended that infrared radiation of wavelength comparable to the inspecting sound waves be used. The infrared images can be viewed with (IR visible) converter phosphors. The real-time display of the visible image of the acoustically-inspected object at low sound levels such as are used in medical diagnosis is evaluated. In this connection attention is drawn to the need for a phosphor screen which is such that its optical transmission at any point is directly related to the incident electron beam intensity at that point. Such a screen, coupled with an acoustical camera, can enable instantaneous sound wave reconstruction.

  2. YO-3A acoustics research aircraft systems manual

    NASA Technical Reports Server (NTRS)

    Cross, J. L.

    1984-01-01

    The flight testing techniques, equipment, and procedures employed during air-to-air acoustic testing of helicopters using the NASA YO-3A Acoustic Research Aircraft are discussed. The research aircraft instrumentation system is described as well as hardware installation on the test aircraft and techniques used during the tests. Emphasis is placed on formation flying, position locations, test matrices, and test procedures.

  3. Acoustic measurements of a full-scale coaxial hingeless rotor helicopter

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Mosher, M.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept Technology Demonstrator in the 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, and noise at various forward speeds, rotor lift coefficients and rotor shaft angles of attack were investigated. The noise data were acquired over an isolated rotor lift coefficient range of 0.024 to 0.162, an advance ratio range of 0.23 to 0.45 corresponding to tunnel wind speeds of 89 to 160 knots, and angles of attack from 0 deg to 10 deg. Acoustic data are presented for seven microphone locations for all run conditions where the model noise is above the background noise. Model test configuration and performance information are also listed. Acoustic waveforms, dBA, and 1/3-octave spectra as functions of operating condition for selected data points and microphones are presented. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where significant impulsive blade/vortex interactions increase noise levels.

  4. Impulsive action and impulsive choice across substance and behavioral addictions: cause or consequence?

    PubMed

    Grant, Jon E; Chamberlain, Samuel R

    2014-11-01

    Substance use disorders are prevalent and debilitating. Certain behavioral syndromes ('behavioral addictions') characterized by repetitive habits, such as gambling disorder, stealing, shopping, and compulsive internet use, may share clinical, co-morbid, and neurobiological parallels with substance addictions. This review considers overlap between substance and behavioral addictions with a particular focus on impulsive action (inability to inhibit motor responses), and impulsive choice (preference for immediate smaller rewards to the detriment of long-term outcomes). We find that acute consumption of drugs with abuse potential is capable of modulating impulsive choice and action, although magnitude and direction of effect appear contingent on baseline function. Many lines of evidence, including findings from meta-analyses, show an association between chronic drug use and elevated impulsive choice and action. In some instances, elevated impulsive choice and action have been found to predate the development of substance use disorders, perhaps signifying their candidacy as objective vulnerability markers. Research in behavioral addictions is preliminary, and has mostly focused on impulsive action, finding this to be elevated versus controls, similar to that seen in chronic substance use disorders. Only a handful of imaging studies has explored the neural correlates of impulsive action and choice across these disorders. Key areas for future research are highlighted along with potential implications in terms of neurobiological models and treatment. In particular, future work should further explore whether the cognitive deficits identified are state or trait in nature: i.e. are evident before addiction perhaps signaling risk; or are a consequence of repetitive engagement in habitual behavior; and effects of novel agents known to modulate these cognitive abilities on various addictive disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Impulsivity and the Sexes: Measurement and Structural Invariance of the UPPS-P Impulsive Behavior Scale

    ERIC Educational Resources Information Center

    Cyders, Melissa A.

    2013-01-01

    Before it is possible to test whether men and women differ in impulsivity, it is necessary to evaluate whether impulsivity measures are invariant across sex. The UPPS-P Impulsive Behavior Scale (negative urgency, lack of premeditation, lack of perseverance, and sensation seeking, with added subscale of positive urgency) is one measure of five…

  6. Acoustic Radiation Force Impulse Imaging for the Differentiation of Benign and Malignant Lymph Nodes: A Systematic Review and Meta-Analysis.

    PubMed

    Zhang, Peige; Zhang, Li; Zheng, Shaoping; Yu, Cheng; Xie, Mingxing; Lv, Qing

    2016-01-01

    To evaluate the overall performance of acoustic radiation force impulse imaging (ARFI) in differentiating between benign and malignant lymph nodes (LNs) by conducting a meta-analysis. PubMed, Embase, Web of Science, the Cochrane Library and the China National Knowledge Infrastructure were comprehensively searched for potential studies through August 13th, 2016. Studies that investigated the diagnostic power of ARFI for the differential diagnosis of benign and malignant LNs by using virtual touch tissue quantification (VTQ) or virtual touch tissue imaging quantification (VTIQ) were collected. The included articles were published in English or Chinese. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to evaluate the methodological quality. The pooled sensitivity, specificity, and the area under the summary receiver operating characteristic (SROC) curve (AUC) were calculated by means of a bivariate mixed-effects regression model. Meta-regression analysis was performed to identify the potential sources of between study heterogeneity. Fagan plot analysis was used to explore the clinical utilities. Publication bias was assessed using Deek's funnel plot. Nine studies involving 1084 LNs from 929 patients were identified to analyze in the meta-analysis. The summary sensitivity and specificity of ARFI in detecting malignant LNs were 0.87 (95% confidence interval [CI], 0.83-0.91) and 0.88 (95% CI, 0.82-0.92), respectively. The AUC was 0.93 (95% CI, 0.90-0.95). The pooled DOR was 49.59 (95% CI, 26.11-94.15). Deek's funnel plot revealed no significant publication bias. ARFI is a promising tool for the differentiation of benign and malignant LNs with high sensitivity and specificity.

  7. Acoustic Radiation Force Impulse Imaging for the Differentiation of Benign and Malignant Lymph Nodes: A Systematic Review and Meta-Analysis

    PubMed Central

    Yu, Cheng; Xie, Mingxing; Lv, Qing

    2016-01-01

    Objective To evaluate the overall performance of acoustic radiation force impulse imaging (ARFI) in differentiating between benign and malignant lymph nodes (LNs) by conducting a meta-analysis. Methods PubMed, Embase, Web of Science, the Cochrane Library and the China National Knowledge Infrastructure were comprehensively searched for potential studies through August 13th, 2016. Studies that investigated the diagnostic power of ARFI for the differential diagnosis of benign and malignant LNs by using virtual touch tissue quantification (VTQ) or virtual touch tissue imaging quantification (VTIQ) were collected. The included articles were published in English or Chinese. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to evaluate the methodological quality. The pooled sensitivity, specificity, and the area under the summary receiver operating characteristic (SROC) curve (AUC) were calculated by means of a bivariate mixed-effects regression model. Meta-regression analysis was performed to identify the potential sources of between study heterogeneity. Fagan plot analysis was used to explore the clinical utilities. Publication bias was assessed using Deek’s funnel plot. Results Nine studies involving 1084 LNs from 929 patients were identified to analyze in the meta-analysis. The summary sensitivity and specificity of ARFI in detecting malignant LNs were 0.87 (95% confidence interval [CI], 0.83–0.91) and 0.88 (95% CI, 0.82–0.92), respectively. The AUC was 0.93 (95% CI, 0.90–0.95). The pooled DOR was 49.59 (95% CI, 26.11–94.15). Deek’s funnel plot revealed no significant publication bias. Conclusion ARFI is a promising tool for the differentiation of benign and malignant LNs with high sensitivity and specificity. PMID:27855188

  8. Impulsiveness and venturesomeness in German smokers.

    PubMed

    Bernow, Nina; Kruck, Bernadette; Pfeifer, Philippe; Lieb, Klaus; Tüscher, Oliver; Fehr, Christoph

    2011-08-01

    Cigarette smoking is a behavior, which is influenced by genetic, demographic, and psychological factors. A large body of research has examined the association of cigarette smoking variables with individual differences in personality traits. The aim of the current study was to replicate the findings of higher self-reported impulsivity in smokers compared with never-smokers in a German sample using Eysenck´s construct of impulsivity. Furthermore, it was intended to further the knowledge about associations between different self-reported impulsivity components and different smoking variables. We used the Impulsiveness-Venturesomeness-Empathy questionnaire (I7) to measure self-reported impulsiveness and venturesomeness and the Temperament and Character Inventory (TCI) to measure novelty seeking (NS) in a sample of 82 nicotine-dependent smokers and 119 never-smokers. Smokers scored higher on impulsiveness, venturesomeness, and NS than never-smokers independent of age, gender, and years of education. We found a significant association between venturesomeness, impulsiveness and smoking status in daily smokers. In summary, this study provides evidence that impulsiveness and venturesomeness as well as the novelty-seeking subscale extravagance are significantly associated with smoking status in a German sample of female and male smokers compared with never-smokers.

  9. Periodic Time-Domain Nonlocal Nonreflecting Boundary Conditions for Duct Acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.

    1996-01-01

    Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a nonreflecting wave field in an infinite uniform duct and is implemented by impulse-response operators that are applied at the boundary of the computational domain. These operators are generated by convolution integrals of the corresponding frequency-domain operators. The acoustic solution is obtained by advancing the Euler equations to a periodic state with the MacCormack scheme. The MacCormack scheme utilizes the boundary condition to limit the computational space and preserve the radiation boundary condition. The success of the boundary condition is attributed to the fact that it is nonreflecting to periodic acoustic waves. In addition, transient waves can pass rapidly out of the solution domain. The boundary condition is tested for a pure tone and a multitone source in a linear setting. The effects of various initial conditions are assessed. Computational solutions with the boundary condition are consistent with the known solutions for nonreflecting wave fields in an infinite uniform duct.

  10. Impaired Decisional Impulsivity in Pathological Videogamers

    PubMed Central

    Irvine, Michael A.; Worbe, Yulia; Bolton, Sorcha; Harrison, Neil A.; Bullmore, Edward T.; Voon, Valerie

    2013-01-01

    Background Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort. Methods Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment. Results In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time. Conclusions We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management. PMID:24146789

  11. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  12. Waveform inversion of acoustic waves for explosion yield estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Rodgers, A. J.

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  13. An Experimental Introduction to Acoustics

    NASA Astrophysics Data System (ADS)

    Black, Andy Nicholas; Magruder, Robert H.

    2017-11-01

    Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is an experiment that serves to introduce an advanced undergraduate or high school student to conducting research in acoustics via an experiment involving a standard dreadnought acoustic guitar, recording industry-related equipment, and relevant industrial analysis software. This experimental process is applicable to a wide range of acoustical topics including both acoustic and electric instruments. Also, the student has a hands-on experience with relevant audio engineering technology to study physical principles.

  14. Method for enhancing low frequency output of impulsive type seismic energy sources and its application to a seismic energy source for use while drilling

    DOEpatents

    Radtke, Robert P; Stokes, Robert H; Glowka, David A

    2014-12-02

    A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.

  15. Probing Compulsive and Impulsive Behaviors, from Animal Models to Endophenotypes: A Narrative Review

    PubMed Central

    Fineberg, Naomi A; Potenza, Marc N; Chamberlain, Samuel R; Berlin, Heather A; Menzies, Lara; Bechara, Antoine; Sahakian, Barbara J; Robbins, Trevor W; Bullmore, Edward T; Hollander, Eric

    2010-01-01

    Failures in cortical control of fronto-striatal neural circuits may underpin impulsive and compulsive acts. In this narrative review, we explore these behaviors from the perspective of neural processes and consider how these behaviors and neural processes contribute to mental disorders such as obsessive–compulsive disorder (OCD), obsessive–compulsive personality disorder, and impulse-control disorders such as trichotillomania and pathological gambling. We present findings from a broad range of data, comprising translational and human endophenotypes research and clinical treatment trials, focussing on the parallel, functionally segregated, cortico-striatal neural projections, from orbitofrontal cortex (OFC) to medial striatum (caudate nucleus), proposed to drive compulsive activity, and from the anterior cingulate/ventromedial prefrontal cortex to the ventral striatum (nucleus accumbens shell), proposed to drive impulsive activity, and the interaction between them. We suggest that impulsivity and compulsivity each seem to be multidimensional. Impulsive or compulsive behaviors are mediated by overlapping as well as distinct neural substrates. Trichotillomania may stand apart as a disorder of motor-impulse control, whereas pathological gambling involves abnormal ventral reward circuitry that identifies it more closely with substance addiction. OCD shows motor impulsivity and compulsivity, probably mediated through disruption of OFC-caudate circuitry, as well as other frontal, cingulate, and parietal connections. Serotonin and dopamine interact across these circuits to modulate aspects of both impulsive and compulsive responding and as yet unidentified brain-based systems may also have important functions. Targeted application of neurocognitive tasks, receptor-specific neurochemical probes, and brain systems neuroimaging techniques have potential for future research in this field. PMID:19940844

  16. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  17. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  18. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  19. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  20. Computational approaches to computational aero-acoustics

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1996-01-01

    The various techniques by which the goal of computational aeroacoustics (the calculation and noise prediction of a fluctuating fluid flow) may be achieved are reviewed. The governing equations for compressible fluid flow are presented. The direct numerical simulation approach is shown to be computationally intensive for high Reynolds number viscous flows. Therefore, other approaches, such as the acoustic analogy, vortex models and various perturbation techniques that aim to break the analysis into a viscous part and an acoustic part are presented. The choice of the approach is shown to be problem dependent.

  1. Parental monitoring may protect impulsive children from overeating.

    PubMed

    Bennett, C; Blissett, J

    2017-10-01

    Research has highlighted links between impulsivity and weight in children and adults. Nevertheless, little is known about the nature of this link in very young children or about the underlying mechanism by which impulsivity leads to greater adiposity. The present study aimed to explore relationships between impulsivity, weight and eating behaviour in a sample of 95 2 to 4-year-olds. Parent-child dyads visited the laboratory and consumed a meal after which parents completed measures of child impulsivity, eating behaviour and parental feeding, whilst children completed impulsivity tasks measuring the impulsivity facet delay of gratification (Snack Delay task), motor impulsivity (Line Walking task) and inhibitory control (Tower task). Pearson's correlations showed that girls with greater motor impulsivity were heavier. Additionally, monitoring moderated the relationship between impulsivity and food approach behaviour, indicating that monitoring may protect more impulsive children from displaying problematic eating behaviours. The motor impulsivity facet appears particularly relevant to child weight; parents can modulate the impact of impulsivity on child eating behaviour through their feeding style. © 2016 World Obesity Federation.

