Science.gov

Sample records for acoustic noise reduction

  1. Acoustically swept rotor. [helicopter noise reduction

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Boxwell, D. A.; Vause, R. (Inventor)

    1979-01-01

    Impulsive noise reduction is provided in a rotor blade by acoustically sweeping the chord line from root to tip so that the acoustic radiation resulting from the summation of potential singularities used to model the flow about the blade tend to cancel for all times at an observation point in the acoustic far field.

  2. Development of an acoustic actuator for launch vehicle noise reduction.

    PubMed

    Henderson, Benjamin K; Lane, Steven A; Gussy, Joel; Griffin, Steve; Farinholt, Kevin M

    2002-01-01

    In many active noise control applications, it is necessary that acoustic actuators be mounted in small enclosures due to volume constraints and in order to remain unobtrusive. However, the air spring of the enclosure is detrimental to the low-frequency performance of the actuator. For launch vehicle noise control applications, mass and volume constraints are very limiting, but the low-frequency performance of the actuator is critical. This work presents a novel approach that uses a nonlinear buckling suspension system and partial evacuation of the air within the enclosure to yield a compact, sealed acoustic driver that exhibits a very low natural frequency. Linear models of the device are presented and numerical simulations are given to illustrate the advantages of this design concept. An experimental prototype was built and measurements indicate that this design can significantly improve the low-frequency response of compact acoustic actuators. PMID:11831792

  3. Acoustical and Perceptual Comparison of Noise Reduction and Compression in Hearing Aids

    ERIC Educational Resources Information Center

    Brons, Inge; Houben, Rolph; Dreschler, Wouter A.

    2015-01-01

    Purpose: Noise reduction and dynamic-range compression are generally applied together in hearing aids but may have opposite effects on amplification. This study evaluated the acoustical and perceptual effects of separate and combined processing of noise reduction and compression. Design: Recordings of the output of 4 hearing aids for speech in…

  4. Noise reduction of a composite cylinder subjected to random acoustic excitation

    NASA Astrophysics Data System (ADS)

    Grosveld, Ferdinand W.; Beyer, T.

    1989-04-01

    Interior and exterior noise measurements were conducted on a stiffened composite floor-equipped cylinder, with and without an interior trim installed. Noise reduction was obtained for the case of random acoustic excitation in a diffuse field; the frequency range of interest was 100-800-Hz one-third octave bands. The measured data were compared with noise reduction predictions from the Propeller Aircraft Interior Noise (PAIN) program and from a statistical energy analysis. Structural model parameters were not predicted well by the PAIN program for the given input parameters; this resulted in incorrect noise reduction predictions for the lower one-third octave bands where the power flow into the interior of the cylinder was predicted on a mode-per-mode basis.

  5. Noise reduction of a composite cylinder subjected to random acoustic excitation

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Beyer, T.

    1989-01-01

    Interior and exterior noise measurements were conducted on a stiffened composite floor-equipped cylinder, with and without an interior trim installed. Noise reduction was obtained for the case of random acoustic excitation in a diffuse field; the frequency range of interest was 100-800-Hz one-third octave bands. The measured data were compared with noise reduction predictions from the Propeller Aircraft Interior Noise (PAIN) program and from a statistical energy analysis. Structural model parameters were not predicted well by the PAIN program for the given input parameters; this resulted in incorrect noise reduction predictions for the lower one-third octave bands where the power flow into the interior of the cylinder was predicted on a mode-per-mode basis.

  6. Reduction of gradient acoustic noise in MRI using SENSE-EPI.

    PubMed

    de Zwart, Jacco A; van Gelderen, Peter; Kellman, Peter; Duyn, Jeff H

    2002-08-01

    A new approach to reduce gradient acoustic noise levels in EPI experiments is presented. Using multichannel RF receive coils, combined with SENSE data acquisition and reconstruction, gradient slew-rates in single-shot EPI were reduced fourfold for rate-2 and ninefold for rate-3 SENSE. Multislice EPI experiments were performed on three different scanner platforms. With 3.4 mm in-plane resolution, measuring 6 slices per second (12 slices with 2000 ms TR), this resulted in average sound pressure level reductions of 11.3 dB(A) and 16.5 dB(A) for rate-2 and rate-3 SENSE, respectively. BOLD fMRI experiments, using visually paced finger-tapping paradigms, showed no detrimental effect of the acoustic noise reduction strategy on temporal noise levels and t scores. PMID:12202101

  7. Acoustic lens for marine seismic data multiple reflection noise reduction

    SciTech Connect

    Clark, W.H.

    1986-11-25

    This patent describes an apparatus for use in gathering seismic data in an area covered by a body of water having a surface, comprising: a seismic vessel; a seismic source towed by the seismic vessel for generating in the body of water an acoustic wave which will penetrate to and be reflected from at least one reflective horizon located below the body of water; a streamer towed by the seismic vessel in the body of water below its surface, including at least one hydrophone for detecting the acoustic wave reflected from at least one reflective horizon; a first gas dispensing tube and a second gas dispensing tube disposed in the water adjacent the vessel, the tubes each having a side wall and a plurality of perforations through the side wall for permitting gas bubbles to escape into the water; a first paravane attached to the first tube; a second paravane attached to the second tube; and control means connected to the first paravane and to the second paravane for controlling the position of the paravanes relative to the streamer.

  8. Robust Distributed Noise Reduction in Hearing Aids with External Acoustic Sensor Nodes

    NASA Astrophysics Data System (ADS)

    Bertrand, Alexander; Moonen, Marc

    2009-12-01

    The benefit of using external acoustic sensor nodes for noise reduction in hearing aids is demonstrated in a simulated acoustic scenario with multiple sound sources. A distributed adaptive node-specific signal estimation (DANSE) algorithm, that has a reduced communication bandwidth and computational load, is evaluated. Batch-mode simulations compare the noise reduction performance of a centralized multi-channel Wiener filter (MWF) with DANSE. In the simulated scenario, DANSE is observed not to be able to achieve the same performance as its centralized MWF equivalent, although in theory both should generate the same set of filters. A modification to DANSE is proposed to increase its robustness, yielding smaller discrepancy between the performance of DANSE and the centralized MWF. Furthermore, the influence of several parameters such as the DFT size used for frequency domain processing and possible delays in the communication link between nodes is investigated.

  9. Acoustic noise reduction. January 1970-November 1988 (Citations from the US Patent data base). Report for January 1970-November 1988

    SciTech Connect

    Not Available

    1988-12-01

    This bibliography contains citations of selected patents concerning methods, devices, and materials for acoustic-noise reduction. Included are noise-reduction techniques for engines, turbines, machinery, motor vehicles, pumps, aircraft cabins, and compressors. (Contains 189 citations fully indexed and including a title list.)

  10. An active structural acoustic control approach for the reduction of the structure-borne road noise

    NASA Astrophysics Data System (ADS)

    Douville, Hugo; Berry, Alain; Masson, Patrice

    2002-11-01

    The reduction of the structure-borne road noise generated inside the cabin of an automobile is investigated using an Active Structural Acoustic Control (ASAC) approach. First, a laboratory test bench consisting of a wheel/suspension/lower suspension A-arm assembly has been developed in order to identify the vibroacoustic transfer paths (up to 250 Hz) for realistic road noise excitation of the wheel. Frequency Response Function (FRF) measurements between the excitation/control actuators and each suspension/chassis linkage are used to characterize the different transfer paths that transmit energy through the chassis of the car. Second, a FE/BE model (Finite/Boundary Elements) was developed to simulate the acoustic field of an automobile cab interior. This model is used to predict the acoustic field inside the cabin as a response to the measured forces applied on the suspension/chassis linkages. Finally, an experimental implementation of ASAC is presented. The control approach relies on the use of inertial actuators to modify the vibration behavior of the suspension and the automotive chassis such that its noise radiation efficiency is decreased. The implemented algorithm consists of a MIMO (Multiple-Input-Multiple-Output) feedforward configuration with a filtered-X LMS algorithm using an advanced reference signal (width FIR filters) using the Simulink/Dspace environment for control prototyping.

  11. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  12. NASA/AHS rotorcraft noise reduction program - NASA Langley Acoustics Division contributions

    NASA Technical Reports Server (NTRS)

    Martin, Ruth M.

    1989-01-01

    An account is given of the contributions made by NASA-Langley's rotorcraft noise research programs over the last five years. Attention has been given to the broadband and blade-vortex interaction noise sources; both analytical and empirical noise-prediction codes have been developed and validated for several rotor noise sources, and the 'Rotonet' comprehensive system-noise prediction capability has been instituted. Among the technologies explored for helicopter noise reduction have been higher harmonic control and active vibration-suppression.

  13. NASA/AHS rotorcraft noise reduction program - NASA Langley Acoustics Division contributions

    NASA Astrophysics Data System (ADS)

    Martin, Ruth M.

    1989-06-01

    An account is given of the contributions made by NASA-Langley's rotorcraft noise research programs over the last five years. Attention has been given to the broadband and blade-vortex interaction noise sources; both analytical and empirical noise-prediction codes have been developed and validated for several rotor noise sources, and the 'Rotonet' comprehensive system-noise prediction capability has been instituted. Among the technologies explored for helicopter noise reduction have been higher harmonic control and active vibration-suppression.

  14. Acoustic theory of axisymmetric multisectioned ducts. [reduction of turbofan engine noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1974-01-01

    Equations are developed for the acoustic field in a duct system which is made up of a number of connected circular and annular ducts. These equations are suitable for finding the acoustic field inside of and radiated from an aircraft turbofan engine. Acoustic modes are used as generalized coordinates in order to develop a set of matrix equations for the acoustic field. Equations for these modes are given for circular and annular ducts with uniform flow. Modal source equations are derived for point acoustic sources. General equations for mode transmission and reflection are developed and detailed equations are derived for ducts with multiple sections of acoustic treatment and for ducts with circumferential splitter rings. The general theory is applied to the special case of a uniform area circular duct with multisection liners and it is shown that the mode reflection effects are proportional to differences of the acoustic admittances of adjacent liners. A numerical example is given which shows that multisection liners may provide greater noise suppression than uniform liners.

  15. Computational Aero-acoustics As a Tool For Turbo-machinery Noise Reduction

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2003-01-01

    This talk will provide an overview of the field of computational aero-acoustics and its use in fan noise prediction. After a brief history of computational fluid dynamics, some of the recent developments in computational aero-acoustics will be explored. Computational issues concerning sound wave production, propagation, and reflection in practical turbo-machinery applications will be discussed including: (a) High order/High Resolution Numerical Techniques. (b) High Resolution Boundary Conditions. [c] MIMD Parallel Computing. [d] Form of Governing Equations Useful for Simulations. In addition, the basic design of our Broadband Analysis Stator Simulator (BASS) code and its application to a 2 D rotor wake-stator interaction will be shown. An example of the noise produced by the wakes from a rotor impinging upon a stator cascade will be shown.

  16. Core Noise Reduction

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

  17. Evaluation of noise reduction systems for cochlear implant users in different acoustic environment.

    PubMed

    Hamacher, V; Doering, W H; Mauer, G; Fleischmann, H; Hennecke, J

    1997-11-01

    Evaluation of two different noise reduction algorithms for speech intelligibility enhancement in cochlear implant (CI) users is described in this report. The algorithms accomplish sophisticated interchannel processing of the noisy speech signals, picked up with two microphones, to form an improved monaural output signal, which is directly fed into the auxiliary input of the CI speech processor. Speech intelligibility tests were carried out in different realistic everyday life listening conditions to provide general and expressive performance assessment. Extensive tests in four CI users showed considerable speech intelligibility improvement using these noise reduction systems in adverse everyday life listening conditions. PMID:9391593

  18. Acoustic plane waves normally incident on a clamped panel in a rectangular duct. [to explain noise reduction curves for reducing interior noise in aircraft

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1979-01-01

    The theory of acoustic plane wave normally incident on a clamped panel in a rectangular duct is developed. The coupling theory between the elastic vibrations of the panel (plate) and the acoustic wave propagation in infinite space and in the rectangular duct is considered. The partial differential equation which governs the vibration of the panel (plate) is modified by adding to its stiffness (spring) forces and damping forces, and the fundamental resonance frequency and the attenuation factor are discussed. The noise reduction expression based on the theory is found to agree well with the corresponding experimental data of a sample aluminum panel in the mass controlled region, the damping controlled region, and the stiffness controlled region. All the frequency positions of the upward and downward resonance spikes in the sample experimental data are identified theoretically as resulting from four cross interacting major resonance phenomena: the cavity resonance, the acoustic resonance, the plate resonance, and the wooden back panel resonance.

  19. Reduction of turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A. (Inventor); Brookfield, John M. (Inventor); Sell, Julian (Inventor); Hayden, Belva J. (Inventor); Ingard, K. Uno (Inventor)

    1999-01-01

    In the invention, propagating broad band and tonal acoustic components of noise characteristic of interaction of a turbomachine blade wake, produced by a turbomachine blade as the blade rotates, with a turbomachine component downstream of the rotating blade, are reduced. This is accomplished by injection of fluid into the blade wake through a port in the rotor blade. The mass flow rate of the fluid injected into the blade wake is selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake. With this fluid injection, reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved. In a further noise reduction technique, boundary layer fluid is suctioned into the turbomachine blade through a suction port on the side of the blade that is characterized as the relatively low-pressure blade side. As with the fluid injection technique, the mass flow rate of the fluid suctioned into the blade is here selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake; reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved with this suction technique. Blowing and suction techniques are also provided in the invention for reducing noise associated with the wake produced by fluid flow around a stationary blade upstream of a rotating turbomachine.

  20. Acoustic Performance of Novel Fan Noise Reduction Technologies for a High Bypass Model Turbofan at Simulated Flights Conditions

    NASA Technical Reports Server (NTRS)

    Elliott, David M.; Woodward, Richard P.; Podboy, Gary G.

    2010-01-01

    Two novel fan noise reduction technologies, over the rotor acoustic treatment and soft stator vane technologies, were tested in an ultra-high bypass ratio turbofan model in the NASA Glenn Research Center s 9- by 15-Foot Low-Speed Wind Tunnel. The performance of these technologies was compared to that of the baseline fan configuration, which did not have these technologies. Sideline acoustic data and hot film flow data were acquired and are used to determine the effectiveness of the various treatments. The material used for the over the rotor treatment was foam metal and two different types were used. The soft stator vanes had several internal cavities tuned to target certain frequencies. In order to accommodate the cavities it was necessary to use a cut-on stator to demonstrate the soft vane concept.

  1. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  2. Acoustic and Laser Doppler Anemometer Results for Confluent, 22-Lobed, and Unique-Lobed Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)

    2002-01-01

    The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.

  3. The Airframe Noise Reduction Challenge

    NASA Technical Reports Server (NTRS)

    Lockhard, David P.; Lilley, Geoffrey M.

    2004-01-01

    The NASA goal of reducing external aircraft noise by 10 dB in the near-term presents the acoustics community with an enormous challenge. This report identifies technologies with the greatest potential to reduce airframe noise. Acoustic and aerodynamic effects will be discussed, along with the likelihood of industry accepting and implementing the different technologies. We investigate the lower bound, defined as noise generated by an aircraft modified with a virtual retrofit capable of eliminating all noise associated with the high lift system and landing gear. However, the airframe noise of an aircraft in this 'clean' configuration would only be about 8 dB quieter on approach than current civil transports. To achieve the NASA goal of 10 dB noise reduction will require that additional noise sources be addressed. Research shows that energy in the turbulent boundary layer of a wing is scattered as it crosses trailing edge. Noise generated by scattering is the dominant noise mechanism on an aircraft flying in the clean configuration. Eliminating scattering would require changes to much of the aircraft, and practical reduction devices have yet to receive serious attention. Evidence suggests that to meet NASA goals in civil aviation noise reduction, we need to employ emerging technologies and improve landing procedures; modified landing patterns and zoning restrictions could help alleviate aircraft noise in communities close to airports.

  4. Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Kenny, Patrick

    2004-01-01

    The Acoustics Branch is responsible for reducing noise levels for jet and fan components on aircraft engines. To do this, data must be measured and calibrated accurately to ensure validity of test results. This noise reduction is accomplished by modifications to hardware such as jet nozzles, and by the use of other experimental hardware such as fluidic chevrons, elliptic cores, and fluidic shields. To insure validity of data calibration, a variety of software is used. This software adjusts the sound amplitude and frequency to be consistent with data taken on another day. Both the software and the hardware help make noise reduction possible. work properly. These software programs were designed to make corrections for atmosphere, shear, attenuation, electronic, and background noise. All data can be converted to a one-foot lossless condition, using the proper software corrections, making a reading independent of weather and distance. Also, data can be transformed from model scale to full scale for noise predictions of a real flight. Other programs included calculations of Over All Sound Pressure Level (OASPL), Effective Perceived Noise Level (EPNL). OASPL is the integration of sound with respect to frequency, and EPNL is weighted for a human s response to different sound frequencies and integrated with respect to time. With the proper software correction, data taken in the NATR are useful in determining ways to reduce noise. display any difference between two or more data files. Using this program and graphs of the data, the actual and predicted data can be compared. This software was tested on data collected at the Aero Acoustic Propulsion Laboratory (AAPL) using a variety of window types and overlaps. Similarly, short scripts were written to test each individual program in the software suite for verification. Each graph displays both the original points and the adjusted points connected with lines. During this summer, data points were taken during a live experiment

  5. Noise reduction experience at Hughes Helicopter, Inc.

    NASA Technical Reports Server (NTRS)

    Janakiram, D. S.

    1982-01-01

    Noise reduction is mostly limited to light helicopters whose noise signature is dominated by their tail rotors. It is primarily hardware oriented. Well known noise reduction techniques such as reduction of rotor speeds with an accompanying increase in solidity to maintain performance, engine noise reduction with the use of exhaust mufflers, and acoustic blanketing of transmission and engine compartment are used. The concept of blade phasing as a means of reducing tail rotor noise is also used. Engine noise (exhaust noise), power train noise and airframe noise becomes important at low rotor tip speeds and means must be found to reduce these noise sources if further noise reductions are desired. The use of a special test rig aids in isolating the various noise sources and arriving at the penalties (performance or payload) involved in quieting them. Significant noise reduction are achieved for the light helicopter with minimum performance or weight penalties because of the dominance of a single noise source (the tail rotor).

  6. Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan. [quiet engine program

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.; Clemons, A.

    1977-01-01

    Sound data which were obtained during tests of a 50.8 cm diameter, subsonic tip speed, low pressure ratio fan were analyzed. The test matrix was divided into two major investigations: (1) source noise reduction techniques; and (2) aft duct noise reduction with acoustic treatment. Source noise reduction techniques were investigated which include minimizing second harmonic noise by varying vane/blade ratio, variation in spacing, and lowering the Mach number through the vane row to lower fan broadband noise. Treatment in the aft duct which includes flow noise effects, faceplate porosity, rotor OGV treatment, slant cell treatment, and splitter simulation with variable depth on the outer wall and constant thickness treatment on the inner wall was investigated. Variable boundary conditions such as variation in treatment panel thickness and orientation, and mixed porosity combined with variable thickness were examined. Significant results are reported.

  7. Acoustic evaluation of a novel swept-rotor fan. [noise reduction in turbofan engines

    NASA Technical Reports Server (NTRS)

    Lucas, J. G.; Woodward, R. P.; Mackinnon, M. J.

    1978-01-01

    Inlet noise and aerodynamic performance are presented for a high tip speed fan designed with rotor blade leading edge sweep that gives a subsonic component of inlet Mach number normal to the edge at all radii. The intent of the design was to minimize the generation of rotor leading edge shock waves thereby minimizing multiple pure tone noise. Sound power level and spectral comparisons are made with several high-speed fans of conventional design. Results show multiple pure tone noise at levels below those of some of the other fans and this noise was initiated at a higher tip speed. Aerodynamic performance of the fan did not meet design goals for this first build which applied conventional design procedures to the swept fan geometry.

  8. Technologies for Turbofan Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis

    2005-01-01

    An overview presentation of NASA's engine noise research since 1992 is given for subsonic commercial aircraft applications. Highlights are included from the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project with emphasis on engine source noise reduction. Noise reduction goals for 10 EPNdB by 207 and 20 EPNdB by 2022 are reviewed. Fan and jet noise technologies are highlighted from the AST program including higher bypass ratio propulsion, scarf inlets, forward-swept fans, swept/leaned stators, chevron nozzles, noise prediction methods, and active noise control for fans. Source diagnostic tests for fans and jets that have been completed over the past few years are presented showing how new flow measurement methods such as Particle Image Velocimetry (PIV) have played a key role in understanding turbulence, the noise generation process, and how to improve noise prediction methods. Tests focused on source decomposition have helped identify which engine components need further noise reduction. The role of Computational AeroAcoustics (CAA) for fan noise prediction is presented. Advanced noise reduction methods such as Hershel-Quincke tubes and trailing edge blowing for fan noise that are currently being pursued n the QAT program are also presented. Highlights are shown form engine validation and flight demonstrations that were done in the late 1990's with Pratt & Whitney on their PW4098 engine and Honeywell on their TFE-731-60 engine. Finally, future propulsion configurations currently being studied that show promise towards meeting NASA's long term goal of 20 dB noise reduction are shown including a Dual Fan Engine concept on a Blended Wing Body aircraft.

  9. Duct wall impedance control as an advanced concept for acoustic suppression enhancement. [engine noise reduction

    NASA Technical Reports Server (NTRS)

    Dean, P. D.

    1978-01-01

    A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.

  10. Acoustic noise reduction for vehicle engines. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-06-01

    The bibliography contains citations of selected patents concerning methods, devices, and materials to reduce acoustic noise in vehicle engines. Vehicles covered include automobiles, railway locomotives, agricultural tractors, and aircraft. Internal combustion, diesel, and gas turbine engines are covered. (Contains a minimum of 188 citations and includes a subject term index and title list.)

  11. Investigation of acoustic properties of a rigid foam with application to noise reduction in light aircraft

    NASA Technical Reports Server (NTRS)

    Holmer, C. I.

    1972-01-01

    A analytic model of sound transmission into an aircraft cabin was developed as well as test procedures which appropriately rank order properties which affect sound transmission. The proposed model agrees well with available data, and reveals that the pertinent properties of an aircraft cabin for sound transmission include: stiffness of cabin walls at low frequencies (as this reflects on impedance of the walls) and cabin wall transmission loss and interior absorption at mid and high frequencies. Below 315 Hz the foam contributes substantially to wall stiffness and sound transmission loss of typical light aircraft cabin construction, and could potentially reduce cabin noise levels by 3-5 db in this frequency range at a cost of about 0:2 lb/sq. ft. of treated cabin area. The foam was found not to have significant sound absorbing properties.

  12. A study of helicopter interior noise reduction

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Clevenson, S. A.

    1975-01-01

    The interior noise levels of existing helicopters are discussed along with an ongoing experimental program directed towards reducing these levels. Results of several noise and vibration measurements on Langley Research Center's Civil Helicopter Research Aircraft are presented, including measurements taken before and after installation of an acoustically-treated cabin. The predominant noise source in this helicopter is the first stage planetary gear-clash in the main gear box, both before and after installation of the acoustically treated cabin. Noise reductions of up to 20 db in some octave bands may be required in order to obtain interior noise levels comparable to commercial jet transports.

  13. Structure-acoustic finite element analyses for noise reduction investigations of launcher payload compartment structures made of CFRP sandwich material

    NASA Astrophysics Data System (ADS)

    Faust, M.; Schweickert, G.; Strobel, F.

    1991-10-01

    An investigation of the noise reduction properties of the Ariane 5 Speltra payload compartment structure is reported. The low frequency noise reduction was calculated by the Finite Element Method (FEM) with a formulation for fluid structure interaction (FE code PERMAS-FS). The results of the different analysis steps including uncoupled and coupled analysis are presented. The uncoupled structure and cavity dynamics results were compared to closed form solutions with good agreement. The introduction of external field effects, i.e. radiation damping and scattering, was performed by using closed form solutions for cylinder type structures. The analyses were performed for 2 different test cylinders and the Speltra cylindrical part. The test cylinder results were compared with the measured noise reductions and good agreement was obtained.

  14. Conceptual design study of advanced acoustic composite nacelle. [for achieving reductions in community noise and operating expense

    NASA Technical Reports Server (NTRS)

    Goodall, R. G.; Painter, G. W.

    1975-01-01

    Conceptual nacelle designs for wide-bodied and for advanced-technology transports were studied with the objective of achieving significant reductions in community noise with minimum penalties in airplane weight, cost, and in operating expense by the application of advanced composite materials to nacelle structure and sound suppression elements. Nacelle concepts using advanced liners, annular splitters, radial splitters, translating centerbody inlets, and mixed-flow nozzles were evaluated and a preferred concept selected. A preliminary design study of the selected concept, a mixed flow nacelle with extended inlet and no splitters, was conducted and the effects on noise, direct operating cost, and return on investment determined.

  15. Cabin acoustical noise

    NASA Astrophysics Data System (ADS)

    Homick, J. L.

    1981-12-01

    Using a hand-held sound pressure level meter the crew made one octave band and A-weight sound level measurements at four locations in the Orbiter on Mission Day 1. The data were voice recorded and transmitted to the ground prior to the first inflight sleep period. The data obtained are summarized. From a physiological point of view the noise levels measured on STS-1 were not hazardous to the crewmens' hearing.

  16. Television noise reduction device

    NASA Technical Reports Server (NTRS)

    Gordon, B. L.; Stamps, J. C. (Inventor)

    1975-01-01

    A noise reduction system that divides the color video signal into its luminance and chrominance components is reported. The luminance component of a given frame is summed with the luminance component of at least one preceding frame which was stored on a disc recorder. The summation is carried out so as to achieve a signal amplitude equivalent to that of the original signal. The averaged luminance signal is then recombined with the chrominance signal to achieve a noise-reduced television signal.

  17. Supersonic jet shock noise reduction

    NASA Technical Reports Server (NTRS)

    Stone, J. R.

    1984-01-01

    Shock-cell noise is identified to be a potentially significant problem for advanced supersonic aircraft at takeoff. Therefore NASA conducted fundamental studies of the phenomena involved and model-scale experiments aimed at developing means of noise reduction. The results of a series of studies conducted to determine means by which supersonic jet shock noise can be reduced to acceptable levels for advanced supersonic cruise aircraft are reviewed. Theoretical studies were conducted on the shock associated noise of supersonic jets from convergent-divergent (C-D) nozzles. Laboratory studies were conducted on the influence of narrowband shock screech on broadband noise and on means of screech reduction. The usefulness of C-D nozzle passages was investigated at model scale for single-stream and dual-stream nozzles. The effect of off-design pressure ratio was determined under static and simulated flight conditions for jet temperatures up to 960 K. Annular and coannular flow passages with center plugs and multi-element suppressor nozzles were evaluated, and the effect of plug tip geometry was established. In addition to the far-field acoustic data, mean and turbulent velocity distributions were measured with a laser velocimeter, and shadowgraph images of the flow field were obtained.

  18. Acoustical scale modeling of roadway traffic noise

    SciTech Connect

    Anderson, G.S.

    1980-03-01

    During the planning and design of any federally assisted highway project, noise levels must be predicted for the highway in its operational mode. The use of an acoustical scale modeling technique to predict roadway traffic noise is described. Literature pertaining to acoustical scale modeling of outdoor noise propagation, particularly roadway noise, is reviewed. Field and laboratory measurements validated the predictions of the acoustical scale modeling technique. (1 photo)

  19. Critical Propulsion and Noise reduction Technologies for Future Commercial Subsonic Engines. Area of Interest 14.3: Separate Flow Exhaust System Noise

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Brausch, J. F.; Gliebe, P. R.; Coffin, R. S.; Martens, S.; Delaney, B. R.; Dalton, W. N.; Mengle, V. G.

    2000-01-01

    This presentation discusses: Project Objectives, Approach and Goal; Baseline Nozzles and Test Cycle Definition; Repeatability and Baseline Nozzle Results; Noise Reduction Concepts; Noise Reduction Tests Configurations of BPR=5 Internal Plug Nozzle adn Acoustic Results; Noise Reduction Test Configurations of BPR=5 External Plug Nozzle and Acoustic Results; and Noise Reduction Tests Configurations of BPR=8 External Plug Nozzle and Acoustic Results.

  20. NASA's Subsonic Jet Transport Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Preisser, John S.

    2000-01-01

    Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.

  1. Interior noise reduction in a large civil helicopter

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Clevenson, S. A.; Rypf, J. A.; Snyder, W. J.

    1977-01-01

    The results of an evaluation of the effectiveness of current noise reduction technology in attaining acceptable levels of interior noise in a large (about 20,000 kg) passenger-carrying helicopter are presented. The helicopter studied is a modified CH-53A with a specially designed, acoustically treated passenger cabin. The acoustic treatment reduced the average A-weighted interior noise levels from 115 db to 87 db. The study suggests selected improvements in the acoustic treatment which could result in additional reduction in cabin noise levels. The resulting levels would be only slightly greater than the interior noise levels of current narrow-body jet transports.

  2. Airport noise impact reduction through operations

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1981-01-01

    The effects of various aeronautical, operational, and land-use noise impact reduction alternatives are assessed for a major midwestern airport. Specifically, the relative effectiveness of adding sound absorbing material to aircraft engines, imposing curfews, and treating houses with acoustic insulation are examined.

  3. Emerging Community Noise Reduction Approaches

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    An overview of the current NASA research portfolio in the area of aircraft noise reduction is presented. The emphasis of the research described herein is on meeting the aggressive near- and mid-term national goals for reducing aircraft noise emissions, which NASA internal studies have shown to be feasible using noise reduction technologies currently being developed in-house or in partnership with NASA s industry and academic partners. While NASA has an active research effort in airframe noise reduction, this overview focuses on propulsion noise reduction only.

  4. Airframe noise reduction studies and clean-airframe noise investigation

    NASA Astrophysics Data System (ADS)

    Fink, M. R.; Bailey, D. A.

    1980-04-01

    Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved.

  5. Airframe Noise Reduction Studies and Clean-Airframe Noise Investigation

    NASA Technical Reports Server (NTRS)

    Fink, M. R.; Bailey, D. A.

    1980-01-01

    Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved.

  6. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight comprehensive data report. Volume 1: Test nozzles and acoustic data

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.

    1984-01-01

    Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Acoustic behavior as a function of nozzle flow passage geometry was measured. The acoustic data consist primarily of 1/3 octave band sound pressure levels and overall sound pressure levels. Detailed schematics and geometric characteristics of the six scale model nozzle configurations and acoustic test point definitions are presented. Tabulation of aerodynamic test conditions and a computer listing of the measured acoustic data are displayed.

  7. Fan Noise Reduction: An Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2001-01-01

    Fan noise reduction technologies developed as part of the engine noise reduction element of the Advanced Subsonic Technology Program are reviewed. Developments in low-noise fan stage design, swept and leaned outlet guide vanes, active noise control, fan flow management, and scarfed inlet are discussed. In each case, a description of the method is presented and, where available, representative results and general conclusions are discussed. The review concludes with a summary of the accomplishments of the AST-sponsored fan noise reduction research and a few thoughts on future work.

  8. Loud noise exposure and acoustic neuroma.

    PubMed

    Fisher, James L; Pettersson, David; Palmisano, Sadie; Schwartzbaum, Judith A; Edwards, Colin G; Mathiesen, Tiit; Prochazka, Michaela; Bergenheim, Tommy; Florentzson, Rut; Harder, Henrik; Nyberg, Gunnar; Siesjö, Peter; Feychting, Maria

    2014-07-01

    The results from studies of loud noise exposure and acoustic neuroma are conflicting. A population-based case-control study of 451 acoustic neuroma patients and 710 age-, sex-, and region-matched controls was conducted in Sweden between 2002 and 2007. Occupational exposure was based on historical measurements of occupational noise (321 job titles summarized by a job exposure matrix) and compared with self-reported occupational noise exposure. We also evaluated self-reported noise exposure during leisure activity. Conditional logistic regression was used to estimate odds ratios. There was no statistically significant association between acoustic neuroma and persistent occupational noise exposure, either with or without hearing protection. Exposure to loud noise from leisure activity without hearing protection was more common among acoustic neuroma cases (odds ratio = 1.47, 95% confidence interval: 1.06, 2.03). Statistically significant odds ratios were found for specific leisure activities including attending concerts/clubs/sporting events (odds ratio = 1.82, 95% confidence interval: 1.09, 3.04) and participating in workouts accompanied by loud music (odds ratio = 2.84, 95% confidence interval: 1.37, 5.89). Our findings do not support an association between occupational exposure to loud noise and acoustic neuroma. Although we report statistically significant associations between leisure-time exposures to loud noise without hearing protection and acoustic neuroma, especially among women, we cannot rule out recall bias as an alternative explanation. PMID:24786799

  9. Noise Reduction by Signal Accumulation

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2006-01-01

    The aim of this paper is to show how the noise reduction by signal accumulation can be accomplished with a data acquisition system. This topic can be used for student projects. In many cases, the noise reduction is an unavoidable part of experimentation. Several techniques are known for this purpose, and among them the signal accumulation is the…

  10. Simulated flight acoustic investigation of treated ejector effectiveness on advanced mechanical suppresors for high velocity jet noise reduction

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.; Motsinger, R. E.; Hoerst, D. J.

    1986-01-01

    Ten scale-model nozzles were tested in an anechoic free-jet facility to evaluate the acoustic characteristics of a mechanically suppressed inverted-velocity-profile coannular nozzle with an accoustically treated ejector system. The nozzle system used was developed from aerodynamic flow lines evolved in a previous contract, defined to incorporate the restraints imposed by the aerodynamic performance requirements of an Advanced Supersonic Technology/Variable Cycle Engine system through all its mission phases. Accoustic data of 188 test points were obtained, 87 under static and 101 under simulated flight conditions. The tests investigated variables of hardwall ejector application to a coannular nozzle with 20-chute outer annular suppressor, ejector axial positioning, treatment application to ejector and plug surfaces, and treatment design. Laser velocimeter, shadowgraph photograph, aerodynamic static pressure, and temperature measurement were acquired on select models to yield diagnositc information regarding the flow field and aerodynamic performance characteristics of the nozzles.

  11. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  12. Fluidic Chevrons for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin; Henderson, Brenda; Whitmire, Julia

    2004-01-01

    Chevron mixing devices are used to reduce noise from commercial separate-flow turbofan engines. Mechanical chevron serrations at the nozzle trailing edge generate axial vorticity that enhances jet plume mixing and consequently reduces far-field noise. Fluidic chevrons generated with air injected near the nozzle trailing edge create a vorticity field similar to that of the mechanical chevrons and allow more flexibility in controlling acoustic and thrust performance than a passive mechanical design. In addition, the design of such a system has the future potential for actively controlling jet noise by pulsing or otherwise optimally distributing the injected air. Scale model jet noise experiments have been performed in the NASA Langley Low Speed Aeroacoustic Wind Tunnel to investigate the fluidic chevron concept. Acoustic data from different fluidic chevron designs are shown. Varying degrees of noise reduction are achieved depending on the injection pattern and injection flow conditions. CFD results were used to select design concepts that displayed axial vorticity growth similar to that associated with mechanical chevrons and qualitatively describe the air injection flow and the impact on acoustic performance.

  13. Noise Reduction Through Circulation Control

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.; Englar, Robert J.

    2005-01-01

    Circulation control technology uses tangential blowing around a rounded trailing edge or a leading edge to change the force and moment characteristics of an aerodynamic body. This technology has been applied to circular cylinders, wings, helicopter rotors, and even to automobiles for improved aerodynamic performance. Only limited research has been conducted on the acoustic of this technology. Since wing flaps contribute to the environmental noise of an aircraft, an alternate blown high lift system without complex mechanical flaps could prove beneficial in reducing the noise of an approaching aircraft. Thus, in this study, a direct comparison of the acoustic characteristics of high lift systems employing a circulation control wing configuration and a conventional wing flapped configuration has been made. These results indicate that acoustically, a circulation control wing high lift system could be considerably more acceptable than a wing with conventional mechanical flaps.

  14. Effects of long-chord acoustically treated stator vanes on fan noise. 2: Effect of acoustical treatment

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Scott, J. N.; Leonard, B. R.; Stakolich, E. G.

    1976-01-01

    A set of long chord stator vanes was designed to replace the vanes in an existing fan stage. The long chord stator vanes consisted of a turning section and axial extension pieces, all of which incorporated acoustic damping material. The long chord stator vanes were tested in two lengths, with the long version giving more noise reduction than the short, primarily because of the additional lining material. The noise reduction achieved with the acoustically treated long chord stator vanes was compared with the reduction achieved by an acoustically treated exhaust splitter. The long chord stator was at least as good as the splitter as a method for incorporating acoustic lining material. In addition, comparing an acoustic three ring inlet and an acoustic wall-only inlet discloses that the wall-only inlet could be used in an engine where the noise reduction requirements are not too stringent.

  15. Ambient noise analysis of underwater acoustic data

    NASA Astrophysics Data System (ADS)

    Snyder, Mark A.; Orlin, Pete; Schulte, Annette; Newcomb, Joal

    2003-04-01

    The Littoral Acoustic Demonstration Center (LADC) deployed three Environmental Acoustic Recording System (EARS) buoys in the northern Gulf of Mexico during the summers of 2001 and 2002. The buoys recorded frequencies up to 5859 Hz continuously for 36 days in 2001 and for 72 days in 2002. The acoustic signals recorded include sperm whale vocalizations, seismic airguns, and shipping traffic. The variability of the ambient noise is analyzed using spectrograms, time series, and statistical measurements. Variations in ambient noise before, during, and after tropical storm/hurricane passage are also investigated.

  16. Noise Reduction with Microphone Arrays for Speaker Identification

    SciTech Connect

    Cohen, Z

    2011-12-22

    Reducing acoustic noise in audio recordings is an ongoing problem that plagues many applications. This noise is hard to reduce because of interfering sources and non-stationary behavior of the overall background noise. Many single channel noise reduction algorithms exist but are limited in that the more the noise is reduced; the more the signal of interest is distorted due to the fact that the signal and noise overlap in frequency. Specifically acoustic background noise causes problems in the area of speaker identification. Recording a speaker in the presence of acoustic noise ultimately limits the performance and confidence of speaker identification algorithms. In situations where it is impossible to control the environment where the speech sample is taken, noise reduction filtering algorithms need to be developed to clean the recorded speech of background noise. Because single channel noise reduction algorithms would distort the speech signal, the overall challenge of this project was to see if spatial information provided by microphone arrays could be exploited to aid in speaker identification. The goals are: (1) Test the feasibility of using microphone arrays to reduce background noise in speech recordings; (2) Characterize and compare different multichannel noise reduction algorithms; (3) Provide recommendations for using these multichannel algorithms; and (4) Ultimately answer the question - Can the use of microphone arrays aid in speaker identification?

  17. Cardiorespiratory Responses to Acoustic Noise in Belugas.

    PubMed

    Lyamin, Oleg I; Korneva, Svetlana M; Rozhnov, Viatcheslav V; Mukhametov, Lev M

    2016-01-01

    To date, most research on the adverse effects of anthropogenic noise on marine mammals has focused on auditory and behavioral responses. Other responses have received little attention and are often ignored. In this study, the effect of acoustic noise on heart rate was examined in captive belugas. The data suggest that (1) heart rate can be used as a measure of physiological response (including stress) to noise in belugas and other cetaceans, (2) cardiac response is influenced by parameters of noise and adaptation to repeated exposure, and (3) cetacean calves are more vulnerable to the adverse effect of noise than adults. PMID:26611017

  18. Distributed Exhaust Nozzles for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J.; Hellman, B.; Schein, D. B.; Solomon, W. D., Jr.; Huff, Dennis (Technical Monitor)

    2001-01-01

    The main objective of this study is to validate the jet noise reduction potential of a concept associated with distributed exhaust nozzles. Under this concept the propulsive thrust is generated by a larger number of discrete plumes issuing from an array of small or mini-nozzles. The potential of noise reduction of this concept stems from the fact that a large number of small jets will produce very high frequency noise and also, if spaced suitably, they will coalesce at a smaller velocity to produce low amplitude, low frequency noise. This is accomplished through detailed acoustic and fluid measurements along with a Computational Fluidic Dynamic (CFD) solution of the mean (DE) Distributed Exhaust nozzle flowfield performed by Northrop-Grumman. The acoustic performance is quantified in an anechoic chamber. Farfield acoustic data is acquired for a DE nozzle as well as a round nozzle of the same area. Both these types of nozzles are assessed numerically using Computational Fluid Dynamic (CFD) techniques. The CFD analysis ensures that both nozzles issued the same amount of airflow for a given nozzle pressure ratio. Data at a variety of nozzle pressure ratios are acquired at a range of polar and azimuthal angles. Flow visualization of the DE nozzle is used to assess the fluid dynamics of the small jet interactions. Results show that at high subsonic jet velocities, the DE nozzle shifts its frequency of peak amplitude to a higher frequency relative to a round nozzle of equivalent area (from a S(sub tD) = 0.24 to 1. 3). Furthermore, the DE nozzle shows reduced sound pressure levels (as much as 4 - 8 dB) in the low frequency part of the spectrum (less than S(sub tD) = 0.24 ) compared to the round nozzle. At supersonic jet velocities, the DE nozzle does not exhibit the jet screech and the shock-associated broadband noise is reduced by as much as 12 dB.

  19. Program in acoustics. [aeroacoustics, aircraft noise, and noise suppression

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Relevant research projects conducted by faculty and graduate students in the general area of aeroacoustics to further the understanding of noise generation by aircraft and to aid in the development of practical methods for noise suppression are listed. Special activities summarized relate to the nonlinear acoustic wave theory and its application to several cases including that of the acoustic source located at the throat of a near-sonic duct, a computer program developed to compute the nonlinear wave theory, and a parabolic approximation for propagation of sounding in moving stratified media.

  20. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  1. Comparison of noise reduction systems

    NASA Astrophysics Data System (ADS)

    Noel, S. D.; Whitaker, R. W.

    1991-06-01

    When using infrasound as a tool for verification, the most important measurement to determine yield has been the peak-to-peak pressure amplitude of the signal. Therefore, there is a need to operate at the most favorable signal-to-noise ratio (SNR) possible. Winds near the ground can degrade the SNR, thereby making accurate signal amplitude measurement difficult. Wind noise reduction techniques were developed to help alleviate this problem; however, a noise reducing system should reduce the noise, and should not introduce distortion of coherent signals. An experiment is described to study system response for a variety of noise reducing configurations to a signal generated by an underground test (UGT) at the Nevada Test Site (NTS). In addition to the signal, background noise reduction is examined through measurements of variance. Sensors using two particular geometries of noise reducing equipment, the spider and the cross appear to deliver the best SNR. Because the spider configuration is easier to deploy, it is now the most commonly used.

  2. Wing Leading Edge Concepts for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  3. Nordic Standards for measurement of aircraft noise immission in residential areas and noise reduction of dwellings

    NASA Astrophysics Data System (ADS)

    Svane, Christian; Plovsing, Birger

    Quantification by measurement of aircraft noise in residential areas and air traffic noise reduction of dwellings suffer from sensibility to the measurement technique used. Around the Copenhagen Airport (200.000 opr./year) 3.500 families have been granted from 50% to 90% of sound insulation costs by the Danish Government. Based on experience from evaluation measurements carried out by the Danish Acoustical Institute, the authors have proposed standardized measurement methods for the outdoor aircraft noise in residential areas and for the noise reduction of dwellings. In 1989 both noise measurement methods were accepted as Nordic Standards (NORDTEST ACOU 074 and 075) by Denmark, Finland, Iceland, Norway and Sweden.

  4. Near-field acoustical holography of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Wall, Alan T.; Gee, Kent L.; Neilsen, Tracianne; Krueger, David W.; Sommerfeldt, Scott D.; James, Michael M.

    2010-10-01

    Noise radiated from high-performance military jet aircraft poses a hearing-loss risk to personnel. Accurate characterization of jet noise can assist in noise prediction and noise reduction techniques. In this work, sound pressure measurements were made in the near field of an F-22 Raptor. With more than 6000 measurement points, this is the most extensive near-field measurement of a high-performance jet to date. A technique called near-field acoustical holography has been used to propagate the complex pressure from a two- dimensional plane to a three-dimensional region in the jet vicinity. Results will be shown and what they reveal about jet noise characteristics will be discussed.

  5. Acoustic tests of duct-burning turbofan jet noise simulation

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Stringas, E. J.; Brausch, J. F.; Staid, P. S.; Heck, P. H.; Latham, D.

    1978-01-01

    The results of a static acoustic and aerodynamic performance, model-scale test program on coannular unsuppressed and multielement fan suppressed nozzle configurations are summarized. The results of the static acoustic tests show a very beneficial interaction effect. When the measured noise levels were compared with the predicted noise levels of two independent but equivalent conical nozzle flow streams, noise reductions for the unsuppressed coannular nozzles were of the order of 10 PNdB; high levels of suppression (8 PNdB) were still maintained even when only a small amount of core stream flow was used. The multielement fan suppressed coannular nozzle tests showed 15 PNdB noise reductions and up to 18 PNdB noise reductions when a treated ejector was added. The static aerodynamic performance tests showed that the unsuppressed coannular plug nozzles obtained gross thrust coefficients of 0.972, with 1.2 to 1.7 percent lower levels for the multielement fan-suppressed coannular flow nozzles. For the first time anywhere, laser velocimeter velocity profile measurements were made on these types of nozzle configurations and with supersonic heated flow conditions. Measurements showed that a very rapid decay in the mean velocity occurs for the nozzle tested.

  6. Acoustic testing of a 1.5 pressure ratio low tip speed fan with a serrated rotor (QEP fan B scale model). [reduction of engine noise

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Paas, J. E.; Minzner, W. R.

    1973-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a serrated rotor leading edge to determine its effects on noise generation. The serrated rotor was produced by cutting teeth into the leading edge of the nominal rotor blades. The effects of speed and exhaust nozzle area on the scale models noise characteristics were investigated with both the nominal rotor and serrated rotor. Acoustic results indicate the serrations reduced front quadrant PNL's at takeoff power. In particular, the 200 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdb at 40 deg for nominal and large nozzle operation. However, the rear quadrant maximum sideline PNL's were increased 1.5 to 3 PNdb at approach thust and up to 2 PNdb at takeoff thust with these serrated rotor blades. The configuration with the serrated rotor produced the lowest maximum 200 foot (61.0 m) sideline PNL for any given thust when the large nozzle (116% of design area) was employed.

  7. Field-Deployable Acoustic Digital Systems for Noise Measurement

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  8. Sound reduction by metamaterial-based acoustic enclosure

    SciTech Connect

    Yao, Shanshan; Li, Pei; Zhou, Xiaoming; Hu, Gengkai

    2014-12-15

    In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  9. Circular cylinders with soft porous cover for flow noise reduction

    NASA Astrophysics Data System (ADS)

    Geyer, Thomas F.; Sarradj, Ennes

    2016-03-01

    The use of porous materials is one of several approaches to passively control or minimize the generation of flow noise. In order to investigate the possible reduction of noise from struts and other protruding parts (for example components of the landing gear or pantographs), acoustic measurements were taken in a small aeroacoustic wind tunnel on a set of circular cylinders with a soft porous cover. The aim of this study was to identify those materials that result in the best noise reduction, which refers to both tonal noise and broadband noise. The porous covers were characterized by their air flow resistivity, a parameter describing the permeability of an open-porous material. The results show that materials with low air flow resistivities lead to a noticeable flow noise reduction. Thereby, the main effect of the porous cylinder covers is that the spectral peak of the aeolian tone due to vortex shedding appears much narrower, but is not suppressed completely. Based on the measurement results, a basic model for the estimation of the total peak level of the aeolian tone was derived. In addition to the minimization of the vortex shedding noise, a reduction of broadband noise can be observed, especially at higher Reynolds numbers. The noise reduction increases with decreasing air flow resistivity of the porous covers, which means that materials that are highly permeable to air result in the best noise reduction.

