Sample records for acoustic phonon sidebands

  1. Understanding photon sideband statistics and correlation for determining phonon coherence

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Yin, Xiaobo; Li, Baowen

    2018-01-01

    Generating and detecting coherent high-frequency heat-carrying phonons have been topics of great interest in recent years. Although there have been successful attempts in generating and observing coherent phonons, rigorous techniques to characterize and detect phonon coherence in a crystalline material have been lagging compared to what has been achieved for photons. One main challenge is a lack of detailed understanding of how detection signals for phonons can be related to coherence. The quantum theory of photoelectric detection has greatly advanced the ability to characterize photon coherence in the past century, and a similar theory for phonon detection is necessary. Here, we reexamine the optical sideband fluorescence technique that has been used to detect high-frequency phonons in materials with optically active defects. We propose a quantum theory of phonon detection using the sideband technique and found that there are distinct differences in sideband counting statistics between thermal and coherent phonons. We further propose a second-order correlation function unique to sideband signals that allows for a rigorous distinction between thermal and coherent phonons. Our theory is relevant to a correlation measurement with nontrivial response functions at the quantum level and can potentially bridge the gap of experimentally determining phonon coherence to be on par with that of photons.

  2. Quantum Control of a Nitrogen-Vacancy Center using Surface Acoustic Waves in the Resolved Sideband Limit

    NASA Astrophysics Data System (ADS)

    Golter, David; Oo, Thein; Amezcua, Maira; Wang, Hailin

    Micro-electromechanical systems research is producing increasingly sophisticated tools for nanophononic applications. Such technology is well-suited for achieving chip-based, integrated acoustic control of solid-state quantum systems. We demonstrate such acoustic control in an important solid-state qubit, the diamond nitrogen-vacancy (NV) center. Using an interdigitated transducer to generate a surface acoustic wave (SAW) field in a bulk diamond, we observe phonon-assisted sidebands in the optical excitation spectrum of a single NV center. This exploits the strong strain sensitivity of the NV excited states. The mechanical frequencies far exceed the relevant optical linewidths, reaching the resolved-sideband regime. This enables us to use the SAW field for driving Rabi oscillations on the phonon-assisted optical transition. These results stimulate the further integration of SAW-based technologies with the NV center system.

  3. Effects of acoustic- and optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1990-04-01

    We present the results of a parameter-free first-principles theory for the fine structure of the Urbach optical-absorption edge in crystalline and disordered semiconductors. The dominant features are recaptured by means of a simple physical argument based on the most probable potential-well analogy. At finite temperatures, the overall linear exponential Urbach behavior of the subgap optical-absorption coefficient is a consequence of multiple LA-phonon emission and absorption sidebands that accompany the electronic transition. The fine structure of subgap absorption spectra observed in some materials is accounted for by multiple TO-, LO-, and TA-phonon absorption and emission sidebands. Good agreement is found with experimental data on crystalline silicon. The effects of nonadiabaticity in the electron-phonon interaction are calculated.

  4. Temperature dependence of the LO phonon sidebands in free exciton emission of GaN

    NASA Astrophysics Data System (ADS)

    Xu, S. J.; Li, G. Q.; Xiong, S.-J.; Che, C. M.

    2006-04-01

    Temperature-dependent radiative recombination of free excitons involving one or two LO phonons in GaN is investigated in detail. It is found that both phonon sidebands possess asymmetric lineshapes and their energy spacings from the zero-phonon line strongly deviate from the characteristic energy of LO phonons as the temperature increases. Furthermore, the deviation rates of one- and two-phonon sidebands are significantly different. Segall-Mahan [Phys. Rev. 171, 935 (1968)] theory, taking the exciton-photon and exciton-phonon interactions into account, is employed to calculate the sidebands of one or two LO phonons for free excitons in a wide temperature range. Excellent agreement between the theory and experiment is achieved by using only one adjustable parameter, which leads to determination of the effective mass of heavy holes (~0.5m0).

  5. Spectral features of LO phonon sidebands in luminescence of free excitons in GaN

    NASA Astrophysics Data System (ADS)

    Xu, S. J.; Li, G. Q.; Xiong, S.-J.; Tong, S. Y.; Che, C. M.; Liu, W.; Li, M. F.

    2005-06-01

    In the paper a combined experimental and theoretical investigation of the longitudinal optical phonon sidebands (PSBs) in the luminescence of free excitons in GaN at moderately high temperatures was reported. The spectral features, including line broadening, shift, and asymmetry of the one- and two-phonon PSBs, were revealed both experimentally and theoretically. It is found that the linewidth of the one-phonon PSB is surprisingly always larger than that of the two-phonon PSB in the interested temperature range. Moreover, the thermal broadening rates of the one- and two-phonon PSBs are considerably different. We adopted the Segall-Mahan theory [B. Segall and G. D. Mahan, Phys. Rev. 171, 935 (1968)] to compute the PSB spectra of the free excitons in GaN. Only one adjustable parameter, the effective mass of the holes, was used in the calculations. For the one-phonon PSB, an excellent agreement between theory and experiment is achieved when an adequate effective mass of the holes was used.

  6. Coherent acoustic phonons in nanostructures

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.

    2008-02-01

    Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.

  7. Coupling of Excitons and Discrete Acoustic Phonons in Vibrationally Isolated Quantum Emitters.

    PubMed

    Werschler, Florian; Hinz, Christopher; Froning, Florian; Gumbsheimer, Pascal; Haase, Johannes; Negele, Carla; de Roo, Tjaard; Mecking, Stefan; Leitenstorfer, Alfred; Seletskiy, Denis V

    2016-09-14

    The photoluminescence emission by mesoscopic condensed matter is ultimately dictated by the fine-structure splitting of the fundamental exciton into optically allowed and dipole-forbidden states. In epitaxially grown semiconductor quantum dots, nonradiative equilibration between the fine-structure levels is mediated by bulk acoustic phonons, resulting in asymmetric spectral broadening of the excitonic luminescence. In isolated colloidal quantum dots, spatial confinement of the vibrational motion is expected to give rise to an interplay between the quantized electronic and phononic degrees of freedom. In most cases, however, zero-dimensional colloidal nanocrystals are strongly coupled to the substrate such that the charge relaxation processes are still effectively governed by the bulk properties. Here we show that encapsulation of single colloidal CdSe/CdS nanocrystals into individual organic polymer shells allows for systematic vibrational decoupling of the semiconductor nanospheres from the surroundings. In contrast to epitaxially grown quantum dots, simultaneous quantization of both electronic and vibrational degrees of freedom results in a series of strong and narrow acoustic phonon sidebands observed in the photoluminescence. Furthermore, an individual analysis of more than 200 compound particles reveals that enhancement or suppression of the radiative properties of the fundamental exciton is controlled by the interaction between fine-structure states via the discrete vibrational modes. For the first time, pronounced resonances in the scattering rate between the fine-structure states are directly observed, in good agreement with a quantum mechanical model. The unambiguous assignment of mediating acoustic modes to the observed scattering resonances complements the experimental findings. Thus, our results form an attractive basis for future studies on subterahertz quantum opto-mechanics and efficient laser cooling at the nanoscale.

  8. Phononic glass: a robust acoustic-absorption material.

    PubMed

    Jiang, Heng; Wang, Yuren

    2012-08-01

    In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.

  9. Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-01-01

    The optical absorption coefficient for subgap electronic transitions in crystalline and disordered semiconductors is calculated by first-principles means with use of a variational principle based on the Feynman path-integral representation of the transition amplitude. This incorporates the synergetic interplay of static disorder and the nonadiabatic quantum dynamics of the coupled electron-phonon system. Over photon-energy ranges of experimental interest, this method predicts accurate linear exponential Urbach behavior of the absorption coefficient. At finite temperatures the nonlinear electron-phonon interaction gives rise to multiple phonon emission and absorption sidebands which accompany the optically induced electronic transition. These sidebands dominate the absorption in the Urbach regime and account for the temperature dependence of the Urbach slope and energy gap. The physical picture which emerges is that the phonons absorbed from the heat bath are then reemitted into a dynamical polaronlike potential well which localizes the electron. At zero temperature we recover the usual polaron theory. At high temperatures the calculated tail is qualitatively similar to that of a static Gaussian random potential. This leads to a linear relationship between the Urbach slope and the downshift of the extrapolated continuum band edge as well as a temperature-independent Urbach focus. At very low temperatures, deviations from these rules are predicted arising from the true quantum dynamics of the lattice. Excellent agreement is found with experimental data on c-Si, a-Si:H, a-As2Se3, and a-As2S3. Results are compared with a simple physical argument based on the most-probable-potential-well method.

  10. Coherent Phonon Transport Measurement and Controlled Acoustic Excitations Using Tunable Acoustic Phonon Source in GHz-sub THz Range with Variable Bandwidth.

    PubMed

    Shen, Xiaohan; Lu, Zonghuan; Timalsina, Yukta P; Lu, Toh-Ming; Washington, Morris; Yamaguchi, Masashi

    2018-05-04

    We experimentally demonstrated a narrowband acoustic phonon source with simultaneous tunabilities of the centre frequency and the spectral bandwidth in the GHz-sub THz frequency range based on photoacoustic excitation using intensity-modulated optical pulses. The centre frequency and bandwidth are tunable from 65 to 381 GHz and 17 to 73 GHz, respectively. The dispersion of the sound velocity and the attenuation of acoustic phonons in silicon dioxide (SiO 2 ) and indium tin oxide (ITO) thin films were investigated using the acoustic phonon source. The sound velocities of SiO 2 and ITO films were frequency-independent in the measured frequency range. On the other hand, the phonon attenuations of both of SiO 2 and ITO films showed quadratic frequency dependences, and polycrystalline ITO showed several times larger attenuation than those in amorphous SiO 2 . In addition, the selective excitation of mechanical resonance modes was demonstrated in nanoscale tungsten (W) film using acoustic pulses with various centre frequencies and spectral widths.

  11. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    PubMed

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.

  12. Ballistic phonon transmission in quasiperiodic acoustic nanocavities

    NASA Astrophysics Data System (ADS)

    Mo, Yuan; Huang, Wei-Qing; Huang, Gui-Fang; Chen, Yuan; Hu, Wangyu; Wang, Ling-Ling; Pan, Anlian

    2011-04-01

    Ballistic phonon transport is investigated in acoustic nanocavities modulated in a quasiperiodic manner at low temperatures. Two different types of quasiperiodic acoustic nanocavities are considered: the lengths of nanocavities (QPL) and the lengths of the bridges (QPD) connecting two successive nanocavities are modulated according to the Fibonacci rule. We demonstrate that the transmission spectra and thermal conductance in both systems are similar, which is more prominent in QPD than in QPL. The transmission and thermal conductance of QPD are larger than those of QPL due to the fact that constant nanocavity length in QPD would strengthen ballistic phonon resonant transport, while varying nanocavity length in QPL lead to strong phonon scattering.

  13. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    NASA Astrophysics Data System (ADS)

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-02-01

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.

  14. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo

    2015-02-02

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in ordermore » to evaluate their potential use as temperature sensors for acoustic phonons.« less

  15. Electrical modulation and switching of transverse acoustic phonons

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.

    2016-07-01

    We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.

  16. Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon

    NASA Astrophysics Data System (ADS)

    Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-03-01

    Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.

  17. THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures.

    PubMed

    Mante, Pierre-Adrien; Huang, Yu-Ru; Yang, Szu-Chi; Liu, Tzu-Ming; Maznev, Alexei A; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2015-02-01

    Thanks to ultrafast acoustics, a better understanding of acoustic dynamics on a short time scale has been obtained and new characterization methods at the nanoscale have been developed. Among the materials that were studied during the development of ultrafast acoustics, nitride based heterostructures play a particular role due to their piezoelectric properties and the possibility to generate phonons with over-THz frequency and bandwidth. Here, we review some of the work performed using this type of structure, with a focus on THz phonon spectroscopy and nanoscopy. First, we present a brief description of the theory of coherent acoustic phonon generation by piezoelectric heterostructure. Then the first experimental observation of coherent acoustic phonon generated by the absorption of ultrashort light pulses in piezoelectric heterostructures is presented. From this starting point, we then present some methods developed to realize customizable phonon generation. Finally we review some more recent applications of these structures, including imaging with a nanometer resolution, broadband attenuation measurements with a frequency up to 1THz and phononic bandgap characterization. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Analytical Modeling of Acoustic Phonon-Limited Mobility in Strained Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Yousefvand, Ali; Ahmadi, Mohammad T.; Meshginqalam, Bahar

    2017-11-01

    Recent advances in graphene nanoribbon-based electronic devices encourage researchers to develop modeling and simulation methods to explore device physics. On the other hand, increasing the operating speed of nanoelectronic devices has recently attracted significant attention, and the modification of acoustic phonon interactions because of their important effect on carrier mobility can be considered as a method for carrier mobility optimization which subsequently enhances the device speed. Moreover, strain has an important influence on the electronic properties of the nanoelectronic devices. In this paper, the acoustic phonons mobility of armchair graphene nanoribbons ( n-AGNRs) under uniaxial strain is modeled analytically. In addition, strain, width and temperature effects on the acoustic phonon mobility of strained n-AGNRs are investigated. An increment in the strained AGNR acoustic phonon mobility by increasing the ribbon width is reported. Additionally, two different behaviors for the acoustic phonon mobility are verified by increasing the applied strain in 3 m, 3 m + 2 and 3 m + 1 AGNRs. Finally, the temperature effect on the modeled AGNR phonon mobility is explored, and mobility reduction by raising the temperature is reported.

  19. The phononic crystals: An unending quest for tailoring acoustics

    NASA Astrophysics Data System (ADS)

    Kushwaha, M.

    Periodicity (in time or space) is a part and parcel of every living being: One can see, hear, and feel it. Everyday examples are locomotion, respiration, and heart beat. The reinforced N-dimensional periodicity over two or more crystalline solids results in the so-called phononic band-gap crystals. These can have dramatic consequences on the propagation of phonons, vibrations, and sound. The fundamental physics of cleverly fabricated phononic crystals can offer a systematic route to realize the Anderson localization of sound and vibrations. As to the applications, the phononic crystals are envisaged to find ways in the architecture, acoustic waveguides, designing transducers, elastic/acoustic filters, noise control, ultrasonics, medical imaging, and acoustic cloaking, to mention a few. This review focuses on the brief sketch of the progress made in the field that seems to have prospered even more than was originally imagined in the early nineties.

  20. Polariton-acoustic-phonon interaction in a semiconductor microcavity

    NASA Astrophysics Data System (ADS)

    Cassabois, G.; Triques, A. L. C.; Bogani, F.; Delalande, C.; Roussignol, Ph.; Piermarocchi, C.

    2000-01-01

    The broadening of polariton lines by acoustic phonons is investigated in a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond resolution. A decrease of the polariton-acoustic phonon coupling is clearly observed for the lower polariton branch as one approaches the resonance between exciton and photon states. This behavior cannot be explained in terms of a semiclassical linear dispersion theory but requires a full quantum description of the microcavity in the strong-coupling regime.

  1. Electron-acoustic phonon coupling in single crystal CH3NH3PbI3 perovskites revealed by coherent acoustic phonons

    NASA Astrophysics Data System (ADS)

    Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.; Yartsev, Arkady

    2017-02-01

    Despite the great amount of attention CH3NH3PbI3 has received for its solar cell application, intrinsic properties of this material are still largely unknown. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. We apply this method to characterize a CH3NH3PbI3 single crystal. We measure the acoustic phonon properties and characterize electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. Our results reveal high electron and hole mobilities of 2,800 and 9,400 cm2 V-1 s-1, respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH3NH3PbI3.

  2. Electron–acoustic phonon coupling in single crystal CH 3NH 3PbI 3 perovskites revealed by coherent acoustic phonons

    DOE PAGES

    Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.; ...

    2017-02-08

    The intrinsic properties of CH 3NH 3PbI 3 are still largely unknown in spite of the great amount of attention it has received for its solar cell application. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. Furthermore, we apply this method to characterize a CH 3NH 3PbI 3 single crystal.We measure the acoustic phonon properties and characterizemore » electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. These results reveal high electron and hole mobilities of 2,800 and 9,400 cm 2V -1 s -1 , respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH 3NH 3PbI 3.« less

  3. Electron–acoustic phonon coupling in single crystal CH 3NH 3PbI 3 perovskites revealed by coherent acoustic phonons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.

    The intrinsic properties of CH 3NH 3PbI 3 are still largely unknown in spite of the great amount of attention it has received for its solar cell application. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. Furthermore, we apply this method to characterize a CH 3NH 3PbI 3 single crystal.We measure the acoustic phonon properties and characterizemore » electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. These results reveal high electron and hole mobilities of 2,800 and 9,400 cm 2V -1 s -1 , respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH 3NH 3PbI 3.« less

  4. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    DOE PAGES

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; ...

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysismore » of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.« less

  5. Bragg Coherent Diffractive Imaging of Zinc Oxide Acoustic Phonons at Picosecond Timescales

    DOE PAGES

    Ulvestad, A.; Cherukara, M. J.; Harder, R.; ...

    2017-08-29

    Mesoscale thermal transport is of fundamental interest and practical importance in materials such as thermoelectrics. Coherent lattice vibrations (acoustic phonons) govern thermal transport in crystalline solids and are affected by the shape, size, and defect density in nanoscale materials. The advent of hard x-ray free electron lasers (XFELs) capable of producing ultrafast x-ray pulses has significantly impacted the understanding of acoustic phonons by enabling their direct study with x-rays. However, previous studies have reported ensemble-averaged results that cannot distinguish the impact of mesoscale heterogeneity on the phonon dynamics. Here we use Bragg coherent diffractive imaging (BCDI) to resolve the 4Dmore » evolution of the acoustic phonons in a single zinc oxide rod with a spatial resolution of 50 nm and a temporal resolution of 25 picoseconds. We observe homogeneous (lattice breathing/rotation) and inhomogeneous (shear) acoustic phonon modes, which are compared to finite element simulations. We investigate the possibility of changing phonon dynamics by altering the crystal through acid etching. Lastly, we find that the acid heterogeneously dissolves the crystal volume, which will significantly impact the phonon dynamics. In general, our results represent the first step towards understanding the effect of structural properties at the individual crystal level on phonon dynamics.« less

  6. Bragg Coherent Diffractive Imaging of Zinc Oxide Acoustic Phonons at Picosecond Timescales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulvestad, A.; Cherukara, M. J.; Harder, R.

    Mesoscale thermal transport is of fundamental interest and practical importance in materials such as thermoelectrics. Coherent lattice vibrations (acoustic phonons) govern thermal transport in crystalline solids and are affected by the shape, size, and defect density in nanoscale materials. The advent of hard x-ray free electron lasers (XFELs) capable of producing ultrafast x-ray pulses has significantly impacted the understanding of acoustic phonons by enabling their direct study with x-rays. However, previous studies have reported ensemble-averaged results that cannot distinguish the impact of mesoscale heterogeneity on the phonon dynamics. Here we use Bragg coherent diffractive imaging (BCDI) to resolve the 4Dmore » evolution of the acoustic phonons in a single zinc oxide rod with a spatial resolution of 50 nm and a temporal resolution of 25 picoseconds. We observe homogeneous (lattice breathing/rotation) and inhomogeneous (shear) acoustic phonon modes, which are compared to finite element simulations. We investigate the possibility of changing phonon dynamics by altering the crystal through acid etching. Lastly, we find that the acid heterogeneously dissolves the crystal volume, which will significantly impact the phonon dynamics. In general, our results represent the first step towards understanding the effect of structural properties at the individual crystal level on phonon dynamics.« less

  7. Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires

    DOE PAGES

    Kargar, Fariborz; Debnath, Bishwajit; Kakko, Joona -Pekko; ...

    2016-11-10

    Similar to electron waves, the phonon states in semiconductors can undergo changes induced by external boundaries. However, despite strong scientific and practical importance, conclusive experimental evidence of confined acoustic phonon polarization branches in individual free-standing nanostructures is lacking. Here we report results of Brillouin-Mandelstam light scattering spectroscopy, which reveal multiple (up to ten) confined acoustic phonon polarization branches in GaAs nanowires with a diameter as large as 128 nm, at a length scale that exceeds the grey phonon mean-free path in this material by almost an order-of-magnitude. The dispersion modification and energy scaling with diameter in individual nanowires are inmore » excellent agreement with theory. The phonon confinement effects result in a decrease in the phonon group velocity along the nanowire axis and changes in the phonon density of states. Furthermore, the obtained results can lead to more efficient nanoscale control of acoustic phonons, with benefits for nanoelectronic, thermoelectric and spintronic devices.« less

  8. Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments

    PubMed Central

    Galliou, Serge; Goryachev, Maxim; Bourquin, Roger; Abbé, Philippe; Aubry, Jean Pierre; Tobar, Michael E.

    2013-01-01

    Low loss Bulk Acoustic Wave devices are considered from the point of view of the solid state approach as phonon-confining cavities. We demonstrate effective design of such acoustic cavities with phonon-trapping techniques exhibiting extremely high quality factors for trapped longitudinally-polarized phonons of various wavelengths. Quality factors of observed modes exceed 1 billion, with a maximum Q-factor of 8 billion and Q × f product of 1.6 · 1018 at liquid helium temperatures. Such high sensitivities allow analysis of intrinsic material losses in resonant phonon systems. Various mechanisms of phonon losses are discussed and estimated. PMID:23823569

  9. Acoustic interference suppression of quartz crystal microbalance sensor arrays utilizing phononic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Yu; Huang, Li-Chung; Wang, Wei-Shan; Lin, Yu-Ching; Wu, Tsung-Tsong; Sun, Jia-Hong; Esashi, Masayoshi

    2013-04-01

    Acoustic interference suppression of quartz crystal microbalance (QCM) sensor arrays utilizing phononic crystals is investigated in this paper. A square-lattice phononic crystal structure is designed to have a complete band gap covering the QCM's resonance frequency. The monolithic sensor array consisting of two QCMs separated by phononic crystals is fabricated by micromachining processes. As a result, 12 rows of phononic crystals with band gap boost insertion loss between the two QCMs by 20 dB and also reduce spurious modes. Accordingly, the phononic crystal is verified to be capable of suppressing the acoustic interference between adjacent QCMs in a sensor array.

  10. Non-Markovian optimal sideband cooling

    NASA Astrophysics Data System (ADS)

    Triana, Johan F.; Pachon, Leonardo A.

    2018-04-01

    Optimal control theory is applied to sideband cooling of nano-mechanical resonators. The formulation described here makes use of exact results derived by means of the path-integral approach of quantum dynamics, so that no approximation is invoked. It is demonstrated that the intricate interplay between time-dependent fields and structured thermal bath may lead to improve results of the sideband cooling by an order of magnitude. Cooling is quantified by means of the mean number of phonons of the mechanical modes as well as by the von Neumann entropy. Potencial extension to non-linear systems, by means of semiclassical methods, is briefly discussed.

  11. Depth-Dependent Defect Studies Using Coherent Acoustic Phonons

    DTIC Science & Technology

    2014-09-29

    using CAP waves as an active moving interface to induce local changes in electric, acoustic , and optical properties. This is able to generate ultrafast...the elastic strain component [6]. b) Modification of the crystal lattice due to transient strain caused by the coherent acoustic phonon wave . The...opto-electronic properties of materials. We are also using CAP waves as an active moving interface to induce local changes in electric, acoustic , and

  12. Acoustic phonon spectrum engineering in bulk crystals via incorporation of dopant atoms

    NASA Astrophysics Data System (ADS)

    Kargar, Fariborz; Penilla, Elias H.; Aytan, Ece; Lewis, Jacob S.; Garay, Javier E.; Balandin, Alexander A.

    2018-05-01

    We report results of Brillouin—Mandelstam spectroscopy of transparent Al2O3 crystals with Nd dopants. The ionic radius and atomic mass of Nd atoms are distinctively different from those of the host Al atoms. Our results show that even a small concentration of Nd atoms incorporated into the Al2O3 samples produces a profound change in the acoustic phonon spectrum. The velocity of the transverse acoustic phonons decreases by ˜600 m/s at the Nd density of only ˜0.1%. Interestingly, the decrease in the phonon frequency and velocity with the doping concentration is non-monotonic. The obtained results, demonstrating that modification of the acoustic phonon spectrum can be achieved not only by traditional nanostructuring but also by low-concentration doping, have important implications for thermal management as well as thermoelectric and optoelectronic devices.

  13. Specularity of longitudinal acoustic phonons at rough surfaces

    NASA Astrophysics Data System (ADS)

    Gelda, Dhruv; Ghossoub, Marc G.; Valavala, Krishna; Ma, Jun; Rajagopal, Manjunath C.; Sinha, Sanjiv

    2018-01-01

    The specularity of phonons at crystal surfaces is of direct importance to thermal transport in nanostructures and to dissipation in nanomechanical resonators. Wave scattering theory provides a framework for estimating wavelength-dependent specularity, but experimental validation remains elusive. Widely available thermal conductivity data presents poor validation since the involvement of the infinitude of phonon wavelengths in thermal transport presents an underconstrained test for specularity theory. Here, we report phonon specularity by measuring the lifetimes of individual coherent longitudinal acoustic phonon modes excited in ultrathin (36-205 nm) suspended silicon membranes at room temperature over the frequency range ˜20 -118 GHz. Phonon surface scattering dominates intrinsic Akhiezer damping at frequencies ≳60 GHz, enabling measurements of phonon boundary scattering time over wavelengths ˜72 -140 nm . We obtain detailed statistics of the surface roughness at the top and bottom surfaces of membranes using HRTEM imaging. We find that the specularity of the excited modes are in good agreement with solutions of wave scattering only when the TEM statistics are corrected for projection errors. The often-cited Ziman formula for phonon specularity also appears in good agreement with the data, contradicting previous results. This work helps to advance the fundamental understanding of phonon scattering at the surfaces of nanostructures.

  14. Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites.

    PubMed

    Guo, Peijun; Stoumpos, Constantinos C; Mao, Lingling; Sadasivam, Sridhar; Ketterson, John B; Darancet, Pierre; Kanatzidis, Mercouri G; Schaller, Richard D

    2018-05-22

    Two-dimensional Ruddlesden-Popper organic-inorganic hybrid layered perovskites (2D RPs) are solution-grown semiconductors with prospective applications in next-generation optoelectronics. The heat-carrying, low-energy acoustic phonons, which are important for heat management of 2D RP-based devices, have remained unexplored. Here we report on the generation and propagation of coherent longitudinal acoustic phonons along the cross-plane direction of 2D RPs, following separate characterizations of below-bandgap refractive indices. Through experiments on single crystals of systematically varied perovskite layer thickness, we demonstrate significant reduction in both group velocity and propagation length of acoustic phonons in 2D RPs as compared to the three-dimensional methylammonium lead iodide counterpart. As borne out by a minimal coarse-grained model, these vibrational properties arise from a large acoustic impedance mismatch between the alternating layers of perovskite sheets and bulky organic cations. Our results inform on thermal transport in highly impedance-mismatched crystal sub-lattices and provide insights towards design of materials that exhibit highly anisotropic thermal dissipation properties.

  15. Acoustic phonon dispersion at hypersonic frequencies in Si and Ge

    NASA Astrophysics Data System (ADS)

    Kuok, M. H.; Ng, S. C.; Rang, Z. L.; Lockwood, D. J.

    2000-11-01

    Brillouin spectra of the longitudinal acoustic (LA) mode, traveling along the [001] direction, in silicon and germanium have been recorded in 180° backscattering using 457.9-514.5-nm laser lines. The wave velocity of the LA phonon propagating in the [001] direction was determined at hypersonic frequencies, from the measured acoustic phonon dispersion in silicon and germanium. The elastic modulus c11 of the two semiconductors has been calculated from the respective measured hypersonic wave velocities and the results are compared with values determined from lower-frequency ultrasonic and other measurements. Interestingly, the hypersonic velocities are consistently lower by ~1-2 % than the ultrasonic ones, but they generally agree within the present experimental accuracy.

  16. Enhancement of coherent acoustic phonons in InGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan D.; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    Enhancement of coherent zone folded longitudinal acoustic phonon (ZFLAP) oscillations at terahertz frequencies was demonstrated in InGaN multiple quantum wells (MQWs) by using wavelength degenerate time resolved differential transmission spectroscopy. Screening of the piezoelectric field in InGaN MQWs by photogenerated carriers upon femtosecond pulse excitation gave rise to terahertz ZFLAPs, which were monitored at the Brillouin zone center in the transmission geometry. MQWs composed of 10 pairs InxGa1-xN wells and In0.03Ga0.97N barriers provided coherent phonon frequencies of 0.69-0.80 THz depending on the period of MQWs. Dependences of ZFLAP amplitude on excitation density and wavelength were also investigated. Possibility of achieving phonon cavity, incorporating a MQW placed between two AlN/GaN phonon mirrors designed to exhibit large acoustic gaps at the zone center, was also explored.

  17. Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceban, V., E-mail: victor.ceban@phys.asm.md; Macovei, M. A., E-mail: macovei@phys.asm.md

    2015-11-15

    The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.

  18. Contact acoustic nonlinearity (CAN)-based continuous monitoring of bolt loosening: Hybrid use of high-order harmonics and spectral sidebands

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Menglong; Liao, Yaozhong; Su, Zhongqing; Xiao, Yi

    2018-03-01

    The significance of evaluating bolt tightness in engineering structures, preferably in a continuous manner, cannot be overemphasized. With hybrid use of high-order harmonics (HOH) and spectral sidebands, a contact acoustic nonlinearity (CAN)-based monitoring framework is developed for detecting bolt loosening and subsequently evaluating the residual torque on a loose bolt. Low-frequency pumping vibration is introduced into the bolted joint to produce a "breathing" effect at the joining interface that modulates the propagation characteristics of a high-frequency probing wave when it traverses the bolt, leading to the generation of HOH and vibro-acoustic nonlinear distortions (manifested as sidebands in the signal spectrum). To gain insight into the mechanism of CAN generation and to correlate the acquired nonlinear responses of a loose joint with the residual torque remaining on the bolt, an analytical model based on micro-contact theory is established. Two types of nonlinear index, respectively exploiting the induced HOH and spectral sidebands, are defined without dependence on excitation intensity and are experimentally demonstrated to be effective in continuously monitoring bolt loosening in both aluminum-aluminum and composite-composite bolted joints. Taking a step further, variation of the index pair is quantitatively associated with the residual torque on a loose bolt. The approach developed provides a reliable method of continuous evaluation of bolt tightness in both composite and metallic joints, regardless of their working conditions, from early awareness of bolt loosening at an embryonic stage to quantitative estimation of residual torque.

  19. Picosecond acoustic phonon dynamics in LaF3:Pr3+

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Sean M.; Yang, Ho-Soon; Dennis, W. M.

    1998-09-01

    A plasma switching technique is used to generate subnanosecond, far-infrared (FIR) pulses with frequency 113 cm-1. The generation of subnanosecond FIR pulses enables us to improve the time resolution of phonon spectroscopic measurements from 50 ns to 350 ps. As an application of this technique, we investigate the subnanosecond dynamics of high-frequency phonons in 0.5% LaF3:Pr3+. In particular, we report on the generation and detection of a subnanosecond nonequilibrium phonon population at 113 cm-1, and the temporal evolution of the resulting decay products. The frequency dependence of the phonon relaxation rates of acoustic phonons in this material is found to deviate from the ω5 frequency dependence predicted by an isotropic model with linear dispersion. A more realistic model based on the actual dispersion curves of the material is presented and compared with the data.

  20. Broadband anomalous reflection caused by unsymmetrical specific acoustic impedance in phononic crystals

    NASA Astrophysics Data System (ADS)

    Han, S. K.; Wu, C. W.; Chen, Z.

    2018-01-01

    We investigate through numerical simulation the anomalous reflection (AR) of acoustic waves with perfect phononic crystals (PCs). Broadband AR is observed in a wide angle for the oblique incidence. The AR is due to the unsymmetrical specific acoustic impedance (SAI) profile along the surface, which is caused by the high frequency incidence. The findings in this paper complement the theories for the AR of acoustic waves with PCs, and may find applications in acoustic engineerings.

  1. Interfacing planar superconducting qubits with high overtone bulk acoustic phonons

    NASA Astrophysics Data System (ADS)

    Kervinen, Mikael; Rissanen, Ilkka; Sillanpää, Mika

    2018-05-01

    Mechanical resonators are a promising way for interfacing qubits in order to realize hybrid quantum systems that offer great possibilities for applications. Mechanical systems can have very long energy lifetimes, and they can be further interfaced to other systems. Moreover, integration of a mechanical oscillator with qubits creates a potential platform for the exploration of quantum physics in macroscopic mechanical degrees of freedom. The utilization of high overtone bulk acoustic resonators coupled to superconducting qubits is an intriguing platform towards these goals. These resonators exhibit a combination of high-frequency and high-quality factors. They can reach their quantum ground state at dilution refrigeration temperatures and they can be strongly coupled to superconducting qubits via their piezoelectric effect. In this paper, we demonstrate our system where bulk acoustic phonons of a high overtone resonator are coupled to a transmon qubit in a planar circuit architecture. We show that the bulk acoustic phonons are interacting with the qubit in a simple design architecture at the quantum level, representing further progress towards the quantum control of mechanical motion.

  2. Sideband cooling of micromechanical motion to the quantum ground state.

    PubMed

    Teufel, J D; Donner, T; Li, Dale; Harlow, J W; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W

    2011-07-06

    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime--in which a system has less than a single quantum of motion--has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck's constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.

  3. The influence of charge and magnetic order on polaron and acoustic phonon dynamics in LuFe 2O 4

    DOE PAGES

    Lee, J.; Trugman, S. A.; Zhang, C. L.; ...

    2015-07-27

    Femtosecond optical pump-probe spectroscopy is used to reveal the influence of charge and magnetic order on polarondynamics and coherent acoustic phonon oscillations in single crystals of charge-ordered, ferrimagnetic LuFe 2O 4. We experimentally observed the influence of magnetic order on polarondynamics. We also observed a correlation between charge order and the amplitude of the acoustic phonon oscillations, due to photoinduced changes in the lattice constant that originate from the photoexcited electrons. As a result, this provides insight into the general behavior of coherent acoustic phonon oscillations in charge-ordered materials.