  2. Aural localization of silent objects by active human biosonar: neural representations of virtual echo-acoustic space.

    PubMed

    Wallmeier, Ludwig; Kish, Daniel; Wiegrebe, Lutz; Flanagin, Virginia L

    2015-03-01

    Some blind humans have developed the remarkable ability to detect and localize objects through the auditory analysis of self-generated tongue clicks. These echolocation experts show a corresponding increase in 'visual' cortex activity when listening to echo-acoustic sounds. Echolocation in real-life settings involves multiple reflections as well as active sound production, neither of which has been systematically addressed. We developed a virtualization technique that allows participants to actively perform such biosonar tasks in virtual echo-acoustic space during magnetic resonance imaging (MRI). Tongue clicks, emitted in the MRI scanner, are picked up by a microphone, convolved in real time with the binaural impulse responses of a virtual space, and presented via headphones as virtual echoes. In this manner, we investigated the brain activity during active echo-acoustic localization tasks. Our data show that, in blind echolocation experts, activations in the calcarine cortex are dramatically enhanced when a single reflector is introduced into otherwise anechoic virtual space. A pattern-classification analysis revealed that, in the blind, calcarine cortex activation patterns could discriminate left-side from right-side reflectors. This was found in both blind experts, but the effect was significant for only one of them. In sighted controls, 'visual' cortex activations were insignificant, but activation patterns in the planum temporale were sufficient to discriminate left-side from right-side reflectors. Our data suggest that blind and echolocation-trained, sighted subjects may recruit different neural substrates for the same active-echolocation task. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  4. Narcissism predicts impulsive buying: phenotypic and genetic evidence

    PubMed Central

    Cai, Huajian; Shi, Yuanyuan; Fang, Xiang; Luo, Yu L. L.

    2015-01-01

    Impulsive buying makes billions of dollars for retail businesses every year, particularly in an era of thriving e-commerce. Narcissism, characterized by impulsivity and materialism, may serve as a potential antecedent to impulsive buying. To test this hypothesis, two studies examined the relationship between narcissism and impulsive buying. In Study 1, we surveyed an online sample and found that while adaptive narcissism was not correlated with impulsive buying, maladaptive narcissism was significantly predictive of the impulsive buying tendency. By investigating 304 twin pairs, Study 2 showed that global narcissism and its two components, adaptive and maladaptive narcissism, as well as the impulsive buying tendency were heritable. The study found, moreover, that the connections between global narcissism and impulsive buying, and between maladaptive narcissism and impulsive buying were genetically based. These findings not only establish a link between narcissism and impulsive buying but also help to identify the origins of the link. The present studies deepen our understanding of narcissism, impulsive buying, and their interrelationship. PMID:26217251

  5. Narcissism predicts impulsive buying: phenotypic and genetic evidence.

    PubMed

    Cai, Huajian; Shi, Yuanyuan; Fang, Xiang; Luo, Yu L L

    2015-01-01

    Impulsive buying makes billions of dollars for retail businesses every year, particularly in an era of thriving e-commerce. Narcissism, characterized by impulsivity and materialism, may serve as a potential antecedent to impulsive buying. To test this hypothesis, two studies examined the relationship between narcissism and impulsive buying. In Study 1, we surveyed an online sample and found that while adaptive narcissism was not correlated with impulsive buying, maladaptive narcissism was significantly predictive of the impulsive buying tendency. By investigating 304 twin pairs, Study 2 showed that global narcissism and its two components, adaptive and maladaptive narcissism, as well as the impulsive buying tendency were heritable. The study found, moreover, that the connections between global narcissism and impulsive buying, and between maladaptive narcissism and impulsive buying were genetically based. These findings not only establish a link between narcissism and impulsive buying but also help to identify the origins of the link. The present studies deepen our understanding of narcissism, impulsive buying, and their interrelationship.

  6. Recent developments in the use of acoustic sensors and signal processing tools to target early infestations of Red Palm Weevil in agricultural environments

    USDA-ARS?s Scientific Manuscript database

    Much of the damage caused by red palm weevil larvae to date palms, ornamental palms, and palm offshoots could be mitigated by early detection and treatment of infestations. Acoustic technology has potential to enable early detection, but the short, high-frequency sound impulses produced by red palm ...

  7. Frequency and time pattern differences in acoustic signals produced by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) in stored maize

    USDA-ARS?s Scientific Manuscript database

    The acoustic signals emitted by the last stage larval instars and adults of Prostephanus truncatus and Sitophilus zeamais in stored maize were investigated. Analyses were performed to identify brief, 1-10-ms broadband sound impulses of five different frequency patterns produced by larvae and adults,...

  8. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  9. Trait impulsivity in suicide attempters: preliminary study.

    PubMed

    Doihara, Chiho; Kawanishi, Chiaki; Ohyama, Nene; Yamada, Tomoki; Nakagawa, Makiko; Iwamoto, Yohko; Odawara, Toshinari; Hirayasu, Yoshio

    2012-10-01

    Suicide attempt is a risk factor for suicide. To investigate trait impulsivity among suicide attempters, 93 attempters admitted to an emergency department and 113 healthy controls were evaluated using the Japanese version of the Barratt Impulsiveness Scale (BIS-11J). Impulsivity was analyzed in relation to clinical data in the attempters. Total BIS-11J, attention impulsiveness, and motor impulsiveness scores were significantly higher in the attempters than in the controls. Both total BIS-11J and non-planning impulsiveness scores were significantly higher in attempters with schizophrenia and other psychotic disorders among the diagnostic groups. Control of impulsivity should be considered as one of the targets for suicide prevention. © 2012 The Authors. Psychiatry and Clinical Neurosciences © 2012 Japanese Society of Psychiatry and Neurology.

  10. Field studies in architectural acoustics using Tablet PCs

    NASA Astrophysics Data System (ADS)

    Boye, Daniel

    2005-04-01

    Core requirements for the sciences within the liberal arts curriculum challenge students to become directly involved in scientific study. These requirements seek to develop scientifically literate leaders and members of society. Formal laboratory periods are not usually associated with these courses. Thus, conceptual discovery and quantitative experimentation must take place outside of the classroom. Physics 115: Musical Technology at Davidson College is such a course and contains a section dealing with architectural acoustics. Field studies in the past have been an awkward and cumbersome activity, especially for non-science majors. The emerging technology of Tablet PCs overcomes many of the problems of mobile data acquisition and analysis, and allows the students to determine the locations of the rooms to be studied. The impulse method for determining reverberation time is used and compared with calculations based on room size and absorption media. The use of Tablet PCs and the publicly available freeware Audacity in field studies investigating architectural acoustics will be discussed. [Work supported in part by the Associated Colleges of the South through their Technology Fellowship program.

  11. Acoustic emission non-destructive testing of structures using source location techniques.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one onmore » aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.« less

  12. Combined photoacoustic and magneto-acoustic imaging.

    PubMed

    Qu, Min; Mallidi, Srivalleesha; Mehrmohammadi, Mohammad; Ma, Li Leo; Johnston, Keith P; Sokolov, Konstantin; Emelianov, Stanislav

    2009-01-01

    Ultrasound is a widely used modality with excellent spatial resolution, low cost, portability, reliability and safety. In clinical practice and in the biomedical field, molecular ultrasound-based imaging techniques are desired to visualize tissue pathologies, such as cancer. In this paper, we present an advanced imaging technique - combined photoacoustic and magneto-acoustic imaging - capable of visualizing the anatomical, functional and biomechanical properties of tissues or organs. The experiments to test the combined imaging technique were performed using dual, nanoparticle-based contrast agents that exhibit the desired optical and magnetic properties. The results of our study demonstrate the feasibility of the combined photoacoustic and magneto-acoustic imaging that takes the advantages of each imaging techniques and provides high sensitivity, reliable contrast and good penetrating depth. Therefore, the developed imaging technique can be used in wide range of biomedical and clinical application.

  13. "Impulsive" suicide attempts: What do we really mean?

    PubMed

    May, Alexis M; Klonsky, E David

    2016-07-01

    Suicide attempts are often regarded as impulsive acts. However, there is little consensus regarding the definition or clinical characteristics of an "impulsive" attempt. To clarify this issue, we examined 3 indicators of the impulsivity of an attempt: (a) preparation, (b) time contemplating the attempt, and (c) self-report that impulsivity motivated the attempt. We examined relationships among the indicators and their relationship to trait impulsivity and characteristics of the suicide attempt. Adult participants (N = 205) with a history of suicide attempts were administered validated interviews and questionnaires. In general, the 3 attempt impulsivity indicators correlated only moderately with each other and not at all with trait impulsivity or with important characteristics of the attempt (e.g., lethality, preattempt communication, motivations). However, there were 2 exceptions. First, intent to die was inversely related to the 3 attempt impulsivity indicators (rs ranged from -.17 to .45) such that more impulsive attempts were associated with lower intent. Second, self-report that the attempt was motivated by impulsivity was related to 3 facets of trait impulsivity (rs ranged from .16 to .41). These findings suggest that individuals endorsing trait impulsivity are likely to describe their attempts as motivated by impulsivity, regardless of the presence of preparation or prolonged contemplation. Overall, study results suggest that the common conception of a unidimensional impulsive attempt may be inaccurate and that the emphasis on general impulsivity in prevention guidelines should be tempered. Implications for suicide risk assessment and prevention are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Acoustical Properties of Mud Sediments

    DTIC Science & Technology

    2015-09-30

    Acoustical Properties of Mud Sediments Allan D. Pierce Boston University 399 Quaker Meeting House Road P. O. Box 339 East Sandwich, MA 03537...shallow-ocean mud sediments. Other goals are to assess prior data relating to the acoustic properties of mud and to provide guidance in the...development and interpretation of experiments. A related goal is to construct models that will guide inversion techniques for inferring properties of mud

  15. Stable And Oscillating Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  16. Simplified Rotation In Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  17. High-speed acoustic communication by multiplexing orbital angular momentum

    PubMed Central

    Shi, Chengzhi; Dubois, Marc; Wang, Yuan

    2017-01-01

    Long-range acoustic communication is crucial to underwater applications such as collection of scientific data from benthic stations, ocean geology, and remote control of off-shore industrial activities. However, the transmission rate of acoustic communication is always limited by the narrow-frequency bandwidth of the acoustic waves because of the large attenuation for high-frequency sound in water. Here, we demonstrate a high-throughput communication approach using the orbital angular momentum (OAM) of acoustic vortex beams with one order enhancement of the data transmission rate at a single frequency. The topological charges of OAM provide intrinsically orthogonal channels, offering a unique ability to multiplex data transmission within a single acoustic beam generated by a transducer array, drastically increasing the information channels and capacity of acoustic communication. A high spectral efficiency of 8.0 ± 0.4 (bit/s)/Hz in acoustic communication has been achieved using topological charges between −4 and +4 without applying other communication modulation techniques. Such OAM is a completely independent degree of freedom which can be readily integrated with other state-of-the-art communication modulation techniques like quadrature amplitude modulation (QAM) and phase-shift keying (PSK). Information multiplexing through OAM opens a dimension for acoustic communication, providing a data transmission rate that is critical for underwater applications. PMID:28652341

  18. New method for assessing liver fibrosis based on acoustic radiation force impulse: a special reference to the difference between right and left liver.

    PubMed

    Toshima, Takeo; Shirabe, Ken; Takeishi, Kazuki; Motomura, Takashi; Mano, Youhei; Uchiyama, Hideaki; Yoshizumi, Tomoharu; Soejima, Yuji; Taketomi, Akinobu; Maehara, Yoshihiko

    2011-05-01

    Virtual touch tissue quantification (VTTQ) based on acoustic radiation force impulse (ARFI) imaging has been developed as a noninvasive bedside method for the assessment of liver stiffness. In this study, we examined the diagnostic performance of ARFI imaging in 103 patients, focusing on the difference in VTTQ values between the right and left liver lobes. We evaluated VTTQ values of the right and left lobes in 79 patients with chronic liver disease who underwent histological examination of liver fibrosis and in 24 healthy volunteers. The diagnostic accuracy of VTTQ was compared with several serum markers, including hyaluronic acid, type 4 collagen, and aspartate transaminase to platelet ratio index. The VTTQ values (meters per second) in the right and left lobes were 1.61 ± 0.51 and 1.90 ± 0.68, respectively, and the difference was statistically significant (P < 0.0001). The VTTQ values in both liver lobes were correlated significantly with histological fibrosis grades (P < 0.001). The standard deviations of the VTTQ values in the right lobe were significantly lower than those in the left lobe (P < 0.001). The area under the receiver-operating characteristic curve for the diagnosis of fibrosis (F ≥ 3) using VTTQ values in both liver lobes was superior to serum markers, especially in the right lobe. VTTQ is an accurate and reliable tool for the assessment of liver fibrosis. VTTQ of the right lobe was more accurate for diagnosing liver fibrosis than in the left lobe.

  19. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  20. The near-field acoustic levitation of high-mass rotors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Z. Y.; Lü, P.; Geng, D. L.

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  1. The near-field acoustic levitation of high-mass rotors.

    PubMed

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  2. Impulsivity, self-control, and hypnotic suggestibility.

    PubMed

    Ludwig, V U; Stelzel, C; Krutiak, H; Prunkl, C E; Steimke, R; Paschke, L M; Kathmann, N; Walter, H

    2013-06-01

    Hypnotic responding might be due to attenuated frontal lobe functioning after the hypnotic induction. Little is known about whether personality traits linked with frontal functioning are associated with responsiveness to hypnotic suggestions. We assessed whether hypnotic suggestibility is related to the traits of self-control and impulsivity in 154 participants who completed the Brief Self-Control Scale, the Self-Regulation Scale, the Barratt Impulsiveness Scale (BIS-11), and the Harvard Group Scale of Hypnotic Susceptibility (HGSHS:A). BIS-11 non-planning impulsivity correlated positively with HGSHS:A (Bonferroni-corrected). Furthermore, in the best model emerging from a stepwise multiple regression, both non-planning impulsivity and self-control positively predicted hypnotic suggestibility, and there was an interaction of BIS-11 motor impulsivity with gender. For men only, motor impulsivity tended to predict hypnotic suggestibility. Hypnotic suggestibility is associated with personality traits linked with frontal functioning, and hypnotic responding in men and women might differ. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Impulse noise generator--design and operation.