  10. Low-frequency noise reduction of lightweight airframe structures

    NASA Technical Reports Server (NTRS)

    Getline, G. L.

    1976-01-01

    The results of an experimental study to determine the noise attenuation characteristics of aircraft type fuselage structural panels were presented. Of particular interest was noise attenuation at low frequencies, below the fundamental resonances of the panels. All panels were flightweight structures for transport type aircraft in the 34,050 to 45,400 kg (75,000 to 100,000 pounds) gross weight range. Test data include the results of vibration and acoustic transmission loss tests on seven types of isotropic and orthotropically stiffened, flat and curved panels. The results show that stiffness controlled acoustically integrated structures can provide very high noise reductions at low frequencies without significantly affecting their high frequency noise reduction capabilities.

  11. Benefits of Swept and Leaned Stators for Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Elliott, David M.; Hughes, Christopher E.; Berton, Jeffrey J.

    1998-01-01

    An advanced high bypass ratio fan model was tested in the NASA Lewis Research Center 9 x 15-Foot Low Speed Wind Tunnel. The primary focus of this test was to quantify the acoustic benefits and aerodynamic performance of sweep and lean in stator vane design. Three stator sets were used for this test series. A conventional radial stator was tested at two rotor-stator axial spacings. Additional stator sets incorporating sweep + lean, and sweep only were also tested. The hub axial location for the swept + lean, and sweep only stators corresponded to the location of the radial stator at the upstream rotor-stator spacing, while the tip axial location of these modified stators corresponded to the radial stator axial position at the downstream position. The acoustic results show significant reductions in both rotor-stator interaction noise and broadband noise beyond what could be achieved through increased axial spacing of the conventional, radial stator. Theoretical application of these results to acoustically quantify a fictitious 2-engine aircraft and flight path suggested that about 3 Effective Perceived Noise (EPN) dB could be achieved through incorporation of these modified stators. This reduction would represent a significant portion of the 6 EPNdB noise goal of the current NASA Advanced Subsonic Technology (AST) initiative relative to that of 1992 technology levels. A secondary result of this fan test was to demonstrate the ability of an acoustic barrier wall to block aft-radiated fan noise in the wind tunnel, thus revealing the acoustic structure of the residual inlet-radiated noise. This technology should prove valuable toward better understanding inlet liner design, or wherever it is desirable to eliminate aft-radiated noise from the fan acoustic signature.

  12. Recent developments in aircraft engine noise reduction technology

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Feiler, C. E.

    1981-01-01

    Some of the more important developments and progress in jet and fan noise reduction and flight effects are reviewed. Experiments are reported which show that nonaxisymmetric coannular nozzles have the potential to reduce jet noise for conventional and inverted velocity profiles. It is shown that an improved understanding of suppressive linear behavior, coupled with the new understanding of fan source noise, will soon allow the joint optimization of acoustic liner and fan design for low noise. It is also shown that fan noise source reduction concepts are applicable to advanced turboprops. Advances in inflow control device design are reviewed that appear to offer an adequate approach to the ground simulation of inflight fan noise.

  13. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  14. Airframe Noise Prediction by Acoustic Analogy: Revisited

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Casper, Jay H.; Tinetti, A.; Dunn, M. H.

    2006-01-01

    The present work follows a recent survey of airframe noise prediction methodologies. In that survey, Lighthill s acoustic analogy was identified as the most prominent analytical basis for current approaches to airframe noise research. Within this approach, a problem is typically modeled with the Ffowcs Williams and Hawkings (FW-H) equation, for which a geometry-independent solution is obtained by means of the use of the free-space Green function (FSGF). Nonetheless, the aeroacoustic literature would suggest some interest in the use of tailored or exact Green s function (EGF) for aerodynamic noise problems involving solid boundaries, in particular, for trailing edge (TE) noise. A study of possible applications of EGF for prediction of broadband noise from turbulent flow over an airfoil surface and the TE is, therefore, the primary topic of the present work. Typically, the applications of EGF in the literature have been limited to TE noise prediction at low Mach numbers assuming that the normal derivative of the pressure vanishes on the airfoil surface. To extend the application of EGF to higher Mach numbers, the uniqueness of the solution of the wave equation when either the Dirichlet or the Neumann boundary condition (BC) is specified on a deformable surface in motion. The solution of Lighthill s equation with either the Dirichlet or the Neumann BC is given for such a surface using EGFs. These solutions involve both surface and volume integrals just like the solution of FW-H equation using FSGF. Insight drawn from this analysis is evoked to discuss the potential application of EGF to broadband noise prediction. It appears that the use of a EGF offers distinct advantages for predicting TE noise of an airfoil when the normal pressure gradient vanishes on the airfoil surface. It is argued that such an approach may also apply to an airfoil in motion. However, for the prediction of broadband noise not directly associated with a trailing edge, the use of EGF does not

  15. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements.

    PubMed

    Hugo, Ronald J; Nowlin, Scott R; Hahn, Ila L; Eaton, Frank D; McCrae, Kim A

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence. PMID:12558258

  16. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements

    NASA Astrophysics Data System (ADS)

    Hugo, Ronald J.; Nowlin, Scott R.; Hahn, Ila L.; Eaton, Frank D.; McCrae, Kim A.

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence.

  17. Structural Acoustic Prediction and Interior Noise Control Technology

    NASA Technical Reports Server (NTRS)

    Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)

    2001-01-01

    This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.

  18. An Overview of Virtual Acoustic Simulation of Aircraft Flyover Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2013-01-01

    Methods for testing human subject response to aircraft flyover noise have greatly advanced in recent years as a result of advances in simulation technology. Capabilities have been developed which now allow subjects to be immersed both visually and aurally in a three-dimensional, virtual environment. While suitable for displaying recorded aircraft noise, the true potential is found when synthesizing aircraft flyover noise because it allows the flexibility and freedom to study sounds from aircraft not yet flown. A virtual acoustic simulation method is described which is built upon prediction-based source noise synthesis, engineering-based propagation modeling, and empirically-based receiver modeling. This source-path-receiver paradigm allows complete control over all aspects of flyover auralization. With this capability, it is now possible to assess human response to flyover noise by systematically evaluating source noise reductions within the context of a system level simulation. Examples of auralized flyover noise and movie clips representative of an immersive aircraft flyover environment are made in the presentation.

  19. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  20. A research program to reduce interior noise in general aviation airplanes: Noise reduction through a cavity-backed flexible plate

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Vandam, C. P. G.

    1978-01-01

    A prediction method is reported for noise reduction through a cavity-backed panel. The analysis takes into account only cavity modes in one direction. The results of this analysis were to find the effect of acoustic stiffness of a backing cavity on the panel behavior. The resulting changes in the noise reduction through the panel are significant.

  1. Modeling and adaptive control of acoustic noise

    NASA Astrophysics Data System (ADS)

    Venugopal, Ravinder

    Active noise control is a problem that receives significant attention in many areas including aerospace and manufacturing. The advent of inexpensive high performance processors has made it possible to implement real-time control algorithms to effect active noise control. Both fixed-gain and adaptive methods may be used to design controllers for this problem. For fixed-gain methods, it is necessary to obtain a mathematical model of the system to design controllers. In addition, models help us gain phenomenological insights into the dynamics of the system. Models are also necessary to perform numerical simulations. However, models are often inadequate for the purpose of controller design because they involve parameters that are difficult to determine and also because there are always unmodeled effects. This fact motivates the use of adaptive algorithms for control since adaptive methods usually require significantly less model information than fixed-gain methods. The first part of this dissertation deals with derivation of a state space model of a one-dimensional acoustic duct. Two types of actuation, namely, a side-mounted speaker (interior control) and an end-mounted speaker (boundary control) are considered. The techniques used to derive the model of the acoustic duct are extended to the problem of fluid surface wave control. A state space model of small amplitude surfaces waves of a fluid in a rectangular container is derived and two types of control methods, namely, surface pressure control and map actuator based control are proposed and analyzed. The second part of this dissertation deals with the development of an adaptive disturbance rejection algorithm that is applied to the problem of active noise control. ARMARKOV models which have the same structure as predictor models are used for system representation. The algorithm requires knowledge of only one path of the system, from control to performance, and does not require a measurement of the disturbance nor

  2. Computational Evaluation of Airframe Noise Reduction Concepts at Full Scale

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Duda, Benjamin; Hazir, Andreas; Fares, Ehab

    2016-01-01

    High-fidelity simulations focused on full-scale evaluation of new technologies for mitigating flap and landing gear noise are presented. These noise reduction concepts were selected because of their superior acoustic performance, as demonstrated during NASA wind tunnel tests of an 18%-scale, semi-span model of a Gulfstream aircraft. The full-scale, full-aircraft, time-accurate simulations were performed with the lattice Boltzmann PowerFLOW(Registered Trademark) solver for free air at a Mach number of 0.2. Three aircraft configurations (flaps deflected at 39? without and with main gear deployed, and 0? flaps with main gear extended) were used to determine the aero-acoustic performance of the concepts on component-level (individually) and system-level (concurrent applica-tion) bases. Farfield noise spectra were obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach. Comparison of the predicted spectra without (baseline) and with the noise treatments applied showed that noise reduction benefits between 2-3 dB for the flap and 1.3-1.7 dB for the main landing gear are obtained. It was also found that the full extent of the benefits is being masked by the noise generated from the flap brackets and main gear cavities, which act as prominent secondary sources.

  3. An adaptive noise reduction stethoscope for auscultation in high noise environments.

    PubMed

    Patel, S B; Callahan, T F; Callahan, M G; Jones, J T; Graber, G P; Foster, K S; Glifort, K; Wodicka, G R

    1998-05-01

    Auscultation of lung sounds in patient transport vehicles such as an ambulance or aircraft is unachievable because of high ambient noise levels. Aircraft noise levels of 90-100 dB SPL are common, while lung sounds have been measured in the 22-30 dB SPL range in free space and 65-70 dB SPL within a stethoscope coupler. Also, the bandwidth of lung sounds and vehicle noise typically has significant overlap, limiting the utility of traditional band-pass filtering. In this study, a passively shielded stethoscope coupler that contains one microphone to measure the (noise-corrupted) lung sound and another to measure the ambient noise was constructed. Lung sound measurements were made on a healthy subject in a simulated USAF C-130 aircraft environment within an acoustic chamber at noise levels ranging from 80 to 100 dB SPL. Adaptive filtering schemes using a least-mean-squares (LMS) and a normalized least-mean-squares (NLMS) approach were employed to extract the lung sounds from the noise-corrupted signal. Approximately 15 dB of noise reduction over the 100-600 Hz frequency range was achieved with the LMS algorithm, with the more complex NLMS algorithm providing faster convergence and up to 5 dB of additional noise reduction. These findings indicate that a combination of active and passive noise reduction can be used to measure lung sounds in high noise environments. PMID:9604343

  4. Noise Reduction of Aircraft Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V. (Inventor); Brooks, Thomas F. (Inventor)

    2009-01-01

    A reduction in noise radiating from a side of a deployed aircraft flap is achieved by locating a slot adjacent the side of the flap, and then forcing air out through the slot with a suitable mechanism. One, two or even three or more slots are possible, where the slot is located at one;or more locations selected from a group of locations comprising a top surface of the flap, a bottom surface of the flap, an intersection of the top and side surface of the flap, an intersection of the bottom and side surfaces of the flap, and a side surface of the flap. In at least one embodiment the slot is substantially rectangular. A device for adjusting a rate of the air forced out through the slot can also be provided.

  5. Acoustics of Jet Surface Interaction - Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity to the structure or embedded in the airframe. While such integrated systems are intended to shield noise from the community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Green's function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Green's function decreases with increasing source frequency and/or jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Green's function in the absence of the surface, and flight effects are also investigated

  6. Active{sup 3} noise reduction

    SciTech Connect

    Holzfuss, J.

    1996-06-01

    Noise reduction is a problem being encountered in a variety of applications, such as environmental noise cancellation, signal recovery and separation. Passive noise reduction is done with the help of absorbers. Active noise reduction includes the transmission of phase inverted signals for the cancellation. This paper is about a threefold active approach to noise reduction. It includes the separation of a combined source, which consists of both a noise and a signal part. With the help of interaction with the source by scanning it and recording its response, modeling as a nonlinear dynamical system is achieved. The analysis includes phase space analysis and global radial basis functions as tools for the prediction used in a subsequent cancellation procedure. Examples are given which include noise reduction of speech. {copyright} {ital 1996 American Institute of Physics.}

  7. Airport noise impact reduction through operations

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1981-01-01

    The airport-noise levels and annoyance model (ALAMO) developed at NASA Langley Research Center is comprised of a system of computer programs which is capable of quantifying airport community noise impact in terms of noise level, population distribution, and human subjective response to noise. The ALAMO can be used to compare the noise impact of an airport's current operating scenario with the noise impact which would result from some proposed change in airport operations. The relative effectiveness of number of noise-impact reduction alternatives is assessed for a major midwest airport. Significant reductions in noise impact are predicted for certain noise abatement strategies while others are shown to result in relatively little noise relief.

  8. Prediction of Acoustic Noise in Switched Reluctance Motor Drives

    SciTech Connect

    Lin, CJ; Fahimi, B

    2014-03-01

    Prediction of acoustic noise distribution generated by electric machines has become an integral part of design and control in noise sensitive applications. This paper presents a fast and precise acoustic noise imaging technique for switched reluctance machines (SRMs). This method is based on distribution of radial vibration in the stator frame of the SRM. Radial vibration of the stator frame, at a network of probing points, is computed using input phase current and phase voltage waveforms. Sequentially, the acceleration of the probing network will be expanded to predict full acceleration on the stator frame surface, using which acoustic noise emission caused by the stator can be calculated using the boundary element method.

  9. Identifying Potential Noise Sources within Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Holcomb, Victoria; Lewalle, Jacques

    2013-11-01

    We test a new algorithm for its ability to detect sources of noise within random background. The goal of these tests is to better understand how to identify sources within acoustic signals while simultaneously determining the strengths and weaknesses of the algorithm in question. Unlike previously published algorithms, the antenna method does not pinpoint events by looking for the most energetic portions of a signal. The algorithm searches for the ideal lag combinations between three signals by taking excerpts of possible events. The excerpt with the lowest calculated minimum distance between possible events is how the algorithm identifies sources. At the minimum distance, the events are close in time and frequency. This method can be compared to the cross correlation and denoising methods to better understand its effectiveness. This work is supported in part by Spectral Energies LLC, under an SBIR grant from AFRL, as well as the Syracuse University MAE department.

  10. Aeroacoustic Evaluation of Flap and Landing Gear Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.; Ravetta, Patricio A.

    2014-01-01

    Aeroacoustic measurements for a semi-span, 18% scale, high-fidelity Gulfstream aircraft model are presented. The model was used as a test bed to conduct detailed studies of flap and main landing gear noise sources and to determine the effectiveness of numerous noise mitigation concepts. Using a traversing microphone array in the flyover direction, an extensive set of acoustic data was obtained in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the information was acquired with the model in a landing configuration with the flap deflected 39 deg and the main landing gear alternately installed and removed. Data were obtained at Mach numbers of 0.16, 0.20, and 0.24 over directivity angles between 56 deg and 116 deg, with 90 deg representing the overhead direction. Measured acoustic spectra showed that several of the tested flap noise reduction concepts decrease the sound pressure levels by 2 - 4 dB over the entire frequency range at all directivity angles. Slightly lower levels of noise reduction from the main landing gear were obtained through the simultaneous application of various gear devices. Measured aerodynamic forces indicated that the tested gear/flap noise abatement technologies have a negligible impact on the aerodynamic performance of the aircraft model.

  11. Airframe noise measurements by acoustic imaging

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.

    1977-01-01

    Studies of the noise produced by flow past wind tunnel models are presented. The central objective of these is to find the specific locations within a flow which are noisy, and to identify the fluid dynamic processes responsible, with the expectation that noise reduction principles will be discovered. The models tested are mostly simple shapes which result in types of flow that are similar to those occurring on, for example, aircraft landing gear and wheel cavities. A model landing gear and a flap were also tested. Turbulence has been intentionally induced as appropriate in order to simulate full-scale effects more closely. The principal technique involves use of a highly directional microphone system which is scanned about the flow field to be analyzed. The data so acquired are presented as a pictorial image of the noise source distribution. An important finding is that the noise production is highly variable within a flow field and that sources can be attributed to various fluid dynamic features of the flow. Flow separation was not noisy, but separation closure usually was.

  12. Viscous flow drag reduction by acoustic excitation

    NASA Astrophysics Data System (ADS)

    Nagel, Robert T.

    1986-12-01

    An experimental program in which the effectiveness of a single large eddy break up (LEBU) blade is enhanced by proper acoustic excitation is described. Acoustic waves are generated in response to the incident large scale eddies and directed at the blade trailing edge through the test surface floor below the manipulator blade. The acoustic input is phase locked to the incident flow. Control of the acoustic input apparently allows enhancement of the large eddy cancellation process leading to a decrease of skin friction coefficient. Control of this process with acoustic excitation indicates that vortex unwinding is the mechanism for large eddy destruction in the boundary layer. A deeper understanding of this phenomena could lead to better drag reduction technology and further understanding of the physics of the turbulent boundary layer.

  13. Separating underwater ambient noise from flow noise recorded on stereo acoustic tags attached to marine mammals.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Samarra, Filipa I P; Beerens, S Peter; Miller, Patrick J O

    2016-08-01

    Sound-recording acoustic tags attached to marine animals are commonly used in behavioural studies. Measuring ambient noise is of interest to efforts to understand responses of marine mammals to anthropogenic underwater sound, or to assess their communication space. Noise of water flowing around the tag reflects the speed of the animal, but hinders ambient noise measurement. Here, we describe a correlation-based method for stereo acoustic tags to separate the relative contributions of flow and ambient noise. The uncorrelated part of the noise measured in digital acoustic recording tag (DTAG) recordings related well to swim speed of a humpback whale (Megaptera novaeangliae), thus providing a robust measure of flow noise over a wide frequency bandwidth. By removing measurements affected by flow noise, consistent ambient noise estimates were made for two killer whales (Orcinus orca) with DTAGs attached simultaneously. The method is applicable to any multi-channel acoustic tag, enabling application to a wide range of marine species. PMID:27229472

  14. Single and Multiple Microphone Noise Reduction Strategies in Cochlear Implants

    PubMed Central

    Azimi, Behnam; Hu, Yi; Friedland, David R.

    2012-01-01

    To restore hearing sensation, cochlear implants deliver electrical pulses to the auditory nerve by relying on sophisticated signal processing algorithms that convert acoustic inputs to electrical stimuli. Although individuals fitted with cochlear implants perform well in quiet, in the presence of background noise, the speech intelligibility of cochlear implant listeners is more susceptible to background noise than that of normal hearing listeners. Traditionally, to increase performance in noise, single-microphone noise reduction strategies have been used. More recently, a number of approaches have suggested that speech intelligibility in noise can be improved further by making use of two or more microphones, instead. Processing strategies based on multiple microphones can better exploit the spatial diversity of speech and noise because such strategies rely mostly on spatial information about the relative position of competing sound sources. In this article, we identify and elucidate the most significant theoretical aspects that underpin single- and multi-microphone noise reduction strategies for cochlear implants. More analytically, we focus on strategies of both types that have been shown to be promising for use in current-generation implant devices. We present data from past and more recent studies, and furthermore we outline the direction that future research in the area of noise reduction for cochlear implants could follow. PMID:22923425

  15. Noise reduction of a table saw

    NASA Astrophysics Data System (ADS)

    Carlson, John

    2002-05-01

    The National Institute for Occupational Safety and Health (NIOSH) is sponsoring a design project to address the noise levels that commonly exist at construction worksites. Through engineering control, the problem of noise emission from a table saw will be addressed. The noise emitting sources will be pinpointed using a sound pressure level meter. With this knowledge, the next step will be to reduce the sound pressure levels at the noise sources. This will be done by using noise reduction techniques such as insulation, and vibration dampening. The goal is to reduce the noise emission to a level between 85 and 90 dB(A).

  16. Acoustical measurement separates core noise and jet noise

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.

    1980-01-01

    Measuring technique discriminates between jet noise and core noise of jet engine. Results of experimentation confirmed that core noise and jet noise can be separated by examining cross-correlation of far-field microphone signals and that crossover point between core noise and jet noise moves toward higher velocities at higher angles with respect to jet axis.

  17. USB noise reduction by nozzle and flap modifications

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.

    1976-01-01

    The development of concepts for reducing upper surface blown flap noise at the source through flap modifications and special nozzles is reviewed. In particular, recent results obtained on the aerodynamic and acoustic performance of flaps with porous surfaces near the trailing edge and multi-slotted nozzles are reviewed. Considerable reduction (6-10 db) of the characteristic low frequency peak is shown. The aerodynamic performance is compared with conventional systems, and prospects for future improvements are discussed.

  18. Voice communications in the cockpit noise environment: The role of active noise reduction

    NASA Astrophysics Data System (ADS)

    Wheeler, Peter David

    The topic of voice communications in the cockpit noise environment of modern fast-jet aircraft and helicopters is addressed, and in particular, research undertaken in support of the development of a system for reducing the noise level at the operators' ear is described by acoustic cancellation within the ear defender, known as active noise reduction (ANR). The internal noise spectra of today's high performance fast-jet aircraft and military helicopters is described, and the complex interaction of acoustic noise transmission, speech, and microphone noise pick-up, which produces the total acoustic environment at the aircrews' ears, is discussed. Means of mathematically modelling the audio channel, quantifying the components identified above, and identifying areas of shortfall in performance are derived, leading to a procedure for the development of attenuation requirements, described as the communications audit. A model of the electroacoustic characteristics of the ANR ear defender assembly is presented and the sound field distribution within the ear defender/ear cavity, and its effect upon cancellation performance, is discussed. The extensive laboratory and flight testing of the ANR system that was undertaken is reviewed, paying particular attention to the measurement and analysis techniques employed in such testing. Finally, the performance characteristics of ANR are discussed and compared with the requirements previously established. Design limitations placed upon the system by the constraints of its area of application are described, and the scope for future improvements is considered.

  19. A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.

    2011-01-01

    Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.

  20. Television noise-reduction device

    NASA Technical Reports Server (NTRS)

    Stamps, J. C.; Gordon, B. L.

    1973-01-01

    System greatly improves signal-to-noise ratio with little or no loss in picture resolution. By storage of luminance component, which is summed with chrominance component, system performs mathematical integration of basically-repetitive television signals. Integration of signals over interval of their repetition causes little change in original signals and eliminates random noise.

  1. Reduction of Wake-Stator Interaction Noise Using Passive Porosity

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Kelly, Jeffrey J.; Thomas, Russell H.; Bauer, Steven X. S.

    2002-01-01

    The present study was conducted to assess the potential of Passive Porosity Technology as a mechanism to reduce interaction noise in turbomachinery by reducing the fluctuating forces acting on the vane surfaces. To do so, a typical fan stator airfoil was subjected to the effects of a transversely moving wake; time histories of the primitive aerodynamic variables, obtained from Computational Fluid Dynamics (CFD) solutions, were then input into an acoustic prediction code. This procedure was performed on the solid airfoil to obtain a baseline, and on a series of porous configurations in order to isolate those that yield maximum noise reductions without compromising the aerodynamic performance of the stator. It was found that communication between regions of high pressure differential - made possible by the use of passive porosity - is necessary to significantly alter the noise radiation pattern of the stator airfoil. In general, noise reductions were obtained for those configurations incorporating passive porosity in the region between x/c is approximately 0.15 on the suction side of the airfoil and x/c is approximately 0.20 on the pressure side. Reductions in overall radiated noise of approximately 1.0 dB were obtained. The noise benefit increased to about 2.5 dB when the effects of loading noise alone were considered.

  2. UHB engine fan broadband noise reduction study

    NASA Astrophysics Data System (ADS)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-06-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  3. UHB Engine Fan Broadband Noise Reduction Study

    NASA Technical Reports Server (NTRS)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-01-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  4. Noise Reduction Technologies for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2007-01-01

    Significant progress continues to be made with noise reduction for turbofan engines. NASA has conducted and sponsored research aimed at reducing noise from commercial aircraft. Since it takes many years for technologies to be developed and implemented, it is important to have aggressive technology goals that lead the target entry into service dates. Engine noise is one of the major contributors to the overall sound levels as aircraft operate near airports. Turbofan engines are commonly used on commercial transports due to their advantage for higher performance and lower noise. The noise reduction comes from combinations of changes to the engine cycle parameters and low noise design features. In this paper, an overview of major accomplishments from recent NASA research programs for engine noise will be given.

  5. Fish Hatchery Noise Levels and Noise Reduction Techniques.

    PubMed

    Barnes, M E; Hewitt, C R; Parker, T M

    2015-07-01

    This study examined occupational noise within two rearing facilities at a production fish hatchery and evaluated two simple noise reduction techniques. Ambient noise levels in the hatchery tank room ranged from 50 dB in the absence of flowing water to over 73 dB when water was flowing to all 35 tanks under typical hatchery operating procedures. Covering the open standpipes did not significantly reduce noise levels. However, placing partial tank covers over the top of the tanks above the water inlet significantly reduced noise levels, both with and without the use of standpipe covers. Noise levels in the salmon building rose from 43.2 dB without any flowing water to 77.5 dB with water flowing to all six in-ground tanks. Significant noise reductions were observed when the tanks were completely covered or with standpipe covers. Decibel levels showed the greatest reduction when the tanks and standpipes were both covered. These results indicate that occupational noise levels in aquaculture environments may be reduced through the use of simple and relatively inexpensive techniques. PMID:26373216

  6. Airfoil noise reductions through leading edge serrations

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Chaitanya, P.; Haeri, S.; Joseph, P.; Kim, J. W.; Polacsek, C.

    2015-02-01

    This paper provides an experimental investigation into the use of leading edge (LE) serrations as a means of reducing the broadband noise generated due to the interaction between the aerofoil's LE and impinging turbulence. Experiments are performed on a flat plate in an open jet wind tunnel. Grids are used to generate isotropic homogeneous turbulence. The leading edge serrations are in the form of sinusoidal profiles of wavelengths, λ, and amplitudes, 2h. The frequency and amplitude characteristics are studied in detail in order to understand the effect of LE serrations on noise reduction characteristics and are compared with straight edge baseline flat plates. Noise reductions are found to be insignificant at low frequencies but significant in the mid frequency range (500 Hz-8 kHz) for all the cases studied. The flat plate results are also compared to the noise reductions obtained on a serrated NACA-65 aerofoil with the same serration profile. Noise reductions are found to be significantly higher for the flat plates with a maximum noise reduction of around 9 dB compared with about 7 dB for the aerofoil. In general, it is observed that the sound power reduction level (ΔPWL) is sensitive to the amplitude, 2h of the LE serrations but less sensitive to the serration wavelength, λ. Thus, this paper sufficiently demonstrates that the LE amplitude acts as a key parameter for enhancing the noise reduction levels in flat plates and aerofoils.

  7. Acoustic analysis of explosions in high noise environment

    NASA Astrophysics Data System (ADS)

    Man, Hong; Desai, Sachi

    2008-04-01

    Explosion detection and recognition is a critical capability to provide situational awareness to the war-fighters in battlefield. Acoustic sensors are frequently deployed to detect such events and to trigger more expensive sensing/sensor modalities (i.e. radar, laser spectroscope, IR etc.). Acoustic analysis of explosions has been intensively studied to reliably discriminate mortars, artillery, round variations, and type of blast (i.e. chemical/biological or high-explosive). One of the major challenges is high level of noise, which may include non-coherent noise generated from the environmental background and coherent noise induced by possible mobile acoustic sensor platform. In this work, we introduce a new acoustic scene analysis method to effectively enhance explosion classification reliability and reduce the false alarm rate at low SNR and with high coherent noise. The proposed method is based on acoustic signature modeling using Hidden Markov Models (HMMs). Special frequency domain acoustic features characterizing explosions as well as coherent noise are extracted from each signal segment, which forms an observation vector for HMM training and test. Classification is based on a unique model similarity measure between the HMM estimated from the test observations and the trained HMMs. Experimental tests are based on the acoustic explosion dataset from US ARMY ARDEC, and experimental results have demonstrated the effectiveness of the proposed method.

  8. Acoustic noise from volcanoes - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Woulff, G.; Mcgetchin, T. R.

    1976-01-01

    The paper discusses some theoretical aspects of acoustic investigation of volcanoes and describes a field experiment involving the recording, analysis, and interpretation of acoustic radiation from energetic fumaroles at Volcan Acatenango, Guatemala, during mid-January 1973. Particular attention is given to deriving information about the flow velocity of the erupting medium from acoustics as a means to study eruption dynamics. Theoretical considerations suggest that acoustic power radiated during gaseous volcanic eruptions may be related to gas exit velocity according to appropriate power laws. Eruption acoustics proves useful as a means of quantitative monitoring of volcanic activity.

  9. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Gottwald, James A.; Gustaveson, Mark B.; Burton, James R., III; Castellino, Craig

    1989-01-01

    Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at lower, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. A method is being studied which considers aircraft fuselages lines with panels alternately tuned to frequencies above and below the frequency to be attenuated. Adjacent panels would oscillate at equal amplitude, to give equal source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to become cut off and therefore be non-propagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is currently being investigated both theoretically and experimentally. This new concept has potential application to reducing interior noise due to the propellers in advanced turboprop aircraft as well as for existing aircraft configurations. This program summarizes the work carried out at Duke University during the third semester of a contract supported by the Structural Acoustics Branch at NASA Langley Research Center.

  10. Broadband Noise Reduction of a Low-Speed Fan Noise Using Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through the use of rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a continuous trailing edge slot. Hollow blades with interior guide vanes create flow channels through which externally supplied air flows from the blade root to the trailing edge. A previous paper documented the substantial tonal reductions of this Trailing Edge Rotor Blowing (TERB) fan. This report documents the broadband characteristics of TERB. The Active Noise Control Fan (ANCF), located at the NASA Glenn Research Center, was used as the proof-of-concept test bed. Two-component hotwire data behind the rotor, unsteady surface pressures on the stator vane, and farfield directivity acoustic data were acquired at blowing rates of 1.1, 1.5, and 1.8 percent of the total fan mass flow. The results indicate a substantial reduction in the rotor wake turbulent velocity and in the stator vane unsteady surface pressures. Based on the physics of the noise generation, these indirect measurements indicate the prospect of broadband noise reduction. However, since the broadband noise generated by the ANCF is rotor-dominated, any change in the rotor-stator interaction broadband noise levels is barely distinguishable in the farfield measurements.

  11. Recent Progress in Engine Noise Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Huff, Dennis; Gliebe, Philip

    2003-01-01

    Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.

  12. Investigation of the acoustic parameters that influence traffic noise

    NASA Astrophysics Data System (ADS)

    Armas, Alejandro A.; Iasi, Federico M.

    2002-11-01

    Here, we analyze the behavior of the acoustic parameters Leq, L1, L10, L50, L90, L99, Lmin, and Lmax of vehicular noise, which were measured in controlled laboratory conditions, for various traffic noise simulations. For that, sound recordings were created of equal duration but different composition, based on real recordings of the passage of different types of vehicles (cars, motorbikes, trucks, and buses) and using pink noise as background noise. This study is based on the necessity of finding the most appropriate parameters for the characterization of the traffic noise in the cities. The study began with the test of a measurement methodology that uses the equivalent continuous sound level, the main acoustical parameter applied in the city of La Plata, Argentina. However, Leq was shown insufficient and inadequate in certain situations, especially those that didn't exhibit intense traffic noise, as found in certain residential areas. (To be presented in Spanish.)

  13. Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.

    2002-01-01

    Several methods for the prediction of jet noise are described. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy, whereas the other is the jet noise generation model recently proposed by Tam and Auriault. In all of the approaches, some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier-Stokes equation using a kappa-sigma turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach, but instead is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. In conclusion, a proposal is presented for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms, as is a discussion of noise prediction issues that remain to be resolved.

  14. The Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.; Morris, Philip J.

    2002-01-01

    This paper describes several methods for the prediction of jet noise. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while the other is the jet noise generation model recently proposed by Tam and Auriault. In all the approaches some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a k-epsilon turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach: but, is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. The paper concludes with a proposal for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms and a discussion of noise prediction issues that remain to be resolved.

  15. The Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.

    2002-01-01

    This paper describes several methods for the prediction of jet noise. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while the other is the jet noise generation model recently proposed by Tam and Auriault. In all the approaches some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a k - epsilon turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach: but, is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. The paper concludes with a proposal for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms and a discussion of noise prediction issues that remain to be resolved.

  16. Review of Aircraft Engine Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  17. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  18. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2014-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  19. Prediction of Landing Gear Noise Reduction and Comparison to Measurements

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.

    2010-01-01

    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.

  20. Experimental evaluation of leaky least-mean-square algorithms for active noise reduction in communication headsets

    NASA Astrophysics Data System (ADS)

    Cartes, David A.; Ray, Laura R.; Collier, Robert D.

    2002-04-01

    An adaptive leaky normalized least-mean-square (NLMS) algorithm has been developed to optimize stability and performance of active noise cancellation systems. The research addresses LMS filter performance issues related to insufficient excitation, nonstationary noise fields, and time-varying signal-to-noise ratio. The adaptive leaky NLMS algorithm is based on a Lyapunov tuning approach in which three candidate algorithms, each of which is a function of the instantaneous measured reference input, measurement noise variance, and filter length, are shown to provide varying degrees of tradeoff between stability and noise reduction performance. Each algorithm is evaluated experimentally for reduction of low frequency noise in communication headsets, and stability and noise reduction performance are compared with that of traditional NLMS and fixed-leakage NLMS algorithms. Acoustic measurements are made in a specially designed acoustic test cell which is based on the original work of Ryan et al. [``Enclosure for low frequency assessment of active noise reducing circumaural headsets and hearing protection,'' Can. Acoust. 21, 19-20 (1993)] and which provides a highly controlled and uniform acoustic environment. The stability and performance of the active noise reduction system, including a prototype communication headset, are investigated for a variety of noise sources ranging from stationary tonal noise to highly nonstationary measured F-16 aircraft noise over a 20 dB dynamic range. Results demonstrate significant improvements in stability of Lyapunov-tuned LMS algorithms over traditional leaky or nonleaky normalized algorithms, while providing noise reduction performance equivalent to that of the NLMS algorithm for idealized noise fields.

  1. Experimental evaluation of leaky least-mean-square algorithms for active noise reduction in communication headsets.

    PubMed

    Cartes, David A; Ray, Laura R; Collier, Robert D

    2002-04-01

    An adaptive leaky normalized least-mean-square (NLMS) algorithm has been developed to optimize stability and performance of active noise cancellation systems. The research addresses LMS filter performance issues related to insufficient excitation, nonstationary noise fields, and time-varying signal-to-noise ratio. The adaptive leaky NLMS algorithm is based on a Lyapunov tuning approach in which three candidate algorithms, each of which is a function of the instantaneous measured reference input, measurement noise variance, and filter length, are shown to provide varying degrees of tradeoff between stability and noise reduction performance. Each algorithm is evaluated experimentally for reduction of low frequency noise in communication headsets, and stability and noise reduction performance are compared with that of traditional NLMS and fixed-leakage NLMS algorithms. Acoustic measurements are made in a specially designed acoustic test cell which is based on the original work of Ryan et al. ["Enclosure for low frequency assessment of active noise reducing circumaural headsets and hearing protection," Can. Acoust. 21, 19-20 (1993)] and which provides a highly controlled and uniform acoustic environment. The stability and performance of the active noise reduction system, including a prototype communication headset, are investigated for a variety of noise sources ranging from stationary tonal noise to highly nonstationary measured F-16 aircraft noise over a 20 dB dynamic range. Results demonstrate significant improvements in stability of Lyapunov-tuned LMS algorithms over traditional leaky or nonleaky normalized algorithms, while providing noise reduction performance equivalent to that of the NLMS algorithm for idealized noise fields. PMID:12002860

  2. Environmental noise-a challenge for an acoustical engineer

    NASA Astrophysics Data System (ADS)

    Genuit, Klaus

    2003-10-01

    People live in a landscape full of noises which are composed of both natural environmental noises and technically created sounds. Regarding environmental noise, more and more people feel heavily annoyed by noises. Noise is defined as an audible sound which either disturbs the silence or an intentional sound listening or leads to annoyance. Thus, it is clearly defined that the assignment of noise cannot be reduced to simple determining objective parameters such as the A-weighted sound pressure level or the equivalent continuous sound pressure level. The question of whether a sound is judged as noise can only be made after the transformation from the sound event into an auditory event has been accomplished. The evaluation of noise depends on the physical characteristics of the sound event, on the psycho-acoustical features of the human ear, as well as on the psychological aspects of man. For the acoustical design of environmental noise and in order to create a better soundscape the acoustical engineer has to consider these aspects. That means a specific challenge for the sound engineering.

  3. Flap Edge Noise Reduction Fins

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor); Choudhan, Meelan M. (Inventor)

    2015-01-01

    A flap of the type that is movably connected to an aircraft wing to provide control of an aircraft in flight includes opposite ends, wherein at least a first opposite end includes a plurality of substantially rigid, laterally extending protrusions that are spaced apart to form a plurality of fluidly interconnected passageways. The passageways have openings adjacent to upper and lower sides of the flap, and the passageways include a plurality of bends such that high pressure fluid flows from a high pressure region to a low pressure region to provide a boundary condition that inhibits noise resulting from airflow around the end of the flap.

  4. Beaked whale (Mesoplodon densirostris) passive acoustic detection in increasing ambient noise.

    PubMed

    Ward, Jessica; Jarvis, Susan; Moretti, David; Morrissey, Ronald; Dimarzio, Nancy; Johnson, Mark; Tyack, Peter; Thomas, Len; Marques, Tiago

    2011-02-01

    Passive acoustic detection is being increasingly used to monitor visually cryptic cetaceans such as Blainville's beaked whales (Mesoplodon densirostris) that may be especially sensitive to underwater sound. The efficacy of passive acoustic detection is traditionally characterized by the probability of detecting the animal's sound emissions as a function of signal-to-noise ratio. The probability of detection can be predicted using accepted, but not necessarily accurate, models of the underwater acoustic environment. Recent field studies combining far-field hydrophone arrays with on-animal acoustic recording tags have yielded the location and time of each sound emission from tagged animals, enabling in-situ measurements of the probability of detection. However, tagging studies can only take place in calm seas and so do not reflect the full range of ambient noise conditions under which passive acoustic detection may be used. Increased surface-generated noise from wind and wave interaction degrades the signal-to-noise ratio of animal sound receptions at a given distance leading to a reduction in probability of detection. This paper presents a case study simulating the effect of increasing ambient noise on detection of M. densirostris foraging clicks recorded from a tagged whale swimming in the vicinity of a deep-water, bottom-mounted hydrophone array. PMID:21361425

  5. Fdtd Calculation of Linear Acoustic Phenomena and Its Application to Architectural Acoustics and Environmental Noise Prediction

    NASA Astrophysics Data System (ADS)

    Sakamoto, S.

    The finite difference time domain (FDTD) method is widely used as an effective and powerful tool for analyzing acoustic problems. In architectural acoustics, impulse response is the most important quantity and therefore the FDTD method, by which the physical quantities are obtained in time domain, is more advantageous than other wave-based analysis methods, by many of which the calculation is performed in frequency domain. This paper reports application of the FDTD method to room acoustics and outdoor noise assessment.

  6. Publications in acoustic and noise control from NASA Langley Research Center during 1940-1979. [bibliographies

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1980-01-01

    Reference lists of approximately 900 published Langley Research Center reports in various areas of acoustics and noise control for the period 1940-1979 are presented. Specific topic areas covered include: duct acoustics; propagation and operations; rotating blade noise; jet noise; sonic boom; flow surface interaction noise; structural response/interior noise; human response; and noise prediction.

  7. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    SciTech Connect

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-11-20

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  8. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  9. Acoustic Communication in Fishes and Potential Effects of Noise.

    PubMed

    Mann, David A

    2016-01-01

    Many soniferous fishes such as cods and groupers are commercially important. Sounds are produced during courtship and spawning, and there is the potential for aquatic noise to interfere with critical behaviors and affect populations. There are few data on the response of wild populations of sound-producing fishes to acoustic noise. New motion and sound exposure fish tags could be used to assess the behavioral responses of large numbers of fish to noise exposure. Many factors, such as fishing mortality and environmental variability in prey supply, could also affect populations and potentially interact with the behavioral responses to noise. PMID:26611018

  10. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Gottwald, James A.; Bliss, Donald B.

    1990-01-01

    The focus is on a noise control method which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. An interior noise reduction called alternate resonance tuning (ART) is described both theoretically and experimentally. Problems dealing with tuning single paneled wall structures for optimum noise reduction using the ART methodology are presented, and three theoretical problems are analyzed. The first analysis is a three dimensional, full acoustic solution for tuning a panel wall composed of repeating sections with four different panel tunings within that section, where the panels are modeled as idealized spring-mass-damper systems. The second analysis is a two dimensional, full acoustic solution for a panel geometry influenced by the effect of a propagating external pressure field such as that which might be associated with propeller passage by a fuselage. To reduce the analysis complexity, idealized spring-mass-damper panels are again employed. The final theoretical analysis presents the general four panel problem with real panel sections, where the effect of higher structural modes is discussed. Results from an experimental program highlight real applications of the ART concept and show the effectiveness of the tuning on real structures.

  11. Flap Side Edge Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  12. Trailing edge noise reduction in a backward-curved impeller

    NASA Astrophysics Data System (ADS)

    Lauchle, Gerald C.

    2002-05-01

    Motorized impellers are used in many air-moving applications including room circulation, duct flow, roof and wall exhaust, and cooling of electronic components in cabinets. These fans are backward-curved centrifugal blowers that operate with no volute casing. These fans radiate broadband noise due to turbulence ingestion and trailing edge (TE) noise generating mechanisms. Considered here are trailing edge noise generation and its reduction in a typical motorized impeller. The sound power of the subject fans is measured in an acoustically transparent test plenum according to ANSI Standard S12.11-1987. Two different serrated TE treatments are designed. The designs assume that a turbulent boundary layer exists at the blade TE, but the actual fan Reynolds number based on chord length is transitional. Therefore, to assure that a turbulent boundary layer exists at the TE, two different inlet turbulators are implemented. These trip the blade boundary layer to a turbulent state. Reported are the effects of the TE serrations and turbulators acting individually on the fan noise, along with the synergistic effects of using them in combinations. Up to 6 dBA of noise reduction is observed when the two are used together. [Work supported by Nortel Networks.

  13. Measurement resolution of noise directivity patterns from acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Conner, David A.

    1989-01-01

    The measurement resolution of noise directivity patterns from acoustic flight tests was investigated. Directivity angle resolution is affected by the data reduction parameters, the aircraft velocity and flyover altitude, and by deviations of the aircraft from the desired flight path. Equations are developed which determine bounds for the lateral and longitudinal directivity angle resolution as a function of the nominal directivity angle. The equations are applied to a flight test data base and the effects of several flight conditions and data reduction parameters on the directivity angle resolution are presented. The maximum directivity angle resolution typically occurs when the aircraft is at or near the overhead position. In general, directivity angle resolution improves with decreasing velocity, increasing altitude, increasing sampling rate, decreasing block size, and decreasing block averages. Deviations from the desired ideal flight path will increase the resolution. For the flight experiment considered in this study, an average of two flyovers were required at each test condition to obtain an acceptable flight path. The ability of the pilot to maintain the flight track improved with decreasing altitude, decreasing velocity, and practice. Due to the prevailing wind conditions, yaw angles of as much as 20 deg were required to maintain the desired flight path.

  14. Feedback Control for Noise Reduction Program

    NASA Astrophysics Data System (ADS)

    Tucker, Jerry H.

    2002-12-01

    As part of Langley Research Center's continuing noise reduction program, an active noise control system (ANC) is being developed to suppress noise inside an aircraft cabin. This interior noise reduction system consists of the following major components: 1. Several accelerometers. 2. An input amplifier. 3. A digital signal processor (DSP) system that includes an analog to digital converter (ADC) and a digital to analog converter (DAC). 4. A high voltage power amplifier. 5. PZT actuators. 6. Power supply and distribution. The accelerometers detect interior panel vibrations. The accelerometer signals are fed to the input amplifier where they are conditioned prior to being sent to the ADC. The DSP receives the digitized signals form the ADC, processes these signals, and sends the result to the DAC. The DAC's analog output is used as input to the high voltage power amplifier. The power amplifier drives the PZT actuators to cancel noise form 50 to 1,300 Hz. The specific area of concern for this work was development of a DSP system that could be used for an actual flight demonstration. It was decided to base the system on a commercially available DSP board, the Spectrum Digital eZdsp. This was complicated by the fact that the ADC and DAC capabilities available on the eZdsp board were not sufficient to meet the system specification. Designing and fabricating a special ADC and DAC daughter card for the eZdsp circumvented this problem. The DSP system hardware has been successfully tested and is currently being integrated into the complete noise reduction system. This work has been completed in collaboration with another ASEE Fellow, Dr.William Edmonson from Hampton University and was conducted under the direction of the principle investigator, Dr. Qamar A. Shams of the Instrumentation Systems Development Branch, as part of a continuing noise reduction program.

  15. Acoustics, Noise, and Buildings. Revised Edition 1969.

    ERIC Educational Resources Information Center

    Parkin, P. H.; Humphreys, H. R.

    The fundamental physical concepts needed in any appreciation of acoustical problems are discussed by a scientist and an architect. The major areas of interest are--(1) the nature of sound, (2) the behavior of sound in rooms, (3) the design of rooms for speech, (4) the design of rooms for music, (5) the design of studios, (6) the design of high…

  16. Wake Management Strategies for Reduction of Turbomachinery Fan Noise

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A.

    1998-01-01

    The primary objective of our work was to evaluate and test several wake management schemes for the reduction of turbomachinery fan noise. Throughout the course of this work we relied on several tools. These include 1) Two-dimensional steady boundary-layer and wake analyses using MISES (a thin-shear layer Navier-Stokes code), 2) Two-dimensional unsteady wake-stator interaction simulations using UNSFLO, 3) Three-dimensional, steady Navier-Stokes rotor simulations using NEWT, 4) Internal blade passage design using quasi-one-dimensional passage flow models developed at MIT, 5) Acoustic modeling using LINSUB, 6) Acoustic modeling using VO72, 7) Experiments in a low-speed cascade wind-tunnel, and 8) ADP fan rig tests in the MIT Blowdown Compressor.