  4. Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubakaddi, S. S., E-mail: sskubakaddi@gmail.com

    2016-05-21

    Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd{sub 3}As{sub 2} in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity v{sub d} is greater than the sound velocity v{sub s}. This occurs at small E (∼few V/cm) due to large mobility. Frequency (ω{sub q}) and angular (θ) distribution of phonon emission spectrum P(ω{sub q}, θ) are studied for different electron drift velocities v{sub d} (i.e., differentmore » E) and electron concentrations n{sub e}. The frequency dependence of P(ω{sub q}, θ) shows a maximum P{sub m}(ω{sub q}, θ) at about ω{sub m} ≈ 1 THz and is found to increase with the increasing v{sub d} and n{sub e}. The value of ω{sub m} shifts to higher region for larger n{sub e}. It is found that ω{sub m}/n{sub e}{sup 1/3} and P{sub m}(ω{sub q}, θ)/n{sub e}{sup 2/3} are nearly constants. The latter is in contrast with the P{sub m}(ω{sub q}, θ)n{sub e}{sup 1/2 }= constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly “2k{sub f} cutoff,” where k{sub f} is the Fermi wave vector. Angular dependence of P(ω{sub q}, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing v{sub d}. P(θ) is found to increase linearly with n{sub e} giving the ratio P(θ)/(n{sub e}v{sub d}) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and n{sub e}. 3DDS with large n{sub e} and mobility can be a good source of acoustic phonon generation in ∼THz regime.« less

  5. Controlling competing orders via nonequilibrium acoustic phonons: Emergence of anisotropic effective electronic temperature

    NASA Astrophysics Data System (ADS)

    Schütt, Michael; Orth, Peter P.; Levchenko, Alex; Fernandes, Rafael M.

    2018-01-01

    Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.

  6. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Graczykowski, B.; Alzina, F.; Gomis-Bresco, J.; Sotomayor Torres, C. M.

    2016-01-01

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.

  7. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  8. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.

    2014-06-01

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  9. Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addouche, Mahmoud, E-mail: mamoud.addouche@femto-st.fr; Al-Lethawe, Mohammed A., E-mail: mohammed.abdulridha@femto-st.fr; Choujaa, Abdelkrim, E-mail: achoujaa@femto-st.fr

    2014-07-14

    We demonstrate super resolution imaging for surface acoustic waves using a phononic structure displaying negative refractive index. This phononic structure is made of a monolithic square lattice of cylindrical pillars standing on a semi-infinite medium. The pillars act as acoustic resonator and induce a surface propagating wave with unusual dispersion. We found, under specific geometrical parameters, one propagating mode that exhibits negative refraction effect with negative effective index close to −1. Furthermore, a flat lens with finite number of pillars is designed to allow the focusing of an acoustic point source into an image with a resolution of (λ)/3 ,more » overcoming the Rayleigh diffraction limit.« less

  10. Dynamics of monochromatically generated nonequilibrium phonons in LaF3:Pr3+

    NASA Astrophysics Data System (ADS)

    Tolbert, W. A.; Dennis, W. M.; Yen, W. M.

    1990-07-01

    The temporal evolution of nonequilibrium phonon populations in LaF3:Pr3+ is investigated at low temperatures (1.8 K) utilizing pulsed, tunable, monochromatic generation and time-resolved, tunable, narrow-band detection. High occupation number, narrow-band phonon populations are generated via far-infrared pumping of defect-induced one-phonon absorption. Time-resolved, frequency-selective detection is provided by optical sideband absorption. Nonequilibrium phonon decay times are measured and attributed to anharmonic decay.

  11. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczykowski, B., E-mail: bartlomiej.graczykowski@icn.cat; Alzina, F.; Gomis-Bresco, J.

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection,more » and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.« less

  12. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal

    NASA Astrophysics Data System (ADS)

    Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le

    2016-08-01

    The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.

  13. Exciton-phonon bound complex in single-walled carbon nanotubes revealed by high-field magneto-optical spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Weihang; Nakamura, Daisuke; Takeyama, Shojiro, E-mail: takeyama@issp.u-tokyo.ac.jp

    2013-12-02

    High-field magneto-optical spectroscopy was performed on highly enriched (6,5) single-walled carbon nanotubes. Spectra of phonon sidebands in both 1st and 2nd sub-bands were unchanged by an external magnetic field up to 52 T. The dark K-momentum singlet (D-K-S) exciton, which plays an important role for the external quantum efficiency of the system for both sub-bands in the near-infrared and the visible light region, respectively, was clarified to be the origin of the phonon sidebands.

  14. Pressure dependence of transverse acoustic phonon energy in ferropericlase across the spin transition.

    PubMed

    Fukui, Hiroshi; Baron, Alfred Q R; Ishikawa, Daisuke; Uchiyama, Hiroshi; Ohishi, Yasuo; Tsuchiya, Taku; Kobayashi, Hisao; Matsuzaki, Takuya; Yoshino, Takashi; Katsura, Tomoo

    2017-06-21

    We investigated transverse acoustic (TA) phonons in iron-bearing magnesium oxide (ferropericlase) up to 56 GPa using inelastic x-ray scattering (IXS). The results show that the energy of the TA phonon far from the Brillouin zone center suddenly increases with increasing pressure above the spin transition pressure of ferropericlase. Ab initio calculations revealed that the TA phonon energy far from the Brillouin zone center is higher in the low-spin state than in the high spin state; that the TA phonon energy depend weakly on pressure; and that the energy gap between the TA and the lowest-energy-optic phonons is much narrower in the low-spin state than in the high-spin state. This allows us to conclude that the anomalous behavior of the TA mode in the present experiments is the result of gap narrowing due to the spin transition and explains contradictory results in previous experimental studies.

  15. Si3N4 Optomechanical Crystals in the Resolved-sideband Regime

    DTIC Science & Technology

    2014-01-27

    between cavity photons and phonons was used to demon- strate electromagnetically induced transparency ( EIT ) mediated by a mechanical resonance; radiation...wavelength range. The sideband resolution achieved was sufficient for observing, at room temperature and atmos- pheric pressure, EIT mediated by a 4 GHz...sufficient for the observation of optomechanical EIT at room tempera- ture and atmospheric pressure. This effect corresponds to the creation of a narrow

  16. Phononic band gap and wave propagation on polyvinylidene fluoride-based acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Oltulu, Oral; Simsek, Sevket; Mamedov, Amirullah M.; Ozbay, Ekmel

    2016-12-01

    In the present work, the acoustic band structure of a two-dimensional phononic crystal (PC) containing an organic ferroelectric (PVDF-polyvinylidene fluoride) and topological insulator (SnTe) was investigated by the plane-wave-expansion (PWE) method. Two-dimensional PC with square lattices composed of SnTe cylindrical rods embedded in the PVDF matrix is studied to find the allowed and stop bands for the waves of certain energy. Phononic band diagram ω = ω(k) for a 2D PC, in which non-dimensional frequencies ωa/2πc (c-velocity of wave) were plotted vs. the wavevector k along the Г-X-M-Г path in the square Brillouin zone shows five stop bands in the frequency range between 10 and 110 kHz. The ferroelectric properties of PVDF and the unusual properties of SnTe as a topological material give us the ability to control the wave propagation through the PC over a wide frequency range of 103-106 Hz. SnTe is a discrete component that allows conducting electricity on its surface but shows insulator properties through its bulk volume. Tin telluride is considered as an acoustic topological insulator as the extension of topological insulators into the field of "topological phononics".

  17. Ultra-directional source of longitudinal acoustic waves based on a two-dimensional solid/solid phononic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morvan, B.; Tinel, A.; Sainidou, R.

    2014-12-07

    Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.

  18. Piezoelectric substrate effect on electron-acoustic phonon scattering in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Ansari, Mohd Meenhaz; Ashraf, SSZ

    2018-05-01

    We have studied the effect of piezoelectric scattering as a function of electron temperature and distance between the sample and the substrate on electron-acoustic phonon scattering rate in Bilayer Graphene sitting on a piezoelectric substrate. We obtain approximate analytical result by neglecting the chiral nature of carriers and then proceed to obtain unapproximated numerical results for the scattering rate incorporating chirality of charge carriers. We find that on the incorporation of full numerical computation the magnitude as well as the power exponent both is affected with the power exponent changed from T3 to T3.31 in the low temperature range and to T6.98 dependence in the temperature range (>5K). We also find that the distance between the sample and substrate begins to strongly affect the scattering rate at temperatures above 10K. These calculation not only suggest the influencing effect of piezoelectric substrate on the transport properties of Dirac Fermions at very low temperatures but also open a channel to study low dimension structures by probing piezoelectric acoustical phonons.

  19. Electron-phonon interactions in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Yu, Segi

    In this dissertation, electron-phonon interactions are studied theoretically in semiconductor nanoscale heterostructures. Interactions of electrons with interface optical phonons dominate over other electron-phonon interactions in narrow width heterostructures. Hence, a transfer matrix method is used to establish a formalism for determining the dispersion relations and electrostatic potentials of the interface phonons for multiple-interface heterostructure within the macroscopic dielectric continuum model. This method facilitates systematic calculations for complex structures where the conventional method is difficult to implement. Several specific cases are treated to illustrate advantages of the formalism. Electrophonon resonance (EPR) is studied in cylindrical quantum wires using the confined/interface optical phonons representation and bulk phonon representation. It has been found that interface phonon contribution to EPR is small compared with confined phonon. Different selection rules for bulk phonons and confined phonons result in different EPR behaviors as the radius of cylindrical wire changes. Experiment is suggested to test which phonon representation is appropriate for EPR. The effects of phonon confinement on elect ron-acoustic-phonon scattering is studied in cylindrical and rectangular quantum wires. In the macroscopic elastic continuum model, the confined-phonon dispersion relations are obtained for several crystallographic directions with free-surface and clamped-surface boundary conditions in cylindrical wires. The scattering rates due to the deformation potential are obtained for these confined phonons and are compared with those of bulk-like phonons. The results show that the inclusion of acoustic phonon confinement may be crucial for calculating accurate low-energy electron scattering rates. Furthermore, it has been found that there is a scaling rule governing the directional dependence of the scattering rates. The Hamiltonian describing the

  20. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.

    PubMed

    Ash, B J; Worsfold, S R; Vukusic, P; Nash, G R

    2017-08-02

    Surface acoustic wave (SAW) devices are widely used for signal processing, sensing and increasingly for lab-on-a-chip applications. Phononic crystals can control the propagation of SAW, analogous to photonic crystals, enabling components such as waveguides and cavities. Here we present an approach for the realisation of robust, tailorable SAW phononic crystals, based on annular holes patterned in a SAW substrate. Using simulations and experiments, we show that this geometry supports local resonances which create highly attenuating phononic bandgaps at frequencies with negligible coupling of SAWs into other modes, even for relatively shallow features. The enormous bandgap attenuation is up to an order-of-magnitude larger than that achieved with a pillar phononic crystal of the same size, enabling effective phononic crystals to be made up of smaller numbers of elements. This work transforms the ability to exploit phononic crystals for developing novel SAW device concepts, mirroring contemporary progress in photonic crystals.The control and manipulation of propagating sound waves on a surface has applications in on-chip signal processing and sensing. Here, Ash et al. deviate from standard designs and fabricate frequency tailorable phononic crystals with an order-of-magnitude increase in attenuation.

  1. The Influence of Phonons and Phonon Decay on the Optical Properties of GaN

    NASA Astrophysics Data System (ADS)

    Song, D. Y.; Basavaraj, M.; Nikishin, S. A.; Holtz, M.; Soukhoveev, V.; Usikov, A.; Dmitriev, V.

    2006-03-01

    The temperature dependences of vibrational and optical properties of high-quality GaN are studied using Raman and photoluminescence (PL) spectroscopies in the range 20 to 325 K. The Raman-active A1(LO) phonon has temperature dependence described well by combined two- and three-phonon decay. The temperature dependences of E2^2 phonon are almost entirely dominated by the thermal expansion, and the contribution of three-phonon decay process is very small throughout interested temperature range. The shallow neutral donor-bound exciton (D^0,X) and two free excitons (XA and XB) are observed at low temperatrue PL spectra. Also seen are two A1(LO) phonon sidebands (PSBs), originating from the XB free exciton, with the characteristic asymmetry attributed to interactions between discrete and continuum states. Analysis of the band-edge excitons reveals that energy gap shrinkage and exciton linewidths are completely described based on electron-phonon interactions with phonon properties consistent with the Raman analysis. First and second PSBs have temperature dependence associated with the A1(LO) phonon. The shift, broadening, and asymmetry of the PSBs are explained by Segall-Mahan theory adding the decay mechanism of A1(LO) phonon and the exciton broadening from electron-phonon interactions. Work at Texas Tech University supported by National Science Foundation grant ECS-0323640.

  2. Material and Phonon Engineering for Next Generation Acoustic Devices

    NASA Astrophysics Data System (ADS)

    Kuo, Nai-Kuei

    This thesis presents the theoretical and experimental work related to micromachining of low intrinsic loss sapphire and phononic crystals for engineering new classes of electroacoustic devices for frequency control applications. For the first time, a low loss sapphire suspended membrane was fabricated and utilized to form the main body of a piezoelectric lateral overtone bulk acoustic resonator (LOBAR). Since the metalized piezoelectric transducer area in a LOBAR is only a small fraction of the overall resonant cavity (made out of sapphire), high quality factor (Q) overtones are attained. The experiment confirms the low intrinsic mechanical loss of the transferred sapphire thin film, and the resonators exhibit the highest Q of 5,440 at 2.8 GHz ( f·Q of 1.53.1013 Hz). This is also the highest f·Q demonstrated for aluminum-nitride-(AIN)-based Lamb wave devices to date. Beyond demonstrating a low loss device, this experimental work has laid the foundation for the future development of new micromechanical devices based on a high Q, high hardness and chemically resilient material. The search for alternative ways to more efficiently perform frequency control functionalities lead to the exploration of Phononic Crystal (PnC) structures in AIN thin films. Four unit cell designs were theoretically and experimentally investigated to explore the behavior of phononic bandgaps (PBGs) in the ultra high frequency (UHF) range: (i) the conventional square lattice with circular air scatterer, (ii) the inverse acoustic bandgap (IABG) structure, (iii) the fractal PnC, and (iv) the X-shaped PnC. Each unit cell has its unique frequency characteristic that was exploited to synthesize either cavity resonators or improve the performance of acoustic delay lines. The PBGs operate in the range of 770 MHz to 1 GHz and exhibit a maximum acoustic rejection of 40 dB. AIN Lamb wave transducers (LWTs) were employed for the experimental demonstration of the PBGs and cavity resonances. Ultra

  3. Damping of acoustic flexural phonons in silicene: influence on high-field electronic transport

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Mokhtar Hamham, El; Martín, María J.

    2018-06-01

    Silicene is a two-dimensional buckled material with broken horizontal mirror symmetry and Dirac-like dispersion. Under such conditions, flexural acoustic (ZA) phonons play a dominant role. Consequently, it is necessary to consider some suppression mechanism for electron–phonon interactions with long wavelengths in order to reach mobilities useful for electronic applications. In this work, we analyze, by means of an ensemble Monte Carlo simulator, the influence of several possibilities for the description of the effect of ZA phonon damping on electronic transport in silicene. The results show that a hard cutoff situation (total suppression for phonons with a wavelength longer than a critical one), as it has been proposed in the literature, does not yield a realistic picture regarding the electronic distribution function, and it artificially induces a negative differential resistance at moderate and high fields. Sub-parabolic dispersions, on the other hand, may provide a more realistic description in terms of the behavior of the electron distribution in the momentum space, but need extremely short cutoff wavelengths to reach functional mobility and drift velocity values.

  4. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots

    PubMed Central

    Vanacore, Giovanni M.; Hu, Jianbo; Liang, Wenxi; Bietti, Sergio; Sanguinetti, Stefano; Carbone, Fabrizio; Zewail, Ahmed H.

    2017-01-01

    Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible. PMID:28852685

  5. Numerical investigation of diffraction of acoustic waves by phononic crystals

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent

    2012-05-01

    Diffraction as well as transmission of acoustic waves by two-dimensional phononic crystals (PCs) composed of steel rods in water are investigated in this paper. The finite element simulations were performed in order to compute pressure fields generated by a line source that are incident on a finite size PC. Such field maps are analyzed based on the complex band structure for the infinite periodic PC. Finite size computations indicate that the exponential decrease of the transmission at deaf frequencies is much stronger than that in Bragg band gaps.

  6. Ultrafast switching of valence and generation of coherent acoustic phonons in semiconducting rare-earth monosulfides

    NASA Astrophysics Data System (ADS)

    Punpongjareorn, Napat; He, Xing; Tang, Zhongjia; Guloy, Arnold M.; Yang, Ding-Shyue

    2017-08-01

    We report on the ultrafast carrier dynamics and generation of coherent acoustic phonons in YbS, a semiconducting rare-earth monochalcogenide, using two-color pump-probe reflectivity. Compared to the carrier relaxation processes and lifetimes of conventional semiconductors, recombination of photoexcited electrons with holes in localized f orbitals is found to take place rapidly with a density-independent time constant of <500 fs in YbS. Such carrier annihilation signifies the unique and ultrafast nature of valence restoration of ytterbium ions after femtosecond photoexcitation switching. Following transfer of the absorbed energy to the lattice, coherent acoustic phonons emerge on the picosecond timescale as a result of the thermal strain in the photoexcited region. By analyzing the electronic and structural dynamics, we obtain the physical properties of YbS including its two-photon absorption and thermooptic coefficients, the period and decay time of the coherent oscillation, and the sound velocity.

  7. Evidence of Longitudinal Acoustic Phonon Generation in Si Doping Superlattices by Ge Prism-Coupled THz Laser Radiation

    NASA Astrophysics Data System (ADS)

    Wilson, T.; Kasper, E.; Oehme, M.; Schulze, J.; Korolev, K.

    2014-11-01

    We report on the direct excitation of 246 GHz longitudinal acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation of the same frequency. A longitudinally polarized evanescent laser light field is coupled to the superlattice through a germanium prism providing total internal reflection at the superlattice interface. The ballistic phonon signal is detected by a superconducting aluminum bolometer. The sample is immersed in low-temperature liquid helium.

  8. Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,

    Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocitymore » of (9200 {+-} 600) m/s.« less

  9. Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrates

    NASA Astrophysics Data System (ADS)

    Fandan, R.; Pedrós, J.; Schiefele, J.; Boscá, A.; Martínez, J.; Calle, F.

    2018-05-01

    Surface plasmon polaritons in graphene couple strongly to surface phonons in polar substrates leading to hybridized surface plasmon-phonon polaritons (SPPPs). We demonstrate that a surface acoustic wave (SAW) can be used to launch propagating SPPPs in graphene/h-BN heterostructures on a piezoelectric substrate like AlN, where the SAW-induced surface modulation acts as a dynamic diffraction grating. The efficiency of the light coupling is greatly enhanced by the introduction of the h-BN film as compared to the bare graphene/AlN system. The h-BN interlayer not only significantly changes the dispersion of the SPPPs but also enhances their lifetime. The strengthening of the SPPPs is shown to be related to both the higher carrier mobility induced in graphene and the coupling with h-BN and AlN surface phonons. In addition to surface phonons, hyperbolic phonons polaritons (HPPs) appear in the case of multilayer h-BN films leading to hybridized hyperbolic plasmon-phonon polaritons (HPPPs) that are also mediated by the SAW. These results pave the way for engineering SAW-based graphene/h-BN plasmonic devices and metamaterials covering the mid-IR to THz range.

  10. Polarization-controlled coherent phonon generation in acoustoplasmonic metasurfaces

    NASA Astrophysics Data System (ADS)

    Lanzillotti-Kimura, Norberto D.; O'Brien, Kevin P.; Rho, Junsuk; Suchowski, Haim; Yin, Xiaobo; Zhang, Xiang

    2018-06-01

    Acoustic vibrations at the nanoscale (GHz-THz frequencies) and their interactions with electrons, photons, and other excitations are the heart of an emerging field in physics: nanophononics. The design of ultrahigh frequency acoustic-phonon transducers, with tunable frequency, and easy to integrate in complex systems is still an open and challenging problem for the development of acoustic nanoscopies and phonon lasers. Here we show how an optimized plasmonic metasurface can act as a high-frequency phonon transducer. We report pump-probe experiments in metasurfaces composed of an array of gold nanostructures, revealing that such arrays can act as efficient and tunable photon-phonon transducers, with a strong spectral dependence on the excitation rate and laser polarization. We anticipate our work to be the starting point for the engineering of phononic metasurfaces based on plasmonic nanostructures.

  11. Topological phononic insulator with robust pseudospin-dependent transport

    NASA Astrophysics Data System (ADS)

    Xia, Bai-Zhan; Liu, Ting-Ting; Huang, Guo-Liang; Dai, Hong-Qing; Jiao, Jun-Rui; Zang, Xian-Guo; Yu, De-Jie; Zheng, Sheng-Jie; Liu, Jian

    2017-09-01

    Topological phononic states, which facilitate unique acoustic transport around defects and disorders, have significantly revolutionized our scientific cognition of acoustic systems. Here, by introducing a zone folding mechanism, we realize the topological phase transition in a double Dirac cone of the rotatable triangular phononic crystal with C3 v symmetry. We then investigate the distinct topological edge states on two types of interfaces of our phononic insulators. The first one is a zigzag interface which simultaneously possesses a symmetric mode and an antisymmetric mode. Hybridization of the two modes leads to a robust pseudospin-dependent one-way propagation. The second one is a linear interface with a symmetric mode or an antisymmetric mode. The type of mode is dependent on the topological phase transition of the phononic insulators. Based on the rotatability of triangular phononic crystals, we consider several complicated contours defined by the topological zigzag interfaces. Along these contours, the acoustic waves can unimpededly transmit without backscattering. Our research develops a route for the exploration of the topological phenomena in experiments and provides an excellent framework for freely steering the acoustic backscattering-immune propagation within topological phononic structures.

  12. Acoustic scattering from phononic crystals with complex geometry.

    PubMed

    Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J

    2016-05-01

    This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique.

  13. Dynamic single sideband modulation for realizing parametric loudspeaker

    NASA Astrophysics Data System (ADS)

    Sakai, Shinichi; Kamakura, Tomoo

    2008-06-01

    A parametric loudspeaker, that presents remarkably narrow directivity compared with a conventional loudspeaker, is newly produced and examined. To work the loudspeaker optimally, we prototyped digitally a single sideband modulator based on the Weaver method and appropriate signal processing. The processing techniques are to change the carrier amplitude dynamically depending on the envelope of audio signals, and then to operate the square root or fourth root to the carrier amplitude for improving input-output acoustic linearity. The usefulness of the present modulation scheme has been verified experimentally.

  14. Acoustic frequency filter based on anisotropic topological phononic crystals.

    PubMed

    Chen, Ze-Guo; Zhao, Jiajun; Mei, Jun; Wu, Ying

    2017-11-08

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  15. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    NASA Astrophysics Data System (ADS)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  16. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO 2

    DOE PAGES

    Lan, Tian; Li, Chen W.; Hellman, O.; ...

    2015-08-11

    Although the rutile structure of TiO 2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. In this paper, inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO 2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic tomore » quartic, stabilizing the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d electrons of Ti and 2p electrons of O atoms. Finally, with thermal expansion, the energy variation in this “phonon-tracked hybridization” flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.« less

  17. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    PubMed

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  18. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites

    PubMed Central

    Yang, Jianfeng; Wen, Xiaoming; Xia, Hongze; Sheng, Rui; Ma, Qingshan; Kim, Jincheol; Tapping, Patrick; Harada, Takaaki; Kee, Tak W.; Huang, Fuzhi; Cheng, Yi-Bing; Green, Martin; Ho-Baillie, Anita; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Conibeer, Gavin

    2017-01-01

    The hot-phonon bottleneck effect in lead-halide perovskites (APbX3) prolongs the cooling period of hot charge carriers, an effect that could be used in the next-generation photovoltaics devices. Using ultrafast optical characterization and first-principle calculations, four kinds of lead-halide perovskites (A=FA+/MA+/Cs+, X=I−/Br−) are compared in this study to reveal the carrier-phonon dynamics within. Here we show a stronger phonon bottleneck effect in hybrid perovskites than in their inorganic counterparts. Compared with the caesium-based system, a 10 times slower carrier-phonon relaxation rate is observed in FAPbI3. The up-conversion of low-energy phonons is proposed to be responsible for the bottleneck effect. The presence of organic cations introduces overlapping phonon branches and facilitates the up-transition of low-energy modes. The blocking of phonon propagation associated with an ultralow thermal conductivity of the material also increases the overall up-conversion efficiency. This result also suggests a new and general method for achieving long-lived hot carriers in materials. PMID:28106061

  19. Quasiparticles and phonon satellites in spectral functions of semiconductors and insulators: Cumulants applied to the full first-principles theory and the Fröhlich polaron

    NASA Astrophysics Data System (ADS)

    Nery, Jean Paul; Allen, Philip B.; Antonius, Gabriel; Reining, Lucia; Miglio, Anna; Gonze, Xavier

    2018-03-01

    The electron-phonon interaction causes thermal and zero-point motion shifts of electron quasiparticle (QP) energies ɛk(T ) . Other consequences of interactions, visible in angle-resolved photoemission spectroscopy (ARPES) experiments, are broadening of QP peaks and appearance of sidebands, contained in the electron spectral function A (k ,ω ) =-ℑ m GR(k ,ω ) /π , where GR is the retarded Green's function. Electronic structure codes (e.g., using density-functional theory) are now available that compute the shifts and start to address broadening and sidebands. Here we consider MgO and LiF, and determine their nonadiabatic Migdal self-energy. The spectral function obtained from the Dyson equation makes errors in the weight and energy of the QP peak and the position and weight of the phonon-induced sidebands. Only one phonon satellite appears, with an unphysically large energy difference (larger than the highest phonon energy) with respect to the QP peak. By contrast, the spectral function from a cumulant treatment of the same self-energy is physically better, giving a quite accurate QP energy and several satellites approximately spaced by the LO phonon energy. In particular, the positions of the QP peak and first satellite agree closely with those found for the Fröhlich Hamiltonian by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317] using diagrammatic Monte Carlo. We provide a detailed comparison between the first-principles MgO and LiF results and those of the Fröhlich Hamiltonian. Such an analysis applies widely to materials with infrared(IR)-active phonons.

  20. Thermal transport and anharmonic phonons in strained monolayer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Chen, Yue

    2017-03-01

    Thermal transport and phonon-phonon coupling in monolayer hexagonal boron nitride (h-BN) under equibiaxial strains are investigated from first principles. Phonon spectra at elevated temperatures have been calculated from perturbation theory using the third-order anharmonic force constants. The stiffening of the out-of-plane transverse acoustic mode (ZA) near the Brillouin zone center and the increase of acoustic phonon lifetimes are found to contribute to the dramatic increase of thermal transport in strained h-BN. The transverse optical mode (TO) at the K point, which was predicted to lead to mechanical failure of h-BN, is found to shift to lower frequencies at elevated temperatures under equibiaxial strains. The longitudinal and transverse acoustic modes exhibit broad phonon spectra under large strains in sharp contrast to the ZA mode, indicating strong in-plane phonon-phonon coupling.

  1. Renormalisation of Nonequilibrium Phonons Under Strong Perturbative Influences.

    NASA Astrophysics Data System (ADS)

    Mehta, Sushrut Madhukar

    Effects of strong perturbative influences, namely the presence of a narrow distribution of acoustic phonons, and the presence of an electron plasma, on the dynamics of nonequilibrium, near zone center, longitudinal optical phonons in GaP have been investigated in two separate experiments. The study of the effects of the interaction between the LO phonons and a heavily populated, narrow distribution of acoustic phonons lead to the observation of a new optically driven nonequilibrium phonon state. Time Resolved Coherent Antistokes Raman Scattering (TR-CARS), with picosecond resolution, was used to investigate the new mode. In order to achieve high occupation numbers in the acoustic branch, the picosecond laser pulses used were amplified up to 1.0 GW/cm^2 peak power per laser beam. An important characteristic property of the new state which differentiates it from the well known LO phonon state is the fact that rather than having the single decay rate observed under thermal equilibrium, the new state has two decay rates. Moreover, these two decay rates depend strongly on the distribution of the acoustic phonon occupation number. The coupling of the LO phonons with an electron plasma, on the other hand, was investigated by measurements of the shape of the Raman scattered line associated with the phonon-plasmon coupled mode. The plasma was generated by thermal excitation of carriers in doped samples. It was possible to study a large variety of plasma excitations by controlling the concentration of the dopant and the ambient temperature. A complete, self consistant model based on standard dielectric response theory is presented, and applied to the measurements of the phonon-plasmon coupled mode. It is possible to recover, via this model, the effective coupled mode damping rate, the plasma damping rate, and the plasma frequency as functions of ambient temperature, or the carrier concentration.

  2. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  3. Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals

    PubMed Central

    2011-01-01

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  4. Nano-optomechanical system based on microwave frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tadesse, Semere Ayalew

    Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic

  5. Phonon spectra and the one-phonon and two-phonon densities of states of UO2 and PuO2

    NASA Astrophysics Data System (ADS)

    Poplavnoi, A. S.; Fedorova, T. P.; Fedorov, I. A.

    2017-04-01

    The vibrational spectra of uranium dioxide UO2 and plutonium dioxide PuO2, as well as the one-phonon densities of states and thermal occupation number weighted two-phonon densities of states, have been calculated within the framework of the phenomenological rigid ion model. It has been shown that the acoustic and optical branches of the spectra are predominantly determined by vibrations of the metal and oxygen atoms, respectively, because the atomic masses of the metal and oxygen differ from each other by an order of magnitude. On this basis, the vibrational spectra can be represented in two Brillouin zones, i.e., in the Brillouin zone of the crystal and the Brillouin zone of the oxygen sublattice. In this case, the number of optical branches decreases by a factor of two. The two-phonon densities of states consist of two broad structured peaks. The temperature dependences of the upper peak exhibit a thermal broadening of the phonon lines L01 and L02 in the upper part of the optical branches. The lower peak is responsible for the thermal broadening of the lowest two optical (T02, T01) and acoustic (LA, TA) branches.

  6. Side-band mutual interactions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, D. C. D.; Helliwell, R. A.; Bell, T. F.

    1980-01-01

    Sideband mutual interactions between VLF waves in the magnetosphere are investigated. Results of an experimental program involving the generation of sidebands by means of frequency shift keying are presented which indicate that the energetic electrons in the magnetosphere can interact only with sidebands generated by signals with short modulation periods. Using the value of the memory time during which electrons interact with the waves implied by the above result, it is estimated that the length of the electron interaction region in the magnetosphere is between 4000 and 2000 km. Sideband interactions are found to be similar to those between constant-frequency signals, exhibiting suppression and energy coupling. Results from a second sideband transmitting program show that for most cases the coherence bandwidth of sidebands is about 50 Hz. Sideband mutual interactions are then explained by the overlap of the ranges of the parallel velocity of the electrons which the sidebands organize, and the wave intensity in the interaction region is estimated to be 2.5-10 milli-gamma, in agreement with satellite measurements.

  7. Engineering dissipation with phononic spectral hole burning

    NASA Astrophysics Data System (ADS)

    Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.

    2017-03-01

    Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.

  8. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    NASA Astrophysics Data System (ADS)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  9. An analysis of phonon emission as controlled by the combined interaction with the acoustic and piezoelectric phonons in a degenerate III-V compound semiconductor using an approximated Fermi-Dirac distribution at low lattice temperatures

    NASA Astrophysics Data System (ADS)

    Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.

    2018-03-01

    Compound semiconductors being piezoelectric in nature, the intrinsic thermal vibration of the lattice atoms at any temperature gives rise to an additional potential field that perturbs the periodic potential field of the atoms. This is over and above the intrinsic deformation acoustic potential field which is always produced in every material. The scattering of the electrons through the piezoelectric perturbing potential is important in all compound semiconductors, particularly at the low lattice temperatures. Thus, the electrical transport in such materials is principally controlled by the combined interaction of the electrons with the deformation potential acoustic and piezoelectric phonons at low lattice temperatures. The study here, deals with the problem of phonon growth characteristics, considering the combined scattering of the non-equilibrium electrons in compound semiconductors, at low lattice temperatures. Beside degeneracy, other low temperature features, like the inelasticity of the electron-phonon collisions, and the full form of the phonon distribution have been duly considered. The distribution function of the degenerate ensemble of carriers, as given by the heated Fermi-Dirac function, has been approximated by a simplified, well-tested model. The model which has been proposed earlier, makes it much easier to carry out analytically the integrations without usual oversimplified approximations.

  10. Tunable Acoustic Valley-Hall Edge States in Reconfigurable Phononic Elastic Waveguides

    NASA Astrophysics Data System (ADS)

    Liu, Ting-Wei; Semperlotti, Fabio

    2018-01-01

    We investigate the occurrence of acoustic topological edge states in a 2D phononic elastic waveguide due to a phenomenon that is the acoustic analog of the quantum valley Hall effect. We show that a topological transition takes place between two lattices having broken space-inversion symmetry due to the application of a tunable strain field. This condition leads to the formation of gapless edge states at the domain walls, as further illustrated by the analysis of the bulk-edge correspondence and of the associated topological invariants. Interestingly, topological edge states can also be triggered at the boundary of a single domain, when boundary conditions are properly selected. We also show that the static modulation of the strain field allows us to tune the response of the material between the different supported edge states. Although time-reversal symmetry is still intact in this material system, the edge states are topologically protected when intervalley mixing is either weak or negligible. This characteristic enables selective valley injection, which is achieved via synchronized source strategy.