    PubMed

    Brinkmann, H

    1991-01-01

    In the seventies PFANDER (Pfander, 1975) proposed a screening test with an impulse noise simulator to check the particular responsivity of soldiers on vulnerability of the inner ear concerning the impulse noise-induced hearing loss. According to a system developed at the University of Oldenburg (Germany) (Klug & Radek, 1987), we have constructed an impulse noise generator designed for our specific requirements that will be presented. The simulator consists of an electrical ignited impulse noise spark gap which is supplied by a 3.5 kV high voltage source. At a distance of 1.10 m from the center of the impulse noise spark gap a peak pressure level of 155 dB with a C-Duration (Pfander, 1975) of .2 msec and with the main energy in the frequency range from 1 kHz to 2 kHz was good reproducible. It would be preferable to shift the impulse noise spectrum to lower frequencies but experimental effort has failed so far.

  4. Cerebellar interaction with the acoustic reflex.

    PubMed

    Jastreboff, P J

    1981-01-01

    The involvement of the cerebellar vermis in the acoustic reflex was analyzed in 12 cats, decerebrated or in pentobarbital anesthesia. Anatomical data suggested the existence of a connection of lobules VIII with the ventral cochlear nucleus. Single cell recording and evoked potential techniques demonstrated the existence of the acoustic projection to lobulus VIII. Electrical stimulation of this area changed the tension of the middle ear muscle and caused evoked potential responses in the caudal part of the ventral cochlear nucleus. Electrical stimulation of the motor nucleus of the facial nerve evoked a slow wave in the recording taken from the surrounding of the cochlear round window. A hypothesis is proposed which postulates the involvement of the acoustic reflex in space localization of acoustic stimuli and the action of cerebellar vermis in order to assure the stability and plasticity of the acoustic reflex arc.

  5. Acoustic energy relations in Mudejar-Gothic churches.

    PubMed

    Zamarreño, Teófilo; Girón, Sara; Galindo, Miguel

    2007-01-01

    Extensive objective energy-based parameters have been measured in 12 Mudejar-Gothic churches in the south of Spain. Measurements took place in unoccupied churches according to the ISO-3382 standard. Monoaural objective measures in the 125-4000 Hz frequency range and in their spatial distributions were obtained. Acoustic parameters: clarity C80, definition D50, sound strength G and center time Ts have been deduced using impulse response analysis through a maximum length sequence measurement system in each church. These parameters spectrally averaged according to the most extended criteria in auditoria in order to consider acoustic quality were studied as a function of source-receiver distance. The experimental results were compared with predictions given by classical and other existing theoretical models proposed for concert halls and churches. An analytical semi-empirical model based on the measured values of the C80 parameter is proposed in this work for these spaces. The good agreement between predicted values and experimental data for definition, sound strength, and center time in the churches analyzed shows that the model can be used for design predictions and other purposes with reasonable accuracy.

  6. Rethinking Impulsivity in Suicide

    ERIC Educational Resources Information Center

    Klonsky, E. David; May, Alexis

    2010-01-01

    Elevated impulsivity is thought to facilitate the transition from suicidal thoughts to suicidal behavior. Therefore, impulsivity should distinguish those who have attempted suicide (attempters) from those who have only considered suicide (ideators-only). This hypothesis was examined in three large nonclinical samples: (1) 2,011 military recruits,…

  7. Numerical methods in acoustics

    NASA Astrophysics Data System (ADS)

    Candel, S. M.

    This paper presents a survey of some computational techniques applicable to acoustic wave problems. Recent advances in wave extrapolation methods, spectral methods and boundary integral methods are discussed and illustrated by specific calculations.

  8. A non-collinear mixing technique to measure the acoustic nonlinearity parameter of adhesive bond

    NASA Astrophysics Data System (ADS)

    Ju, Taeho; Achenbach, Jan. D.; Jacobs, Laurence J.; Qu, Jianmin

    2018-04-01

    In this work, we employed a wave mixing technique with an incident longitudinal wave and a shear wave to measure the Acoustic Nonlinearity Parameter (ANLP) of adhesive bonds. An adhesive transfer tape (F-9473PC) was used as an adhesive material: two aluminum plates are bonded together by the tape. To achieve a high signal to noise ratio, the optimal interaction angle and frequency ratio between the two incident waves were carefully selected so resonance occurs primarily in the adhesive layer, which somewhat suppressed the resonance in the aluminum plates. One of the most significant features of this method is that the measurements need only one-side access to the sample being measured. To demonstrate the effectiveness of the proposed technique, the adhesively bonded aluminum sample was placed in a temperature-controlled chamber for thermal aging. The ANLP of the thermally aged sample was compared with that of a freshly made adhesive sample. The results show that the ANLP increases with aging time and temperature.

  9. Relationships between perceived emotional intelligence, aggression, and impulsivity in a population-based adult sample.

    PubMed

    Coccaro, Emil F; Zagaja, Ciara; Chen, Pan; Jacobson, Kristen

    2016-12-30

    A diminished capacity to reason about one's own or others' mood states (part of emotional intelligence, EI) may impair one's ability to respond to threat or frustration, leading to aggression and/or impulsivity. In this study, 1544 adult subjects completed the Trait-Meta-Mood Scale (TMMS), an assessment of perceived EI, in order to examine how attention to emotions, clarity of emotions, and repair of emotions were associated with aggression and impulsivity. Correlations among the TMMS subscales of Attention, Clarity, and Repair were all significant. Clarity moderated the relationship between Attention and Repair such that Attention correlated with Repair only at higher levels of Clarity. Aggression and Impulsivity were both associated with all three dimensions of perceived EI; however, Repair was associated more strongly with Aggression than Impulsivity, whereas the reverse was true for Clarity. Finally, a subsample of participants self-identified as having "anger problems" had lower TMMS scores for Clarity and Repair compared to "non-anger problem" participants. Adding aggression and impulsivity to the model eliminated these group differences. Results suggest that Clarity and Repair may be the most important aspect of perceived EI. Interventions that increase these components, along with effective mood regulation techniques, may potentially ameliorate impulsive aggressive behavior. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Nervus terminalis in dogfish (Squalus acanthias, Elasmobranchii) carries tonic efferent impulses.

    PubMed

    Bullock, T H; Northcutt, R G

    1984-02-10

    Recordings from the intact nervus terminalis with a hook electrode or from a stump of the divided nerve with a suction electrode show a tonic, irregular discharge of broad, low frequency spikes in ca. 4-6 units. These nerve impulses are efferent from the brain. The mean frequency of discharge is not influenced by various chemical, thermal, tactile, acoustic, photic, vibratory and electric field stimuli but is decreased by certain forms of mechanical stimuli, presumably acting on the lateral line organs of the lateral aspect of the head. We have not succeeded in recording from afferents. The nerve consists of greater than 1000 unmyelinated axons, mostly less than 1 micron, a very few greater than 1.5 micron in diameter; presumably the efferents recorded from were these larger fibers.

  11. Noninvasive assessment of hepatic sinusoidal obstructive syndrome using acoustic radiation force impulse elastography imaging: A proof-of-concept study in rat models.

    PubMed

    Park, So Hyun; Lee, Seung Soo; Sung, Ji-Youn; Na, Kiyong; Kim, Hyoung Jung; Kim, So Yeon; Park, Beom Jin; Byun, Jae Ho

    2018-05-01

    To determine the feasibility of acoustic radiation force impulse (ARFI) elastography in the evaluation of hepatic sinusoidal obstruction syndrome (SOS) in rat models. Rat SOS models of various severities were created by monocrotaline gavage (n = 40) or by intraperitoneal injection of 5-fluorouracil, leucovorin and oxaliplatin (FOLFOX) (n = 16). Liver shear-wave velocity (SWV) was measured using ARFI elastography. Liver samples were analysed for the SOS score, steatosis, lobular inflammation and fibrosis. The liver SWV was significantly elevated in the SOS models (1.29-2.24 m/s) compared with that of the matched control rats (1.01-1.09; p≤.09; veFor seven FOLFOX-treated rats which were longitudinally followed-up, the liver SWV significantly increased at 7 weeks (1.32±0.13 m/s) compared with the baseline (1.08±0.1 m/s, p=.015) and then significantly declined after a 2-week, treatment-free period (1.15±0.13 m/s; p=.048). Multivariate analysis revealed that the SOS score (p<.001) and lobular inflammation (p=.044) were independently correlated with the liver SWV. Liver SWV is elevated in SOS in proportion to the degree of sinusoidal injury and lobular inflammation in rat SOS models. ARFI elastography has potential as an examination for diagnosis, severity assessment and follow-up of SOS. • Liver SWV using ARFI elastography was significantly elevated in SOS rat. • Sinusoidal injury and lobular inflammation grades had correlation with liver SWV. • ARFI elastography has potential for diagnosis, severity assessment, and follow-up of SOS.

  12. Analysis of passive acoustic ranging of helicopters from the joint acoustic propagation experiment

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Morgan, John C.

    1993-01-01

    For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station (WES) have been performing research dealing with the application of sensors for detection of military targets. The WES research has included the use of seismic, acoustic, magnetic, and other sensors to detect, track, and classify military ground targets. Most of the WES research has been oriented toward the employment of such sensors in a passive mode. Techniques for passive detection are of particular interest in the Army because of the advantages over active detection. Passive detection methods are not susceptible to interception, detection, jamming, or location of the source by the threat. A decided advantage for using acoustic and seismic sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of low flying helicopters at long distances without visual contact. This study was conducted to analyze the passive acoustic ranging (PAR) concept using a more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

  13. The horizontal computerized rotational impulse test.

    PubMed

    Furman, Joseph M; Shirey, Ian; Roxberg, Jillyn; Kiderman, Alexander

    2016-01-01

    Whole-body impulsive rotations were used to overcome several limitations associated with manual head impulse testing. A computer-controlled rotational chair delivered brief, whole-body, earth-vertical axis yaw impulsive rotations while eye movements were measured using video-oculography. Results from an unselected group of 20 patients with dizziness and a group of 22 control subjects indicated that the horizontal computerized rotational head impulse test (crHIT) is well-tolerated and provides an estimate of unidirectional vestibulo-ocular reflex gain comparable to results from caloric testing. This study demonstrates that the horizontal crHIT is a new assessment tool that overcomes many of the limitations of manual head impulse testing and provides a reliable laboratory-based measure of unilateral horizontal semicircular canal function.

  14. Impulsive personality traits in male pedophiles versus healthy controls: is pedophilia an impulsive-aggressive disorder?

    PubMed

    Cohen, Lisa J; Gans, Sniezyna Watras; McGeoch, Pamela G; Poznansky, Olga; Itskovich, Yelena; Murphy, Sean; Klein, Erik; Cullen, Ken; Galynker, Igor I

    2002-01-01

    Pedophilia is characterized by sexual attraction to prepubescent children. Despite the extensive literature documenting the pervasive and pernicious effects of childhood sexual abuse, there is surprisingly little psychiatric literature on pedophilia and its etiology remains enigmatic. In recent years, the psychiatric literature on the phenomenology, neurobiology, and treatment of impulsive-aggressive disorders has grown significantly. As some investigators have conceptualized pedophilia as an impulsive-aggressive disorder, it is of interest whether recent advances in the study of impulsive-aggressive disorders might shed light on pathological mechanisms underlying pedophilia. In the following study, 20 male subjects with a DSM-IV diagnosis of pedophilia, heterosexual type were recruited from an outpatient facility for sexual offenders and compared to 24 demographically similar control subjects. Groups were compared on three personality instruments--the Millon Clinical Multiaxial Inventory-II (MCMI-II), the Temperament and Character Inventory (TCI), and the Dimensional Assessment of Personality Impairment-Questionnaire (DAPI-Q)--to assess for select impairment in impulsive-aggressive personality traits. Pedophiles showed severe and pervasive personality impairment relative to controls. Although there was evidence of impulsivity, the findings do not suggest a predominance of impulsive-aggressive traits, and in fact provide evidence of inhibition, passive-aggression, and harm avoidance. The notion of "compulsive-aggression" in pedophilia is proposed.

  15. Standard value of ultrasound elastography using acoustic radiation force impulse imaging (ARFI) in healthy liver tissue of children and adolescents.

    PubMed

    Eiler, J; Kleinholdermann, U; Albers, D; Dahms, J; Hermann, F; Behrens, C; Luedemann, M; Klingmueller, V; Alzen, G F P

    2012-10-01

    Ultrasound elastography by acoustic radiation force impulse imaging (ARFI) is used in adults for non invasive measurement of liver stiffness, indicating liver diseases like fibrosis. To establish ARFI in children and adolescents we determined standard values of healthy liver tissue and analysed potentially influencing factors. 132 patients between 0 and 17 years old were measured using ARFI. None of them had any liver disease or any other disease that could affect the liver secondarily. All patients had a normal ultrasound scan, a normal BMI and normal liver function tests. The mean value of all ARFI measurements was calculated and potentially influencing factors were analysed. The mean value of all ARFI elastography measurements was 1.16 m/sec (SD ± 0.14 m/sec). Neither age (p = 0.533) nor depth of measurement (p = 0.066) had no significant influence on ARFI values, whereas a significant effect of gender was found with lower ARFI values in females (p = 0.025), however, there was no significant interaction between age groups (before or after puberty) and gender (p = 0.276). There was an interlobar difference with lower values in the right liver lobe compared to the left (p = 0.036) and with a significantly lower variance (p < 0.001). Consistend values were measured by different examiners (p = 0.108), however, the inter examiner variance deviated significantly (p < 0.001). ARFI elastography is a reliable method to measure liver stiffness in children and adolescents. In relation to studies which analyse liver diseases, the standard value of 1.16 m/sec (± 0.14 m/sec) allows a differentiation of healthy versus pathological liver tissue. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Acoustic and microwave tests in a cylindrical cavity for acoustic gas thermometry at high temperature

    PubMed Central

    Zhang, K.; Feng, X.J.; Gillis, K.; Moldover, M.; Zhang, J.T.; Lin, H.; Qu, J.F.; Duan, Y.N.