  17. Experimental and Numerical Analysis of Structural Acousticcontrol Interior Noise Reduction

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Bevan, Jeffrey S.

    1999-01-01

    The research results contained in this technical report were performed under the NASA grant entitled "Experimental and Numerical Structural Acoustic Control for Interior Noise Reduction". The report is based essentially on partial progress of the Ph.D. dissertation prepared by Jeffrey S. Bevan under direct guidance of Dr. Chuh Mei. The document presents a finite element formulation and control of sound radiated from cylindrical panels embedded with piezoceramic actuators. The extended MIN6 shallow shell element is fully electrical-structural coupled. A piezoelectric modal actuator participation (PMAP) is defined which indicates the actuator performance to each of the offending modes. Genetic algorithm is also employed to validate the sensor and actuator locations determined by the PMAP criteria. The work was conducted at the Department of Aerospace Engineering, Old Dominion University. Mr. Travis L. Turner, Structural Acoustics Branch, NASA Langley Research Center is the technical monitor.

  18. Low-Speed Fan Noise Reduction With Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Tweedt, Daniel L.; Fite, E. Brian; Envia, Edmane

    2002-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a trailing edge slot. Composite hollow rotor blades with internal flow passages were designed based on analytical codes modeling the internal flow. The hollow blade with interior guide vanes creates flow channels through which externally supplied air flows from the root of the blade to the trailing edge. The impact of the rotor wake-stator interaction on the acoustics was also predicted analytically. The Active Noise Control Fan, located at the NASA Glenn Research Center, was used as the proof- of-concept test bed. In-duct mode and farfield directivity acoustic data were acquired at blowing rates (defined as mass supplied to trailing edge blowing system divided by fan mass flow) ranging from 0.5 to 2.0 percent. The first three blade passing frequency harmonics at fan rotational speeds of 1700 to 1900 rpm were analyzed. The acoustic tone power levels (PWL) in the inlet and exhaust were reduced 11.5 and -0.1, 7.2 and 11.4, 11.8 and 19.4 PWL dB, respectively. The farfield tone power levels at the first three harmonics were reduced 5.4, 10.6, and 12.4 dB PWL. At selected conditions, two-component hotwire and stator vane unsteady surface pressures were acquired. These measurements illustrate the physics behind the noise reduction.

  19. Structure borne noise analysis using Helmholtz equation least squares based forced vibro acoustic components

    NASA Astrophysics Data System (ADS)

    Natarajan, Logesh Kumar

    This dissertation presents a structure-borne noise analysis technology that is focused on providing a cost-effective noise reduction strategy. Structure-borne sound is generated or transmitted through structural vibration; however, only a small portion of the vibration can effectively produce sound and radiate it to the far-field. Therefore, cost-effective noise reduction is reliant on identifying and suppressing the critical vibration components that are directly responsible for an undesired sound. However, current technologies cannot successfully identify these critical vibration components from the point of view of direct contribution to sound radiation and hence cannot guarantee the best cost-effective noise reduction. The technology developed here provides a strategy towards identifying the critical vibration components and methodically suppressing them to achieve a cost-effective noise reduction. The core of this technology is Helmholtz equation least squares (HELS) based nearfield acoustic holography method. In this study, the HELS formulations derived in spherical co-ordinates using spherical wave expansion functions utilize the input data of acoustic pressures measured in the nearfield of a vibrating object to reconstruct the vibro-acoustic responses on the source surface and acoustic quantities in the far field. Using these formulations, three steps were taken to achieve the goal. First, hybrid regularization techniques were developed to improve the reconstruction accuracy of normal surface velocity of the original HELS method. Second, correlations between the surface vibro-acoustic responses and acoustic radiation were factorized using singular value decomposition to obtain orthogonal basis known here as the forced vibro-acoustic components (F-VACs). The F-VACs enables one to identify the critical vibration components for sound radiation in a similar manner that modal decomposition identifies the critical natural modes in a structural vibration. Finally

  20. Perceptual Learning of Acoustic Noise by Individuals with Dyslexia

    ERIC Educational Resources Information Center

    Agus, Trevor R.; Carrión-Castillo, Amaia; Pressnitzer, Daniel; Ramus, Franck

    2014-01-01

    Purpose: A phonological deficit is thought to affect most individuals with developmental dyslexia. The present study addresses whether the phonological deficit is caused by difficulties with perceptual learning of fine acoustic details. Method: A demanding test of nonverbal auditory memory, "noise learning," was administered to both…

  1. Jet Noise Reduction Potential from Emerging Variable Cycle Technologies

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bridges, James; Wernet, Mark

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.

  2. Jet Noise Reduction Potential From Emerging Variable Cycle Technologies

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.

  3. Jet-noise reduction through liquid-base foam injection.

    NASA Technical Reports Server (NTRS)

    Manson, L.; Burge, H. L.

    1971-01-01

    An experimental investigation has been made of the sound-absorbing properties of liquid-base foams and of their ability to reduce jet noise. Protein, detergent, and polymer foaming agents were used in water solutions. A method of foam generation was developed to permit systematic variation of the foam density. The investigation included measurements of sound-absorption coefficents for both plane normal incidence waves and diffuse sound fields. The intrinsic acoustic properties of foam, e.g., the characteristic impedance and the propagation constant, were also determined. The sound emitted by a 1-in.-diam cold nitrogen jet was measured for subsonic (300 m/sec) and supersonic (422 m/sec) jets, with and without foam injection. Noise reductions up to 10 PNdB were measured.

  4. On the role of the radiation directivity in noise reduction for STOL aircraft.

    NASA Technical Reports Server (NTRS)

    Gruschka, H. D.

    1972-01-01

    The radiation characteristics of distributed randomly fluctuating acoustic sources when shielded by finite surfaces are discussed briefly. A number of model tests using loudspeakers as artificial noise sources with a given broadband power density spectrum are used to demonstrate the effectiveness of reducing the radiated noise intensity in certain directions due to shielding. In the lateral direction of the source array noise reductions of 12 dB are observed with relatively small shields. The same shields reduce the backward radiation by approximately 20 dB. With the results obtained in these acoustic model tests the potentials of jet noise reduction of jet flap propulsion systems applicable in future STOL aircraft are discussed. The jet flap configuration as a complex aerodynamic noise source is described briefly.

  5. Noise reduction of diesel engine for heavy duty vehicles

    SciTech Connect

    Miura, Y.; Arai, S.

    1989-01-01

    Noise reduction of diesel engines installed in heavy duty vehicles is one of the highest priorities from the viewpoints of meeting the regulations for urban traffic noise abatement and noise reduction in the cabin for lightening fatigue with comfortable long driving. It is necessary that noise reduction measures then be applied to those causes. All noise reduction measures for the diesel engine researched for the purpose of practical use are described in this paper.

  6. Oceanic ambient noise as a background to acoustic neutrino detection

    SciTech Connect

    Kurahashi, Naoko; Gratta, Giorgio

    2008-11-01

    Ambient noise measured in the deep ocean is studied in the context of a search for signals from ultrahigh-energy cosmic ray neutrinos. The spectral shape of the noise at the relevant high frequencies is found to be very stable for an extensive data set collected over several months from 49 hydrophones mounted near the bottom of the ocean at {approx}1600 m depth. The slopes of the ambient noise spectra above 15 kHz are found to roll off faster than the -6 dB/octave seen in Knudsen spectra. A model attributing the source to a uniform distribution of surface noise that includes frequency-dependent absorption at large depth is found to fit the data well up to 25 kHz. This depth-dependent model should therefore be used in analysis methods of acoustic neutrino pulse detection that require the expected noise spectra.

  7. Experimental study of noise reduction for an unstiffened cylindrical model of an airplane fuselage

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Daniels, E. F.

    1981-01-01

    Noise reduction measurements were made for a simplified model of an airplane fuselage consisting of an unstiffened aluminum cylinder 0.5 m in diameter by 1.2 m long with a 1.6-mm-thick wall. Noise reduction was first measured with a reverberant field pink-noise load on the cylinder exterior. Next, noise reduction was measured by using a propeller to provide a more realistic noise load on the cylinder. Structural resonance frequencies and acoustic reverberation times for the cylinder interior volume were also measured. Comparison of data from the relatively simple test using reverberant-field noise with data from the more complex propeller-noise tests indicates some similarity in both the overall noise reduction and the spectral distribution. However, all of the test parameters investigated (propeller speed, blade pitch, and tip clearance) had some effect on the noise-reduction spectra. Thus, the amount of noise reduction achieved appears to be somewhat dependent upon the spectral and spatial characteristics of the flight conditions. Information is also presented on cyclinder resonance frequencies, damping, and characteristics of propeller-noise loads.

  8. On the way to extended noise reductions in propeller aircraft

    NASA Astrophysics Data System (ADS)

    Kiers, R. F. C.

    1984-08-01

    Origins of cabin noise in propeller driven aircraft (PDE) and the importance of further reductions are described. Trends in propeller technology and fuselage construction are aimed at the development of extremely fuel-efficient PDE. However, the related increase of cabin noise levels urges the extension of noise reduction in PDE. Fokker noise reduction methodology for meeting the challenge of maintaining and improving noise levels in future PDE is discussed. Additional noise reduction is hard to obtain. Sophisticated techniques were used to acquire the necessary data and take effective noise reduction measures.

  9. Simulation of Acoustic Noise Generated by an Airbreathing, Beam-Powered Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Kennedy, W. C.; Van Laak, P.; Scarton, H. A.; Myrabo, L. N.

    2005-04-01

    A simple acoustic model is developed for predicting the noise signature vs. power level for advanced laser-propelled lightcraft — capable of single-stage flights into low Earth orbit. This model predicts the noise levels generated by a pulsed detonation engine (PDE) during the initial lift-off and acceleration phase, for two representative `tractor-beam' lightcraft designs: a 1-place `Mercury' vehicle (2.5-m diameter, 900-kg); and a larger 5-place `Apollo' vehicle (5-m diameter, 5555-kg) — both the subject of an earlier study. The use of digital techniques to simulate the expected PDE noise signature is discussed, and three examples of fly-by noise signatures are presented. The reduction, or complete elimination of perceptible noise from such engines, can be accomplished by shifting the pulse frequency into the supra-audible or sub-audible range.

  10. Combat aircraft noise reduction by technical measures

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Kennepohl, F.; Heinig, K.

    1992-04-01

    The noise of combat aircraft during low level flight is dominated by the jet. Technical noise reduction measures must therefore reduce the specific thrust of the engine. This can be achieved by altering the engine cycle or by using secondary air to increase the mass flow though the nozzle. In the first part the influence of nozzle area, bypass ratio and variable cycle features on the specific thrust of modern fighter engines is shown. The effects on noise, thrust and fuel consumption are discussed. In the second part ejector-mixer nozzles and the aft-fan are considered. Both reduce the jet velocity by entraining air through secondary inlets and expelling it together with the engine's exhaust flow through a common nozzle.

  11. Generation of broadband electrostatic noise by electron acoustic solitons

    SciTech Connect

    Dubouloz, N.; Pottelette, R.; Malingre, M. ); Treumann, R.A. )

    1991-02-01

    Broadband electrostatic noise (BEN) bursts whose amplitude sometimes reaches about 100 mV m{sup {minus}1} have been observed by the Viking satellite in the dayside auroral zone. These emissions have been shown to be greatly influenced by nonlinear effects and to occur simultaneously with the observation of particle distributions favouring the destabilization of the electron acoustic mode. It is shown that electron acoustic solitons passing by the satellite would generate spectra that can explain the high-frequency part of BEN, above the electron plasma frequency.

  12. Feedback controllers for broadband active noise reduction

    NASA Astrophysics Data System (ADS)

    Petitjean, Benoit; Legrain, Isabelle

    1994-09-01

    The aim of the present paper is to demonstrate the efficiency of an LQG-based controller for the active control of the acoustic field radiated by a rectangular panel. This topic has been of interest for numerous researchers in the past 10 or 15 years, but very little attention has been paid to broadband disturbances occurring in a relatively high frequency range. These are unfortunately common features of noise perturbations in realistic structures such as airplanes or helicopters. The few articles that deal with this problem provide very scarce experimental results and are related to frequency bands where the structure dynamics is rather poor. From the outset, the problem at hand involves numerous difficulties, such as the modeling of the active structure itself and the possible large size of the controller. In the following, the experimental setup is described, then the controller design procedure is developed and finally some experimental results are shown that prove the efficiency of the method.

  13. AST Critical Propulsion and Noise Reduction Technologies for Future Commercial Subsonic Engines: Separate-Flow Exhaust System Noise Reduction Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Martens, S.; Gliebe, P. R.; Mengle, V.; Dalton, W. N.; Saiyed, Naseem (Technical Monitor)

    2000-01-01

    This report describes the work performed by General Electric Aircraft Engines (GEAE) and Allison Engine Company (AEC) on NASA Contract NAS3-27720 AoI 14.3. The objective of this contract was to generate quality jet noise acoustic data for separate-flow nozzle models and to design and verify new jet-noise-reduction concepts over a range of simulated engine cycles and flight conditions. Five baseline axisymmetric separate-flow nozzle models having bypass ratios of five and eight with internal and external plugs and 11 different mixing-enhancer model nozzles (including chevrons, vortex-generator doublets, and a tongue mixer) were designed and tested in model scale. Using available core and fan nozzle hardware in various combinations, 28 GEAE/AEC separate-flow nozzle/mixing-enhancer configurations were acoustically evaluated in the NASA Glenn Research Center Aeroacoustic and Propulsion Laboratory. This report describes model nozzle features, facility and data acquisition/reduction procedures, the test matrix, and measured acoustic data analyses. A number of tested core and fan mixing enhancer devices and combinations of devices gave significant jet noise reduction relative to separate-flow baseline nozzles. Inward-flip and alternating-flip core chevrons combined with a straight-chevron fan nozzle exceeded the NASA stretch goal of 3 EPNdB jet noise reduction at typical sideline certification conditions.

  14. Trailing Edge Noise Prediction Based on a New Acoustic Formulation

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.

    2002-01-01

    A new analytic result in acoustics called 'Formulation 1B,' proposed by Farassat, is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experiment. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, using both analytical and experimental data on the airfoil surface. The results are compared to analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.

  15. Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8) diameter fan, volume 2

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1975-01-01

    Aft fan noise reduction techniques were investigated. The 1/3 octave band sound data were plotted with the following plots included: perceived noise level vs acoustic angle at 2 fan speeds; PWL vs frequency at 2 fan speeds; and sound pressure level vs frequency at 2 aft angles and 2 fan speeds. The source noise plots included: band pass filter sound pressure level vs acoustic angle at 2 fan speeds; and 2nd harmonic SPL acoustic angle at 2 fan speeds.

  16. Prediction of interior noise due to random acoustic or turbulent boundary layer excitation using statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1990-01-01

    The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.

  17. Acoustic noise improves visual perception and modulates occipital oscillatory states.

    PubMed

    Gleiss, Stephanie; Kayser, Christoph

    2014-04-01

    Perception is a multisensory process, and previous work has shown that multisensory interactions occur not only for object-related stimuli but also for simplistic and apparently unrelated inputs to the different senses. We here compare the facilitation of visual perception induced by transient (target-synchronized) sounds to the facilitation provided by continuous background noise like sounds. Specifically, we show that continuous acoustic noise improves visual contrast detection by systematically shifting psychometric curves in an amplitude-dependent manner. This multisensory benefit was found to be both qualitatively and quantitatively similar to that induced by a transient and target synchronized sound in the same paradigm. Studying the underlying neural mechanisms using electric neuroimaging (EEG), we found that acoustic noise alters occipital alpha (8-12 Hz) power and decreases beta-band (14-20 Hz) coupling of occipital and temporal sites. Task-irrelevant and continuous sounds thereby have an amplitude-dependent effect on cortical mechanisms implicated in shaping visual cortical excitability. The same oscillatory mechanisms also mediate visual facilitation by transient sounds, and our results suggest that task-related sounds and task-irrelevant background noises could induce perceptually and mechanistically similar enhancement of visual perception. Given the omnipresence of sounds and noises in our environment, such multisensory interactions may affect perception in many everyday scenarios. PMID:24236698

  18. Subwavelength acoustic metamaterial panels for underwater noise isolation.

    PubMed

    Hicks, Ashley J; Haberman, Michael R; Wilson, Preston S

    2015-09-01

    Acoustically thin metamaterial underwater noise isolation panels have been developed that provide as much as 16 dB of noise isolation for a panel with a thickness just 160th of the wavelength in the host medium (fresh water) at 2.5 kHz. The panels are composed of thin layers of neoprene rubber and polyoxymethylene containing air-filled voids. The level of isolation provided by the panels is shown to correlate positively with the volume fraction of air voids within the panel. PMID:26428822

  19. Minimizing vehicle noise and weight using panel acoustic contribution analysis

    NASA Astrophysics Data System (ADS)

    Brown, Gordon M.

    1998-05-01

    Panel acoustic contribution analysis (PACA) is an advanced engineering tool to improve noise, vibration, and harshness quality and minimize weight of vehicles. It is a technique to categorize areas of vehicle body panels as positive (sound level increases as vibration amplitude increases), negative or neutral according to their contribution to the total sound. PACA is a hybrid of computer aided engineering and experimental methods. Computer aided holometry, scanning laser velocimetry, or an accelerometer net is used to experimentally measure structure vibration complex velocities. These velocities are the boundary conditions for a boundary element model of the acoustic cavity. Boundary element analysis is then used to predict the vehicle interior sound and calculate panel acoustic contributions. Experimental results for a welded steel box (validation) and vehicle application are presented.

  20. Simple noise reduction for diffusion weighted images.

    PubMed

    Konishi, Yuto; Kanazawa, Yuki; Usuda, Takatoshi; Matsumoto, Yuki; Hayashi, Hiroaki; Matsuda, Tsuyoshi; Ueno, Junji; Harada, Masafumi

    2016-07-01

    Our purpose in this study was to reduce the noise in order to improve the SNR of Dw images with high b-value by using two correction schemes. This study was performed with use of phantoms made from water and sucrose at different concentrations, which were 10, 30, and 50 weight percent (wt%). In noise reduction for Dw imaging of the phantoms, we compared two correction schemes that are based on the Rician distribution and the Gaussian distribution. The highest error values for each concentration with use of the Rician distribution scheme were 7.3 % for 10 wt%, 2.4 % for 30 wt%, and 0.1 % for 50 wt%. The highest error values for each concentration with use of the Gaussian distribution scheme were 20.3 % for 10 wt%, 11.6 % for 30 wt%, and 3.4 % for 50 wt%. In Dw imaging, the noise reduction makes it possible to apply the correction scheme of Rician distribution. PMID:26984734

  1. Improved configuration and reduction of phase noise in a narrow linewidth ultrawideband optical RF source.

    PubMed

    Grund, David W; Shi, Shouyuan; Schneider, Garrett J; Murakowski, Janusz; Prather, Dennis W

    2014-08-15

    In this Letter, we report on the improved configuration of a widely tunable optical RF generation system, particularly for the generation of low-frequency RF, as well as the reduction of phase noise in that same system. Using an amplitude modulator, a simplified system design was demonstrated with fewer components and improved phase noise performance, especially at RF frequencies below ∼36 GHz. Excess phase noise due to acoustic vibrations of the optical fibers was also successfully eliminated by mechanical isolation. A minimum phase noise of -124 dBc/Hz at 10 kHz offset was demonstrated at 4 GHz. PMID:25121844

  2. Gas turbine exhaust nozzle. [for noise reduction

    NASA Technical Reports Server (NTRS)

    Straight, D. M. (Inventor)

    1973-01-01

    An elongated hollow string is disposed in an exhaust nozzle combustion chamber and communicates with an air source through hollow struts at one end. The other end of the string is bell-mouth shaped and extends over the front portion of a nozzle plug. The bell-mouth may be formed by pivotally mounted flaps or leaves which are used to vary the exhaust throat area and the area between the plug and the leaves. Air from the engine inlet flows into the string and also between the combustion chamber and a housing disposed around the chamber. The air cools the plug and serves as a low velocity inner core of secondary gas to provide noise reduction for the primary exhaust gas while the other air, when it exits from the nozzle, forms an outer low velocity layer to further reduce noise. The structure produces increased thrust in a turbojet or turbofan engine.

  3. Noise correction of turbulent spectra obtained from Acoustic Doppler Velocimeters

    SciTech Connect

    Durgesh, Vibhav; Thomson, Jim; Richmond, Marshall C.; Polagye, Brian

    2014-03-02

    Accurately estimated auto-spectral density functions are essential for characterization of turbulent flows, and they also have applications in computational fluid dynamics modeling, site and inflow characterization for hydrokinetic turbines, and inflow turbulence generation. The Acoustic Doppler Velocimeter (ADV) provides single-point temporally resolved data, that are used to characterize turbulent flows in rivers, seas, and oceans. However, ADV data are susceptible to contamination from various sources, including instrument noise, which is the intrinsic limit to the accuracy of acoustic velocity measurements. Due to the presence of instrument noise, the spectra obtained are altered at high frequencies. The focus of this study is to develop a robust and effective method for accurately estimating auto-spectral density functions from ADV data by reducing or removing the spectral contribution derived from instrument noise. For this purpose, the “Noise Auto-Correlation” (NAC) approach was developed, which exploits the correlation properties of instrument noise to identify and remove its contribution from spectra. The spectra estimated using the NAC approach exhibit increased fidelity and a slope of -5/3 in the inertial range, which is typically observed for turbulent flows. Finally, this study also compares the effectiveness of low-pass Gaussian filters in removing instrument noise with that of the NAC approach. For the data used in this study, both the NAC and Gaussian filter approaches are observed to be capable of removing instrument noise at higher frequencies from the spectra. However, the NAC results are closer to the expected frequency power of -5/3 in the inertial sub-range.

  4. Noise reduction of a tilt-rotor aircraft including effects on weight and performance

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.; Kohler, G.

    1973-01-01

    Various methods for far-field noise reduction of a tilt-rotor acoustic signature and the performance and weight tradeoffs which result from modification of the noise sources are considered in this report. In order to provide a realistic approach for the investigation, the Boeing tilt-rotor flight research aircraft (Model 222), was selected as the baseline. This aircraft has undergone considerable engineering development. Its rotor has been manufactured and tested in the Ames full-scale wind tunnel. The study reflects the current state-of-the-art of aircraft design for far-field acoustic signature reduction and is not based solely on an engineering feasibility aircraft. This report supplements a previous study investigating reduction of noise signature through the management of the terminal flight trajectory.

  5. Effects of acoustic hood on noise, CFC-11, and particulate matter in a recycling system for waste refrigerator cabinet.

    PubMed

    Guo, Jie; Fang, Wenxiong; Yang, Yichen; Xu, Zhenming

    2014-11-01

    The mechanical-physical process was proven to be technologically feasible for waste refrigerator recycling and has been widely used in the typical e-waste recycling factories in China. In this study, effects of the acoustic hood on the reduction of noise level, CFC-11, and heavy metals (Cr, Ni, Cu, Cd, and Pb) in particulate matter (PM) were evaluated. For noise pollution, the noise level inside and outside the acoustic hood was 96.4 and 78.9 dB, respectively. Meanwhile, it had a significant effect on A-weighted sound level with a reduction from 98.3 to 63.6 dB. For CFC-11 exposure, abundant CFC-11 (255 mg/m(3)) was detected in the acoustic hood. However, the mean concentration of CFC-11 at the outline of polyurethane foam collection was obviously diminished to 14 mg/m(3), and no CFC-11 was monitored around the acoustic hood. The concentrations of PM and heavy metals in PM outside the acoustic hood were lower than those inside the acoustic hood due to the physical barriers of the acoustic hood. Based on the risk assessment, only adverse health effect caused by Pb might likely appear. All the results can provide the basic data for pollution control and risk assessment in waste refrigerator recycling system. PMID:24965005

  6. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    NASA Astrophysics Data System (ADS)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs

  7. Clinical review: The impact of noise on patients' sleep and the effectiveness of noise reduction strategies in intensive care units

    PubMed Central

    Xie, Hui; Kang, Jian; Mills, Gary H

    2009-01-01

    Excessive noise is becoming a significant problem for intensive care units (ICUs). This paper first reviews the impact of noise on patients' sleep in ICUs. Five previous studies have demonstrated such impacts, whereas six other studies have shown other factors to be more important. Staff conversation and alarms are generally regarded as the most disturbing noises for patients' sleep in ICUs. Most research in this area has focused purely on noise level, but work has been very limited on the relationships between sleep quality and other acoustic parameters, including spectrum and reverberation time. Sound-absorbing treatment is a relatively effective noise reduction strategy, whereas sound masking appears to be the most effective technique for improving sleep. For future research, there should be close collaboration between medical researchers and acousticians. PMID:19344486

  8. Two stage low noise advanced technology fan. 1: Aerodynamic, structural, and acoustic design

    NASA Technical Reports Server (NTRS)

    Messenger, H. E.; Ruschak, J. T.; Sofrin, T. G.

    1974-01-01

    A two-stage fan was designed to reduce noise 20 db below current requirements. The first-stage rotor has a design tip speed of 365.8 m/sec and a hub/tip ratio of 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiency of 85.3 percent at a specific inlet corrected flow of 209.2kg/sec/sq m. Noise reduction devices include acoustically treated casing walls, a flowpath exit acoustic splitter, a translating centerbody sonic inlet device, widely spaced blade rows, and the proper ratio of blades and vanes. Multiple-circular-arc rotor airfoils, resettable stators, split outer casings, and capability to go to close blade-row spacing are also included.

  9. Recent Progress in Engine Noise Reduction for Commercial Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2003-01-01

    Considerable progress has been made over the past ten years developing technologies for reducing aircraft noise. Engine noise continues to be a dominate source, particularly for aircraft departing from airports. Research efforts have concentrated on developing noise prediction methods, experimental validation, and developing noise reduction concepts that have been verified through model scale and static engine tests. Most of the work has concentrated on fan and jet components for commercial turbofan engines. In this seminar, an overview of the engine noise reduction work that was sponsored by NASA s Advanced Subsonic Technology Noise Reduction Program will be given, along with background information on turbofan noise sources and certification procedures. Concepts like "chevron" nozzles for jet noise reduction and swept stators for fan noise reduction will be highlighted. A preliminary assessment on how the new technologies will impact future engines will be given.

  10. Blade-Mounted Flap Control for BVI Noise Reduction Proof-of-Concept Test

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Hassan, Ahmed; Straub, Friedrich; Tadghighi, Hormoz

    1995-01-01

    This report describes a wind tunnel test of the McDonnell Douglas Helicopter Systems (MDHS) Active Flap Model Rotor at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The test demonstrated that BVI noise reductions and vibration reductions were possible with the use of an active flap. Aerodynamic results supported the acoustic data trends, showing a reduction in the strength of the tip vortex with the deflection of the flap. Acoustic results showed that the flap deployment, depending on the peak deflection angle and azimuthal shift in its deployment schedule, can produce BVI noise reductions as much as 6 dB on the advancing and retreating sides. The noise reduction was accompanied by an increase in low frequency harmonic noise and high frequency broadband noise. A brief assessment of the effect of the flap on vibration showed that significant reductions were possible. The greatest vibration reductions (as much as 76%) were found in the four per rev pitching moment at the hub. Performance improvement cam results were inconclusive, as the improvements were predicted to be smaller than the resolution of the rotor balance.

  11. A multi-band spectral subtraction-based algorithm for real-time noise cancellation applied to gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2013-06-01

    Acoustical sniper positioning is based on the detection and direction-of-arrival estimation of the shockwave and the muzzle blast acoustical signals. In real-life situations, the detection and direction-of-arrival estimation processes is usually performed under the influence of background noise sources, e.g., vehicles noise, and might result in non-negligible inaccuracies than can affect the system performance and reliability negatively, specially when detecting the muzzle sound under long range distance and absorbing terrains. This paper introduces a multi-band spectral subtraction based algorithm for real-time noise reduction, applied to gunshot acoustical signals. The ballistic shockwave and the muzzle blast signals exhibit distinct frequency contents that are affected differently by additive noise. In most real situations, the noise component is colored and a multi-band spectral subtraction approach for noise reduction contributes to reducing the presence of artifacts in denoised signals. The proposed algorithm is tested using a dataset generated by combining signals from real gunshots and real vehicle noise. The noise component was generated using a steel tracked military tank running on asphalt and includes, therefore, the sound from the vehicle engine, which varies slightly in frequency over time according to the engine's rpm, and the sound from the steel tracks as the vehicle moves.

  12. Reduction of airfoil trailing edge noise by trailing edge blowing

    NASA Astrophysics Data System (ADS)

    Gerhard, T.; Erbslöh, S.; Carolus, T.

    2014-06-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length.

  13. Twin jet shielding. [for aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cuffel, R. F.; Massier, P. F.

    1979-01-01

    For an over-the-wing/under-the-wing engine configuration on an airplane, the noise produced by the upper jet flow is partially reflected by the lower jet. An analysis has been performed which can be used to predict the distribution of perceived noise levels along the ground plane at take-off for an airplane which is designed to take advantage of the over/under shielding concept. Typical contours of PNL, the shielding benefit in the shadow zone, and the EPNL values at 3.5 nautical miles from brake release as well as EPNL values at sideline at 0.35 nautical miles have been calculated. This has been done for a range of flow parameters characteristic of engines producing inverted velocity profile jets suitable for use in a supersonic cruise vehicle. Reductions up to 6.0 EPNdB in community noise levels can be realized when the over engines are operated at higher thrust and the lower engines simultaneously operated with reduced thrust keeping the total thrust constant.

  14. Reduction of propeller noise by a reflecting rubber layer

    NASA Astrophysics Data System (ADS)

    Soederqvist, R.; Soederqvist, S.

    1983-08-01

    The pressure pulses from ship propeller blades were reflected by a soft layer of cellrubber coating applied on the underwater part of the stern. The ship treated was a 5000 ton dwt asphalt tanker. The soft layer works in the near field of the propeller blades, which are assumed to be simple acoustic sources with harmonics. Because of the mechanical nonlinearity of the rubber material, useful reflection is obtained only from the second harmonic and upwards. Measured noise reduction is 15 dB at 100 Hz, 5 dB at 45 Hz, and the damping of motor vibrations is 3.5 dB. The first harmonic, at 20 Hz, increases by 5 dB.

  15. Noise reduction by the application of an air-bubble curtain in offshore pile driving

    NASA Astrophysics Data System (ADS)

    Tsouvalas, A.; Metrikine, A. V.

    2016-06-01

    Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer

  16. Evaluation of Airframe Noise Reduction Concepts via Simulations Using a Lattice Boltzmann Approach

    NASA Technical Reports Server (NTRS)

    Fares, Ehab; Casalino, Damiano; Khorrami, Mehdi R.

    2015-01-01

    Unsteady computations are presented for a high-fidelity, 18% scale, semi-span Gulfstream aircraft model in landing configuration, i.e. flap deflected at 39 degree and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW® to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. In addition to the baseline geometry, which was presented previously, various noise reduction concepts for the flap and main landing gear are simulated. In particular, care is taken to fully resolve the complex geometrical details associated with these concepts in order to capture the resulting intricate local flow field thus enabling accurate prediction of their acoustic behavior. To determine aeroacoustic performance, the farfield noise predicted with the concepts applied is compared to high-fidelity simulations of the untreated baseline configurations. To assess the accuracy of the computed results, the aerodynamic and aeroacoustic impact of the noise reduction concepts is evaluated numerically and compared to experimental results for the same model. The trends and effectiveness of the simulated noise reduction concepts compare well with measured values and demonstrate that the computational approach is capable of capturing the primary effects of the acoustic treatment on a full aircraft model.

  17. The NASA/AHS Rotorcraft Noise Reduction Program

    NASA Technical Reports Server (NTRS)

    Childress, Otis S., Jr.

    1988-01-01

    Research of the NASA/AHS noise reduction program is discussed, stressing work in four areas: noise prediction, testing and data base, noise reduction, and criteria development. A program called ROTONET has been developed, using a code structure divided into four main parts; main- and tail-rotor blade geometry, rotor performance, noise calculations, and noise propagation. Wind tunnel tests on individual rotors, and flight tests on a helicopter built specifically to generate a broadband main rotor noise data base have been conducted. In the field of noise reduction, researchers have performed analytical evaluations of low noise rotor concepts, and small-scale wind tunnel evaluations of noise reduction concepts. Under the supervision of the FAA, the program in conducting tests to develop criteria for helicopters and heliports.

  18. Nonlinear Transport and Noise Properties of Acoustic Phonons

    NASA Astrophysics Data System (ADS)

    Walczak, Kamil

    We examine heat transport carried by acoustic phonons in molecular junctions composed of organic molecules coupled to two thermal baths of different temperatures. The phononic heat flux and its dynamical noise properties are analyzed within the scattering (Landauer) formalism with transmission probability function for acoustic phonons calculated within the method of atomistic Green's functions (AGF technique). The perturbative computational scheme is used to determine nonlinear corrections to phononic heat flux and its noise power spectral density with up to the second order terms with respect to temperature difference. Our results show the limited applicability of ballistic Fourier's law and fluctuation-dissipation theorem to heat transport in quantum systems. We also derive several noise-signal relations applicable to nanoscale heat flow carried by phonons, but valid for electrons as well. We also discuss the extension of the perturbative transport theory to higher order terms in order to address a huge variety of problems related to nonlinear thermal effects which may occur at nanoscale and at strongly non-equilibrium conditions with high-intensity heat fluxes. This work was supported by Pace University Start-up Grant.

  19. Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Dahl, Milo D.

    2012-01-01

    In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed.

  20. Propagation of high frequency jet noise using geometric acoustics

    NASA Technical Reports Server (NTRS)

    Khavaran, A.; Krejsa, E. A.

    1993-01-01

    Spherical directivity of noise radiated from a convecting quadrupole source embedded in an arbitrary spreading jet is obtained by ray-tracing methods of geometrical acoustics. The six propagation equations are solved in their general form in a rectangular coordinate system. The noise directivity in the far field is calculated by applying an iteration scheme that finds the required radiation angles at the source resulting in propagation through a given observer point. Factors influencing the zone of silence are investigated. The caustics of geometrical acoustics and the exact locations where it forms is demonstrated by studying the variation in ray tube area obtained from transport equation. For a ring source convecting along the center-axis of an axisymmetric jet, the polar directivity of the radiated noise is obtained by an integration with respect to azimuthal directivity of compact quadrupole sources distributed on the ring. The Doppler factor is shown to vary slightly from point to point on the ring. Finally the scaling of the directivity pattern with power -3 of Doppler factor is investigated and compared with experimental data.

  1. Reductions in Multi-Component Jet Noise by Water Injection

    NASA Technical Reports Server (NTRS)

    Norum, Thomas D.

    2004-01-01

    An experimental investigation was performed in the NASA Langley Low Speed Aeroacoustics Wind Tunnel to determine the extent of jet exhaust noise reduction that can be obtained using water injection in a hot jet environment. The effects of water parameters such as mass flow rate, injection location, and spray patterns on suppression of dominant noise sources in both subsonic and supersonic jets were determined, and extrapolations to full-scale engine noise reduction were made. Water jets and sprays were injected in to the shear layers of cold and hot circular jets operating at both subsonic and supersonic exhaust conditions. Use of convergent-divergent and convergent nozzles (2.7in. D) allowed for simulations of all major jet noise sources. The experimental results show that water injection clearly disrupts shock noise sources within the jet plume, with large reductions in radiated shock noise. There are smaller reductions in jet mixing noise, resulting in only a small decrease in effective perceived noise level when projections are made to full scale. The fact that the measured noise reduction in the direction upstream of the nozzle was consistently larger than in the noisier downstream direction contributed to keeping effective perceived noise reductions small. Variations in the operation of the water injection system clearly show that injection at the nozzle exit rather than further downstream is required for the largest noise reduction. Noise reduction increased with water pressure as well as with its mass flow, although the type of injector had little effect.

  2. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  3. Considerations on the acoustic energy radiated by toothed gears. [model for calculating noise intensity

    NASA Technical Reports Server (NTRS)

    Popinceanu, N. G.; Kremmer, I.

    1974-01-01

    A mechano-acoustic model is reported for calculating acoustic energy radiated by a working gear. According to this model, a gear is an acoustic coublet formed of the two wheels. The wheel teeth generate cylindrical acoustic waves while the front surfaces of the teeth behave like vibrating pistons. Theoretical results are checked experimentally and good agreement is obtained with open gears. The experiments show that the air noise effect is negligible as compared with the structural noise transmitted to the gear box.

  4. Digital Image Processing for Noise Reduction in Medical Ultrasonics

    NASA Astrophysics Data System (ADS)

    Loupas, Thanasis

    Available from UMI in association with The British Library. Requires signed TDF. The purpose of this project was to investigate the application of digital image processing techniques as a means of reducing noise in medical ultrasonic imaging. Ultrasonic images suffer primarily from a type of acoustic noise, known as speckle, which is generally regarded as a major source of image quality degradation. The origin of speckle, its statistical properties as well as methods suggested to eliminate this artifact were reviewed. A simple model which can characterize the statistics of speckle on displays was also developed. A large number of digital noise reduction techniques was investigated. These include frame averaging techniques performed by commercially available devices and spatial filters implemented in software. Among the latter, some filters have been proposed in the scientific literature for ultrasonic, laser and microwave speckle or general noise suppression and the rest are original, developed specifically to suppress ultrasonic speckle. Particular emphasis was placed on adaptive techniques which adjust the processing performed at each point according to the local image content. In this way, they manage to suppress speckle with negligible loss of genuine image detail. Apart from preserving the diagnostically significant features of a scan another requirement a technique must satisfy before it is accepted in routine clinical practice is real-time operation. A spatial filter capable of satisfying both these requirements was designed and built in hardware using low-cost and readily available components. The possibility of incorporating all the necessary filter circuitry into a single VLSI chip was also investigated. In order to establish the effectiveness and usefulness of speckle suppression, a representative sample from the techniques examined here was applied to a large number of abdominal scans and their effect on image quality was evaluated. Finally, further

  5. Acoustic flight tests of rotorcraft noise-abatement approaches using local differential GPS guidance

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Hindson, William S.; Mueller, Arnold W.

    1995-01-01

    This paper presents the test design, instrumentation set-up, data acquisition, and the results of an acoustic flight experiment to study how noise due to blade-vortex interaction (BVI) may be alleviated. The flight experiment was conducted using the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) research helicopter. A Local Differential Global Positioning System (LDGPS) was used for precision navigation and cockpit display guidance. A laser-based rotor state measurement system on board the aircraft was used to measure the main rotor tip-path-plane angle-of-attack. Tests were performed at Crows Landing Airfield in northern California with an array of microphones similar to that used in the standard ICAO/FAA noise certification test. The methodology used in the design of a RASCAL-specific, multi-segment, decelerating approach profile for BVI noise abatement is described, and the flight data pertaining to the flight technical errors and the acoustic data for assessing the noise reduction effectiveness are reported.

  6. Acoustic confort at home: Noise emitted by house installations. Recommendations in order to avoid such noise

    NASA Astrophysics Data System (ADS)

    Jimenez, Santiago

    2002-11-01

    The present survey consists of the analysis and the study of the solutions used at present in the installations of water supply and elevators. It has been carried out from the acoustic point of view. In order to achieve a thorough study a pilot plant was built in the Laboratory of Acoustics of the School of Industrial Engineering of Terrassa. This pilot plant reproduced different kinds of installations of the water supply in houses. And it has allowed us to systematize the measures and also to determine the optimum solutions from the acoustic perspective. In accordance with the objectives and the process of the survey, the solutions regularly employed in the facilities of water supply and elevators in houses have been analyzed, and levels of noise associated to these facilities have been also presented. A summary of the results obtained in the plant has been included, according to diverse variables. Both the conclusions of the analysis of the data obtained in the laboratory and those of the installations of the houses have been also compared, which has allowed us to describe a series of suggestions with the purpose of reducing the acoustic emission of this type of installations, and increase the acoustic comfort at home. (To be presented in Spanish.)

  7. Publications in acoustics and noise control from the NASA Langley Research Center during 1940-1976

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1977-01-01

    Reference lists are presented of published research papers in various areas of acoustics and noise control for the period 1940-1976. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics; (2) propagation and operations; (3) rotating blade noise; (4) jet noise; (5) sonic boom; (6) flow-surface interaction noise; (7) human response; (8) structural response; (9) prediction; and (10) miscellaneous.

  8. Noise reduction evaluation of grids in a supersonic air stream with application to Space Shuttle

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Manning, J. C.; Nystrom, P.; Pao, S. P.

    1977-01-01

    Near field acoustic measurements were obtained for a model supersonic air jet perturbed by a screen. Noise reduction potential in the vicinity of the space shuttle vehicle during ground launch when the rocket exhaust flow is perturbed by a grid was determined. Both 10 and 12 mesh screens were utilized for this experiment, and each exhibited a noise reduction only at very low frequencies in the near field forward arc. A power spectrum analysis revealed that a modest reduction of from 3 to 5 decibels exists below a Strouhal number S sub t = 0.11. Above S sub t = 0.11 screen harmonics increased the observed sound pressure level. The favorable noise reductions obtained with screens for S sub t 0.11 may be of substantial interest for the space shuttle at ground launch.

  9. Use of a plane jet for flow-induced noise reduction of tandem rods

    NASA Astrophysics Data System (ADS)

    Kun, Zhao; Xi-xiang, Yang; Patrick, N. Okolo; Wei-hua, Zhang

    2016-06-01

    Unsteady wake from upstream components of landing gear impinging on downstream components could be a strong noise source. The use of a plane jet is proposed to reduce this flow-induced noise. Tandem rods with different gap widths were utilized as the test body. Both acoustic and aerodynamic tests were conducted in order to validate this technique. Acoustic test results proved that overall noise emission from tandem rods could be lowered and tonal noise could be removed with use of the plane jet. However, when the plane jet was turned on, in some frequency range it could be the subsequent main contributor instead of tandem rods to total noise emission whilst in some frequency range rods could still be the main contributor. Moreover, aerodynamic tests fundamentally studied explanations for the noise reduction. Specifically, not only impinging speed to rods but speed and turbulence level to the top edge of the rear rod could be diminished by the upstream plane jet. Consequently, the vortex shedding induced by the rear rod was reduced, which was confirmed by the speed, Reynolds stress as well as the velocity fluctuation spectral measured in its wake. This study confirmed the potential use of a plane jet towards landing gear noise reduction. Project partially supported by the European Union FP7 CleanSky Joint Technology Initiative “ALLEGRA” (Grant No. 308225).

  10. Mixing noise reduction for rectangular supersonic jets by nozzle shaping and induced screech mixing

    NASA Technical Reports Server (NTRS)

    Rice, Edward J.; Raman, Ganesh

    1993-01-01

    Two methods of mixing noise modification were studied for supersonic jets flowing from rectangular nozzles with an aspect ratio of about five and a small dimension of about 1.4 cm. The first involves nozzle geometry variation using either single (unsymmetrical) or double bevelled (symmetrical) thirty degree cutbacks of the nozzle exit. Both converging (C) and converging-diverging (C-D) versions were tested. The double bevelled C-D nozzle produced a jet mixing noise reduction of about 4 dB compared to a standard rectangular C-D nozzle. In addition all bevelled nozzles produced an upstream shift in peak mixing noise which is conducive to improved attenuation when the nozzle is used in an acoustically treated duct. A large increase in high frequency noise also occurred near the plane of the nozzle exit. Because of near normal incidence, this noise can be easily attenuated with wall treatment. The second approach uses paddles inserted on the edge of the two sides of the jet to induce screech and greatly enhance the jet mixing. Although screech and mixing noise levels are increased, the enhanced mixing moves the source locations upstream and may make an enclosed system more amenable to noise reduction using wall acoustic treatment.

  11. Landing Gear Door Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)

    2014-01-01

    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  12. Effects of Classroom Acoustics and Self-Reported Noise Exposure on Teachers' Well-Being

    ERIC Educational Resources Information Center

    Kristiansen, Jesper; Persson, Roger; Lund, Soren Peter; Shibuya, Hitomi; Nielsen, Per Moberg

    2013-01-01

    Beyond noise annoyance and voice problems, little is known about the effects that noise and poor classroom acoustics have on teachers' health and well-being. The aim of this field study was therefore to investigate the effects of perceived noise exposure and classroom reverberation on measures of well-being. Data on self-reported noise exposure,…

  13. Spin noise spectroscopy from acoustic to GHz frequencies

    NASA Astrophysics Data System (ADS)

    Hübner, Jens

    2010-03-01

    Performing perturbation free measurements on semiconductor quantum systems has long been banished to textbooks on quantum mechanics. The emergent technique of spin noise spectroscopy is challenging this restriction. Empowered only by the ever present intrinsic spin fluctuation dynamics in thermal equilibrium, spin noise spectroscopy is capable to directly deduce several physical properties of carriers spins in semiconductors from these fluctuations. Originating from spin noise measurements on alkali metal vapors in quantum optics [1] the method has become a powerful technique to unravel the intrinsic spin dynamics in semiconductors [2]. In this talk I will present the recent progress of spin noise spectroscopy and how it is used to monitor the spin dynamic in semiconductor quantum wells at thermal equilibrium and as a consequence thereof directly detect the spatial dynamics of the carriers being marked with their own spin on a microscopic scale [3]. Further I will present measurements of how the non-perturbative nature of spin noise spectroscopy gives valuable insight into the delicate dependence of the spin relaxation time of electrons on doping density and temperature in semiconductors n-doped in the vicinity of the metal-insulator transition where hyperfine and intra-band depolarization compete [4]. Also the measurement bandwidth can be extended to GHz frequencies by ultrafast optical probing [5] yielding in conjunction with depth resolved spin noise measurements insights into the origin of inhomogeneous spin dephasing effects at high magnetic fields [5]. Additionally I will present how spin noise spectroscopy can be employed to spatially depth resolve doping profiles with optical resolution [6] and give a summary on easy to implement techniques of spin noise spectroscopy at acoustic frequencies in alkali metal vapors. [4pt] [1] E. Aleksandrov and V. Zapassky, Zh. Eksp. Teor. Fiz. 81, 132 (1981); S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. L. Smith

  14. Noise Reduction in an Undergraduate Library.

    ERIC Educational Resources Information Center

    Bird, Charles P.; Puglisi, Dawn D.

    1984-01-01

    Reports on program initiated to reduce noise in undergraduate library through combination of space reallocation, rule changes, and staff monitoring of noise. Objective and subjective measures of noise (sound-level readings, preintervention and postintervention questionnaires) and results of intervention program are discussed. Memo distributed on…

  15. Noise Reduction with Lobed Mixers: Nozzle-Length and Free-Jet Speed Effects

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Dalton, William N.; Bridges, James C.; Boyd, Kathy C.

    1997-01-01

    Acoustic test results are presented for 1/4th-scaled nozzles with internal lobed mixers used for reduction of subsonic jet noise of turbofan engines with bypass ratio above 5 and jet speeds up to 830 ft/s. One coaxial and three forced lobe mixers were tested with variations in lobe penetration, cut-outs in lobe-sidewall, lobe number and nozzle-length. Measured exit flow profiles and thrusts are used to assist the inferences from acoustic data. It is observed that lobed mixers reduce the low-frequency noise due to more uniformly mixed exit flow; but they may also increase the high-frequency noise at peak perceived noise (PNL) angle and angles upstream of it due to enhanced mixing inside the nozzle. Cut-outs and low lobe penetration reduce the annoying portion of the spectrum but lead to less uniform exit flow. Due to the dominance of internal duct noise in unscalloped, high-penetration mixers their noise is not reduced as much with increase in free-jet speed as that of coaxial or cut-out lobed mixers. The latter two mixers also show no change in PNL over the wide range of nozzle-lengths tested because most of their noise sources are outside the nozzle; whereas, the former show an increase in noise with decrease in nozzle-length.