  11. Development of an acoustic filter for parametric loudspeaker using phononic crystals.

    PubMed

    Ji, Peifeng; Hu, Wenlin; Yang, Jun

    2016-04-01

    The spurious signal generated as a result of nonlinearity at the receiving system affects the measurement of the difference-frequency sound in the parametric loudspeaker, especially in the nearfield or near the beam axis. In this paper, an acoustic filter is designed using phononic crystals and its theoretical simulations are carried out by quasi-one- and two-dimensional models with Comsol Multiphysics. According to the simulated transmission loss (TL), an acoustic filter is prototyped consisting of 5×7 aluminum alloy cylinders and its performance is verified experimentally. There is good agreement with the simulation result for TL. After applying our proposed filter in the axial measurement of the parametric loudspeaker, a clear frequency dependence from parametric array effect is detected, which exhibits a good match with the well-known theory described by the Gaussian-beam expansion technique. During the directivity measurement for the parametric loudspeaker, the proposed filter has also proved to be effective and is only needed for small angles. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Phonon dynamics of graphene on metals

    NASA Astrophysics Data System (ADS)

    Taleb, Amjad Al; Farías, Daniel

    2016-03-01

    The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate‧s Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.

  13. Phonons and elasticity of cementite through the Curie temperature

    NASA Astrophysics Data System (ADS)

    Mauger, L.; Herriman, J. E.; Hellman, O.; Tracy, S. J.; Lucas, M. S.; Muñoz, J. A.; Xiao, Yuming; Li, J.; Fultz, B.

    2017-01-01

    Phonon partial densities of states (pDOS) of Fe573C were measured from cryogenic temperatures through the Curie transition at 460 K using nuclear resonant inelastic x-ray scattering. The cementite pDOS reveal that low-energy acoustic phonons shift to higher energies (stiffen) with temperature before the magnetic transition. This unexpected stiffening suggests strongly nonharmonic vibrational behavior that impacts the thermodynamics and elastic properties of cementite. Density functional theory calculations reproduced the anomalous stiffening observed experimentally in cementite by accounting for phonon-phonon interactions at finite temperatures. The calculations show that the low-energy acoustic phonon branches with polarizations along the [010] direction are largely responsible for the anomalous thermal stiffening. The effect was further localized to the motions of the FeII site within the orthorhombic structure, which participates disproportionately in the anomalous phonon stiffening.

  14. Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films

    NASA Astrophysics Data System (ADS)

    Sidorova, Mariia V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Yu. P.; Mikhailov, M. Yu.; Devizenko, A. Yu.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N.

    2018-05-01

    We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe -ph˜14 0 -19 0 ps at TC=3.4 K , supporting the results of earlier measurements by independent techniques.

  15. Acoustical phonon anomaly in the Raman spectra of intermediate valent TmSe 1-xTe x and Tm xSe

    NASA Astrophysics Data System (ADS)

    Treindl, A.; Wachter, P.

    1980-12-01

    In the Raman spectra of intermediate valent TmSe 1- xTe x the same anomaly within the acoustical phonon band at 60 cm -1 is found as in Tm xSe. The connection of this anomaly with the valence mixing is confirmed. In a one-dimensional model calculation it is shown that a renormalized LA dispersion curve can produce the observed anomalous peak in the phonon DOS. As an alternative interpretation the possibility of a low energy electronic excitation at 60 cm -1 is discussed.

  16. Sound and heat revolutions in phononics

    NASA Astrophysics Data System (ADS)

    Maldovan, Martin

    2013-11-01

    The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.

  17. Preface: Phonons 2007

    NASA Astrophysics Data System (ADS)

    Perrin, Bernard

    2007-06-01

    Conference logo The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how

  18. On the interplay between phonon-boundary scattering and phonon-point-defect scattering in SiGe thin films

    NASA Astrophysics Data System (ADS)

    Iskandar, A.; Abou-Khalil, A.; Kazan, M.; Kassem, W.; Volz, S.

    2015-03-01

    This paper provides theoretical understanding of the interplay between the scattering of phonons by the boundaries and point-defects in SiGe thin films. It also provides a tool for the design of SiGe-based high-efficiency thermoelectric devices. The contributions of the alloy composition, grain size, and film thickness to the phonon scattering rate are described by a model for the thermal conductivity based on the single-mode relaxation time approximation. The exact Boltzmann equation including spatial dependence of phonon distribution function is solved to yield an expression for the rate at which phonons scatter by the thin film boundaries in the presence of the other phonon scattering mechanisms. The rates at which phonons scatter via normal and resistive three-phonon processes are calculated by using perturbation theories with taking into account dispersion of confined acoustic phonons in a two dimensional structure. The vibrational parameters of the model are deduced from the dispersion of confined acoustic phonons as functions of temperature and crystallographic direction. The accuracy of the model is demonstrated with reference to recent experimental investigations regarding the thermal conductivity of single-crystal and polycrystalline SiGe films. The paper describes the strength of each of the phonon scattering mechanisms in the full temperature range. Furthermore, it predicts the alloy composition and film thickness that lead to minimum thermal conductivity in a single-crystal SiGe film, and the alloy composition and grain size that lead to minimum thermal conductivity in a polycrystalline SiGe film.

  19. Determination of effective mass of heavy hole from phonon-assisted excitonic luminescence spectra in ZnO

    NASA Astrophysics Data System (ADS)

    Shi, S. L.; Xu, S. J.

    2011-03-01

    Longitudinal optical (LO) phonon-assisted luminescence spectra of free excitons in high-quality ZnO crystal were investigated both experimentally and theoretically. By using the rigorous Segall-Mahan model based on the Green's function, good agreement between the experimental emission spectra involving one or two LO phonons and theoretical spectra can be achieved when only one adjustable parameter (effective mass of heavy hole) was adopted. This leads to determination of the heavy-hole effective mass mh⊥ = (0.8 m0 and mh∥ = 5.0 m0) in ZnO. Influence of anisotropic effective masses of heavy holes on the phonon sidebands is also discussed.

  20. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian; Monniello, Léonard; Bernard, Mathieu; Margaillan, Florent; Lemaitre, Aristide; Martinez, Anthony; McCutcheon, Dara P. S.; Mørk, Jesper; Hostein, Richard; Voliotis, Valia

    2017-06-01

    We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.

  1. Phonons and their dispersion in model ferroelastics Hg2Hal2

    NASA Astrophysics Data System (ADS)

    Roginskii, E. M.; Kvasov, A. A.; Markov, Yu. F.; Smirnov, M. B.

    2012-05-01

    Dispersion relations of the acoustic and optical phonon frequencies have been calculated and plotted, and the density of states of the phonon spectrum of Hg2Cl2 and Hg2Br2 crystals has been derived. The effect of hydrostatic pressure on the frequencies of acoustic and optical phonons and their dispersion has been theoretically analyzed. It has been found that an increase in the pressure leads to a strong softening of the slowest acoustic TA branch (the soft mode) at the X point of the Brillouin zone boundary, which is consistent with the phenomenological Landau theory and correlates with experiment.

  2. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  3. Electron-phonon coupling and phonon subbands in small, electrically heated metal wires

    NASA Astrophysics Data System (ADS)

    Perrin, N.; Wybourne, M. N.

    1996-02-01

    The initial work of Perrin and Budd is extended to small metal wires in which the usual bulk phonon spectrum is modified into a series of acoustic subbands at low temperature. We analyze the contribution of the subbands to the lack of equilibrium between the electrons and the phonons in the wire heated by an applied electric field. The resulting electrical behavior of the wire is also considered and compared to experimental results.

  4. Phonon anomalies in FeS

    DOE PAGES

    Baum, A.; Milosavljevic, A.; Lazarevic, N.; ...

    2018-02-12

    Here, we present results from light scattering experiments on tetragonal FeS with the focus placed on lattice dynamics. We identify the Raman active A 1g and B 1g phonon modes, a second order scattering process involving two acoustic phonons, and contributions from potentially defect-induced scattering. The temperature dependence between 300 and 20 K of all observed phonon energies is governed by the lattice contraction. Below 20 K the phonon energies increase by 0.5–1 cm -1 , thus indicating putative short range magnetic order. Additionally, along with the experiments we performed lattice-dynamical simulations and a symmetry analysis for the phonons andmore » potential overtones and find good agreement with the experiments. In particular, we argue that the two-phonon excitation observed in a gap between the optical branches becomes observable due to significant electron-phonon interaction.« less

  5. Phonon anomalies in FeS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, A.; Milosavljevic, A.; Lazarevic, N.

    Here, we present results from light scattering experiments on tetragonal FeS with the focus placed on lattice dynamics. We identify the Raman active A 1g and B 1g phonon modes, a second order scattering process involving two acoustic phonons, and contributions from potentially defect-induced scattering. The temperature dependence between 300 and 20 K of all observed phonon energies is governed by the lattice contraction. Below 20 K the phonon energies increase by 0.5–1 cm -1 , thus indicating putative short range magnetic order. Additionally, along with the experiments we performed lattice-dynamical simulations and a symmetry analysis for the phonons andmore » potential overtones and find good agreement with the experiments. In particular, we argue that the two-phonon excitation observed in a gap between the optical branches becomes observable due to significant electron-phonon interaction.« less

  6. Coherent Manipulation of Phonons at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Shangjie; Ouyang, Min

    Phonons play a key role in almost every physical process, including for example dephasing phenomena of electronic quantum states, electric and heat transports. Therefore, understanding and even manipulating phonons represent a pre-requisite for tailoring phonons-mediated physical processes. In this talk, we will first present how to employ ultrafast optical spectroscopy to probe acoustic phonon modes in colloidal metallic nanoparticles. Furthermore, we have developed various phonon manipulation schemes that can be achieved by a train of optical pulses in time domain to allow selective control of phonon modes. Our theoretical modeling and simulation demonstrates an excellent agreement with experimental results, thus providing a future guideline on more complex phononic control at the nanoscale.

  7. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoudache, Samira; Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou; Moiseyenko, Rayisa

    2016-03-21

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standingmore » waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.« less

  8. Acoustic phonon dephasing in shallow GaAs/Ga 1- xAl xAs single quantum wells

    NASA Astrophysics Data System (ADS)

    Cassabois, G.; Meccherini, S.; Roussignol, Ph.; Bogani, F.; Gurioli, M.; Colocci, M.; Planel, R.; Thierry-Mieg, V.

    1998-07-01

    The intermediate dimensionality regime is studied on a set of shallow GaAs/Ga 1- xAl xAs single quantum wells. Such heterostructures exhibit 2D strong excitonic electroabsorption together with near 3D fast transport properties. We report dephasing time measurements ( T2) of the heavy-hole exciton and we show that the acoustic phonon contribution decreases with x to a value in good agreement with theoretical predictions for GaAs bulk.

  9. Controlled exciton transfer between quantum dots with acoustic phonons taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovinski, P. A., E-mail: golovinski@bk.ru

    2015-09-15

    A system of excitons in two quantum dots coupled by the dipole–dipole interaction is investigated. The excitation transfer process controlled by the optical Stark effect at nonresonant frequencies is considered and the effect of the interaction between excitons and acoustic phonons in a medium on this process is taken into account. The system evolution is described using quantum Heisenberg equations. A truncated set of equations is obtained and the transfer dynamics is numerically simulated. High-efficiency picosecond switching of the excitation transfer by a laser pulse with a rectangular envelope is demonstrated. The dependence of picosecond switching on the quantum-dot parametersmore » and optical-pulse length is presented.« less

  10. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Xiaokun; Yang, Ronggui, E-mail: Ronggui.Yang@Colorado.Edu

    2015-01-14

    There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicenemore » shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.« less

  11. Experimental Study of Electron and Phonon Dynamics in Nanoscale Materials by Ultrafast Laser Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, Xiaohan

    With the rapid advances in the development of nanotechnology, nowadays, the sizes of elementary unit, i.e. transistor, of micro- and nanoelectronic devices are well deep into nanoscale. For the pursuit of cheaper and faster nanoscale electronic devices, the size of transistors keeps scaling down. As the miniaturization of the nanoelectronic devices, the electrical resistivity increases dramatically, resulting rapid growth in the heat generation. The heat generation and limited thermal dissipation in nanoscale materials have become a critical problem in the development of the next generation nanoelectronic devices. Copper (Cu) is widely used conducting material in nanoelectronic devices, and the electron-phonon scattering is the dominant contributor to the resistivity in Cu nanowires at room temperature. Meanwhile, phonons are the main carriers of heat in insulators, intrinsic and lightly doped semiconductors. The thermal transport is an ensemble of phonon transport, which strongly depends on the phonon frequency. In addition, the phonon transport in nanoscale materials can behave fundamentally different than in bulk materials, because of the spatial confinement. However, the size effect on electron-phonon scattering and frequency dependent phonon transport in nanoscale materials remain largely unexplored, due to the lack of suitable experimental techniques. This thesis is mainly focusing on the study of carrier dynamics and acoustic phonon transport in nanoscale materials. The weak photothermal interaction in Cu makes thermoreflectance measurement difficult, we rather measured the reflectivity change of Cu induced by absorption variation. We have developed a method to separately measure the processes of electron-electron scattering and electron-phonon scattering in epitaxial Cu films by monitoring the transient reflectivity signal using the resonant probe with particular wavelengths. The enhancement on electron-phonon scattering in epitaxial Cu films with thickness

  12. Phonon-assisted oscillatory exciton dynamics in monolayer MoSe 2

    DOE PAGES

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.; ...

    2017-10-13

    In monolayer semiconductor transition metal dichalcogenides, the exciton–phonon interaction strongly affects the photocarrier dynamics. Here, we report on an unusual oscillatory enhancement of the neutral exciton photoluminescence with the excitation laser frequency in monolayer MoSe 2. The frequency of oscillation matches that of the M-point longitudinal acoustic phonon, LA(M), suggesting the significance of zone-edge acoustic phonons and hence the deformation potential in exciton-phonon coupling in MoSe 2. Moreover, oscillatory behavior is observed in the steady-state emission linewidth and in time-resolved PLE data, which reveals variation with excitation energy in the exciton lifetime. These results clearly expose the key role playedmore » by phonons in the exciton formation and relaxation dynamics of two-dimensional van der Waals semiconductors.« less

  13. Phononic crystals of spherical particles: A tight binding approach

    NASA Astrophysics Data System (ADS)

    Mattarelli, M.; Secchi, M.; Montagna, M.

    2013-11-01

    The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.

  14. Splash, pop, sizzle: Information processing with phononic computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklan, Sophia R.

    2015-05-15

    Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics) have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and themore » device level approach to diodes, transistors, memory, and logic. .« less

  15. Quantum many-body correlations in collective phonon-excitations

    NASA Astrophysics Data System (ADS)

    Droenner, Leon; Kabuss, Julia; Carmele, Alexander

    2018-02-01

    We present a theoretical study of a many-emitter phonon laser based on optically driven semiconductor quantum dots placed within an acoustic nanocavity. A transformation of the phonon laser Hamiltonian leads to a Tavis-Cummings type interaction with an unexpected additional many-emitter energy shift. This many-emitter interaction with the cavity mode results in a variety of phonon resonances which dependent strongly on the number of participating emitters. These collective resonances show the highest phonon output. Furthermore, we show that the output can be increased even more via lasing at the two phonon resonance.

  16. Genetic Algorithm Optimization of Phononic Bandgap Structures

    DTIC Science & Technology

    2006-09-01

    a GA with a computational finite element method for solving the acoustic wave equation, and find optimal designs for both metal-matrix composite...systems consisting of Ti/SiC, and H2O-filled porous ceramic media, by maximizing the relative acoustic bandgap for these media. The term acoustic here...stress minimization, global optimization, phonon bandgap, genetic algorithm, periodic elastic media, inhomogeneity, inclusion, porous media, acoustic

  17. Study of phonons in irradiated epitaxial thin films of UO2

    NASA Astrophysics Data System (ADS)

    Rennie, S.; Lawrence Bright, E.; Darnbrough, J. E.; Paolasini, L.; Bosak, A.; Smith, A. D.; Mason, N.; Lander, G. H.; Springell, R.

    2018-06-01

    We report experiments to determine the effect of radiation damage on the phonon spectra of the most common nuclear fuel, UO2. We irradiated thin (˜300 nm) epitaxial films of UO2 with 2.1 MeV He2 + ions to 0.15 displacements per atom and a lattice swelling of Δ a /a ˜0.6 % and then used grazing-incidence inelastic x-ray scattering to measure the phonon spectrum. We succeeded in observing the acoustic modes, both transverse and longitudinal, across the Brillouin zone. The phonon energies, in both the pristine and irradiated samples, are unchanged from those observed in bulk material. On the other hand, the phonon linewidths (inversely proportional to the phonon lifetimes) show a significant broadening when comparing the pristine and irradiated samples. This effect is shown to increase with phonon energy across the Brillouin zone. The decreases in the phonon lifetimes of the acoustic modes are roughly consistent with a 50% reduction in the thermal conductivity.

  18. Investigation of phononic crystals for dispersive surface acoustic wave ozone sensors

    NASA Astrophysics Data System (ADS)

    Westafer, Ryan S.

    The object of this research was to investigate dispersion in surface phononic crystals (PnCs) for application to a newly developed passive surface acoustic wave (SAW) ozone sensor. Frequency band gaps and slow sound already have been reported for PnC lattice structures. Such engineered structures are often advertised to reduce loss, increase sensitivity, and reduce device size. However, these advances have not yet been realized in the context of surface acoustic wave sensors. In early work, we computed SAW dispersion in patterned surface structures and we confirmed that our finite element computations of SAW dispersion in thin films and in one dimensional surface PnC structures agree with experimental results obtained by laser probe techniques. We analyzed the computations to guide device design in terms of sensitivity and joint spectral operating point. Next we conducted simulations and experiments to determine sensitivity and limit of detection for more conventional dispersive SAW devices and PnC sensors. Finally, we conducted extensive ozone detection trials on passive reflection mode SAW devices, using distinct components of the time dispersed response to compensate for the effect of temperature. The experimental work revealed that the devices may be used for dosimetry applications over periods of several days.

  19. Quantum transport properties of carbon nanotube field-effect transistors with electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2007-11-01

    We investigated the electron-phonon coupling effects on the electronic transport properties of metallic (5,5)- and semiconducting (10,0)-carbon nanotube devices. We calculated the conductance and mobility of the carbon nanotubes with micron-order lengths at room temperature, using the time-dependent wave-packet approach based on the Kubo-Greenwood formula within a tight-binding approximation. We investigated the scattering effects of both longitudinal acoustic and optical phonon modes on the transport properties. The electron-optical phonon coupling decreases the conductance around the Fermi energy for the metallic carbon nanotubes, while the conductance of semiconductor nanotubes is decreased around the band edges by the acoustic phonons. Furthermore, we studied the Schottky-barrier effects on the mobility of the semiconducting carbon nanotube field-effect transistors for various gate voltages. We clarified how the electron mobilities of the devices are changed by the acoustic phonon.

  20. Wide-Stopband Aperiodic Phononic Filters

    NASA Technical Reports Server (NTRS)

    Rostem, Karwan; Chuss, David; Denis, K. L.; Wollack, E. J.

    2016-01-01

    We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6-10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.

  1. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rury, Aaron S., E-mail: arury@usc.edu; Sorenson, Shayne; Dawlaty, Jahan M.

    2016-03-14

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone,more » we find sub-cm{sup −1} oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.« less

  2. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid

    NASA Astrophysics Data System (ADS)

    Rury, Aaron S.; Sorenson, Shayne; Dawlaty, Jahan M.

    2016-03-01

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm-1 oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.

  3. Sideband characterization and atmospheric observations with various 340 GHz heterodyne receivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renker, Matthias, E-mail: renker@iap.unibe.ch; Murk, Axel; Rea, Simon P.

    2014-08-15

    This paper describes sideband response measurements and atmospheric observations with a double sideband and two Single Sideband (SSB) receiver prototypes developed for the multi-beam limb sounder instrument stratosphere-troposphere exchange and climate monitor radiometer. We first show an advanced Fourier-Transform Spectroscopy (FTS) method for sideband response and spurious signal characterization. We then present sideband response measurements of the different prototype receivers and we compare the results of the SSB receivers with sideband measurements by injecting a continuous wave signal into the upper and lower sidebands. The receivers were integrated into a total-power radiometer and atmospheric observations were carried out. The observedmore » spectra were compared to forward model spectra to conclude on the sideband characteristics of the different receivers. The two sideband characterization methods show a high degree of agreement for both SSB receivers with various local oscillator settings. The measured sideband response was used to correct the forward model simulations. This improves the agreement with the atmospheric observations and explains spectral features caused by an unbalanced sideband response. The FTS method also allows to quantify the influence of spurious harmonic responses of the receiver.« less

  4. Femtosecond electron imaging of defect-modulated phonon dynamics

    PubMed Central

    Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.

    2016-01-01

    Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps−1) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics. PMID:27079790

  5. Inelastic x-ray scattering measurements of phonon dynamics in URu 2Si 2

    DOE PAGES

    Gardner, D. R.; Bonnoit, C. J.; Chisnell, R.; ...

    2016-02-11

    In this paper, we study high-resolution inelastic x-ray scattering measurements of the acoustic phonons of URu 2Si 2. At all temperatures, the longitudinal acoustic phonon linewidths are anomalously broad at small wave vectors revealing a previously unknown anharmonicity. The phonon modes do not change significantly upon cooling into the hidden order phase. In addition, our data suggest that the increase in thermal conductivity in the hidden order phase cannot be driven by a change in phonon dispersions or lifetimes. Hence, the phonon contribution to the thermal conductivity is likely much less significant compared to that of the magnetic excitations inmore » the low temperature phase.« less

  6. Quantum theory of phonon-mediated decoherence and relaxation of two-level systems in a structured electromagnetic reservoir

    NASA Astrophysics Data System (ADS)

    Roy, Chiranjeeb

    In this thesis we study the role of nonradiative degrees of freedom on quantum optical properties of mesoscopic quantum dots placed in the structured electromagnetic reservoir of a photonic crystal. We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption lineshape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the "colored" electromagnetic vacuum of a photonic band gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. Phonon sidebands in an ordinary electromagnetic reservoir are recaptured in a simple model of optical phonons using a mean-field factorization of the atomic and lattice displacement operators. Our formalism is then used to treat the non-Markovian dynamics of the same system within the structured electromagnetic density of states of a photonic crystal. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to enhanced lifetime of a photon-atom bound state in a PBG by (i) dephasing and reducing the transition electric dipole moment of the atom and (ii) reducing the quantum mechanical overlap of the state vectors of the excited and ground state (polaronic shift). This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (break-up of phonons into lower energy phonons) and purely nonradiative decay. We demonstrate how these additional damping effects limit the extent of the polaronic (Franck-Condon) shift of

  7. Derivation of sideband gain ratio for Herschel/HIFI

    NASA Astrophysics Data System (ADS)

    Kester, Do; Higgins, Ronan; Teyssier, David

    2017-03-01

    Context. Heterodyne mixers are commonly used for high-resolution spectroscopy at radio telescopes. When used as a double sideband system, the accurate flux calibration of spectral lines acquired by those detectors is highly dependent on the system gains in the respective mixer sidebands via the so-called sideband gain ratio (SBR). As such, the SBR was one of the main contributors to the calibration uncertainty budget of the Herschel/HIFI instrument. Aims: We want to determine the HIFI instrument sideband gain ratio for all bands on a fine frequency grid and within an accuracy of a few percent. Methods: We introduce a novel technique involving in-orbit HIFI data that is bootstrapped onto standard methods involving laboratory data measurements of the SBR. We deconvolved the astronomical data to provide a proxy of the expected signal at every frequency channel, and extracted the sideband gain ratios from the residuals of that process. Results: We determine the HIFI sideband gain ratio to an accuracy varying between 1 and 4%, with degraded accuracy in higher frequency ranges, and at places where the reliability of the technique is lower. These figures were incorporated into the HIFI data processing pipeline and improved the overall flux uncertainty of the legacy data from this instrument. Conclusions: We demonstrate that a modified sideband deconvolution algorithm, using astronomical data in combination with gas cell measurements, can be used to generate an accurate and fine-granularity picture of the sideband gain ratio behaviour of a heterodyne receiver. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons

    NASA Astrophysics Data System (ADS)

    Feng, Tianli; Ruan, Xiulin

    2018-01-01

    We have developed a formalism of the exact solution to linearized phonon Boltzmann transport equation (BTE) for thermal conductivity calculation including three- and four-phonon scattering. We find strikingly high four-phonon scattering rates in single-layer graphene (SLG) based on the optimized Tersoff potential. The reflection symmetry in graphene, which forbids the three-ZA (out-of-plane acoustic) scattering, allows the four-ZA processes ZA +ZA ⇌ZA +ZA and ZA ⇌ZA +ZA + ZA. As a result, the large phonon population of the low-energy ZA branch originated from the quadratic phonon dispersion leads to high four-phonon scattering rates, even much higher than the three-phonon scattering rates at room temperature. These four-phonon processes are dominated by the normal processes, which lead to a failure of the single mode relaxation time approximation. Therefore, we have solved the exact phonon BTE using an iterative scheme and then calculated the length- and temperature-dependent thermal conductivities. We find that the predicted thermal conductivity of SLG is lower than the previously predicted value from the three-phonon scattering only. The relative contribution of the ZA branch is reduced from 70% to 30% when four-phonon scattering is included. Furthermore, we have demonstrated that the four-phonon scattering in multilayer graphene and graphite is not strong due to the ZA splitting by interlayer van der Waals interaction. We also demonstrate that the five-phonon process in SLG is not strong due to the restriction of reflection symmetry.

  9. Funneled focusing of planar acoustic waves utilizing the metamaterial properties of an acoustic lens

    NASA Astrophysics Data System (ADS)

    Walker, E.; Reyes, D.; Rojas, M. M.; Krokhin, A.; Neogi, A.

    2014-02-01

    Metamaterial acoustic lenses are acoustic devices based on phononic crystal structures that take advantage of negative or near-zero indices of refraction. These unique properties arise due to either the antiparallel direction of the phase and group velocity or strongly anisotropic dispersion characteristics, usually above the first transmission band. In this study, we utilize an FDTD program to examine two phononic lenses that utilize anisotropic effects available in their second band to collimate and focus acoustic waves from a plane-wave source with a k00 wavevector. The phononic crystals consist of stainless steel rods arranged in a square lattice with water as the ambient material. Results show collimation and focusing in the second band for select frequencies, fc ± 0.005𝑓𝑐.

  10. Phonons in self-assembled Ge/Si structures

    NASA Astrophysics Data System (ADS)

    Milekhin, A. G.; Nikiforov, A. I.; Pchelyakov, O. P.; Schulze, S.; Zahn, D. R. T.

    2002-03-01

    We present the results of an investigation dealing with fundamental vibrations in periodical Ge/Si structures with small-size Ge quantum dots (QDs) performed using macro- and micro-Raman spectroscopy under resonant and off-resonant conditions. Samples with different number of repetition of Ge and Si layers contain Ge QDs with an average dot base size of 15 nm and a QD height of 2 nm. Periodic oscillations observed in the low-frequency region of the Raman spectra are assigned to folded LA phonons in the Ge QD superlattices. The measured phonon frequencies are in a good agreement with those calculated using the Rytov model. These oscillations are superimposed with a broad continuous emission originating from the whole acoustic dispersion branch due to a breaking up of translational invariance. The Raman spectra of the structure with single Ge QD layer reveal a series of peaks corresponding to LA phonons localized in the Si layer. Using the measured phonon frequencies and corresponding wave vectors the dispersion of the LA phonons in the Si is obtained. The longitudinal-acoustic wave velocity determined from the dispersion is 8365 ms-1 and in excellent agreement with that derived from the Brillouin study. In the optical phonon range, the LO and TO phonons localized in Ge QDs are observed. The position of the LO Ge phonons shifts downwards with increasing excitation energy (from 2.5 to 2.7 eV) indicating the presence of a QD size distribution in Ge dot superlattices. Raman scattering from Ge QDs is size-selectively enhanced by the resonance of the exciting laser energy and the confined excitonic states.

  11. Tunable phonon-cavity coupling in graphene membranes.

    PubMed

    De Alba, R; Massel, F; Storch, I R; Abhilash, T S; Hui, A; McEuen, P L; Craighead, H G; Parpia, J M

    2016-09-01

    A major achievement of the past decade has been the realization of macroscopic quantum systems by exploiting the interactions between optical cavities and mechanical resonators. In these systems, phonons are coherently annihilated or created in exchange for photons. Similar phenomena have recently been observed through phonon-cavity coupling-energy exchange between the modes of a single system mediated by intrinsic material nonlinearity. This has so far been demonstrated primarily for bulk crystalline, high-quality-factor (Q > 10(5)) mechanical systems operated at cryogenic temperatures. Here, we propose graphene as an ideal candidate for the study of such nonlinear mechanics. The large elastic modulus of this material and capability for spatial symmetry breaking via electrostatic forces is expected to generate a wealth of nonlinear phenomena, including tunable intermodal coupling. We have fabricated circular graphene membranes and report strong phonon-cavity effects at room temperature, despite the modest Q factor (∼100) of this system. We observe both amplification into parametric instability (mechanical lasing) and the cooling of Brownian motion in the fundamental mode through excitation of cavity sidebands. Furthermore, we characterize the quenching of these parametric effects at large vibrational amplitudes, offering a window on the all-mechanical analogue of cavity optomechanics, where the observation of such effects has proven elusive.

  12. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    DOE PAGES

    Fomin, Vladimir M.; Balandin, Alexander A.

    2015-10-10

    We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatchmore » between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.« less

  13. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, Vladimir M.; Balandin, Alexander A.

    We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatchmore » between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.« less

  14. Nonlinear acoustic detection of weathered, low compliance landmines

    NASA Astrophysics Data System (ADS)

    Sabatier, James M.; Alberts, W. C. Kirkpatrick; Korman, Murray S.

    2005-09-01

    Two potential impediments to acoustic landmine detection are soil weathering processes and low compliance landmines. To bury landmines, the soil within a mine diameter is removed and replaced such that bulk density, compression, and shear strength all decrease, leaving an acoustic scar detectable with the linear acoustic measurement technique. After a few soil wetting and drying cycles, this contrast is reduced. Linear acoustic mine detection measurements were made on a low impedance contrast landmine before the first rainfall on several occasions over the subsequent 5 years. During this period of time, both the spatial and frequency resolution had to be increased to maintain an on/off target velocity ratio that allowed detection. In some cases, the landmine remains undetectable. To address this, two-tone nonlinear acoustic measurements have been made on these landmines. When the landmine is detectable with linear acoustics, two tones are broadcast at the frequency where the on/off target velocity ratio is the largest. For the cases when the landmine is undetectable, a two-tone sweep is performed and the operator observes the real-time velocity FFT, noting nonlinear sidebands. Next, two-tone tests are conducted at these sidebands to determine nonlinear velocity profiles. [Work supported by U.S. Army RDECOM, NVESD.

  15. Dispersion, mode-mixing and the electron-phonon interaction in nanostructures

    NASA Astrophysics Data System (ADS)

    Dyson, A.; Ridley, B. K.

    2018-03-01

    The electron-phonon interaction with polar optical modes in nanostructures is re-examined in the light of phonon dispersion relations and the role of the Fuchs-Kliewer (FK) mode. At an interface between adjacent polar materials the frequencies of the FK mode are drawn from the dielectric constants of the adjacent materials and are significantly smaller than the corresponding frequencies of the longitudinal optic (LO) modes at the zone centre. The requirement that all polar modes satisfy mechanical and electrical boundary conditions forces the modes to become hybrids. For a hybrid to have both FK and LO components the LO mode must have the FK frequency, which can only come about through the reduction associated with phonon dispersion relations. We illustrate the effect of phonon dispersion relations on the Fröhlich interaction by considering a simple linear-chain model of the zincblende lattice. Optical and acoustic modes become mixed towards short wavelengths in both optical and acoustic branches. A study of GaAs, InP and cubic GaN and AlN shows that the polarity of the optical branch and the acousticity of the acoustic branch are reduced by dispersion in equal measures, but the effect is relatively weak. Coupling coefficients quantifying the strengths of the interaction with electrons for optical and acoustic components of mixed modes in the optical branch show that, in most cases, the polar interaction dominates the acoustic interaction, and it is reduced from the long-wavelength result towards the zone boundary by only a few percent. The effect on the lower-frequency FK mode can be large.

  16. Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Pistol, M. E.; Monemar, B.

    1986-05-01

    A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.

  17. Heterodyne x-ray diffuse scattering from coherent phonons

    DOE PAGES

    Kozina, M.; Trigo, M.; Chollet, M.; ...

    2017-08-10

    Here in this paper, we report Fourier-transform inelastic x-ray scattering measurements of photoexcited GaAs with embedded ErAs nanoparticles. We observe temporal oscillations in the x-ray scattering intensity, which we attribute to inelastic scattering from coherent acoustic phonons. Unlike in thermal equilibrium, where inelastic x-ray scattering is proportional to the phonon occupation, we show that the scattering is proportional to the phonon amplitude for coherent states. The wavevectors of the observed phonons extend beyond the excitation wavevector. The nanoparticles break the discrete translational symmetry of the lattice, enabling the generation of large wavevector coherent phonons. Elastic scattering of x-ray photons frommore » the nanoparticles provides a reference for heterodyne mixing, yielding signals proportional to the phonon amplitude.« less

  18. Phonon transport properties of two-dimensional group-IV materials from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Ni, Gang; Zhang, Rongjun; Zhu, Heyuan

    2016-12-01

    It has been argued that stanene has lowest lattice thermal conductivity among two-dimensional (2D) group-IV materials because of its largest atomic mass, weakest interatomic bonding, and enhanced ZA phonon scattering due to the breaking of an out-of-plane symmetry selection rule. However, we show that, although the lattice thermal conductivity κ for graphene, silicene, and germanene decreases monotonically with decreasing Debye temperature, unexpected higher κ is observed in stanene. By enforcing all the invariance conditions in 2D materials and including Ge 3 d and Sn 4 d electrons as valence electrons for germanene and stanene, respectively, the lattice dynamics in these materials are accurately described. A large acoustic-optical gap and the bunching of the acoustic-phonon branches significantly reduce phonon scattering in stanene, leading to higher thermal conductivity than germanene. The vibrational origin of the acoustic-optical gap can be attributed to the buckled structure. Interestingly, a buckled system has two competing influences on phonon transport: the breaking of the symmetry selection rule leads to reduced thermal conductivity, and the enlarging of the acoustic-optical gap results in enhanced thermal conductivity. The size dependence of thermal conductivity is investigated as well. In nanoribbons, the κ of silicene, germanene, and stanene is much less sensitive to size effect due to their short intrinsic phonon mean-free paths. This work sheds light on the nature of phonon transport in buckled 2D materials.