    2016-01-01

    Relative primary acoustic gas thermometry determines the ratios of thermodynamic temperatures from measured ratios of acoustic and microwave resonance frequencies in a gas-filled metal cavity on isotherms of interest. When measured in a cavity with known dimensions, the frequencies of acoustic resonances in a gas determine the speed of sound, which is a known function of the thermodynamic temperature T. Changes in the dimensions of the cavity are measured using the frequencies of the cavity's microwave resonances. We explored techniques and materials for acoustic gas thermometry at high temperatures using a cylindrical cavity with remote acoustic transducers. We used gas-filled ducts as acoustic waveguides to transmit sound between the cavity at high temperatures and the acoustic transducers at room temperature. We measured non-degenerate acoustic modes in a cylindrical cavity in the range 295 K < T < 797 K. The fractional uncertainty of the measured acoustic frequencies increased from 2×10−6 at 295 K to 5×10−6 at 797 K. In addition, we measured the frequencies of several transverse magnetic (TM) microwave resonances up to 1000 K in order to track changes in the cavity's length L and radius R. The fractional standard deviation of the values of L deduced from three TM modes increased from 3×10−6 for T < 600 K to 57×10−6 at 1000 K. We observed similar inconsistencies in a previous study. PMID:26903106

  17. Prediction and Measurement of the Vibration and Acoustic Radiation of Panels Subjected to Acoustic Loading

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Rizzi, Stephen A.

    1995-01-01

    Interior noise and sonic fatigue are important issues in the development and design of advanced subsonic and supersonic aircraft. Conventional aircraft typically employ passive treatments, such as constrained layer damping and acoustic absorption materials, to reduce the structural response and resulting acoustic levels in the aircraft interior. These techniques require significant addition of mass and only attenuate relatively high frequency noise transmitted through the fuselage. Although structural acoustic coupling is in general very important in the study of aircraft fuselage interior noise, analysis of noise transmission through a panel supported in an infinite rigid baffle (separating two semi-infinite acoustic domains) can be useful in evaluating the effects of active/adaptive materials, complex loading, etc. Recent work has been aimed at developing adaptive and/or active methods of controlling the structural acoustic response of panels to reduce the transmitted noise1. A finite element formulation was recently developed to study the dynamic response of shape memory alloy (SMA) hybrid composite panels (conventional composite panel with embedded SMA fibers) subject to combined acoustic and thermal loads2. Further analysis has been performed to predict the far-field acoustic radiation using the finite element dynamic panel response prediction3. The purpose of the present work is to validate the panel vibration and acoustic radiation prediction methods with baseline experimental results obtained from an isotropic panel, without the effect of SMA.

  18. Differential contributions of cortical thickness and surface area to trait impulsivity in healthy young adults.

    PubMed

    Kubera, Katharina M; Schmitgen, Mike M; Maier-Hein, Klaus H; Thomann, Philipp A; Hirjak, Dusan; Wolf, Robert C

    2018-05-08

    Impulsivity is an essential human personality trait and highly relevant for the development of several mental disorders. There is evidence that impulsivity is heritable, yet little is known about neural correlates reflecting early brain development. Here, we address the question whether motor, attentional and non-planning components, as reflected by the Barratt Impulsiveness Scale (BIS-11), are distinctly associated with cortical thickness and surface area variations in young healthy individuals. We investigated cortical thickness and surface area in 54 healthy volunteers (m/f = 30%/70%; age mean/SD = 24.9/4.02) using structural magnetic resonance imaging at 3 T together with surface-based analysis techniques. Impulsivity was examined on the Barratt impulsiveness scale (BIS-11) and related to the two distinct cortical measurements. Higher BIS-11 total scores were negatively associated with cortical thickness variations in the left lingual gyrus, left superior temporal gyrus, right cuneus, and right superior parietal gyrus (p<0.05 cluster-wise probability [CWP] corrected). Higher BIS-11 nonplanning scores were negatively associated with cortical thickness variations in bilateral pericalcarine gyrus (p<0.05 CWP corr.). In the orbitofrontal cortex motor impulsivity associated cortical thickness differs significantly between male and female. These data suggest distinct neurodevelopmental trajectories underlying impulsivity in healthy subjects. Impulsivity total scores appear to be specifically related to cortical thickness variations, in contrast to variations of cortical surface area. Furthermore, our findings underscores the importance of better characterizing gender-specific structural correlates of impulsivity. Copyright © 2018. Published by Elsevier B.V.

  19. Acoustic agglomeration methods and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  20. A review of recent developments in parametric based acoustic emission techniques applied to concrete structures

    NASA Astrophysics Data System (ADS)

    Vidya Sagar, R.; Raghu Prasad, B. K.

    2012-03-01

    This article presents a review of recent developments in parametric based acoustic emission (AE) techniques applied to concrete structures. It recapitulates the significant milestones achieved by previous researchers including various methods and models developed in AE testing of concrete structures. The aim is to provide an overview of the specific features of parametric based AE techniques of concrete structures carried out over the years. Emphasis is given to traditional parameter-based AE techniques applied to concrete structures. A significant amount of research on AE techniques applied to concrete structures has already been published and considerable attention has been given to those publications. Some recent studies such as AE energy analysis and b-value analysis used to assess damage of concrete bridge beams have also been discussed. The formation of fracture process zone and the AE energy released during the fracture process in concrete beam specimens have been summarised. A large body of experimental data on AE characteristics of concrete has accumulated over the last three decades. This review of parametric based AE techniques applied to concrete structures may be helpful to the concerned researchers and engineers to better understand the failure mechanism of concrete and evolve more useful methods and approaches for diagnostic inspection of structural elements and failure prediction/prevention of concrete structures.

  1. Measuring Relative Motions Across a Fault Using Seafloor Transponders Installed at Close Range to each Other Based on Differential GPS/Acoustic Technique

    NASA Astrophysics Data System (ADS)

    Kido, M.; Ashi, J.; Tsuji, T.; Tomita, F.

    2016-12-01

    Seafloor geodesy based on acoustic ranging technique is getting popular means to reveal crustal deformation beneath the ocean. GPS/acoustic technique can be applied to monitoring regional deformation or absolute position, while direct-path acoustic ranging can be applied to detecting localized strain or relative motion in a short distance ( 1-10 km). However the latter observation sometimes fails to keep the clearance of an acoustic path between the seafloor transponders because of topographic obstacle or of downward bending nature of the path due to vertical gradient of sound speed in deep-ocean. Especially at steep fault scarp, it is almost impossible to keep direct path between the top and bottom of the fault scarp. Even in such a situation, acoustic path to the sea surface might be always clear. Then we propose a new approach to monitor the relative motion of across a fault scarp using "differential" GPS/acoustic measurement, which account only for traveltime differences among the transponders. The advantages of this method are that: (1) uncertainty in sound speed in shallow water is almost canceled; (2) possible GPS error is also canceled; (3) picking error in traveltime detection is almost canceled; (4) only a pair of transponders can fully describe relative 3-dimensional motion. On the other hand the disadvantages are that: (5) data is not continuous but only campaign; (6) most advantages are only effective only for very short baseline (< 100-300 m). Our target being applied this method is a steep fault scarp near the Japan trench, which is expected as a surface expression of back thrust, in where time scale of fault activity is still controversial especially after the Tohoku earthquake. We have carefully installed three transponders across this scarp using a NSS system, which can remotely navigate instrument near the seafloor from a mother vessel based on video camera image. Baseline lengths among the transponders are 200-300 m at 3500 m depth. Initial

  2. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    NASA Astrophysics Data System (ADS)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  3. Threshold for Onset of Injury in Chinook Salmon from Exposure to Impulsive Pile Driving Sounds

    PubMed Central

    Halvorsen, Michele B.; Casper, Brandon M.; Woodley, Christa M.; Carlson, Thomas J.; Popper, Arthur N.

    2012-01-01

    The risk of effects to fishes and other aquatic life from impulsive sound produced by activities such as pile driving and seismic exploration is increasing throughout the world, particularly with the increased exploitation of oceans for energy production. At the same time, there are few data that provide insight into the effects of these sounds on fishes. The goal of this study was to provide quantitative data to define the levels of impulsive sound that could result in the onset of barotrauma to fish. A High Intensity Controlled Impedance Fluid filled wave Tube was developed that enabled laboratory simulation of high-energy impulsive sound that were characteristic of aquatic far-field, plane-wave acoustic conditions. The sounds used were based upon the impulsive sounds generated by an impact hammer striking a steel shell pile. Neutrally buoyant juvenile Chinook salmon (Oncorhynchus tshawytscha) were exposed to impulsive sounds and subsequently evaluated for barotrauma injuries. Observed injuries ranged from mild hematomas at the lowest sound exposure levels to organ hemorrhage at the highest sound exposure levels. Frequency of observed injuries were used to compute a biological response weighted index (RWI) to evaluate the physiological impact of injuries at the different exposure levels. As single strike and cumulative sound exposure levels (SELss, SELcum respectively) increased, RWI values increased. Based on the results, tissue damage associated with adverse physiological costs occurred when the RWI was greater than 2. In terms of sound exposure levels a RWI of 2 was achieved for 1920 strikes by 177 dB re 1 µPa2⋅s SELss yielding a SELcum of 210 dB re 1 µPa2⋅s, and for 960 strikes by 180 dB re 1 µPa2⋅s SELss yielding a SELcum of 210 dB re 1 µPa2⋅s. These metrics define thresholds for onset of injury in juvenile Chinook salmon. PMID:22745695

  4. Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds.

    PubMed

    Halvorsen, Michele B; Casper, Brandon M; Woodley, Christa M; Carlson, Thomas J; Popper, Arthur N

    2012-01-01

    The risk of effects to fishes and other aquatic life from impulsive sound produced by activities such as pile driving and seismic exploration is increasing throughout the world, particularly with the increased exploitation of oceans for energy production. At the same time, there are few data that provide insight into the effects of these sounds on fishes. The goal of this study was to provide quantitative data to define the levels of impulsive sound that could result in the onset of barotrauma to fish. A High Intensity Controlled Impedance Fluid filled wave Tube was developed that enabled laboratory simulation of high-energy impulsive sound that were characteristic of aquatic far-field, plane-wave acoustic conditions. The sounds used were based upon the impulsive sounds generated by an impact hammer striking a steel shell pile. Neutrally buoyant juvenile Chinook salmon (Oncorhynchus tshawytscha) were exposed to impulsive sounds and subsequently evaluated for barotrauma injuries. Observed injuries ranged from mild hematomas at the lowest sound exposure levels to organ hemorrhage at the highest sound exposure levels. Frequency of observed injuries were used to compute a biological response weighted index (RWI) to evaluate the physiological impact of injuries at the different exposure levels. As single strike and cumulative sound exposure levels (SEL(ss), SEL(cum) respectively) increased, RWI values increased. Based on the results, tissue damage associated with adverse physiological costs occurred when the RWI was greater than 2. In terms of sound exposure levels a RWI of 2 was achieved for 1920 strikes by 177 dB re 1 µPa(2)⋅s SEL(ss) yielding a SEL(cum) of 210 dB re 1 µPa(2)⋅s, and for 960 strikes by 180 dB re 1 µPa(2)⋅s SEL(ss) yielding a SEL(cum) of 210 dB re 1 µPa(2)⋅s. These metrics define thresholds for onset of injury in juvenile Chinook salmon.

  5. Recent developments in the use of acoustic sensors and signal processing tools to target early infestations of red palm weevil (Coleopter: Curculionidae) in agricultural environments

    USDA-ARS?s Scientific Manuscript database

    Much of the damage caused by red palm weevil larvae to date palms, ornamental palms, and palm offshoots could be mitigated by early detection and treatment of infestations. Acoustic technology has potential to enable early detection, but the short, high-frequency sound impulses produced by red palm ...

  6. Localization of quenches and mechanical disturbances in the Mu2e transport solenoid prototype using acoustic emission technique

    DOE PAGES

    Marchevsky, M.; Ambrosio, G.; Lamm, M.; ...

    2016-02-12

    Acoustic emission (AE) detection is a noninvasive technique allowing the localization of the mechanical events and quenches in superconducting magnets. Application of the AE technique is especially advantageous in situations where magnet integrity can be jeopardized by the use of voltage taps or inductive pickup coils. As the prototype module of the transport solenoid (TS) for the Mu2e experiment at Fermilab represents such a special case, we have developed a dedicated six-channel AE detection system and accompanying software aimed at localizing mechanical events during the coil cold testing. The AE sensors based on transversely polarized piezoceramic washers combined with cryogenicmore » preamplifiers were mounted at the outer surface of the solenoid aluminum shell, with a 60° angular step around the circumference. Acoustic signals were simultaneously acquired at a rate of 500 kS/s, prefiltered and sorted based on their arrival time. Next, based on the arrival timing, angular and axial coordinates of the AE sources within the magnet structure were calculated. Furthermore, we present AE measurement results obtained during cooldown, spot heater firing, and spontaneous quenching of the Mu2e TS module prototype and discuss their relevance for mechanical stability assessment and quench localization.« less

  7. Ethanol induces impulsive-like responding in a delay-of-reward operant choice procedure: impulsivity predicts autoshaping.

    PubMed

    Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D

    1998-10-01

    Autoshaping conditioned responses (CRs) are reflexive and targeted motor responses expressed as a result of experience with reward. To evaluate the hypothesis that autoshaping may be a form of impulsive responding, within-subjects correlations between performance on autoshaping and impulsivity tasks were assessed in 15 Long-Evans hooded rats. Autoshaping procedures [insertion of retractable lever conditioned stimulus (CS) followed by the response-independent delivery of food (US)] were followed by testing for impulsive-like responding in a two-choice lever-press operant delay-of-reward procedure (immediate small food reward versus delayed large food reward). Delay-of-reward functions revealed two distinct subject populations. Subjects in the Sensitive group (n=7) were more impulsive-like, increasing immediate reward choices at longer delays for large reward, while those in the Insensitive group (n=8) responded predominantly on only one lever. During the prior autoshaping phase, the Sensitive group had performed more autoshaping CRs, and correlations revealed that impulsive subjects acquired the autoshaping CR in fewer trials. In the Sensitive group, acute injections of ethanol (0, 0.25, 0.50, 1.00, 1.50 g/kg) given immediately before delay-of-reward sessions yielded an inverted U-shaped dose-response curve with increased impulsivity induced by the 0.25, 0.50, and 1.00 g/kg doses of ethanol, while choice strategy of the Insensitive group was not influenced by ethanol dose. Ethanol induced impulsive-like responding only in rats that were flexible in their response strategy (Sensitive group), and this group also performed more autoshaping CRs. Data support the hypothesis that autoshaping and impulsivity are linked.