  16. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Majjigi, Rudramuni K.

    1992-04-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  17. Computational AeroAcoustics for Fan Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Ed; Hixon, Ray; Dyson, Rodger; Huff, Dennis (Technical Monitor)

    2002-01-01

    An overview of the current state-of-the-art in computational aeroacoustics as applied to fan noise prediction at NASA Glenn is presented. Results from recent modeling efforts using three dimensional inviscid formulations in both frequency and time domains are summarized. In particular, the application of a frequency domain method, called LINFLUX, to the computation of rotor-stator interaction tone noise is reviewed and the influence of the background inviscid flow on the acoustic results is analyzed. It has been shown that the noise levels are very sensitive to the gradients of the mean flow near the surface and that the correct computation of these gradients for highly loaded airfoils is especially problematic using an inviscid formulation. The ongoing development of a finite difference time marching code that is based on a sixth order compact scheme is also reviewed. Preliminary results from the nonlinear computation of a gust-airfoil interaction model problem demonstrate the fidelity and accuracy of this approach. Spatial and temporal features of the code as well as its multi-block nature are discussed. Finally, latest results from an ongoing effort in the area of arbitrarily high order methods are reviewed and technical challenges associated with implementing correct high order boundary conditions are discussed and possible strategies for addressing these challenges ore outlined.

  18. Acoustic and electromagnetic noise from lighting in classrooms

    NASA Astrophysics Data System (ADS)

    Laszlo, Charles A.; Lashin, Jonathan; Hodgson, Murray R.

    2005-04-01

    Following complaints by hard-of-hearing students using assistive-listening devices, and their teachers, the hum-like noise generated by fluorescent lighting was investigated in classrooms and the school library in a typical school. This hum is caused by vibrations in the core of the magnetic ballasts. Measurements were made in several rooms without students present. Noise levels increased between 7 and 15 dB when fixtures using magnetic ballasts were switched on. Spectral analysis showed the presence of 30, 60, 120, and 240 Hz components. In rooms where electronic ballasts were installed, there was no increase in noise level when the lights were switched on. Since hearing aids and assistive-listening devices worn by students may also be influenced by magnetic fields, these were also surveyed in these classrooms. The magnetic fields generated by the lights were not significant, but near some wiring and electrical panels the interference was strong. In rooms with electronic ballasts some infrared assistive-listening devices picked up strong high-frequency hum. It is recommended that the effect of lighting fixtures and the electrical-distribution system be taken into account in the acoustical and communication design of classrooms.

  19. Acoustics of Jet Surface Interaction-Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the structure or embedded in the airframe. While such integrated systems are intended to shield noise from community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Greens function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Greens function decreases with increasing source frequency andor jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Greens function in the absence of the surface, and flight effect are also investigated.

  20. Flap Side-Edge Noise: Acoustic Analysis of Sen's Model

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.; Martin, James E.

    1996-01-01

    The two-dimensional flap side-edge flow model developed by Sen is analyzed to reveal the noise production potential of the proposed mechanism. The model assumes that a vortex will form at the equilibrium position off the side edge of the flap. The vortex is then perturbed away from the equilibrium position by incoming turbulence causing it to oscillate and thus radiate sound. The noise field is calculated three-dimensionally by taking the flap to have a finite chord. Spectra and directivity of the farfield sound are presented. In addition, the effect of retarded time differences is evaluated. The parameters in the model are related to typical aircraft parameters and noise reduction possibilities are proposed.

  1. Reduction of Noise Generated from Lower Part of Shinkansen Cars by Sound Absorption

    NASA Astrophysics Data System (ADS)

    Kurita, Takeshi; Kikuchi, Yoshiki; Yamada, Haruo; Ido, Atsushi; Murata, Kaoru; Akiyama, Satoru

    In order to reduce Shinkansen wayside noise at higher speeds, it is necessary to reduce not only pantograph noise but also noise from the lower part of cars. With the aim of absorbing noise from the lower part of the car through a process of multiple sound reflections between the car body and a noise barrier, we developed sound-absorbing panels for the lower part of the car bodies through acoustic tests using a full-scale cut car model and running tests using "FASTECH360S", a high-speed test train of JR-East. In order to assess which sound-absorption areas are more effective in reducing wayside noise coming from the lower part of the cars, we conducted running tests with the sound-absorbing and non-sound-absorbing panels in different layout configurations. As a result, we found that: 1) attaching sound-absorbing panels reduces wayside noise from FASTECH360S running at 320 km/h by approximately 0.9 dB at a point 25 meters from the track, 2) sound-absorbing panels installed to side skirts have the greatest noise reduction effect and 3) the sound-absorbing panels at the front and back ends of the bogie space and on the side beam contribute almost nothing to noise reduction.

  2. Broadband Shock Noise Reduction in Turbulent Jets by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    The concept of effective jet properties introduced by the author (AIAA-2007-3 645) has been extended to the estimation of broadband shock noise reduction by water injection in supersonic jets. Comparison of the predictions with the test data for cold underexpanded supersonic nozzles shows a satisfactory agreement. The results also reveal the range of water mass flow rates over which saturation of mixing noise reduction and existence of parasitic noise are manifest.

  3. Acoustic Array Development for Wind Turbine Noise Characterization

    SciTech Connect

    Buck, S.; Roadman, J.; Moriarty, P.; Palo, S.

    2013-11-01

    This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team from the University of Colorado Boulder. This design process is a continuation of the elliptical array design work done by Simley. A description of the array system design process is presented, including array shape design, mechanical design, design of electronics and the data acquisition system, and development of post-processing software. System testing and calibration methods are detailed. Results from the initial data acquisition campaign are offered and discussed. Issues faced during this initial deployment of the array are presented and potential remedies discussed.

  4. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  5. Phase Noise Reduction of Laser Diode

    NASA Technical Reports Server (NTRS)

    Zhang, T. C.; Poizat, J.-Ph.; Grelu, P.; Roch, J.-F.; Grangier, P.; Marin, F.; Bramati, A.; Jost, V.; Levenson, M. D.; Giacobino, E.

    1996-01-01

    Phase noise of single mode laser diodes, either free-running or using line narrowing technique at room temperature, namely injection-locking, has been investigated. It is shown that free-running diodes exhibit very large excess phase noise, typically more than 80 dB above shot-noise at 10 MHz, which can be significantly reduced by the above-mentioned technique.

  6. Noise Reduction in Complex Biological Switches

    PubMed Central

    Cardelli, Luca; Csikász-Nagy, Attila; Dalchau, Neil; Tribastone, Mirco; Tschaikowski, Max

    2016-01-01

    Cells operate in noisy molecular environments via complex regulatory networks. It is possible to understand how molecular counts are related to noise in specific networks, but it is not generally clear how noise relates to network complexity, because different levels of complexity also imply different overall number of molecules. For a fixed function, does increased network complexity reduce noise, beyond the mere increase of overall molecular counts? If so, complexity could provide an advantage counteracting the costs involved in maintaining larger networks. For that purpose, we investigate how noise affects multistable systems, where a small amount of noise could lead to very different outcomes; thus we turn to biochemical switches. Our method for comparing networks of different structure and complexity is to place them in conditions where they produce exactly the same deterministic function. We are then in a good position to compare their noise characteristics relatively to their identical deterministic traces. We show that more complex networks are better at coping with both intrinsic and extrinsic noise. Intrinsic noise tends to decrease with complexity, and extrinsic noise tends to have less impact. Our findings suggest a new role for increased complexity in biological networks, at parity of function. PMID:26853830

  7. Weather observations through oceanic acoustic noise recorded by gliders

    NASA Astrophysics Data System (ADS)

    Cauchy, Pierre; Testor, Pierre; Guinet, Christophe; Gervaise, Cedric; Di Oro, Lucia; Ioana, Cornel; Mortier, Laurent; Bouin, Marie-Noelle; Beguery, Laurent; Klein, Patrice

    2013-04-01

    Offshore estimates of the meteorological parameters are unfortunately spurious when considering in-situ observtions only due to obvious observational limitations while their use would allow to calibrate satellite observations and to have better weather forecasts, if assimilated in numerical weather forecasting systems. The WOTAN (Weather Observations through Acoustic Noise) approach may be used to fill these gaps if coupled to the Global Ocean Observing Sytem which has now a global coverage thanks to many autonomous observing platforms. In this study we show first results from acoustic records collected by gliders deployed in the northwestern Mediterranean Sea in the framework of MOOSE. We show that using 3 descriptors at 5kHz, 8kHz, and 20kHz allows to extract the intensity of the wind and the precipitation when the glider is at depth. This approach based on the method presented by Barry & Nuysten (2004) is compared with meterological data from coastal weather stations and the offshore meteorological buoys from Meteo-France. We also show that there is a vane effect with the tail of the glider while at surface which allows to estimate the direction of the wind every so often. These observations coupled with the in-situ profiles on temperature and salinity profiles can allow to better study air-sea interactions.

  8. Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload

    NASA Technical Reports Server (NTRS)

    Welsh, David; Smith, Holly; Wang, Shuo

    2010-01-01

    Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.

  9. The noise reduction potential of dual-stream coaxial rectangular improperly expanded jet flows

    NASA Technical Reports Server (NTRS)

    Dosanjh, Darshan; Spina, Eric F.

    1995-01-01

    The research performed began during Spring 1991 as a project to assess the noise reduction potential of rectangular coaxial nozzle configurations for improperly expanded jets. The research plan consisted of: (1) design of coaxial rectangular nozzle configuration by Syracuse graduate research assistant; (2) construction of nozzles by NASA Langley machinists; and (3) acquisition of preliminary acoustic and optical data for a variety of inner and outer jet pressure ratios.

  10. Optimization and Modeling of Noise Reduction for Turbulent Jets with Induced Asymmetry

    NASA Astrophysics Data System (ADS)

    Rostamimonjezi, Sara

    This project relates to the development of next-generation high-speed aircraft that are efficient and environmentally compliant. The emphasis of the research is on reducing noise from high-performance engines that will power these aircraft. A strong component of engine noise is jet mixing noise that comes from the turbulent mixing process between the high-speed exhaust flow of the engine and the atmosphere. The fan flow deflection method (FFD) suppresses jet noise by deflecting the fan stream downward, by a few degrees, with respect to the core stream. This reduces the convective Mach number of the primary shear layer and turbulent kinetic energy in the downward direction and therefore reduces the noise emitted towards the ground. The redistribution of the fan stream is achieved with inserting airfoil-shaped vanes inside the fan duct. Aerodynamic optimization of FFD has been done by Dr. Juntao Xiong using a computational fluid dynamics code to maximize reduction of noise perceived by the community while minimizing aerodynamic losses. The optimal vane airfoils are used in a parametric experimental study of 50 4-vane deflector configurations. The vane chord length, angle of attack, and azimuthal location are the parameters studied in acoustic optimization. The best vane configuration yields a reduction in cumulative (downward + sideline) effective perceived noise level (EPNL) of 5.3 dB. The optimization study underscores the sensitivity of FFD to deflector parameters and the need for careful design in the practical implementation of this noise reduction approach. An analytical model based on Reynolds Averaged Navier Stokes (RANS) and acoustic analogy is developed to predict the spectral changes from a known baseline in the direction of peak emission. A generalized form for space-time correlation is introduced that allows shapes beyond the traditional exponential forms. Azimuthal directivity based on the wavepacket model of jet noise is integrated with the acoustic

  11. A Computational Study of BVI Noise Reduction Using Active Twist Control

    NASA Technical Reports Server (NTRS)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.

    2010-01-01

    The results of a computational study examining the effects of active-twist control on blade-vortex interaction (BVI) noise using the Apache Active Twist Rotor are presented. The primary goal of this activity is to reduce BVI noise during a low-speed descent flight condition using active-twist control. Rotor aeroelastic behavior was modeled using the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics code and the rotor noise was predicted using the acoustics code PSU-WOPWOP. The accuracy of the analysis was validated through comparisons with experimental acoustic data for the first generation Active Twist Rotor at an advance ratio of mu=0.14. The application of active-twist to the main rotor blade system consisted of harmonic actuation frequencies ranging from 2P to 5P, control phase angles from 0' to 360 , and tip-twist amplitudes ranging from 0.5 to 4.0 . The acoustic analysis was conducted for a single low-speed flight condition of advance ratio =0.14 and shaft angle-of-attack, c^=+6 , with BVI noise levels predicted on a flat plane of observers located 1.1 rotor diameters beneath the rotor. The results indicated reductions of up to 11dB in BVI noise using 1.25 tip-twist amplitude with negligible effects on 4P vertical hub shear.

  12. Helicopter internal noise reduction research and development application to the SA 360 and SA 365 Dauphin

    NASA Technical Reports Server (NTRS)

    Marze, H. J.; Dambra, F.

    1978-01-01

    Noise sources inside helicopter cabins are considered with emphasis on the mechanisms of vibration generation inside the main gear box and mechanisms of transmission between source and cabin. The dynamic behavior of the main gear box components is examined in relation to the transfer of vibration energy to the structure. It is indicated that although improvements can be made in noise reduction at the source, a soundproofing treatment isolating the passenger from the noise source is necessary. Soundproofing treatments installed and optimized include: (1) an acoustic screen using the weight effect to isolate the passenger from the noise source; (2) a damping treatment to limit the conversion of the vibratory energy into acoustic energy; and (3) an absorbing treatment achieved either through HELMHOLTZ resonators or through a glass wool blanket to limit the propagation of acoustic waves and the wave reflection effects in the cabin. The application of treatments at the source and the optimization of the sound barriers improved the noise level by about 30 db.

  13. The Reduction of Ducted Fan Engine Noise Via A Boundary Integral Equation Method

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Dunn, M.

    1997-01-01

    The development of a Boundary Integral Equation Method (BIEM) for the prediction of ducted fan engine noise is discussed. The method is motivated by the need for an efficient and versatile computational tool to assist in parametric noise reduction studies. In this research, the work in reference 1 was extended to include passive noise control treatment on the duct interior. The BEM considers the scattering of incident sound generated by spinning point thrust dipoles in a uniform flow field by a thin cylindrical duct. The acoustic field is written as a superposition of spinning modes. Modal coefficients of acoustic pressure are calculated term by term. The BEM theoretical framework is based on Helmholtz potential theory. A boundary value problem is converted to a boundary integral equation formulation with unknown single and double layer densities on the duct wall. After solving for the unknown densities, the acoustic field is easily calculated. The main feature of the BIEM is the ability to compute any portion of the sound field without the need to compute the entire field. Other noise prediction methods such as CFD and Finite Element methods lack this property. Additional BIEM attributes include versatility, ease of use, rapid noise predictions, coupling of propagation and radiation both forward and aft, implementable on midrange personal computers, and valid over a wide range of frequencies.

  14. Compression station upgrades include advanced noise reduction

    SciTech Connect

    Dunning, V.R.; Sherikar, S.

    1998-10-01

    Since its inception in the mid-`80s, AlintaGas` Dampier to Bunbury natural gas pipeline has been constantly undergoing a series of upgrades to boost capacity and meet other needs. Extending northward about 850 miles from near Perth to the northwest shelf, the 26-inch line was originally served by five compressor stations. In the 1989-91 period, three new compressor stations were added to increase capacity and a ninth station was added in 1997. Instead of using noise-path-treatment mufflers to reduce existing noise, it was decided to use noise-source-treatment technology to prevent noise creation in the first place. In the field, operation of these new noise-source treatment attenuators has been very quiet. If there was any thought earlier of guaranteed noise-level verification, it is not considered a priority now. It`s also anticipated that as AlintaGas proceeds with its pipeline and compressor station upgrade program, similar noise-source treatment equipment will be employed and retrofitted into older stations where the need to reduce noise and potential radiant-heat exposure is indicated.

  15. An assessment of propeller aircraft noise reduction technology

    NASA Technical Reports Server (NTRS)

    Metzger, F. Bruce

    1995-01-01

    This report is a review of the literature regarding propeller airplane far-field noise reduction. Near-field and cabin noise reduction are not specifically addressed. However, some of the approaches used to reduce far-field noise produce beneficial effects in the near-field and in the cabin. The emphasis is on propeller noise reduction but engine exhaust noise reduction by muffling is also addressed since the engine noise becomes a significant part of the aircraft noise signature when propeller noise is reduced. It is concluded that there is a substantial body of information available that can be used as the basis to reduce propeller airplane noise. The reason that this information is not often used in airplane design is the associated weight, cost, and performance penalties. It is recommended that the highest priority be given to research for reducing the penalties associated with lower operating RPM and propeller diameter while increasing the number of blades. Research to reduce engine noise and explore innovative propeller concepts is also recommended.

  16. Prediction of noise reduction through vehicle path rerouting.

    PubMed

    Makarewicz, Rufin

    2010-01-01

    Traffic noise, produced by moving vehicles, is described in terms of the day-night average sound level L(dn) and the day-evening-night level L(den). Both levels depend on the path of noise sources, such as road vehicles or aircraft. Usually, noise source path is rectilinear. Substituting a circle arc of radius R for the straight path segment yields noise reduction DeltaL=DeltaL(dn)=DeltaL(den). Assuming that noise propagation is governed by geometrical spreading, air absorption, and ground effect, relationship between DeltaL and R is derived. For example, replacement of a straight road at the distance of 100 m with the road of radius R=270 m and the angle Phi=68 degrees yields the noise reduction of 4 dB. In the case of road traffic noise, the presented results seem to be a viable alternative to barrier construction. PMID:20058966

  17. Engine Validation of Noise and Emission Reduction Technology Phase I

    NASA Technical Reports Server (NTRS)

    Weir, Don (Editor)

    2008-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.

  18. Musical noise reduction using an adaptive filter

    NASA Astrophysics Data System (ADS)

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  19. The challenges of lawnmower noise reduction

    NASA Astrophysics Data System (ADS)

    Drutowski, Carol J.; Fetzer, Keith

    2005-09-01

    The European Noise Directive (2000/14/EC) became effective in the year 2000, limiting the allowable noise level for lawnmowers sold in the European Union. Noise level limits are based on cutting width. The Directive requires that manufacturers meet these limits and include statistical uncertainties, then declare their noise levels and have these results certified by an independent third party agency. There are two major challenges with this Directive. First by taking statistical uncertainties into account, this creates a limit lower than the published limit. Second is to lower the sound power level while still maintaining acceptable performance. The physical phenomena that generate the unwanted noise of a lawnmower are also used to perform work. For rotary lawnmowers, a dominant noise source is the cutting deck assembly, which is required to lift and cut grass, then dispose of the clippings. To cut grass with a good quality of cut appearance, the blades are required to turn at a very high tip speed to generate the necessary airflow. For lawnmowers, noise levels and unit performance are intrinsically linked. This has frustrated our industry for over 20 years.

  20. Experimental and numerical analysis on noise reduction in a multi-blade centrifugal fan

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Y Cao, T.; Su, J.; Qin, G. L.

    2013-12-01

    In this work, analysis on noise source and reduction in a multi-blade centrifugal fan used for air-conditioners was carried out by experimental and numerical methods. Firstly, an experimental system using microphone mounted on volute surface for measuring surface pressure fluctuations of volute was designed and introduced, then surface pressure fluctuations of the whole volute for a multi-blade centrifugal fan were measured by this system, and the inlet noise for this fan was also obtained. And then, based on the experimental results, the aerodynamic noise source of the studied fan was analysed. The surface pressure fluctuations of the volute showed that there were largest surface pressure fluctuations near the volute tongue, and peaks appeared at the Blade Passing Frequency (BPF). The spectra of fan inlet noise showed that the peaks also appeared at BPF, and noise levels in a wide range of frequency were also larger. Secondly, the internal flow of the fan was simulated by commercial software under the same conditions with the experiment, and then the fluid flow and acoustic power field were obtained and discussed. The contours of acoustic power level showed that the larger noise was generated at the impeller area close to the outlet of scroll and at the volute tongue, which is same as that from experiment. Based on all of the results, we can find that the vortex noise is an important part of fan noise for the studied fan, and the rotation noise also cannot be neglected. Finally, several reduction methods that are thought to be effective based on experimental and numerical results were suggested.

  1. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  2. Seismic exploration noise reduction in the Marginal Ice Zone.

    PubMed

    Tollefsen, Dag; Sagen, Hanne

    2014-07-01

    A sonobuoy field was deployed in the Marginal Ice Zone of the Fram Strait in June 2011 to study the spatial variability of ambient noise. High noise levels observed at 10-200 Hz are attributed to distant (1400 km range) seismic exploration. The noise levels decreased with range into the ice cover; the reduction is fitted by a spreading loss model with a frequency-dependent attenuation factor less than for under-ice interior Arctic propagation. Numerical modeling predicts transmission loss of the same order as the observed noise level reduction and indicates a significant loss contribution from under-ice interaction. PMID:24993237

  3. Assessment of Soft Vane and Metal Foam Engine Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Parrott, Tony L.; Sutliff, Daniel L.; Hughes, Chris

    2009-01-01

    Two innovative fan-noise reduction concepts developed by NASA are presented - soft vanes and over-the-rotor metal foam liners. Design methodologies are described for each concept. Soft vanes are outlet guide vanes with internal, resonant chambers that communicate with the exterior aeroacoustic environment via a porous surface. They provide acoustic absorption via viscous losses generated by interaction of unsteady flows with the internal solid structure. Over-the-rotor metal foam liners installed at or near the fan rotor axial plane provide rotor noise absorption. Both concepts also provide pressure-release surfaces that potentially inhibit noise generation. Several configurations for both concepts are evaluated with a normal incidence tube, and the results are used to guide designs for implementation in two NASA fan rigs. For soft vanes, approximately 1 to 2 dB of broadband inlet and aft-radiated fan noise reduction is achieved. For over-the-rotor metal foam liners, up to 3 dB of fan noise reduction is measured in the low-speed fan rig, but minimal reduction is measured in the high-speed fan rig. These metal foam liner results are compared with a static engine test, in which inlet sound power level reductions up to 5 dB were measured. Brief plans for further development are also provided.

  4. Recent Developments in U.S. Engine Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Bridges, James; Envia, Edmane; Huff, Dennis

    2001-01-01

    Aircraft engine noise research in the United States has made considerable progress over the past 10 years for both subsonic and supersonic flight applications. The Advanced Subsonic Technology (AST) Noise Reduction Program started in 1994 and will be completed in 2001 without major changes to program plans and funding levels. As a result, significant progress has been made toward the goal of reducing engine source noise by 6 EPNdB (Effective Perceived Noise level in decibels). This paper will summarize some of the significant accomplishments from the subsonic engine noise research performed over the past 10 years. The review is by no means comprehensive and only represents a sample of major accomplishments.

  5. Ambient Noise Surface Wave Tomography for Geotechnical Monitoring Using "Large N" Distributed Acoustic Sensing

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Martin, E. R.; Wagner, A. M.; Robertson, M.; Bjella, K.; Gelvin, A.; Ulrich, C.; Wu, Y.; Freifeld, B. M.; Daley, T. M.; Dou, S.

    2015-12-01

    Surface wave tomography using ambient noise sources has found broad application at the regional scale but has not been adopted fully for geotechnical applications despite the abundance of noise sources in this context. The recent development of Distributed Acoustic Sensing (DAS) provides a clear path for inexpensively recording high spatial resolution (< 1m sampling) surface wave data in the context of infrastructure monitoring over significant spatial domains (10s of km). Infrastructure monitoring is particularly crucial in the context of high-latitude installations where a changing global climate can trigger reductions in soil strength due to permafrost thaw. DAS surface wave monitoring systems, particularly those installed in/near transport corridors and coupled to ambient noise inversion algorithms, could be a critical "early warning" system to detect zones of decreased shear strength before failure. We present preliminary ambient noise tomography results from a 1.3 km continuously recording subsurface DAS array used to record traffic noise next to an active road in Fairbanks, AK. The array, depolyed at the Farmer's Loop Permafrost Test Station, was designed as a narrow 2D array and installed via trenching at ~30 cm. We develop a pre-processing and QC approach to analyze the large resulting volume of data, equivalent to a 1300 geophone array sampled at 1 khz. We utilize automated dispersion analysis and a quasi-2D MC inversion to generate a shear wave velocity profile underneath the road in a region of discontinuous permafrost. The results are validated against a high-resolution ERT survey as well as direct-push data on ice content. We also compare vintages of ambient noise DAS data to evaluate the short-term repeatability of the technique in the face of changing noise environments. The resulting dataset demonstrates the utility of using DAS for real-time shear-modulus monitoring in support of critical infrastructure.

  6. Noise reduction in ultrasonic computerized tomography by preprocessing for projection data

    NASA Astrophysics Data System (ADS)

    Norose, Yoko; Mizutani, Koichi; Wakatsuki, Naoto; Ebihara, Tadashi

    2015-07-01

    In this study, an ultrasonic computerized tomography (CT) using time-of-flights (TOFs) has been used for the nondestructive inspection of steel billets with high acoustic attenuation. One of the remaining problems of this method is noise in CT images, which makes it difficult to distinguish defects from noise. Conventionally, noise is suppressed by a low-pass filter (LPF) in the process of filtered back projection (FBP). However, it has been found that there is residual noise even after filtering. To cope with this problem, in this study, the noise observed in ultrasonic testing was examined. As a result, it was found that the TOF data used for CT processing contains impulse noise, which remains in the CT image even after filtering, owing to the existence of transducer directivity. To remove impulse noise selectively, we propose a noise reduction technique for ultrasonic CT for steel billet inspection, that is, preprocessing (outlier detection and removal) of TOF data. The performance of the proposed technique was evaluated experimentally. The obtained results suggest that the proposed technique can remove impulse noise selectively and markedly improve the quality of the CT image. Hence, the proposed technique can improve the performance of ultrasonic CT for steel billet inspection.

  7. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  8. A differential magnetoelectric heterostructure: Internal noise reduction and external noise cancellation

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Li, Jiefang; Viehland, D.

    2015-12-01

    A differential heterostructure design which has a capability to reduce the internal noise and reject the external vibration noise for Metglas magnetostrictive foils/Pb(Zr, Ti)O3 piezofiber based-magnetoelectric (ME) laminated composite has been studied. The internal noise reduction is equivalent to that offered by sensor array stacks, and the external noise cancellation is based on a differential method (i.e., ME signal is in-phase but vibration noise is anti-phase). The ability of the structure to reduce the internal noise, and cancel the external vibration noise by a 10-fold attenuation factor, allows for practical applications of these sensors in real-world environments where contamination of magnetic signals by external vibrational noise increases the equivalent magnetic noise.

  9. Reduction of high-speed impulsive noise by blade planform modification of a model helicopter rotor

    NASA Technical Reports Server (NTRS)

    Conner, D. A.; Hoad, D. R.

    1982-01-01

    The reduction of high speed impulsive noise for the UH-1H helicopter was investigated by using an advanced main rotor system. The advanced rotor system had a tapered blade planform compared with the rectangular planform of the standard rotor system. Models of both the advanced main rotor system and the UH-1H standard main rotor system were tested at 1/4 scale in the 4 by 7 Meter Tunnel. In plane acoustic measurements of the high speed impulsive noise demonstrated that the advanced rotor system on the UH-1H helicopter reduced the high speed impulsive noise by up to 20 dB, with a reduction in overall sound pressure level of up to 5 dB.

  10. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    SciTech Connect

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  11. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations

    PubMed Central

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J.

    2015-01-01

    Speakers adjust their vocal effort when communicating in different room acoustic and noise conditions and when instructed to speak at different volumes. The present paper reports on the effects of voice style, noise level, and acoustic feedback on vocal effort, evaluated as sound pressure level, and self-reported vocal fatigue, comfort, and control. Speakers increased their level in the presence of babble and when instructed to talk in a loud style, and lowered it when acoustic feedback was increased and when talking in a soft style. Self-reported responses indicated a preference for the normal style without babble noise. PMID:26723357

  12. Automated acoustic intensity measurements and the effect of gear tooth profile on noise

    NASA Technical Reports Server (NTRS)

    Atherton, William J.; Pintz, Adam; Lewicki, David G.

    1987-01-01

    Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.

  13. Effects of voice style, noise level, and acoustic feedback on objective and subjective voice evaluations.

    PubMed

    Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J

    2015-12-01

    Speakers adjust their vocal effort when communicating in different room acoustic and noise conditions and when instructed to speak at different volumes. The present paper reports on the effects of voice style, noise level, and acoustic feedback on vocal effort, evaluated as sound pressure level, and self-reported vocal fatigue, comfort, and control. Speakers increased their level in the presence of babble and when instructed to talk in a loud style, and lowered it when acoustic feedback was increased and when talking in a soft style. Self-reported responses indicated a preference for the normal style without babble noise. PMID:26723357

  14. Acoustic vector sensor beamforming reduces masking from underwater industrial noise during passive monitoring.

    PubMed

    Thode, Aaron M; Kim, Katherine H; Norman, Robert G; Blackwell, Susanna B; Greene, Charles R

    2016-04-01

    Masking from industrial noise can hamper the ability to detect marine mammal sounds near industrial operations, whenever conventional (pressure sensor) hydrophones are used for passive acoustic monitoring. Using data collected from an autonomous recorder with directional capabilities (Directional Autonomous Seafloor Acoustic Recorder), deployed 4.1 km from an arctic drilling site in 2012, the authors demonstrate how conventional beamforming on an acoustic vector sensor can be used to suppress noise arriving from a narrow sector of geographic azimuths. Improvements in signal-to-noise ratio of up to 15 dB are demonstrated on bowhead whale calls, which were otherwise undetectable using conventional hydrophones. PMID:27106345

  15. Wind fence enclosures for infrasonic wind noise reduction.

    PubMed

    Abbott, JohnPaul; Raspet, Richard; Webster, Jeremy

    2015-03-01

    A large porous wind fence enclosure has been built and tested to optimize wind noise reduction at infrasonic frequencies between 0.01 and 10 Hz to develop a technology that is simple and cost effective and improves upon the limitations of spatial filter arrays for detecting nuclear explosions, wind turbine infrasound, and other sources of infrasound. Wind noise is reduced by minimizing the sum of the wind noise generated by the turbulence and velocity gradients inside the fence and by the area-averaging the decorrelated pressure fluctuations generated at the surface of the fence. The effects of varying the enclosure porosity, top condition, bottom gap, height, and diameter and adding a secondary windscreen were investigated. The wind fence enclosure achieved best reductions when the surface porosity was between 40% and 55% and was supplemented by a secondary windscreen. The most effective wind fence enclosure tested in this study achieved wind noise reductions of 20-27 dB over the 2-4 Hz frequency band, a minimum of 5 dB noise reduction for frequencies from 0.1 to 20 Hz, constant 3-6 dB noise reduction for frequencies with turbulence wavelengths larger than the fence, and sufficient wind noise reduction at high wind speeds (3-6 m/s) to detect microbaroms. PMID:25786940

  16. Lobed Mixer Design for Noise Suppression Acoustic and Aerodynamic Test Data Analysis

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Dalton, William N.; Boyd, Kathleen (Technical Monitor); Bridges, James (Technical Monitor)

    2002-01-01

    A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft/s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASK's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude. Sound in the nozzle reference frame was analyzed to understand the source characteristics. Several new concepts, mechanisms and methods are reported for such lobed mixers, such as, "boomerang" scallops, "tongue" mixer, detection of "excess" internal noise sources, and extrapolation of flyover noise data from one flight speed to different flight speeds. Noise reduction of as much as 3 EPNdB was found with a deeply scalloped mixer compared to annular nozzle at net thrust levels of 9500 lb for a 29 in. diameter nozzle after optimizing the nozzle length.

  17. Wind Noise Reduction in a Non-Porous Subsurface Windscreen

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Shams, Qamar A.; Knight, H. Keith

    2012-01-01

    Measurements of wind noise reduction were conducted on a box-shaped, subsurface windscreen made of closed cell polyurethane foam. The windscreen was installed in the ground with the lid flush with the ground surface. The wind was generated by means of a fan, situated on the ground, and the wind speed was measured at the center of the windscreen lid with an ultrasonic anemometer. The wind speed was controlled by moving the fan to selected distances from the windscreen. The wind noise was measured on a PCB Piezotronics 3†electret microphone. Wind noise spectra were measured with the microphone exposed directly to the wind (atop the windscreen lid) and with the microphone installed inside the windscreen. The difference between the two spectra comprises the wind noise reduction. At wind speeds of 3, 5, and 7 m/s, the wind noise reduction is typically 15 dB over the frequency range of 0.1-20 Hz.

  18. Minimum cross-entropy noise reduction in images

    NASA Astrophysics Data System (ADS)

    MacKinnon, Robert F.

    1989-06-01

    A method of noise reduction is described that reduces random noise in images through cross-entropy representation under simple constraint bounds placed on linear orthogonal transform variables. The bounds depend on the noise statistics, which must be estimated independently, and on prior knowledge. The bounds may be adjusted through use of a so-called tightness parameter. In practice, solutions represent a compromise between the noisy image and the prior knowledge for which the tightness parameter governs the reduction in the noise variance. The role of the prior knowledge is illustrated by using two examples, one simple and one complicated. Results based on Fourier and Walsh transforms are presented. Examples of speckle noise reduction for synthetic aperture radar images of the ocean surface are given as illustrations of a practical application.

  19. Vessel Noise Affects Beaked Whale Behavior: Results of a Dedicated Acoustic Response Study

    PubMed Central

    Pirotta, Enrico; Milor, Rachael; Quick, Nicola; Moretti, David; Di Marzio, Nancy; Tyack, Peter; Boyd, Ian; Hastie, Gordon

    2012-01-01

    Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville’s beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement. PMID:22880022

  20. Vessel noise affects beaked whale behavior: results of a dedicated acoustic response study.

    PubMed

    Pirotta, Enrico; Milor, Rachael; Quick, Nicola; Moretti, David; Di Marzio, Nancy; Tyack, Peter; Boyd, Ian; Hastie, Gordon

    2012-01-01

    Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville's beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement. PMID:22880022

  1. Noise reduction in a launch vehicle fairing using actively tuned loudspeakers.

    PubMed

    Kemp, Jonathan D; Clark, Robert L

    2003-04-01

    Loudspeakers tuned as optimal acoustic absorbers can significantly reduce damaging, low frequency, reverberant noise in a full-scale launch vehicle fairing. Irregular geometry, changing payloads, and the compliant nature of the fairing hinder effective implementation of a passively tuned loudspeaker. A method of tuning the loudspeaker dynamics in real time is required to meet the application requirements. Through system identification, the dynamics of the enclosure can be identified and used to tune the dynamics of the loudspeaker for reduction of targeted, high intensity, low-frequency modes that dominate the acoustic response in the fairing. A loudspeaker model with desired dynamics serves as the reference model in a control law designed to tune the dynamics of a non-ideal loudspeaker to act as an optimal tuned absorber. Experimental results indicate that a tuned loudspeaker placed in the nose cone of the fairing significantly reduces acoustic energy and verifies results calculated from the simulation. PMID:12703709

  2. Jet Noise Reduction by Microjets - A Parametric Study

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2010-01-01

    The effect of injecting tiny secondary jets (microjets ) on the radiated noise from a subsonic primary jet is studied experimentally. The microjets are injected on to the primary jet near the nozzle exit with variable port geometry, working fluid and driving pressure. A clear noise reduction is observed that improves with increasing jet pressure. It is found that smaller diameter ports with higher driving pressure, but involving less thrust and mass fraction, can produce better noise reduction. A collection of data from the present as well as past experiments is examined in an attempt to correlate the noise reduction with the operating parameters. The results indicate that turbulent mixing noise reduction, as monitored by OASPL at a shallow angle, correlates with the ratio of jet to primary jet driving pressures normalized by the ratio of corresponding diameters (p d /pjD). With gaseous injection, the spectral amplitudes decrease at lower frequencies while an increase is noted at higher frequencies. It is apparent that this amplitude crossover is at least partly due to shock-associated noise from the underexpanded jets themselves. Such crossover is not seen with water injection since the flow in that case is incompressible and there is no shock-associated noise. Centerline velocity data show that larger noise reduction is accompanied by faster jet decay as well as significant reduction in turbulence intensities. While a physical understanding of the dependence of noise reduction on p d /pjD remains unclear, given this correlation, an analysis explains the observed dependence of the effect on various other parameters.

  3. Revolutionary Concepts for Helicopter Noise Reduction: SILENT Program

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan; Cox, Charles; Booth, Earl R., Jr. (Technical Monitor)

    2002-01-01

    As part of a NASA initiative to reduce helicopter main rotor noise, a Phase 1 study has been performed of candidate noise reduction concepts. Both conventional and novel design technologies have been analyzed that reduce the community impact of helicopter operations. In this study the noise reduction potential and design implications are assessed for conventional means of noise reduction, e.g., tip speed reduction, tip shapes and airfoil tailoring, and for two innovative design concepts: modulated blade spacing and x-force control. Main rotor designs that incorporate modulated blade spacing are shown to have reduced peak noise levels in most flight operations. X-force control alters the helicopter's force balance whereby the miss distance between main rotor blades and shed vortices can be controlled. This control provides a high potential to mitigate BVI noise radiation. Each concept is evaluated using best practice design and analysis methods, achieving the study's aim to significantly reduce noise with minimal performance degradation and no vibration increase. It is concluded that a SILENT main rotor design, incorporating the modulated blade spacing concept, offers significantly reduced noise levels and the potential of a breakthrough in how a helicopter's sound is perceived and judged. The SILENT rotor represents a definite advancement in the state-of-the-art and is selected as the design concept for demonstration in Phase 2. A Phase 2 Implementation Plan is developed for whirl cage and wind tunnel evaluations of a scaled model SILENT rotor.

  4. Smooth local subspace projection for nonlinear noise reduction

    SciTech Connect

    Chelidze, David

    2014-03-15

    Many nonlinear or chaotic time series exhibit an innate broad spectrum, which makes noise reduction difficult. Local projective noise reduction is one of the most effective tools. It is based on proper orthogonal decomposition (POD) and works for both map-like and continuously sampled time series. However, POD only looks at geometrical or topological properties of data and does not take into account the temporal characteristics of time series. Here, we present a new smooth projective noise reduction method. It uses smooth orthogonal decomposition (SOD) of bundles of reconstructed short-time trajectory strands to identify smooth local subspaces. Restricting trajectories to these subspaces imposes temporal smoothness on the filtered time series. It is shown that SOD-based noise reduction significantly outperforms the POD-based method for continuously sampled noisy time series.

  5. Reduction of Additive Colored Noise Using Coupled Dynamics

    NASA Astrophysics Data System (ADS)

    Kohar, Vivek; Kia, Behnam; Lindner, John F.; Ditto, William L.

    We study the effect of additive colored noise on the evolution of maps and demonstrate that the deviations caused by such noise can be reduced using coupled dynamics. We consider both Ornstein-Uhlenbeck process as well as 1/fα noise in our numerical simulations. We observe that though the variance of deviations caused by noise depends on the correlations in the noise, under optimal coupling strength, it decreases by a factor equal to the number of coupled elements in the array as compared to the variance of deviations in a single isolated map. This reduction in noise levels occurs in chaotic as well as periodic regime of the maps. Lastly, we examine the effect of colored noise in chaos computing and find that coupling the chaos computing elements enhances the robustness of chaos computing.

  6. Adaptive noise reduction circuit for a sound reproduction system

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1995-01-01

    A noise reduction circuit for a hearing aid having an adaptive filter for producing a signal which estimates the noise components present in an input signal. The circuit includes a second filter for receiving the noise-estimating signal and modifying it as a function of a user's preference or as a function of an expected noise environment. The circuit also includes a gain control for adjusting the magnitude of the modified noise-estimating signal, thereby allowing for the adjustment of the magnitude of the circuit response. The circuit also includes a signal combiner for combining the input signal with the adjusted noise-estimating signal to produce a noise reduced output signal.

  7. Supersonic Jet Noise Reductions Predicted With Increased Jet Spreading Rate

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Morris, Philip J.

    1998-01-01

    In this paper, predictions are made of noise radiation from single, supersonic, axisymmetric jets. We examine the effects of changes in operating conditions and the effects of simulated enhanced mixing that would increase the spreading rate of jet shear layer on radiated noise levels. The radiated noise in the downstream direction is dominated by mixing noise and, at higher speeds, it is well described by the instability wave noise radiation model. Further analysis with the model shows a relationship between changes in spreading rate due to enhanced mixing and changes in the far field radiated peak noise levels. The calculations predict that enhanced jet spreading results in a reduction of the radiated peak noise level.

  8. Static and wind tunnel model tests for the development of externally blown flap noise reduction techniques

    NASA Technical Reports Server (NTRS)

    Pennock, A. P.; Swift, G.; Marbert, J. A.

    1975-01-01

    Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.

  9. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  10. Noise Reduction Methods for Weighing Lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanical vibration of the grass and crop weighing lysimeters, located at the University of California West Side Field Research and Extension Station at Five Points, CA generated noise in lysimeter mass measurements and reduced the quality of evapotranspiration (ET) data. Two filtering methods for ...

  11. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  12. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  13. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  14. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  15. Cylindrical acoustical holography applied to full-scale jet noise.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M

    2014-09-01

    Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated. PMID:25190387

  16. Reactive Orthotropic Lattice Diffuser for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor)

    2016-01-01

    An orthotropic lattice structure interconnects porous surfaces of the flap with internal lattice-structured perforations to equalize the steady pressure field on the flap surfaces adjacent to the end and to reduce the amplitude of the fluctuations in the flow field near the flap end. The global communication that exists within all of the perforations provides the mechanism to lessen the pressure gradients experienced by the end portion of the flap. In addition to having diffusive effects (diffusing the incoming flow), the three-dimensional orthogonal lattice structure is also reactive (acoustic wave phase distortion) due to the interconnection of the perforations.

  17. Aircraft acoustics. I - Exterior noise of subsonic passenger aircraft and helicopters

    NASA Astrophysics Data System (ADS)

    Munin, Anatolii Grigor'evich

    Problems related to the effect of the exterior noise produced by subsonic aircraft and helicopters on the environment and man are examined. The principal sources of noise produced by aircraft and helicopters are identified, and the physical pattern of noise generation is examined. Various method of reducing the noise of aircraft and helicopters are discussed, and methods are presented for predicting the acoustic environment at airports with allowance for the size of the aircraft park and the dynamics of flight operations.

  18. Publications in acoustics and noise control from the NASA Langley Research Center during 1940 - 1974

    NASA Technical Reports Server (NTRS)

    Smith, G. C. (Compiler); Laneave, J. N. (Compiler)

    1975-01-01

    This document contains reference lists of published Langley Research Center papers in various areas of acoustics and noise control for the period 1940-1974. The research work was performed either in-house by the center staff or by other personnel supported entirely or in part by grants or contracts. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics, (2) Propagation and operations, (3) Rotating blade noise, (4) Jet noise, (5) Sonic boom, (6) Flow-surface interaction noise, (7) Human response, and (8) Structural response.

  19. Tiltrotor noise reduction through flight trajectory management and aircraft configuration control

    NASA Astrophysics Data System (ADS)

    Gervais, Marc

    approaches that take into account the first-order effects of deceleration on the acoustics were systematically designed and compared to a baseline approach profile. The low-noise approaches yielded substantial noise reduction benefits on a hemisphere surrounding the aircraft and on a ground plane below the aircraft's trajectory.

  20. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  1. Directional acoustic measurements by laser Doppler velocimeters. [for jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Overbey, R. L.; Testerman, M. K.

    1976-01-01

    Laser Doppler velocimeters (LDVs) were used as velocity microphones to measure sound pressure level in the range of 90-130 db, spectral components, and two-point cross correlation functions for acoustic noise source identification. Close agreement between LDV and microphone data is observed. It was concluded that directional sensitivity and the ability to measure remotely make LDVs useful tools for acoustic measurement where placement of any physical probe is difficult or undesirable, as in the diagnosis of jet aircraft noise.

  2. Flight Acoustic Testing and Data Acquisition For the Rotor Noise Model (RNM)

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Burley, Casey L.; Smith, Charles D.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the Acoustics Week flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  3. Flight Acoustic Testing and For the Rotorcraft Noise Data Acquisition Model (RNM)

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Smith, Charles D.; Conner, David A.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the "Acoustics Week" flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  4. Identification of Noise Sources and Design of Noise Reduction Measures for a Pneumatic Nail Gun

    PubMed Central

    Jayakumar, Vignesh; Zechmann, Edward

    2015-01-01

    An experimental-analytical procedure was implemented to reduce the operating noise level of a nail gun, a commonly found power tool in a construction site. The procedure is comprised of preliminary measurements, identification and ranking of major noise sources and application of noise controls. Preliminary measurements show that the impact noise transmitted through the structure and the exhaust related noise were found to be the first and second major contributors. Applying a noise absorbing foam on the outside of the nail gun body was found to be an effective noise reduction technique. One and two-volume small mufflers were designed and applied to the exhaust side of the nail gun which reduced not only the exhaust noise but also the impact noise. It was shown that the overall noise level could be reduced by as much as 3.5 dB, suggesting that significant noise reduction is possible in construction power tools without any significant increase of the cost. PMID:26366038

  5. Aircraft interior noise prediction using a structural-acoustic analogy in NASTRAN modal synthesis

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Marulo, Francesco

    1988-01-01

    The noise induced inside a cylindrical fuselage model by shaker excitation is investigated theoretically and experimentally. The NASTRAN modal-synthesis program is used in the theoretical analysis, and the predictions are compared with experimental measurements in extensive graphs. Good general agreement is obtained, but the need for further refinements to account for acoustic-cavity damping and structural-acoustic interaction is indicated.

  6. Baseline acoustic levels of the NASA Active Noise Control Fan rig

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Heidelberg, Laurence J.; Elliott, David M.; Nallasamy, M.

    1996-01-01

    Extensive measurements of the spinning acoustic mode structure in the NASA 48 inch Active Noise Control Fan (ANCF) test rig have been taken. A continuously rotating microphone rake system with a least-squares data reduction technique was employed to measure these modes in the inlet and exhaust. Farfield directivity patterns in an anechoic environment were also measured at matched corrected rotor speeds. Several vane counts and spacings were tested over a range of rotor speeds. The Eversman finite element radiation code was run with the measured in-duct modes as input and the computed farfield results were compared to the experimentally measured directivity pattern. The experimental data show that inlet spinning mode measurements can be made very accurately. Exhaust mode measurements may have wake interference, but the least-squares reduction does a good job of rejecting the non-acoustic pressure. The Eversman radiation code accurately extrapolates the farfield levels and directivity pattern when all in-duct modes are included.