  19. Defect-mediated phonon dynamics in TaS2 and WSe2

    PubMed Central

    Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.

    2017-01-01

    We report correlative crystallographic and morphological studies of defect-dependent phonon dynamics in single flakes of 1T-TaS2 and 2H-WSe2 using selected-area diffraction and bright-field imaging in an ultrafast electron microscope. In both materials, we observe in-plane speed-of-sound acoustic-phonon wave trains, the dynamics of which (i.e., emergence, propagation, and interference) are strongly dependent upon discrete interfacial features (e.g., vacuum/crystal and crystal/crystal interfaces). In TaS2, we observe cross-propagating in-plane acoustic-phonon wave trains of differing frequencies that undergo coherent interference approximately 200 ps after initial emergence from distinct interfacial regions. With ultrafast bright-field imaging, the properties of the interfering wave trains are observed to correspond to the beat frequency of the individual oscillations, while intensity oscillations of Bragg spots generated from selected areas within the region of interest match well with the real-space dynamics. In WSe2, distinct acoustic-phonon dynamics are observed emanating and propagating away from structurally dissimilar morphological discontinuities (vacuum/crystal interface and crystal terrace), and results of ultrafast selected-area diffraction reveal thickness-dependent phonon frequencies. The overall observed dynamics are well-described using finite element analysis and time-dependent linear-elastic continuum mechanics. PMID:28503630

  20. Fiber optical vibrometer based on a phononic crystal filter

    NASA Astrophysics Data System (ADS)

    Lin, Sijing; Chai, Quan; Zhang, Jianzhong

    2012-02-01

    We propose that phononic crystals could be used as a packaging method in a fiber optical vibrometer system to filter the vibration at unwanted frequency range. A simple FBG based vibrometer and a aluminum-silicone rubber based 1D phononic crystal with the designed phononic band gap are built up, and the corresponding experimental results are demonstrated to show the feasibility of our proposal. Our proposal also points out that optical fiber sensors could be an excellent candidate to research the inner acoustic response of more complex phononic crystals.

  1. Ultra-high-Q phononic resonators on-chip at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Kharel, Prashanta; Chu, Yiwen; Power, Michael; Renninger, William H.; Schoelkopf, Robert J.; Rakich, Peter T.

    2018-06-01

    Long-lived, high-frequency phonons are valuable for applications ranging from optomechanics to emerging quantum systems. For scientific as well as technological impact, we seek high-performance oscillators that offer a path toward chip-scale integration. Confocal bulk acoustic wave resonators have demonstrated an immense potential to support long-lived phonon modes in crystalline media at cryogenic temperatures. So far, these devices have been macroscopic with cm-scale dimensions. However, as we push these oscillators to high frequencies, we have an opportunity to radically reduce the footprint as a basis for classical and emerging quantum technologies. In this paper, we present novel design principles and simple microfabrication techniques to create high performance chip-scale confocal bulk acoustic wave resonators in a wide array of crystalline materials. We tailor the acoustic modes of such resonators to efficiently couple to light, permitting us to perform a non-invasive laser-based phonon spectroscopy. Using this technique, we demonstrate an acoustic Q-factor of 2.8 × 107 (6.5 × 106) for chip-scale resonators operating at 12.7 GHz (37.8 GHz) in crystalline z-cut quartz (x-cut silicon) at cryogenic temperatures.

  2. Photoinduced coherent acoustic phonon dynamics inside Mott insulator Sr2IrO4 films observed by femtosecond X-ray pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Bing-Bing; Liu, Jian; Wei, Xu; Sun, Da-Rui; Jia, Quan-Jie; Li, Yuelin; Tao, Ye

    2017-04-01

    We investigate the transient photoexcited lattice dynamics in a layered perovskite Mott insulator Sr2IrO4 film by femtosecond X-ray diffraction using a laser plasma-based X-ray source. The ultrafast structural dynamics of Sr2IrO4 thin films are determined by observing the shift and broadening of (0012) Bragg diffraction after excitation by 1.5 eV and 3.0 eV pump photons for films with different thicknesses. The observed transient lattice response can be well interpreted as a distinct three-step dynamics due to the propagation of coherent acoustic phonons generated by photoinduced quasiparticles (QPs). Employing a normalized phonon propagation model, we found that the photoinduced angular shifts of the Bragg peak collapse into a universal curve after introducing normalized coordinates to account for different thicknesses and pump photon energies, pinpointing the origin of the lattice distortion and its early evolution. In addition, a transient photocurrent measurement indicates that the photoinduced QPs are charge neutral excitons. Mapping the phonon propagation and correlating its dynamics with the QP by ultrafast X-ray diffraction (UXRD) establish a powerful way to study electron-phonon coupling and uncover the exotic physics in strongly correlated systems under nonequilibrium conditions.

  3. Optical Sidebands Multiplier

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan

    2010-01-01

    Optical sidebands have been generated with relative frequency tens to hundreds of GHz by using optical sidebands that are generated in a cascade process in high-quality optical resonators with Kerr nonlinearity, such as whispering gallery mode (WGM) resonators. For this purpose, the WGM resonator needs to be optically pumped at two frequencies matching its resonances. These two optical components can be one or several free spectral ranges (FSRs), equal to approximately 12 GHz, in this example, apart from each other, and can be easily derived from a monochromatic pump with an ordinary EOM (electro-optic modulation) operating at half the FSR frequency. With sufficient nonlinearity, an optical cascade process will convert the two pump frequencies into a comb-like structure extending many FSRs around the carrier frequency. This has a demonstratively efficient frequency conversion of this type with only a few milliwatt optical pump power. The concept of using Kerr nonlinearity in a resonator for non-degenerate wave mixing has been discussed before, but it was a common belief that this was a weak process requiring very high peak powers to be observable. It was not thought possible for this approach to compete with electro-optical modulators in CW applications, especially those at lower optical powers. By using the high-Q WGM resonators, the effective Kerr nonlinearity can be made so high that, using even weak seeding bands available from a conventional EOM, one can effectively multiply the optical sidebands, extending them into an otherwise inaccessible frequency range.

  4. Weyl points and Fermi arcs in a chiral phononic crystal

    NASA Astrophysics Data System (ADS)

    Li, Feng; Huang, Xueqin; Lu, Jiuyang; Ma, Jiahong; Liu, Zhengyou

    2018-01-01

    Topological semimetals are materials whose band structure contains touching points that are topologically nontrivial and can host quasiparticle excitations that behave as Dirac or Weyl fermions. These so-called Weyl points not only exist in electronic systems, but can also be found in artificial periodic structures with classical waves, such as electromagnetic waves in photonic crystals and acoustic waves in phononic crystals. Due to the lack of spin and a difficulty in breaking time-reversal symmetry for sound, however, topological acoustic materials cannot be achieved in the same way as electronic or optical systems. And despite many theoretical predictions, experimentally realizing Weyl points in phononic crystals remains challenging. Here, we experimentally realize Weyl points in a chiral phononic crystal system, and demonstrate surface states associated with the Weyl points that are topological in nature, and can host modes that propagate only in one direction. As with their photonic counterparts, chiral phononic crystals bring topological physics to the macroscopic scale.

  5. Optical pulse synthesis using brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2002-01-01

    Techniques for producing optical pulses based on Brillouin selective sideband amplification by using a common modulation control signal to modulate both a signal beam to produce multiple sideband signals and a single pump beam to produce multiple pump beams.

  6. Nanoscale Phonon Transport as Probed with a Microfabricated Phonon Spectrometer for the Study of Nanoscale Energy Transport

    NASA Astrophysics Data System (ADS)

    Robinson, Richard; Otelaja, Obafemi; Hertzberg, Jared; Aksit, Mahmut; Stewart, Derek

    2013-03-01

    Phonons are the dominant heat carriers in dielectrics and a clear understanding of their behavior at the nanoscale is important for the development of efficient thermoelectric devices. In this work we show how acoustic phonon transport can be directly probed by the generation and detection of non-equilibrium phonons in microscale and nanoscale structures. Our technique employs a scalable method of fabricating phonon generators and detectors by forming Al-AlxOy-Al superconducting tunnel junctions on the sidewalls of a silicon mesa etched with KOH and an operating temperature of 0.3K. In the line-of-sight path along the width of these mesas, phonons with frequency ~100 GHz can propagate ballistically The phonons radiate into the mesa and are observed by the detector after passing through the mesa. We fabricated silicon nanosheets of width 100 to 300 nm along the ballistic path and observe surface scattering effects on phonon transmission when the characteristic length scale of a material is less than the phonon mean free path. We compare our results to the Casimir-Ziman theory. Our methods can be adapted for studying phonon transport in other nanostructures and will improve the understanding of phonon contribution to thermal transport. The work was supported in part by the National Science Foundation under Agreement No. DMR-1149036.

  7. Preface to special topic: Selected articles from phononics 2013: The second international conference on phononic crystals/metamaterials, phonon transport and optomechanics, 2-7 June 2013, Sharm El-Sheikh, Egypt

    DOE PAGES

    Hussein, Mahmoud I.; El-Kady, Ihab; Li, Baowen; ...

    2014-12-31

    “Phononics” is an interdisciplinary branch of physics and engineering that deals with the behavior of phonons, and more broadly elastic and acoustic waves in similar context, and their manipulation in solids and/or fluids to benefit technological applications. Compared to resembling disciplines, such as electronics and photonics, phononics is a youthful field. It is growing at a remarkable rate, especially when viewed liberally with no limiting constraints on any particular length scale, discipline or application.

  8. Preface to special topic: Selected articles from phononics 2013: The second international conference on phononic crystals/metamaterials, phonon transport and optomechanics, 2-7 June 2013, Sharm El-Sheikh, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussein, Mahmoud I.; El-Kady, Ihab; Li, Baowen

    “Phononics” is an interdisciplinary branch of physics and engineering that deals with the behavior of phonons, and more broadly elastic and acoustic waves in similar context, and their manipulation in solids and/or fluids to benefit technological applications. Compared to resembling disciplines, such as electronics and photonics, phononics is a youthful field. It is growing at a remarkable rate, especially when viewed liberally with no limiting constraints on any particular length scale, discipline or application.

  9. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy.

    PubMed

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-06-27

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction.

  10. A hybrid phononic crystal for roof application.

    PubMed

    Wan, Qingmian; Shao, Rong

    2017-11-01

    Phononic crystal is a type of acoustic material, and the study of phononic crystals has attracted great attention from national research institutions. Meanwhile, noise reduction in the low-frequency range has always encountered difficulties and troubles in the engineering field. In order to obtain a unique and effective low-frequency noise reduction method, in this paper a low frequency noise attenuation system based on phononic crystal structure is proposed and demonstrated. The finite element simulation of the band gap is consistent with the final test results. The effects of structure parameters on the band gaps were studied by changing the structure parameters and the band gaps can be controlled by suitably tuning structure parameters. The structure and results provide a good support for phononic crystal structures engineering application.

  11. Topological phononic states of underwater sound based on coupled ring resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Cheng; Li, Zheng; Ni, Xu

    We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracymore » is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.« less

  12. Terahertz acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Abouelsayed, A.; Ebrahim, M. R.; El hotaby, W.; Hassan, S. A.; Al-Ashkar, Emad

    2017-10-01

    We present terahertz spectroscopy study on spherical nanoparticles powder mixture of aluminum, alumina, and MWCNTs induced by surface mechanical attrition treatment (SMAT) of aluminum substrates. Surface alloying of AL, Al2O3 0.95% and MWCNTs 0.05% powder mixture was produced during SMAT process, where a compact surface layer of about 200 μm due to ball bombardment was produced from the mixture. Al2O3 alumina powder played a significant role in MWCNTs distribution on surface, those were held in deformation surface cites of micro-cavities due to SMAT process of Al. The benefits are the effects on resulted optical properties of the surface studied at the terahertz frequency range due to electrical isolation confinement effects and electronic resonance disturbances exerted on Al electronic resonance at the same range of frequencies. THz acoustic phonon around 0.53-0.6 THz (17-20 cm-1) were observed at ambient conditions for the spherical nanoparticles powder mixture of Al, Al2O3 and MWCNTs. These results suggested that the presence of Al2O3 and MWCNTs during SMAT process leads to the optically detection of such acoustic phonon in the THz frequency range.

  13. Surface phononic graphene

    NASA Astrophysics Data System (ADS)

    Yu, Si-Yuan; Sun, Xiao-Chen; Ni, Xu; Wang, Qing; Yan, Xue-Jun; He, Cheng; Liu, Xiao-Ping; Feng, Liang; Lu, Ming-Hui; Chen, Yan-Feng

    2016-12-01

    Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization, tunnelling with exponential decay, ballistic, and diffusion behaviours due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.

  14. Nonequilibrium dynamics of the phonon gas in ultrafast-excited antimony

    NASA Astrophysics Data System (ADS)

    Krylow, Sergej; Zijlstra, Eeuwe S.; Kabeer, Fairoja Cheenicode; Zier, Tobias; Bauerhenne, Bernd; Garcia, Martin E.

    2017-12-01

    The ultrafast relaxation dynamics of a nonequilibrium phonon gas towards thermal equilibrium involves many-body collisions that cannot be properly described by perturbative approaches. Here, we develop a nonperturbative method to elucidate the microscopic mechanisms underlying the decay of laser-excited coherent phonons in the presence of electron-hole pairs, which so far are not fully understood. Our theory relies on ab initio molecular dynamics simulations on laser-excited potential-energy surfaces. Those simulations are compared with runs in which the laser-excited coherent phonon is artificially deoccupied. We apply this method to antimony and show that the decay of the A1 g phonon mode at low laser fluences can be accounted mainly to three-body down-conversion processes of an A1 g phonon into acoustic phonons. For higher excitation strengths, however, we see a crossover to a four-phonon process, in which two A1 g phonons decay into two optical phonons.

  15. Lattice anharmonicity, phonon dispersion, and thermal conductivity of PbTe studied by the phonon quasiparticle approach

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Sun, Tao; Zhang, Dong-Bo

    2018-05-01

    We investigated the vibrational property of lead telluride (PbTe) with a focus on lattice anharmonicity at moderate temperatures (300 phonon quasiparticle approach which combines first-principles molecular dynamics and lattice dynamics. The calculated anharmonic phonon dispersions are strongly temperature dependent and some phonon modes adopt giant frequency shifts, e.g., transverse optical modes in the long-wavlength regime. As a result, we witness the avoided crossing between transverse optical modes and longitudinal acoustic modes at elevated temperature, in good agreement with experimentation and available theoretical studies. These results, together with the large root-mean-square displacements of atoms, reveal a strong anharmonic effect in PbTe. The obtained phonon lifetimes allow studies of transport properties. For considered temperatures, the phonon mean free paths can be shorter than lattice constants at relatively high temperature, especially for optical modes. This finding goes against the widely employed minimal phonon mean free path concept. As such, the calculated lattice thermal conductivity of PbTe, which is indeed relatively small, does not have the prescribed minima at high temperature, showcasing the breakdown of the minimal mean free path theory. Our study provides a basis for delineating vibrational and transport properties of PbTe and other thermoelectric materials within the framework of the phonon gas model.

  16. A chip-integrated coherent photonic-phononic memory.

    PubMed

    Merklein, Moritz; Stiller, Birgit; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J

    2017-09-18

    Controlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at five orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with gigahertz bandwidth and show operation at separate wavelengths with negligible cross-talk.Optical storage implementations based on optomechanical resonator are limited to one wavelength. Here, exploiting stimulated Brillouin scattering, the authors demonstrate a coherent optical memory based on a planar integrated waveguide, which can operate at different wavelengths without cross-talk.

  17. Magnon and phonon thermometry with inelastic light scattering

    NASA Astrophysics Data System (ADS)

    Olsson, Kevin S.; An, Kyongmo; Li, Xiaoqin

    2018-04-01

    Spin caloritronics investigates the interplay between the transport of spin and heat. In the spin Seebeck effect, a thermal gradient across a magnetic material generates a spin current. A temperature difference between the energy carriers of the spin and lattice subsystems, namely the magnons and phonons, is necessary for such thermal nonequilibrium generation of spin current. Inelastic light scattering is a powerful method that can resolve the individual temperatures of magnons and phonons. In this review, we discuss the thermometry capabilities of inelastic light scattering for measuring optical and acoustic phonons, as well as magnons. A scattering spectrum offers three temperature sensitive parameters: frequency shift, linewidth, and integrated intensity. We discuss the temperatures measured via each of these parameters for both phonon and magnons. Finally, we discuss inelastic light scattering experiments that have examined the magnon and phonon temperatures in thermal nonequilibrium which are particularly relevant to spin caloritronic phenomena.

  18. Phononic Origins of Friction in Carbon Nanotube Oscillators.

    PubMed

    Prasad, Matukumilli V D; Bhattacharya, Baidurya

    2017-04-12

    Phononic coupling can have a significant role in friction between nanoscale surfaces. We find frictional dissipation per atom in carbon nanotube (CNT) oscillators to depend significantly on interface features such as contact area, commensurability, and by end-capping of the inner core. We perform large-scale phonon wavepacket MD simulations to study phonon coupling between a 250 nm long (10,10) outer tube and inner cores of four different geometries. Five different phonon polarizations known to have dominant roles in thermal transport are selected, and transmission coefficient plots for a range of phonon energies along with phonon scattering dynamics at specific energies are obtained. We find that the length of interface affects friction only through LA phonon scattering and has a significant nonlinear effect on total frictional force. Incommensurate contact does not always give rise to superlubricity: the net effect of two competing interaction mechanisms shown by longitudinal and transverse phonons decides the role of commensurability. Capping of the core has no effect on acoustic phonons but destroys the coherence of transverse optical phonons and creates diffusive scattering. In contrast, the twisting and radial breathing phonon modes have perfect transmission at all energies and can be deemed as the enablers of ultralow friction in CNT oscillators. Our work suggests that tuning of interface geometries can give rise to desirable friction properties in nanoscale devices.

  19. Inverse Edelstein effect induced by magnon-phonon coupling

    NASA Astrophysics Data System (ADS)

    Xu, Mingran; Puebla, Jorge; Auvray, Florent; Rana, Bivas; Kondou, Kouta; Otani, Yoshichika

    2018-05-01

    We demonstrate a spin to charge current conversion via magnon-phonon coupling and an inverse Edelstein effect on the hybrid device Ni/Cu (Ag )/Bi 2O3 . The generation of spin current (Js≈108A/m2 ) due to magnon-phonon coupling reveals the viability of acoustic spin pumping as a mechanism for the development of spintronic devices. A full in-plane magnetic field angle dependence of the power absorption and a combination of longitudinal and transverse voltage detection reveals the symmetric and asymmetric components of the inverse Edelstein effect voltage induced by Rayleigh-type surface acoustic waves. While the symmetric components are well studied, asymmetric components still need to be explored. We assign the asymmetric contributions to the interference between longitudinal and shear waves and an anisotropic charge distribution in our hybrid device.

  20. Phonon dynamics in type-VIII silicon clathrates: Beyond the rattler concept

    NASA Astrophysics Data System (ADS)

    Norouzzadeh, Payam; Myles, Charles W.; Vashaee, Daryoosh

    2017-05-01

    Clathrates can form a type of guest-host solid structures that, unlike most crystalline solids, have very low thermal conductivity. It is generally thought that the guest atoms caged inside the host framework act as "rattlers" and induce lattice dynamics disorders responsible for the small thermal conductivity. We performed a systematic study of the lattice dynamical properties of type-VIII clathrates with alkali and alkaline-earth guests, i.e., X8S i46 (X =Na , K, Rb, Cs, Ca, Sr, and Ba). The energy dependent participation ratio (PR) and the atomic participation ratio of phonon modes extracted from density functional theory calculations revealed that the rattler concept is not adequate to describe the effect of fillers as they manifest strong hybridization with the framework. For the case of heavy fillers, such as Rb, Sr, Cs, and Ba, a phonon band gap was formed between the acoustic and optical branches. The calculated PR indicated that the fillers suppress the acoustic phonon modes and change the energy transport mechanism from propagative to diffusive or localized resulting in "phonon-glass" characteristics. This effect is stronger for the heavy fillers. Furthermore, in all cases, the guest insertion depressed the phonon bandwidth, reduced the Debye temperature, and reduced the phonon group velocity, all of which should lead to reduction of the thermal conductivity.

  1. Research on soundproof properties of cylindrical shells of generalized phononic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Ru; Shu, Haisheng; Wang, Xingguo

    2017-04-01

    Based on the previous studies, the concept of generalized phononic crystals (GPCs) is further introduced into the cylindrical shell structures in this paper. And a type of cylindrical shells of generalized phononic crystals (CS-GPCs) is constructed, the structural field and acoustic-structural coupled field of the composite cylindrical shells are examined respectively. For the structural field, the transfer matrix method of mechanical state vector is adopted to build the transfer matrix of radial waves propagating from inside to outside. For the acoustic-structural coupled field, the expressions of the acoustic transmission/reflection coefficients and the sound insulation of acoustic waves with the excitation of center line sound source are set up. And the acoustic transmission coefficient and the frequency response of sound insulation in this mode were numerical calculated. Furthermore, the theoretical analysis results are verified by using the method of combining the numerical calculation and finite element simulation. Finally, the effects of inner and outer fluid parameters on the transmission/reflection coefficients of CS-GPCs are analyzed in detail.

  2. Edge waves and resonances in two-dimensional phononic crystal plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Jin-Chen, E-mail: hsujc@yuntech.edu.tw; Hsu, Chih-Hsun

    2015-05-07

    We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. Wemore » design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.« less

  3. Luminescence Anisotropy and Thermal Effect of Magnetic and Electric Dipole Transitions of Cr3+ Ions in Yb:YAG Transparent Ceramic.

    PubMed

    Tang, Fei; Ye, Honggang; Su, Zhicheng; Bao, Yitian; Guo, Wang; Xu, Shijie

    2017-12-20

    In this article, we present an in-depth optical study on luminescence spectral features and the thermal effect of the magnetic dipole (MD) transitions (e.g., the R lines of 2 E → 4 A 2 ) and the associated electric dipole transitions (e.g., phonon-induced sidebands of the R lines) of Cr 3+ ions in ytterbium-yttrium aluminum garnet polycrystalline transparent ceramic. The doubly split R lines predominately due to the doublet splitting of the 2 E level of the Cr 3+ ion in an octahedral crystal field are found to show a very large anisotropy in both emission intensity and thermal broadening. The large departure from the intensity equality between them could be interpreted in terms of large difference in coupling strength with phonons for the doubly split states of the 2 E level. For the large anisotropy in thermal broadening, very different effective Debye temperatures for the two split states may be responsible for it. Besides the 2 E excited state, the higher excited states, for example, 4 T 1 and 4 T 2 of the Cr 3+ ion, also exhibit a very large inequality in coupling strength with phonons at room temperature. By examining the Stokes phonon sidebands of the MD R lines at low temperatures with the existing ion-phonon coupling theory, we reveal that they indeed carry fundamental information of phonons. For example, their broad background primarily reflects Debye density of states of acoustic phonons. These new results significantly enrich our existing understanding on interesting but challenging luminescence mechanisms of ion-phonon coupling systems.

  4. The Free Electron Laser Sideband Instability Reconsidered.

    DTIC Science & Technology

    1987-08-12

    sidebands. The stability is determined by the sign of df /dtl i.e., the relative population of oscillation quanta Wwb, bounce frequency around resonance. The...wigglers. (e) The growth is proportional to [df(J)/d(b(J)], the relative population in oscillation quanta around resonance, in agreement with the quantum...signal and the sideband. The total vector potential is given by A eie )A weik ) z( eiey )Arei(krZ- t) (exiey)A sei(ksz-& st) + CC (2) where the subscripts w

  5. Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot

    NASA Astrophysics Data System (ADS)

    Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang

    2015-01-01

    In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.

  6. Anharmonic phonon decay in cubic GaN

    NASA Astrophysics Data System (ADS)

    Cuscó, R.; Domènech-Amador, N.; Novikov, S.; Foxon, C. T.; Artús, L.

    2015-08-01

    We present a Raman-scattering study of optical phonons in zinc-blende (cubic) GaN for temperatures ranging from 80 to 750 K. The experiments were performed on high-quality, cubic GaN films grown by molecular-beam epitaxy on GaAs (001) substrates. The observed temperature dependence of the optical phonon frequencies and linewidths is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional-theory calculations. The longitudinal-optical (LO) mode relaxation is found to occur via asymmetric decay into acoustic phonons, with an appreciable contribution of higher-order processes. The transverse-optical mode linewidth shows a weak temperature dependence and its frequency downshift is primarily determined by the lattice thermal expansion. The LO phonon lifetime is derived from the observed Raman linewidth and an excellent agreement with previous theoretical predictions is found.

  7. Berry Curvature in Magnon-Phonon Hybrid Systems.

    PubMed

    Takahashi, Ryuji; Nagaosa, Naoto

    2016-11-18

    We study theoretically the Berry curvature of the magnon induced by the hybridization with the acoustic phonons via the spin-orbit and dipolar interactions. We first discuss the magnon-phonon hybridization via the dipolar interaction, and show that the dispersions have gapless points in momentum space, some of which form a loop. Next, when both spin-orbit and dipolar interactions are considered, we show anisotropic texture of the Berry curvature and its divergence with and without gap closing. Realistic evaluation of the consequent anomalous velocity is given for yttrium iron garnet.

  8. Bright optical centre in diamond with narrow, highly polarised and nearly phonon-free fluorescence at room temperature

    NASA Astrophysics Data System (ADS)

    John, Roger; Lehnert, Jan; Mensing, Michael; Spemann, Daniel; Pezzagna, Sébastien; Meijer, Jan

    2017-05-01

    Using shallow implantation of ions and molecules with masses centred at 27 atomic mass units (amu) in diamond, a new artificial optical centre with unique properties has been created. The centre shows a linearly polarised fluorescence with a main narrow emission line mostly found at 582 nm, together with a weak vibronic sideband at room temperature. The fluorescence lifetime is ∼2 ns and the brightest centres are more than three times brighter than the nitrogen-vacancy centres. A majority of the centres shows stable fluorescence whereas some others present a blinking behaviour, at faster or slower rates. Furthermore, a second kind of optical centre has been simultaneously created in the same diamond sample, within the same ion implantation run. This centre has a narrow zero-phonon line (ZPL) at ∼546 nm and a broad phonon sideband at room temperature. Interestingly, optically detected magnetic resonance (ODMR) has been measured on several single 546 nm centres and two resonance peaks are found at 0.99 and 1.27 GHz. In view of their very similar ODMR and optical spectra, the 546 nm centre is likely to coincide with the ST1 centre, reported once (with a ZPL at 550 nm), but of still unknown nature. These new kinds of centres are promising for quantum information processing, sub-diffraction optical imaging or use as single-photon sources.

  9. Methods and devices based on brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2003-01-01

    Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.

  10. Time-varying phononic crystals

    NASA Astrophysics Data System (ADS)

    Wright, Derek Warren

    The primary objective of this thesis was to gain a deeper understanding of acoustic wave propagation in phononic crystals, particularly those that include materials whose properties can be varied periodically in time. This research was accomplished in three ways. First, a 2D phononic crystal was designed, created, and characterized. Its properties closely matched those determined through simulation. The crystal demonstrated band gaps, dispersion, and negative refraction. It served as a means of elucidating the practicalities of phononic crystal design and construction and as a physical verification of their more interesting properties. Next, the transmission matrix method for analyzing 1D phononic crystals was extended to include the effects of time-varying material parameters. The method was then used to provide a closed-form solution for the case of periodically time-varying material parameters. Some intriguing results from the use of the extended method include dramatically altered transmission properties and parametric amplification. New insights can be gained from the governing equations and have helped to identify the conditions that lead to parametric amplification in these structures. Finally, 2D multiple scattering theory was modified to analyze scatterers with time-varying material parameters. It is shown to be highly compatible with existing multiple scattering theories. It allows the total scattered field from a 2D time-varying phononic crystal to be determined. It was shown that time-varying material parameters significantly affect the phononic crystal transmission spectrum, and this was used to switch an incident monochromatic wave. Parametric amplification can occur under certain circumstances, and this effect was investigated using the closed-form solutions provided by the new 1D method. The complexity of the extended methods grows logarithmically as opposed linearly with existing methods, resulting in superior computational complexity for large

  11. Reliability of Raman measurements of thermal conductivity of single-layer graphene due to selective electron-phonon coupling: A first-principles study

    NASA Astrophysics Data System (ADS)

    Vallabhaneni, Ajit K.; Singh, Dhruv; Bao, Hua; Murthy, Jayathi; Ruan, Xiulin

    2016-03-01

    Raman spectroscopy has been widely used to measure thermal conductivity (κ ) of two-dimensional (2D) materials such as graphene. This method is based on a well-accepted assumption that different phonon polarizations are in near thermal equilibrium. However, in this paper, we show that, in laser-irradiated single-layer graphene, different phonon polarizations are in strong nonequilibrium, using predictive simulations based on first principles density functional perturbation theory and a multitemperature model. We first calculate the electron cooling rate due to phonon scattering as a function of the electron and phonon temperatures, and the results clearly illustrate that optical phonons dominate the hot electron relaxation process. We then use these results in conjunction with the phonon scattering rates computed using perturbation theory to develop a multitemperature model and resolve the spatial temperature distributions of the energy carriers in graphene under steady-state laser irradiation. Our results show that electrons, optical phonons, and acoustic phonons are in strong nonequilibrium, with the flexural acoustic (ZA) phonons showing the largest nonequilibrium to other phonon modes, mainly due to their weak coupling to other carriers in suspended graphene. Since ZA phonons are the main heat carriers in graphene, we estimate that neglecting this nonequilibrium leads to underestimation of thermal conductivity in experiments at room temperature by a factor of 1.35 to 2.6, depending on experimental conditions and assumptions used. Underestimation is also expected in Raman measurements of other 2D materials when the optical-acoustic phonon coupling is weak.

  12. Simultaneous transmission of wired and wireless signals based on double sideband carrier suppression

    NASA Astrophysics Data System (ADS)

    Bitew, Mekuanint Agegnehu; Shiu, Run-Kai; Peng, Peng-Chun; Wang, Cheng-Hao; Chen, Yan-Ming

    2017-11-01

    In this paper, we proposed and experimentally demonstrated simultaneous transmission of wired and wireless signals based on double sideband optical carrier suppression. By properly adjusting the bias point of the dual-output mach-zehnder modulator (MZM), a central carrier in one output port and a pair of first-order sidebands in another output port are generated. The pair of first-order sidebands are fed into a second MZM to generate second-order order sidebands. A wired signal is embedded on the central carrier while a wireless signal is embedded on the second-order sidebands. Unlike other schemes, we did not use optical filter to separate the carrier from the optical sidebands. The measured bit error rate (BER) and eye-diagrams after a 25 km single-mode-fiber (SMF) transmission proved that the proposed scheme is successful for both wired and wireless signals transmission. Moreover, the power penalty at the BER of 10-9 is 0.3 and 0.7 dB for wired and wireless signals, respectively.

  13. Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials

    DOE PAGES

    Kirschner, Matthew S.; Ding, Wendu; Li, Yuxiu; ...

    2017-12-01

    In this study, we demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result,more » change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Lastly, such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.« less

  14. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jianning; Wen, Tingdun; Key Laboratory of Electronic Testing Technology, North University of China, Taiyuan 030051

    2014-05-15

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with thatmore » of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.« less

  15. Optical vector network analyzer based on double-sideband modulation.

    PubMed

    Jun, Wen; Wang, Ling; Yang, Chengwu; Li, Ming; Zhu, Ning Hua; Guo, Jinjin; Xiong, Liangming; Li, Wei

    2017-11-01

    We report an optical vector network analyzer (OVNA) based on double-sideband (DSB) modulation using a dual-parallel Mach-Zehnder modulator. The device under test (DUT) is measured twice with different modulation schemes. By post-processing the measurement results, the response of the DUT can be obtained accurately. Since DSB modulation is used in our approach, the measurement range is doubled compared with conventional single-sideband (SSB) modulation-based OVNA. Moreover, the measurement accuracy is improved by eliminating the even-order sidebands. The key advantage of the proposed scheme is that the measurement of a DUT with bandpass response can also be simply realized, which is a big challenge for the SSB-based OVNA. The proposed method is theoretically and experimentally demonstrated.

  16. Electron–phonon coupling in hybrid lead halide perovskites

    PubMed Central

    Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.

    2016-01-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329

  17. Multi-channel unidirectional transmission of phononic crystal heterojunctions

    NASA Astrophysics Data System (ADS)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-02-01

    Two square steel columns are arranged in air to form two-dimensional square lattice phononic crystals (PNCs). Two PNCs can be combined into a non-orthogonal 45∘ heterojunction when the difference in the directional band gaps of the two PNC types is utilized. The finite element method is used to calculate the acoustic band structure, the heterogeneous junction transmission characteristics, acoustic field distribution, and many others. Results show that a non-orthogonal PNC heterojunction can produce a multi-channel unidirectional transmission of acoustic waves. With the square scatterer rotated, the heterojunction can select a frequency band for unidirectional transmission performance. This capability is particularly useful for constructing acoustic diodes with wide-bands and high-efficiency unidirectional transmission characteristics.