  8. Study on acoustical properties of sintered bronze porous material for transient exhaust noise of pneumatic system

    NASA Astrophysics Data System (ADS)

    Li, Jingxiang; Zhao, Shengdun; Ishihara, Kunihiko

    2013-05-01

    A novel approach is presented to study the acoustical properties of sintered bronze material, especially used to suppress the transient noise generated by the pneumatic exhaust of pneumatic friction clutch and brake (PFC/B) systems. The transient exhaust noise is impulsive and harmful due to the large sound pressure level (SPL) that has high-frequency. In this paper, the exhaust noise is related to the transient impulsive exhaust, which is described by a one-dimensional aerodynamic model combining with a pressure drop expression of the Ergun equation. A relation of flow parameters and sound source is set up. Additionally, the piston acoustic source approximation of sintered bronze silencer with cylindrical geometry is presented to predict SPL spectrum at a far-field observation point. A semi-phenomenological model is introduced to analyze the sound propagation and reduction in the sintered bronze materials assumed as an equivalent fluid with rigid frame. Experiment results under different initial cylinder pressures are shown to corroborate the validity of the proposed aerodynamic model. In addition, the calculated sound pressures according to the equivalent sound source are compared with the measured noise signals both in time-domain and frequency-domain. Influences of porosity of the sintered bronze material are also discussed.

  9. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  10. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  11. Individual differences in components of impulsivity and effortful control moderate the relation between borderline personality disorder traits and emotion recognition in a sample of university students.

    PubMed

    Preti, Emanuele; Richetin, Juliette; Suttora, Chiara; Pisani, Alberto

    2016-04-30

    Dysfunctions in social cognition characterize personality disorders. However, mixed results emerged from literature on emotion processing. Borderline Personality Disorder (BPD) traits are either associated with enhanced emotion recognition, impairments, or equal functioning compared to controls. These apparent contradictions might result from the complexity of emotion recognition tasks used and from individual differences in impulsivity and effortful control. We conducted a study in a sample of undergraduate students (n=80), assessing BPD traits, using an emotion recognition task that requires the processing of only visual information or both visual and acoustic information. We also measured individual differences in impulsivity and effortful control. Results demonstrated the moderating role of some components of impulsivity and effortful control on the capability of BPD traits in predicting anger and happiness recognition. We organized the discussion around the interaction between different components of regulatory functioning and task complexity for a better understanding of emotion recognition in BPD samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. A consideration on physical tuning for acoustical coloration in recording studio

    NASA Astrophysics Data System (ADS)

    Shimizu, Yasushi

    2003-04-01

    Coloration due to particular architectural shapes and dimension or less surface absorption has been mentioned as an acoustical defect in recording studio. Generally interference among early reflected sounds arriving within 10 ms in delay after the direct sound produces coloration by comb filter effect over mid- and high-frequency sounds. In addition, less absorbed room resonance modes also have been well known as a major component for coloration in low-frequency sounds. Small size in dimension with recording studio, however, creates difficulty in characterization associated with wave acoustics behavior, that make acoustical optimization more difficult than that of concert hall acoustics. There still remains difficulty in evaluating amount of coloration as well as predicting its acoustical characteristics in acoustical modeling and in other words acoustical tuning technique during construction is regarded as important to optimize acoustics appropriately to the function of recording studio. This paper presents a example of coloration by comb filtering effect and less damped room modes in typical post-processing recording studio. And acoustical design and measurement technique will be presented for adjusting timbre due to coloration based on psycho-acoustical performance with binaural hearing and room resonance control with line array resonator adjusted to the particular room modes considered.

  13. Field Measurement of the Acoustic Nonlinearity Parameter in Turbine Blades

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.; Na, Jeong K.; Yost, William T.; Kessel, Gregory L.

    2000-01-01

    Nonlinear acoustics techniques were used to measure fatigue in turbine blades in a power generation plant. The measurements were made in the field using a reference based measurement technique, and a reference sample previously measured in the laboratory. The acoustic nonlinearity parameter showed significant increase with fatigue in the blades, as indicated by service age and areas of increased stress. The technique shows promise for effectively measuring fatigue in field applications and predicting subsequent failures.

  14. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  15. High resolution SAW elastography for ex-vivo porcine skin specimen

    NASA Astrophysics Data System (ADS)

    Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.

  16. A study of FM threshold extension techniques

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Loch, F. J.

    1972-01-01

    The characteristics of three postdetection threshold extension techniques are evaluated with respect to the ability of such techniques to improve the performance of a phase lock loop demodulator. These techniques include impulse-noise elimination, signal correlation for the detection of impulse noise, and delta modulation signal processing. Experimental results from signal to noise ratio data and bit error rate data indicate that a 2- to 3-decibel threshold extension is readily achievable by using the various techniques. This threshold improvement is in addition to the threshold extension that is usually achieved through the use of a phase lock loop demodulator.

  17. Use of the Fakopp TreeSonic acoustic device to estimate wood quality characteristics in loblolly pine trees planted at different densities

    Treesearch

    Ralph L. Amateis; Harold E. Burkhart

    2015-01-01

    A Fakopp TreeSonic acoustic device was used to measure time of flight (TOF) impulses through sample trees prior to felling from 27-year-old loblolly pine (Pinus taeda L.) plantations established at different planting densities. After felling, the sample trees were sawn into lumber and the boards subjected to edgewise bending under 2-point loading. Bending properties...

  18. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  19. Impulsivity and sexual assault in college men.

    PubMed

    Mouilso, Emily R; Calhoun, Karen S; Rosenbloom, Thomas G

    2013-01-01

    Although impulsivity has been consistently linked to perpetration of sexual aggression, results lack clarity because they do not account for the substantial heterogeneity associated with the construct. The UPPS-P model (Lynam, Smith, Whiteside, & Cyders, 2006), which was proposed to clarify the multidimensional nature of impulsivity, has yet to be applied to sexual aggression. We measured UPPS-P Impulsivity in a sample of male college students who also self-reported on perpetration of sexual aggression. As predicted, impulsivity distinguished perpetrators from nonperpetrators. Perpetrators scored higher than non-perpetrators on Negative Urgency, Positive Urgency, and lack of Premeditation. Results suggest that the impulsivity traits most relevant to sexual aggression are the tendency to act impulsively when experiencing intense emotions (Positive and Negative Urgency) and lack of forethought and planning (lack of Premeditation).

  20. Optimum Multi-Impulse Rendezvous Program

    NASA Technical Reports Server (NTRS)

    Glandorf, D. R.; Onley, A. G.; Rozendaal, H. L.

    1970-01-01

    OMIRPROGRAM determines optimal n-impulse rendezvous trajectories under the restrictions of two-body motion in free space. Lawden's primer vector theory is applied to determine optimum number of midcourse impulse applications. Global optimality is not guaranteed.

  1. Cluster synchronization of community network with distributed time delays via impulsive control

    NASA Astrophysics Data System (ADS)

    Leng, Hui; Wu, Zhao-Yan

    2016-11-01

    Cluster synchronization is an important dynamical behavior in community networks and deserves further investigations. A community network with distributed time delays is investigated in this paper. For achieving cluster synchronization, an impulsive control scheme is introduced to design proper controllers and an adaptive strategy is adopted to make the impulsive controllers unified for different networks. Through taking advantage of the linear matrix inequality technique and constructing Lyapunov functions, some synchronization criteria with respect to the impulsive gains, instants, and system parameters without adaptive strategy are obtained and generalized to the adaptive case. Finally, numerical examples are presented to demonstrate the effectiveness of the theoretical results. Project supported by the National Natural Science Foundation of China (Grant No. 61463022), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20161BAB201021), and the Natural Science Foundation of Jiangxi Educational Committee, China (Grant No. GJJ14273).

  2. Acoustic waves in the atmosphere and ground generated by volcanic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichihara, Mie; Lyons, John; Oikawa, Jun

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted alsomore » to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.« less

  3. Discrete-Time Mapping for an Impulsive Goodwin Oscillator with Three Delays

    NASA Astrophysics Data System (ADS)

    Churilov, Alexander N.; Medvedev, Alexander; Zhusubaliyev, Zhanybai T.

    A popular biomathematics model of the Goodwin oscillator has been previously generalized to a more biologically plausible construct by introducing three time delays to portray the transport phenomena arising due to the spatial distribution of the model states. The present paper addresses a similar conversion of an impulsive version of the Goodwin oscillator that has found application in mathematical modeling, e.g. in endocrine systems with pulsatile hormone secretion. While the cascade structure of the linear continuous part pertinent to the Goodwin oscillator is preserved in the impulsive Goodwin oscillator, the static nonlinear feedback of the former is substituted with a pulse modulation mechanism thus resulting in hybrid dynamics of the closed-loop system. To facilitate the analysis of the mathematical model under investigation, a discrete mapping propagating the continuous state variables through the firing times of the impulsive feedback is derived. Due to the presence of multiple time delays in the considered model, previously developed mapping derivation approaches are not applicable here and a novel technique is proposed and applied. The mapping captures the dynamics of the original hybrid system and is instrumental in studying complex nonlinear phenomena arising in the impulsive Goodwin oscillator. A simulation example is presented to demonstrate the utility of the proposed approach in bifurcation analysis.

  4. Adaptive parametric model order reduction technique for optimization of vibro-acoustic models: Application to hearing aid design

    NASA Astrophysics Data System (ADS)

    Creixell-Mediante, Ester; Jensen, Jakob S.; Naets, Frank; Brunskog, Jonas; Larsen, Martin

    2018-06-01

    Finite Element (FE) models of complex structural-acoustic coupled systems can require a large number of degrees of freedom in order to capture their physical behaviour. This is the case in the hearing aid field, where acoustic-mechanical feedback paths are a key factor in the overall system performance and modelling them accurately requires a precise description of the strong interaction between the light-weight parts and the internal and surrounding air over a wide frequency range. Parametric optimization of the FE model can be used to reduce the vibroacoustic feedback in a device during the design phase; however, it requires solving the model iteratively for multiple frequencies at different parameter values, which becomes highly time consuming when the system is large. Parametric Model Order Reduction (pMOR) techniques aim at reducing the computational cost associated with each analysis by projecting the full system into a reduced space. A drawback of most of the existing techniques is that the vector basis of the reduced space is built at an offline phase where the full system must be solved for a large sample of parameter values, which can also become highly time consuming. In this work, we present an adaptive pMOR technique where the construction of the projection basis is embedded in the optimization process and requires fewer full system analyses, while the accuracy of the reduced system is monitored by a cheap error indicator. The performance of the proposed method is evaluated for a 4-parameter optimization of a frequency response for a hearing aid model, evaluated at 300 frequencies, where the objective function evaluations become more than one order of magnitude faster than for the full system.

  5. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  6. Determination of thermoelastic material properties by differential heterodyne detection of impulsive stimulated thermal scattering

    PubMed Central

    Verstraeten, B.; Sermeus, J.; Salenbien, R.; Fivez, J.; Shkerdin, G.; Glorieux, C.

    2015-01-01

    The underlying working principle of detecting impulsive stimulated scattering signals in a differential configuration of heterodyne diffraction detection is unraveled by involving optical scattering theory. The feasibility of the method for the thermoelastic characterization of coating-substrate systems is demonstrated on the basis of simulated data containing typical levels of noise. Besides the classical analysis of the photoacoustic part of the signals, which involves fitting surface acoustic wave dispersion curves, the photothermal part of the signals is analyzed by introducing thermal wave dispersion curves to represent and interpret their grating wavelength dependence. The intrinsic possibilities and limitations of both inverse problems are quantified by making use of least and most squares analysis. PMID:26236643

  7. Impulsive choice and pre-exposure to delays: iv. effects of delay- and immediacy-exposure training relative to maturational changes in impulsivity.

    PubMed

    Renee Renda, C; Rung, Jillian M; Hinnenkamp, Jay E; Lenzini, Stephanie N; Madden, Gregory J

    2018-04-23

    Impulsive choice describes preference for smaller, sooner rewards over larger, later rewards. Excessive delay discounting (i.e., rapid devaluation of delayed rewards) underlies some impulsive choices, and is observed in many maladaptive behaviors (e.g., substance abuse, gambling). Interventions designed to reduce delay discounting may provide therapeutic gains. One such intervention provides rats with extended training with delayed reinforcers. When compared to a group given extended training with immediate reinforcers, delay-exposed rats make significantly fewer impulsive choices. To what extent is this difference due to delay-exposure training shifting preference toward self-control or immediacy-exposure training (the putative control group) shifting preference toward impulsivity? The current study compared the effects of delay- and immediacy-exposure training to a no-training control group and evaluated within-subject changes in impulsive choice across 51 male Wistar rats. Delay-exposed rats made significantly fewer impulsive choices than immediacy-exposed and control rats. Between-group differences in impulsive choice were not observed in the latter two groups. While delay-exposed rats showed large, significant pre- to posttraining reductions in impulsive choice, immediacy-exposed and control rats showed small reductions in impulsive choice. These results suggest that extended training with delayed reinforcers reduces impulsive choice, and that extended training with immediate reinforcers does not increase impulsive choice. © 2018 Society for the Experimental Analysis of Behavior.

  8. Non-invasive acoustic-based monitoring of uranium in solution and H/D ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Beedle, Christopher Craig; Sinha, Dipen N.

    The primary objective of this project is to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of demonstrating the ability to quantify U or H/D ratios in solution. Furthermore, a successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended uranium mass measurements for International Atomic Energy Agency (IAEA).

  9. Impulsivity and compulsive buying are associated in a non-clinical sample: an evidence for the compulsivity-impulsivity continuum?

    PubMed

    Paula, Jonas J de; Costa, Danielle de S; Oliveira, Flavianne; Alves, Joana O; Passos, Lídia R; Malloy-Diniz, Leandro F

    2015-01-01

    Compulsive buying is controversial in clinical psychiatry. Although it is defined as an obsessive-compulsive disorder, other personality aspects besides compulsivity are related to compulsive buying. Recent studies suggest that compulsivity and impulsivity might represent a continuum, with several psychiatric disorders lying between these two extremes. In this sense, and following the perspective of dimensional psychiatry, symptoms of impulsivity and compulsivity should correlate even in a non-clinical sample. The present study aims to investigate whether these two traits are associated in a healthy adult sample. We evaluated 100 adults, with no self-reported psychiatric disorders, using the Barratt Impulsiveness Scale-11 and two scales of compulsive buying. Using multiple linear regressions, we found that impulsivity accounted for about 15% of variance in the compulsive-buying measure. Our results suggest that an association between impulsivity and compulsive buying occurs even in non-clinical samples, evidence that compulsivity and impulsivity might form a continuum and that compulsive buying might be an intermediate condition between these two personality traits.