  7. The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1987-01-01

    This paper is theoretical in nature and addresses applications of the acoustic analogy in helicopter rotor noise prediction. It is argued that in many instances the acoustic analogy has not been used with care in rotor noise studies. By this it is meant that approximate or inappropriate formulations have been used. By considering various mechanisms of noise generation, such abuses are identified and the remedy is suggested. The mechanisms discussed are thickness, loading, quadrupole, and blade-vortex interaction noise. The quadrupole term of the Ffowcs Williams-Hawkings equation is written in a new form which separates the contributions of regions of high gradients such as shock surfaces. It is shown by order of magnitude studies that such regions are capable of producing noise with the same directivity as the thickness noise. The inclusion of this part of quadrupole sources in current acoustic codes is quite practical. Some of the difficulties with the use of loading noise formulations of the first author in predictions of blade-vortex interaction noise are discussed. It appears that there is a need for development of new theoretical results based on the acoustic analogy in this area. Because of the impulsive character of the blade surface pressure, a time scale of integration different from that used in loading and thickness computations must he used in a computer code for prediction of blade-vortex interaction noise.

  8. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  9. Reduction of blade-vortex interaction noise using higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Booth, Earl R., Jr.; Jolly, J. Ralph, Jr.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1989-01-01

    An acoustics test using an aeroelastically scaled rotor was conducted to examine the effectiveness of higher harmonic blade pitch control for the reduction of impulsive blade-vortex interaction (BVI) noise. A four-bladed, 110 in. diameter, articulated rotor model was tested in a heavy gas (Freon-12) medium in Langley's Transonic Dynamics Tunnel. Noise and vibration measurements were made for a range of matched flight conditions, where prescribed (open-loop) higher harmonic pitch was superimposed on the normal (baseline) collective and cyclic trim pitch. For the inflow-microphone noise measurements, advantage was taken of the reverberance in the hard walled tunnel by using a sound power determination approach. Initial findings from on-line data processing for three of the test microphones are reported for a 4/rev (4P) collective pitch control for a range of input amplitudes and phases. By comparing these results to corresponding baseline (no control) conditions, significant noise reductions (4 to 5 dB) were found for low-speed descent conditions, where helicopter BVI noise is most intense. For other rotor flight conditions, the overall noise was found to increase. All cases show increased vibration levels.

  10. Reduction of blade-vortex interaction noise through higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Booth, Earl R., Jr.; Jolly, J. Ralph, Jr.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1990-01-01

    An acoustics test using an aeroelastically scaled rotor was conducted to examine the effectiveness of higher harmonic blade pitch control for the reduction of impulsive blade-vortex interaction (BVI) noise. A four-bladed, 110 in. diameter, articulated rotor model was tested in a heavy gas (Freon-12) medium in Langley's Transonic Dynamics Tunnel. Noise and vibration measurements were made for a range of matched flight conditions, where prescribed (open-loop) higher harmonic pitch was superimposed on the normal (baseline) collective and cyclic trim pitch. For the inflow-microphone noise measurements, advantage was taken of the reverberance in the hard walled tunnel by using a sound power determination approach. Initial findings from on-line data processing for three of the test microphones are reported for a 4/rev (4P) collective pitch control for a range of input amplitudes and phases. By comparing these results to corresponding baseline (no control) conditions, significant noise reductions (4 to 5 dB) were found for low-speed descent conditions, where helicopter BVI noise is most intense. For other rotor flight conditions, the overall noise was found to increase. All cases show increased vibration levels.

  11. Shock associated noise reduction from inverted-velocity-profile coannular jets

    NASA Technical Reports Server (NTRS)

    Tanna, H. K.; Tam, C. K. W.; Brown, W. H.

    1981-01-01

    Acoustic measurements show that the shock noise from the outer stream is virtually eliminated when the inner stream is operated at a Mach number just above unity, regardless of all the other jet operating conditions. At this optimum condition, the coannular jet provides the maximum noise reduction relative to the equivalent single jet. The shock noise reduction can be achieved at inverted-as well as normal-velocity-profile conditions, provided the coannular jet is operated with the inner stream just slightly supersonic. Analytical models for the shock structure and shock noise are developed indicate that a drastic change in the outer stream shock cell structure occurs when the inner stream increases its velocity from subsonic to supersonic. At this point, the almost periodic shock cell structure of the outer stream nearly completely disappears the noise radiated is minimum. Theoretically derive formulae for the peak frequencies and intensity scaling of shock associated noise are compared with the measured results, and good agreement is found for both subsonic and supersonic inner jet flows.

  12. Compressor lubrication and noise reduction system

    SciTech Connect

    Bayyouk, J.A.; Waser, M.P.

    1988-06-14

    An oil lubrication and noise suppression system is described comprising: an oil sump: a crankshaft rotatable about an axis and defining a centrifugal oil pump: an oil pickup tube extending into the oil sump and secured to the crankshaft coaxial with the axis and rotatable with the crankshaft about the axis as a unit; and an impeller axially asymmetrically mounted on the pickup tube within the oil sump whereby upon rotation of the crankshaft, the oil pickup tube and the impeller as a unit causes the production of froth and the pumping of oil while preventing the formation of a stable vortex.

  13. High Bypass Ratio Jet Noise Reduction and Installation Effects Including Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Czech, Michael J.; Doty, Michael J.

    2013-01-01

    overall nozzle configuration design was selected for application to the N2A Hybrid Wing Body concept that will be the subject of the NASA Langley 14 by 22 Foot Subsonic Tunnel high fidelity aeroacoustic characterization experiment. The best overall nozzle selected includes T-fan type chevrons, uniform chevrons on the core nozzle, and no additional pylon of the type that created a strong acoustic effect at lower bypass ratios. The T-fan chevrons are oriented azimuthally away from the ground observer locations. This best overall nozzle compared to the baseline nozzle was assessed, at equal thrust, to produce sufficient installed noise reduction of the jet noise component to enable the N2A HWB to meet NASA s noise goal of 42 dB cumulative below Stage 4.

  14. Noise reduction by dynamic signal preemphasis

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuyuki; Takegoshi, K.

    2011-02-01

    In this work we propose an approach to reduce the digitization noise for a given dynamic range, i.e., the number of bits, of an analog to digital converter used in an NMR receiver. In this approach, the receiver gain is dynamically increased so that the free induction decay is recorded in such an emphasized way that the decaying signal is digitized using as many number of bits as possible, and at the stage of data processing, the original signal profile is restored by applying the apodization that compensates the effect of the preemphasis. This approach, which we call APodization after Receiver gain InCrement during Ongoing sequence with Time (APRICOT), is performed in a solid-state system containing a pair of 13C spins, one of which is fully isotopically labeled and the other is naturally abundant. It is demonstrated that the exceedingly smaller peak buried in the digitization noise in the conventional approach can be revealed by employing APRICOT.

  15. Parallel feedback active noise control of MRI acoustic noise with signal decomposition using hybrid RLS-NLMS adaptive algorithms.

    PubMed

    Ganguly, Anshuman; Krishna Vemuri, Sri Hari; Panahi, Issa

    2014-01-01

    This paper presents a cost-effective adaptive feedback Active Noise Control (FANC) method for controlling functional Magnetic Resonance Imaging (fMRI) acoustic noise by decomposing it into dominant periodic components and residual random components. Periodicity of fMRI acoustic noise is exploited by using linear prediction (LP) filtering to achieve signal decomposition. A hybrid combination of adaptive filters-Recursive Least Squares (RLS) and Normalized Least Mean Squares (NLMS) are then used to effectively control each component separately. Performance of the proposed FANC system is analyzed and Noise attenuation levels (NAL) up to 32.27 dB obtained by simulation are presented which confirm the effectiveness of the proposed FANC method. PMID:25570676

  16. Structural Acoustic Characteristics of Aircraft and Active Control of Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1998-01-01

    The reduction of aircraft cabin sound levels to acceptable values still remains a topic of much research. The use of conventional passive approaches has been extensively studied and implemented. However performance limits of these techniques have been reached. In this project, new techniques for understanding the structural acoustic behavior of aircraft fuselages and the use of this knowledge in developing advanced new control approaches are investigated. A central feature of the project is the Aircraft Fuselage Test Facility at Va Tech which is based around a full scale Cessna Citation III fuselage. The work is divided into two main parts; the first part investigates the use of an inverse technique for identifying dominant fuselage vibrations. The second part studies the development and implementation of active and active-passive techniques for controlling aircraft interior noise.

  17. Objective approach for analysis of noise source characteristics and acoustic conditions in noisy computerized embroidery workrooms.

    PubMed

    Aliabadi, Mohsen; Golmohammadi, Rostam; Mansoorizadeh, Muharram

    2014-03-01

    It is highly important to analyze the acoustic properties of workrooms in order to identify best noise control measures from the standpoint of noise exposure limits. Due to the fact that sound pressure is dependent upon environments, it cannot be a suitable parameter for determining the share of workroom acoustic characteristics in producing noise pollution. This paper aims to empirically analyze noise source characteristics and acoustic properties of noisy embroidery workrooms based on special parameters. In this regard, reverberation time as the special room acoustic parameter in 30 workrooms was measured based on ISO 3382-2. Sound power quantity of embroidery machines was also determined based on ISO 9614-3. Multiple linear regression was employed for predicting reverberation time based on acoustic features of the workrooms using MATLAB software. The results showed that the measured reverberation times in most of the workrooms were approximately within the ranges recommended by ISO 11690-1. Similarity between reverberation time values calculated by the Sabine formula and measured values was relatively poor (R (2) = 0.39). This can be due to the inaccurate estimation of the acoustic influence of furniture and formula preconditions. Therefore, this value cannot be considered representative of an actual acoustic room. However, the prediction performance of the regression method with root mean square error (RMSE) = 0.23 s and R (2) = 0.69 is relatively acceptable. Because the sound power of the embroidery machines was relatively high, these sources get the highest priority when it comes to applying noise controls. Finally, an objective approach for the determination of the share of workroom acoustic characteristics in producing noise could facilitate the identification of cost-effective noise controls. PMID:24214295

  18. Prediction and reduction of aircraft noise in outdoor environments

    NASA Astrophysics Data System (ADS)

    Tong, Bao N.

    absorption mechanism due to the source's motion. To help mitigate the noise that propagates to the ground, multi-layered acoustic treatments can be applied to provide good performance over a wide range of frequencies. An accurate representation of material properties for each of the constituent layers is needed in the design of such treatments. The parameter of interest is the specific acoustic impedance, which can be obtained via inversion of acoustic transfer function measurements. However, several different impedance values can correspond to the same sound field predictions. The boundary loss factor F (associated with spherical wave reflection) is the source of this ambiguity. A method for identifying the family of solutions and selecting the physically meaningful branch is proposed to resolve this non-uniqueness issue. Accurate deduction of the acoustic impedance depends on precise measurements of the acoustic transfer function. However, measurement uncertainties exists in both the magnitude and the phase of the acoustic transfer function. The ASA/ANSI S1.18 standard impedance deduction method uses phase information, which can be unreliable in many outdoor environments. An improved technique which only relies on magnitude information is developed in this dissertation. A selection of optimal geometries become necessary to reduce the sensitivity of the deduced impedance to small variations in the measured data. A graphical approach is provided which offers greater insight into the optimization problem. A downhill simplex algorithm has been implemented to automate the impedance deduction procedure. Physical constraints are applied to limit the search region and to eliminate rogue solutions. Several case studies consisting of both indoor and outdoor acoustical measurements are presented to validate the proposed technique. The current analysis is limited to locally reacting materials where the acoustic impedance does not depend on the incidence angle of the reflected wave.

  19. Fundamentals of noise control engineering

    SciTech Connect

    Miller, R.K.; Thumann, A.

    1986-01-01

    This reference provides coverage of noise control engineering. Techniques are presented in precise terms for both acoustical design of new facilities and cost-effective noise reduction in existing facilities. Examples illustrate how to design acoustical enclosures, apply silencing equipment, estimate equipment noise and meet noise criteria for communities.

  20. Active Structural Acoustic Control of Interior Noise on a Raytheon 1900D

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran; Sullivan, Brenda; Cline, John

    2000-01-01

    An active structural acoustic control system has been demonstrated on a Raytheon Aircraft Company 1900D turboprop airliner. Both single frequency and multi-frequency control of the blade passage frequency and its harmonics was accomplished. The control algorithm was a variant of the popular filtered-x LMS implemented in the principal component domain. The control system consisted of 21 inertial actuators and 32 microphones. The actuators were mounted to the aircraft's ring frames. The microphones were distributed uniformly throughout the interior at head height, both seated and standing. Actuator locations were selected using a combinatorial search optimization algorithm. The control system achieved a 14 dB noise reduction of the blade passage frequency during single frequency tests. Multi-frequency control of the first 1st, 2nd and 3rd harmonics resulted in 10.2 dB, 3.3 dB and 1.6 dB noise reductions respectively. These results fall short of the predictions which were produced by the optimization algorithm (13.5 dB, 8.6 dB and 6.3 dB). The optimization was based on actuator transfer functions taken on the ground and it is postulated that cabin pressurization at flight altitude was a factor in this discrepancy.

  1. The Structure and Noise Reduction Capacity of Owl Down

    NASA Astrophysics Data System (ADS)

    Jaworski, Justin; Clark, Ian; Alexander, Nathan; Devenport, William; Daly, Conor; Peake, Nigel; Glegg, Stewart

    2014-11-01

    Many species of owl rely on specialized plumage to reduce their self-noise levels and enable hunting in acoustic stealth. In contrast to the leading-edge comb and compliant trailing-edge fringe attributes of owls, the aeroacoustic impact of the fluffy down material on the upper wing surface remains largely speculative as a means to eliminate aerodynamic noise across a broad range of frequencies. Photographic analysis of the owl down reveals a unique forest-like structure, whereby the down fibers rise straight up from the wing surface and then bend into the flow direction to form a porous canopy, with an open area fraction of approximately 70%. Experimental measurements demonstrate that the canopy feature reduces dramatically the turbulent pressure levels on the wing surface by up to 30dB, which affects the roughness noise characteristic of the down in a manner consistent with the theory of flows over and through vegetation. Mathematical models developed for the turbulence noise generation by the down fibers and for the mixing-layer instability above the porous canopy furnish a theoretical basis to understand the influence of the down geometric structure on its self-noise signature and noise suppression characteristics.

  2. An aeroacoustic study of micro-tab on airframe noise reduction

    NASA Astrophysics Data System (ADS)

    Kuo, Chiawei B.

    Aircraft high-lift devices such as leading-edge slats and trailing-edge flaps generate noise when extended, causing significant contributions to overall aircraft sound pressure levels, in particular in approach to land phase. It is shown by previous research efforts that noise generated by the high-lift devices increases with their deployment angles. Hence it is possible to mitigate such high-lift noise by using reduced settings without sacrificing the aerodynamic performance, particularly lift. In this dissertation research, micro-tab device attached at the pressure side of the flap surface near its trailing-edge is envisioned as the way to compensate the lift loss due to reduced high-lift device settings. Hybrid numerical method, which combines computational fluid dynamics and acoustics analogy, was adopted to predict the farfield noise spectrum. It is the goal of this research project to illustrate that noise level increase due to micro-tab deployment is smaller than that from the prescribed slat and flap setting increases, so that an overall airframe noise reduction can be achieved. Two-dimensional computational simulations and three-dimensional computational simulations were performed progressively. Results indicated that the proposed reduced high-lift settings with micro-tab application achieved noise reduction, particularly in the mid-frequency range where human hearing is most sensitive to. Parametric studies involving geometry and size effects of the micro-tab configurations were conducted using two-dimensional and three-dimensional models. Results showed that considerable noise reduction was obtained if slit micro-tab was used. An airworthiness study regarding applying micro-tab device onto existing commercial airliners as retrofit to lower noise emission in approach was also investigated and compliance strategy was provided. In the last part of this research, a different approach from aviation policy was taken as the airport noise compatibility planning

  3. Noise reduction in fossil power plant draft fans

    SciTech Connect

    Koopmann, G.H.; Neise, W.

    1983-10-01

    Using a 20 in. dia fan noise testing facility, which was constructed at the University of Houston for this project, it has been demonstrated that a substantial reduction in the noise level of a centrifugal fan which has a pronounced tone can be achieved by incorporating a quarter-wavelength resonator in the fan casing near the cut-off part of the scroll. The resonator is tuned to the blade passing frequency of the fan by adjusting its length. It acts to reduce the level of the tonal component of the noise by cancelling the sound producing pressure pulses generated by the interaction of the fluid leaving the impeller blades with the solid cut-off of the fan casing. By proper tuning of the resonator and placement of the resonator's perforated mouth near the cut-off region where the pressure fluctuations are most intense, reductions of up to 20 dB in the sound pressure level of the blade passing frequency tone have been observed. Integration of the resonator into the fan casing design provides noise level reductions in both inlet and outlet ducts simultaneously. Reductions are independent of changes in duct impedance due to different end conditions. While the noise reduction method is effective over a wide range of aerodynamic loading conditions, it does not adversely affect the performance of the fan.

  4. Experimental investigation of the noise reduction of supersonic exhaust jets with fluidic inserts

    NASA Astrophysics Data System (ADS)

    Powers, Russell William Walter

    observed to reduce the peak mixing noise below the already reduced levels by nearly 4 dB OASP and the broadband shock-associated noise by nearly 3 dB OASP. Unsteady velocity measurements are used to complement acoustic results of jets with fluidic inserts. Measured axial turbulence intensities and mean axial velocity are examined to illuminate the differences in the flow field from jets with fluidic inserts. Comparisons of laser Doppler measurements with RANS CFD simulations are shown with good agreement. Analysis of the effect of spatial turbulence on the measured quantities is performed. Experimental model scale measurements of jets with and without fluidic inserts over a simulated carrier deck are presented. The model carrier environment consists of a ground plane of adjustable distance below the jet, and a simulated jet blast deflector similar to those found in practice. Measurements are performed with far-field microphones, near-field microphones, and unsteady pressure sensors. The constructive and destructive interference that results from the interaction of the direct and reflected sound waves is observed and compared with results from free jets. The noise reduction of fluidic inserts in a realistic carrier deck environment with steering of the "quiet planes" is examined. The overall sound pressure level in heat-simulated jets is reduced by 3-5 dB depending on the specific angle and ground plane height. Jets impinging upon a modeled jet blast deflector are tested in addition to jets solely in the presence of the carrier deck. Observed modifications to the acoustic field from the presence of the jet blast deflector include downstream acoustic shielding and low frequency augmentation. The region of maximum noise radiation for heat-simulated jets from nozzles with fluidic inserts impinging on the jet blast deflector is reduced in overall sound pressure level by 4-7 dB. This region includes areas where aircraft carrier personnel are located. iv.

  5. Non-linear generation of acoustic noise in the IAR spacecraft

    NASA Technical Reports Server (NTRS)

    Westley, R.; Nguyen, K.; Westley, M. S.

    1990-01-01

    The requirement to produce high level acoustic noise fields with increasing accuracy in environmental test facilities dictates that a more precise understanding is required of the factors controlling nonlinear noise generation. Details are given of various nonlinear effects found in acoustic performance data taken from the IAR Spacecraft Acoustic Chamber. This type of data has enabled the IAR to test large spacecraft to relatively tight acoustic tolerances over a wide frequency range using manually set controls. An analog random noise automatic control system was available and modified to provide automatic selection of the chamber's spectral sound pressure levels. The automatic control system when used to complete a typical qualification test appeared to equal the accuracy of the manual system and had the added advantage that parallel spectra could be easily achieved during preset tests.

  6. An objective method and measuring equipment for noise control and acoustic diagnostics of motorcars. [acoustic diagnostics on automobile engines

    NASA Technical Reports Server (NTRS)

    Kacprowski, J.; Motylewski, J.; Miazga, J.

    1974-01-01

    An objective method and apparatus for noise control and acoustic diagnostics of motorcar engines are reported. The method and apparatus let us know whether the noisiness of the vehicle under test exceeds the admissible threshold levels given by appropriate standards and if so what is the main source of the excessive noise. The method consists in measuring both the overall noise level and the sound pressure levels in definite frequency bands while the engine speed is controlled as well and may be fixed at prescribed values. Whenever the individually adjusted threshold level has been exceeded in any frequency band, a self-sustaining control signal is sent.

  7. Improvements of wind noise reduction systems in the International Monitoring System infrasound network

    NASA Astrophysics Data System (ADS)

    Kramer, Alfred Christian; Marty, Julien

    2015-04-01

    The objective of this poster is to present the efforts made by the PTS over the last four years to assess and improve the robustness and efficiency of wind noise reduction systems. This work includes the improvement of the design of the pipe arrays by modelling the frequency response of the different types of filtering systems used within the IMS (International Monitoring System) infrasound network. It also includes the investigation and testing of new acoustic filtering system materials / components to improve the robustness of the pipe arrays. Efforts were also put into the improvement of pipe array design in order to enhance their flexibility to adapt to the station environmental conditions. Finally wind noise reduction system design was also enhanced to reduce maintenance activities and costs, as well as to extend their life cycle.

  8. Passive acoustic observations of tide height in the Iroise Sea using ambient noise.

    PubMed

    Kinda, G Bazile; Bonnel, Julien

    2015-09-01

    Considering a broadband motionless source in a waveguide with a depth that varies with time, the time-frequency representation of the acoustic intensity shows a striation pattern than can be explained using the depth-frequency waveguide invariant. This phenomenon is used here to describe acoustic data recorded in the Iroise Sea, where intense tides occur. The originality of this study is that the acoustic data consist of only ambient noise. The best hypothesis is that these striations are created by distant marine traffic in the Bay of Brest, and the results suggest that tide height can be monitored using long-term passive acoustics. PMID:26428830

  9. A First Look at the DGEN380 Engine Acoustic Data from a Core-Noise Perspective

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2015-01-01

    This work is a first look at acoustic data acquired in the NASA Glenn Research Center Aero-Acoustic Propulsion Laboratory using the Price Induction DGEN380 small turbofan engine, with particular emphasis on broadband combustor (core) noise. Combustor noise is detected by using a two-signal source separation technique employing one engine-internal sensor and one semi-far-field microphone. Combustor noise is an important core-noise component and is likely to become a more prominent contributor to overall airport community noise due to turbofan design trends, expected aircraft configuration changes, and advances in fan-noise-mitigation techniques. This work was carried out under the NASA Fundamental Aeronautics Program, Fixed Wing Project, Quiet Performance Subproject

  10. Quantitative Measures of Anthropogenic Noise on Harbor Porpoises: Testing the Reliability of Acoustic Tag Recordings.

    PubMed

    Wisniewska, Danuta M; Teilmann, Jonas; Hermannsen, Line; Johnson, Mark; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-01-01

    In recent years, several sound and movement recording tags have been developed to sample the acoustic field experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal's orientation in the sound field affect the reliability of on-animal recordings as proxies for actual exposure. Here, we quantify sound exposure levels recorded with a DTAG-3 tag on a captive harbor porpoise exposed to vessel noise in a controlled acoustic environment. Results show that flow noise is limiting onboard noise recordings, whereas no evidence of body shading has been found for frequencies of 2-20 kHz. PMID:26611092

  11. Noise control using a plate radiator and an acoustic resonator

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor)

    1996-01-01

    An active noise control subassembly for reducing noise caused by a source (such as an aircraft engine) independent of the subassembly. A noise radiating panel is bendably vibratable to generate a panel noise canceling at least a portion of the source noise. A piezoceramic actuator plate is connected to the panel. A front plate is spaced apart from the panel and the first plate, is positioned generally between the source noise and the panel, and has a sound exit port. A first pair of spaced-apart side walls each generally abut the panel and the front plate so as to generally enclose a front cavity to define a resonator.

  12. Future developments in transport aircraft noise reduction technology

    SciTech Connect

    Pendley, R.E.

    1982-01-01

    During the past 13 years, important advances in the technology of aircraft noise control have resulted from industry and government research programs. Quieter commercial transport airplanes have entered the fleet and additional new designs now committed to production will begin service in a few years. This paper indicates the noise reductions that will be achieved by the quieter transports that will replace the older designs and remarks on the outlook for still quieter designs.

  13. Optimization of wind fence enclosures for infrasonic wind noise reduction

    NASA Astrophysics Data System (ADS)

    Abbott, JohnPaul Russell

    A large porous wind barrier enclosure has been built and tested to optimize wind noise reduction at infrasonic frequencies between 0.01-10 Hz in order to develop a technology that is simple, cost effective, and improves upon the limitations of pipe and porous hose arrays. The effects of varying the fence's porosity, modifying its top condition and bottom gap, doubling the height and diameter, and adding a secondary wind barrier were investigated. A simple mathematical model which estimates the wind noise measured at the center of the enclosure was derived based on the measured turbulence and velocity profiles measure outside the enclosure, inside the enclosure, and incident to its surface. The wind fence enclosure achieves wind noise reduction by minimizing the turbulence and velocity gradients at its center, and by decorrelating and area averaging the pressure fluctuations at its surface. The optimum wind fence has a surface porosity of 40-55%, a porous roof, no bottom gap, is very tall, wide, and is supplemented by a secondary wind barrier. The optimum wind fence can achieve a wind noise reduction of 20-27 dB over the 2-4 Hz frequency band, at least a 5 dB noise reduction for frequencies from 0.1 to 20 Hz, and a constant 4-6 dB of noise reduction for frequencies with turbulence wavelengths larger than the fence. At high wind speeds, 3-6 m/s, the optimized wind fence enclosure reduces wind noise sufficiently to detect microbaroms.

  14. Re-engining - The sound case for aircraft noise reduction

    NASA Astrophysics Data System (ADS)

    Goddard, K.

    1991-06-01

    The paper reviews the history of legislation to reduce jet-powered aircraft noise, particularly in the U.S.A. Recently introduced legislation is discussed and the paper goes on to explain the fundamental advantage of re-engining as a means of reducing aircraft noise. Th Rolls-Royce Tay engine is introduced and the two re-engine programs already launched are described. The expected large reductions in noise level which result from re-engining are illustrated. The paper concludes with a discussion on new programs, on the current airline business scene and on some aspects of the economics of re-engining.

  15. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  16. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  17. Single stage, low noise advanced technology fan. Volume 3: Acoustic design

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Mishler, R. B.

    1976-01-01

    The acoustic design for a half-scale fan vehicle, which would have application on an advanced transport aircraft, is described. The single stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec). The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise is accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. Predicted unsuppressed and suppressed fore and aft maximum perceived noise levels indicate that the cutback condition is the most critical with respect to the goal, which is probably unattainable for that condition. This is also true for aft radiated noise in the approach condition.

  18. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

    NASA Technical Reports Server (NTRS)

    Hughes, Christoper E.; Gazzaniga, John A.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  19. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  20. A Landing Gear Noise Reduction Study Based on Computational Simulations

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Lockard, David P.

    2006-01-01

    Landing gear is one of the more prominent airframe noise sources. Techniques that diminish gear noise and suppress its radiation to the ground are highly desirable. Using a hybrid computational approach, this paper investigates the noise reduction potential of devices added to a simplified main landing gear model without small scale geometric details. The Ffowcs Williams and Hawkings equation is used to predict the noise at far-field observer locations from surface pressure data provided by unsteady CFD calculations. Because of the simplified nature of the model, most of the flow unsteadiness is restricted to low frequencies. The wheels, gear boxes, and oleo appear to be the primary sources of unsteadiness at these frequencies. The addition of fairings around the gear boxes and wheels, and the attachment of a splitter plate on the downstream side of the oleo significantly reduces the noise over a wide range of frequencies, but a dramatic increase in noise is observed at one frequency. The increased flow velocities, a consequence of the more streamlined bodies, appear to generate extra unsteadiness around other parts giving rise to the additional noise. Nonetheless, the calculations demonstrate the capability of the devices to improve overall landing gear noise.

  1. Acoustical Specification of New Equipment with Respect to Noise Policy

    NASA Astrophysics Data System (ADS)

    Rusko, Miroslav; Biľová, Monika; Lumnitzer, Ervin

    2011-01-01

    Increasingly, the Slovakian and European occupational health and safety legislation requires designers, manufacturers and suppliers of industrial plants and equipment to minimise hazards, such as excessive noise associated with their products, and to provide information about potential hazards. Even so, noise is still often overlooked with the result that the working environment is needlessly noisy. The purpose of this paper is to: - provide guidelines for the preparation of noise specifications; - show how to calculate the maximum acceptable noise level for new equipment; - show how to interpret noise information provided by suppliers.

  2. Experimental study of coaxial nozzle exhaust noise. [acoustic measurements

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.; Stone, J. R.

    1979-01-01

    Experimental results are presented for static acoustic model tests of various geometrical configurations of coaxial nozzles operating over a range of flow conditions. The geometrical configurations consisted of nozzles with coplanar and non-coplanar exit planes and various exhaust area ratios. Primary and secondary nozzle flows were varied independently over a range of nozzle pressure ratios from 1.4 to 3.0 and gas temperatures from 280 to 1100 K. Acoustic data are presented for the conventional mode of coaxial nozzle operation as well as for the inverted velocity profile mode. Comparisons are presented to show the effect of configuration and flow changes on the acoustic characteristics of the nozzles.

  3. A simplified approach for the calculation of acoustic emission in the case of friction-induced noise and vibration

    NASA Astrophysics Data System (ADS)

    Soobbarayen, K.; Besset, S.; Sinou, J.-. J.

    2015-01-01

    The acoustic response associated with squeal noise radiations is a hard issue due to the need to consider non-linearities of contact and friction, to solve the associated nonlinear dynamic problem and to calculate the noise emissions due to self-excited vibrations. In this work, the focus is on the calculation of the sound pressure in free space generated during squeal events. The calculation of the sound pressure can be performed by the Boundary Element Method (BEM). The inputs of this method are a boundary element model, a field of normal velocity characterized by a unique frequency. However, the field of velocity associated with friction-induced vibrations is composed of several harmonic components. So, the BEM equation has to be solved for each frequency and in most cases, the number of harmonic components is significant. Therefore, the computation time can be prohibitive. The reduction of the number of harmonic component is a key point for the quick estimation of the squeal noise. The proposed approach is based on the detection and the selection of the predominant harmonic components in the mean square velocity. It is applied on two cases of squeal and allows us to consider only few frequencies. In this study, a new method will be proposed in order to quickly well estimate the noise emission in free space. This approach will be based on an approximated acoustic power of brake system which is assumed to be a punctual source, an interpolated directivity and the decrease of the acoustic power levels. This method is applied on two classical cases of squeal with one and two unstable modes. It allows us to well reconstruct the acoustic power levels map. Several error estimators are introduced and show that the reconstructed field is close to the reference calculated with a complete BEM.

  4. The Acoustic Analogy and the Prediction of the Noise of Rotating Blades

    NASA Astrophysics Data System (ADS)

    Farassat, F.; Brentner, Kenneth S.

    The acoustic analogy was introduced into acoustics by Lighthill in 1952 to understand and predict the noise generated by the jet of an aircraft turbojet engine. The idea behind the acoustic analogy is simple but powerful. The entire noise generation process is mathematically reduced to the study of wave propagation in a quiescent medium with the effect of flow replaced by quadrupole sources. In jet noise theory, Lighthill was able to obtain significant and useful qualitative results from the acoustic analogy. The acoustic analogy has influenced the theoretical and experimental research on jet noise since the early 1950s. This paper, however, focuses on another area in which the acoustic analogy has had a significant impact, namely, the prediction of the noise of rotating machinery. The governing equation for this problem was derived by Ffowcs Williams and Hawkings in 1969. This equation is a wave equation for perturbation density with three source terms, which have become known as thickness, loading, and the quadrupole source terms, respectively. The Ffowcs Williams-Hawkings (FW-H) equation has been used for the successful prediction of the noise of helicopter rotors, propellers, and fans. Several reasons account for the success and popularity of the acoustic analogy. First, the problems of acoustics and aerodynamics are separated. Second, because the FW-H equation is linear, powerful analytical methods from linear operator theory can be used to obtain closed-form solutions. Third, advances in digital computers and computational fluid dynamics algorithms have resulted in high-resolution near-field aerodynamic calculations that are suitable for noise prediction. We present some of the mathematical results for noise prediction based on the FW-H equation, including examples for helicopter rotors. In particular, we discuss the prediction of blade-vortex interaction noise and high-speed impulsive noise of helicopter rotors. For high-speed propellers, we briefly discuss

  5. Acoustical model and theory for predicting effects of environmental noise on people.

    PubMed

    Kryter, Karl D

    2009-06-01

    The Schultz [(1978). J. Acoust. Soc. Am. 64, 377-405]; Fidell et al. [(1991). J. Acoust. Soc. Am. 89, 221-233] and Finegold et al. [(1994). Noise Control Eng. 42, 25-30] curves present misleading research information regarding DENL/DENL levels of environmental noises from transportation vehicles and the impact of annoyance and associated adverse effects on people living in residential areas. The reasons are shown to be jointly due to (a) interpretations of early research data, (b) plotting of annoyance data for noise exposure from different types of transportation vehicles on a single set of coordinates, and (c) the assumption that the effective, as heard, levels of noise from different sources are proportional to day, night level (DNL)/day, evening night level (DENL) levels measured at a common-point outdoors. The subtraction of on-site attenuations from the measured outdoor levels of environmental noises used in the calculation of DNL/DENL provides new metrics, labeled EDNL/EDENL, for the calculation of the effective exposure levels of noises perceived as equaling annoying. Predictions of judged annoyance in residential areas from the noises of transportation vehicles are made with predicted errors of <1 dB EDNL/EDENL, compared to errors ranging from approximately 6 to approximately 14 dB by DNL/DENL. A joint neurological, physiological, and psychological theory, and an effective acoustical model for the prediction of public annoyance and related effects from exposures to environment noises are presented. PMID:19507953

  6. Content-dependent block noise reduction for mobile displays

    NASA Astrophysics Data System (ADS)

    Kim, Ga-Hee; Lee, Yoon-Gyoo; Kim, Han-Eol; Kim, Choon-Woo

    2012-01-01

    Number of pixels on mobile displays is rapidly increasing. Recently, mobile displays with more than one million pixels have been introduced into markets. However, most of multimedia contents to be displayed on mobile displays have much smaller pixel counts. For example, number of pixels for a T-DMB(terrestrial digital multimedia broadcasting) sequence is 320x240. When enlargement is applied to input sequence, perceived image quality would be degraded. Increase in visibility of block noise is one of the major reasons for image quality degradation on mobile displays. This paper presents a simple and computationally efficient method to reduce visibility of block noise on enlarged multimedia sequences. In proposed method, a simple low pass filtering is selectively applied to the pixels of block noises for reduction of block noise visibility as well as faithful reproduction of image details.

  7. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  8. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  9. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  10. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Astrophysics Data System (ADS)

    Huff, R. G.

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  11. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Astrophysics Data System (ADS)

    Huff, R. G.

    1984-10-01

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  12. The uses and abuses of the acoustic analogy in helicopter rotor noise prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1987-01-01

    The generation of noise by helicopter rotor blades is considered theoretically, reviewing recent analyses based on the acoustic analogy (where the effect of fluid motion is replaced by fictitious sources in an undisturbed fluid). The fundamental principles of the acoustic approach are explained and illustrated with diagrams; the governing Ffowcs-Williams/Hawkings equations are written with a reformulated quadrupole term; and the directivity of noise produced (1) by regions with steep gradients (such as shock surfaces) and (2) by boundary-layer quadrupoles (tip-vortex and blade wakes) is shown to be the same as that of thickness noise. The need to include both (1) and (2) in acoustic-analogy computations is indicated.

  13. ERA's Open Rotor Studies Including Shielding for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale; Thomas, Russell

    2012-01-01

    The Open Rotor is a modern version of the UnDucted Fan (UDF) that was flight tested in the late 1980's through a partnership between NASA and General Electric (GE). Tests were conducted in the 9' x 15' Low Speed Wind Tunnel and the 8' x 6' Supersonic Wind Tunnel starting in late 2009 and completed in early 2012. Aerodynamic and acoustic data were obtained for takeoff, approach and cruise simulations. GE was the primary partner, but other organizations were involved such as Boeing and Airbus who provided additional hardware for fuselage simulations. This test campaign provided the acoustic and performance characteristics for modern open rotor blades designs." NASA and GE conducted joint systems analysis to evaluate how well new blade designs would perform on a B737 class aircraft, and compared the results to an advanced higher bypass ratio turbofan." Acoustic shielding experiments were performed at NASA GRC and Boeing LSAF facilities to provide data for noise estimates of unconventional aircraft configurations with Open Rotor propulsion systems." The work was sponsored by NASA's aeronautics programs, including the Subsonic Fixed Wing (SFW) and the Environmentally Responsible Aviation (ERA) projects."

  14. Acoustic and vibration response of a structure with added noise control treatment under various excitations.

    PubMed

    Rhazi, Dilal; Atalla, Noureddine

    2014-02-01

    The evaluation of the acoustic performance of noise control treatments is of great importance in many engineering applications, e.g., aircraft, automotive, and building acoustics applications. Numerical methods such as finite- and boundary elements allow for the study of complex structures with added noise control treatment. However, these methods are computationally expensive when used for complex structures. At an early stage of the acoustic trim design process, many industries look for simple and easy to use tools that provide sufficient physical insight that can help to formulate design criteria. The paper presents a simple and tractable approach for the acoustic design of noise control treatments. It presents and compares two transfer matrix-based methods to investigate the vibroacoustic behavior of noise control treatments. The first is based on a modal approach, while the second is based on wave-number space decomposition. In addition to the classical rain-on-the-roof and diffuse acoustic field excitations, the paper also addresses turbulent boundary layer and point source (monopole) excitations. Various examples are presented and compared to a finite element calculation to validate the methodology and to confirm its relevance along with its limitations. PMID:25234878

  15. The noise environment of a school classroom due to the operation of utility helicopters. [acoustic measurements of helicopter noise during flight over building

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Pegg, R. J.

    1974-01-01

    Noise measurements under controlled conditions have been made inside and outside of a school building during flyover operations of four different helicopters. The helicopters were operated at a condition considered typical for a police patrol mission. Flyovers were made at an altitude of 500 ft and an airspeed of 45 miles per hour. During these operations acoustic measurements were made inside and outside of the school building with the windows closed and then open. The outside noise measurements during helicopter flyovers indicate that the outside db(A) levels were approximately the same for all test helicopters. For the windows closed case, significant reductions for the inside measured db(A) values were noted for all overflights. These reductions were approximately 20 db(A); similar reductions were noted in other subjective measuring units. The measured internal db(A) levels with the windows open exceeded published classroom noise criteria values; however, for the windows-closed case they are in general agreement with the criteria values.

  16. Neural underpinnings of background acoustic noise in normal aging and mild cognitive impairment.

    PubMed

    Sinanaj, Indrit; Montandon, Marie-Louise; Rodriguez, Cristelle; Herrmann, François; Santini, Francesco; Haller, Sven; Giannakopoulos, Panteleimon

    2015-12-01

    Previous contributions in younger cohorts have revealed that reallocation of cerebral resources, a crucial mechanism for working memory (WM), may be disrupted by parallel demands of background acoustic noise suppression. To date, no study has explored the impact of such disruption on brain activation in elderly individuals with or without subtle cognitive deficits. We performed a functional Magnetic Resonance Imaging (fMRI) study in 23 cases (mean age=75.7 y.o., 16 men) with mild cognitive impairment (MCI) and 16 elderly healthy controls (HC, mean age=70.1 y.o., three men) using a 2-back WM task, under two distinct MRI background acoustic noise conditions (louder vs. lower noise echo-planar imaging). General linear models were used to assess brain activation as a function of group and noise. In both groups, lower background noise is associated with increased activation of the working memory network (WMN). A decrease of the normally observed deactivation of the default mode network (DMN) is found under louder noise in both groups. Unlike HC, MCI cases also show decreased deactivation of the DMN under both louder and lower background noise. Under louder noise, this decrease is observed in anterior parts of the DMN in HC, and in the posterior cingulate cortex in MCI cases. Our results suggest that background acoustic noise has a differential impact on WMN activation in normal aging as a function of the cognitive status. Only louder noise has a disruptive effect on the usually observed DMN deactivation during WM task performance in HC. In contrast, MCI cases show altered DMN reactivity even in the presence of lower noise. PMID:26391923

  17. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  18. Acoustic Noise Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect

    Roadman, J.; Huskey, A.

    2013-07-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the Viryd CS8 is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and binning by wind speed instead of regression analysis.

  19. Acoustic Noise Test Report for the SWIFT Wind Turbine in Boulder, CO

    SciTech Connect

    Roadman, J.; Huskey, A.

    2013-04-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the SWIFT is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and utilized binning by wind speed instead of regression analysis.

  20. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  1. Noise reduction on multi-spindle automatic lathes

    NASA Astrophysics Data System (ADS)

    Dietz, P.

    1982-10-01

    The purpose of this project was to define the major noise emitting sources in multi-spindle automatic lathes during machining and indexing operations. Noise levels as specified by the working ordinance (Arbeitsstattenverordnung) are to be obtained or reduce by secondary and predominantly primary actions. The following actions will lead towards considerable noise level reductions to obtain the above targets: (1) by boxing-in actions as additional and supplementary means for existing workshop places. Depending on the actions taken a noise level reduction of between 6 to 11 dB(A) will result; (2) by modifications in the design of head stock and gear boxes according to the principle of assignment division together with boxing-in actions of integrated parts. A comparable late model machine shows an improvement of a minimum of 6 dB(A) even after doubling the operating speed; (3) by design and manufacturing modification of machine parts as gears, clutches, cams and indexing devices. Improvement of the mostly impulse type noise peaks by approximately 1 to 4 dB (impulse sound).

  2. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  3. Arousal from sleep by noises from aircraft with and without acoustically treated nacelles

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Peeler, D. J.; Dobbs, M. E.

    1973-01-01

    The electroencephalographic and behavioral responses during sleep of four subjects, aged 46 to 58 years, to three types of noises were tested over 14 consecutive nights. The stimuli were two DC-8 jet landing noises (each 30 seconds in duration and coming from DC-8 aircraft with and without acoustical treatment on the engine nacelles) and a 4-second burst of pink noise. Each of the noises was tested at nominal intensities of 61 and 79 dBA. Other physical descriptors of the noises were measured or computed. The results indicate that for an equivalent degree of sleep disruption, noise form the jet aircraft with untreated nacelles must be about 6 dBA less intense than the jet with acoustically treated nacelles. Predictions of the effects of noise on sleep appear, tentatively, to attain the highest accuracy when the physical descriptor of noise intensity includes information about the impulsive characteristics of that noise as well as its long-term spectral content.

  4. Frequency-space prediction filtering for acoustic clutter and random noise attenuation in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Shin, Junseob; Huang, Lianjie

    2016-04-01

    Frequency-space prediction filtering (FXPF), also known as FX deconvolution, is a technique originally developed for random noise attenuation in seismic imaging. FXPF attempts to reduce random noise in seismic data by modeling only real signals that appear as linear or quasilinear events in the aperture domain. In medical ultrasound imaging, channel radio frequency (RF) signals from the main lobe appear as horizontal events after receive delays are applied while acoustic clutter signals from off-axis scatterers and electronic noise do not. Therefore, FXPF is suitable for preserving only the main-lobe signals and attenuating the unwanted contributions from clutter and random noise in medical ultrasound imaging. We adapt FXPF to ultrasound imaging, and evaluate its performance using simulated data sets from a point target and an anechoic cyst. Our simulation results show that using only 5 iterations of FXPF achieves contrast-to-noise ratio (CNR) improvements of 67 % in a simulated noise-free anechoic cyst and 228 % in a simulated anechoic cyst contaminated with random noise of 15 dB signal-to-noise ratio (SNR). Our findings suggest that ultrasound imaging with FXPF attenuates contributions from both acoustic clutter and random noise and therefore, FXPF has great potential to improve ultrasound image contrast for better visualization of important anatomical structures and detection of diseased conditions.

  5. Towards a Comprehensive Model of Jet Noise Using an Acoustic Analogy and Steady RANS Solutions

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    An acoustic analogy is developed to predict the noise from jet flows. It contains two source models that independently predict the noise from turbulence and shock wave shear layer interactions. The acoustic analogy is based on the Euler equations and separates the sources from propagation. Propagation effects are taken into account by calculating the vector Green's function of the linearized Euler equations. The sources are modeled following the work of Tam and Auriault, Morris and Boluriaan, and Morris and Miller. A statistical model of the two-point cross-correlation of the velocity fluctuations is used to describe the turbulence. The acoustic analogy attempts to take into account the correct scaling of the sources for a wide range of nozzle pressure and temperature ratios. It does not make assumptions regarding fine- or large-scale turbulent noise sources, self- or shear-noise, or convective amplification. The acoustic analogy is partially informed by three-dimensional steady Reynolds-Averaged Navier-Stokes solutions that include the nozzle geometry. The predictions are compared with experiments of jets operating subsonically through supersonically and at unheated and heated temperatures. Predictions generally capture the scaling of both mixing noise and BBSAN for the conditions examined, but some discrepancies remain that are due to the accuracy of the steady RANS turbulence model closure, the equivalent sources, and the use of a simplified vector Green's function solver of the linearized Euler equations.

  6. Evaluation of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2015-01-01

    This paper explores the effects of variable-depth geometry on the amount of noise reduction that can be achieved with acoustic liners. Results for two variable-depth liners tested in the NASA Langley Grazing Flow Impedance Tube demonstrate significant broadband noise reduction. An impedance prediction model is combined with two propagation codes to predict corresponding sound pressure level profiles over the length of the Grazing Flow Impedance Tube. The comparison of measured and predicted sound pressure level profiles is sufficiently favorable to support use of these tools for investigation of a number of proposed variable-depth liner configurations. Predicted sound pressure level profiles for these proposed configurations reveal a number of interesting features. Liner orientation clearly affects the sound pressure level profile over the length of the liner, but the effect on the total attenuation is less pronounced. The axial extent of attenuation at an individual frequency continues well beyond the location where the liner depth is optimally tuned to the quarter-wavelength of that frequency. The sound pressure level profile is significantly affected by the way in which variable-depth segments are distributed over the length of the liner. Given the broadband noise reduction capability for these liner configurations, further development of impedance prediction models and propagation codes specifically tuned for this application is warranted.

  7. Acoustic-optic spectrometer. 1: Noise contributions and system consideration

    NASA Technical Reports Server (NTRS)

    Chin, G.

    1984-01-01

    An acousto-optic spectrometer (AOS) used as an IF spectrometer to a heterodyne receiver is modeled as a total power multi-channel integrating receiver. Systematic noise contributions common to all total power, time integrating receivers, as well as noise terms unique to the use of optical elements and photo-detectors in an AOS are identified and discussed. In addition, degradation of signal-to-noise ratio of an unbalanced Dicke receiver compared to a balanced Dicke receiver is found to be due to gain calibration processing and is not an instrumental effect.

  8. The electrical properties of a planar coil electromagnetic acoustic transducer and their implications for noise performance

    NASA Astrophysics Data System (ADS)

    Seher, Matthias; Challis, Richard

    2016-02-01

    This paper is concerned with the electrical properties of an electromagnetic acoustic transducer (EMAT) formed of a flat spiral coil coupled to steel sheet components and operating over a narrow band of frequencies around 50 kHz, well below significant resonances. The electromagnetic skin effect is a significant contributor to the terminal impedance of the EMAT and hence to signal sensitivity, Johnson noise generation and the achievable signal-to-noise ratios (SNR). A transformer model is developed to simulate these effects and to assist in the optimization of the SNR. In this analysis Johnson noise in the system is compared to the unknown emf generated in the eddy current path by an incident acoustic wave to yield a fundamental SNR. The attainable SNR of the whole system is normalized to this in the form of a noise figure.