  18. Size-Dependent Coherent-Phonon Plasmon Modulation and Deformation Characterization in Gold Bipyramids and Nanojavelins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirschner, Matthew S.; Lethiec, Clotilde M.; Lin, Xiao-Min

    2016-04-04

    Localized surface plasmon resonances (LSPRs) arising from metallic nanoparticles offer an array of prospective applications that range from chemical sensing to biotherapies. Bipyramidal particles exhibit particularly narrow ensemble LSPR resonances that reflect small dispersity of size and shape but until recently were only synthetically accessible over a limited range of sizes with corresponding aspect ratios. Narrow size dispersion offers the opportunity to examine ensemble dynamical phenomena such as coherent phonons that induce periodic oscillations of the LSPR energy. Here, we characterize transient optical behavior of a large range of gold bipyramid sizes, as well as higher aspect ratio nanojavelin ensemblesmore » with specific attention to the lowest-order acoustic phonon mode of these nanoparticles. We report coherent phonon-driven oscillations of the LSPR position for particles with resonances spanning 670 to 1330 nm. Nanojavelins were shown to behave similarly to bipyramids but offer the prospect of separate control over LSPR energy and coherent phonon oscillation period. We develop a new methodology for quantitatively measuring mechanical expansion caused by photogenerated coherent phonons. Using this method, we find an elongation of approximately 1% per photon absorbed per unit cell and that particle expansion along the lowest frequency acoustic phonon mode is linearly proportional to excitation fluence for the fluence range studied. These characterizations provide insight regarding means to manipulate phonon period and transient mechanical deformation.« less

  19. Acoustically trapped colloidal crystals that are reconfigurable in real time

    PubMed Central

    Caleap, Mihai; Drinkwater, Bruce W.

    2014-01-01

    Photonic and phononic crystals are metamaterials with repeating unit cells that result in internal resonances leading to a range of wave guiding and filtering properties and are opening up new applications such as hyperlenses and superabsorbers. Here we show the first, to our knowledge, 3D colloidal phononic crystal that is reconfigurable in real time and demonstrate its ability to rapidly alter its frequency filtering characteristics. Our reconfigurable material is assembled from microspheres in aqueous solution, trapped with acoustic radiation forces. The acoustic radiation force is governed by an energy landscape, determined by an applied high-amplitude acoustic standing wave field, in which particles move swiftly to energy minima. This creates a colloidal crystal of several milliliters in volume with spheres arranged in an orthorhombic lattice in which the acoustic wavelength is used to control the lattice spacing. Transmission acoustic spectroscopy shows that the new colloidal crystal behaves as a phononic metamaterial and exhibits clear band-pass and band-stop frequencies which are adjusted in real time. PMID:24706925

  20. Ultrafast dynamics of quasiparticles and coherent acoustic phonons in slightly underdoped (BaK)Fe2As2

    PubMed Central

    Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen

    2016-01-01

    We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2. PMID:27180873

  1. Multi-band asymmetric acoustic transmission in a bended waveguide with multiple mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, Yu-lei; Sun, Hong-xiang; Xia, Jian-ping; Yuan, Shou-qi; Ding, Xin-lei

    2016-07-01

    We report the realization of a multi-band device of the asymmetric acoustic transmission by placing a phononic crystal inside a bended waveguide immersed in water, as determined both experimentally and numerically. The asymmetric acoustic transmission exists in three frequency bands below 500 kHz induced by multiple mechanisms. Besides the band gap of the phononic crystal, we also introduce the deaf mode and interaction between the phononic crystal and waveguide. More importantly, this asymmetric transmission can be systematically controlled by mechanically rotating the square rods of the phononic crystal. The device has the advantages of multiple band, broader bandwidth, and adjustable property, showing promising applications in ultrasonic devices.

  2. Impact of resistive MHD plasma response on perturbation field sidebands

    DOE PAGES

    Orlov, D. M.; Evans, T. E.; Moyer, R. A.; ...

    2016-06-03

    Here, single fluid linear simulations of a KSTAR RMP ELM suppressed discharge with the M3D-C 1 resistive magnetohydrodynamic code have been performed for the first time. The simulations show that the application of the n = 1 perturbation using the KSTAR in-vessel control coils (IVCC), which apply modest levels of n = 3 sidebands (~20% of the n = 1), leads to levels of n = 3 sideband that are comparable to the n = 1 when plasma response is included. This is due to the reduced level of screening of the rational-surface-resonant n = 3 component relative to themore » rational-surface-resonant n = 1 component. The n = 3 sidebands could play a similar role in ELM suppression on KSTAR as the toroidal sidebands (n = 1, 2, 4) in DIII-D n = 3 ELM suppression with missing I-coil segments. This result may help to explain the uniqueness of ELM suppression with n = 1 perturbations in KSTAR since the effective perturbation is a mixed n = 1/n = 3 perturbation similar to n = 3 ELM suppression in DIII-D.« less

  3. Anharmonic phonon-polariton dynamics in ferroelectric LiNbO3 studied with single-shot pump-probe imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuribayashi, T.; Motoyama, T.; Arashida, Y.; Katayama, I.; Takeda, J.

    2018-05-01

    We demonstrate that single-shot pump-probe imaging spectroscopy with an echelon mirror enables us to disclose the ferroelectric phonon-polariton dynamics across a wide temperature range from 10 K to 375 K while avoiding the photorefractive effects that appear prominently at low temperatures. The E-mode phonon-polaritons corresponding to the two transverse optical modes, TO1 and TO3, up to ˜7 THz were induced in LiNbO3 through an impulsive stimulated Raman scattering process. Subsequently, using single-shot pump-probe imaging spectroscopy over a minimal cumulative time, we successfully visualized the phonon-polariton dynamics in time-wavelength space even at low temperatures. We found that the phase-matching condition significantly affected the observed temperature-dependent phonon-polariton frequency shift. The anharmonicity of the TO1 and TO3 modes was then evaluated based on an anharmonic model involving higher-order interactions with acoustic phonons while eliminating the influence of the frequency shift due to the phase-matching condition. The observed wavenumber-dependent damping rate was analyzed by considering the bilinear coupling of the TO1 or TO3 modes with the thermally activated relaxation mode. We found that the phonon-polariton with a higher frequency and wavenumber had a higher damping rate at high temperatures because of its frequent interaction with the thermally activated relaxation mode and acoustic phonons. The TO3 mode displayed greater bilinear coupling than the TO1 mode, which may also have contributed to the observed high damping rate. Thus, using our unique single-shot spectroscopy technique, we could reveal the overall anharmonic characteristics of the E-mode phonon-polaritons arising from both the acoustic phonons and the relaxation mode.

  4. Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe 1-xM xSi, M=Ir,Os

    DOE PAGES

    Delaire, O.; Al-Qasir, Iyad I.; May, Andrew F.; ...

    2015-03-31

    The vibrational behavior of heavy substitutional impurities (M=Ir,Os) in Fe 1-xM xSi (x = 0, 0.02, 0.04, 0.1) was investigated with a combination of inelastic neutron scattering (INS), transport measurements, and first-principles simulations. In this paper, our INS measurements on single-crystals mapped the four-dimensional dynamical structure factor, S(Q;E), for several compositions and temperatures. Our results show that both Ir and Os impurities lead to the formation of a weakly dispersive resonance vibrational mode, in the energy range of the acoustic phonon dispersions of the FeSi host. We also show that Ir doping, which introduces free carriers and increases electron-phonon coupling,more » leads to softened interatomic force-constants compared to doping with Os, which is isoelectronic to Fe. We analyze the phonon S(Q,E) from INS through a Green's function model incorporating the phonon self-energy based on first-principles density functional theory (DFT) simulations. Calculations of the quasiparticle spectral functions in the doped system reveal the hybridization between the resonance and the acoustic phonon modes. Finally, our results demonstrate a strong interaction of the host acoustic dispersions with the resonance mode, likely leading to the large observed suppression in lattice thermal conductivity.« less

  5. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Schrenk, G.; Bartels, A.; Cerna, R.; Kotaidis, V.; Plech, A.; Köhler, K.; Schmitz, J.; Wagner, J.

    2007-12-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 107 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles.

  6. Optical sideband generation up to room temperature with mid-infrared quantum cascade lasers.

    PubMed

    Houver, S; Cavalié, P; St-Jean, M Renaudat; Amanti, M I; Sirtori, C; Li, L H; Davies, A G; Linfield, E H; Pereira, T A S; Lebreton, A; Tignon, J; Dhillon, S S

    2015-02-23

    Mid-infrared (MIR) sideband generation on a near infrared (NIR) optical carrier is demonstrated within a quantum cascade laser (QCL). By employing an externally injected NIR beam, E(NIR), that is resonant with the interband transitions of the quantum wells in the QCL, the nonlinear susceptibility is enhanced, leading to both frequency mixing and sideband generation. A GaAs-based MIR QCL (E(QCL) = 135 meV) with an aluminum-reinforced waveguide was utilized to overlap the NIR and MIR modes with the optical nonlinearity of the active region. The resulting difference sideband (E(NIR) - E(QCL)) shows a resonant behavior as a function of NIR pump wavelength and a maximum second order nonlinear susceptibility, χ((2)), of ~1 nm/V was obtained. Further, the sideband intensity showed little dependence with the operating temperature of the QCL, allowing sideband generation to be realized at room temperature.

  7. Effect of phonon-bath dimensionality on the spectral tuning of single-photon emitters in the Purcell regime

    NASA Astrophysics Data System (ADS)

    Chassagneux, Yannick; Jeantet, Adrien; Claude, Théo; Voisin, Christophe

    2018-05-01

    We develop a theoretical frame to investigate the spectral dependence of the brightness of a single-photon source made of a solid-state nanoemitter embedded in a high-quality factor microcavity. This study encompasses the cases of localized excitons embedded in a one-, two-, or three-dimensional matrix. The population evolution is calculated based on a spin-boson model, using the noninteracting blip approximation. We find that the spectral dependence of the single-photon source brightness (hereafter called spectral efficiency) can be expressed analytically through the free-space emission and absorption spectra of the emitter, the vacuum Rabi splitting, and the loss rates of the system. In other words, the free-space spectrum of the emitter encodes all the relevant information on the interaction between the exciton and the phonon bath to obtain the dynamics of the cavity-coupled system. We compute numerically the spectral efficiency for several types of localized emitters differing by the phonon bath dimensionality. In particular, in low-dimensional systems where this interaction is enhanced, a pronounced asymmetric energy exchange between the emitter and the cavity on the phonon sidebands yields a considerable extension of the tuning range of the source through phonon-assisted cavity feeding, possibly surpassing that of a purely resonant system.

  8. Temperature induced phonon behaviour in germanium selenide thin films probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Taube, A.; Łapińska, A.; Judek, J.; Wochtman, N.; Zdrojek, M.

    2016-08-01

    Here we report a detailed study of temperature-dependent phonon properties of exfoliated germanium selenide thin films (several tens of nanometers thick) probed by Raman spectroscopy in the 70-350 K temperature range. The temperature-dependent behavior of the positions and widths of the Raman modes was nonlinear. We concluded that the observed effects arise from anharmonic phonon-phonon interactions and are explained by the phenomenon of optical phonon decay into acoustic phonons. At temperatures above 200 K, the position of the Raman modes tended to be linearly dependent, and the first order temperature coefficients χ were  -0.0277, -0.0197 and  -0.031 cm-1 K-1 for B 3g , A g(1) and A g(2) modes, respectively.

  9. 76 FR 72885 - FM Asymmetric Sideband Operation and Associated Technical Studies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Sideband Operation and Associated Technical Studies AGENCY: Federal Communications Commission. ACTION... Asymmetric Sideband Operation and Associated Technical Studies, MM Docket No. 99-325, Public Notice, DA 11-1832 (MB rel. Nov. 1, 2011). The iBiquity and NPR request and the iBiquity and NPR technical studies...

  10. Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iglesias, J. M.; Martín, M. J.; Pascual, E.

    2016-01-25

    We study, by means of a Monte Carlo simulator, the hot phonon effect on the relaxation dynamics in photoexcited graphene and its quantitative impact as compared with considering an equilibrium phonon distribution. Our multi-particle approach indicates that neglecting the hot phonon effect significantly underestimates the relaxation times in photoexcited graphene. The hot phonon effect is more important for a higher energy of the excitation pulse and photocarrier densities between 1 and 3 × 10{sup 12 }cm{sup −2}. Acoustic intervalley phonons play a non-negligible role, and emitted phonons with wavelengths limited up by a maximum (determined by the carrier concentration) induce a slower carriermore » cooling rate. Intrinsic phonon heating is damped in graphene on a substrate due to the additional cooling pathways, with the hot phonon effect showing a strong inverse dependence with the carrier density.« less

  11. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffy, Etienne, E-mail: etienne.coffy@femto-st.fr; Lavergne, Thomas; Addouche, Mahmoud

    2015-12-07

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distributionmore » within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.« less

  12. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    NASA Astrophysics Data System (ADS)

    Xie, Sujun; Ouyang, Shiliang; He, Zhaojian; Wang, Xiaoyun; Deng, Ke; Zhao, Heping

    2018-03-01

    In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC), which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect), the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  13. Landau-Zener-Stückelberg Interferometry in Quantum Dots with Fast Rise Times: Evidence for Coherent Phonon Driving.

    PubMed

    Korkusinski, M; Studenikin, S A; Aers, G; Granger, G; Kam, A; Sachrajda, A S

    2017-02-10

    Manipulating qubits via electrical pulses in a piezoelectric material such as GaAs can be expected to generate incidental acoustic phonons. In this Letter we determine theoretically and experimentally the consequences of these phonons for semiconductor spin qubits using Landau-Zener-Stückelberg interferometry. Theoretical calculations predict that phonons in the presence of the spin-orbit interaction produce both phonon-Rabi fringes and accelerated evolution at the singlet-triplet anticrossing. Observed features confirm the influence of these mechanisms. Additionally, evidence is found that the pulsed gates themselves act as phonon cavities increasing the influence of phonons under specific resonant conditions.

  14. Multicoaxial cylindrical inclusions in locally resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Larabi, H.; Pennec, Y.; Djafari-Rouhani, B.; Vasseur, J. O.

    2007-06-01

    It is known that the transmission spectrum of the so-called locally resonant phononic crystal can exhibit absolute sharp dips in the sonic frequency range due to the resonance scattering of elastic waves. In this paper, we study theoretically, using a finite difference time domain method, the propagation of acoustic waves through a two-dimensional locally resonant crystal in which the matrix is a fluid (such as water) instead of being a solid as in most of the previous papers. The transmission is shown to be dependent upon the fluid or solid nature of the matrix as well as upon the nature of the coating material in contact with the matrix. The other main purpose of this paper is to consider inclusions constituted by coaxial cylindrical multilayers consisting of several alternate shells of a soft material (such as a soft rubber) and a hard material (such as steel). With respect to the usual case of a hard core coated with a soft rubber, the transmission spectrum can exhibit in the same frequency range several peaks instead of one. If two or more phononic crystals are associated together, we find that the structure displays all the zeros of transmission resulting from each individual crystal. Moreover, we show that it is possible to overlap the dips by an appropriate combination of phononic crystals and create a larger acoustic stop band.

  15. Fiber-FSO/wireless convergent systems based on dual-polarization and one optical sideband transmission schemes

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Hong; Lu, Hai-Han; Li, Chung-Yi; Wang, Yun-Chieh; Chang, Jen-Chieh; Jheng, Yu-Bo; Tsai, Wen-Shing

    2018-06-01

    A bidirectional fiber-free-space optical (FSO)/wireless convergent system that uses dual-polarization and one optical sideband transmission schemes for hybrid vestigial sideband (VSB)–four-level pulse amplitude modulation (PAM4)/millimeter-wave signal transmission is proposed and demonstrated. Using a dual-polarization scheme, one optical sideband that is modulated by a 56 Gb s‑1 VSB–PAM4 signal (x-polarization) and another optical sideband that is modulated by a 10 Gbps data stream (y-polarization) are separated and polarized orthogonally. One optical sideband modulated by a 10 Gbps data stream (y-polarization) is delivered to efficaciously suppress the dispersion-induced limitation due to a span of 40 km single-mode fiber (SMF) and the distortion due to the beating among multiple sidebands. The proposed bidirectional fiber-FSO/wireless convergent system is a prominent one for providing broadband integrated services, such as the Internet, telecommunication, and 5G mobile networks.

  16. Cavity-type hypersonic phononic crystals

    NASA Astrophysics Data System (ADS)

    Sato, A.; Pennec, Y.; Yanagishita, T.; Masuda, H.; Knoll, W.; Djafari-Rouhani, B.; Fytas, G.

    2012-11-01

    We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter.

  17. The significance of temperature dependence on the piezoelectric energy harvesting by using a phononic crystal

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Nagaty, Ahmed; Khalifa, Zaki; Mehaney, Ahmed

    2018-05-01

    In this study, an acoustic energy harvester based on a two-dimensional phononic crystal has been constructed. The present structure consists of silicon cylinders in the air background with a polyvinylidene fluoride cylinder as a defect to confine the acoustic energy. The presented energy harvester depends on the piezoelectric effect (using the piezoelectric material polyvinylidene fluoride) that converts the confined acoustic energy to electric energy. The maximum output voltage obtained equals 170 mV. Moreover, the results revealed that the output voltage can be increased with increasing temperature. In addition, the effects of the load resistance and the geometry of the piezoelectric material on the output voltage have been studied theoretically. Based on these results, all previous studies about energy harvesting in phononic structures must take temperature effects into account.

  18. Strong magnon-phonon coupling in NaFeAs studied by neutron scattering

    NASA Astrophysics Data System (ADS)

    Li, Yu; Yamani, Zahra; Song, Yu; Zhang, Chenglin; Dai, Pengcheng

    We carried on inelastic neutron scattering experiment on the triple axis spectrometer in CNBC in Chalk River. We measured both the phonon and magnon in NaFeAs single crystals and their temperature dependence. Since structural transition temperature (TS) and the magnetic transition temperature (T N) are well separated in NaFeAs, it provides us an unique chance to exclude the consequence or magnetic order and focus on the so called nematic phase. As the previous paper on BaFe2As2, we observed the strong phonon softening nearby the structural transition temperature at very small q (q<0.1). This makes the phonon in NaFeAs deviate from the classical linear dispersion relationship for acoustic phonons. Besides the phonon softening, we also observe phonon hardening at a larger q range when the temperature goes down. This is accompanied by the stiffening of the magnons which can be represented by the linewidth of the low energy magnetic peaks. Our results suggest that there is strong coupling between the phonons and magnons in NaFeAs.

  19. Optical sideband spectroscopy of a single ion in a Penning trap

    NASA Astrophysics Data System (ADS)

    Mavadia, S.; Stutter, G.; Goodwin, J. F.; Crick, D. R.; Thompson, R. C.; Segal, D. M.

    2014-03-01

    We perform resolved optical sideband spectroscopy on a single 40Ca+ ion in a Penning trap. We probe the electric quadrupole allowed S1/2↔D5/2 transition at 729 nm and observe equally spaced sidebands for the three motional modes. The axial mode, parallel to the trap axis, is a one-dimensional harmonic oscillator, whereas the radial cyclotron and magnetron modes are circular motions perpendicular to the magnetic field. The total energy associated with the magnetron motion is negative, but here we probe only the (positive) kinetic energy. From the equivalent Doppler widths of the sideband spectra corresponding to the three motions we find effective temperatures of 1.1±0.2 mK, 7±3 mK, and 42±8 μK for the axial, modified cyclotron, and magnetron modes, respectively. These should be compared to the cooling limits, estimated using optimal laser parameters, of 0.38 mK, 0.8 mK, and ˜10 μK. In future work we aim to perform resolved-sideband cooling of the ion on the 729-nm transition.

  20. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering

    NASA Astrophysics Data System (ADS)

    Barati, M.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.

    2018-04-01

    We calculate the thermal conductivity of free-standing silicene using the phonon Boltzmann transport equation within the relaxation time approximation. In this calculation, we investigate the effects of sample size and different scattering mechanisms such as phonon–phonon, phonon-boundary, phonon-isotope and phonon-vacancy defect. We obtain some similar results to earlier works using a different model and provide a more detailed analysis of the phonon conduction behavior and various mode contributions. We show that the dominant contribution to the thermal conductivity of silicene, which originates from the in-plane acoustic branches, is about 70% at room temperature and this contribution becomes larger by considering vacancy defects. Our results indicate that while the thermal conductivity of silicene is significantly suppressed by the vacancy defects, the effect of isotopes on the phononic transport is small. Our calculations demonstrate that by removing only one of every 400 silicon atoms, a substantial reduction of about 58% in thermal conductivity is achieved. Furthermore, we find that the phonon-boundary scattering is important in defectless and small-size silicene samples, especially at low temperatures.

  1. Dominant phonon polarization conversion across dimensionally mismatched interfaces: Carbon-nanotube-graphene junction

    NASA Astrophysics Data System (ADS)

    Shi, Jingjing; Lee, Jonghoon; Dong, Yalin; Roy, Ajit; Fisher, Timothy S.; Ruan, Xiulin

    2018-04-01

    Dimensionally mismatched interfaces are emerging for thermal management applications, but thermal transport physics remains poorly understood. Here we consider the carbon-nanotube-graphene junction, which is a dimensionally mismatched interface between one- and two-dimensional materials and is the building block for carbon-nanotube (CNT)-graphene three-dimensional networks. We predict the transmission function of individual phonon modes using the wave packet method; surprisingly, most incident phonon modes show predominantly polarization conversion behavior. For instance, longitudinal acoustic (LA) polarizations incident from CNTs transmit mainly into flexural transverse (ZA) polarizations in graphene. The frequency stays the same as the incident mode, indicating elastic transmission. Polarization conversion is more significant as the phonon wavelength increases. We attribute such unique phonon polarization conversion behavior to the dimensional mismatch across the interface, and it opens significantly new phonon transport channels as compared to existing theories where polarization conversion is neglected.

  2. Efficient Raman sideband cooling of trapped ions to their motional ground state

    NASA Astrophysics Data System (ADS)

    Che, H.; Deng, K.; Xu, Z. T.; Yuan, W. H.; Zhang, J.; Lu, Z. H.

    2017-07-01

    Efficient cooling of trapped ions is a prerequisite for various applications of the ions in precision spectroscopy, quantum information, and coherence control. Raman sideband cooling is an effective method to cool the ions to their motional ground state. We investigate both numerically and experimentally the optimization of Raman sideband cooling strategies and propose an efficient one, which can simplify the experimental setup as well as reduce the number of cooling pulses. Several cooling schemes are tested and compared through numerical simulations. The simulation result shows that the fixed-width pulses and varied-width pulses have almost the same efficiency for both the first-order and the second-order Raman sideband cooling. The optimized strategy is verified experimentally. A single 25Mg+ ion is trapped in a linear Paul trap and Raman sideband cooled, and the achieved average vibrational quantum numbers under different cooling strategies are evaluated. A good agreement between the experimental result and the simulation result is obtained.

  3. Thermal conductivity in large - J two-dimensional antiferromagnets: Role of phonon scattering

    DOE PAGES

    Chernyshev, A. L.; Brenig, Wolfram

    2015-08-05

    Different types of relaxation processes for magnon heat current are discussed, with a particular focus on coupling to three-dimensional phonons. There is thermal conductivity by these in-plane magnetic excitations using two distinct techniques: Boltzmann formalism within the relaxation-time approximation and memory-function approach. Also considered are the scattering of magnons by both acoustic and optical branches of phonons. We demonstrate an accord between the two methods, regarding the asymptotic behavior of the effective relaxation rates. It is strongly suggested that scattering from optical or zone-boundary phonons is important for magnon heat current relaxation in a high-temperature window of ΘD≲T<< J.

  4. Evidence for anisotropic polar nanoregions in relaxor Pb(Mg1/3Nb2/3)O3: A neutron study of the elastic constants and anomalous TA phonon damping in PMN

    NASA Astrophysics Data System (ADS)

    Stock, C.; Gehring, P. M.; Hiraka, H.; Swainson, I.; Xu, Guangyong; Ye, Z.-G.; Luo, H.; Li, J.-F.; Viehland, D.

    2012-09-01

    We use neutron inelastic scattering to characterize the acoustic phonons in the relaxor Pb(Mg1/3Nb2/3)O3 (PMN) and demonstrate the presence of a highly anisotropic damping mechanism that is directly related to short-range polar correlations. For a large range of temperatures above Tc˜210 K, where dynamic, short-range polar correlations are present, acoustic phonons propagating along [11¯0] and polarized along [110] (TA2 phonons) are overdamped and softened across most of the Brillouin zone. By contrast, acoustic phonons propagating along [100] and polarized along [001] (TA1 phonons) are overdamped and softened for a more limited range of wave vectors q. The anisotropy and temperature dependence of the acoustic phonon energy linewidth Γ are directly correlated with neutron diffuse scattering cross section, indicating that polar nanoregions are the cause of the anomalous behavior. The damping and softening vanish for q→0, i.e., for long-wavelength acoustic phonons near the zone center, which supports the notion that the anomalous damping is a result of the coupling between the relaxational component of the diffuse scattering and the harmonic TA phonons. Therefore, these effects are not due to large changes in the elastic constants with temperature because the elastic constants correspond to the long-wavelength limit. We compare the elastic constants we measure to those from Brillouin scattering experiments and to values reported for pure PbTiO3. We show that while the values of C44 are quite similar, those for C11 and C12 are significantly less in PMN and result in a softening of (C11-C12) over PbTiO3. The elastic constants also show an increased elastic anisotropy [2C44/(C11-C12)] in PMN versus that in PbTiO3. These results are suggestive of an instability to TA2 acoustic fluctuations in PMN and other relaxor ferroelectrics. We discuss our results in the context of the current debate over the “waterfall” effect and show that they are inconsistent with

  5. Enhanced photoelastic modulation in silica phononic crystal cavities

    NASA Astrophysics Data System (ADS)

    Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-04-01

    The enhanced photoelastic modulation in quasi-one-dimensional (1D) phononic crystal (PnC) cavities made of fused silica is experimentally demonstrated. A confined acoustic wave in the cavity can induce a large birefringence through the photoelastic effect and enable larger optical modulation amplitude at the same acoustic power. We observe a phase retardation of ∼26 mrad of light passing through the cavity when the exciting acoustic frequency is tuned to the cavity mode resonance of ∼500 kHz at 2.5 V. In the present experiment, a 16-fold enhancement of retardation in the PnC cavity is demonstrated compared with that in a bar-shaped silica structure. Spatially resolved optical retardation measurement reveals that the large retardation is realized only around the cavity reflecting the localized nature of the acoustic cavity mode. The enhanced interactions between acoustic waves and light can be utilized to improve the performance of acousto-optic devices such as photoelastic modulators.

  6. Soft phonon modes driven huge difference on lattice thermal conductivity between topological semimetal WC and WN

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Chen, Peng

    2018-04-01

    Topological semimetals are currently attracting increasing interest due to their potential applications in topological qubits and low-power electronics, which are closely related to their thermal transport properties. Recently, the triply degenerate nodal points near the Fermi level of WC are observed by using angle-resolved photoemission spectroscopy. In this work, by solving the Boltzmann transport equation based on first-principles calculations, we systematically investigate the phonon transport properties of topological semimetals WC and WN. The predicted room-temperature lattice thermal conductivities of WC (WN) along the a and c directions are 1140.64 (7.47) W m-1 K-1 and 1214.69 (5.39) W m-1 K-1. Considering the similar crystal structure of WC and WN, it is quite interesting to find that the thermal conductivity of WC is more than two orders of magnitude higher than that of WN. It is found that, different from WN, the large acoustic-optical (a-o) gap prohibits the acoustic+acoustic → optical (aao) scattering, which gives rise to very long phonon lifetimes, leading to ultrahigh lattice thermal conductivity in WC. For WN, the lack of an a-o gap is due to soft phonon modes in optical branches, which can provide more scattering channels for aao scattering, producing very short phonon lifetimes. Further deep insight can be attained from their different electronic structures. Distinctly different from that in WC, the density of states of WN at the Fermi level becomes very sharp, which leads to destabilization of WN, producing soft phonon modes. It is found that the small shear modulus G and C44 limit the stability of WN, compared with WC. Our studies provide valuable information for phonon transports in WC and WN, and motivate further experimental studies to study their lattice thermal conductivities.

  7. Phonon thermodynamics of iron and cementite

    NASA Astrophysics Data System (ADS)

    Mauger, Lisa Mary

    reversed after the magnetic transition and these same phonon modes lower their energies with temperature, consistent with observed thermal expansion. This atypical phonon behavior lowers the vibrational entropy of cementite up to the Curie temperature. The experimentally observed increase in low energy acoustic phonons affects the elastic behavior of Fe3C, increasing the isotropy of elastic response. First principles calculations link the observed phonon energy increases to specific vibrational modes that are polarized along the b-axis, which aligns with the closest Fe-Fe bonding direction. The nonharmonic behavior of the vibrational modes are discussed in the context of other observations of anomalous anisotropic magneto-volume behavior in Fe3C.

  8. 2-D modeling of dual-mode acoustic phonon excitation of a triangular nanoplate

    NASA Astrophysics Data System (ADS)

    Tai, Po-Tse; Yu, Pyng; Tang, Jau

    2010-08-01

    In this theoretical work, we investigated coherent phonon excitation of a triangular nanoplate based on 2-D Fermi-Pasta-Ulam lattice model. Based on the two-temperature model commonly used in description of laser heating of metals, we considered two kinds of forces related to electronic and lattice stresses. Based on extensive simulation and analysis, we identified two major planar phonon modes, namely, a standing wave mode related to the triangle bisector and another mode corresponding to half of the side length. This work elucidates the roles of laser-induced electronic stress and lattice stress in controlling the initial phase and the amplitude ratio between these two phonon modes.

  9. Effect of polarization field on mean free path of phonons in indium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Sushant Kumar

    2016-05-06

    The effect of built-in-polarization field on mean free path of acoustic phonons in bulk wurtzite indium nitride (InN) has been theoretically investigated. The elastic constant of the material gets modified due to the existence of polarization field. As a result velocity and Debye frequency of phonons get enhanced. The various scattering rates of phonons are suppressed by the effect of polarization field, which implies an enhanced combined relaxation time. Thus phonons travel freely for a longer distance between two successive scatterings. This would enhance the thermal transport properties of the material when built-in-polarization field taken into account. Hence by themore » application of electric field the transport properties of such materials can be controlled as and when desired.« less

  10. Enhancing phonon flow through one-dimensional interfaces by impedance matching

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos A.; Ghosh, Avik W.

    2014-08-01

    We extend concepts from microwave engineering to thermal interfaces and explore the principles of impedance matching in 1D. The extension is based on the generalization of acoustic impedance to nonlinear dispersions using the contact broadening matrix Γ(ω), extracted from the phonon self energy. For a single junction, we find that for coherent and incoherent phonons, the optimal thermal conductance occurs when the matching Γ(ω) equals the Geometric Mean of the contact broadenings. This criterion favors the transmission of both low and high frequency phonons by requiring that (1) the low frequency acoustic impedance of the junction matches that of the two contacts by minimizing the sum of interfacial resistances and (2) the cut-off frequency is near the minimum of the two contacts, thereby reducing the spillage of the states into the tunneling regime. For an ultimately scaled single atom/spring junction, the matching criterion transforms to the arithmetic mean for mass and the harmonic mean for spring constant. The matching can be further improved using a composite graded junction with an exponential varying broadening that functions like a broadband antireflection coating. There is, however, a trade off as the increased length of the interface brings in additional intrinsic sources of scattering.

  11. Neutron inelastic scattering measurements of low-energy phonons in the multiferroic BiFeO 3

    DOE PAGES

    Schneeloch, John A.; Xu, Zhijun; Wen, Jinsheng; ...

    2015-02-10

    In this study, we present neutron inelastic scattering measurements of the low-energy phonons in single crystal BiFeO 3. The dispersions of the three acoustic phonon modes (LA along [100], TA 1 along [010], and TA 2 along [110]) and two low-energy optic phonon modes (LO and TO 1) have been mapped out between 300 and 700 K. Elastic constants are extracted from the phonon measurements. The energy linewidths of both TA phonons at the zone boundary clearly broaden when the system is warmed toward the magnetic ordering temperature T N=640 K. In conclusion, this suggests that the magnetic order andmore » low-energy lattice dynamics in this multiferroic material are coupled.« less

  12. High-accurate optical vector analysis based on optical single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Xue, Min; Pan, Shilong

    2016-11-01

    Most of the efforts devoted to the area of optical communications were on the improvement of the optical spectral efficiency. Varies innovative optical devices are thus developed to finely manipulate the optical spectrum. Knowing the spectral responses of these devices, including the magnitude, phase and polarization responses, is of great importance for their fabrication and application. To achieve high-resolution characterization, optical vector analyzers (OVAs) based on optical single-sideband (OSSB) modulation have been proposed and developed. Benefiting from the mature and highresolution microwave technologies, the OSSB-based OVA can potentially achieve a resolution of sub-Hz. However, the accuracy is restricted by the measurement errors induced by the unwanted first-order sideband and the high-order sidebands in the OSSB signal, since electrical-to-optical conversion and optical-to-electrical conversion are essentially required to achieve high-resolution frequency sweeping and extract the magnitude and phase information in the electrical domain. Recently, great efforts have been devoted to improve the accuracy of the OSSB-based OVA. In this paper, the influence of the unwanted-sideband induced measurement errors and techniques for implementing high-accurate OSSB-based OVAs are discussed.

  13. Intrinsic phonon-limited charge carrier mobilities in thermoelectric SnSe

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Chen, Yani; Li, Wu

    2018-05-01

    Within the past few years, tin selenide (SnSe) has attracted intense interest due to its remarkable thermoelectric potential for both n - and p -type crystals. In this work, the intrinsic phonon-limited electron/hole mobilities of SnSe are investigated using a Boltzmann transport equation based on first-principles calculated electron-phonon interactions. We find that the electrons have much larger mobilities than the holes. At room temperature, the mobilities of electrons along the a , b , and c axes are 325, 801, and 623 cm2/V s, respectively, whereas those of holes are 100, 299, and 291 cm2/V s, respectively. The anisotropy of mobilities is consistent with the reciprocal effective mass at band edges. The mode-specific analysis shows that the highest longitudinal optical phonons, rather than previously assumed acoustic phonons, dominate the scattering processes and consequently the mobilities in SnSe. The room-temperature largest mean free paths of electrons and holes in SnSe are about 21 and 13 nm, respectively.