  10. Modeling and parameter identification of impulse response matrix of mechanical systems

    NASA Astrophysics Data System (ADS)

    Bordatchev, Evgueni V.

    1998-12-01

    A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the

  11. Localization of a continuous CO2 leak from an isotropic flat-surface structure using acoustic emission detection and near-field beamforming techniques

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Cui, Xiwang; Guo, Miao; Han, Xiaojuan

    2016-11-01

    Seal capacity is of great importance for the safety operation of pressurized vessels. It is crucial to locate the leak hole timely and accurately for reasons of safety and maintenance. This paper presents the principle and application of a linear acoustic emission sensor array and a near-field beamforming technique to identify the location of a continuous CO2 leak from an isotropic flat-surface structure on a pressurized vessel in the carbon capture and storage system. Acoustic signals generated by the leak hole are collected using a linear high-frequency sensor array. Time-frequency analysis and a narrow-band filtering technique are deployed to extract effective information about the leak. The impacts of various factors on the performance of the localization technique are simulated, compared and discussed, including the number of sensors, distance between the leak hole and sensor array and spacing between adjacent sensors. Experiments were carried out on a laboratory-scale test rig to assess the effectiveness and operability of the proposed method. The results obtained suggest that the proposed method is capable of providing accurate and reliable localization of a continuous CO2 leak.

  12. Different relations between schedule-induced polydipsia and impulsive behaviour in the Spontaneously Hypertensive Rat and in high impulsive Wistar rats: questioning the role of impulsivity in adjunctive behaviour.

    PubMed

    Ibias, Javier; Pellón, Ricardo

    2014-09-01

    Rats belonging to three different strains (15 Wistar, 8 Spontaneously Hypertensive - SHR- and 8 Wistar Kyoto - WKY-) were used to evaluate the possible relationship between different levels of impulsivity and development of schedule-induced polydipsia (SIP). We first measured the rats' levels of impulsivity by means of delay-discounting and indifference-point procedures. Secondly, development of SIP was studied under a series of fixed time 15, 30, 60 and 120s food schedules, which were counterbalanced by means of a Latin-square design. Finally, we re-assessed the rats' levels of impulsivity by replicating the delay-discounting test. The findings showed that, starting from equivalent levels of impulsivity, development of SIP differed among the groups of rats. In comparison with the rest of the animals, the SHRs were observed to attain elevated drinking rates under SIP. On the other hand, the Wistar rats which had initial high impulsivity levels similar to those of the SHRs, displayed the lowest rates of induced drinking. Moreover, low levels of impulsivity in Wistar rats prior to SIP acquisition were reflected into high drinking rates. Relation of SIP and impulsivity is questioned by present results, which gives ground to the understanding of the behavioural mechanisms involved in adjunctive behaviour and its usefulness as an animal model of excessive behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Tipping point analysis of ocean acoustic noise

    NASA Astrophysics Data System (ADS)

    Livina, Valerie N.; Brouwer, Albert; Harris, Peter; Wang, Lian; Sotirakopoulos, Kostas; Robinson, Stephen

    2018-02-01

    We apply tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system and study possible bifurcations and transitions of the system. The analysis is based on a statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the data using time-series techniques. We analyse long-term and seasonal trends, system states and acoustic fluctuations to reconstruct a one-dimensional stochastic equation to approximate the acoustic dynamical system. We apply potential analysis to acoustic fluctuations and detect several changes in the system states in the past 14 years. These are most likely caused by climatic phenomena. We analyse trends in sound pressure level within different frequency bands and hypothesize a possible anthropogenic impact on the acoustic environment. The tipping point analysis framework provides insight into the structure of the acoustic data and helps identify its dynamic phenomena, correctly reproducing the probability distribution and scaling properties (power-law correlations) of the time series.

  14. A new, simple electrostatic-acoustic hybrid levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Loeb, H.; Gross, D.

    1990-01-01

    Battelle has developed a hybrid levitator by combining the known single-axis acoustic standing wave levitator with a coaxial DC electric field. The resulting Coulomb forces on the charged liquid or solid sample support its weight and, together with the acoustic force, center the sample. Liquid samples with volumes approximately less than 100 micro-liters are deployed from a syringe reservoir into the acoustic pressure node. The sample is charged using a miniature high voltage power supply (approximately less than 20 kV) connected to the syringe needle. As the electric field, generated by a second miniature power supply, is increased, the acoustic intensity is reduced. The combination of both fields allows stable levitation of samples larger than either single technique could position on the ground. Decreasing the acoustic intensity reduces acoustic convection and sample deformation. Neither the electrostatic nor the acoustic field requires sample position sensing or active control. The levitator, now used for static and dynamic fluid physics investigations on the ground, can be easily modified for space operations.

  15. Barratt Impulsivity and Neural Regulation of Physiological Arousal.

    PubMed

    Zhang, Sheng; Hu, Sien; Hu, Jianping; Wu, Po-Lun; Chao, Herta H; Li, Chiang-shan R

    2015-01-01

    Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association. We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity. Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women. Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control.

  16. The Stomach-Derived Hormone Ghrelin Increases Impulsive Behavior

    PubMed Central

    Anderberg, Rozita H; Hansson, Caroline; Fenander, Maya; Richard, Jennifer E; Dickson, Suzanne L; Nissbrandt, Hans; Bergquist, Filip; Skibicka, Karolina P

    2016-01-01

    Impulsivity, defined as impaired decision making, is associated with many psychiatric and behavioral disorders, such as attention-deficit/hyperactivity disorder as well as eating disorders. Recent data indicate that there is a strong positive correlation between food reward behavior and impulsivity, but the mechanisms behind this relationship remain unknown. Here we hypothesize that ghrelin, an orexigenic hormone produced by the stomach and known to increase food reward behavior, also increases impulsivity. In order to assess the impact of ghrelin on impulsivity, rats were trained in three complementary tests of impulsive behavior and choice: differential reinforcement of low rate (DRL), go/no-go, and delay discounting. Ghrelin injection into the lateral ventricle increased impulsive behavior, as indicated by reduced efficiency of performance in the DRL test, and increased lever pressing during the no-go periods of the go/no-go test. Central ghrelin stimulation also increased impulsive choice, as evidenced by the reduced choice for large rewards when delivered with a delay in the delay discounting test. In order to determine whether signaling at the central ghrelin receptors is necessary for maintenance of normal levels of impulsive behavior, DRL performance was assessed following ghrelin receptor blockade with central infusion of a ghrelin receptor antagonist. Central ghrelin receptor blockade reduced impulsive behavior, as reflected by increased efficiency of performance in the DRL task. To further investigate the neurobiological substrate underlying the impulsivity effect of ghrelin, we microinjected ghrelin into the ventral tegmental area, an area harboring dopaminergic cell bodies. Ghrelin receptor stimulation within the VTA was sufficient to increase impulsive behavior. We further evaluated the impact of ghrelin on dopamine-related gene expression and dopamine turnover in brain areas key in impulsive behavior control. This study provides the first

  17. Acoustic cavity technology for high performance injectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of damping more than one mode of rocket engine combustion instability by means of differently tuned acoustic cavities sharing a common entrance was shown. Analytical procedures and acoustic modeling techniques for predicting the stability behavior of acoustic cavity designs in hot firings were developed. Full scale testing of various common entrance, dual cavity configurations, and subscale testing for the purpose of obtaining motion pictures of the cavity entrance region, to aid in determining the mechanism of cavity damping were the two major aspects of the program.

  18. Imaging of acoustic fields using optical feedback interferometry.

    PubMed

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry

    2014-12-01

    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.

  19. Impulsive Behaviors as an Emotion Regulation Strategy: Examining Associations between PTSD, Emotion Dysregulation, and Impulsive Behaviors among Substance Dependent Inpatients

    PubMed Central

    Weiss, Nicole H.; Tull, Matthew T.; Viana, Andres G.; Anestis, Michael D.; Gratz, Kim L.

    2012-01-01

    Recent investigations have demonstrated that posttraumatic stress disorder (PTSD) is associated with a range of impulsive behaviors (e.g., risky sexual behavior and antisocial behavior). The purpose of the present study was to extend extant research by exploring whether emotion dysregulation explains the association between PTSD and impulsive behaviors. Participants were an ethnically diverse sample of 206 substance use disorder (SUD) patients in residential substance abuse treatment. Results demonstrated an association between PTSD and impulsive behaviors, with SUD patients with PTSD reporting significantly more impulsive behaviors than SUD patients without PTSD (in general and when controlling for relevant covariates). Further, emotion dysregulation was found to fully mediate the relationship between PTSD and impulsive behaviors. Results highlight the relevance of emotion dysregulation to impulsive behaviors and suggest that treatments targeting emotion dysregulation may be useful in reducing impulsive behaviors among SUD patients with PTSD. PMID:22366447

  20. Binaural room simulation

    NASA Technical Reports Server (NTRS)

    Lehnert, H.; Blauert, Jens; Pompetzki, W.

    1991-01-01

    In every-day listening the auditory event perceived by a listener is determined not only by the sound signal that a sound emits but also by a variety of environmental parameters. These parameters are the position, orientation and directional characteristics of the sound source, the listener's position and orientation, the geometrical and acoustical properties of surfaces which affect the sound field and the sound propagation properties of the surrounding fluid. A complete set of these parameters can be called an Acoustic Environment. If the auditory event perceived by a listener is manipulated in such a way that the listener is shifted acoustically into a different acoustic environment without moving himself physically, a Virtual Acoustic Environment has been created. Here, we deal with a special technique to set up nearly arbitrary Virtual Acoustic Environments, the Binaural Room Simulation. The purpose of the Binaural Room Simulation is to compute the binaural impulse response related to a virtual acoustic environment taking into account all parameters mentioned above. One possible way to describe a Virtual Acoustic Environment is the concept of the virtual sound sources. Each of the virtual sources emits a certain signal which is correlated but not necessarily identical with the signal emitted by the direct sound source. If source and receiver are non moving, the acoustic environment becomes a linear time-invariant system. Then, the Binaural Impulse Response from the source to a listener' s eardrums contains all relevant auditory information related to the Virtual Acoustic Environment. Listening into the simulated environment can easily be achieved by convolving the Binaural Impulse Response with dry signals and representing the results via headphones.

  1. Filament Breakage Monitoring in Fused Deposition Modeling Using Acoustic Emission Technique

    PubMed Central

    Jin, Li; Yan, Youruiling; Mei, Yiming

    2018-01-01

    Polymers are being used in a wide range of Additive Manufacturing (AM) applications and have been shown to have tremendous potential for producing complex, individually customized parts. In order to improve part quality, it is essential to identify and monitor the process malfunctions of polymer-based AM. The present work endeavored to develop an alternative method for filament breakage identification in the Fused Deposition Modeling (FDM) AM process. The Acoustic Emission (AE) technique was applied due to the fact that it had the capability of detecting bursting and weak signals, especially from complex background noises. The mechanism of filament breakage was depicted thoroughly. The relationship between the process parameters and critical feed rate was obtained. In addition, the framework of filament breakage detection based on the instantaneous skewness and relative similarity of the AE raw waveform was illustrated. Afterwards, we conducted several filament breakage tests to validate their feasibility and effectiveness. Results revealed that the breakage could be successfully identified. Achievements of the present work could be further used to develop a comprehensive in situ FDM monitoring system with moderate cost. PMID:29494559

  2. Dissecting Impulsivity and its Relationships to Drug Addictions

    PubMed Central

    Ashenhurst, James R.; Cervantes, M. Catalina; James, Alexander S.; Groman, Stephanie M.; Pennington, Zachary T.

    2015-01-01

    Addictions are often characterized as forms of impulsive behavior. That said, it is often noted that impulsivity is a multidimensional construct, spanning several psychological domains. This review describes the relationship between varieties of impulsivity and addiction-related behaviors, the nature of the causal relationship between the two and the underlying neurobiological mechanisms that promote impulsive behaviors. We conclude that the available data strongly supports the notion that impulsivity is both a risk factor for, and a consequence of, drug and alcohol consumption. While the evidence indicating that subtypes of impulsive behavior are uniquely informative – either biologically or with respect to their relationships to addictions – is convincing, multiple lines of study link “distinct” subtypes of impulsivity to low dopamine D2 receptor function and perturbed serotonergic transmission, revealing shared mechanisms between the subtypes. Therefore, a common biological framework involving monoaminergic transmitters in key frontostriatal circuits may link multiple forms of impulsivity to drug self-administration and addiction-related behaviors. Further dissection of these relationships is needed before the next phase of genetic and genomic discovery will be able to reveal the biological sources of the vulnerability for addiction indexed by impulsivity. PMID:24654857

  3. Impulse-control disorders in a college sample: results from the self-administered Minnesota Impulse Disorders Interview (MIDI).

    PubMed

    Odlaug, Brian L; Grant, Jon E

    2010-01-01

    This study sought to examine the prevalence rates of and gender differences among impulse-control disorders in a college sample. During the fall semester of 2006, 791 college students from 2 private colleges in the Midwest completed a self-administered, modified version of the Minnesota Impulse Disorders Interview to assess lifetime rates of DSM-IV-TR-diagnosed impulse-control disorders. Participation was voluntary and anonymous. The mean age of the sample was 20.0 +/- 1.25 years, with females comprising 67.9% of the respondents. Of the individuals, 10.4% (n = 82) met criteria for at least 1 lifetime impulse-control disorder. The most common disorders were trichotillomania (3.91%) and compulsive sexual behavior (3.66%). Kleptomania was the least common (0.38%). Males were significantly more likely to screen positive for pathological gambling (P = .003) and compulsive sexual behavior (P = .002). Females were more likely to have compulsive buying (P = .033). Impulse-control disorders appear to be common among college students. The high rates indicate that these disorders may be incipient during late adolescence and early adulthood and should be addressed prior to onset of clinical versions of the impulse-control disorder.