  9. Multifunctional Low Pressure Turbine for Core Noise Reduction, Improved Efficiency, and NOx Reduction

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Shyam, Vikram; Rigby, David; Acosta, Waldo

    2013-01-01

    Determining the feasibility of the induced synthetic jet is key, and is still TBD. center dot Available LPT vane volume is sufficient for tens of resonators per span-wise hole spacing, so physically feasible. center dot Determination of acoustic attenuation requires accurate model of vane, resonator locations, flow field and incident waves. (TBD) center dot Determination of NOx reduction is also TBD.

  10. Comparison of options for reduction of noise in the test section of the NASA Langley 4x7m wind tunnel, including reduction of nozzle area

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.

    1984-01-01

    The acoustically significant features of the NASA 4X7m wind tunnel and the Dutch-German DNW low speed tunnel are compared to illustrate the reasons for large differences in background noise in the open jet test sections of the two tunnels. Also introduced is the concept of reducing test section noise levels through fan and turning vane source reductions which can be brought about by reducing the nozzle cross sectional area, and thus the circuit mass flow for a particular exit velocity. The costs and benefits of treating sources, paths, and changing nozzle geometry are reviewed.

  11. Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.

    2008-01-01

    This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.

  12. Background noise cancellation for improved acoustic detection of manatee vocalizations.

    PubMed

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O

    2005-06-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. PMID:16018460

  13. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. Practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrowband signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat.

  14. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-06-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. .

  15. Objective Measures of Listening Effort: Effects of Background Noise and Noise Reduction

    ERIC Educational Resources Information Center

    Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin

    2009-01-01

    Purpose: This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. Method: To address this, the hypothesis…

  16. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    NASA Astrophysics Data System (ADS)

    Ho, Jen-Hsuan; Berkhoff, Arthur

    2014-03-01

    This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural-acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.

  17. Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops

    NASA Astrophysics Data System (ADS)

    Jones, Lloyd E.; Sandberg, Richard D.

    2011-12-01

    In this study the role of acoustic feedback instabilities in the tonal airfoil self-noise phenomenon is investigated. First, direct numerical simulations are conducted of the flow around a NACA-0012 airfoil at Re=1×105 and four angles of attack. At the two lowest angles of attack considered the airfoil self-noise exhibits a clear tonal contribution, whereas at the two higher angles of attack the tonal contribution becomes less significant in comparison to the broadband noise. Classical linear stability analysis of time-averaged boundary layer profiles shows that the tonal noise occurs at a frequency significantly lower than that of the most convectively amplified instability wave. Two-dimensional linear stability analysis of the time-averaged flowfield is then performed, illustrating the presence of an acoustic feedback loop involving the airfoil trailing edge. The feedback loop is found to be unstable only for the cases where tonal self-noise is prominent, and is found to self-select a frequency almost identical to that of the tonal self-noise. The constituent mechanisms of the acoustic feedback loop are considered, which appear to explain why the preferred frequency is lower than that of the most convectively amplified instability wave.

  18. Combustion generated noise in gas turbine combustors. [engine noise/noise reduction

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.; Shivashankara, B. N.

    1974-01-01

    Experiments were conducted to determine the noise power and spectra emitted from a gas turbine combustor can exhausting to the atmosphere. Limited hot wire measurements were made of the cold flow turbulence level and spectra within the can. The fuels used were JP-4, acetone and methyl alcohol burning with air at atmospheric pressure. The experimental results show that for a fixed fuel the noise output is dominated by the airflow rate and not the fuel/air ratio. The spectra are dominated by the spectra of the cold flow turbulence spectra which were invariant with airflow rate in the experiments. The effect of fuel type on the noise power output was primarily through the heat of combustion and not the reactivity. A theory of combustion noise based upon the flame radiating to open surroundings is able to reasonably explain the observed results. A thermoacoustic efficiency for noise radiation as high as .00003 was observed in this program for JP-4 fuel. Scaling rules are presented for installed configurations.

  19. Speckle and thermal noise reduction techniques for SAR interferogram

    SciTech Connect

    Huang, Y.; Genderen, J.L. van

    1996-11-01

    Thermal and speckle noise is an obstacle to generating digital elevation model (DAM) from interferograms by 2-D phase unwrapping of Interferometric SAR (INSAR). Multi-look processing as a traditional method to reduce speckle noise is addressed briefly in this paper. Alternatively, we investigate the box filters in depth, as it deals with the single complex images more flexible in the complex image domain than in the frequency domain. Several Box filters are proposed and the comparison between these filters is made to illustrate the noise reduction by implementation of filtering techniques. Window size selection of the box filters is examined in details. Simulation results and raw data testing results are presented to confirm the validity of the filtering algorithms proposed in this paper.

  20. Exploiting cantilever curvature for noise reduction in atomic force microscopy.

    PubMed

    Labuda, Aleksander; Grütter, Peter H

    2011-01-01

    Optical beam deflection is a widely used method for detecting the deflection of atomic force microscope (AFM) cantilevers. This paper presents a first order derivation for the angular detection noise density which determines the lower limit for deflection sensing. Surprisingly, the cantilever radius of curvature, commonly not considered, plays a crucial role and can be exploited to decrease angular detection noise. We demonstrate a reduction in angular detection shot noise of more than an order of magnitude on a home-built AFM with a commercial 450 μm long cantilever by exploiting the optical properties of the cantilever curvature caused by the reflective gold coating. Lastly, we demonstrate how cantilever curvature can be responsible for up to 45% of the variability in the measured sensitivity of cantilevers on commercially available AFMs. PMID:21280834

  1. Noise reduction studies for the OV-1 airplane

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Connor, A. B.; Copeland, W. L.; Dibble, A. C., Jr.

    1975-01-01

    A study has been conducted to define possible modifications to the OV-1 aircraft to reduce its aural detection distance. This effort involved documenting the noise characteristics of the airplane, devising modifications to reduce the noise, estimating the reduction in detection distance, and evaluating aircraft performance as a result of these modifications. It was found that the main noise source on this aircraft is the propeller and hence modifications only to the propeller and the propeller drive system are proposed. Modifications involving only the propeller are noted to involve no increase in weight but they result in only a modest decrease in aural detection distance. In order to obtain substantial decreases in aural detection distance, modifications involving changes both to the propeller and the engine-propeller gearing are required.

  2. Noise Reduction Of Air Blower Casing Using Composites

    NASA Astrophysics Data System (ADS)

    Kolla*, S.; Kumar, Y. Anil; Rajesh, S.

    Sound subjectively, what is heard by the ear; objectively, is a mecha nical disturbance from equilibrium in an elastic medium. The noise produced by a rotating component has two main components, the broadband noise and the discrete frequency noise. The broadband noise from a rotor is due to random loading forces on the blades, which are induced by the absorption of atmospheric turbulence. The discrete frequency noise is due to periodic interaction of incoming air with the blades of the rotor. At present the centrifugal blowers, in Naval defense application which is made of steel is generating a noise of 86dB, which causes mental imbalance to the people working near the blower on ship. Therefore in Naval defense applications the reduction of sound level from a source is very important and critical task. Hence the objective of this paper is to reduce the noise level produced by the metal air blower. The noise radiated by the casing of a centrifugal blower can be effectively reduced by the use of (1) Composite Materials, (2) Visco-Elastic material treatment and (3) Stiffness addition. In this paper it is proposed to carry out a study to evaluate the effectiveness of composites in reducing noise levels of the casing. Composite materials are those containing more than one bonded material, each with different struc tural properties. The advantage of composite materials is the potential for a high ratio of stiffness to weight. In order to evaluate the effectiveness of composites over metals, modal analysis (Eigen value analysis) and Static analysis was performed on both composite and metal blowers using FEA package (ANSYS). Modal analysis is performed on both metals (Alluminium and Composite) blower casing to find out the first ten natural frequencies and static analysis is performed for a pressure of 1570 Pa. This paper also describes the experimental setup of the centrifugal blower, the values of the sound levels for both metal and FRP blowers are taken at a distance of

  3. An Application of the Acoustic Similarity Law to the Numerical Analysis of Centrifugal Fan Noise

    NASA Astrophysics Data System (ADS)

    Jeon, Wan-Ho; Lee, Duck-Joo; Rhee, Huinam

    Centrifugal fans, which are frequently used in our daily lives and various industries, usually make severe noise problems. Generally, the centrifugal fan noise consists of tones at the blade passing frequency and its higher harmonics. These tonal sounds come from the interaction between the flow discharged from the impeller and the cutoff in the casing. Prediction of the noise from a centrifugal fan becomes more necessary to optimize the design to meet both the performance and noise criteria. However, only some limited studies on noise prediction method exist because there are difficulties in obtaining detailed information about the flow field and casing effect on noise radiation. This paper aims to investigate the noise generation mechanism of a centrifugal fan and to develop a prediction method for the unsteady flow and acoustic pressure fields. In order to do this, a numerical analysis method using acoustic similarity law is proposed, and it is verified that the method can predict the noise generation mechanism very well by comparing the predicted results with available experimental results.

  4. Relationships between non-acoustic factors and subjective reactions to floor impact noise in apartment buildings.

    PubMed

    Park, Sang Hee; Lee, Pyoung Jik; Yang, Kwan Seop; Kim, Kyoung Woo

    2016-03-01

    The aim of this study was to provide an understanding of how residents in apartment buildings perceive and react to impact sounds coming from the upstairs neighbours' dwellings. Based on existing theoretical and empirical studies on environmental noise, a conceptual model was developed to explain relationships among noise annoyance and non-acoustic factors. The model was then tested using structural equation modelling with survey data from residents living in apartment buildings (N = 487). The findings showed that the conceptual model was consistent with other models developed for environmental noises. The results indicated that annoyance induced by floor impact noise was associated with perceived disturbance, coping, and self-reported health complaints. Noise sensitivity had a direct impact on perceived disturbance and an indirect impact on annoyance, and moderating variables affected the non-acoustic factors. Exposure to footstep noises increased the impact size of noise sensitivity to disturbance. Predictability, marital status, and house ownership were found to influence the relationship between attitudes towards authorities and coping. In addition, a negative attitude towards neighbours (i.e., the noise source) moderated the positive relationship between annoyance and coping. PMID:27036252

  5. An assessment of psychological noise reduction by landscape plants.

    PubMed

    Yang, Fan; Bao, Zhi Yi; Zhu, Zhu Jun

    2011-04-01

    The emphasis in the term 'Green Transportation' is on the word 'green'. Green transportation focuses on the construction of a slow transport system with a visually pleasing, easy and secure trip environment composed of urban parks, green roadside spaces and some other space that is full of landscape plants. This trip environment encourages residents to make trip choices that reduce fuel consumption and pollution and is one of the most important ways of popularizing green transportation. To study the psychological benefits provided by urban parks and other landscape environments, we combined a subjective approach (a questionnaire) with an objective quantitative approach (emotional tests using an electroencephalogram; EEG). Using a questionnaire survey, we found that 90% of the subjects believed that landscape plants contribute to noise reduction and that 55% overrated the plants' actual ability to attenuate noise. Two videos (showing a traffic scene and a plant scene) were shown to 40 participants on video glasses. We detected and recorded EEG values with a portable electroencephalograph, and a comparison between the results of the two groups revealed that there was a highly significant asymmetry between the EEG activity of the vegetation scene and traffic scene groups. The results suggest that the emotions aroused by noise and visual stimuli are manifested in the synchronization of beta frequency band and the desynchronization of alpha frequency band, indicating that landscape plants can moderate or buffer the effects of noise. These findings indicate that landscape plants provide excess noise attenuating effects through subjects' emotional processing, which we term 'psychological noise reduction'. PMID:21695027

  6. Gene regulation and noise reduction by coupling of stochastic processes

    PubMed Central

    Hornos, José Eduardo M.; Reinitz, John

    2015-01-01

    Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

  7. Gene regulation and noise reduction by coupling of stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  8. Reduction of diesel engine exhaust noise in the petroleum mining industry. [by resonator type diffuser

    NASA Technical Reports Server (NTRS)

    Marinov, T.

    1974-01-01

    An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.

  9. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    PubMed

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy. PMID:26233001

  10. Physiological Noise Reduction Using Volumetric Functional Magnetic Resonance Inverse Imaging

    PubMed Central

    Lin, Fa-Hsuan; Nummenmaa, Aapo; Witzel, Thomas; Polimeni, Jonathan R.; Zeffiro, Thomas A.; Wang, Fu-Nien; Belliveau, John W.

    2013-01-01

    Physiological noise arising from a variety of sources can significantly degrade the detection of task-related activity in BOLD-contrast fMRI experiments. If whole head spatial coverage is desired, effective suppression of oscillatory physiological noise from cardiac and respiratory fluctuations is quite difficult without external monitoring, since traditional EPI acquisition methods cannot sample the signal rapidly enough to satisfy the Nyquist sampling theorem, leading to temporal aliasing of noise. Using a combination of high speed magnetic resonance inverse imaging (InI) and digital filtering, we demonstrate that it is possible to suppress cardiac and respiratory noise without auxiliary monitoring, while achieving whole head spatial coverage and reasonable spatial resolution. Our systematic study of the effects of different moving average (MA) digital filters demonstrates that a MA filter with a 2 s window can effectively reduce the variance in the hemodynamic baseline signal, thereby achieving 57-58% improvements in peak z-statistic values compared to unfiltered InI or spatially smoothed EPI data (FWHM =8.6 mm). In conclusion, the high temporal sampling rates achievable with InI permit significant reductions in physiological noise using standard temporal filtering techniques that result in significant improvements in hemodynamic response estimation. PMID:21954026

  11. Recruitment-of-loudness effects of attenuative noise reduction algorithms

    NASA Astrophysics Data System (ADS)

    Whitmal, Nathaniel; Vosoughi, Azadeh

    2002-05-01

    Hearing-impaired listeners have greater difficulty understanding speech in noise than normal-hearing listeners do. As a result, hearing aid users are often challenged by the inability of their hearing aids to improve intelligibility in noise. Several investigators have addressed this problem by using well-known signal processing methods (e.g., spectral subtraction, Wiener filtering) to enhance noise-corrupted speech. Unfortunately, these methods have failed to provide significant improvements in intelligibility. One possible explanation is the level-dependent nature of the attenuation that the algorithms impose on the speech. In the cases described above, this attenuation resembles the piecewise-linear input-output characteristic observed in certain recruitment-of-loudness simulators. The purpose of this study was to compare the intelligibility of processed speech with that expected for recruitment-of-loudness simulation. Trials of the CUNY Nonsense Syllable Test were conducted with 12 normal-hearing listeners, using syllables that were mixed with additive noise at SNRs of 6, 12, and 18 dB. Input-output characteristics for the signals were measured and used to determine the effective threshold shift imposed by the algorithms. Comparisons of measured intelligibility scores with articulation index-based intelligibility predictions indicate that the behavior of such noise reduction algorithms can be successfully modeled as a form of mild sensorineural hearing loss.

  12. Noise reduction in ultrasonic NDT using undecimated wavelet transforms.

    PubMed

    Pardo, E; San Emeterio, J L; Rodriguez, M A; Ramos, A

    2006-12-22

    Translation-invariant wavelet processing is applied to grain noise reduction in ultrasonic non-destructive testing of materials. In particular, the undecimated wavelet transform (UWT), which is essentially a discrete wavelet transform (DWT) that avoids decimation, is used. Two different UWT processors have been specifically developed for that purpose, based on two UWT implementation schemes: the "à trous" algorithm and the cycle-spinning scheme. The performance of these two UWT processors is compared with that of a classical DWT processor, by using synthetic grain noise registers and experimental pulse-echo NDT traces. The synthetic ultrasonic traces have been generated by an own-developed frequency-domain model that includes frequency dependence in both material attenuation and scattering. The experimental ultrasonic traces have been obtained by inspecting a piece of carbon-fiber reinforced plastic composite in which we have mechanized artificial flaws. Decomposition level-dependent thresholds, which are suitable for correlated noise, are specifically determined in all cases. Soft thresholding, Daubechies db6 mother wavelet and the three well-known threshold selection rules, Universal, Minimax and SURE, are applied to the different decomposition levels. The performance of the different de-noising procedures for single echo detection has been comparatively evaluated in terms of signal-to-noise ratio enhancement. PMID:16797651

  13. Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study

    ERIC Educational Resources Information Center

    Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.

    2012-01-01

    Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…

  14. Acoustical Testing Laboratory Developed to Support the Low-Noise Design of Microgravity Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2001-01-01

    The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.

  15. High-frequency jet nozzle actuators for noise reduction

    NASA Astrophysics Data System (ADS)

    Davis, Christopher L.; Calkins, Frederick T.; Butler, George W.

    2003-08-01

    Rules governing airport noise levels are becoming more restrictive and will soon affect the operation of commercial air traffic. Sound produced by jet engine exhaust, particularly during takeoff, is a major contributor to the community noise problem. The noise spectrum is broadband in character and is produced by turbulent mixing of primary, secondary, and ambient streams of the jet engine exhaust. As a potential approach to controlling the noise levels, piezoelectric bimorph actuators have been tailored to enhance the mixing of a single jet with its quiescent environment. The actuators are located at the edge of the nozzle and protrude into the exhaust stream. Several actuator configurations were considered to target two excitation frequencies, 250 Hz and 900 Hz, closely coupled to the naturally unstable frequencies of the mixing process. The piezoelectric actuators were constructed of 10 mil thick d31 poled wafer PZT-5A material bonded to either 10 or 20 mil thick spring steel substrates. Linear analytical beam models and NASTRAN finite element models were used to predict and assess the dynamic performance of the actuators. Experimental mechanical and electrical performance measurements were used to validate the models. A 3 inch diameter nozzle was fitted with actuators and tested in the Boeing Quiet Air Facility with the jet velocity varied from 50 to 1000 ft/s. Performance was evaluated using near-field and far-field acoustic data, flow visualization, and actuator health data. The overall sound pressure level produced from the 3 inch diameter jet illustrates the effect of both static and active actuators.

  16. A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft

    NASA Astrophysics Data System (ADS)

    Jayachandran, V.; Bonilha, M. W.

    2003-03-01

    This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.

  17. Determination of acoustic attenuation in the Hudson River Estuary by means of ship noise observations.

    PubMed

    Roh, Heui-Seol; Sutin, Alexander; Bunin, Barry

    2008-06-01

    Analysis of sound propagation in a complex urban estuary has application to underwater threat detection systems, underwater communication, and acoustic tomography. One of the most important acoustic parameters, sound attenuation, was analyzed in the Hudson River near Manhattan using measurements of acoustic noise generated by passing ships and recorded by a fixed hydrophone. Analysis of the ship noise level for varying distances allowed estimation of the sound attenuation in the frequency band of 10-80 kHz. The effective attenuation coefficient representing the attenuation loss above cylindrical spreading loss had only slight frequency dependence and can be estimated by the frequency independent value of 0.058 dBm. PMID:18537300

  18. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine C

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor was evaluated. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penality. The NASA core suppressor without the spltter suppressed most of the core noise without any engine performance penalty.

  19. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine 'C'

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The purpose of the experimental program reported herein was to evaluate and compare the relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor, designed and built subsequently. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penalty. The NASA core suppressor without the splitter suppressed most of the core noise without any engine performance penalty.

  20. Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.

    PubMed

    André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. PMID:21665016

  1. Single-channel noise reduction using optimal rectangular filtering matrices.

    PubMed

    Long, Tao; Chen, Jingdong; Benesty, Jacob; Zhang, Zhenxi

    2013-02-01

    This paper studies the problem of single-channel noise reduction in the time domain and presents a block-based approach where a vector of the desired speech signal is recovered by filtering a frame of the noisy signal with a rectangular filtering matrix. With this formulation, the noise reduction problem becomes one of estimating an optimal filtering matrix. To achieve such estimation, a method is introduced to decompose a frame of the clean speech signal into two orthogonal components: One correlated and the other uncorrelated with the current desired speech vector to be estimated. Different optimization cost functions are then formulated from which non-causal optimal filtering matrices are derived. The relationships among these optimal filtering matrices are discussed. In comparison with the classical sample-based technique that uses only forward prediction, the block-based method presented in this paper exploits both the forward and backward prediction as well as the temporal interpolation and, therefore, can improve the noise reduction performance by fully taking advantage of the speech property of self correlation. There is also a side advantage of this block-based method as compared to the sample-based technique, i.e., it is computationally more efficient and, as a result, more suitable for practical implementation. PMID:23363124

  2. Study of noise reduction characteristics of double-wall panels

    NASA Technical Reports Server (NTRS)

    Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.

    1983-01-01

    The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.

  3. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  4. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  5. Effects of noise and acoustics in schools on vocal health in teachers.

    PubMed

    Cutiva, Lady Catherine Cantor; Burdorf, Alex

    2015-01-01

    Previous studies on the influence of noise and acoustics in the classroom on voice symptoms among teachers have exclusively relied on self-reports. Since self-reported physical conditions may be biased, it is important to determine the role of objective measurements of noise and acoustics in the presence of voice symptoms. To assess the association between objectively measured and self-reported physical conditions at school with the presence of voice symptoms among teachers. In 12 public schools in Bogotα, we conducted a cross-sectional study among 682 Colombian school workers at 377 workplaces. After signed the informed consent, participants filled out a questionnaire on individual and work-related conditions and the nature and severity of voice symptoms in the past month. Short-term environmental measurements of sound levels, temperature, humidity, and reverberation time were conducted during visits at the workplaces, such as classrooms and offices. Logistic regression analysis was used to determine associations between work-related factors and voice symptoms. High noise levels outside schools (odds ratio [OR] = 1.83; 95% confidence interval [CI]: 1.12-2.99) and self-reported poor acoustics at the workplace (OR = 2.44; 95% CI: 1.88-3.53) were associated with voice symptoms. We found poor agreement between the objective measurements and self-reports of physical conditions at the workplace. This study indicates that noise and acoustics may play a role in the occurrence of voice symptoms among teachers. The poor agreement between objective measurements and self-reports of physical conditions indicate that these are different entities, which argue for inclusion of physical measurements of the working environment in studies on the influence of noise and acoustics on vocal health. PMID:25599754

  6. Effects of noise and acoustics in schools on vocal health in teachers

    PubMed Central

    Cutiva, Lady Catherine Cantor; Burdorf, Alex

    2015-01-01

    Previous studies on the influence of noise and acoustics in the classroom on voice symptoms among teachers have exclusively relied on self-reports. Since self-reported physical conditions may be biased, it is important to determine the role of objective measurements of noise and acoustics in the presence of voice symptoms. To assess the association between objectively measured and self-reported physical conditions at school with the presence of voice symptoms among teachers. In 12 public schools in Bogotá, we conducted a cross-sectional study among 682 Colombian school workers at 377 workplaces. After signed the informed consent, participants filled out a questionnaire on individual and work-related conditions and the nature and severity of voice symptoms in the past month. Short-term environmental measurements of sound levels, temperature, humidity, and reverberation time were conducted during visits at the workplaces, such as classrooms and offices. Logistic regression analysis was used to determine associations between work-related factors and voice symptoms. High noise levels outside schools (odds ratio [OR] = 1.83; 95% confidence interval [CI]: 1.12–2.99) and self-reported poor acoustics at the workplace (OR = 2.44; 95% CI: 1.88–3.53) were associated with voice symptoms. We found poor agreement between the objective measurements and self-reports of physical conditions at the workplace. This study indicates that noise and acoustics may play a role in the occurrence of voice symptoms among teachers. The poor agreement between objective measurements and self-reports of physical conditions indicate that these are different entities, which argue for inclusion of physical measurements of the working environment in studies on the influence of noise and acoustics on vocal health. PMID:25599754

  7. An investigation of acoustic noise requirements for the Space Station centrifuge facility

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy

    1994-01-01

    Acoustic noise emissions from the Space Station Freedom (SSF) centrifuge facility hardware represent a potential technical and programmatic risk to the project. The SSF program requires that no payload exceed a Noise Criterion 40 (NC-40) noise contour in any octave band between 63 Hz and 8 kHz as measured 2 feet from the equipment item. Past experience with life science experiment hardware indicates that this requirement will be difficult to meet. The crew has found noise levels on Spacelab flights to be unacceptably high. Many past Ames Spacelab life science payloads have required waivers because of excessive noise. The objectives of this study were (1) to develop an understanding of acoustic measurement theory, instruments, and technique, and (2) to characterize the noise emission of analogous Facility components and previously flown flight hardware. Test results from existing hardware were reviewed and analyzed. Measurements of the spectral and intensity characteristics of fans and other rotating machinery were performed. The literature was reviewed and contacts were made with NASA and industry organizations concerned with or performing research on noise control.

  8. The Prediction of Jet Noise Ground Effects Using an Acoustic Analogy and a Tailored Green's Function

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    An assessment of an acoustic analogy for the mixing noise component of jet noise in the presence of an infinite surface is presented. The reflection of jet noise by the ground changes the distribution of acoustic energy and is characterized by constructive and destructive interference patterns. The equivalent sources are modeled based on the two-point cross- correlation of the turbulent velocity fluctuations and a steady Reynolds-Averaged Navier-Stokes (RANS) solution. Propagation effects, due to reflection by the surface and refaction by the jet shear layer, are taken into account by calculating the vector Green's function of the linearized Euler equations (LEE). The vector Green's function of the LEE is written in relation to Lilley's equation; that is, approximated with matched asymptotic solutions and the Green's function of the convective Helmholtz equation. The Green's function of the convective Helmholtz equation for an infinite flat plane with impedance is the Weyl-van der Pol equation. Predictions are compared with an unheated Mach 0.95 jet produced by a nozzle with an exit diameter of 0.3302 meters. Microphones are placed at various heights and distances from the nozzle exit in the peak jet noise direction above an acoustically hard and an asphalt surface. The predictions are shown to accurately capture jet noise ground effects that are characterized by constructive and destructive interference patterns in the mid- and far-field and capture overall trends in the near-field.

  9. Characterizing noise in nonhuman vocalizations: Acoustic analysis and human perception of barks by coyotes and dogs

    NASA Astrophysics Data System (ADS)

    Riede, Tobias; Mitchell, Brian R.; Tokuda, Isao; Owren, Michael J.

    2005-07-01

    Measuring noise as a component of mammalian vocalizations is of interest because of its potential relevance to the communicative function. However, methods for characterizing and quantifying noise are less well established than methods applicable to harmonically structured aspects of signals. Using barks of coyotes and domestic dogs, we compared six acoustic measures and studied how they are related to human perception of noisiness. Measures of harmonic-to-noise-ratio (HNR), percent voicing, and shimmer were found to be the best predictors of perceptual rating by human listeners. Both acoustics and perception indicated that noisiness was similar across coyote and dog barks, but within each species there was significant variation among the individual vocalizers. The advantages and disadvantages of the various measures are discussed.

  10. Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators.

    PubMed

    Siemers, Björn M; Schaub, Andrea

    2011-06-01

    Noise pollution from human traffic networks and industrial activity impacts vast areas of our planet. While anthropogenic noise effects on animal communication are well documented, we have very limited understanding of noise impact on more complex ecosystem processes, such as predator-prey interactions, albeit urgently needed to devise mitigation measures. Here, we show that traffic noise decreases the foraging efficiency of an acoustic predator, the greater mouse-eared bat (Myotis myotis). These bats feed on large, ground-running arthropods that they find by listening to their faint rustling sounds. We measured the bats' foraging performance on a continuous scale of acoustically simulated highway distances in a behavioural experiment, designed to rule out confounding factors such as general noise avoidance. Successful foraging bouts decreased and search time drastically increased with proximity to the highway. At 7.5 m to the road, search time was increased by a factor of five. From this increase, we predict a 25-fold decrease in surveyed ground area and thus in foraging efficiency for a wild bat. As most of the bats' prey are predators themselves, the noise impact on the bats' foraging performance will have complex effects on the food web and ultimately on the ecosystem stability. Similar scenarios apply to other ecologically important and highly protected acoustic predators, e.g. owls. Our study provides the empirical basis for quantitative predictions of anthropogenic noise impacts on ecosystem processes. It highlights that an understanding of the effects of noise emissions and other forms of 'sensory pollution' are crucially important for the assessment of environmental impact of human activities. PMID:21084347

  11. Minimizing noise in fiberglass aquaculture tanks: Noise reduction potential of various retrofits

    USGS Publications Warehouse

    Davidson, J.; Frankel, A.S.; Ellison, W.T.; Summerfelt, S.; Popper, A.N.; Mazik, P.; Bebak, J.

    2007-01-01

    Equipment used in intensive aquaculture systems, such as pumps and blowers can produce underwater sound levels and frequencies within the range of fish hearing. The impacts of underwater noise on fish are not well known, but limited research suggests that subjecting fish to noise could result in impairment of the auditory system, reduced growth rates, and increased stress. Consequently, reducing sound in fish tanks could result in advantages for cultured species and increased productivity for the aquaculture industry. The objective of this study was to evaluate the noise reduction potential of various retrofits to fiberglass fish culture tanks. The following structural changes were applied to tanks to reduce underwater noise: (1) inlet piping was suspended to avoid contact with the tank, (2) effluent piping was disconnected from a common drain line, (3) effluent piping was insulated beneath tanks, and (4) tanks were elevated on cement blocks and seated on insulated padding. Four combinations of the aforementioned structural changes were evaluated in duplicate and two tanks were left unchanged as controls. Control tanks had sound levels of 120.6 dB re 1 ??Pa. Each retrofit contributed to a reduction of underwater sound. As structural changes were combined, a cumulative reduction in sound level was observed. Tanks designed with a combination of retrofits had sound levels of 108.6 dB re 1 ??Pa, a four-fold reduction in sound pressure level. Sound frequency spectra indicated that the greatest sound reductions occurred between 2 and 100 Hz and demonstrated that nearby pumps and blowers created tonal frequencies that were transmitted into the tanks. The tank modifications used during this study were simple and inexpensive and could be applied to existing systems or considered when designing aquaculture facilities. ?? 2007 Elsevier B.V. All rights reserved.

  12. An Assessment of Psychological Noise Reduction by Landscape Plants

    PubMed Central

    Yang, Fan; Bao, Zhi Yi; Zhu, Zhu Jun

    2011-01-01

    The emphasis in the term ‘Green Transportation’ is on the word ‘green’. Green transportation focuses on the construction of a slow transport system with a visually pleasing, easy and secure trip environment composed of urban parks, green roadside spaces and some other space that is full of landscape plants. This trip environment encourages residents to make trip choices that reduce fuel consumption and pollution and is one of the most important ways of popularizing green transportation. To study the psychological benefits provided by urban parks and other landscape environments, we combined a subjective approach (a questionnaire) with an objective quantitative approach (emotional tests using an electroencephalogram; EEG). Using a questionnaire survey, we found that 90% of the subjects believed that landscape plants contribute to noise reduction and that 55% overrated the plants’ actual ability to attenuate noise. Two videos (showing a traffic scene and a plant scene) were shown to 40 participants on video glasses. We detected and recorded EEG values with a portable electroencephalograph, and a comparison between the results of the two groups revealed that there was a highly significant asymmetry between the EEG activity of the vegetation scene and traffic scene groups. The results suggest that the emotions aroused by noise and visual stimuli are manifested in the synchronization of beta frequency band and the desynchronization of alpha frequency band, indicating that landscape plants can moderate or buffer the effects of noise. These findings indicate that landscape plants provide excess noise attenuating effects through subjects’ emotional processing, which we term ‘psychological noise reduction’. PMID:21695027

  13. Reduction of aircraft noise in civil air transport by optimization of flight tracks and takeoff and approach procedures

    NASA Astrophysics Data System (ADS)

    Rottmann, Uwe

    1988-08-01

    Noise optimized design of operational flight procedures for effective noise pollution reduction is analyzed. Power cutback during certain stages of approach and takeoff, extension of distance between sound source and sound receiver, as well as diminution of sound impact time are optimized for specific flight procedures and routings. Five takeoff and three landing procedures are analyzed in acoustic effects. Sound immission is computed by NOISIMSIS (NOISe IMpact SImulation System), a simulation system especially created for this task, under consideration of aircraft type specified sound emission characteristics and performance data as well as different meteorological conditions. The investigations for the example of Frankfurt airport result in formulating a planning guideline with notes and impulses for activities in operational noise abatement.

  14. Simultaneous BVI noise and vibration reduction in rotorcraft using actively-controlled flaps and including performance considerations

    NASA Astrophysics Data System (ADS)

    Patt, Daniel A.

    This work presents the development and application of an active control approach for reduction of both vibration and noise induced by helicopter rotor blade vortex interaction (BVI). Control is implemented through single or dual actively controlled flaps (ACFs) on each blade. Low-speed helicopter flight is prone to severe BVI, resulting in elevated vibration and noise levels. Existing research has suggested that when some form of active control is used to reduce vibration, noise will increase and vice versa. The present research achieves simultaneous reduction of noise and vibration, and also investigates the physical sources of the observed reduction. The initial portion of this work focused on developing a tool for simulating helicopter noise and vibrations in the BVI flight regime. A method for predicting compressible unsteady blade surface pressure distribution on rotor blades was developed and combined with an enhanced free-wake model and an acoustic prediction tool with provisions for blade flexibility. These elements were incorporated within an aeroelastic analysis featuring fully coupled flap-lag-torsional blade dynamics. Subsequently, control algorithms were developed that were effective for reducing noise and vibration even in the nonlinear BVI flight regime; saturation limits were incorporated constraining flap deflections to specified limits. The resulting simulation was also validated with a wide range of experimental data, achieving excellent correlation. Finally, a number of active control studies were performed. Multi-component vibration reductions of 40--80% could be achieved, while incurring a small noise penalty. Noise was reduced using an onboard feedback microphone; reductions of 4--10 dB on the advancing side were observed on a plane beneath the rotor when using dual flaps. Finally, simultaneous noise and vibration reduction was studied. A reduction of about 5 dB in noise on the advancing side combined with a 60% reduction in vibration was

  15. Dose reduction in CT with correlated-polarity noise reduction: context-dependent spatial resolution and noise properties demonstrating two-fold dose reduction with minimal artifacts

    NASA Astrophysics Data System (ADS)

    Dobbins, James T.; Wells, Jered R.; Segars, W. Paul

    2014-03-01

    Correlated-polarity noise reduction (CPNR) is a novel noise reduction technique that uses a statistical approach to reducing noise while maintaining excellent spatial resolution and a traditional noise appearance. It was demonstrated in application to CT imaging for the first time at SPIE 2013 and showed qualitatively excellent image quality at half of normal CT dose. In this current work, we measure quantitatively the spatial resolution and noise properties of CPNR in CT imaging. To measure the spatial resolution, we developed a metrology approach that is suitable for nonlinear algorithms such as CPNR. We introduce the formalism of Signal Modification Factor, SMF(u,v), which is the ratio in frequency space of the CPNR-processed image divided by the noise-free image, averaged over an ensemble of ROIs in a given anatomical context. SMF is a nonlinear analog to the MTF. We used XCAT computer-generated anthropomorphic phantom images followed by projection space processing with CPNR. The SMF revealed virtually no effect from CPNR on spatial resolution of the images (<7% degradation at all frequencies). Corresponding contextdependent NPS measurements generated with CPNR at half-dose were about equal to the NPS of full-dose images without CPNR. This result demonstrates for the first time the quantitative determination of a two-fold reduction in dose with CPNR with less than 7% reduction in spatial resolution. We conclude that CPNR shows strong promise as a method for reduction of noise (and hence, dose) in CT. CPNR may also be used in combination with iterative reconstruction techniques for yet further dose reduction, pending further investigation.

  16. Aero acoustic analysis and community noise. HSCT climb to cruise noise assessment

    NASA Technical Reports Server (NTRS)

    Mortlock, Alan K.

    1992-01-01

    The widely accepted industry High Speed Civil Transport (HSCT) design goal for exterior noise is to achieve Federal Aviation Regulation (FAR) Part 36 Stage 3 noise limits currently required for new subsonic aircraft. The three phases of the concern are as follows: (1) airport noise abatement at communities close to the airport, (2) climb power opening-up procedures, and (3) the climb to cruise phase affecting communities far from the airport.

  17. Aero acoustic analysis and community noise. HSCT climb to cruise noise assessment

    NASA Astrophysics Data System (ADS)

    Mortlock, Alan K.

    1992-04-01

    The widely accepted industry High Speed Civil Transport (HSCT) design goal for exterior noise is to achieve Federal Aviation Regulation (FAR) Part 36 Stage 3 noise limits currently required for new subsonic aircraft. The three phases of the concern are as follows: (1) airport noise abatement at communities close to the airport, (2) climb power opening-up procedures, and (3) the climb to cruise phase affecting communities far from the airport.

  18. Noise characteristics of the O-1 airplane and some approaches to noise reduction

    NASA Technical Reports Server (NTRS)

    Connor, A. B.; Hilton, D. A.; Copeland, W. L.; Clark, L. R.

    1975-01-01

    A brief study of the O-1A airplane to determine possible means for reducing the aircraft aural detection distance was conducted. This effort involved measuring the noise signature of the basic airplane, devising methods to attenuate the noise, and then estimating the effect of several selected modifications on the aural detection distance of the aircraft. A relatively simple modification utilizing a 6.5 ft diameter, six-blade propeller and including a muffler having a volume of 0.725 cu ft is indicated to reduce the aural detection distance of the O-1 aircraft from about 6 miles at an altitude of 1,000 ft and 2 to 3 miles at an altitude of 300 ft to approximately half these values. The flyover noise data suggest that routing the exhaust stacks up and over the wing would provide immediate noise reduction of about 5 dB with an attendant reduction in detection distance. Furthermore, all these studies confirm the work of other investigators that the 1/3 octave band (center frequency=125 cps) is the most critical in reducing aural detection distance.

  19. A measure of acoustic noise generated from transcranial magnetic stimulation coils.

    PubMed

    Dhamne, Sameer C; Kothare, Raveena S; Yu, Camilla; Hsieh, Tsung-Hsun; Anastasio, Elana M; Oberman, Lindsay; Pascual-Leone, Alvaro; Rotenberg, Alexander

    2014-01-01

    The intensity of sound emanating from the discharge of magnetic coils used in repetitive transcranial magnetic stimulation (rTMS) can potentially cause acoustic trauma. Per Occupational Safety and Health Administration (OSHA) standards for safety of noise exposure, hearing protection is recommended beyond restricted levels of noise and time limits. We measured the sound pressure levels (SPLs) from four rTMS coils with the goal of assessing if the acoustic artifact levels are of sufficient amplitude to warrant protection from acoustic trauma per OSHA standards. We studied the SPLs at two frequencies (5 and 10 Hz), three machine outputs (MO) (60, 80 and 100%), and two distances from the coil (5 and 10 cm). We found that the SPLs were louder at closer proximity from the coil and directly dependent on the MO. We also found that in all studied conditions, SPLs were lower than the OSHA permissible thresholds for short (<15 min) acoustic exposure, but at extremes of use, may generate sufficient noise to warrant ear protection with prolonged (>8 h) exposure. PMID:24582370

  20. Digital Signal Processing System for Active Noise Reduction

    NASA Astrophysics Data System (ADS)

    Edmonson, William W.; Tucker, Jerry

    2002-12-01

    different adaptive noise cancellation algorithms and provide an operational prototype to understand the behavior of the system under test. DSP software was required to interface the processor with the data converters using interrupt routines. The goal is to build a complete ANC system that can be placed on a flexible circuit with added memory circuitry that also contains the power supply, sensors and actuators. This work on the digital signal processing system for active noise reduction was completed in collaboration with another ASEE Fellow, Dr. Jerry Tucker from Virginia Commonwealth University, Richmond, VA.

  1. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations. PMID:12880062

  2. The ecological and evolutionary consequences of noise-induced acoustic habitat loss

    NASA Astrophysics Data System (ADS)

    Tennessen, Jennifer Beissinger

    Anthropogenic threats are facilitating rapid environmental change and exerting novel pressures on the integrity of ecological patterns and processes. Currently, habitat loss is the leading factor contributing to global biodiversity loss. Noise created by human activities is nearly ubiquitous in terrestrial and marine systems, and causes acoustic habitat loss by interfering with species' abilities to freely send and receive critical acoustic biological information. My dissertation investigates how novel sounds from human activities affect ecological and evolutionary processes in space and time in marine and terrestrial systems, and how species may cope with this emerging novel pressure. Using species from both marine and terrestrial systems, I present results from a theoretical investigation, and four acoustic playback experiments combining laboratory studies and field trials, that reveal a range of eco-evolutionary consequences of noiseinduced acoustic habitat loss. First, I use sound propagation modeling to assess how marine shipping noise reduces communication space between mother-calf pairs of North Atlantic right whales (Eubalaena glacialis ), an important unit of an endangered species. I show that shipping noise poses significant challenges for mother-calf pairs, but that vocal compensation strategies can substantially improve communication space. Next, in a series of acoustic playback experiments I show that road traffic noise impairs breeding migration behavior and physiology of wood frogs (Lithobates sylvaticus ). This work reveals the first evidence that traffic noise elicits a physiological stress response and suppresses production of antimicrobial peptides (a component of the innate immune response) in anurans. Further, wood frogs from populations with a history of inhabiting noisy sites mounted reduced physiological stress responses to continuous traffic noise exposure. This research using wood frogs suggests that chronic traffic noise exposure has

  3. Ocean acoustic remote sensing using ambient noise: results from the Florida Straits

    NASA Astrophysics Data System (ADS)

    Brown, M. G.; Godin, O. A.; Zang, X.; Ball, J. S.; Zabotin, N. A.; Zabotina, L. Y.; Williams, N. J.

    2016-07-01

    Noise interferometry is the process by which approximations to acoustic Green's functions, which describe sound propagation between two locations, are estimated by cross-correlating time series of ambient noise measured at those locations. Noise-interferometry-based approximations to Green's functions can be used as the basis for a variety of inversion algorithms, thereby providing a purely passive alternative to active-source ocean acoustic remote sensing. In this paper we give an overview of results from noise interferometry experiments conducted in the Florida Straits at 100 m depth in December 2012, and at 600 m depth in September/October 2013. Under good conditions for noise interferometry, estimates of cross-correlation functions are shown to allow one to perform advanced phase-coherent signal processing techniques to perform waveform inversions, estimate currents by exploiting non-reciprocity, perform time-reversal/back-propagation calculations and investigate modal dispersion using time-warping techniques. Conditions which are favourable for noise interferometry are identified and discussed.

  4. Preliminary Analysis of Acoustic Measurements from the NASA-Gulfstream Airframe Noise Flight Test

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Lockhard, David D.; Humphreys, Willliam M.; Choudhari, Meelan M.; Van De Ven, Thomas

    2008-01-01

    The NASA-Gulfstream joint Airframe Noise Flight Test program was conducted at the NASA Wallops Flight Facility during October, 2006. The primary objective of the AFN flight test was to acquire baseline airframe noise data on a regional jet class of transport in order to determine noise source strengths and distributions for model validation. To accomplish this task, two measuring systems were used: a ground-based microphone array and individual microphones. Acoustic data for a Gulfstream G550 aircraft were acquired over the course of ten days. Over twenty-four test conditions were flown. The test matrix was designed to provide an acoustic characterization of both the full aircraft and individual airframe components and included cruise to landing configurations. Noise sources were isolated by selectively deploying individual components (flaps, main landing gear, nose gear, spoilers, etc.) and altering the airspeed, glide path, and engine settings. The AFN flight test program confirmed that the airframe is a major contributor to the noise from regional jets during landing operations. Sound pressure levels from the individual microphones on the ground revealed the flap system to be the dominant airframe noise source for the G550 aircraft. The corresponding array beamform maps showed that most of the radiated sound from the flaps originates from the side edges. Using velocity to the sixth power and Strouhal scaling of the sound pressure spectra obtained at different speeds failed to collapse the data into a single spectrum. The best data collapse was obtained when the frequencies were left unscaled.

  5. Efficiency of a Noise Barrier on the Ground with AN Acoustically Soft Cylindrical Edge

    NASA Astrophysics Data System (ADS)

    Okubo, T.; Fujiwara, K.

    1998-10-01

    It is well known that an absorptive obstacle installed on the edge of a noise barrier improves sound shielding efficiency without increasing the height of the barrier. This paper examines the sound shielding efficiency of a noise barrier with an acoustically “soft” cylindrical edge. “Soft” indicates that the sound pressure at the surface is zero; however, it is difficult to produce a soft surface using traditional materials. The authors previously reported that the “Waterwheel cylinder,” which consists of acoustic tubes arranged radially, approximates a soft surface cylinder. In the present study, a noise barrier with a Waterwheel cylinder installed on the edge of the barrier is investigated. Results of numerical simulations indicated that the Waterwheel cylinder improves the sound shielding efficiency of a noise barrier. The improvement is strongly frequency dependent; it exceeds 10 dB in a certain frequency range of an octave, but the Waterwheel decreases the noise shielding efficiency in another frequency range. The frequency characteristics of the waterwheel's effects are related to its self cross-sectional shape. The Waterwheel improves the efficiency much better in the effective frequency range of an octave as compared with an absorbing cylinder. All numerical calculations were carried out assuming an unrealistic two-dimensional sound field, but results of scale model experiments indicate that the calculations predict very accurately the efficiency of noise barriers in a three-dimensional sound field.

  6. A modal-based reduction method for sound absorbing porous materials in poro-acoustic finite element models.

    PubMed

    Rumpler, Romain; Deü, Jean-François; Göransson, Peter

    2012-11-01

    Structural-acoustic finite element models including three-dimensional (3D) modeling of porous media are generally computationally costly. While being the most commonly used predictive tool in the context of noise reduction applications, efficient solution strategies are required. In this work, an original modal reduction technique, involving real-valued modes computed from a classical eigenvalue solver is proposed to reduce the size of the problem associated with the porous media. In the form presented in this contribution, the method is suited for homogeneous porous layers. It is validated on a 1D poro-acoustic academic problem and tested for its performance on a 3D application, using a subdomain decomposition strategy. The performance of the proposed method is estimated in terms of degrees of freedom downsizing, computational time enhancement, as well as matrix sparsity of the reduced system. PMID:23145601

  7. Copula filtration of spoken language signals on the background of acoustic noise

    NASA Astrophysics Data System (ADS)

    Kolchenko, Lilia V.; Sinitsyn, Rustem B.

    2010-09-01

    This paper is devoted to the filtration of acoustic signals on the background of acoustic noise. Signal filtering is done with the help of a nonlinear analogue of a correlation function - a copula. The copula is estimated with the help of kernel estimates of the cumulative distribution function. At the second stage we suggest a new procedure of adaptive filtering. The silence and sound intervals are detected before the filtration with the help of nonparametric algorithm. The results are confirmed by experimental processing of spoken language signals.

  8. Preliminary Experiments on Noise Reduction in Cavities Using Active Impedance Changes

    NASA Astrophysics Data System (ADS)

    LACOUR, O.; GALLAND, M. A.; THENAIL, D.