  14. Electrical detection and analysis of surface acoustic wave in line-defect two-dimensional piezoelectric phononic crystals

    NASA Astrophysics Data System (ADS)

    Cai, Feida; Li, Honglang; Tian, Yahui; Ke, Yabing; Cheng, Lina; Lou, Wei; He, Shitang

    2018-03-01

    Line-defect piezoelectric phononic crystals (PCs) show good potential applications in surface acoustic wave (SAW) MEMS devices for RF communication systems. To analyze the SAW characteristics in line-defect two-dimensional (2D) piezoelectric PCs, optical methods are commonly used. However, the optical instruments are complex and expensive, whereas conventional electrical methods can only measure SAW transmission of the whole device and lack spatial resolution. In this paper, we propose a new electrical experimental method with multiple receiving interdigital transducers (IDTs) to detect the SAW field distribution, in which an array of receiving IDTs of equal aperture was used to receive the SAW. For this new method, SAW delay lines with perfect and line-defect 2D Al/128°YXLiNbO3 piezoelectric PCs on the transmitting path were designed and fabricated. The experimental results showed that the SAW distributed mainly in the line-defect region, which agrees with the theoretical results.

  15. High quality factor surface Fabry-Perot cavity of acoustic waves

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Fu, Wei; Zou, Chang-ling; Shen, Zhen; Tang, Hong X.

    2018-02-01

    Surface acoustic wave (SAW) resonators are critical components in wireless communications and many sensing applications. They have also recently emerged as a subject of study in quantum acoustics at the single phonon level. Acoustic loss reduction and mode confinement are key performance factors in SAW resonators. Here, we report the design and experimental realization of high quality factor Fabry-Perot SAW resonators formed in between the tapered phononic crystal mirrors patterned on a GaN-on-sapphire material platform. The fabricated SAW resonators are characterized by both an electrical network analyzer and an optical heterodyne vibrometer. We observed standing Rayleigh waves inside the cavity, with an intrinsic quality factor exceeding 1.3 × 104 at ambient conditions.

  16. Acoustic-optical phonon branch crossings and lattice thermal transport in La3Cu3X4 (X = P, As, Sb, and Bi) systems

    NASA Astrophysics Data System (ADS)

    Pandey, Tribhuwan; Polanco, Carlos A.; Lindsay, Lucas; Parker, David S.

    Thermoelectric properties of La3Cu3X4 (X = P, As, Sb, and Bi) compounds are examined using first-principles density functional theory and Boltzmann transport calculations. It is well known that the lattice thermal conductivity (κl) of bulk materials typically decreases with increasing atomic masses of the constituent elements. In this study, however, we observe contrary behavior: lighter mass, larger sound velocity La3Cu3P4 and La3Cu3As4 systems have lower κl than heavier mass, smaller sound velocity La3Cu3Sb4 and La3Cu3Bi4 systems. Analysis of three phonon scattering rates and other phonon properties demonstrate that the trend in κl behavior is governed by Grüneisen parameters, a measure of phonon anharmonicity. The Grüneisen parameters and lower κl of the P and As compounds are closely related to an avoided crossing between the lowest optical branches and the longitudinal acoustic branch, which results in abrupt changes in Grüneisen parameters. Additionally, electronic structure calculations show heavy and light bands near the band edges, which lead to large power factors important for good thermoelectric performance. T. P, C. A. P, L. L. and D. S. P. acknowledge support from the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  17. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    PubMed

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  18. Brillouin Selective Sideband Amplification of Microwave Photonic Signals

    NASA Technical Reports Server (NTRS)

    Yao, S.

    1997-01-01

    We introduce a powerful Brillouin selective sideband amplification technique and demonstrate its application for achieving gain in photonix signal up- and down- conversions in microwave photonic systems.

  19. Electronic and phononic modulation of MoS2 under biaxial strain

    NASA Astrophysics Data System (ADS)

    Moghadasi, A.; Roknabadi, M. R.; Ghorbani, S. R.; Modarresi, M.

    2017-12-01

    Dichalcogenides of transition metals are attractive material due to its unique properties. In this work, it has been investigated the electronic band structure, phonon spectrum and heat capacity of MoS2 under the applied tensile and compressive biaxial strain using the density functional theory. The Molybdenum disulfide under compressive (tensile) strain up to 6% (10%) has stable atomic structure without any negative frequency in the phonon dispersion curves. The tensile biaxial strain reduces the energy gap in the electronic band structure and the optical-acoustic gap in phonon dispersion curves. The tensile biaxial strain also increases the specific heat capacity. On the other hand, the compressive biaxial strain in this material increases phonon gap and reduces the heat capacity and the electronic band gap. The phonon softening/hardening is reported for tensile/compressive biaxial strain in MoS2. We report phonon hardening for out of plane ZA mode in the presence of both tensile and compressive strains. Results show that the linear variation of specific heat with strain (CV ∝ε) and square dependency of specific heat with the temperature (CV ∝T2) for low temperature regime. The results demonstrate that the applied biaxial strain tunes the electronic energy gap and modifies the phonon spectrum of MoS2.

  20. Phonon group velocity and thermal conduction in superlattices

    NASA Astrophysics Data System (ADS)

    Tamura, Shin-Ichiro; Tanaka, Yukihiro; Maris, Humphrey J.

    1999-07-01

    With the use of a face-centered cubic model of lattice dynamics we calculate the group velocity of acoustic phonons in the growth direction of periodic superlattices. Comparing with the case of bulk solids, this component of the phonon group velocity is reduced due to the flattening of the dispersion curves associated with Brillouin-zone folding. The results are used to estimate semiquantitatively the effects on the lattice thermal conductivity in Si/Ge and GaAs/AlAs superlattices. For a Si/Ge superlattice an order of magnitude reduction is predicted in the ratio of superlattice thermal conductivity to phonon relaxation time [consistent with the results of P. Hyldgaard and G. D. Mahan, Phys. Rev. B 56, 10 754 (1997)]. For a GaAs/AlAs superlattice the corresponding reduction is rather small, i.e., a factor of 2-3. These effects are larger for the superlattices with larger unit period, contrary to the recent measurements of thermal conductivity in superlattices.

  1. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low-k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-04-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low-k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  2. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low- k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-07-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low- k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low- k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low- k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  3. Heat transport by phonons in crystalline materials and nanostructures

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan

    This dissertation presents experimental studies of heat transport by phonons in crystalline materials and nanostructures, and across solid-solid interfaces. Particularly, this dissertation emphasizes advancing understanding of the mean-free-paths (i.e., the distance phonons propagate without being scattered) of acoustic phonons, which are the dominant heat carriers in most crystalline semiconductor nanostructures. Two primary tools for the studies presented in this dissertation are time-domain thermoreflectance (TDTR) for measurements of thermal conductivity of nanostructures and thermal conductance of interfaces; and frequency-domain thermoreflectance (FDTR), which I developed as a direct probe of the mean-free-paths of dominant heat-carrying phonons in crystalline solids. The foundation of FDTR is the dependence of the apparent thermal conductivity on the frequency of periodic heat sources. I find that the thermal conductivity of semiconductor alloys (InGaP, InGaAs, and SiGe) measured by TDTR depends on the modulation frequency, 0.1 ≤ f ≤ 10 MHz, used in TDTR measurements. Reduction in the thermal conductivity of the semiconductor alloys at high f compares well to the reduction in the thermal conductivity of epitaxial thin films, indicating that frequency dependence and thickness dependence of thermal conductivity are fundamentally equivalent. I developed the frequency dependence of thermal conductivity into a convenient probe of phonon mean-free-paths, a technique which I call frequency-domain thermoreflectance (FDTR). In FDTR, I monitor the changes in the intensity of the reflected probe beam as a function of the modulation frequency. To facilitate the analysis of FDTR measurements, I developed a nonlocal theory for heat conduction by phonons at high heating frequencies. Calculations of the nonlocal theory confirm my experimental findings that phonons with mean-free-paths longer than two times the penetration depth do not contribute to the apparent thermal

  4. Phonon and magnon dispersions of incommensurate spin ladder compound Sr14Cu24O41

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Bansal, Dipanshu; Sullivan, Sean; Zhou, Jianshi; Delaire, Olivier; Shi, Li

    There are a variety of compounds consisting of two or more interpenetrating sublattices with lattice periods incommensurate at least along one crystal axis. One example is spin ladder compound Sr14Cu24O41 consisting of incommensurate spin ladder and spin chain sublattices. It has been predicted that unique phonon modes occur in these compounds due to the relative motion of the sublattices. In the low-wavelength limit, there is only one longitudinal acoustic mode due to the rigid translation of both sublattices. In addition, one extra pseudo-acoustic mode is present due to relative sliding motions of the two sublattices. Although the theoretical aspects of the lattice dynamics of incommensurate compounds have been studied, there have been few experimental investigations on their phonon dynamics. In this work, single crystals of Sr14Cu24O41are grown by the traveling solvent floating zone method. The phonon dispersion of Sr14Cu24O41 is studied through inelastic neutron scattering measurements in order to better understand its phonon dynamics. In addition, its magnon dispersion is investigated and correlated to the large directional magnon thermal conductivity. The measurements reveal a wealth of intriguing features on phonons and magnons in the spin ladder compound. This work is supported by ARO MURI program under Award # W911NF-14-1-0016.

  5. Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation

    NASA Astrophysics Data System (ADS)

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2012-10-01

    There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing.

  6. Measurement of locally resonant band gaps in a surface phononic crystal with inverted conical pillars

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Chen; Lin, Fan-Shun

    2018-07-01

    In this paper, we numerically and experimentally study locally resonant (LR) band gaps for surface acoustic waves (SAWs) in a honeycomb array of inverted conical pillars grown on the surface of a 128°YX lithium-niobate substrate. We show that the inverted conical pillars can be used to generate lower LR band gaps below the sound cone. This lowering effect is caused by the increase in the effective pillar mass without increasing the effective stiffness. We employ the finite-element method to calculate the LR band gaps and wideband slanted-finger interdigital transducers to measure the transmission of SAWs. Numerical results show that SAWs are prohibited from propagating through the structure in the lowered LR band gaps. Obvious LR band-gap lowering is observed in the experimental result of a surface phononic crystal with a honeycomb array of inverted conical pillars. The results enable enhanced control over the phononic metamaterial and surface structures, which may have applications in low-frequency waveguiding, acoustic isolation, acoustic absorbers, and acoustic filters.

  7. Designing Phononic Crystals with Wide and Robust Band Gaps

    NASA Astrophysics Data System (ADS)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  8. Phonons and superconductivity in fcc and dhcp lanthanum

    NASA Astrophysics Data System (ADS)

    Baǧcı, S.; Tütüncü, H. M.; Duman, S.; Srivastava, G. P.

    2010-04-01

    We have investigated the structural and electronic properties of lanthanum in the face-centered-cubic (fcc) and double hexagonal-close-packed (dhcp) phases using a generalized gradient approximation of the density functional theory and the ab initio pseudopotential method. It is found that double hexagonal-close-packed is the more stable phase for lanthanum. Differences in the density of states at the Fermi level between these two phases are pointed out and discussed in detail. Using the calculated lattice constant and electronic band structure for both phases, a linear response approach based on the density functional theory has been applied to study phonon modes, polarization characteristics of phonon modes, and electron-phonon interaction. Our phonon results show a softening behavior of the transverse acoustic branch along the Γ-L direction and the Γ-M direction for face-centered-cubic and double hexagonal-close-packed phases, respectively. Thus, the transverse-phonon linewidth shows a maximum at the zone boundary M(L) for the double hexagonal-close-packed phase (face-centered-cubic phase), where the transverse-phonon branch exhibits a dip. The electron-phonon coupling parameter λ is found to be 0.97 (1.06) for the double hexagonal-close-packed phase (face-centered-cubic phase), and the superconducting critical temperature is estimated to be 4.87 (dhcp) and 5.88 K (fcc), in good agreement with experimental values of around 5.0 (dhcp) and 6.0 K (fcc). A few superconducting parameters for the double hexagonal-close-packed phase have been calculated and compared with available theoretical and experimental results. Furthermore, the calculated superconducting parameters for both phases are compared between each other in detail.

  9. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate

    PubMed Central

    Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang

    2016-01-01

    Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity. PMID:27430670

  10. Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites.

    PubMed

    Elbaz, Giselle A; Ong, Wee-Liat; Doud, Evan A; Kim, Philip; Paley, Daniel W; Roy, Xavier; Malen, Jonathan A

    2017-09-13

    Thermal management plays a critical role in the design of solid state materials for energy conversion. Lead halide perovskites have emerged as promising candidates for photovoltaic, thermoelectric, and optoelectronic applications, but their thermal properties are still poorly understood. Here, we report on the thermal conductivity, elastic modulus, and sound speed of a series of lead halide perovskites MAPbX 3 (X = Cl, Br, I), CsPbBr 3 , and FAPbBr 3 (MA = methylammonium, FA = formamidinium). Using frequency domain thermoreflectance, we find that the room temperature thermal conductivities of single crystal lead halide perovskites range from 0.34 to 0.73 W/m·K and scale with sound speed. These results indicate that regardless of composition, thermal transport arises from acoustic phonons having similar mean free path distributions. A modified Callaway model with Born von Karmen-based acoustic phonon dispersion predicts that at least ∼70% of thermal conductivity results from phonons having mean free paths shorter than 100 nm, regardless of whether resonant scattering is invoked. Hence, nanostructures or crystal grains with dimensions smaller than 100 nm will appreciably reduce thermal transport. These results are important design considerations to optimize future lead halide perovskite-based photovoltaic, optoelectronic, and thermoelectric devices.

  11. The Importance of Phonons with Negative Phase Quotient in Disordered Solids.

    PubMed

    Seyf, Hamid Reza; Lv, Wei; Rohskopf, Andrew; Henry, Asegun

    2018-02-08

    Current understanding of phonons is based on the phonon gas model (PGM), which is best rationalized for crystalline materials. However, most of the phonons/modes in disordered materials have a different character and thus may contribute to heat conduction in a fundamentally different way than is described by PGM. For the modes in crystals, which have sinusoidal character, one can separate the modes into two primary categories, namely acoustic and optical modes. However, for the modes in disordered materials, such designations may no longer rigorously apply. Nonetheless, the phase quotient (PQ) is a quantity that can be used to evaluate whether a mode more so shares a distinguishing property of acoustic vibrations manifested as a positive PQ, or a distinguishing property of an optical vibrations manifested as negative PQ. In thinking about this characteristic, there is essentially no intuition regarding the role of positive vs. negative PQ vibrational modes in disordered solids. Given this gap in understanding, herein we studied the respective contributions to thermal conductivity for several disordered solids as a function of PQ. The analysis sheds light on the importance of optical like/negative PQ modes in structurally/compositionally disordered solids, whereas in crystalline materials, the contributions of optical modes are usually small.

  12. Compact transmission system using single-sideband modulation of light for quantum cryptography.

    PubMed

    Duraffourg, L; Merolla, J M; Goedgebuer, J P; Mazurenko, Y; Rhodes, W T

    2001-09-15

    We report a new transmission that can be used for quantum key distribution. The system uses single-sideband-modulated light in an implementation of the BB84 quantum cryptography protocol. The system is formed by two integrated unbalanced Mach-Zehnder interferometers and is based on interference between phase-modulated sidebands in the spectral domain. Experiments show that high interference visibility can be obtained.

  13. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.

    PubMed

    Jin, Jae Sik; Lee, Joon Sik

    2007-11-01

    An electron-phonon interaction model is proposed and applied to thermal transport in semiconductors at micro/nanoscales. The high electron energy induced by the electric field in a transistor is transferred to the phonon system through electron-phonon interaction in the high field region of the transistor. Due to this fact, a hot spot occurs, which is much smaller than the phonon mean free path in the Si-layer. The full phonon dispersion model based on the Boltzmann transport equation (BTE) with the relaxation time approximation is applied for the interactions among different phonon branches and different phonon frequencies. The Joule heating by the electron-phonon scattering is modeled through the intervalley and intravalley processes for silicon by introducing average electron energy. The simulation results are compared with those obtained by the full phonon dispersion model which treats the electron-phonon scattering as a volumetric heat source. The comparison shows that the peak temperature in the hot spot region is considerably higher and more localized than the previous results. The thermal characteristics of each phonon mode are useful to explain the above phenomena. The optical mode phonons of negligible group velocity obtain the highest energy density from electrons, and resides in the hot spot region without any contribution to heat transport, which results in a higher temperature in that region. Since the acoustic phonons with low group velocity show the higher energy density after electron-phonon scattering, they induce more localized heating near the hot spot region. The ballistic features are strongly observed when phonon-phonon scattering rates are lower than 4 x 10(10) S(-1).

  14. Control of coherent information via on-chip photonic–phononic emitter–receivers

    DOE PAGES

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; ...

    2015-03-05

    We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction,more » which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.« less

  15. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    PubMed

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  16. Control of coherent information via on-chip photonic–phononic emitter–receivers

    PubMed Central

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2015-01-01

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405

  17. Electrons, phonons and superconductivity in rocksalt and tungsten-carbide phases of CrC.

    PubMed

    Tütüncü, H M; Baǧcı, S; Srivastava, G P; Akbulut, A

    2012-11-14

    We present results of ab initio theoretical investigations of the electronic structure, phonon dispersion relations, electron-phonon interaction and superconductivity in the rocksalt and tungsten-carbide phases of CrC. It is found that, compared to the stable tungsten-carbide phase, the metastable rocksalt phase is characterized by a much larger electronic density of states at the Fermi level. The phonon spectra of the rocksalt phase exhibit anomalies in the dispersion curves of both the transverse and longitudinal acoustic branches along the main symmetry directions. A combination of these characteristic electronic and phonon properties leads to an order of magnitude larger value of the electron-phonon coupling constant (λ = 2.66) for the rocksalt phase compared to that for the tungsten-carbide phase (λ = 0.24). Our calculations suggest that superconducting transition temperature values of 0.01 K and 25-35 K may be expected for the tungsten-carbide and rocksalt phases, respectively.

  18. Flexocoupling impact on the generalized susceptibility and soft phonon modes in the ordered phase of ferroics

    DOE PAGES

    Morozovska, Anna N.; Vysochanskii, Yulian M.; Varenyk, Oleksandr V.; ...

    2015-09-29

    The impact of the flexoelectric effect on the generalized susceptibility and soft phonon dispersion is not well known in the long-range-ordered phases of ferroics. Within the Landau-Ginzburg-Devonshire approach we obtained analytical expressions for the generalized susceptibility and phonon dispersion relations in the ferroelectric phase. The joint action of the static and dynamic flexoelectric effects induces nondiagonal components of the generalized susceptibility, whose amplitude is proportional to the convolution of the spontaneous polarization with the flexocoupling constants. The flexocoupling essentially broadens the k spectrum of the generalized susceptibility and leads to an additional “pushing away” of the optical and acoustic softmore » mode phonon branches. The degeneracy of the transverse optical and acoustic modes disappears in the ferroelectric phase in comparison with the paraelectric phase due to the joint action of flexoelectric coupling and ferroelectric nonlinearity. Lastly, the results obtained might be mainly important for theoretical analyses of a broad spectrum of experimental data, including neutron and Brillouin scattering.« less

  19. Activity-induced instability of phonons in 1D microfluidic crystals.

    PubMed

    Tsang, Alan Cheng Hou; Shelley, Michael J; Kanso, Eva

    2018-02-14

    One-dimensional crystals of passively-driven particles in microfluidic channels exhibit collective vibrational modes reminiscent of acoustic 'phonons'. These phonons are induced by the long-range hydrodynamic interactions among the particles and are neutrally stable at the linear level. Here, we analyze the effect of particle activity - self-propulsion - on the emergence and stability of these phonons. We show that the direction of wave propagation in active crystals is sensitive to the intensity of the background flow. We also show that activity couples, at the linear level, transverse waves to the particles' rotational motion, inducing a new mode of instability that persists in the limit of large background flow, or, equivalently, vanishingly small activity. We then report a new phenomenon of phonons switching back and forth between two adjacent crystals in both passively-driven and active systems, similar in nature to the wave switching observed in quantum mechanics, optical communication, and density stratified fluids. These findings could have implications for the design of commercial microfluidic systems and the self-assembly of passive and active micro-particles into one-dimensional structures.

  20. Dispersion of folded phonons in {Si}/{Si xGe1- x} superlattices

    NASA Astrophysics Data System (ADS)

    Brugger, H.; Reiner, H.; Abstreiter, G.; Jorke, H.; Herzog, H. J.; Kasper, E.

    Zone folding effects on acoustic phonons in {Si}/{Si xGe1- x} strained layer superlattices are studied by Raman spectroscopy. A quantitative explanation of the measured frequencies is given in terms of the elastic continuum theory. The scattering wavevector q s is varied by use of different laser lines to probe directly the phonon dispersion curve in the superlattices. For large period samples q s can be shifted through the new Brillouin zone boundary. We report on observation of a finite doublet splitting corresponding to the first zone-edge gap.

  1. A realistic analysis of the phonon growth characteristics in a degenerate semiconductor using a simplified model of Fermi-Dirac distribution

    NASA Astrophysics Data System (ADS)

    Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.

    2017-01-01

    The phonon growth characteristic in a degenerate semiconductor has been calculated under the condition of low temperature. If the lattice temperature is high, the energy of the intravalley acoustic phonon is negligibly small compared to the average thermal energy of the electrons. Hence one can traditionally assume the electron-phonon collisions to be elastic and approximate the Bose-Einstein (B.E.) distribution for the phonons by the simple equipartition law. However, in the present analysis at the low lattice temperatures, the interaction of the non equilibrium electrons with the acoustic phonons becomes inelastic and the simple equipartition law for the phonon distribution is not valid. Hence the analysis is made taking into account the inelastic collisions and the complete form of the B.E. distribution. The high-field distribution function of the carriers given by Fermi-Dirac (F.D.) function at the field dependent carrier temperature, has been approximated by a well tested model that apparently overcomes the intrinsic problem of correct evaluation of the integrals involving the product and powers of the Fermi function. Hence the results thus obtained are more reliable compared to the rough estimation that one may obtain from using the exact F.D. function, but taking recourse to some over simplified approximations.

  2. Unusual phonon behavior and ultra-low thermal conductance of monolayer InSe.

    PubMed

    Zhou, Hangbo; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2017-12-21

    Monolayer indium selenide (InSe) possesses numerous fascinating properties, such as high electron mobility, quantum Hall effect and anomalous optical response. However, its phonon properties, thermal transport properties and the origin of its structural stability remain unexplored. Using first-principles calculations, we show that the atoms in InSe are highly polarized and such polarization causes strong long-range dipole-dipole interaction (DDI). For acoustic modes, DDI is essential for maintaining its structural stability. For optical modes, DDI causes a significant frequency shift of its out-of-phase vibrations. Surprisingly, we observed that there were two isolated frequency regimes, which were completely separated from other frequency regimes with large frequency gaps. Within each frequency regime, only a single phonon mode exists. We further reveal that InSe possesses the lowest thermal conductance among the known two-dimensional materials due to the low cut-off frequency, low phonon group velocities and the presence of large frequency gaps. These unique behaviors of monolayer InSe can enable the fabrication of novel devices, such as thermoelectric module, single-mode phonon channel and phononic laser.

  3. Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene.

    PubMed

    Crosse, J A; Xu, Xiaodong; Sherwin, Mark S; Liu, R B

    2014-09-24

    In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron-hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm(-1)), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm(-1) can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron-hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications.

  4. Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene

    PubMed Central

    Crosse, J. A.; Xu, Xiaodong; Sherwin, Mark S.; Liu, R. B.

    2014-01-01

    In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron–hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm−1), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm−1 can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron–hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications. PMID:25249245

  5. Large dynamic range optical vector analyzer based on optical single-sideband modulation and Hilbert transform

    NASA Astrophysics Data System (ADS)

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2016-07-01

    A large dynamic range optical vector analyzer (OVA) based on optical single-sideband modulation is proposed and demonstrated. By dividing the optical signal after optical device under test into two paths, reversing the phase of one swept sideband using a Hilbert transformer in one path, and detecting the two signals from the two paths with a balanced photodetector, the measurement errors induced by the residual -1st-order sideband and the high-order sidebands can be eliminated and the dynamic range of the measurement is increased. In a proof-of-concept experiment, the stimulated Brillouin scattering and a fiber Bragg grating are measured by OVAs with and without the Hilbert transform and balanced photodetection. Results show that about 40-dB improvement in the measurement dynamic range is realized by the proposed OVA.

  6. Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands.

    PubMed

    Lu, Hai-Han; Wu, Hsiao-Wen; Li, Chung-Yi; Ho, Chun-Ming; Yang, Zih-Yi; Cheng, Ming-Te; Lu, Chang-Kai

    2017-05-01

    A bidirectional fiber-invisible laser light communication (IVLLC) and fiber-wireless convergence system with two orthogonally polarized optical sidebands for hybrid cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and experimentally demonstrated. Two optical sidebands generated by a 60-GHz MMW signal are orthogonally polarized and separated into different polarizations. These orthogonally polarized optical sidebands are delivered over a 40-km single-mode fiber (SMF) transport to effectually reduce the fiber dispersion induced by a 40-km SMF transmission and the distortion caused by the parallel polarized optical sidebands. To the best of our knowledge, this work is the first to adopt two orthogonally polarized optical sidebands in a bidirectional fiber-IVLLC and fiber-wireless convergence system to reduce fiber dispersion and distortion effectually. Good carrier-to-noise ratio, composite second order, composite triple beat, and bit error rate (BER) are achieved for downlink transmission at a 40-km SMF operation and a 100-m free-space optical (FSO) link/3-m RF wireless transmission. For up-link transmission, good BER performance is acquired over a 40-km SMF transport and a 100-m FSO link. The approach presented in this work signifies the advancements in the convergence of SMF-based backbone and optical/RF wireless-based feeder.

  7. Sideband analysis and seismic detection in a large ring laser

    NASA Astrophysics Data System (ADS)

    Stedman, G. E.; Li, Z.; Bilger, H. R.

    1995-08-01

    A ring laser unlocked by the Earth's Sagnac effect has attained a frequency resolution of 1 part in 3 \\times 1021 and a rotational resolution of 300 prad. We discuss both theoretically and experimentally the sideband structure of the Earth rotation-induced spectral line induced in the microhertz-hertz region by frequency modulation associated with extra mechanical motion, such as seismic events. The relative sideband height is an absolute measure of the rotational amplitude of that Fourier component. An initial analysis is given of the ring laser record from the Arthur's Pass-Coleridge seismic event of 18 June 1994.

  8. Phonon group velocity and thermal conduction in superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, S.; Tanaka, Y.; Maris, H.J.

    1999-07-01

    With the use of a face-centered cubic model of lattice dynamics we calculate the group velocity of acoustic phonons in the growth direction of periodic superlattices. Comparing with the case of bulk solids, this component of the phonon group velocity is reduced due to the flattening of the dispersion curves associated with Brillouin-zone folding. The results are used to estimate semiquantitatively the effects on the lattice thermal conductivity in Si/Ge and GaAs/AlAs superlattices. For a Si/Ge superlattice an order of magnitude reduction is predicted in the ratio of superlattice thermal conductivity to phonon relaxation time [consistent with the results ofmore » P. Hyldgaard and G. D. Mahan, Phys. Rev. B {bold 56}, 10&hthinsp;754 (1997)]. For a GaAs/AlAs superlattice the corresponding reduction is rather small, i.e., a factor of 2{endash}3. These effects are larger for the superlattices with larger unit period, contrary to the recent measurements of thermal conductivity in superlattices. {copyright} {ital 1999} {ital The American Physical Society}« less

  9. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    NASA Astrophysics Data System (ADS)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M. S.; Guest, James K.

    2016-05-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  10. Subterahertz Longitudinal Phonon Modes Propagating in a Lipid Bilayer Immersed in an Aqueous Medium

    NASA Astrophysics Data System (ADS)

    Zakhvataev, V. E.

    2018-04-01

    The properties of subterahertz longitudinal acoustic phonon modes in the hydrophobic region of a lipid bilayer immersed in a compressible viscous aqueous medium are investigated theoretically. An approximate expression is obtained for the Mandelstam-Brillouin components of the dynamic structure factor of a bilayer. The analysis is based on a generalized hydrodynamic model of the "two-dimensional lipid bilayer + three-dimensional fluid medium" system, as well as on known sharp estimates for the frequencies and lifetimes of long-wavelength longitudinal acoustic phonons in a free hydrated lipid bilayer and in water, obtained from inelastic X-ray scattering experiments and molecular dynamics simulations. It is shown that, for characteristic values of the parameters of the membrane system, subterahertz longitudinal phonon-like excitations in the hydrophobic part of the bilayer are underdamped. In this case, the contribution of the viscous flow of the aqueous medium to the damping of a longitudinal membrane mode is small compared with the contribution of the lipid bilayer. Quantitative estimates of the damping ratio agree well with the experimental results for the vibration mode of the enzyme lysozyme in aqueous solution [1]. It is also shown that a coupling between longitudinal phonon modes of the bilayer and relaxation processes in its fluid environment gives rise to an additional peak in the scattering spectrum, which corresponds to a non-propagating mode.

  11. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  12. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE PAGES

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; ...

    2018-04-16

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  13. Quantum Regime of a Two-Dimensional Phonon Cavity

    NASA Astrophysics Data System (ADS)

    Bolgar, Aleksey N.; Zotova, Julia I.; Kirichenko, Daniil D.; Besedin, Ilia S.; Semenov, Aleksander V.; Shaikhaidarov, Rais S.; Astafiev, Oleg V.

    2018-06-01

    We realize the quantum regime of a surface acoustic wave (SAW) resonator by demonstrating vacuum Rabi mode splitting due to interaction with a superconducting artificial atom. Reaching the quantum regime is physically difficult and technologically challenging since SAW devices consist of large arrays of narrow metal strips. This work paves the way for realizing analogues of quantum optical phenomena with phonons and can be useful in on-chip quantum electronics.

  14. Development of digital sideband separating down-conversion for Yuan-Tseh Lee Array

    NASA Astrophysics Data System (ADS)

    Li, Chao-Te; Kubo, Derek; Cheng, Jen-Chieh; Kuroda, John; Srinivasan, Ranjani; Ho, Solomon; Guzzino, Kim; Chen, Ming-Tang

    2016-07-01

    This report presents a down-conversion method involving digital sideband separation for the Yuan-Tseh Lee Array (YTLA) to double the processing bandwidth. The receiver consists of a MMIC HEMT LNA front end operating at a wavelength of 3 mm, and sub-harmonic mixers that output signals at intermediate frequencies (IFs) of 2-18 GHz. The sideband separation scheme involves an analog 90° hybrid followed by two mixers that provide down-conversion of the IF signal to a pair of in-phase (I) and quadrature (Q) signals in baseband. The I and Q baseband signals are digitized using 5 Giga sample per second (Gsps) analog-to-digital converters (ADCs). A second hybrid is digitally implemented using field-programmable gate arrays (FPGAs) to produce two sidebands, each with a bandwidth of 1.6 GHz. The 2 x 1.6 GHz band can be tuned to cover any 3.6 GHz window within the aforementioned IF range of the array. Sideband rejection ratios (SRRs) above 20 dB can be obtained across the 3.6 GHz bandwidth by equalizing the power and delay between the I and Q baseband signals. Furthermore, SRRs above 30 dB can be achieved when calibration is applied.

  15. Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Wang, Yimin; Li, Tiefu; Tian, Lin; Qiu, Yueyin; Inomata, Kunihiro; Yoshihara, Fumiki; Han, Siyuan; Nori, Franco; Tsai, J. S.; You, J. Q.

    2017-07-01

    We report the experimental observation of high-order sideband transitions at the single-photon level in a quantum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the coupling strength reaching 10% of the resonator's fundamental frequency, we obtain clear signatures of higher order red-sideband and first-order blue-sideband transitions, which are mainly due to the ultrastrong Rabi coupling. Our observation advances the understanding of ultrastrongly coupled systems and paves the way to study high-order processes in the quantum Rabi model at the single-photon level.

  16. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.

    PubMed

    Hofmann, F; Garg, J; Maznev, A A; Jandl, A; Bulsara, M; Fitzgerald, E A; Chen, G; Nelson, K A

    2013-07-24

    We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon-phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the 'interfacial atomic disorder' model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness.

  17. Effect of Phonon Drag on the Thermopower in a Parabolic Quantum Well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanov, Kh. A., E-mail: xanlarhasanli@rambler.ru; Huseynov, J. I.; Dadashova, V. V.

    2016-03-15

    The theory of phonon-drag thermopower resulting from a temperature gradient in the plane of a two-dimensional electron gas layer in a parabolic quantum well is developed. The interaction mechanisms between electrons and acoustic phonons are considered, taking into account potential screening of the interaction. It is found that the effect of electron drag by phonons makes a significant contribution to the thermopower of the two-dimensional electron gas. It is shown that the consideration of screening has a significant effect on the drag thermopower. For the temperature dependence of the thermopower in a parabolic GaAs/AlGaAs quantum well in the temperature rangemore » of 1–10 K, good agreement between the obtained theoretical results and experiments is shown.« less

  18. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polanco, Carlos A.; Lindsay, Lucas R.

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  19. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE PAGES

    Polanco, Carlos A.; Lindsay, Lucas R.

    2018-01-04

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  20. Ab initio phonon point defect scattering and thermal transport in graphene

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos A.; Lindsay, Lucas

    2018-01-01

    We study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitude smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (˜ω0 ) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. This work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.

  1. Theory of controlling band-width broadening in terahertz sideband generation in semiconductors by a direct current electric field

    NASA Astrophysics Data System (ADS)

    Liu, Houquan; Zhang, Xingchu

    2017-03-01

    In a semiconductor, optically excited electron-hole pairs, driven by a strong terahertz (THz) field, can recombine to create THz sidebands in the optical spectrum. The sideband spectrum exhibits a "plateau" up to a cutoff frequency of 3.17Up, where Up is the ponderomotive energy. In this letter, we predict that the bandwidth of this sideband spectrum plateau can be broadened by applying an additional direct-current (DC) electric field. We find that if applying a DC field of EDC=0.2ETHz (where EDC and ETHz are the amplitudes of the DC field and THz field, respectively), the sideband spectrum presents three plateaus with 5.8Up, 10.05Up and 16Up being the cutoff frequencies of the first, second and third plateaus, respectively. This bandwidth broadening occurs because the DC field can increase the kinetic energy that an electron-hole pair can gain from the THz field. This effect means that the bandwidth of the sideband spectrum can be controlled flexibly by changing the DC field, thereby facilitating the ultrafast electro-optical applications of THz sideband generation.