  4. Elastographic techniques of thyroid gland: current status.

    PubMed

    Andrioli, Massimiliano; Persani, Luca

    2014-08-01

    Thyroid nodules are very common with malignancies accounting for about 5 %. Fine-needle biopsy is the most accurate test for thyroid cancer diagnosis. Elastography, a new technology directly evaluating the elastic property of the tissue, has been recently added to the diagnostic armamentarium of the endocrinologists as noninvasive predictor of thyroid malignancy. In this paper, we critically reviewed characteristics and applications of elastographic methods in thyroid gland. Elastographic techniques can be classified on the basis of the following: source-of-tissue compression (free-hand, carotid vibration, ultrasound pulses), processing time (real-time, off-line), stiffness expression (qualitative, semi-quantitative, or quantitative). Acoustic radiation force impulse and aixplorer shear wave are the newest and most promising quantitative elastographic methods. Primary application of elastography is the detection of nodular lesions suspicious for malignancy. Published data show a high sensitivity and negative predictive value of the technique. Insufficient data are available on the possible application of elastography in the differential diagnosis of indeterminate lesions and in thyroiditis. Elastography represents a noninvasive tool able to increase the performance of ultrasound in the selection of thyroid nodules at higher risk of malignancy. Some technical improvements and definition of more robust quantitative diagnostic criteria are required for assigning a definite role in the management of thyroid nodules and thyroiditis to elastography.

  5. Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior

    PubMed Central

    Nautiyal, Katherine M; Wall, Melanie M; Wang, Shuai; Magalong, Valerie M; Ahmari, Susanne E; Balsam, Peter D; Blanco, Carlos; Hen, René

    2017-01-01

    Impulsivity is an endophenotype found in many psychiatric disorders including substance use disorders, pathological gambling, and attention deficit hyperactivity disorder. Two behavioral features often considered in impulsive behavior are behavioral inhibition (impulsive action) and delayed gratification (impulsive choice). However, the extent to which these behavioral constructs represent distinct facets of behavior with discrete biological bases is unclear. To test the hypothesis that impulsive action and impulsive choice represent statistically independent behavioral constructs in mice, we collected behavioral measures of impulsivity in a single cohort of mice using well-validated operant behavioral paradigms. Mice with manipulation of serotonin 1B receptor (5-HT1BR) expression were included as a model of disordered impulsivity. A factor analysis was used to characterize correlations between the measures of impulsivity and to identify covariates. Using two approaches, we dissociated impulsive action from impulsive choice. First, the absence of 5-HT1BRs caused increased impulsive action, but not impulsive choice. Second, based on an exploratory factor analysis, a two-factor model described the data well, with measures of impulsive action and choice separating into two independent factors. A multiple-indicator multiple-causes analysis showed that 5-HT1BR expression and sex were significant covariates of impulsivity. Males displayed increased impulsivity in both dimensions, whereas 5-HT1BR expression was a predictor of increased impulsive action only. These data support the conclusion that impulsive action and impulsive choice are distinct behavioral phenotypes with dissociable biological influences that can be modeled in mice. Our work may help inform better classification, diagnosis, and treatment of psychiatric disorders, which present with disordered impulsivity. PMID:27976680

  6. Laser-induced acoustic imaging of underground objects

    NASA Astrophysics Data System (ADS)

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  7. An Investigation of Acoustic Cavitation Produced by Pulsed Ultrasound

    DTIC Science & Technology

    1987-12-01

    S~ PVDF Hydrophone Sensitivity Calibration Curves C. DESCRIPTION OF TEST AND CALIBRATION TECHNIQUE We chose the reciprocity technique for calibration...NAVAL POSTGRADUATE SCHOOLN a n Monterey, Calif ornia ITHESIS AN INVESTIGATION OF ACOUSTIC CAVITATION PRODUCED BY PULSED ULTRASOUND by Robert L. Bruce...INVESTIGATION OF ACOUSTIC CAVITATION PRODUCED B~Y PULSED ULTRASOUND !2 PERSONAL AUTHOR(S) .RR~r. g~rtL_ 1DLJN, Rober- ., Jr. 13a TYPE OF REPORT )3b TIME

  8. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Karl A.; Candy, Jim V.; Guss, Gabe

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  9. Endeavour Impulse Tests

    NASA Image and Video Library

    2003-10-27

    In the Orbiter Processing Facility, Eric Madaras, NASA-Langley Research Center, conducts impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

  10. Innovative acoustic technique for studying new materials and new developments in solid state physics

    NASA Astrophysics Data System (ADS)

    Maynard, Julian D.

    1993-10-01

    The goals of this project involve the use of innovative acoustic techniques to study new materials and new developments in solid state physics, such as effects in mesoscopic electronic systems. Major accomplishments include (1) the preparation and publication of a number of major papers and chapters in books, (2) the comparison of the anisotropy of an aluminum alloy quasicrystal with that of its cubic approximant, (3) the measurement of the elastic constants of a diamond substitute material, TiB2, (4) the measurement of an extremely low (possibly the lowest) infrared optical-absorption coefficient, (5) the measurement of the effects of disorder on the propagation of a nonlinear pulse, and (6) the acquisition of initial data in an experiment on the onset of fracture.

  11. A millisecond micromixer via single-bubble-based acoustic streaming.

    PubMed

    Ahmed, Daniel; Mao, Xiaole; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun

    2009-09-21

    We present ultra-fast homogeneous mixing inside a microfluidic channel via single-bubble-based acoustic streaming. The device operates by trapping an air bubble within a "horse-shoe" structure located between two laminar flows inside a microchannel. Acoustic waves excite the trapped air bubble at its resonance frequency, resulting in acoustic streaming, which disrupts the laminar flows and triggers the two fluids to mix. Due to this technique's simple design, excellent mixing performance, and fast mixing speed (a few milliseconds), our single-bubble-based acoustic micromixer may prove useful for many biochemical studies and applications.

  12. Acoustic metamaterials with broadband and wide-angle impedance matching

    NASA Astrophysics Data System (ADS)

    Liu, Chenkai; Luo, Jie; Lai, Yun

    2018-04-01

    We propose a general approach to design broadband and wide-angle impedance-matched acoustic metamaterials. Such an unusual acoustic impedance matching characteristic can be well explained by using a spatially dispersive effective medium theory. For demonstrations, we used silicone rubber, which has a huge impedance contrast with water, to design one- and two-dimensional acoustic structures which are almost perfectly impedance matched to water for a wide range of incident angles and in a broad frequency band. Our work opens up an approach to realize extraordinary acoustic impedance matching properties via metamaterial-design techniques.

  13. The relationship between lateral differences in tympanic membrane temperature and behavioral impulsivity.

    PubMed

    Helton, William S

    2010-11-01

    In this study lateral differences in tympanic membrane temperature (T(Ty)) were explored as a correlate of either impulsive or cautious responding in Go-No-Go tasks. Thirty-two women and men performed two sustained attention to response tasks (Go-No-Go tasks). Those with warmer right in comparison to left tympanic membranes were more cautious, and those with warmer left in comparison to right tympanic membranes were more impulsive. This finding is in line with previous research and theory indicating a hemispheric bias for active and passive behavior. T(Ty) may be a useful addition to the techniques employed by neuropsychologists. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Impulsivity, "advergames," and food intake.

    PubMed

    Folkvord, Frans; Anschütz, Doeschka J; Nederkoorn, Chantal; Westerik, Henk; Buijzen, Moniek

    2014-06-01

    Previous studies have focused on the effect of food advertisements on the caloric intake of children. However, the role of individual susceptibility in this effect is unclear. The aim of this study was to examine the role of impulsivity in the effect of advergames that promote energy-dense snacks on children's snack intake. First, impulsivity scores were assessed with a computer task. Then a randomized between-subject design was conducted with 261 children aged 7 to 10 years who played an advergame promoting either energy-dense snacks or nonfood products. As an extra manipulation, half of the children in each condition were rewarded for refraining from eating, the other half were not. Children could eat freely while playing the game. Food intake was measured. The children then completed questionnaire measures, and were weighed and measured. Overall, playing an advergame containing food cues increased general caloric intake. Furthermore, rewarding children to refrain from eating decreased their caloric intake. Finally, rewarding impulsive children to refrain from eating had no influence when they were playing an advergame promoting energy-dense snacks, whereas it did lead to reduced intake among low impulsive children and children who played nonfood advergames. Playing an advergame promoting energy-dense snacks contributes to increased caloric intake in children. The advergame promoting energy-dense snacks overruled the inhibition task to refrain from eating among impulsive children, making it more difficult for them to refrain from eating. The findings suggest that impulsivity plays an important role in susceptibility to food advertisements. Copyright © 2014 by the American Academy of Pediatrics.

  15. Imaging feedback for histotripsy by characterizing dynamics of acoustic radiation force impulse (ARFI)-induced shear waves excited in a treated volume.

    PubMed

    Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A

    2014-07-01

    Our previous study indicated that shear waves decay and propagate at a lower speed as they propagate into a tissue volume mechanically fractionated by histotripsy. In this paper, we hypothesize that the change in the shear dynamics is related to the degree of tissue fractionation, and can be used to predict histotripsy treatment outcomes. To test this hypothesis, lesions with different degrees of tissue fractionation were created in agar-graphite tissue phantoms and ex vivo kidneys with increasing numbers of therapy pulses, from 0 to 2000 pulses per treatment location. The therapy pulses were 3-cycle 750-kHz focused ultrasound delivered at a peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. The shear waves were excited by acoustic radiation force impulse (ARFI) focused at the center of the lesion. The spatial and temporal behavior of the propagating shear waves was measured with ultrasound plane wave imaging. The temporal displacement profile at a lateral location 10 mm offset to the shear excitation region was detected with M-mode imaging. The decay and delay of the shear waves were quantitatively characterized on the temporal displacement profile. Results showed significant changes in two characteristics on the temporal displacement profile: the peak-to-peak displacement decayed exponentially with increasing numbers of therapy pulses; the relative time-to-peak displacement increased with increasing numbers of therapy pulses, and appeared to saturate at higher numbers of pulses. Correspondingly, the degree of tissues fractionation, as indicated by the percentage of structurally intact cell nuclei, decreased exponentially with increasing numbers of therapy pulses. Strong linear correlations were found between the two characteristics and the degree of tissue fractionation. These results suggest that the characteristics of the shear temporal displacement profile may provide useful feedback information regarding the treatment outcomes.

  16. Modification of splenic stiffness on acoustic radiation force impulse parallels the variation of portal pressure induced by transjugular intrahepatic portosystemic shunt.

    PubMed

    De Santis, Adriano; Nardelli, Silvia; Bassanelli, Chiara; Lupo, Marinella; Iegri, Claudia; Di Ciesco, Carmela Anna; Forlino, Mariana; Farcomeni, Alessio; Riggio, Oliviero

    2018-03-01

    Spleen and liver stiffness (LS) measured by acoustic radiation force impulse (ARFI) imaging has been shown to be useful in identifying patients with portal hypertension. The study aims to establish if the modification of portal pressure induced by a transjugular intrahepatic portosystemic shunt (TIPS) parallels the modification of spleen or LS measured by ARFI in order to understand if ARFI may be used to monitor the modification of portal pressure in patients with cirrhosis. Thirty-eight patients with severe portal hypertension underwent LS and spleen stiffness (SS) before TIPS and 1 week after TIPS. Portal atrial gradient (PAG) was measured before and after the shunt opening. Portal atrial gradient decreased significantly from 19.5 to 6 mmHg (P < 0.001). SS decreased significantly after TIPS (pre-TIPS 3.7 m/s vs post-TIPS 3. 1 m/s; P < 0.001), and LS was also significantly modified by TIPS (pre-TIPS 2.8 m/s vs post-TIPS 2.4 m/s; P = 0.003). PAG and SS values measured before and after TIPS were significantly correlated (r = 0.56; P < 0.001); on the other hand, PAG and LS were not (r = 0.19; P = 0.27). Two patients developed a persistent hepatic encephalopathy refractory to medical treatment and were submitted to the reduction of the stent diameter. The modification of SS was parallel to the modification of PAG. Spleen stiffness is superior to LS in detecting the modification of portal pressure induced by TIPS. This makes SS a potential non-invasive method to monitor the modification of portal hypertension. Further investigations are needed to establish applicability and clinical utility of this promising tool in the treatment of portal hypertension. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  17. Barratt Impulsivity and Neural Regulation of Physiological Arousal

    PubMed Central

    Zhang, Sheng; Hu, Sien; Hu, Jianping; Wu, Po-Lun; Chao, Herta H.; Li, Chiang-shan R.

    2015-01-01

    Background Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association. Methods We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity. Results Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women. Conclusions Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control. PMID:26079873

  18. Acoustic method of damage sensing in composite materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Walker, James; Lansing, Matthew

    1994-01-01

    The use of acoustic emission and acousto-ultrasonics to characterize impact damage in composite structures is being performed on both graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology to include neural net analysis and/or other multivariate techniques will enhance the capability of the technique to identify failure mechanisms during fracture. The acousto-ultrasonics technique will be investigated to determine its ability to predict regions prone to failure prior to the burst tests. The combination of the two methods will allow for simple nondestructive tests to be capable of predicting the performance of a composite structure prior to being placed in service and during service.

  19. Acoustic-noise-optimized diffusion-weighted imaging.

    PubMed

    Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M

    2015-12-01

    This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.

  20. Dislodgement and removal of dust-particles from a surface by a technique combining acoustic standing wave and airflow.

    PubMed

    Chen, Di; Wu, Junru

    2010-01-01

    It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size.

  1. Experimental localization of an acoustic sound source in a wind-tunnel flow by using a numerical time-reversal technique.

    PubMed

    Padois, Thomas; Prax, Christian; Valeau, Vincent; Marx, David

    2012-10-01

    The possibility of using the time-reversal technique to localize acoustic sources in a wind-tunnel flow is investigated. While the technique is widespread, it has scarcely been used in aeroacoustics up to now. The proposed method consists of two steps: in a first experimental step, the acoustic pressure fluctuations are recorded over a linear array of microphones; in a second numerical step, the experimental data are time-reversed and used as input data for a numerical code solving the linearized Euler equations. The simulation achieves the back-propagation of the waves from the array to the source and takes into account the effect of the mean flow on sound propagation. The ability of the method to localize a sound source in a typical wind-tunnel flow is first demonstrated using simulated data. A generic experiment is then set up in an anechoic wind tunnel to validate the proposed method with a flow at Mach number 0.11. Monopolar sources are first considered that are either monochromatic or have a narrow or wide-band frequency content. The source position estimation is well-achieved with an error inferior to the wavelength. An application to a dipolar sound source shows that this type of source is also very satisfactorily characterized.