    2000-02-01

    This paper reports experiments on the active control of enclosed sound fields via wall impedance changes. Two methods previously developed allow one to implement practically active acoustic impedances: the first is referred to as “direct” control and permits precise realizations for harmonic excitations, while the second is a hybrid passive/active feedback control well suited for random noise treatments. The two techniques have been already presented [1]; the contribution of this work relies on testing the efficiency of both systems in silencing two enclosures through experimental analyses, subsequently compared with classical analytical description. The first test cavity is one-dimensional; a global sound reduction is achieved by the hybrid system for a broadband primary excitation. The second system is a reactangular three-dimensional cavity closed by a simply supported elastic plate. The noise source is an external load applied at one point of the plate. Different impedance values are successively assigned, their effect being estimated through a global sound level indicator. Attention is also given to plate vibration changes, which may occur. Three typical behaviours of the plate-cavity system are investigated. A first experiment involves an excitation at an acoustic resonance and induces a weak plate-cavity coupling. The second, also at an acoustic resonance of the cavity, yields a strong coupling while the third corresponds to an off-resonance excitation. The hybrid feedback control system provides useful attenuation for all cases, and shows also a promising behaviour when dealing with broadband excitations. It confirms the interest of the method when classical feedforward active control fails, i.e., when reliable prior information of the undesired disturbance is not available.

  9. Feasibility of noise reduction by a modification in ICU environment.

    PubMed

    Luetz, A; Weiss, B; Penzel, T; Fietze, I; Glos, M; Wernecke, K D; Bluemke, B; Dehn, A M; Willemeit, T; Finke, A; Spies, C

    2016-07-01

    Noise is a proven cause of wakefulness and qualitative sleep disturbance in critically ill patients. A sound pressure level reduction can improve sleep quality, but there are no studies showing the feasibility of such a noise reduction in the intensive care unit (ICU) setting. Considering all available evidence, we redesigned two ICU rooms with the aim of investigating the physiological and clinical impact of a healing environment, including a noise reduction and day-night variations of sound level. Within an experimental design, we recorded 96 h of sound-pressure levels in standard ICU rooms and the modified ICU rooms. In addition, we performed a sound source observation by human observers. Our results show that we reduced A-weighted equivalent sound pressure levels and maximum sound pressure levels with our architectural interventions. During night-time, the modification led to a significant decrease in 50 dB threshold overruns from 65.5% to 39.9% (door side) and from 50% to 10.5% (window side). Sound peaks of more than 60 decibels were significantly reduced from 62.0% to 26.7% (door side) and 59.3% to 30.3% (window side). Time-series analysis of linear trends revealed a significantly more distinct day-night pattern in the modified rooms with lower sound levels during night-times. Observed sound sources during night revealed four times as many talking events in the standard room compared to the modified room. In summary, we show that it is feasible to reduce sound pressure levels using architectural modifications. PMID:27243942

  10. Acoustic background noise variation in Air Force platforms and its effect on noise removal algorithms

    NASA Astrophysics Data System (ADS)

    Lafollette, Philip A.

    1991-06-01

    In this study of short-term noise variation in Air Force platforms, we followed two avenues of investigation. First, we applied quantitative measures of variation to individual noise recordings, and compared the results across various aircraft. Some measures used were simple descriptive statistics, but we also measured attenuation obtained by spectral restoration (spectral subtraction), applied to the noise signal alone. The noise attenuation obtained for real aircraft environments was in most cases about the same as predicted theoretically for white Gaussian noise, but in some instances was considerably higher, especially in the presence of propeller noise. Second, we applied the nonparametric Mann-Whitney statistic to test the stationarity of power spectrum estimates on time scales of 200 to 800 ms. There was little or no evidence of nonstationarity in large jet or turboprop aircraft. In fighter aircraft and helicopters, there was some evidence of nonstationarity confined to more or less narrow frequency ranges. The nonstationarity found did not appear to limit the performance of special restoration algorithms. The noise recordings used were taken from the RADC/EEV database of field recordings made in the E-3A, E-4B, EC-135, E-130, P-3C, F-15, F-16, F-4, A-10, HH-53 and Tornado aircraft.

  11. Multifunctional Low-Pressure Turbine for Core Noise Reduction, Improved Efficiency, and Nitrogen Oxide (NOx) Reduction

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Shyam, Vikram; Rigby, David L.

    2013-01-01

    This work studied the feasibility of using Helmholtz resonator cavities embedded in low-pressure-turbine (LPT) airfoils to (1) reduce core noise by damping acoustic modes; (2) use the synthetic jets produced by the liner hole acoustic oscillations to improve engine efficiency by maintaining turbulent attached flow in the LPT at low-Reynolds-number cruise conditions; and (3) reduce engine nitrogen oxide emissions by lining the internal cavities with materials capable of catalytic conversion. Flat plates with embedded Helmholtz resonators, designed to resonate at either 3000 or at 400 Hz, were simulated using computational fluid dynamics. The simulations were conducted for two inlet Mach numbers, 0.25 and 0.5, corresponding to Reynolds numbers of 90 000 and 164 000 based on the effective chordwise distance to the resonator orifice. The results of this study are (1) the region of acoustic treatment may be large enough to have a benefit; (2) the jets may not possess sufficient strength to reduce flow separation (based on prior work by researchers in the flow control area); and (3) the additional catalytic surface area is not exposed to a high velocity, so it probably does not have any benefit.

  12. Noise affects the shape of female preference functions for acoustic signals.

    PubMed

    Reichert, Michael S; Ronacher, Bernhard

    2015-02-01

    The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise. PMID:25546134

  13. In situ calibration of atmospheric-infrasound sensors including the effects of wind-noise-reduction pipe systems.

    PubMed

    Gabrielson, Thomas B

    2011-09-01

    A worldwide network of more than 40 infrasound monitoring stations has been established as part of the effort to ensure compliance with the Comprehensive Nuclear Test Ban Treaty. Each station has four to eight individual infrasound elements in a kilometer-scale array for detection and bearing determination of acoustic events. The frequency range of interest covers a three-decade range-roughly from 0.01 to 10 Hz. A typical infrasound array element consists of a receiving transducer connected to a multiple-inlet pipe network to average spatially over the short-wavelength turbulence-associated "wind noise." Although the frequency response of the transducer itself may be known, the wind-noise reduction system modifies that response. In order to understand the system's impact on detection and identification of acoustical events, the overall frequency response must be determined. This paper describes a technique for measuring the absolute magnitude and phase of the frequency response of an infrasound element including the wind-noise-reduction piping by comparison calibration using ambient noise and a reference-microphone system. Measured coherence between the reference and the infrasound element and the consistency between the magnitude and the phase provide quality checks on the process. PMID:21895058

  14. The cost of applying current helicopter external noise reduction methods while maintaining realistic vehicle performance

    NASA Technical Reports Server (NTRS)

    Bowes, M. A.

    1978-01-01

    Analytical methods were developed and/or adopted for calculating helicopter component noise, and these methods were incorporated into a unified total vehicle noise calculation model. Analytical methods were also developed for calculating the effects of noise reduction methodology on helicopter design, performance, and cost. These methods were used to calculate changes in noise, design, performance, and cost due to the incorporation of engine and main rotor noise reduction methods. All noise reduction techniques were evaluated in the context of an established mission performance criterion which included consideration of hovering ceiling, forward flight range/speed/payload, and rotor stall margin. The results indicate that small, but meaningful, reductions in helicopter noise can be obtained by treating the turbine engine exhaust duct. Furthermore, these reductions do not result in excessive life cycle cost penalties. Currently available main rotor noise reduction methodology, however, is shown to be inadequate and excessively costly.

  15. Application of Circulation Control Technology to Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Sankar, L. N.; Englar, R. J.; Munro, Scott E.; Li, Yi; Gaeta, R. J.

    2003-01-01

    This report is a summary of the work performed by Georgia Tech Research Institute (GTRI) under NASA Langley Grant NAG-1-2146, which was awarded as a part of NASA's Breakthrough Innovative Technologies (BIT) initiative. This was a three-year program, with a one-year no-cost extension. Each year's study has been an integrated effort consisting of computational fluid dynamics, experimental aerodynamics, and detailed noise and flow measurements. Year I effort examined the feasibility of reducing airframe noise by replacing the conventional wing systems with a Circulation Control Wing (CCW), where steady blowing was used through the trailing edge of the wing over a Coanda surface. It was shown that the wing lift increases with CCW blowing and indeed for the same lift, a CCW wing was shown to produce less noise. Year 2 effort dealt with a similar study on the role of pulsed blowing on airframe noise. The main objective of this portion of the study was to assess whether pulse blowing from the trailing edge of a CCW resulted in more, less, or the same amount of radiated noise to the farfield. Results show that a reduction in farfield noise of up to 5 dB is measured when pulse flow is compared with steady flow for an equivalent lift configuration. This reduction is in the spectral region associated with the trailing edge jet noise. This result is due to the unique advantage that pulsed flow has over steady flow. For a range of frequencies, more lift is experienced with the same mass flow as the steady case. Thus, for an equivalent lift and slot height, the pulsed system can operate at lower jet velocities, and hence lower jet noise. The computational analysis showed that for a given time-averaged mass flow rate, pulsed jets give a higher value of C(sub l) and a higher L/D than equivalent steady jets. This benefit is attributable to higher instantaneous jet velocities, and higher instantaneous C(sub mu) values for the pulsed jet. Pulsed jet benefits increase at higher

  16. Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Marsden, Alison L.; Wang, Meng; Dennis, J. E.; Moin, Parviz

    Derivative-free optimization techniques are applied in conjunction with large-eddy simulation (LES) to reduce the noise generated by turbulent flow over a hydrofoil trailing edge. A cost function proportional to the radiated acoustic power is derived based on the Ffowcs Williams and Hall solution to Lighthill's equation. Optimization is performed using the surrogate-management framework with filter-based constraints for lift and drag. To make the optimization more efficient, a novel method has been developed to incorporate Reynolds-averaged Navier Stokes (RANS) calculations for constraint evaluation. Separation of the constraint and cost-function computations using this method results in fewer expensive LES computations. This work demonstrates the ability to fully couple optimization to large-eddy simulation for time-accurate turbulent flow. The results demonstrate an 89% reduction in noise power, which comes about primarily by the elimination of low-frequency vortex shedding. The higher-frequency broadband noise is reduced as well, by a subtle change in the lower surface near the trailing edge.

  17. Blade-mounted trailing edge flap control for BVI noise reduction

    NASA Technical Reports Server (NTRS)

    Hassan, A. A.; Charles, B. D.; Tadghighi, H.; Sankar, L. N.

    1992-01-01

    Numerical procedures based on the 2-D and 3-D full potential equations and the 2-D Navier-Stokes equations were developed to study the effects of leading and trailing edge flap motions on the aerodynamics of parallel airfoil-vortex interactions and on the aerodynamics and acoustics of the more general self-generated rotor blade vortex interactions (BVI). For subcritical interactions, the 2-D results indicate that the trailing edge flap can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, the results show the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented. For the OLS model rotor, contours of a BVI noise metric were used to quantify the effects of the trailing edge flap on the size and directivity of the high/low intensity noise region(s). Average reductions in the BVI noise levels on the order of 5 dB with moderate power penalties on the order of 18 pct. for a four bladed rotor and 58 pct. for a two bladed rotor were obtained.

  18. Noise reduction studies for the U-10 airplane

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Connor, A. B.; Hubbard, H. H.; Dingeldein, R. C.

    1975-01-01

    A study was undertaken by the NASA Langley Research Center to determine the noise reduction potential of the U-10 airplane in order to reduce its aural detection distance. Static and flyover noise measurements were made to document the basic airplane noise signature. Two modifications to the airplane configuration are suggested as having the best potential for substantially reducing aural detection distance with small penalty to airplane performance or stability and control. These modifications include changing the present 3-blade propeller to a 5-blade propeller, changing the propeller diameter, and changing the propeller gear ratio, along with the use of an engine exhaust muffler. The aural detection distance corresponding to normal cruising flight at an altitude of 1,000 ft over grassy terrain is reduced from 28,000 ft (5.3 miles) to about 50 percent of that value for modification 1, and to about 25 percent for modification 2. For the aircraft operating at an altitude of 300 ft, the analysis indicates that relatively straightforward modifications could reduce the aural detection distance to approximately 0.9 mile. Operation of the aircraft at greatly reduced engine speed (1650 rpm) with a 1.3-cu-ft muffler provides aural detection distances slightly lower than modification 1.

  19. Programmable noise bandwidth reduction by means of digital averaging

    NASA Technical Reports Server (NTRS)

    Poklemba, John J. (Inventor)

    1993-01-01

    Predetection noise bandwidth reduction is effected by a pre-averager capable of digitally averaging the samples of an input data signal over two or more symbols, the averaging interval being defined by the input sampling rate divided by the output sampling rate. As the averaged sample is clocked to a suitable detector at a much slower rate than the input signal sampling rate the noise bandwidth at the input to the detector is reduced, the input to the detector having an improved signal to noise ratio as a result of the averaging process, and the rate at which such subsequent processing must operate is correspondingly reduced. The pre-averager forms a data filter having an output sampling rate of one sample per symbol of received data. More specifically, selected ones of a plurality of samples accumulated over two or more symbol intervals are output in response to clock signals at a rate of one sample per symbol interval. The pre-averager includes circuitry for weighting digitized signal samples using stored finite impulse response (FIR) filter coefficients. A method according to the present invention is also disclosed.

  20. Edge Preserved Speckle Noise Reduction Using Integrated Fuzzy Filters

    PubMed Central

    Dewal, M. L.; Rohit, Manoj Kumar

    2014-01-01

    Echocardiographic images are inherent with speckle noise which makes visual reading and analysis quite difficult. The multiplicative speckle noise masks finer details, necessary for diagnosis of abnormalities. A novel speckle reduction technique based on integration of geometric, wiener, and fuzzy filters is proposed and analyzed in this paper. The denoising applications of fuzzy filters are studied and analyzed along with 26 denoising techniques. It is observed that geometric filter retains noise and, to address this issue, wiener filter is embedded into the geometric filter during iteration process. The performance of geometric-wiener filter is further enhanced using fuzzy filters and the proposed despeckling techniques are called integrated fuzzy filters. Fuzzy filters based on moving average and median value are employed in the integrated fuzzy filters. The performances of integrated fuzzy filters are tested on echocardiographic images and synthetic images in terms of image quality metrics. It is observed that the performance parameters are highest in case of integrated fuzzy filters in comparison to fuzzy and geometric-fuzzy filters. The clinical validation reveals that the output images obtained using geometric-wiener, integrated fuzzy, nonlocal means, and details preserving anisotropic diffusion filters are acceptable. The necessary finer details are retained in the denoised echocardiographic images.

  1. The Acoustic Analogy: A Powerful Tool in Aeroacoustics with Emphasis on Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Doty, Michael J.; Hunter, Craig A.

    2004-01-01

    The acoustic analogy introduced by Lighthill to study jet noise is now over 50 years old. In the present paper, Lighthill s Acoustic Analogy is revisited together with a brief evaluation of the state-of-the-art of the subject and an exploration of the possibility of further improvements in jet noise prediction from analytical methods, computational fluid dynamics (CFD) predictions, and measurement techniques. Experimental Particle Image Velocimetry (PIV) data is used both to evaluate turbulent statistics from Reynolds-averaged Navier-Stokes (RANS) CFD and to propose correlation models for the Lighthill stress tensor. The NASA Langley Jet3D code is used to study the effect of these models on jet noise prediction. From the analytical investigation, a retarded time correction is shown that improves, by approximately 8 dB, the over-prediction of aft-arc jet noise by Jet3D. In experimental investigation, the PIV data agree well with the CFD mean flow predictions, with room for improvement in Reynolds stress predictions. Initial modifications, suggested by the PIV data, to the form of the Jet3D correlation model showed no noticeable improvements in jet noise prediction.

  2. An electro-acoustical technique for the detection of knee joint noise.

    PubMed

    Chu, M L; Gradisar, I A; Railey, M R; Bowling, G F

    1976-01-01

    Distinguishing acoustical signatures of sound emitted by normal and pathological knee joints are picked up using a double microphone-differential amplifier setup. Extraneous background noise is minimized using the principle of "noise cancellation". Two identical sensitive condenser microphones and an F.M. recorder with flat responses in the audio range were used. Preliminary studies covering normal and diseased knee joints showed that their respective waveforms and spectral patterns are unique and proved to be a promising nondestructive diagnostic tool for early detection of knee joint cartilage damage. PMID:957922

  3. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  4. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Kazuyoshi Mori,; Hanako Ogasawara,; Toshiaki Nakamura,; Takenobu Tsuchiya,; Nobuyuki Endoh,

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object’s reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel’s color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  5. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object's reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel's color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  6. The Coanda effect in gas-dynamic noise control. [pressure reduction by silencers

    NASA Technical Reports Server (NTRS)

    Vasilescu, G.

    1974-01-01

    The principle types of silencers are discussed for gas dynamic noise of free steam and gas expansions, as well as the results of research in gas dynamics of jets and applied acoustics. Gas dynamic noise attenuation by means of the Coanda effect is due to fluid decompression in a Coanda ejector of the external type, where a structural change takes place in the acoustic frequency spectrum and in its direction, as well as a substantial decrease in the fluid's velocity, temperature and concentration. This process is continued in the second phase with absorption of the acoustic waves by means of an active structure.

  7. The design and commissioning of an acoustic liner for propeller noise testing in the ARA transonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Wood, M. E.; Neuman, D. A.

    1991-12-01

    An acoustic liner was designed and manufactured for use in a transonic wind tunnel to provide an acoustically acceptable environment for propeller noise testing up to high subsonic Mach number. Details of the aerodynamic design and development are presented and calibration of the liner with propeller model support systems is included. It is shown how the design of the acoustic treatment was aided by the use of a theoretical model for the tunnel reverberant field. An acoustic development program was undertaken involving horn tests to improve the quality of the liner. The success of this is demonstrated by propeller noise results. These results also provided the basis for definition of the practical acoustic regime of a lined tunnel suitable for the accurate measurement of propeller noise.

  8. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, D.S.; Scott, D.D.

    1993-12-28

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  9. Boeing's variable geometry chevron: morphing aerospace structures for jet noise reduction

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick T.; Mabe, James H.; Butler, George W.

    2006-03-01

    Boeing is applying cutting edge smart material actuators to the next generation morphing technologies for aircraft. This effort has led to the Variable Geometry Chevrons (VGC), which utilize compact, light weight, and robust shape memory alloy (SMA) actuators. These actuators morph the shape of chevrons on the trailing edge of a jet engine in order to optimize acoustic and performance objectives at multiple flight conditions. We have demonstrated a technical readiness level of 7 by successfully flight testing the VGCs on a Boeing 777-300ER with GE-115B engines. In this paper we describe the VGC design, development and performance during flight test. Autonomous operation of the VGCs, which did not require a control system or aircraft power, was demonstrated. A parametric study was conducted showing the influence of VGC configurations on shockcell generated cabin noise reduction during cruise. The VGC system provided a robust test vehicle to explore chevron configurations for community and shockcell noise reduction. Most importantly, the VGC concept demonstrated an exciting capability to optimize jet nozzle performance at multiple flight conditions.

  10. Development of a Transient Acoustic Boundary Element Method to Predict the Noise Signature of Swimming Fish

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2015-11-01

    Animals have evolved flexible wings and fins to efficiently and quietly propel themselves through the air and water. The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates three essential features: the fluid mechanics, the elastic structural response, and the noise generation. This study focuses on the development, validation, and demonstration of a transient, two-dimensional acoustic boundary element solver accelerated by a fast multipole algorithm. The resulting acoustic solver is used to characterize the acoustic signature produced by a vortex street advecting over a NACA 0012 airfoil, which is representative of vortex-body interactions that occur in schools of swimming fish. Both 2S and 2P canonical vortex streets generated by fish are investigated over the range of Strouhal number 0 . 2 < St < 0 . 4 , and the acoustic signature of the airfoil is quantified. This study provides the first estimate of the noise signature of a school of swimming fish. Lehigh University CORE Grant.

  11. AFFECT OF NEW BLADES ON NOISE REDUCTION OF SMALL WIND TURBINE WATER PUMPING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustical noise data were collected on small wind turbines used for water pumping -- different blade designs were tested on each wind turbine. Three different blade designs were tested on 1 kW wind turbines and each successive blade design was shown to produce less noise with respect to rotor spee...

  12. Acoustical, sensory, and psychological research data and procedures for their use in predicting effects of environmental noises.

    PubMed

    Kryter, Karl D

    2007-11-01

    A demonstration field-research study reveals that aircraft noise measured at two one-story houses is approximately 9 dB less attenuated from measured outdoor levels than is street traffic noise, and, found in other studies, approximately 14 dB less than railway noise. Comparable differences are found between these noises from the application of basic acoustical formulas for quantifying attenuations that occur on site of one- and two-story houses. Reasonably consistent with those findings are results from attitude surveys showing that daily exposure levels of aircraft must be approximately 8 dB less than levels of street traffic noise, and approximately 13 dB less than levels of railway noise to be perceived as an equal cause of annoyance and related adverse effects. However, USA government guidelines recommend that equal exposure levels of noise measured outdoors from vehicles of transportation should be considered as being equally annoying. Changes in present USA noise-measurement procedures and noise-control guidelines are proposed that provide more accurate predictions of annoyance, related adverse effects, and criteria for setting "tolerable" limits of noise exposure in residential areas. Key acoustical and psycho-acoustical principles and data pertaining to predicting correlations between dosages of environmental noises and its effects on people and land noise zoning in residential communities are examined. PMID:18189552

  13. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearinga

    PubMed Central

    Carroll, Jeff; Tiaden, Stephanie; Zeng, Fan-Gang

    2011-01-01

    Cochlear implant (CI) users have been shown to benefit from residual low-frequency hearing, specifically in pitch related tasks. It remains unclear whether this benefit is dependent on fundamental frequency (F0) or other acoustic cues. Three experiments were conducted to determine the role of F0, as well as its frequency modulated (FM) and amplitude modulated (AM) components, in speech recognition with a competing voice. In simulated CI listeners, the signal-to-noise ratio was varied to estimate the 50% correct response. Simulation results showed that the F0 cue contributes to a significant proportion of the benefit seen with combined acoustic and electric hearing, and additionally that this benefit is due to the FM rather than the AM component. In actual CI users, sentence recognition scores were collected with either the full F0 cue containing both the FM and AM components or the 500-Hz low-pass speech cue containing the F0 and additional harmonics. The F0 cue provided a benefit similar to the low-pass cue for speech in noise, but not in quiet. Poorer CI users benefited more from the F0 cue than better users. These findings suggest that F0 is critical to improving speech perception in noise in combined acoustic and electric hearing. PMID:21973360

  14. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  15. On Acoustic Source Specification for Rotor-Stator Interaction Noise Prediction

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Caesy L.

    2010-01-01

    This paper describes the use of measured source data to assess the effects of acoustic source specification on rotor-stator interaction noise predictions. Specifically, the acoustic propagation and radiation portions of a recently developed coupled computational approach are used to predict tonal rotor-stator interaction noise from a benchmark configuration. In addition to the use of full measured data, randomization of source mode relative phases is also considered for specification of the acoustic source within the computational approach. Comparisons with sideline noise measurements are performed to investigate the effects of various source descriptions on both inlet and exhaust predictions. The inclusion of additional modal source content is shown to have a much greater influence on the inlet results. Reasonable agreement between predicted and measured levels is achieved for the inlet, as well as the exhaust when shear layer effects are taken into account. For the number of trials considered, phase randomized predictions follow statistical distributions similar to those found in previous statistical source investigations. The shape of the predicted directivity pattern relative to measurements also improved with phase randomization, having predicted levels generally within one standard deviation of the measured levels.

  16. Program on ground test of modified quiet, clean, JT3D and JT8D turbofan engines in their respective nacelles. [modification of Boeing 707, 727, and 737 aircraft for aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A program to reduce the community noise levels of commercial jet aircraft is summarized. The program objective is the development of three acoustically treated nacelle configurations for the 707, 727, and 737 series aircraft to provide maximum noise reduction with minimum performance loss, modification requirements, and economic impact. The preliminary design, model testing, data analyses, and economic studies of proposed nacelle configurations are discussed.

  17. Quasi-static acoustic mapping of helicopter blade vortex interaction noise

    NASA Astrophysics Data System (ADS)

    Gopalan, Gaurav

    This research extends the applicability of storage-based noise prediction techniques to slowly maneuvering flight. The quasi-static equivalence between longitudinal decelerating flight and steady-state longitudinal descent flight, and its application to the estimation of BVI noise radiation under slow longitudinal maneuvering flight conditions, is investigated through various orders of flight dynamics modeling. The entire operating state of the helicopter is shown to be similar during equivalent flight conditions at the same flight velocity. This equivalence is also applied to the prediction of control requirements during longitudinal maneuvers. Inverse simulation based flight dynamics models of lower order are seen to capture many important trends associated with slow maneuvers, when compared with higher order modeling. The lower order flight dynamics model is used to design controlled maneuvers that may be practically flown during descent operations or as part of research flight testing. A version of a storage-based acoustic mapping technique, extended to slowly maneuvering longitudinal flight, is implemented for helicopter main rotor Blade-Vortex Interaction (BVI) noise. Various approach trajectories are formulated and analytical estimates of the BVI noise radiation characteristics associated with a full-scale two-bladed rotor are mapped to the ground using this quasi-static mapping approach. Multi-segment decelerating descent approaches are shown to be effective in ground noise abatement. The effects of steady longitudinal winds are investigated on radiated and ground noise. Piloting trim choices are seen to dominate the noise radiation under these flight conditions.

  18. Noise reduction technologies implemented in head-worn preprocessors for improving cochlear implant performance in reverberant noise fields.

    PubMed

    Chung, King; Nelson, Lance; Teske, Melissa

    2012-09-01

    The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. PMID:22750449

  19. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  20. Two-Microphone Noise Reduction Using Spatial Information-Based Spectral Amplitude Estimation

    NASA Astrophysics Data System (ADS)

    Li, Kai; Guo, Yanmeng; Fu, Qiang; Li, Junfeng; Yan, Yonghong

    Traditional two-microphone noise reduction algorithms to deal with highly nonstationary directional noises generally use the direction of arrival or phase difference information. The performance of these algorithms deteriorate when diffuse noises coexist with nonstationary directional noises in realistic adverse environments. In this paper, we present a two-channel noise reduction algorithm using a spatial information-based speech estimator and a spatial-information-controlled soft-decision noise estimator to improve the noise reduction performance in realistic non-stationary noisy environments. A target presence probability estimator based on Bayes rules using both phase difference and magnitude squared coherence is proposed for soft-decision of noise estimation, so that they can share complementary advantages when both directional noises and diffuse noises are present. Performances of the proposed two-microphone noise reduction algorithm are evaluated by noise reduction, log-spectral distance (LSD) and word recognition rate (WRR) of a distant-talking ASR system in a real room's noisy environment. Experimental results show that the proposed algorithm achieves better noises suppression without further distorting the desired signal components over the comparative dual-channel noise reduction algorithms.

  1. CMOS image sensor noise reduction method for image signal processor in digital cameras and camera phones

    NASA Astrophysics Data System (ADS)

    Yoo, Youngjin; Lee, SeongDeok; Choe, Wonhee; Kim, Chang-Yong

    2007-02-01

    Digital images captured from CMOS image sensors suffer Gaussian noise and impulsive noise. To efficiently reduce the noise in Image Signal Processor (ISP), we analyze noise feature for imaging pipeline of ISP where noise reduction algorithm is performed. The Gaussian noise reduction and impulsive noise reduction method are proposed for proper ISP implementation in Bayer domain. The proposed method takes advantage of the analyzed noise feature to calculate noise reduction filter coefficients. Thus, noise is adaptively reduced according to the scene environment. Since noise is amplified and characteristic of noise varies while the image sensor signal undergoes several image processing steps, it is better to remove noise in earlier stage on imaging pipeline of ISP. Thus, noise reduction is carried out in Bayer domain on imaging pipeline of ISP. The method is tested on imaging pipeline of ISP and images captured from Samsung 2M CMOS image sensor test module. The experimental results show that the proposed method removes noise while effectively preserves edges.

  2. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC) Brain Potential Changes

    PubMed Central

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed. PMID:25264675

  3. Characterization of the Acoustic Field in Marine Environments with Anthropogenic Noise

    NASA Astrophysics Data System (ADS)

    Guan, Shane

    Most animals inhabit the aquatic environment are acoustical-oriented, due to the physical characteristics of water that favors sound transmission. Many aquatic animals depend on underwater sound to navigate, communicate, find prey, and avoid predators. The degradation of underwater acoustic environment due to human activities is expected to affected these animals' well-being and survival at the population level. This dissertation presents three original studies on the characteristics and behavior of underwater sound fields in three unique marine environments with anthropogenic noises. The first study examines the soundscape of the Chinese white dolphin habitat in Taiwan. Acoustic recordings were made at two coastal shallow water locations, Yunlin and Waisanding, in 2012. Results show that croaker choruses are dominant sound sources in the 1.2--2.4 kHz frequency band for both locations at night, and noises from container ships in the 150--300 Hz frequency band define the relative higher broadband sound levels at Yunlin. Results also illustrate interrelationships among different biotic, abiotic, and anthropogenic elements that shape the fine-scale soundscape in a coastal environment. The second study investigates the inter-pulse sound field during an open-water seismic survey in coastal shallow waters of the Arctic. The research uses continuous acoustic recordings collected from one bottom-mounted hydrophone deployed in the Beaufort Sea in summer 2012. Two quantitative methods were developed to examine the inter-pulse sound field characteristics and its dependence on source distances. Results show that inter-pulse sound field could raise the ambient noise floor by as much as 9 dB, depending on ambient condition and source distance. The third study examines the inter-ping sound field of simulated mid-frequency active sonar in deep waters off southern California in 2013 and 2014. The study used drifting acoustic recorder buoys to collect acoustic data during sonar

  4. Estimates of acoustic noise generated by supply vessels working with oil-drilling platforms

    NASA Astrophysics Data System (ADS)

    Rutenko, A. N.; Ushchipovskii, V. G.

    2015-09-01

    The paper presents results on spatial measurements of acoustic noise generated by two types of tugs during their movement near the Molikpaq platform and in a dynamic positioning mode during operation with the PA-B platform. Based on the results of these measurements with the aid of simulation and preliminary research of the loss function conducted on acoustic profiles spanning from the platforms to the nearshore Piltun gray whale summer—fall feeding area, the spectra of equivalent point sources are constructed, which make it possible to construct the 1/3-octave spectra of anthropogenic noise at any point of the western profile and estimate the value of their level in a given frequency band with an accuracy of up to 2 dB. Field measurements have shown that in the dynamic positioning mode, the tugs generate 10 dB more noise than during movement; in fact, a diesel electric tug in both modes produced approximately 5 dB less noise than a diesel tug.

  5. Prediction of acoustic scattering in the time domain and its applications to rotorcraft noise

    NASA Astrophysics Data System (ADS)

    Lee, Seongkyu

    This work aims at the development of a numerical method for the analysis of acoustic scattering in the time domain and its applications to rotorcraft noise. This purpose is achieved by developing two independent methods: (1) an analytical formulation of the pressure gradient for an arbitrary moving source and (2) a time-domain moving equivalent source method. First, the analytical formulation for the pressure gradient is developed to fulfill the boundary condition on a scattering surface to account for arbitrary moving incident sources. A semi-analytical formulation was derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation needs to calculate the observer time differentiation outside the integrals numerically. A numerical algorithm is developed to implement this formulation in an aeroacoustic prediction code. A new analytical formulation is presented in the thesis. In this formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these two formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. One of the advantages of this analytic formulation is that it efficiently provides the boundary condition for the acoustic scattering of sound generated from an arbitrary moving source, such as rotating blades, which undergoes rotation, flapping and lead-lag motions. The formulation is applied to the rotor noise problems for two model rotors (UH-1H and HART-I). For HART-I rotor, CFD/CSD coupling was used to provide unsteady aerodynamics and trim solutions of the blade motion. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and

  6. Study of thermal and acoustic noise interferences in low stiffness atomic force microscope cantilevers and characterization of their dynamic properties

    SciTech Connect

    Boudaoud, Mokrane; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe

    2012-01-15

    The atomic force microscope (AFM) is a powerful tool for the measurement of forces at the micro/nano scale when calibrated cantilevers are used. Besides many existing calibration techniques, the thermal calibration is one of the simplest and fastest methods for the dynamic characterization of an AFM cantilever. This method is efficient provided that the Brownian motion (thermal noise) is the most important source of excitation during the calibration process. Otherwise, the value of spring constant is underestimated. This paper investigates noise interference ranges in low stiffness AFM cantilevers taking into account thermal fluctuations and acoustic pressures as two main sources of noise. As a result, a preliminary knowledge about the conditions in which thermal fluctuations and acoustic pressures have closely the same effect on the AFM cantilever (noise interference) is provided with both theoretical and experimental arguments. Consequently, beyond the noise interference range, commercial low stiffness AFM cantilevers are calibrated in two ways: using the thermal noise (in a wide temperature range) and acoustic pressures generated by a loudspeaker. We then demonstrate that acoustic noises can also be used for an efficient characterization and calibration of low stiffness AFM cantilevers. The accuracy of the acoustic characterization is evaluated by comparison with results from the thermal calibration.

  7. Tip Fence for Reduction of Lift-Generated Airframe Noise

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor); Storms, Bruce L. (Inventor)

    1998-01-01

    The present invention is directed toward a unique lift-generated noise reduction apparatus. This apparatus includes a plurality of tip fences that are secured to the trailing and leading assemblies of the high-lift system, as close as possible to the discontinuities where the vortices are most likely to form. In one embodiment, these tip fences are secured to some or all of the outboard and inboard tips of the wing slats and flaps. The tip fence includes a generally flat, or an aerodynamically shaped plate or device that could be formed of almost any rigid material, such as metal, wood, plastic, fiber glass, aluminum, etc. In a preferred embodiment, the tip fences extend below and perpendicularly to flaps and the slats to which they are attached, such that these tip fences are aligned with the nominal free stream velocity of the aircraft. In addition to reducing airframe noise, the tip fence tends to decrease drag and to increase lift, thus improving the overall aerodynamic performance of the aircraft. Another advantage presented by the tip fence lies in the simplicity of its design, its elegance, and its ready ability to fit on the wing components, such as the flaps and the slats. Furthermore, it does not require non-standard materials or fabrication techniques, and it can be readily, easily and inexpensively retrofited on most of the existing aircraft, with minimal design changes.

  8. Reducing Centroid Error Through Model-Based Noise Reduction

    NASA Technical Reports Server (NTRS)

    Lee, Shinhak

    2006-01-01

    A method of processing the digitized output of a charge-coupled device (CCD) image detector has been devised to enable reduction of the error in computed centroid of the image of a point source of light. The method involves model-based estimation of, and correction for, the contributions of bias and noise to the image data. The method could be used to advantage in any of a variety of applications in which there are requirements for measuring precise locations of, and/or precisely aiming optical instruments toward, point light sources. In the present method, prior to normal operations of the CCD, one measures the point-spread function (PSF) of the telescope or other optical system used to project images on the CCD. The PSF is used to construct a database of spot models representing the nominal CCD pixel outputs for a point light source projected onto the CCD at various positions incremented by small fractions of a pixel.

  9. Emergent Adaptive Noise Reduction from Communal Cooperation of Sensor Grid

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Jones, Michael G.; Nark, Douglas M.; Lodding, Kenneth N.

    2010-01-01

    In the last decade, the realization of small, inexpensive, and powerful devices with sensors, computers, and wireless communication has promised the development of massive sized sensor networks with dense deployments over large areas capable of high fidelity situational assessments. However, most management models have been based on centralized control and research has concentrated on methods for passing data from sensor devices to the central controller. Most implementations have been small but, as it is not scalable, this methodology is insufficient for massive deployments. Here, a specific application of a large sensor network for adaptive noise reduction demonstrates a new paradigm where communities of sensor/computer devices assess local conditions and make local decisions from which emerges a global behaviour. This approach obviates many of the problems of centralized control as it is not prone to single point of failure and is more scalable, efficient, robust, and fault tolerant

  10. Computational Analyses of Offset Stream Nozzles for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Dippold, Vance, III; Foster, Lancert; Wiese,Michael

    2007-01-01

    The Wind computational fluid dynamics code was used to perform a series of simulations on two offset stream nozzle concepts for jet noise reduction. The first concept used an S-duct to direct the secondary stream to the lower side of the nozzle. The second concept used vanes to turn the secondary flow downward. The analyses were completed in preparation of tests conducted in the NASA Glenn Research Center Aeroacoustic Propulsion Laboratory. The offset stream nozzles demonstrated good performance and reduced the amount of turbulence on the lower side of the jet plume. The computer analyses proved instrumental in guiding the development of the final test configurations and giving insight into the flow mechanics of offset stream nozzles. The computational predictions were compared with flowfield results from the jet rig testing and showed excellent agreement.

  11. Acoustical and perceptual assessment of water sounds and their use over road traffic noise.

    PubMed

    Galbrun, Laurent; Ali, Tahrir T

    2013-01-01

    This paper examines physical and perceptual properties of water sounds generated by small to medium sized water features that have applications for road traffic noise masking. A large variety of water sounds were produced in the laboratory by varying design parameters. Analysis showed that estimations can be made on how these parameters affect sound pressure levels, frequency content, and psychoacoustic properties. Comparisons with road traffic noise showed that there is a mismatch between the frequency responses of traffic noise and water sounds, with the exception of waterfalls with high flow rates, which can generate large low frequency levels comparable to traffic noise. Perceptual assessments were carried out in the context of peacefulness and relaxation, where both water sounds and noise from dense road traffic were audible. Results showed that water sounds should be similar or not less than 3 dB below the road traffic noise level (confirming previous research), and that stream sounds tend to be preferred to fountain sounds, which are in turn preferred to waterfall sounds. Analysis made on groups of sounds also indicated that low sharpness and large temporal variations were preferred on average, although no acoustical or psychoacoustical parameter correlated well with the individual sound preferences. PMID:23297897

  12. Acoustical analysis and modeling of reciprocating compressors, noise produced by gas pulsation, using four-pole method. II

    NASA Astrophysics Data System (ADS)

    Herfat, Ali T.; Seel, Robert V.

    2003-04-01

    Presented in Paper II is the noise analysis of reciprocating compressors (such as air conditioning and refrigeration reciprocating compressors) using the four-pole method. The gas pulsation noise inside compressor head cavities, mufflers, and through-valves can be analyzed by applying the FPM. This method formulates the characteristics of acoustic elements by establishing a relationship between their input and output gas pressures and volume flow rates. When the acoustic elements in the system (compressor) are connected at points between them, the FPM allows an easy assembly of element equations to obtain system acoustical model.

  13. Noise Exposure of Teachers in Nursery Schools—Evaluation of Measures for Noise Reduction When Dropping DUPLO Toy Bricks into Storage Cases by Sound Analyses

    PubMed Central

    Gebauer, Konstanze; Scharf, Thomas; Baumann, Uwe; Groneberg, David A.; Bundschuh, Matthias

    2016-01-01

    Background: Although noise is one of the leading work-related health risk factors for teachers, many nursery schools lack sufficient noise reduction measures. Methods: This intervention study evaluated the noise exposure of nursery school teachers when dropping DUPLO toy bricks into storage cases. Sound analyses of the impact included assessment of the maximum sound pressure level (LAFmax) as well as frequency analyses with 1/3 octave band filter. For the purpose of standardization, a customized gadget was developed. Recordings were performed in 11 cases of different materials and designs to assess the impact on sound level reduction. Thereby, the acoustic effects of three damping materials (foam rubber, carpet, and PU-foam) were investigated. Results: The lowest LAFmax was measured in cases consisting of “metal grid” (90.71 dB) or of a woven willow “basket” (91.61 dB), whereas a case of “aluminium” (103.34 dB) generated the highest impact LAFmax. The frequency analyses determined especially low LAFmax in the frequency bands between 80 and 2500 Hz in cases designs “metal grid” and “basket”. The insertion of PU-foam achieved the most significant attenuation of LAFmax (−13.88 dB) and, in the frequency analyses, the best sound damping. Conclusion: The dropping of DUPLO bricks in cases contributes to the high noise level in nursery schools, but measured LAFmax show no evidence for the danger of acute hearing loss. However, continuous exposure may lead to functional impairment of the hair cells and trigger stress reactions. We recommend noise reduction by utilizing cases of woven “basket” with an insert of PU-foam. PMID:27384575

  14. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    PubMed

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz. PMID:24116520

  15. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. The investigation relies on highly detailed numerical simulations of the unsteady flowfield inside a modern high-pressure turbine (HPT). The simulations are developed using TURBO, which is an unsteady Reynolds-averaged Navier-Stokes (URANS) code capable of multi-stage simulations. The purpose of this study is twofold. First, to determine an estimate of the relative importance of the contributions to the coherent part of the acoustic signature of a turbine from the three potential sources of turbine noise generation, namely, blade-row viscous interaction, potential field interaction, and entropic source associated with the interaction of the blade rows with the temperature nonuniformities caused by the incomplete mixing of the hot fluid and the cooling flow. Second, to develop an understanding of the turbine acoustic transmission characteristics and to assess the applicability of existing empirical and analytical transmission loss models to realistic geometries and flow conditions for modern turbine designs. The investigation so far has concentrated on two simulations: (1) a single-stage HPT and (2) a two-stage HPT and the associated inter-turbine duct/strut segment. The simulations are designed to resolve up to the second harmonic of the blade passing frequency tone in accordance with accepted rules for second order solvers like TURBO. The calculations include blade and vane cooling flows and a radial profile of pressure and temperature at the turbine inlet. The calculation can be modified later to include the combustor pattern factor at the

  16. Experimental study of the effect of viscoelastic damping materials on noise and vibration reduction within railway vehicles

    NASA Astrophysics Data System (ADS)

    Fan, Rongping; Meng, Guang; Yang, Jun; He, Caichun

    2009-01-01

    Interior noise and vibration reduction has become one important concern of railway operating environments due to the influence of increased speeds and reduced vehicle weights for energy efficiency. Three types of viscoelastic damping materials, bitumen-based damping material, water-based damping coating and butyl rubber damping material, were developed to reduce the vibration and noise within railway vehicles. Two sleeper carriages were furnished with the new materials in different patterns of constrained-layer and free-layer damping treatment. The measurements of vibration and noise were carried out in three running carriages. It is found that the reduction effect of damping treatments depends on the running speed. The unweighted root-mean-square acceleration is reduced by 0.08-0.79 and 0.06-0.49 m/s 2 for the carriage treated by bitumen-based as well as water-based damping materials and water-based damping material, respectively. The first two materials reduce vibration in a wider frequency range of 63-1000 Hz than the last. It turns out that the damping treatments of the first two reduce the interior noise level by 5-8 dBA within the carriage, and the last damping material by 1-6 dBA. However, the specific loudness analysis of noises shows that the noise components between 125 and 250 Hz are dominant for the overall loudness, although the low-frequency noise is noticeably decreased by the damping materials. The measure of loudness is shown to be more accurate to assess reduction effect of the damping material on the acoustic comfort.

  17. Acoustic noise generation by the DOE/NASA MOD-1 wind turbine

    NASA Technical Reports Server (NTRS)

    Kelley, N. D.

    1981-01-01

    The results of a series of measurements taken over the past year of the acoustic emissions from the DOE/NASA MOD-1 Wind Turbine show the maximum acoustic energy is concentrated in the low frequency range, often below 100 Hz. The temporal as well as the frequency characteristics of the turbine sounds have been shown to be important since the MOD-1 is capable of radiating both coherent and incoherent noise. The coherent sounds are usually impulsive and are manifested in an averaged frequency domain plot as large numbers of discrete energy bands extending from the blade passage frequency to beyond 50 Hz on occasion. It is these impulsive sounds which are identified as the principal source of the annoyance to a dozen families living within 3 km of the turbine. The source of the coherent noise appears to be the rapid, unsteady blade loads encountered as the blade passes through the wake of the tower structure. Annoying levels are occasionally reached at nearby homes due to the interaction of the low frequency, high energy peaks in the acoustic impulses and the structural modes of the homes as well as by direct radiation outdoors. The peak levels of these impulses can be enhanced or subdued through complete propagation.

  18. Coupling of acoustic emission and electrochemical noise measurement techniques in slurry erosion-corrosion studies

    SciTech Connect

    Oltra, R.; Chapey, B.; Huet, F.; Renaud, L.

    1996-12-31

    This study deals with the measurement and the subsequent signal analysis of acoustic emission and current noise recorded during continuous slurry erosion of a metallic target in a corrosive environment. According to a phenomenologic model, the localized corrosion results from the repetitive damage caused by particle impacts. The fluctuations of the acoustic signal and of the electrochemical signal both can be modeled as a shot-noise-like process. The main purpose of this work is to compare two processing techniques for the fluctuating signals: time analysis (mean value) and spectral analysis (power spectral density [PSD] spectrum) to determine the more suitable signal treatment. Another purpose is also to quantify the balance between the mechanical wear and the corrosive damage of the abraded metallic target. It will be shown that the mean value of the RMS acoustic signal, A(t), and also the PSD of A(t), are related to the mechanical wear of the target and allow real-time measurement of the actual mechanical perturbation in terms of the mass of the ablated material.

  19. Lobed Mixer Design for Noise Suppression: Plume, Aerodynamic and Acoustic Data. Volume 2

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Baker, V. David; Dalton, William N.; Bridges, James (Technical Monitor)

    2002-01-01

    A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft per s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASE's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude and also noise in the reference frame of the nozzle. This volume is divided into three parts: in the first two parts, we collate the plume survey data in graphical form (line, contour and surface plots) and analyze it; in part 3, we tabulate the aerodynamic data for the acoustics tests and the acoustic data in one-third octave band levels.

  20. Automatic Assessment and Reduction of Noise using Edge Pattern Analysis in Non-Linear Image Enhancement

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.

    2004-01-01

    Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.

  1. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    NASA Astrophysics Data System (ADS)

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system

  2. Core Noise: Implications of Emerging N+3 Designs and Acoustic Technology Needs

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    prediction tools for integrated core assemblies as well as and strategies for noise reduction and control is needed in order to meet the NASA N+3 noise goals. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.

  3. Experimental Investigation of Shock-Cell Noise Reduction for Single Stream Nozzles in Simulated Flight

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Brausch, J. F.; Balsa, T. F.; Janardan, B. A.; Knott, P. R.

    1984-01-01

    Seven single stream model nozzles were tested in the Anechoic Free-Jet Acoustic Test Facility to evaluate the effectiveness of convergent divergent (C-D) flowpaths in the reduction of shock-cell noise under both static and mulated flight conditions. The test nozzles included a baseline convergent circular nozzle, a C-D circular nozzle, a convergent annular plug nozzle, a C-D annular plug nozzle, a convergent multi-element suppressor plug nozzle, and a C-D multi-element suppressor plug nozzle. Diagnostic flow visualization with a shadowgraph and aerodynamic plume measurements with a laser velocimeter were performed with the test nozzles. A theory of shock-cell noise for annular plug nozzles with shock-cells in the vicinity of the plug was developed. The benefit of these C-D nozzles was observed over a broad range of pressure ratiosin the vicinity of their design conditions. At the C-D design condition, the C-D annual nozzle was found to be free of shock-cells on the plug.