  2. Boron arsenide phonon dispersion from inelastic x-ray scattering: Potential for ultrahigh thermal conductivity

    NASA Astrophysics Data System (ADS)

    Ma, Hao; Li, Chen; Tang, Shixiong; Yan, Jiaqiang; Alatas, Ahmet; Lindsay, Lucas; Sales, Brian C.; Tian, Zhiting

    2016-12-01

    Cubic boron arsenide (BAs) was predicted to have an exceptionally high thermal conductivity (k ) ˜2000 W m-1K-1 at room temperature, comparable to that of diamond, based on first-principles calculations. Subsequent experimental measurements, however, only obtained a k of ˜200 W m-1K-1 . To gain insight into this discrepancy, we measured phonon dispersion of single-crystal BAs along high symmetry directions using inelastic x-ray scattering and compared these with first-principles calculations. Based on the measured phonon dispersion, we have validated the theoretical prediction of a large frequency gap between acoustic and optical modes and bunching of acoustic branches, which were considered the main reasons for the predicted ultrahigh k . This supports its potential to be a super thermal conductor if very-high-quality single-crystal samples can be synthesized.

  3. Boron arsenide phonon dispersion from inelastic x-ray scattering: Potential for ultrahigh thermal conductivity

    DOE PAGES

    Ma, Hao; Li, Chen; Tang, Shixiong; ...

    2016-12-14

    Cubic boron arsenide (BAs) was predicted to have an exceptionally high thermal conductivity (k) ~2000 Wm -1K -1 at room temperature, comparable to that of diamond, based on first-principles calculations. Subsequent experimental measurements, however, only obtained a k of ~200 Wm-1K-1. To gain insight into this discrepancy, we measured phonon dispersion of single crystal BAs along high symmetry directions using inelastic x-ray scattering (IXS) and compared these with first-principles calculations. Based on the measured phonon dispersion, we have validated the theoretical prediction of a large frequency gap between acoustic and optical modes and bunching of acoustic branches, which were consideredmore » the main reasons for the predicted ultrahigh k. This supports its potential to be a super thermal conductor if very high-quality single crystal samples can be synthesized.« less

  4. Phonon conductivity metrics for compact, linked-cage, layered, and filled-cage crystals, using ab initio, molecular dynamics and Boltzmann transport treatments

    NASA Astrophysics Data System (ADS)

    Huang, Baoling

    Atomic-level thermal transport in compact, layered, linked-cage, and filled-cage crystals is investigated using a multiscale approach, combines the ab initio calculation, molecular dynamics (MD), Boltzman transport equations (BTE), and the kinetic theory. These materials are of great interests in energy storage, transport, and conversion. The structural metrics of phonon conductivity of these crystals are then explored. An atomic structure-based model is developed for the understanding the relationship between the atomic structure and phonon transport in compact crystals at high temperatures. The elemental electronegativity, element mass, and the arrangement of bonds are found to be the dominant factors to determine the phonon conductivity. As an example of linked-cage crystals, the phonon conductivity of MOF-5 is investigated over a wide temperature range using MD simulations and the Green-Kubo method. The temperature dependence of the thermal conductivity of MOF-5 is found to be weak at high temperatures, which results from the suppression of the long-range acoustic phonon transport by the special linked-cage structure. The mean free path of the majority of phonons in MOF-5 is limited by the cage size. The phonon and electron transport in layered Bi2Te3 structure are investigated using the first-principle calculations, MD, and BTE. Strong anisotropy has been found for both phonon and electron transport due to the special layered structure. The long-range acoustic phonons dominate the phonon transport with a strong temperature and direction dependence. Temperature dependence of the energy gap and appropriate modelling of relaxation times are found to be important for the prediction of the electrical transport in the intrinsic regime. The scattering by the acoustic, optical, and polar-optical phonons are found to dominate the electron transport. For filled skutterudite structure, strong coupling between the filler and the host is found, which contradicts the

  5. Flexural phonon limited phonon drag thermopower in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Ansari, Mohd Meenhaz; Ashraf, SSZ

    2018-05-01

    We investigate the phonon drag thermopower from flexural phonons as a function of electron temperature and carrier concentration in the Bloch-Gruneisen regime in non-strained bilayer graphene using Boltzmann transport equation approach. The flexural phonons are expected to be the major source of intrinsic scattering mechanism in unstrained bilayer graphene due to their large density. The flexural phonon modes dispersion relation is quadratic so these low energy flexural phonons abound at room temperature and as a result deform the bilayer graphene sheet in the out of plane direction and affects the transport properties. We also produce analytical result for phonon-drag thermopower from flexural phonons and find that phonon-drag thermopower depicts T2 dependence on temperature and n-1 on carrier concentration.

  6. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer

    NASA Astrophysics Data System (ADS)

    Yang, G. Y.; Du, J. K.; Huang, B.; Jin, Y. A.; Xu, M. H.

    2017-04-01

    The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE) is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM). The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.

  7. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    PubMed Central

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  8. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    DOE PAGES

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; ...

    2017-12-18

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less

  9. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less

  10. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; Yoon, Moohyun; Zhou, Guanqun

    2017-12-01

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulator tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (˜10 %) provides effective suppression of the sideband instability in the postsaturation regime.

  11. Magnon-phonon interconversion in a dynamically reconfigurable magnetic material

    NASA Astrophysics Data System (ADS)

    Guerreiro, Sergio C.; Rezende, Sergio M.

    2015-12-01

    The ferrimagnetic insulator yttrium iron garnet (YIG) is an important material in the field of magnon spintronics, mainly because of its low magnetic losses. YIG also has very low acoustic losses, and for this reason the conversion of a state of magnetic excitation (magnons) into a state of lattice vibration (phonons), or vice versa, broadens its possible applications in spintronics. Since the magnetic parameters can be varied by some external action, the magnon-phonon interconversion can be tuned to perform a desired function. We present a quantum theory of the interaction between magnons and phonons in a ferromagnetic material subject to a dynamic variation of the applied magnetic field. It is shown that when the field gradient at the magnetoelastic crossover region is much smaller than a critical value, an initial elastic excitation can be completely converted into a magnetic excitation, or vice versa. This occurs with conservation of linear momentum and spin angular momentum, implying that phonons created by the conversion of magnons have spin angular momentum and carry spin current. It is shown further that if the system is initially in a quantum coherent state, its coherence properties are maintained regardless of the time dependence of the field.

  12. Phonon Transport at the Interfaces of Vertically Stacked Graphene and Hexagonal Boron Nitride Heterostructures

    DOE PAGES

    Yan, Zhequan; Chen, Liang; Yoon, Mina; ...

    2016-01-12

    Hexagonal boron nitride (h-BN) is a substrate for graphene based nano-electronic devices. We investigate the ballistic phonon transport at the interface of vertically stacked graphene and h-BN heterostructures using first principles density functional theory and atomistic Green's function simulations considering the influence of lattice stacking. We compute the frequency and wave-vector dependent transmission function and observe distinct stacking-dependent phonon transmission features for the h-BN/graphene/h-BN sandwiched systems. We find that the in-plane acoustic modes have the dominant contributions to the phonon transmission and thermal boundary conductance (TBC) for the interfaces with the carbon atom located directly on top of the boronmore » atom (C–B matched) because of low interfacial spacing. The low interfacial spacing is a consequence of the differences in the effective atomic volume of N and B and the difference in the local electron density around N and B. For the structures with the carbon atom directly on top of the nitrogen atom (C–N matched), the spatial distance increases and the contribution of in-plane modes to the TBC decreases leading to higher contributions by out-of-plane acoustic modes. We find that the C–B matched interfaces have stronger phonon–phonon coupling than the C–N matched interfaces, which results in significantly higher TBC (more than 50%) in the C–B matched interface. The findings in this study will provide insights to understand the mechanism of phonon transport at h-BN/graphene/h-BN interfaces, to better explain the experimental observations and to engineer these interfaces to enhance heat dissipation in graphene based electronic devices.« less

  13. Saturation of a toroidal Alfvén eigenmode due to enhanced damping of nonlinear sidebands

    NASA Astrophysics Data System (ADS)

    Todo, Y.; Berk, H. L.; Breizman, B. N.

    2012-09-01

    This paper examines nonlinear magneto-hydrodynamic effects on the energetic particle driven toroidal Alfvén eigenmode (TAE) for lower dissipation coefficients and with higher numerical resolution than in the previous simulations (Todo et al 2010 Nucl. Fusion 50 084016). The investigation is focused on a TAE mode with toroidal mode number n = 4. It is demonstrated that the mechanism of mode saturation involves generation of zonal (n = 0) and higher-n (n ⩾ 8) sidebands, and that the sidebands effectively increase the mode damping rate via continuum damping. The n = 0 sideband includes the zonal flow peaks at the TAE gap locations. It is also found that the n = 0 poloidal flow represents a balance between the nonlinear driving force from the n = 4 components and the equilibrium plasma response to the n = 0 fluctuations. The spatial profile of the n = 8 sideband peaks at the n = 8 Alfvén continuum, indicating enhanced dissipation due to continuum damping.

  14. Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking.

    PubMed

    Wei, Fang; Lu, Bin; Wang, Jian; Xu, Dan; Pan, Zhengqing; Chen, Dijun; Cai, Haiwen; Qu, Ronghui

    2015-02-23

    A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.

  15. Performance Evaluation of Single Sideband Radio over Fiber System through Modulation Index Enhancement

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Hu, Xizhen; Huang, Dexiu

    2014-09-01

    The transmission performance of single sideband (SSB) radio over fiber (RoF) system is evaluated through tuning the modulation index of Mach-Zehnder modulator, two different data modulation schemes and the influence of fiber dispersion are considered. The quantitative simulation results validate that there exist an optimum modulation index, and the system performance could be improved if the data signal is modulated on only optical carrier or sidebands.

  16. 25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons

    PubMed Central

    Lee, Jae-Hwang; Koh, Cheong Yang; Singer, Jonathan P; Jeon, Seog-Jin; Maldovan, Martin; Stein, Ori; Thomas, Edwin L

    2014-01-01

    The engineering of optical and acoustic material functionalities via construction of ordered local and global architectures on various length scales commensurate with and well below the characteristic length scales of photons and phonons in the material is an indispensable and powerful means to develop novel materials. In the current mature status of photonics, polymers hold a pivotal role in various application areas such as light-emission, sensing, energy, and displays, with exclusive advantages despite their relatively low dielectric constants. Moreover, in the nascent field of phononics, polymers are expected to be a superior material platform due to the ability for readily fabricated complex polymer structures possessing a wide range of mechanical behaviors, complete phononic bandgaps, and resonant architectures. In this review, polymer-centric photonic and phononic crystals and metamaterials are highlighted, and basic concepts, fabrication techniques, selected functional polymers, applications, and emerging ideas are introduced. PMID:24338738

  17. Four-amplitude shift keying-single sideband millimeter-wave signal generation with frequency sextupling based on optical phase modulation

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2017-03-01

    We have proposed and demonstrated a scheme to generate a frequency-sextupling amplitude shift keying (ASK)-single sideband optical millimeter (mm)-wave signal with high dispersion tolerance based on an optical phase modulator (PM) by ably using the-4th-order and +2nd-order sidebands of the optical modulation. The ASK radio frequency signal, superposed by a local oscillator with the same frequency, modulates the lightwave via an optical PM with proper voltage amplitudes, the +2nd-order sideband carries the ASK signal with a constant slope while the -4th-order sideband maintains constant amplitude. These two sidebands can be abstracted by a wavelength selective switch to form a dual-tone optical mm-wave with only one tone carrying the ASK signal. As only one tone bears the ASK signal while the other tone is unmodulated, the generated dual-tone optical mm-wave signal has high dispersion tolerance.

  18. Pressure effect on phonon frequencies in some transition metals: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kazanc, S.; Ozgen, S.

    2005-08-01

    It is important to determine the atomic lattice vibrations of metallic materials, under high-pressure conditions, due to its effects on material properties such as thermal, electrical and optical conductions. In this work, we have investigated the changes of acoustic phonon frequencies with hydrostatic pressure for Cu, Ni, Al, Ag and Au transition metals, using molecular dynamics (MD) simulations based on embedded atom method (EAM). For this aim, we have adopted the embedded atom potential proposed by Sutton and Chen. The phonon frequencies have been calculated from the dynamical matrix for [1 0 0], [1 1 0] and [1 1 1] high symmetry directions of the Brillouin zone. The obtained results show that the hydrostatic pressure causes an increment in phonon frequencies, and this rising do not depend linearly on the increasing pressure.

  19. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF

    DOE PAGES

    Lindsay, Lucas R.

    2016-11-08

    Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less

  20. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  1. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  2. Influence of phonon reservoir on photon blockade in a driven quantum dot-cavity system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Bo; Li, Gao-xiang, E-mail: gaox@phy.ccnu.edu.cn; Zhu, Jia-pei, E-mail: fengxue0506@163.com

    2016-03-14

    We theoretically investigate the influence of the phonon bath on photon blockade in a simultaneously driven dot-cavity system. An optimal condition for avoiding two-photon excitation of a cavity field is put forward which can be achieved by modulating the phase difference and the strengths of the driving fields. The second-order correlation function and the mean photon number of the cavity field are discussed. In the absence of phonon effect, the strong photon blockade in a moderate quantum dot (QD)-cavity coupling regime occurs, which can be attributed to the destructive quantum interference arisen from different transition paths induced by simultaneously drivingmore » the dressed QD-cavity system. The participation of acoustic-phonon reservoir produces new transition channels for the QD-cavity system, which leads to the damage of destructive interference. As a result, the photon blockade effect is hindered when taking the electron-phonon interaction into account. It is also found that the temperature of the phonon reservoir is disadvantageous for the generation of photon blockade.« less

  3. Polar Fluctuations in Metal Halide Perovskites Uncovered by Acoustic Phonon Anomalies

    DOE PAGES

    Guo, Peijun; Xia, Yi; Gong, Jue; ...

    2017-09-28

    Solution-processable metal-halide perovskites (MHPs) offer great promise for efficient light harvesting and emitting devices due to their long carrier lifetime and superior carrier transport characteristics. Ferroelectric effects, a hallmark of traditional oxide perovskites, was proposed to be a mechanism to suppress carrier recombination and enhance charge transport in MHPs, but the existence and influence of such polar order is still of considerable debate. Here we performed transient reflection measurements on single crystals of both inorganic and organic-inorganic (hybrid) MHPs over a range of temperatures, and demonstrate significant phonon softening in the cubic phases close to the cubic-to-tetragonal phase transition temperatures.more » Such phonon softening indicates the formation of polar domains, which grow in size upon cooling and can persist in the low-temperature tetragonal and orthorhombic phases. Our results link the extraordinary electronic properties of MHPs to the spontaneous polarizations which can contribute to more efficient charge separation and characteristics of an indirect bandgap.« less

  4. Nonlinear control of high-frequency phonons in spider silk

    NASA Astrophysics Data System (ADS)

    Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George

    2016-10-01

    Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.

  5. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations

    DOE PAGES

    Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; ...

    2016-05-12

    We report the high resolution inelastic x-ray study of the in-plane phonon excitations in dipalmitoyl phosphatidylcholine (DPPC) above and below main transition temperature. In the L β' gel phase, we observe high frequency longitudinal phonon mode previously predicted by the molecular dynamics simulations and for the first time, we reveal low frequency weakly dispersive transverse acoustic mode which softens and exhibits a low-frequency phonon gap when the DPPC lipid transitions into the L α fluid phase. The phonon softening of the high frequency longitudinal excitations and the transformation of the transverse excitations upon the phase transition from the L β'more » to L α phase is explained within the framework of the phonon theory of liquids. These findings illustrate the importance of the collective dynamics of biomembranes and reveal that hydrocarbon tails can act as an efficient mediator in controlling the passive transport across the bilayer plane.« less

  6. Origin of the "waterfall" effect in phonon dispersion of relaxor perovskites.

    PubMed

    Hlinka, J; Kamba, S; Petzelt, J; Kulda, J; Randall, C A; Zhang, S J

    2003-09-05

    We have undertaken an inelastic neutron scattering study of the perovskite relaxor ferroelectric Pb(Zn(1/3)Nb(2/3))O3 with 8% PbTiO3 (PZN-8%PT) in order to elucidate the origin of the previously reported unusual kink on the low frequency transverse phonon dispersion curve (known as the "waterfall effect"). We show that its position (q(wf)) depends on the choice of the Brillouin zone and that the relation of q(wf) to the size of the polar nanoregions is highly improbable. The waterfall phenomenon is explained in the framework of a simple model of coupled damped harmonic oscillators representing the acoustic and optic phonon branches.

  7. Phonon-assisted indirect transitions in angle-resolved photoemission spectra of graphite and graphene

    NASA Astrophysics Data System (ADS)

    Ayria, Pourya; Tanaka, Shin-ichiro; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Indirect transitions of electrons in graphene and graphite are investigated by means of angle-resolved photoemission spectroscopy (ARPES) with several different incident photon energies and light polarizations. The theoretical calculations of the indirect transition for graphene and for a single crystal of graphite are compared with the experimental measurements for highly-oriented pyrolytic graphite and a single crystal of graphite. The dispersion relations for the transverse optical (TO) and the out-of-plane longitudinal acoustic (ZA) phonon modes of graphite and the TO phonon mode of graphene can be extracted from the inelastic ARPES intensity. We find that the TO phonon mode for k points along the Γ -K and K -M -K' directions in the Brillouin zone can be observed in the ARPES spectra of graphite and graphene by using a photon energy ≈11.1 eV. The relevant mechanism in the ARPES process for this case is the resonant indirect transition. On the other hand, the ZA phonon mode of graphite can be observed by using a photon energy ≈6.3 eV through a nonresonant indirect transition, while the ZA phonon mode of graphene within the same mechanism should not be observed.

  8. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.

    PubMed

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.

  9. Band structures in a two-dimensional phononic crystal with rotational multiple scatterers

    NASA Astrophysics Data System (ADS)

    Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Wan, Lele

    2017-03-01

    In this paper, the acoustic wave propagation in a two-dimensional phononic crystal composed of rotational multiple scatterers is investigated. The dispersion relationships, the transmission spectra and the acoustic modes are calculated by using finite element method. In contrast to the system composed of square tubes, there exist a low-frequency resonant bandgap and two wide Bragg bandgaps in the proposed structure, and the transmission spectra coincide with band structures. Specially, the first bandgap is based on locally resonant mechanism, and the simulation results agree well with the results of electrical circuit analogy. Additionally, increasing the rotation angle can remarkably influence the band structures due to the transfer of sound pressure between the internal and external cavities in low-order modes, and the redistribution of sound pressure in high-order modes. Wider bandgaps are obtained in arrays composed of finite unit cells with different rotation angles. The analysis results provide a good reference for tuning and obtaining wide bandgaps, and hence exploring the potential applications of the proposed phononic crystal in low-frequency noise insulation.

  10. Superconducting Qubit (transmon) coupled to Surface Acoustic Waves (SAWs)

    NASA Astrophysics Data System (ADS)

    Guo, Lingzhen; Johansson, Göran

    We work on a hybrid system, which couples the transmon in circuit QED to the propagating mechanical modes of Surface Acoustic Waves (SAWs). This is an analogue of circuit QED system but replacing the microwave photons by SAW phonons. We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. We show that the giant atom can generate entangled phonon pairs, which may have applications in quantum communication. L.G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).

  11. Phononic crystal devices

    DOEpatents

    El-Kady, Ihab F [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  12. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    NASA Astrophysics Data System (ADS)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    2017-11-01

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe, and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving {κ }{InSe}< {κ }{GaSe}< {κ }{GaS}. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, in InSe, GaSe and GaS thermal transport is governed by in-plane vibrations. Alloying of InSe, GaSe, and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ˜2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.

  13. Real-Time Observation of Exciton-Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells.

    PubMed

    Ni, Limeng; Huynh, Uyen; Cheminal, Alexandre; Thomas, Tudor H; Shivanna, Ravichandran; Hinrichsen, Ture F; Ahmad, Shahab; Sadhanala, Aditya; Rao, Akshay

    2017-11-28

    Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication, and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons, remains an open question. Here, we investigate two widely used materials, namely, butylammonium lead iodide (CH 3 (CH 2 ) 3 NH 3 ) 2 PbI 4 and hexylammonium lead iodide (CH 3 (CH 2 ) 5 NH 3 ) 2 PbI 4 , both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton-phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm -1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 and 137 cm -1 . Using the determined optical phonon energies, we analyzed photoluminescence broadening mechanisms. At low temperatures (<100 K), the broadening is due to acoustic phonon scattering, whereas at high temperatures, LO phonon-exciton coupling is the dominant mechanism. Our results help explain the broad photoluminescence line shape observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.

  14. Coherent detection of THz-induced sideband emission from excitons in the nonperturbative regime

    NASA Astrophysics Data System (ADS)

    Uchida, K.; Otobe, T.; Mochizuki, T.; Kim, C.; Yoshita, M.; Tanaka, K.; Akiyama, H.; Pfeiffer, L. N.; West, K. W.; Hirori, H.

    2018-04-01

    Strong interaction of a terahertz (THz) wave with excitons induces nonperturbative optical effects such as Rabi splitting and high-order sideband generation. Here, we investigated coherent properties of THz-induced sideband emissions from GaAs/AlGaAs multiquantum wells. With increasing THz electric field, optical susceptibility of the THz-dressed exciton shows a redshift with spectral broadening and extraordinary phase shift. This implies that the field ionization of the 1 s exciton modifies the THz-dressed exciton in the nonperturbative regime.

  15. Magnetic ground state and magnon-phonon interaction in multiferroic h -YMnO3

    NASA Astrophysics Data System (ADS)

    Holm, S. L.; Kreisel, A.; Schäffer, T. K.; Bakke, A.; Bertelsen, M.; Hansen, U. B.; Retuerto, M.; Larsen, J.; Prabhakaran, D.; Deen, P. P.; Yamani, Z.; Birk, J. O.; Stuhr, U.; Niedermayer, Ch.; Fennell, A. L.; Andersen, B. M.; Lefmann, K.

    2018-04-01

    Inelastic neutron scattering has been used to study the magnetoelastic excitations in the multiferroic manganite hexagonal YMnO3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a ,b ) plane. Neutron polarization analysis reveals that this mode has mixed magnon-phonon character. An external magnetic field along the c axis is observed to cause a linear field-induced splitting of one of the spin-wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes, and a magnetoelastic coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magnetoelastic coupling. The combined information, including the field-induced magnon splitting, allows us to exclude several of the earlier proposed models and point to the correct magnetic ground state symmetry, and provides an effective dynamic model relevant for the multiferroic hexagonal manganites.

  16. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.

    PubMed

    Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing

    2014-11-17

    Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.

  17. Effect of confinement on anharmonic phonon scattering and thermal conductivity in pristine silicon nanowires

    NASA Astrophysics Data System (ADS)

    Rashid, Zahid; Zhu, Liyan; Li, Wu

    2018-02-01

    The effect of confinement on the anharmonic phonon scattering rates and the consequences thereof on the thermal transport properties in ultrathin silicon nanowires with a diameter of 1-4 nm have been characterized using atomistic simulations and the phonon Boltzmann transport equation. The phonon density of states (PDOS) for ultrathin nanowires approaches a constant value in the vicinity of the Γ point and increases with decreasing diameter, which indicates the increasing importance of the low-frequency phonons as heat carriers. The anharmonic phonon scattering becomes dramatically enhanced with decreasing thickness of the nanowires. In the thinnest nanowire, the scattering rates for phonons above 1 THz are one order of magnitude higher than those in the bulk Si. Below 1 THz, the increase in scattering rates is even much more appreciable. Our numerical calculations revealed that the scattering rates for transverse (longitudinal) acoustic modes follow √{ω } (1 /√{ω } ) dependence at the low-frequency limit, whereas those for the degenerate flexural modes asymptotically approach a constant value. In addition, the group velocities of phonons are reduced compared with bulk Si except for low-frequency phonons (<1 -2 THz depending on the thickness of the nanowires). The increased scattering rates combined with reduced group velocities lead to a severely reduced thermal conductivity contribution from the high-frequency phonons. Although the thermal conductivity contributed by those phonons with low frequencies is instead increased mainly due to the increased PDOS, the total thermal conductivity is still reduced compared to that of the bulk. This work reveals an unexplored mechanism to understand the measured ultralow thermal conductivity of silicon nanowires.

  18. Band structure analysis of leaky Bloch waves in 2D phononic crystal plates.

    PubMed

    Mazzotti, Matteo; Miniaci, Marco; Bartoli, Ivan

    2017-02-01

    A hybrid Finite Element-Plane Wave Expansion method is presented for the band structure analysis of phononic crystal plates with two dimensional lattice that are in contact with acoustic half-spaces. The method enables the computation of both real (propagative) and imaginary (attenuation) components of the Bloch wavenumber at any given frequency. Three numerical applications are presented: a benchmark dispersion analysis for an oil-loaded Titanium isotropic plate, the band structure analysis of a water-loaded Tungsten slab with square cylindrical cavities and a phononic crystal plate composed of Aurum cylinders embedded in an epoxy matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Modulated acoustic radiation pressure and stress-coupling projections

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Thiessen, David B.

    2005-09-01

    Low-frequency deformation can be induced at a single frequency using radiation stress oscillations of double-sideband suppressed-carrier ultrasound [P. L. Marston and R. E. Apfel, J. Acoust. Soc. Am. 67, 27 (1980)]. The transducer voltage is proportional to a product of low- and high-frequency sine waves. To anticipate the shape and magnitude of induced deformations, it is helpful to expand the distribution of the radiation stress on the object to be deformed as a series of projections [P. L. Marston, J. Acoust. Soc. Am. 67, 15 (1980)]. Stress projections are also useful for unmodulated waves: the radiation force is an example. In addition to spherical and nearly spherical objects, recent experiments and calculations have concerned cylindrical objects [S. F. Morse, D. B. Thiessen, and P. L. Marston, Phys. Fluids 8, 3 (1996); W. Wei, D. B. Thiessen, and P. L. Marston, J. Acoust. Soc. Am. 116, 202 (2004)]. In standing waves the following projections are nonvanishing in the low acoustic frequency limit for appropriately situated dense objects: radial projection [M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston, Phys. Rev. Lett. 86, 2293 (2001)] and quadrupole projection [P. L. Marston et al., J. Acoust. Soc. Am. 69, 1499 (1981)].

  20. Ultrafast Spectroscopy of Fano-Like Resonance between Optical Phonon and Excitons in CdSe Quantum Dots: Dependence of Coherent Vibrational Wave-Packet Dynamics on Pump Fluence

    PubMed Central

    Aybush, Arseniy; Gostev, Fedor; Shelaev, Ivan; Titov, Andrey; Umanskiy, Stanislav; Cherepanov, Dmitry

    2017-01-01

    The main goal of the present work is to study the coherent phonon in strongly confined CdSe quantum dots (QDs) under varied pump fluences. The main characteristics of coherent phonons (amplitude, frequency, phase, spectrogram) of CdSe QDs under the red-edge pump of the excitonic band [1S(e)-1S3/2(h)] are reported. We demonstrate for the first time that the amplitude of the coherent optical longitudinal-optical (LO) phonon at 6.16 THz excited in CdSe nanoparticles by a femtosecond unchirped pulse shows a non-monotone dependence on the pump fluence. This dependence exhibits the maximum at pump fluence ~0.8 mJ/cm2. At the same time, the amplitudes of the longitudinal acoustic (LA) phonon mode at 0.55 THz and of the coherent wave packet of toluene at 15.6, 23.6 THz show a monotonic rise with the increase of pump fluence. The time frequency representation of an oscillating signal corresponding to LO phonons revealed by continuous wavelet transform (CWT) shows a profound destructive quantum interference close to the origin of distinct (optical phonon) and continuum-like (exciton) quasiparticles. The CWT spectrogram demonstrates a nonlinear chirp at short time delays, where the chirp sign depends on the pump pulse fluence. The CWT spectrogram reveals an anharmonic coupling between optical and acoustic phonons. PMID:29113056

  1. Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange

    PubMed Central

    2011-01-01

    Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC) surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO) phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs. PACS: 63.20.-e, 78.30.-j, 78.67.-n, 78.67.Bf PMID:21711581

  2. Detecting the phonon spin in magnon-phonon conversion experiments

    NASA Astrophysics Data System (ADS)

    Holanda, J.; Maior, D. S.; Azevedo, A.; Rezende, S. M.

    2018-05-01

    Recent advances in the emerging field of magnon spintronics have stimulated renewed interest in phenomena involving the interaction between spin waves, the collective excitations of spins in magnetic materials that quantize as magnons, and the elastic waves that arise from excitations in the crystal lattice, which quantize as phonons. In magnetic insulators, owing to the magnetostrictive properties of materials, spin waves can become strongly coupled to elastic waves, forming magnetoelastic waves—a hybridized magnon-phonon excitation. While several aspects of this interaction have been subject to recent scrutiny, it remains unclear whether or not phonons can carry spin. Here we report experiments on a film of the ferrimagnetic insulator yttrium iron garnet under a non-uniform magnetic field demonstrating the conversion of coherent magnons generated by a microwave field into phonons that have spin. While it is well established that photons in circularly polarized light carry a spin, the spin of phonons has had little attention in the literature. By means of wavevector-resolved Brillouin light-scattering measurements, we show that the magnon-phonon conversion occurs with constant energy and varying linear momentum, and that the light scattered by the phonons is circularly polarized, thus demonstrating that the phonons have spin.

  3. Lamb wave band gaps in a double-sided phononic plate

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Tian-Ning; Yu, Kun-Peng; Wang, Xiao-Peng

    2013-02-01

    In this paper, we report on the theoretical investigation of the propagation characteristics of Lamb wave in a phononic crystal structure constituted by a square array of cylindrical stubs deposited on both sides of a thin homogeneous plate. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite-element method. We investigate the evolution of band gaps in the double-sided phononic plate with stub height on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Numerical results show that as the double stubs in a unit cell arranged more symmetrically on both sides, band width shifts, new band gaps appear, and the bands become flat due to localized resonant modes which couple with plate modes. Specially, more band gaps and flat bands can be found in the symmetrical system as a result of local resonances of the stubs which interact in a stronger way with the plate modes. Moreover, the symmetrical double-sided plate exhibits lower and smaller band gap than that of the asymmetrical plate. These propagation properties of elastic or acoustic waves in the double-sided plate can potentially be utilized to generate filters, slow the group velocity, low-frequency sound insulation, and design acoustic sensors.

  4. An ultrawide-bandwidth single-sideband modulator for terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Meijer, A. S.; Berden, G.; Arslanov, D. D.; Ozerov, M.; Jongma, R. T.; van der Zande, W. J.

    2016-11-01

    Wireless high-speed data communication using terahertz (THz) carrier frequencies is becoming reality with data rates beyond 100 Gbit s-1. Many of the mobile applications use internet access and require that THz wireless base stations are connected to a global network, such as the radio-over-fibre network. We present the realization of an ultrawide bandwidth THz optical single-sideband (OSSB) modulator for converting (free-space) THz signals to THz optical modulations with an increased spectral efficiency. THz OSSB will mitigate chromatic dispersion-induced propagation losses in optical fibres and support digital modulation schemes. We demonstrate THz OSSB for free-space radiation between 0.3 and 1.0 THz using a specially designed dichroic beamsplitter for signal and carrier, and a planar light-wave circuit with multimode interference structures. This arrangement of optical elements mimics the Hartley single-sideband modulator for electronics signals and accomplishes the required Hilbert transform without any frequency-dependent tuning element over an ultrawide THz spectrum.

  5. 47 CFR 73.757 - System specifications for single-sideband (SSB) modulated emissions in the HF broadcasting service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false System specifications for single-sideband (SSB... Stations § 73.757 System specifications for single-sideband (SSB) modulated emissions in the HF broadcasting service. (a) System parameters—(1) Channel spacing. In a mixed DSB, SSB and digital environment...

  6. Optical single sideband millimeter-wave signal generation and transmission using 120° hybrid coupler

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiwei; Peng, Miao; Zhou, Hui; Chen, Ming; Jiang, Leyong; Tan, Li; Dai, Xiaoyu; Xiang, Yuanjiang

    2018-03-01

    We propose a novel 60 GHz optical single sideband (OSSB) millimeter-wave (mm-wave) signal generation scheme using 120° hybrid coupler based on external integrated Mach-Zehnder modulator (MZM). The proposed scheme shows that the bit error ratio (BER) performance is improved by suppressing the +2nd-order sideband. Meanwhile, the transmission distance is extended as only the optical +1st-order sideband is modulated by using 5 Gbit/s baseband signal while the carrier is blank, owing to the elimination of walk-off effect suffered from fiber dispersion. The simulation results demonstrated that the eye diagrams of the generated 60 GHz OSSB signal keep open and clear after 100 km standard single-mode fiber (SSMF). In addition, the proposed scheme can achieve 2 dB receiver sensitivity improvements than the conventional 90° hybrid coupler when transmitted over 100 km SSMF at a BER of 10-9.

  7. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving κInSe< κGaSe< κGaS. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, thermal transport is governed by in-plane vibrations inmore » InSe, GaSe and GaS, similar to buckled monolayer materials such as silicene. Alloying of InSe, GaSe and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ~2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.« less

  8. Topological Acoustic Delay Line

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan

    2018-03-01

    Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.

  9. 47 CFR 73.756 - System specifications for double-sideband (DBS) modulated emissions in the HF broadcasting service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false System specifications for double-sideband (DBS... Stations § 73.756 System specifications for double-sideband (DBS) modulated emissions in the HF... processing. If audio-frequency signal processing is used, the dynamic range of the modulating signal shall be...