  2. Artillery/mortar type classification based on detected acoustic transients

    NASA Astrophysics Data System (ADS)

    Morcos, Amir; Grasing, David; Desai, Sachi

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  3. HART-II Acoustic Predictions using a Coupled CFD/CSD Method

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.

    2009-01-01

    This paper documents results to date from the Rotorcraft Acoustic Characterization and Mitigation activity under the NASA Subsonic Rotary Wing Project. The primary goal of this activity is to develop a NASA rotorcraft impulsive noise prediction capability which uses first principles fluid dynamics and structural dynamics. During this effort, elastic blade motion and co-processing capabilities have been included in a recent version of the computational fluid dynamics code (CFD). The CFD code is loosely coupled to computational structural dynamics (CSD) code using new interface codes. The CFD/CSD coupled solution is then used to compute impulsive noise on a plane under the rotor using the Ffowcs Williams-Hawkings solver. This code system is then applied to a range of cases from the Higher Harmonic Aeroacoustic Rotor Test II (HART-II) experiment. For all cases presented, the full experimental configuration (i.e., rotor and wind tunnel sting mount) are used in the coupled CFD/CSD solutions. Results show good correlation between measured and predicted loading and loading time derivative at the only measured radial station. A contributing factor for a typically seen loading mean-value offset between measured data and predictions data is examined. Impulsive noise predictions on the measured microphone plane under the rotor compare favorably with measured mid-frequency noise for all cases. Flow visualization of the BL and MN cases shows that vortex structures generated in the prediction method are consist with measurements. Future application of the prediction method is discussed.

  4. Impulse position control algorithms for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sesekin, A. N.; Nepp, A. N.

    2015-11-01

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  5. Impulse position control algorithms for nonlinear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesekin, A. N., E-mail: sesekin@list.ru; Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990; Nepp, A. N., E-mail: anepp@urfu.ru

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of suchmore » regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.« less

  6. Trackside acoustic diagnosis of axle box bearing based on kurtosis-optimization wavelet denoising

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai

    2018-04-01

    As one of the key components of railway vehicles, the operation condition of the axle box bearing has a significant effect on traffic safety. The acoustic diagnosis is more suitable than vibration diagnosis for trackside monitoring. The acoustic signal generated by the train axle box bearing is an amplitude modulation and frequency modulation signal with complex train running noise. Although empirical mode decomposition (EMD) and some improved time-frequency algorithms have proved to be useful in bearing vibration signal processing, it is hard to extract the bearing fault signal from serious trackside acoustic background noises by using those algorithms. Therefore, a kurtosis-optimization-based wavelet packet (KWP) denoising algorithm is proposed, as the kurtosis is the key indicator of bearing fault signal in time domain. Firstly, the geometry based Doppler correction is applied to signals of each sensor, and with the signal superposition of multiple sensors, random noises and impulse noises, which are the interference of the kurtosis indicator, are suppressed. Then, the KWP is conducted. At last, the EMD and Hilbert transform is applied to extract the fault feature. Experiment results indicate that the proposed method consisting of KWP and EMD is superior to the EMD.

  7. Impulse response of a two-dimensional rough surface overlying an inhomogeneous, nondispersive medium: A hybrid model

    NASA Astrophysics Data System (ADS)

    Keiffer, Richard; Novarini, Jorge; Norton, Guy

    2002-11-01

    A numerical model to calculate the impulse response of a two-dimensional, impenetrable, rough surface directly in the time domain has been recently introduced [R. S. Keiffer and J. C. Novarini, J. Acoust. Soc. Am. 107, 27-39 (2000)]. This model is based on wedge diffraction theory and assumes the half-space containing the source and receiver is homogeneous. In this work, the model is extended to handle media where the index of refraction varies with depth by merging the scattering model with a ray-based propagation model. The resulting hybrid model is tested against a finite-difference time-domain (FDTD) method for backscattering from a corrugated surface in the presence of a refractive layer. This new model can be applied, for example, to calculate acoustic reverberation from the sea surface in cases where the water mass is inhomogeneous and dispersion is negligible. [Work supported by ONR/NRL (PE 61153N-32) and by grants of computer time DoD HPC Shared Resource Center at Stennis Space Center, MS.

  8. Norepinephrine and impulsivity: Effects of acute yohimbine

    PubMed Central

    Swann, Alan C.; Lijffijt, Marijn; Lane, Scott D.; Cox, Blake; Steinberg, Joel L.; Moeller, F. Gerard

    2013-01-01

    Rationale Rapid-response impulsivity, characterized by inability to withhold response to a stimulus until it is adequately appraised, is associated with risky behavior and may be increased in a state-dependent manner by norepinephrine. Objective We assessed effects of yohimbine, which increases norepinephrine release by blocking alpha-2 noradrenergic receptors, on plasma catecholamine metabolites, blood pressure, subjective symptoms, and laboratory-measured rapid-response impulsivity. Methods Subjects were twenty-three healthy controls recruited from the community, with normal physical examination and ECG, and negative history for hypertension, cardiovascular illness, and Axis I or II disorder. Blood pressure, pulse, and behavioral measures were obtained before and periodically after 0.4 mg/kg oral yohimbine or placebo in a randomized, counterbalanced design. Metabolites of norepinephrine (3-methoxy-4-hydroxyphenylglycol, MHPG; vanillylmandelic acid, VMA) and dopamine (homovanillic acid, HVA) were measured by high pressure liquid chromatography with electrochemical detection. Rapid-response impulsivity was measured by commission errors and reaction times on the Immediate Memory Task (IMT), a continuous performance test designed to measure impulsivity and attention. Results Yohimbine increased plasma MHPG and VMA but not HVA. Yohimbine increased systolic and diastolic blood pressure and pulse rate. On the IMT, yohimbine increased impulsive errors and impulsive response bias and accelerated reaction times. Yohimbine-associated increase in plasma MHPG correlated with increased impulsive response rates. Time courses varied; effects on blood pressure generally preceded those on metabolites and test performance. Conclusions These effects are consistent with increased rapid-response impulsivity after pharmacological noradrenergic stimulation in healthy controls. Labile noradrenergic responses, or increased sensitivity to norepinephrine, may increase risk for impulsive

  9. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization.

    PubMed

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y; Alouini, Mohamed-Slim

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  10. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    PubMed Central

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique. PMID:29278405

  11. Pulse reflectometry as an acoustical inverse problem: Regularization of the bore reconstruction

    NASA Astrophysics Data System (ADS)

    Forbes, Barbara J.; Sharp, David B.; Kemp, Jonathan A.

    2002-11-01

    The theoretical basis of acoustic pulse reflectometry, a noninvasive method for the reconstruction of an acoustical duct from the reflections measured in response to an input pulse, is reviewed in terms of the inversion of the central Fredholm equation. It is known that this is an ill-posed problem in the context of finite-bandwidth experimental signals. Recent work by the authors has proposed the truncated singular value decomposition (TSVD) in the regularization of the transient input impulse response, a non-measurable quantity from which the spatial bore reconstruction is derived. In the present paper we further emphasize the relevance of the singular system framework to reflectometry applications, examining for the first time the transient bases of the system. In particular, by varying the truncation point for increasing condition numbers of the system matrix, it is found that the effects of out-of-bandwidth singular functions on the bore reconstruction can be systematically studied.

  12. Destabilizing Effects of Impulse in Delayed Bam Neural Networks

    NASA Astrophysics Data System (ADS)

    Li, Chuandong; Li, Chaojie; Liu, Chao

    This paper further studies the global exponential stability of the equilibrium point of the delayed bidirectional associative memory (DBAM) neural networks with impulse effects. Several results characterizing the aggregated effects of impulse and dynamical property of the impulse-free DBAM on the exponential stability of the considered DBAM have been established. It is shown that the impulsive DBAM will preserve the global exponential stability of the impulse-free DBAM even if the impulses have enlarging effects on the states of neurons.

  13. Acoustic design of the QCSEE propulsion systems

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Smith, E. B.; Sowers, H. D.

    1976-01-01

    Acoustic design features and techniques employed in the Quiet Clean Short-Haul Experimental Engine (QCSEE) Program are described. The role of jet/flap noise in selecting the engine fan pressure ratio for powered lift propulsion systems is discussed. The QCSEE acoustic design features include a hybrid inlet (near-sonic throat velocity with acoustic treatment); low fan and core pressure ratios; low fan tip speeds; gear-driven fans; high and low frequency stacked core noise treatment; multiple-thickness treatment; bulk absorber treatment; and treatment on the stator vanes. The QCSEE designs represent and anticipated acoustic technology improvement of 12 to 16 PNdb relative to the noise levels of the low-noise engines used on current wide-body commercial jet transport aircraft.

  14. Application of Air Coupled Acoustic Thermography (ACAT) for Inspection of Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Pergantis, Charles; Flanagan, David; Deschepper, Daniel

    2009-01-01

    The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.

  15. Self-reported impulsivity, but not behavioral approach or inhibition, mediates the relationship between stress and self-control

    PubMed Central

    Hamilton, Kristen R.; Sinha, Rajita; Potenza, Marc N.

    2014-01-01

    Stress has been associated with poor self-control. Individual differences in impulsivity and other behavioral tendencies may influence the relationship of stress with self-control, although this possibility has not been examined to date. The present research investigated whether cumulative stress is associated with poor self-control, and whether this relationship is mediated by impulsivity, behavioral approach, and behavioral inhibition in men and women. A community sample of 566 adults (319 women and 247 men) was assessed on the Cumulative Adversity Interview, Brief Self-control Scale, Barratt Impulsivity Scale, and Behavioral Activation System and Behavioral Inhibition System Scale (BIS/BAS). Data were analyzed using regression and bootstrapping techniques. In the total sample, the effects of cumulative stress on self-control were mediated by impulsivity. Neither behavioral inhibition nor behavioral approach mediated the association between cumulative stress and self-control in the total sample. Results were similar when men and women were considered separately, with impulsivity, but not behavioral inhibition or approach, mediating the association between cumulative stress and self-control. Impulsive individuals might benefit preferentially from interventions focusing on stress management and strategies for improving self-control. PMID:24508183

  16. Self-reported impulsivity, but not behavioral approach or inhibition, mediates the relationship between stress and self-control.

    PubMed

    Hamilton, Kristen R; Sinha, Rajita; Potenza, Marc N

    2014-11-01

    Stress has been associated with poor self-control. Individual differences in impulsivity and other behavioral tendencies may influence the relationship of stress with self-control, although this possibility has not been examined to date. The present research investigated whether cumulative stress is associated with poor self-control, and whether this relationship is mediated by impulsivity, behavioral approach, and behavioral inhibition in men and women. A community sample of 566 adults (319 women and 247 men) was assessed on the Cumulative Adversity Interview, Brief Self-control Scale, Barratt Impulsivity Scale, and Behavioral Activation System and Behavioral Inhibition System Scale (BIS/BAS). Data were analyzed using regression and bootstrapping techniques. In the total sample, the effects of cumulative stress on self-control were mediated by impulsivity. Neither behavioral inhibition nor behavioral approach mediated the association between cumulative stress and self-control in the total sample. Results were similar when men and women were considered separately, with impulsivity, but not behavioral inhibition or approach, mediating the association between cumulative stress and self-control. Impulsive individuals might benefit preferentially from interventions focusing on stress management and strategies for improving self-control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Airy acoustical-sheet spinner tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  18. The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1987-01-01

    This paper is theoretical in nature and addresses applications of the acoustic analogy in helicopter rotor noise prediction. It is argued that in many instances the acoustic analogy has not been used with care in rotor noise studies. By this it is meant that approximate or inappropriate formulations have been used. By considering various mechanisms of noise generation, such abuses are identified and the remedy is suggested. The mechanisms discussed are thickness, loading, quadrupole, and blade-vortex interaction noise. The quadrupole term of the Ffowcs Williams-Hawkings equation is written in a new form which separates the contributions of regions of high gradients such as shock surfaces. It is shown by order of magnitude studies that such regions are capable of producing noise with the same directivity as the thickness noise. The inclusion of this part of quadrupole sources in current acoustic codes is quite practical. Some of the difficulties with the use of loading noise formulations of the first author in predictions of blade-vortex interaction noise are discussed. It appears that there is a need for development of new theoretical results based on the acoustic analogy in this area. Because of the impulsive character of the blade surface pressure, a time scale of integration different from that used in loading and thickness computations must he used in a computer code for prediction of blade-vortex interaction noise.

  19. Acoustic Manifestations of Natural versus Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.; Aulich, G. D.; Trueblood, J.

    2010-12-01

    Positive leaders are rarely detected by VHF lightning detection systems; positive leader channels are usually outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped. The goal of this work is to study the types of thunder produced by natural versus triggered lightning and to assess which types of thunder signals have electromagnetic activity detected by the lightning mapping array (LMA). Towards this end we are investigating the lightning detection capabilities of acoustic techniques, and comparing them with the LMA. In a previous study we used array beam forming and time of flight information to locate acoustic sources associated with lightning. Even though there was some mismatch, generally LMA and acoustic techniques saw the same phenomena. To increase the database of acoustic data from lightning, we deployed a network of three infrasound arrays (30 m aperture) during the summer of 2010 (August 3 to present) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered lightning. The arrays were located at a range of distances (60 to 1400 m) surrounding the triggering site, called the Kiva, used by Langmuir Laboratory to launch rockets. We have continuous acoustic measurements of lightning data from July 20 to September 18 of 2009, and from August 3 to September 1 of 2010. So far, lightning activity around the Kiva was higher during the summer of 2009. We will present acoustic data from several interesting lightning flashes including a comparison between a natural and a triggered one.

  20. A STUDY OF METHODS OF CONTROLLING IMPULSES.

    ERIC Educational Resources Information Center

    WHITESIDE, RAY

    THE PERSON LESS ABLE TO CONTROL HIS IMPULSES IS ALSO APT TO EXHIBIT SOCIALLY DISVALUED BEHAVIOR. VOCATIONAL AND ACADEMIC FAILURE IS A PARTIAL CONSEQUENCE OF IMPULSIVENESS AND LACK OF SELF-CONTROL. TO INVESTIGATE IMPULSE CONTROL, TWO INSTRUMENTS BELIEVED TO MEASURE ATTRIBUTES OF OPPOSITE POLES OF THIS CONCEPT (SEQUENTIAL TESTS OF EDUCATIONAL…