  4. Reduction in Noise-Induced Functional Loss of the Cochleae in Mice with Pre-Existing Cochlear Dysfunction Due to Genetic Interference of Prestin

    PubMed Central

    Cai, Qunfeng; Wang, Bo; Coling, Donald; Zuo, Jian; Fang, Jie; Yang, Shiming; Vera, Krystal; Hu, Bo Hua

    2014-01-01

    Various cochlear pathologies, such as acoustic trauma, ototoxicity and age-related degeneration, cause hearing loss. These pre-existing hearing losses can alter cochlear responses to subsequent acoustic overstimulation. So far, the knowledge on the impacts of pre-existing hearing loss caused by genetic alteration of cochlear genes is limited. Prestin is the motor protein expressed exclusively in outer hair cells in the mammalian cochlea. This motor protein contributes to outer hair cell motility. At present, it is not clear how the interference of prestin function affects cochlear responses to acoustic overstimulation. To address this question, a genetic model of prestin dysfunction in mice was created by inserting an internal ribosome entry site (IRES)-CreERT2-FRT-Neo-FRT cassette into the prestin locus after the stop codon. Homozygous mice exhibit a threshold elevation of auditory brainstem responses with large individual variation. These mice also display a threshold elevation and a shift of the input/output function of the distortion product otoacoustic emission, suggesting a reduction in outer hair cell function. The disruption of prestin function reduces the threshold shifts caused by exposure to a loud noise at 120 dB (sound pressure level) for 1 h. This reduction is positively correlated with the level of pre-noise cochlear dysfunction and is accompanied by a reduced change in Cdh1 expression, suggesting a reduction in molecular responses to the acoustic overstimulation. Together, these results suggest that prestin interference reduces cochlear stress responses to acoustic overstimulation. PMID:25486270

  5. Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum.

    PubMed

    Lugli, M; Yan, H Y; Fine, M L

    2003-04-01

    Two freshwater gobies Padogobius martensii and Gobius nigricans live in shallow (5-70 cm) stony streams, and males of both species produce courtship sounds. A previous study demonstrated high noise levels near waterfalls, a quiet window in the noise around 100 Hz at noisy locations, and extremely short-range propagation of noise and goby signals. To investigate the relationship of this acoustic environment to communication, we determined audiograms for both species and measured parameters of courtship sounds produced in the streams. We also deflated the swimbladder in P. martensii to determine its effect on frequency utilization in sound production and hearing. Both species are maximally sensitive at 100 Hz and produce low-frequency sounds with main energy from 70 to 100-150 Hz. Swimbladder deflation does not affect auditory threshold or dominant frequency of courtship sounds and has no or minor effects on sound amplitude. Therefore, both species utilize frequencies for hearing and sound production that fall within the low-frequency quiet region, and the equivalent relationship between auditory sensitivity and maximum ambient noise levels in both species further suggests that ambient noise shapes hearing sensitivity. PMID:12665991

  6. Flight test of a pure-tone acoustic source. [aircraft noise

    NASA Technical Reports Server (NTRS)

    Mueller, A. W.; Preisser, J. S.

    1981-01-01

    Static and flight testing of a pure-tone acoustic source were conducted in order to: (1) determine if a 4-KHz tone radiated by a source in flight and mixed with broadband aircraft flyover noise could be measured on the ground with a high degree of statistical confidence; (2) determine how well a comparison could be made of flight-to-static tone radiation pattern and a static radiation pattern; and (3) determine if there were any installation effects on the radiation pattern due to the flight vehicle. Narrow-band acoustic data were measured and averaged over eight microphones to obtain a high statistical confidence. The flight data were adjusted to an equivalent static condition by applying corrections for retarded time, spherical spreading, atmospheric absorption, ground impedance, instrumentation constraints, convective amplification, and the Doppler shift. The flight-to-static results are in excellent agreement with the measured static data. No installation effects were observed on the radiation pattern.

  7. JAPE 91: Influence of terrain masking of the acoustic propagation of helicopter noise

    NASA Technical Reports Server (NTRS)

    Naz, P.

    1993-01-01

    The acoustic propagation in the case of a noise source masked by a small element of terrain has been investigated experimentally. These data have been measured during the 'terrain masking' experiment of the NATO JAPE 91 experimental campaign. The main objective of that experiment was to study the acoustic detection of a helicopter masked by a small hill. Microphones have been placed at different locations on the shadow zone of the hill to study the effect of the terrain obstruction on sound propagation. The results presented come from data measured by Atlas Elektronik and by ISL, and have been processed together. The terrain obstruction causes an excess attenuation of the SPL (Sound Pressure Level) for all the frequencies, but this attenuation is more effective for the high frequencies than for the low frequencies. Results typical of diffraction phenomena have been observed; the SPL is minimal at the foot of the hill and is relatively constant beyond it.

  8. Discrete frequency noise and its reduction in small axial-flow fans

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J. M.

    1982-03-01

    The discrete frequency noise radiated from representative types of axial-flow fans used in electronic equipment is studied in detail. Narrowband analysis of the discrete frequency noise radiated by these types of fans has been conducted in a free-field environment. The far-field sound pressure level, radiated directivity, and total radiated power of the discrete frequency noise is presented. The influence of operating point on the sound radiated from the fans is determined. The discrete frequency noise dominates the characteristic acoustic spectra at high flow coefficients.

  9. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls

    NASA Astrophysics Data System (ADS)

    Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.

    2014-11-01

    Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.

  10. Noise Reduction using Frequency Sub-Band Adaptive Spectral Subtraction

    NASA Technical Reports Server (NTRS)

    Kozel, David

    2000-01-01

    A frequency sub-band based adaptive spectral subtraction algorithm is developed to remove noise from noise-corrupted speech signals. A single microphone is used to obtain both the noise-corrupted speech and the estimate of the statistics of the noise. The statistics of the noise are estimated during time frames that do not contain speech. These statistics are used to determine if future time frames contain speech. During speech time frames, the algorithm determines which frequency sub-bands contain useful speech information and which frequency sub-bands contain only noise. The frequency sub-bands, which contain only noise, are subtracted off at a larger proportion so the noise does not compete with the speech information. Simulation results are presented.

  11. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.

    1982-01-01

    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions.

  12. Method of representation of acoustic spectra and reflection corrections applied to externally blown flap noise

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1975-01-01

    A computer method for obtaining a rational function representation of an acoustic spectrum and for correcting reflection effects is introduced. The functional representation provides a means of compact storage of data and the nucleus of the data analysis method. The method is applied to noise from a full-scale externally blown flap system with a quiet 6:1 bypass ratio turbofan engine and a three-flap wing section designed to simulate the take-off condition of a conceptual STOL aircraft.

  13. Heterodyne signal-to-noise ratios in acoustic mode scattering experiments

    NASA Technical Reports Server (NTRS)

    Cochran, W. R.

    1980-01-01

    The relation between the signal to noise ratio (SNR) obtained in heterodyne detection of radiation scattered from acoustic modes in crystalline solids and the scattered spectral density function is studied. It is shown that in addition to the information provided by the measured frequency shifts and line widths, measurement of the SNR provides a determination of the absolute elasto-optical (Pockel's) constants. Examples are given for cubic crystals, and acceptable SNR values are obtained for scattering from thermally excited phonons at 10.6 microns, with no external perturbation of the sample necessary. The results indicate the special advantages of the method for the study of semiconductors.

  14. Experimental Study of the Acoustic Navigation of a Helicopter by Its Noise Radiation

    NASA Astrophysics Data System (ADS)

    Antonov, V. P.; Kuz'menko, A. K.; Svet, V. D.; Spitsyn, E. I.

    2000-11-01

    Results of experimental measurements of the coordinates and trajectories of an MI-8 helicopter flight are presented for various types of maneuvers and the landing approach. The current coordinates are measured in real time by acoustic differential navigation methods using the noise radiation of a helicopter. It is shown that, when a measuring base with a microphone spacing of 2 m or less is used, the spatial correlation coefficient for the signals in the frequency band from 200 to 5000 Hz approaches unity. This makes it possible to estimate the position of the helicopter with rms errors less than 0.4 m at all stages of flight and at the landing approach.

  15. An operations manual for the Spinning Mode Synthesizer in the Langley Aircraft Noise Reduction Laboratory

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.

    1981-01-01

    The need for a dependable and controllable noise source and the consequent development of the Spinning Mode Synthesizer (SMS) is discussed. Configuration of the SMS incorporated into the flow duct facility is reported. Turbofan noise is composed of a series of fundamental acoustical modes, which are produced by acoustic drivers equispaced circumferentially around the flow duct. Pressure field is compared to an ideal result in an optimization algorithm, adjusting driver settings until system error is minimized. The following items are included: operating instructions, a detailed description of the system, and a user's guide to data acquisition packages available.

  16. Interior Noise Reduction by Adaptive Feedback Vibration Control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1998-01-01

    The objective of this project is to investigate the possible use of adaptive digital filtering techniques in simultaneous, multiple-mode identification of the modal parameters of a vibrating structure in real-time. It is intended that the results obtained from this project will be used for state estimation needed in adaptive structural acoustics control. The work done in this project is basically an extension of the work on real-time single mode identification, which was performed successfully using a digital signal processor (DSP) at NASA, Langley. Initially, in this investigation the single mode identification work was duplicated on a different processor, namely the Texas Instruments TMS32OC40 DSP. The system identification results for the single mode case were very good. Then an algorithm for simultaneous two mode identification was developed and tested using analytical simulation. When it successfully performed the expected tasks, it was implemented in real-time on the DSP system to identify the first two modes of vibration of a cantilever aluminum beam. The results of the simultaneous two mode case were good but some problems were identified related to frequency warping and spurious mode identification. The frequency warping problem was found to be due to the bilinear transformation used in the algorithm to convert the system transfer function from the continuous-time domain to the discrete-time domain. An alternative approach was developed to rectify the problem. The spurious mode identification problem was found to be associated with high sampling rates. Noise in the signal is suspected to be the cause of this problem but further investigation will be needed to clarify the cause. For simultaneous identification of more than two modes, it was found that theoretically an adaptive digital filter can be designed to identify the required number of modes, but the algebra became very complex which made it impossible to implement in the DSP system used in this study

  17. Signal-to-noise ratio for acoustic detection in the deep ocean

    NASA Technical Reports Server (NTRS)

    Bowen, T.

    1979-01-01

    A simple method is presented for studying the thermoacoustic wave generated by a heat pulse. The signal-to-noise ratio (S/N) is then calculated for a typical hadronic-electromagnetic cascade in the deep ocean where low frequencies are masked by surface noise. It is found that a maximum useful range of about 16 km is found for typical conditions at 5 km depth. It is shown that in order to obtain useful signals with S/N greater than 100 at distances of 1 to 16 km, the cascade energy must be 10 to the 16th to 10 to the 18th eV. Finally, attention is given to further refinements of the theory of acoustic detection which remain to be investigated.

  18. Acoustic isolation vessel for measurement of the background noise in microphones

    NASA Technical Reports Server (NTRS)

    Ngo, Kim C. T.; Zuckerwar, Allan J.

    1993-01-01

    An acoustic isolation vessel has been developed to measure the background noise in microphones. The test microphone is installed in an inner vessel, which is suspended within an outer vessel, and the intervening air space is evacuated to a high vacuum. An analytical expression for the transmission coefficient is derived, based on a five-media model, and compared to experiment. At an isolation vacuum of 5 x 10 exp -6 Torr the experimental transmission coefficient was found to be lower than -155 dB at frequencies ranging from 40 to 1200 Hz. Measurements of the A-weighted noise levels of commercial condenser microphones of four different sizes show good agreement with published values.

  19. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    NASA Technical Reports Server (NTRS)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  20. Development of an impact noise reduction method by the adding of a small thickness elastomeric material

    NASA Astrophysics Data System (ADS)

    Arz, Jean-Pierre

    added on a complex vibrating structure), a simulation model of the impact on a structure whose vibrations are due to bending waves has been used. The physical model developed by the European project "Sounding Object" (Rocchesso et Fontana, 2003) has been chosen. From an analogy between the theory used in this model and the modal formulation used in vibration studies, some first modifications of the original program (MATLAB impact_modal.m script) have been made to simulate physically the impact of a mass on a vibrating structure. Some other modifications of the original program have been made in order to simulate the rigid body motion of the structure in the case of free boundary conditions (because the structure used for the validation of the method has free boundary conditions). To reach the third specific goal (validate experimentally the whole method by applying it to the impact noise reduction of a bar of the snowmobile track), the first step has been the measurement of the force and the acoustic pressure in two configurations: WITH and WITHOUT the elastomeric layer in the contact zone. The second step has been the simulation of the configuration WITH the elastomeric layer by applying the impact model of a mass on a vibrating structure (presented in Chapter 2). In order to estimate the value of the model parameters describing the track bar, the modal parameters of the six first bending modes of the bar have been measured using experimental modal analysis. Finally, validation of the method has been performed firstly by checking experimentally the hypothesis of linearity by comparisons between the reductions of force spectra obtained thanks to the adding of the elastomeric specimen and the reductions of noise spectra. Secondly, validations of the method in time and frequency domains have been performed by comparisons between simulated and measured force signals. These comparisons show that the discrepancies may be high enough for some specimens (especially because the

  1. Simulation of a hot coaxial jet: Direct noise prediction and flow-acoustics correlations

    NASA Astrophysics Data System (ADS)

    Bogey, Christophe; Barré, Sébastien; Juvé, Daniel; Bailly, Christophe

    2009-03-01

    A coaxial jet originating from parallel coplanar pipe nozzles is computed by a compressible large eddy simulation (LES) using low-dissipation and low-dispersion schemes in order to determine its acoustic field and to study noise generation mechanisms. The jet streams are at high velocities, the primary stream is heated, and the Reynolds number based on the primary velocity and the secondary diameter is around 106. High levels of turbulence intensity are also specified at the nozzle exit. The jet aerodynamic field and the near-pressure field are both obtained directly from the LES. The far-field noise is calculated by solving the linear acoustic equations, from the unsteady LES data on a cylindrical surface surrounding the jet. A good agreement is observed in terms of directivity, levels, and narrow-band spectra with noise measurements carried out during the EU project CoJeN for a coaxial jet displaying same stream velocities and temperatures, coplanar nozzle outlets with identical area ratio, and a high Reynolds number. However, certainly due to differences in the properties of the nozzle-exit boundary layers with respect to the experiment, some unexpected peaks are noticed in the simulation spectra. They are attributed to the development of a Von Kármán street in the inner mixing layer and to vortex pairings in the outer shear layer. High correlation levels are also calculated between the pressure waves radiated in the downstream direction and flow quantities such as axial velocity, vorticity norm, density, and temperature, taken around the end of the primary and secondary potential cores. Noise generation in the coaxial jet therefore appears significant around the end of the two potential cores. These flow regions are characterized by intermittency, a dominant Strouhal number, and variations in the convection velocity as similarly found in single jets. The use of density or temperature to compute flow-noise correlations finally seems appropriate for a heated

  2. Statistical Analysis of speckle noise reduction techniques for echocardiographic Images

    NASA Astrophysics Data System (ADS)

    Saini, Kalpana; Dewal, M. L.; Rohit, Manojkumar

    2011-12-01

    Echocardiography is the safe, easy and fast technology for diagnosing the cardiac diseases. As in other ultrasound images these images also contain speckle noise. In some cases this speckle noise is useful such as in motion detection. But in general noise removal is required for better analysis of the image and proper diagnosis. Different Adaptive and anisotropic filters are included for statistical analysis. Statistical parameters such as Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), and Root Mean Square Error (RMSE) calculated for performance measurement. One more important aspect that there may be blurring during speckle noise removal. So it is prefered that filter should be able to enhance edges during noise removal.

  3. Noise reduction for helical computed tomography using coupled projections

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Ma, Jianhua; Liu, Yan; Lu, Hongbing; Liang, Zhengrong

    2012-03-01

    Helical computed tomography (HCT) has demonstrated the effectiveness in virtual colonoscopy (VC) or CTcolonography (CTC). One major concern with this clinical application is associated with the risk of high radiation exposure, especially for its use for screening purpose at a large population. In this work, we presented an improved Karhunen-Loeve (KL) domain penalized weighted least-squares (PWLS) strategy which considers the data correlations among the projection rays mainly due to partially overlap while system rotates. Two 1-dimensional (1D) projections, which called coupled projections (CPs), are composed according to the geometry. Each element of the 1D projection is carefully selected for a specific point within 2π angle along the system rotates and thus a highly correlation can be observed between any specific projection and the CPs. These highly correlated projections can be treated by an adaptive KL-PWLS strategy for accurate noise reduction. This method has been implemented and tested on computer simulated sinograms which mimic low-dose CT scans. The reconstructed images by the presented strategy demonstrated the potential of ultra low-dose CT application.

  4. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate

  5. Effects of forward velocity and acoustic treatment on inlet fan noise

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.; Merriman, J. E.

    1974-01-01

    Flyover and static noise data from several engines are presented that show inlet fan noise measured in flight can be lower than that projected from static tests for some engines. The differences between flight and static measurements appear greatest when the fan fundamental tone due to rotor-stator interaction or to the rotor-alone field is below cutoff. Data from engine and fan tests involving inlet treatment on the walls only are presented that show the attenuation from this treatment is substantially larger than expected from previous theories or flow duct experience. Data showing noise shielding effects due to the location of the engine on the airplane are also presented. These observations suggest that multiringed inlets may not be necessary to achieve the desired noise reduction in many applications.

  6. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Yamamoto, K.; Majjigi, R. K.; Brausch, J. F.

    1984-01-01

    Six scale-model nozzles were tested in an anechoic facility to evauate the effectiveness of convergent-divergent (C-D) terminations in reducing shock-cell noise of unsuppressed and mechanically suppressed coannular plug nozzles. One hundred fifty-three acoustic test points with inverted velocity profiles were conducted under static and simulated flight conditions. Diagnostic flow visualization with a shadowgraph and velocity measurements with a laser velocimeter were performed on selected plumes. Shock-cells were identified on the plug and downstream of the plug of the unsuppressed convergent coannular nozzle with truncated plug. Broadband peak frequencies predicted with the two shock-cell structures were correlated with the observed spectra using the measured shock-cell spacings. Relative to a convergent circular nozzle, the perceived noise level (PNL) data at an observer angle of 60 deg relative to inlet, indicated a reduction of (1) 6.5 dB and 9.2 dB with unsuppressed C-D coannular nozzle with truncated plug and (2) 7.7 dB and 8.3 dB with suppressed C-D coannular nozzle under static and simulated flight conditions, espectively. The unsuppressed C-D coannular nozzle with truncated plug, operating at the C-D design condition, had shock-cells downstream of the plug with no shock-cells on the plug. The downstream shock-cells were eliminated by replacing the truncated plug with a smooth extension to obtain an additional 2.4 dB and 3 dB front quadrant PNL reduction, under static and simulated flight conditions, respectively. Other results are discussed.

  7. Noise reduction tests of large-scale-model externally blown flap using trailing-edge blowing and partial flap slot covering. [jet aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.; Burns, R. J.; Wagner, J. M.

    1976-01-01

    Noise data were obtained with a large-scale cold-flow model of a two-flap, under-the-wing, externally blown flap proposed for use on future STOL aircraft. The noise suppression effectiveness of locating a slot conical nozzle at the trailing edge of the second flap and of applying partial covers to the slots between the wing and flaps was evaluated. Overall-sound-pressure-level reductions of 5 db occurred below the wing in the flyover plane. Existing models of several noise sources were applied to the test results. The resulting analytical relation compares favorably with the test data. The noise source mechanisms were analyzed and are discussed.

  8. Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs.

    PubMed

    Zhang, Wei; Xu, Zhenyu; Lours, Michel; Boudot, Rodolphe; Kersalé, Yann; Luiten, Andre N; Le Coq, Yann; Santarelli, Giorgio

    2011-05-01

    We report what we believe to be the lowest phase noise optical-to-microwave frequency division using fiber-based femtosecond optical frequency combs: a residual phase noise of -120 dBc/Hz at 1 Hz offset from an 11.55 GHz carrier frequency. Furthermore, we report a detailed investigation into the fundamental noise sources which affect the division process itself. Two frequency combs with quasi-identical configurations are referenced to a common ultrastable cavity laser source. To identify each of the limiting effects, we implement an ultra-low noise carrier-suppression measurement system, which avoids the detection and amplification noise of more conventional techniques. This technique suppresses these unwanted sources of noise to very low levels. In the Fourier frequency range of ∼200 Hz to 100 kHz, a feed-forward technique based on a voltage-controlled phase shifter delivers a further noise reduction of 10 dB. For lower Fourier frequencies, optical power stabilization is implemented to reduce the relative intensity noise which causes unwanted phase noise through power-to-phase conversion in the detector. We implement and compare two possible control schemes based on an acousto-optical modulator and comb pump current. We also present wideband measurements of the relative intensity noise of the fiber comb. PMID:21622045

  9. Experimental evidence of simultaneous multi-resonance noise reduction using an absorber with essential nonlinearity under two excitation frequencies

    NASA Astrophysics Data System (ADS)

    Côte, Renaud; Pachebat, Marc; Bellizzi, Sergio

    2014-09-01

    The addition of an essentially nonlinear membrane absorber to a linear vibroacoustic system with multiple resonances is studied experimentally, using quasiperiodic excitation. An extended experimental dataset of the system response is analyzed under steady-state excitation at two frequencies. Thresholds between low and high damping states within the system and associated noise reduction are observed and quantified thanks to frequency conversion and RMS efficiency indicators. Following previous numerical results, it is shown that the membrane NES (Nonlinear Energy Sink) acts simultaneously and efficiently on two acoustic resonances. In all cases, the introduction of energy at a second excitation frequency appears favorable to lower the frequency conversion threshold and to lower the noise within the system. In particular, a simultaneous control of two one-to-one resonances by the NES is observed. Exploration of energy conversion in the two excitation amplitudes plane advocates for a linear dependence of the frequency conversion thresholds on the two excitation amplitudes.

  10. Inter-noise 85; Proceedings of the Fourteenth International Conference on Noise Control Engineering, Munich, West Germany, September 18-20, 1985. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Various papers on the problem of noise are presented. The general topics addressed include: sources of noise emission; physical phenomena associated with noise; noise control elements; and the generation, transmission, isolation, and reduction of vibrations. Individual subjects discussed include: regulation and technical standards of noise control; noise-induced health disturbances; principles of machine noise reduction; characteristics and prediction of factory sound propagation; reduction of structure-borne noise; noise prediction and planning; noise emission data of machines and equipment; noise emission from road vehicles; noise from general aviation aircraft; noise emission from jet aircraft during takeoff; damping and acoustical radiation efficiency of carbon fiber-reinforced carbon epoxy plates.

  11. Noise correlation in CBCT projection data and its application for noise reduction in low-dose CBCT

    SciTech Connect

    Zhang, Hua; Ouyang, Luo; Wang, Jing E-mail: jing.wang@utsouthwestern.edu; Ma, Jianhua E-mail: jing.wang@utsouthwestern.edu; Huang, Jing; Chen, Wufan

    2014-03-15

    Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, the authors systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam onboard CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 to 1.6 mAs per projection at three fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are nonzero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second-order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. At the 2.0 mm resolution level in the axial-plane noise resolution tradeoff analysis, the noise level of the PWLS-Cor reconstruction is 6.3% lower than that of the PWLS-Dia reconstruction. Conclusions: Noise is correlated among nearest neighboring

  12. Long-term measurements of acoustic background noise in very deep sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.; NEMO Collaboration

    2009-06-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration installed, 25 km E offshore the port of Catania (Sicily) at 2000 m depth, an underwater laboratory to perform long-term tests of prototypes and new technologies for an underwater high energy neutrino km-scale detector in the Mediterranean Sea. In this framework the Collaboration deployed and successfully operated for about two years, starting from January 2005, an experimental apparatus for on-line monitoring of deep-sea noise. The station was equipped with four hydrophones and it is operational in the range 30 Hz-43 kHz. This interval of frequencies matches the range suitable for the proposed acoustic detection technique of high energy neutrinos. Hydrophone signals were digitized underwater at 96 kHz sampling frequency and 24 bits resolution. The stored data library, consisting of more than 2000 h of recordings, is a unique tool to model underwater acoustic noise at large depth, to characterize its variations as a function of environmental parameters, biological sources and human activities (ship traffic, etc.), and to determine the presence of cetaceans in the area.

  13. Validation of the Small Hot Jet Acoustic Rig for Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Bridges, James; Brown, Clifford A.

    2005-01-01

    The development and acoustic validation of the Small Hot Jet Aeroacoustic Rig (SHJAR) is documented. Originally conceived to support fundamental research in jet noise, the rig has been designed and developed using the best practices of the industry. While validating the rig for acoustic work, a method of characterizing all extraneous rig noise was developed. With this in hand, the researcher can know when the jet data being measured is being contaminated and design the experiment around this limitation. Also considered is the question of uncertainty, where it is shown that there is a fundamental uncertainty of 0.5dB or so to the best experiments, confirmed by repeatability studies. One area not generally accounted for in the uncertainty analysis is the variation which can result from differences in initial condition of the nozzle shear layer. This initial condition was modified and the differences in both flow and sound were documented. The bottom line is that extreme caution must be applied when working on small jet rigs, but that highly accurate results can be made independent of scale.

  14. Vibration modes and acoustic noise in a 4-phase switched reluctance motor

    SciTech Connect

    Colby, R.S.; Mottier, F.; Miller, T.J.E.

    1995-12-31

    Acoustic noise in the switched reluctance motor is caused primarily by the deformation of the stator lamination stack. Acoustic noise is most severe when the periodic excitation of the SRM phases excites a natural vibration mode of the stack. The natural vibration modes and frequencies of a 4-phase, 8/6 switched reluctance motor are examined. Structural finite element analysis is used to compute the natural modes and frequencies. Impulse tests on the stator stack verify the calculations and show which modes are excited. Heuristic arguments are developed to predict the operating conditions that will excite the natural modes. Measurement of vibration while the machine is under load shows which operating conditions excite the natural modes and verifies the predictions. An approximate formula is derived to predict the frequency of the fundamental vibration mode in terms of lamination dimensions and material properties. The formula is validated by comparison with finite element calculations for several laminations, and hence is shown to be useful in design trade-off studies.

  15. Estimation of Broadband Shock Noise Reduction in Turbulent Jets by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Lonerjan, Michael J.

    2008-01-01

    The concept of effective jet properties introduced by the authors (AIAA-2007-3645) has been extended to the estimation of broadband shock noise reduction by water injection in supersonic jets. Comparison of the predictions with the test data for cold underexpanded supersonic nozzles shows a satisfactory agreement. The results also reveal the range of water mass flow rates over which saturation of mixing noise reduction and existence of parasitic noise are manifest.

  16. Noise reduction of circular sawing machines, influence of tooth shape and number of teeth

    NASA Astrophysics Data System (ADS)

    Huber, H.; Muenz, U. V.

    1982-03-01

    While cutting, circular sawing machines create a noise level of 97 to 106 dB(A). The tooth geometry and the dimensions of a silent saw are investigated as well as noise damping measurements on the machines. After alteration of tools and machines the noise level measurements were performed. By decrease of tooth height and number of teeth and by damping of machine parts, noise level reductions of about 10 dB(A) were achieved.

  17. Acoustic measurements from a rotor blade-vortex interaction noise experiment in the German-Dutch Wind Tunnel (DNW)

    NASA Technical Reports Server (NTRS)

    Martin, Ruth M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.

    1988-01-01

    Acoustic data are presented from a 40 percent scale model of the 4-bladed BO-105 helicopter main rotor, measured in the large European aeroacoustic wind tunnel, the DNW. Rotor blade-vortex interaction (BVI) noise data in the low speed flight range were acquired using a traversing in-flow microphone array. The experimental apparatus, testing procedures, calibration results, and experimental objectives are fully described. A large representative set of averaged acoustic signals is presented.

  18. Structural parameters that influence the noise reduction characteristics of typical general aviation materials

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Grosveld, F.

    1980-01-01

    Effect of panel curvature and oblique angle of sound incidence on noise reduction characteristics of an aluminum panel are experimentally investigated. Panel curvature results show significant increase in stiffness with comparable decrease of sound transmission through the panel in the frequency region below the panel/cavity resonance frequency. Noise reduction data have been achieved for aluminum panels with clamped, bonded and riveted edge conditions. These edge conditions are shown to influence noise reduction characteristics of aluminum panels. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial and biaxial in-plane stresses are presented and discussed. Results indicate important improvement in noise reduction of these panels in the frequency range below the fundamental panel/cavity resonance frequency.

  19. CT image noise reduction using rotational-invariant feature in Stockwell transform

    NASA Astrophysics Data System (ADS)

    Su, Jian; Li, Zhoubo; Yu, Lifeng; Warner, Joshua; Blezek, Daniel; Erickson, Bradley

    2014-03-01

    Iterative reconstruction and other noise reduction methods have been employed in CT to improve image quality and to reduce radiation dose. The non-local means (NLM) filter emerges as a popular choice for image-based noise reduction in CT. However, the original NLM method cannot incorporate similar structures if they are in a rotational format, resulting in ineffective denoising in some locations of the image and non-uniform noise reduction across the image. We have developed a novel rotational-invariant image texture feature derived from the multiresolutional Stockwell-transform (ST), and applied it to CT image noise reduction so that similar structures can be identified and fully utilized even when they are in different orientations. We performed a computer simulation study in CT to demonstrate better efficiency in terms of utilizing redundant information in the image and more uniform noise reduction achieved by ST than by NLM.

  20. Reduction of classroom noise levels using group contingencies.

    PubMed

    Ring, Brandon M; Sigurdsson, Sigurdur O; Eubanks, Sean L; Silverman, Kenneth

    2014-01-01

    The therapeutic workplace is an employment-based abstinence reinforcement intervention for unemployed drug users where trainees receive on-the-job employment skills training in a classroom setting. The study is an extension of prior therapeutic workplace research, which suggested that trainees frequently violated noise standards. Participants received real-time graphed feedback of noise levels and had the opportunity to earn monetary group reinforcement for maintaining a low number of noise violations. Results suggested that feedback and monetary reinforcement reduced the number of noise violations. PMID:25175843

  1. Comparative intelligibility investigation of single-channel noise-reduction algorithms for Chinese, Japanese, and Englisha

    PubMed Central

    Li, Junfeng; Yang, Lin; Zhang, Jianping; Yan, Yonghong; Hu, Yi; Akagi, Masato; Loizou, Philipos C.

    2011-01-01

    A large number of single-channel noise-reduction algorithms have been proposed based largely on mathematical principles. Most of these algorithms, however, have been evaluated with English speech. Given the different perceptual cues used by native listeners of different languages including tonal languages, it is of interest to examine whether there are any language effects when the same noise-reduction algorithm is used to process noisy speech in different languages. A comparative evaluation and investigation is taken in this study of various single-channel noise-reduction algorithms applied to noisy speech taken from three languages: Chinese, Japanese, and English. Clean speech signals (Chinese words and Japanese words) were first corrupted by three types of noise at two signal-to-noise ratios and then processed by five single-channel noise-reduction algorithms. The processed signals were finally presented to normal-hearing listeners for recognition. Intelligibility evaluation showed that the majority of noise-reduction algorithms did not improve speech intelligibility. Consistent with a previous study with the English language, the Wiener filtering algorithm produced small, but statistically significant, improvements in intelligibility for car and white noise conditions. Significant differences between the performances of noise-reduction algorithms across the three languages were observed. PMID:21568430

  2. Comparative intelligibility investigation of single-channel noise-reduction algorithms for Chinese, Japanese, and English.

    PubMed

    Li, Junfeng; Yang, Lin; Zhang, Jianping; Yan, Yonghong; Hu, Yi; Akagi, Masato; Loizou, Philipos C

    2011-05-01

    A large number of single-channel noise-reduction algorithms have been proposed based largely on mathematical principles. Most of these algorithms, however, have been evaluated with English speech. Given the different perceptual cues used by native listeners of different languages including tonal languages, it is of interest to examine whether there are any language effects when the same noise-reduction algorithm is used to process noisy speech in different languages. A comparative evaluation and investigation is taken in this study of various single-channel noise-reduction algorithms applied to noisy speech taken from three languages: Chinese, Japanese, and English. Clean speech signals (Chinese words and Japanese words) were first corrupted by three types of noise at two signal-to-noise ratios and then processed by five single-channel noise-reduction algorithms. The processed signals were finally presented to normal-hearing listeners for recognition. Intelligibility evaluation showed that the majority of noise-reduction algorithms did not improve speech intelligibility. Consistent with a previous study with the English language, the Wiener filtering algorithm produced small, but statistically significant, improvements in intelligibility for car and white noise conditions. Significant differences between the performances of noise-reduction algorithms across the three languages were observed. PMID:21568430

  3. Clinical characteristics of acoustic trauma caused by gunshot noise in mass rifle drills without ear protection.

    PubMed

    Moon, In Seok; Park, Sang-Yong; Park, Hyun Jin; Yang, Hoon-Shik; Hong, Sung-Jong; Lee, Won-Sang

    2011-10-01

    One of the major occupational hazards of working in military service is being subjected to intense impulse noise. We analyzed the clinical presentation of acoustic traumas, induced by mass rifle gunshot noise during military training, in unprotected patients. We evaluated 189 soldiers who had otologic symptoms after rifle shooting exercises without using any hearing protection. All soldiers had been training on the K2 rifle. We took medical histories; conducted physical examinations and hearing evaluations (pure-tone audiometry, speech audiometry, and impedence audiometry); and distributed the Newmann's Tinnitus Handicap Inventory (THI) survey. In addition, we evaluated a normal control group of 64 subjects of similar age who had never fired a rifle. In the patient group, the most common and irritating reported symptom was tinnitus (94.2%), and the average THI score in the patient group was 39.51 ± 14.87, which was significantly higher than the control group score (0.56 ± 3.94) (p < 0.001). Average outcomes of post-exposure air conduction thresholds were 21.33 ± 13.25 dB HL in the affected ears. These levels also were significantly higher than those of the control group (9.16 ± 4.07dB HL) (p < 0.001). Hearing loss was most prominent at high frequencies. An asymmetry of hearing loss related to head position during shooting was not observed. Acoustic trauma induced by gunshot noise can cause permanent tinnitus and hearing loss. Hearing protection (bilateral earplugs) and environmental reform are necessary. PMID:21936701

  4. The Effects of Noise Reduction on Social Behaviors.

    ERIC Educational Resources Information Center

    Carbone, Vincent J.; Duncan, Phillip K.

    1986-01-01

    The study found no relationship between improved social behavior in a group of juveniles residing at a county shelter care facility and decreased frequency and duration of disruptions above 85 decibels. Subjects did reduce noise levels when stereo listening was made contingent on reduced noise. (Author/DB)

  5. Quantum issues in optical communication. [noise reduction in signal reception

    NASA Technical Reports Server (NTRS)

    Kennedy, R. S.

    1973-01-01

    Various approaches to the problem of controlling quantum noise, the dominant noise in an optical communications system, are discussed. It is shown that, no matter which way the problem is approached, there always remain uncertainties. These uncertainties exist because, to date, only very few communication problems have been solved in their full quantum form.

  6. Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.

    2014-01-01

    A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger

  7. A prediction of helicopter rotor discrete frequency noise for three scale models using a new acoustics program

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1987-01-01

    A new computer program which uses Farassat's most advanced subsonic time domain formulation has been written to predict helicopter rotor discrete frequency noise. A brief description of the program, WOPWOP, is followed by a comparison of predicted and experimentally measured acoustic pressure and spectra for a 1/4 scale UH-1 model rotor blade and a 1/7 scale OLS (AH-1G) model rotor blade. The C81 computer program was used to predict the spanwise loading on the rotor for aerodynamic input into the acoustic prediction. Comparisons are made for different flight conditions and microphone locations with good results. In general the acoustic pressure is underpredicted. The acoustic predictions for a tapered rotor blade and predictions for microphones well below the tip path plane show less underprediction. Finally, in-plane motion of the rotor blade is shown to significantly affect the peak-to-peak amplitude of the acoustic pressure for high advancing tip Mach numbers.

  8. Experimental demonstration of a displacement noise free interferometry scheme for gravitational wave detectors showing displacement noise reduction at low frequencies

    SciTech Connect

    Perreca, Antonio; Chelkowski, Simon; Freise, Andreas; Hild, Stefan

    2010-03-15

    This paper reports an experimental demonstration of partial displacement noise free laser interferometry in the gravitational wave detection band. The used detuned Fabry-Perot cavity allows the isolation of the mimicked gravitational wave signal from the displacement noise on the cavities input mirror. By properly combining the reflected and transmitted signals from the cavity a reduction of the displacement noise was achieved. Our results represent the first experimental demonstration of this recently proposed displacement noise free laser interferometry scheme. Overall, we show that the rejection ratio of the displacement noise to the gravitational wave signal was improved in the frequency range of 10 Hz to 10 kHz with a typical factor of {approx}60.

  9. Methods for clinical evaluation of noise reduction techniques in abdominopelvic CT.

    PubMed

    Ehman, Eric C; Yu, Lifeng; Manduca, Armando; Hara, Amy K; Shiung, Maria M; Jondal, Dayna; Lake, David S; Paden, Robert G; Blezek, Daniel J; Bruesewitz, Michael R; McCollough, Cynthia H; Hough, David M; Fletcher, Joel G

    2014-01-01

    Most noise reduction methods involve nonlinear processes, and objective evaluation of image quality can be challenging, since image noise cannot be fully characterized on the sole basis of the noise level at computed tomography (CT). Noise spatial correlation (or noise texture) is closely related to the detection and characterization of low-contrast objects and may be quantified by analyzing the noise power spectrum. High-contrast spatial resolution can be measured using the modulation transfer function and section sensitivity profile and is generally unaffected by noise reduction. Detectability of low-contrast lesions can be evaluated subjectively at varying dose levels using phantoms containing low-contrast objects. Clinical applications with inherent high-contrast abnormalities (eg, CT for renal calculi, CT enterography) permit larger dose reductions with denoising techniques. In low-contrast tasks such as detection of metastases in solid organs, dose reduction is substantially more limited by loss of lesion conspicuity due to loss of low-contrast spatial resolution and coarsening of noise texture. Existing noise reduction strategies for dose reduction have a substantial impact on lowering the radiation dose at CT. To preserve the diagnostic benefit of CT examination, thoughtful utilization of these strategies must be based on the inherent lesion-to-background contrast and the anatomy of interest. The authors provide an overview of existing noise reduction strategies for low-dose abdominopelvic CT, including analytic reconstruction, image and projection space denoising, and iterative reconstruction; review qualitative and quantitative tools for evaluating these strategies; and discuss the strengths and limitations of individual noise reduction methods. PMID:25019428

  10. Meeting 2006, outdoor noise directive (OND) noise levels for a diesel engine driven air compressor: A case study in noise reduction

    NASA Astrophysics Data System (ADS)

    Rowe, David F.

    2005-09-01

    In January 2006, the noise limits for many products in the European Union will drop by 2-3 dBA, as directed by 2000/14/EC ``Noise Emission in the Environment by Equipment Used Outdoors,'' commonly called the ``Outdoor Noise Directive,'' or ``OND.'' Air compressors are among the products addressed by this directive. At Ingersoll-Rand, significant effort has been directed at meeting the challenge of reducing noise on a variety of diesel engine driven air compressor platforms, ranging from 15 to 350 kW diesel engine power ratings. This paper presents a case study of the noise reduction on a 750 cfm (21 m3/min) air compressor operating at 300 psig (21 bar), to meet the 2006 OND noise limit of 100 LwA.

  11. Challenges and Recent Developments in Hearing Aids: Part I. Speech Understanding in Noise, Microphone Technologies and Noise Reduction Algorithms

    PubMed Central

    Chung, King

    2004-01-01

    This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules, and the time constants involved in the execution of the decision. In addition, mechanisms and the differences in the implementation of various strategies used to reduce the negative effects of noise are discussed. These technologies include the microphone technologies that take advantage of the spatial differences between speech and noise and the noise reduction algorithms that take advantage of the spectral difference and temporal separation between speech and noise. The specific technologies discussed in this paper include first-order directional microphones, adaptive directional microphones, second-order directional microphones, microphone matching algorithms, array microphones, multichannel adaptive noise reduction algorithms, and synchrony detection noise reduction algorithms. Verification data for these technologies, if available, are also summarized. PMID:15678225

  12. Survey of techniques for reduction of wind turbine blade trailing edge noise.

    SciTech Connect

    Barone, Matthew Franklin

    2011-08-01

    Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. An assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.

  13. Observation of the fundamental Nyquist noise limit in an ultra-high Q-factor cryogenic bulk acoustic wave cavity

    SciTech Connect

    Goryachev, Maxim Ivanov, Eugene N.; Tobar, Michael E.; Kann, Frank van; Galliou, Serge

    2014-10-13

    Thermal Nyquist noise fluctuations of high-Q bulk acoustic wave cavities have been observed at cryogenic temperatures with a DC superconducting quantum interference device amplifier. High Q modes with bandwidths of few tens of milliHz produce thermal fluctuations with a signal-to-noise ratio of up to 23 dB. The estimated effective temperature from the Nyquist noise is in good agreement with the physical temperature of the device, confirming the validity of the equivalent circuit model and the non-existence of any excess resonator self-noise. The measurements also confirm that the quality factor remains extremely high (Q > 10{sup 8} at low order overtones) for very weak (thermal) system motion at low temperatures, when compared to values measured with relatively strong external excitation. This result represents an enabling step towards operating such a high-Q acoustic device at the standard quantum limit.

  14. Noise reduction in a Mach 5 wind tunnel with a rectangular rod-wall sound shield

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.; Keyes, J. W.; Beckwith, I. E.

    1980-01-01

    A rod wall sound shield was tested over a range of Reynolds numbers of 0.5 x 10 to the 7th power to 8.0 x 10 to the 7th power per meter. The model consisted of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Suitable measurement techniques were used to determine properties of the flow and acoustic disturbance in the shield and transition in the rod boundary layers. Measurements indicated that for a Reynolds number of 1.5 x 10 to the 9th power the noise in the shielded region was significantly reduced, but only when the flow is mostly laminar on the rods. Actual nozzle input noise measured on the nozzle centerline before reflection at the shield walls was attenuated only slightly even when the rod boundary layer were laminar. At a lower Reynolds number, nozzle input noise at noise levels in the shield were still too high for application to a quiet tunnel. At Reynolds numbers above 2.0 x 10 the the 7th power per meter, measured noise levels were generally higher than nozzle input levels, probably due to transition in the rod boundary layers. The small attenuation of nozzle input noise at intermediate Reynolds numbers for laminar rod layers at the acoustic origins is apparently due to high frequencies of noise.

  15. Impulse noise and acute acoustic trauma in Finnish conscripts. Number of shots fired and safe distances.

    PubMed

    Savolainen, S; Lehtomäki, K M

    1997-01-01

    This prospective study of acute acoustic trauma (AAT) from exposure to impulse noise during compulsory military service focused on three issues the number of shot or explosion impulses that the conscript was exposed to at the time of AAT, distance of injured ear from causal firearm, and the circumstances under which AAT occurred protected ears. The series includes 449 consecutive, verified cases of AAT seen at the Central Military Hospital in Helsinki, Finland, in the period 1989-1993. AAT usually occurred during combat training (87%) as a result of exposure to impulses from small arms (83%). In 41%. AAT was caused by a single shot or detonation impulse. As many as 92% of all AATs occurred within 2 m of the causal firearm. Fourteen percent were wearing hearing protectors when the accident took place, but every third had badly fitting protectors or had neglected safety regulations and used insufficient protection. Of all AATs caused by one noise impulse in protected ears. 83% were attributable to heavy arms and only 14% to small arms. The results of the study suggest that combined use of earmuffs and earplugs in association with a safe distance of over 5 m from the noise source gives adequate protection against AAT. However, for conscripts using certain heavy arms e.g. hazooka. more effective hearing protection should be developed. PMID:9187006

  16. Effect of at-the-source noise reduction on performance and weights of a tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.

    1975-01-01

    Reduction of far-field acoustic signature through modification of basic design parameters (tip speed, number of blades, disc loading and rotor blade area) was examined, using a tilt-rotor flight research aircraft as a baseline configuration. Of those design parameters, tip speed appeared as the most important. Next, preliminary design of two aircraft was performed, postulating the following reduction of noise level from that of the baseline machine, at 500 feet from the spot of OGE hover. In one aircraft, the PNL was lowered by 10 PNdB and in the other, OASPL decreased by 10 dB. The resulting weight and performance penalties were examined. Then, PNL and EPNL aspects of terminal operation were compared for the baseline and quieter aircraft.

  17. Quantitative appraisal for noise reduction in digital holographic phase imaging.

    PubMed

    Montresor, Silvio; Picart, Pascal

    2016-06-27

    This paper discusses on a quantitative comparison of the performances of different advanced algorithms for phase data de-noising. In order to quantify the performances, several criteria are proposed: the gain in the signal-to-noise ratio, the Q index, the standard deviation of the phase error, and the signal to distortion ratio. The proposed methodology to investigate de-noising algorithms is based on the use of a realistic simulation of noise-corrupted phase data. A database including 25 fringe patterns divided into 5 patterns and 5 different signal-to-noise ratios was generated to evaluate the selected de-noising algorithms. A total of 34 algorithms divided into different families were evaluated. Quantitative appraisal leads to ranking within the considered criteria. A fairly good correlation between the signal-to-noise ratio gain and the quality index has been observed. There exists an anti-correlation between the phase error and the quality index which indicates that the phase errors are mainly structural distortions in the fringe pattern. Experimental results are thoroughly discussed in the paper. PMID:27410587

  18. Implementation of a noise reduction circuit for spaceflight IR spectrometers

    NASA Technical Reports Server (NTRS)

    Ramirez, L.; Hickok, R.; Pain, B.; Staller, C.

    1992-01-01

    The paper discusses the implementation and analysis of a correlated triple sampling circuit using analog subtractor/integrators. The software and test setup for noise measurements are also described. The correlation circuitry is part of the signal chain for a 256-element InSb line array used in the Visible and Infrared Mapping Spectrometer. Using a focal-plane array (FPA) simulator, system noise measurements of 0.7 DN are obtained. A test setup for FPA/SPE (signal processing electronics) characterization along with noise measurements is demonstrated.

  19. Noise reduction studies of several aircraft to reduce their aural detection distances

    NASA Technical Reports Server (NTRS)

    Dingeldein, R. C.; Connor, A. B.; Hilton, D. A.

    1975-01-01

    A study was conducted to assess the extent to which practicable reductions of the external noise level of various aircraft could be achieved by different methods. The aircraft included in the study are the O-1, O-2, U-10, OV-1, and A-6. The noise signatures obtained from field measurements and the estimated aural detection distance of aircraft operating in low speed cruising flight are presented. The characteristics of each aircraft and the modifications made to reduce the aerodynamic noise are explained. Tables of data are included to show the effectiveness of the noise reduction modifications for each aircraft.

  20. Noise Reduction in High-Throughput Gene Perturbation Screens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Motivation: Accurate interpretation of perturbation screens is essential for a successful functional investigation. However, the screened phenotypes are often distorted by noise, and their analysis requires specialized statistical analysis tools. The number and scope of statistical methods available...