  10. Dual-Polarization, Sideband-Separating, Balanced Receiver for 1.5 THz

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutman; Ward, John; Manohara, Harish; Siegel, Peter

    2009-01-01

    A proposed heterodyne receiver would be capable of detecting electromagnetic radiation in both of two orthogonal linear polarizations, separating sidebands, and providing balanced outputs in a frequency band centered at 1.5 THz with a fractional bandwidth greater than 40 percent. Dual polarization, sideband-separating, and balanced-output receivers are well-known and have been used extensively at frequencies up to about 100 GHz; and there was an earlier proposal for such a receiver for frequencies up to 900 GHz. However, the present proposal represents the first realistic design concept for such a receiver capable of operating above 1 THz. The proposed receiver is intended to be a prototype of mass-producible receiver units, operating at frequencies up to 6 THz, that would be incorporated into highly sensitive heterodyne array instruments to be used in astronomical spectroscopic and imaging studies.

  11. Enhancement of phonon backscattering due to confinement of ballistic phonon pathways in silicon as studied with a microfabricated phonon spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otelaja, O. O.; Robinson, R. D., E-mail: rdr82@cornell.edu

    2015-10-26

    In this work, the mechanism for enhanced phonon backscattering in silicon is investigated. An understanding of phonon propagation through substrates has implications for engineering heat flow at the nanoscale, for understanding sources of decoherence in quantum systems, and for realizing efficient phonon-mediated particle detectors. In these systems, phonons that backscatter from the bottom of substrates, within the crystal or from interfaces, often contribute to the overall detector signal. We utilize a microscale phonon spectrometer, comprising superconducting tunnel junction emitters and detectors, to specifically probe phonon backscattering in silicon substrates (∼500 μm thick). By etching phonon “enhancers” or deep trenches (∼90 μm) aroundmore » the detectors, we show that the backscattered signal level increases by a factor of ∼2 for two enhancers versus one enhancer. Using a geometric analysis of the phonon pathways, we show that the mechanism of the backscattered phonon enhancement is due to confinement of the ballistic phonon pathways and increased scattering off the enhancer walls. Our result is applicable to the geometric design and patterning of substrates that are employed in phonon-mediated detection devices.« less

  12. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures

    NASA Astrophysics Data System (ADS)

    Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro

    2017-05-01

    Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale.

  13. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures.

    PubMed

    Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro

    2017-05-18

    Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale.

  14. Phonon Counting and Intensity Interferometry of a Nanomechanical Resonator

    DTIC Science & Technology

    2014-10-04

    photon detectors, Γdark, and the residual pump laser light which is transmitted through the filters. In this work we use a cascaded pair of tunable...T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Nature Photon . 7, 210 6 a b 0 1 10−1 FIG. 5. FEM simulations . a, Electric... photon detection we have performed effective phonon counting measurements of the acoustic emission and absorption processes in a nanomechanical res

  15. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zhenhua; Yu, Lingyu

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less

  16. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE PAGES

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less

  17. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures

    PubMed Central

    Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro

    2017-01-01

    Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale. PMID:28516909

  18. Trapped-mode-induced Fano resonance and acoustical transparency in a one-dimensional solid-fluid phononic crystal

    NASA Astrophysics Data System (ADS)

    Quotane, Ilyasse; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    of existence of Fano resonances that can be fitted following a Fano-type expression. The variation of the Fano parameter that describes the asymmetry of such resonances as well as their width versus θ is studied in detail. In the case of an asymmetric structure (i.e., different solid layers), we show the existence of an incidence angle that enables to squeeze a resonance between two transmission zeros induced by the two solid layers. This resonance behaves like an AIT resonance, its position and width depend on the nature of the fluid and solid layers as well as on the difference between the thicknesses of the solid layers. (iii) In the case of a periodic structure (phononic crystal), we show that trapped modes and Fano resonances give rise, respectively, to dispersionless flat bands with zero group velocity and nearly flat bands with negative or positive group velocities. The analytical results presented here are obtained by means of the Green's function method which enables to deduce in closed form: dispersion curves, transmission and reflection coefficients, DOS, as well as the displacement fields. The proposed solid-fluid layered structures should have important applications for designing acoustic mirrors and acoustic filters as well as supersonic and subsonic materials.

  19. Viscoelastic effect on acoustic band gaps in polymer-fluid composites

    NASA Astrophysics Data System (ADS)

    Merheb, B.; Deymier, P. A.; Muralidharan, K.; Bucay, J.; Jain, M.; Aloshyna-Lesuffleur, M.; Greger, R. W.; Mohanty, S.; Berker, A.

    2009-10-01

    In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals.

  20. Design of materials configurations for enhanced phononic and electronic properties

    NASA Astrophysics Data System (ADS)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  1. Dynamics of a vertical cavity quantum cascade phonon laser structure

    PubMed Central

    Maryam, W.; Akimov, A. V.; Campion, R. P.; Kent, A. J.

    2013-01-01

    Driven primarily by scientific curiosity, but also by the potential applications of intense sources of coherent sound, researchers have targeted the phonon laser (saser) since the invention of the optical laser over 50 years ago. Here we fabricate a vertical cavity structure designed to operate as a saser oscillator device at a frequency of 325 GHz. It is based on a semiconductor superlattice gain medium, inside a multimode cavity between two acoustic Bragg reflectors. We measure the acoustic output of the device as a function of time after applying electrical pumping. The emission builds in intensity reaching a steady state on a timescale of order 0.1 μs. We show that the results are consistent with a model of the dynamics of a saser cavity exactly analogous to the models used for describing laser dynamics. We also obtain estimates for the gain coefficient, steady-state acoustic power output and efficiency of the device. PMID:23884078

  2. THz elastic dynamics in finite-size CoFeB-MgO phononic superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrichs, Henning, E-mail: hulrich@gwdg.de; Meyer, Dennis; Müller, Markus

    2016-10-14

    In this article, we present the observation of coherent elastic dynamics in a nano-scale phononic superlattice, which consists of only 4 bilayers. We demonstrate how ultra-short light pulses with a length of 40 fs can be utilized to excite a coherent elastic wave at 0.535 THz, which persist over about 20 ps. In later steps of the elastic dynamics, modes with frequency of 1.7 THz and above appear. All these modes are related to acoustic band gaps. Thus, the periodicity strongly manifests in the wave physics, although the system under investigation has only a small number of spatial periods. Tomore » further illustrate this, we show how by breaking the translational invariance of the superlattice, these features can be suppressed. Discussed in terms of phonon blocking and radiation, we elucidate in how far our structures can be considered as useful building blocks for phononic devices.« less

  3. Analogue of cosmological particle creation in an ion trap.

    PubMed

    Schützhold, Ralf; Uhlmann, Michael; Petersen, Lutz; Schmitz, Hector; Friedenauer, Axel; Schätz, Tobias

    2007-11-16

    We study phonons in a dynamical chain of ions confined by a trap with a time-dependent (axial) potential strength and demonstrate that they behave in the same way as quantum fields in an expanding or contracting Universe. Based on this analogy, we present a scheme for the detection of the analogue of cosmological particle creation which should be feasible with present day technology. In order to test the quantum nature of the particle creation mechanism and to distinguish it from classical effects such as heating, we propose to measure the two-phonon amplitude via the 2nd red sideband transition and to compare it with the one-phonon amplitude (1st red sideband).

  4. Configuration-constrained cranking Hartree-Fock pairing calculations for sidebands of nuclei

    NASA Astrophysics Data System (ADS)

    Liang, W. Y.; Jiao, C. F.; Wu, Q.; Fu, X. M.; Xu, F. R.

    2015-12-01

    Background: Nuclear collective rotations have been successfully described by the cranking Hartree-Fock-Bogoliubov (HFB) model. However, for rotational sidebands which are built on intrinsic excited configurations, it may not be easy to find converged cranking HFB solutions. The nonconservation of the particle number in the BCS pairing is another shortcoming. To improve the pairing treatment, a particle-number-conserving (PNC) pairing method was suggested. But the existing PNC calculations were performed within a phenomenological one-body potential (e.g., Nilsson or Woods-Saxon) in which one has to deal the double-counting problem. Purpose: The present work aims at an improved description of nuclear rotations, particularly for the rotations of excited configurations, i.e., sidebands. Methods: We developed a configuration-constrained cranking Skyrme Hartree-Fock (SHF) calculation with the pairing correlation treated by the PNC method. The PNC pairing takes the philosophy of the shell model which diagonalizes the Hamiltonian in a truncated model space. The cranked deformed SHF basis provides a small but efficient model space for the PNC diagonalization. Results: We have applied the present method to the calculations of collective rotations of hafnium isotopes for both ground-state bands and sidebands, reproducing well experimental observations. The first up-bendings observed in the yrast bands of the hafnium isotopes are reproduced, and the second up-bendings are predicted. Calculations for rotational bands built on broken-pair excited configurations agree well with experimental data. The band-mixing between two Kπ=6+ bands observed in 176Hf and the K purity of the 178Hf rotational state built on the famous 31 yr Kπ=16+ isomer are discussed. Conclusions: The developed configuration-constrained cranking calculation has been proved to be a powerful tool to describe both the yrast bands and sidebands of deformed nuclei. The analyses of rotational moments of inertia

  5. Ultra-wideband microwave photonic link based on single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu

    2017-10-01

    Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.

  6. The Sidebands of the Equatorial Electrojet: General Characteristic of the Westward Currents, as Deduced From CHAMP

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-Liang; Lühr, Hermann; Alken, Patrick

    2018-02-01

    Based on 5 years (2001-2005) of magnetic field measurements made by the CHAMP satellite, latitudinal profiles of the equatorial electrojet (EEJ) have been derived. This study provides a comprehensive characterization of the reverse current EEJ sidebands. These westward currents peak at ±5° quasi-dipole latitude with typical amplitudes of 35% of the main EEJ. The diurnal amplitude variation is quite comparable with that of the EEJ. Similarly to the EEJ, the intensity is increasing with solar EUV flux, but with a steeper slope, indicating that not only the conductivity plays a role. For the longitude distribution we find, in general, larger amplitudes in the Western than in the Eastern Hemisphere. It is presently a common understanding that the reverse current EEJ sidebands are generated by eastward zonal winds at altitudes above about 120 km. In particular, a positive vertical gradient of wind speed generates westward currents at magnetic latitudes outside of 2° dip latitude. Interesting information about these features can be deduced from the sidebands' tidal characteristics. The longitudinal variation of the amplitude is dominated by a wave-1 pattern, which can primarily be attributed to the tidal components SPW1 and SW3. In case of the hemispheric amplitude differences these same two wave-1 components dominate. The ratio between sideband amplitude and main EEJ is largely controlled by the tidal features of the EEJ. The longitudinal patterns of the latitude, where the sidebands peak, resemble to some extent those of the amplitude. Current densities become larger when the peaks move closer to the magnetic equator.

  7. From quantum physics to digital communication: Single sideband continuous phase modulation

    NASA Astrophysics Data System (ADS)

    Farès, Haïfa; Christian Glattli, D.; Louët, Yves; Palicot, Jacques; Moy, Christophe; Roulleau, Preden

    2018-01-01

    In the present paper, we propose a new frequency-shift keying continuous phase modulation (FSK-CPM) scheme having, by essence, the interesting feature of single-sideband (SSB) spectrum providing a very compact frequency occupation. First, the original principle, inspired from quantum physics (levitons), is presented. Besides, we address the problem of low-complexity coherent detection of this new waveform, based on orthonormal wave functions used to perform matched filtering for efficient demodulation. Consequently, this shows that the proposed modulation can operate using existing digital communication technology, since only well-known operations are performed (e.g., filtering, integration). This SSB property can be exploited to allow large bit rates transmissions at low carrier frequency without caring about image frequency degradation effects typical of ordinary double-sideband signals. xml:lang="fr"

  8. Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, S., E-mail: smei4@wisc.edu; Knezevic, I., E-mail: knezevic@engr.wisc.edu; Maurer, L. N.

    2014-10-28

    We simulate phonon transport in suspended graphene nanoribbons (GNRs) with real-space edges and experimentally relevant widths and lengths (from submicron to hundreds of microns). The full-dispersion phonon Monte Carlo simulation technique, which we describe in detail, involves a stochastic solution to the phonon Boltzmann transport equation with the relevant scattering mechanisms (edge, three-phonon, isotope, and grain boundary scattering) while accounting for the dispersion of all three acoustic phonon branches, calculated from the fourth-nearest-neighbor dynamical matrix. We accurately reproduce the results of several experimental measurements on pure and isotopically modified samples [S. Chen et al., ACS Nano 5, 321 (2011);S. Chenmore » et al., Nature Mater. 11, 203 (2012); X. Xu et al., Nat. Commun. 5, 3689 (2014)]. We capture the ballistic-to-diffusive crossover in wide GNRs: room-temperature thermal conductivity increases with increasing length up to roughly 100 μm, where it saturates at a value of 5800 W/m K. This finding indicates that most experiments are carried out in the quasiballistic rather than the diffusive regime, and we calculate the diffusive upper-limit thermal conductivities up to 600 K. Furthermore, we demonstrate that calculations with isotropic dispersions overestimate the GNR thermal conductivity. Zigzag GNRs have higher thermal conductivity than same-size armchair GNRs, in agreement with atomistic calculations.« less

  9. Photonic and phononic surface and edge modes in three-dimensional phoxonic crystals

    NASA Astrophysics Data System (ADS)

    Ma, Tian-Xue; Wang, Yue-Sheng; Zhang, Chuanzeng

    2018-04-01

    We investigate the photonic and phononic surface and edge modes in finite-size three-dimensional phoxonic crystals. By appropriately terminating the phoxonic crystals, the photons and phonons can be simultaneously guided at the two-dimensional surface and/or the one-dimensional edge of the terminated crystals. The Bloch surface and edge modes show that the electromagnetic and acoustic waves are highly localized near the surface and edge, respectively. The surface and edge geometries play important roles in tailoring the dispersion relations of the surface and edge modes, and dual band gaps for the surface or edge modes can be simultaneously achieved by changing the geometrical configurations. Furthermore, as the band gaps for the bulk modes are the essential prerequisites for the realization of dual surface and edge modes, the photonic and phononic bulk-mode band gap properties of three different types of phoxonic crystals with six-connected networks are revealed. It is found that the geometrical characteristic of the crystals with six-connected networks leads to dual large bulk-mode band gaps. Compared with the conventional bulk modes, the surface and edge modes provide a new approach for the photon and phonon manipulation and show great potential for phoxonic crystal devices and optomechanics.

  10. Coupled bipolarons and optical phonons as a model for high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Kasperczyk, J.

    1991-01-01

    The coherence length of the new high-temperature superconductors reaches a small value which is comparable to the dimensions of the unit cell of the compound. This means that a pair consists of two holes occupying the same site or two adjacent sites. Such a situation is described by a model of the local-pairs (bipolarons). The origin of local-pairs may come not only from strong enough electron or hole-phonon interaction but also from other interactions. Independent of the specific nature of such local-pairs, they can undergo a Bose-like condensation to the superconducting state at a critical temperature which is usually much lower than the temperature of the pair formation. An interplay of ferroelectric and superconducting properties is considered within the model of hole-like local-pairs interacting with optical phonons. Therefore, researchers extend the usual local-pair Hamiltonian by including a direct interaction between the local-pairs and the optical phonons. These optical phonons are known to play an important role in the ferroelectric transition and they transform into an additional pseudo-acoustic branch at the ferroelectric critical temperature. (This is associated with nonzero electric polarization due to the existence of two separate lattices composed of negative and positive ions, respectively.)

  11. Quantum acoustics with superconducting qubits

    NASA Astrophysics Data System (ADS)

    Chu, Yiwen; Kharel, Prashanta; Renninger, William H.; Burkhart, Luke D.; Frunzio, Luigi; Rakich, Peter T.; Schoelkopf, Robert J.

    2017-10-01

    Mechanical objects have important practical applications in the fields of quantum information and metrology as quantum memories or transducers for measuring and connecting different types of quantum systems. The field of electromechanics is in pursuit of a robust and highly coherent device that couples motion to nonlinear quantum objects such as superconducting qubits. Here, we experimentally demonstrate a high-frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction with a cooperativity of 260. We measure qubit and mechanical coherence times on the order of 10 microseconds. Our device requires only simple fabrication methods and provides controllable access to a multitude of phonon modes. We demonstrate quantum control and measurement on gigahertz phonons at the single-quantum level.

  12. Method and means for generation of tunable laser sidebands in the far-infrared region

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M. (Inventor); Farhoomand, Jam (Inventor)

    1987-01-01

    A method for generating tunable far-infrared radiation is described. The apparatus includes a Schottky-barrier diode which has one side coupled through a conductor to a waveguide that carries a tunable microwave frequency; the diode has an opposite side which is coupled through a radiating whisker to a bias source. Infrared light is directed at the diode, and infrared light with tunable sidebands is radiated by the whisker through an open space to a reflector. The original infrared is separated from a tunable infrared sideband by a polarizing Michelson interferometer.

  13. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation.

    PubMed

    Hu, Yi

    2010-05-01

    Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.

  14. Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.

    PubMed

    Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping

    2017-02-08

    Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQ m ∼ 2 × 10 12 Hz achieved here is larger than k B T base /h, which may enable the future realization of Rabi oscillations in the quantum regime.

  15. The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials.

    PubMed

    Peng, Bo; Zhang, Dequan; Zhang, Hao; Shao, Hezhu; Ni, Gang; Zhu, Yongyuan; Zhu, Heyuan

    2017-06-08

    Controlling heat transport through material design is one important step toward thermal management in 2D materials. To control heat transport, a comprehensive understanding of how structure influences heat transport is required. It has been argued that a buckled structure is able to suppress heat transport by increasing the flexural phonon scattering. Using a first principles approach, we calculate the lattice thermal conductivity of 2D mono-elemental materials with a buckled structure. Somewhat counterintuitively, we find that although 2D group-V materials have a larger mass and higher buckling height than their group-IV counterparts, the calculated κ of blue phosphorene (106.6 W mK -1 ) is nearly four times higher than that of silicene (28.3 W mK -1 ), while arsenene (37.8 W mK -1 ) is more than fifteen times higher than germanene (2.4 W mK -1 ). We report for the first time that a buckled structure has three conflicting effects: (i) increasing the Debye temperature by increasing the overlap of the p z orbitals, (ii) suppressing the acoustic-optical scattering by forming an acoustic-optical gap, and (iii) increasing the flexural phonon scattering. The former two, corresponding to the harmonic phonon part, tend to enhance κ, while the last one, corresponding to the anharmonic part, suppresses it. This relationship between the buckled structure and phonon behaviour provides insight into how to control heat transport in 2D materials.

  16. Double-Zero-Index Structural Phononic Waveguides

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfei; Semperlotti, Fabio

    2017-12-01

    We report on the theoretical and experimental realization of a double-zero-index elastic waveguide and the corresponding acoustic cloaking and supercoupling effects. The proposed waveguide uses geometric tapers in order to induce Dirac-like cones at k → =0 due to accidental degeneracy. The nature of the degeneracy is explored by a k .p perturbation method adapted to thin structural waveguides. The results confirm the linear nature of the dispersion around the degeneracy and the possibility to map the material to effective-medium properties. Effective parameters numerically extracted using boundary medium theory confirm that the phononic waveguide maps into a double-zero-index material. Numerical and experimental results confirm the expected cloaking and supercoupling effects.

  17. On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide

    PubMed Central

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang

    2015-01-01

    We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236

  18. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less

  19. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    DOE PAGES

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang; ...

    2015-04-15

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less

  20. Heat Exchange Between Electrons and Phonons in Nanosystems at Sub-Kelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Anghel, Dragoş-Victor; Cojocaru, Sergiu

    2018-02-01

    Ultra-sensitive nanoscopic detectors for electromagnetic radiation consist of thin metallic films deposited on dielectric membranes. The metallic films, of thickness d of the order of 10 nm, form the thermal sensing element (TSE), which absorbs the incident radiation and measures its power flux or the energies of individual photons. To achieve the sensitivity required for astronomical observations, the TSE works at temperatures of the order of 0.1 K. The dielectric membranes are used as support and for thermal insulation of the TSE and are of thickness L - d of the order of 100 nm (L being the total thickness of the system). In such conditions, the phonon gas in the detector assumes a quasi-two-dimensional distribution, whereas quantization of the electrons wavenumbers in the direction perpendicular to the film surfaces leads to the formation of quasi two-dimensional electronic sub-bands. The heat exchange between electrons and phonons has an important contribution to the performance of the device and is dominated by the interaction between the electrons and the antisymmetric acoustic phonons.

  1. Phonon counting and intensity interferometry of a nanomechanical resonator

    NASA Astrophysics Data System (ADS)

    Cohen, Justin D.; Meenehan, Seán M.; Maccabe, Gregory S.; Gröblacher, Simon; Safavi-Naeini, Amir H.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar

    2015-04-01

    In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.

  2. Orbital angular momentum mode division filtering for photon-phonon coupling

    PubMed Central

    Zhu, Zhi-Han; Sheng, Li-Wen; Lv, Zhi-Wei; He, Wei-Ming; Gao, Wei

    2017-01-01

    Stimulated Brillouin scattering (SBS), a fundamental nonlinear interaction between light and acoustic waves occurring in any transparency material, has been broadly studied for several decades and gained rapid progress in integrated photonics recently. However, the SBS noise arising from the unwanted coupling between photons and spontaneous non-coherent phonons in media is inevitable. Here, we propose and experimentally demonstrate this obstacle can be overcome via a method called orbital angular momentum mode division filtering. Owing to the introduction of a new distinguishable degree-of-freedom, even extremely weak signals can be discriminated and separated from a strong noise produced in SBS processes. The mechanism demonstrated in this proof-of-principle work provides a practical way for quasi-noise-free photonic-phononic operation, which is still valid in waveguides supporting multi-orthogonal spatial modes, permits more flexibility and robustness for future SBS devices. PMID:28071736

  3. Anisotropic phonon coupling in the relaxor ferroelectric (Na1/2Bi1/2)TiO3 near its high-temperature phase transition

    NASA Astrophysics Data System (ADS)

    Cai, Ling; Toulouse, Jean; Luo, Haosu; Tian, Wei

    2014-08-01

    The lead free relaxor Na1/2Bi1/2TiO3 (NBT) undergoes a structural cubic-to-tetragonal transition near 800 K which is caused by the cooperative rotations of O6 octahedra. These rotations are also accompanied by the displacements of the cations and the formation of the polar nanodomains (PNDs) that are responsible for the characteristic dielectric dispersion of relaxor ferroelectrics. Because of their intrinsic properties, spontaneous polarization, and lack of inversion symmetry, these PNDs are also piezoelectric and can mediate an interaction between polarization and strain or couple the optic and acoustic phonons. Because PNDs introduce a local tetragonal symmetry, the phonon coupling they mediate is found to be anisotropic. In this paper we present inelastic neutron scattering results on coupled transverse acoustic (TA) and transverse optic (TO) phonons in the [110] and [001] directions and across the cubic-tetragonal phase transition at TC˜800 K. The phonon spectra are analyzed using a mode coupling model. In the [110] direction, as in other relaxors and some ferroelectric perovskites, a precipitous drop of the TO phonon into the TA branch or "waterfall" is observed at a certain qwf˜0.14 r.l.u. In the [001] direction, the highly overdamped line shape can be fitted with closely positioned bare mode energies which are largely overlapping along the dispersion curves. Two competing lattice coupling mechanism are proposed to explain these observations.

  4. Correlated phonons and the Tc-dependent dynamical phonon anomalies

    NASA Astrophysics Data System (ADS)

    Hakioğlu, T.; Türeci, H.

    1997-11-01

    Anomalously large low-temperature phonon anharmonicities can lead to static as well as dynamical changes in the low-temperature properties of the electron-phonon system. In this work, we focus our attention on the dynamically generated low-temperature correlations in an interacting electron-phonon system using a self-consistent dynamical approach in the intermediate coupling range. In the context of the model, the polaron correlations are produced by the charge-density fluctuations which are generated dynamically by the electron-phonon coupling. Conversely, the latter is influenced in the presence of the former. The purpose of this work is to examine the dynamics of this dual mechanism between the two using the illustrative Fröhlich model. In particular, the influence of the low-temperature phonon dynamics on the superconducting properties in the intermediate coupling range is investigated. The influence on the Holstein reduction factor as well as the enhancement in the zero-point fluctuations and in the electron-phonon coupling are calculated numerically. We also examine these effects in the presence of superconductivity. Within this model, the contribution of the electron-phonon interaction as one of the important elements in the mechanisms of superconductivity can reach values as high as 15-20% of the characteristic scale of the lattice vibrational energy. The second motivation of this work is to understand the nature of the Tc-dependent temperature anomalies observed in the Debye-Waller factor, dynamical pair correlations, and average atomic vibrational energies for a number of high-temperature superconductors. In our approach we do not claim nor believe that the electron-phonon interaction is the primary mechanism leading to high-temperature superconductivity. Nevertheless, our calculations suggest that the dynamically induced low-temperature phonon correlation model can account for these anomalies and illustrates their possible common origin. Finally, the

  5. Double simple-harmonic-oscillator formulation of the thermal equilibrium of a fluid interacting with a coherent source of phonons

    NASA Technical Reports Server (NTRS)

    Defacio, B.; Vannevel, Alan; Brander, O.

    1993-01-01

    A formulation is given for a collection of phonons (sound) in a fluid at a non-zero temperature which uses the simple harmonic oscillator twice; one to give a stochastic thermal 'noise' process and the other which generates a coherent Glauber state of phonons. Simple thermodynamic observables are calculated and the acoustic two point function, 'contrast' is presented. The role of 'coherence' in an equilibrium system is clarified by these results and the simple harmonic oscillator is a key structure in both the formulation and the calculations.

  6. Tunable broadband unidirectional acoustic transmission based on a waveguide with phononic crystal

    NASA Astrophysics Data System (ADS)

    Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Wan, Lele

    2016-08-01

    In this paper, a tunable broadband unidirectional acoustic transmission (UAT) device composed of a bended tube and a superlattice with square columns is proposed and numerically investigated by using finite element method. The UAT is realized in the proposed UAT device within two wide frequency ranges. And the effectiveness of the UAT device is demonstrated by analyzing the sound pressure distributions when the acoustic waves are incident from different directions. The unidirectional band gaps can be effectively tuned by mechanically rotating the square columns, which is a highlight of this paper. Besides, a bidirectional acoustic isolation (BAI) device is obtained by placing two superlattices in the bended tube, in which the acoustic waves cannot propagate along any directions. The physical mechanisms of the proposed UAT device and BAI device are simply discussed. The proposed models show potential applications in some areas, such as unidirectional sonic barrier or noise insulation.

  7. Hawking Radiation from an Acoustic Black Hole on an Ion Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horstmann, B.; Cirac, J. I.; Reznik, B.

    2010-06-25

    In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it.

  8. Hawking radiation from an acoustic black hole on an ion ring.

    PubMed

    Horstmann, B; Reznik, B; Fagnocchi, S; Cirac, J I

    2010-06-25

    In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it.

  9. Observation of chiral phonons

    NASA Astrophysics Data System (ADS)

    Zhu, Hanyu; Yi, Jun; Li, Ming-Yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-02-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  10. Physical mechanism of coherent acoustic phonons generation and detection in GaAs semiconductor

    NASA Astrophysics Data System (ADS)

    Babilotte, P.; Morozov, E.; Ruello, P.; Mounier, D.; Edely, M.; Breteau, J.-M.; Bulou, A.; Gusev, V.

    2007-12-01

    We first describe the picosecond acoustic interferometry study of GaAs with two-colors pump-probe laser pulses. The dependence of the generation process on the pump wavelength and the detection process on the probe wavelength both can cause the shift in the phase of the Brillouin signal. Secondly, in order to distinguish the short high frequency wideband acoustic pulse from low frequency Brillouin contribution, we accomplished experiments with (100)GaAs semiconductor coated by a transparent and photoelastically inactive thin film, serving a delay line for the acoustic pulse. Even with highly penetrating pump light (approx 680nm), short acoustic disturbances of approx 7ps of duration have been registered.

  11. Superlubrication by phonon confinement

    NASA Astrophysics Data System (ADS)

    Wada, Noriyuki; Ishikawa, Makoto; Shiga, Takuma; Shiomi, Junichiro; Suzuki, Masaru; Miura, Kouji

    2018-04-01

    The superlubrication described here, involving confined phonons, is easily achievable and very simple because it uses only submicron islands, smaller than the mean free path of the phonons, to confine phonons. We can achieve superlubrication with a friction force of piconewton order at the submicron island. We can call this phononic lubrication or self-lubrication because phonons induced by tip shearing are confined within the submicron islands and decrease the friction during the subsequent sliding. Phonon confinement should make it possible to directly develop applications for lubricants and ultimately to open a novel avenue of tribology.

  12. Phonon impedance matching: minimizing interfacial thermal resistance of thin films

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos; Zhang, Jingjie; Ghosh, Avik

    2014-03-01

    The challenge to minimize interfacial thermal resistance is to allow a broad band spectrum of phonons, with non-linear dispersion and well defined translational and rotational symmetries, to cross the interface. We explain how to minimize this resistance using a frequency dependent broadening matrix that generalizes the notion of acoustic impedance to the whole phonon spectrum including symmetries. We show how to ``match'' two given materials by joining them with a single atomic layer, with a multilayer material and with a graded superlattice. Atomic layer ``matching'' requires a layer with a mass close to the arithmetic mean (or spring constant close to the harmonic mean) to favor high frequency phonon transmission. For multilayer ``matching,'' we want a material with a broadening close to the geometric mean to maximize transmission peaks. For graded superlattices, a continuous sequence of geometric means translates to an exponentially varying broadening that generates a wide-band antireflection coating for both the coherent and incoherent limits. Our results are supported by ``first principles'' calculations of thermal conductance for GaAs / Gax Al1 - x As / AlAs thin films using the Non-Equilibrium Greens Function formalism coupled with Density Functional Perturbation Theory. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE.

  13. Excitation of surface waves on one-dimensional solid–fluid phononic crystals and the beam displacement effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseyenko, Rayisa P.; Georgia Institute of Technology, UMI Georgia Tech – CNRS, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, 2 rue Marconi, 57070 Metz-Technopole; Liu, Jingfei

    The possibility of surface wave generation by diffraction of pressure waves on deeply corrugated one-dimensional phononic crystal gratings is studied both theoretically and experimentally. Generation of leaky surface waves, indeed, is generally invoked in the explanation of the beam displacement effect that can be observed upon reflection on a shallow grating of an acoustic beam of finite width. True surface waves of the grating, however, have a dispersion that lies below the sound cone in water. They thus cannot satisfy the phase-matching condition for diffraction from plane waves of infinite extent incident from water. Diffraction measurements indicate that deeply corrugatedmore » one-dimensional phononic crystal gratings defined in a silicon wafer are very efficient diffraction gratings. They also confirm that all propagating waves detected in water follow the grating law. Numerical simulations however reveal that in the sub-diffraction regime, acoustic energy of a beam of finite extent can be transferred to elastic waves guided at the surface of the grating. Their leakage to the specular direction along the grating surface explains the apparent beam displacement effect.« less

  14. Off-axis phonon and photon propagation in porous silicon superlattices studied by Brillouin spectroscopy and optical reflectance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, L. C., E-mail: lcparsons@mun.ca; Andrews, G. T., E-mail: tandrews@mun.ca

    2014-07-21

    Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the foldedmore » longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.« less

  15. Cooling in the single-photon strong-coupling regime of cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Nunnenkamp, A.; Børkje, K.; Girvin, S. M.

    2012-05-01

    In this Rapid Communication we discuss how red-sideband cooling is modified in the single-photon strong-coupling regime of cavity optomechanics where the radiation pressure of a single photon displaces the mechanical oscillator by more than its zero-point uncertainty. Using Fermi's golden rule we calculate the transition rates induced by the optical drive without linearizing the optomechanical interaction. In the resolved-sideband limit we find multiple-phonon cooling resonances for strong single-photon coupling that lead to nonthermal steady states including the possibility of phonon antibunching. Our study generalizes the standard linear cooling theory.

  16. Phonovoltaic. III. Electron-phonon coupling and figure of merit of graphene:BN

    NASA Astrophysics Data System (ADS)

    Melnick, Corey; Kaviany, Massoud

    2016-12-01

    The phonovoltaic cell harvests optical phonons like a photovoltaic harvests photons, that is, a nonequilibrium (hot) population of optical phonons (at temperature Tp ,O) more energetic than the band gap produces electron-hole pairs in a p -n junction, which separates these pairs to produce power. A phonovoltaic material requires an optical phonon mode more energetic than its band gap and much more energetic than the thermal energy (Ep ,O>Δ Ee ,g≫kBT ), which relaxes by generating electrons and power (at rate γ˙e -p) rather than acoustic phonons and heat (at rate γ˙p -p). Graphene (h-C) is the most promising material candidate: when its band gap is tuned to its optical phonon energy without greatly reducing the electron-phonon (e -p ) coupling, it reaches a substantial figure of merit [ZpV=Δ Ee ,gγ˙e -p/Ep ,O(γ˙e -p+γ˙p -p) ≈0.8 ] . A simple tight-binding (TB) model presented here predicts that lifting the sublattice symmetry of graphene in order to open a band gap proscribes the e -p interaction at the band edge, such that γ˙e -p→0 as Δ Ee ,g→Ep ,O . However, ab initio (DFT-LDA) simulations of layered h-C/BN and substitutional h-C:BN show that the e -p coupling remains substantial in these asymmetric crystals. Indeed, h-C:BN achieves a high figure of merit (ZpV≈0.6 ). At 300 K and for a Carnot limit of 0.5 (Tp ,O=600 K) , a h-C:BN phonovoltaic can reach an efficiency of ηpV≈0.2 , double the thermoelectric efficiency (Z T ≈1 ) under similar conditions.

  17. Microscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap

    NASA Astrophysics Data System (ADS)

    Roy, Chiranjeeb; John, Sajeev

    2010-02-01

    We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  18. Observation of chiral phonons.

    PubMed

    Zhu, Hanyu; Yi, Jun; Li, Ming-Yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-02-02

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Phonon spectroscopy with sub-meV resolution by femtosecond x-ray diffuse scattering

    DOE PAGES

    Zhu, Diling; Robert, Aymeric; Henighan, Tom; ...

    2015-08-10

    We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with a momentum resolution of 0.01 nm -1 using 10-keV x rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principal symmetry directions. The phonon dispersion was reconstructed with less than 3 h of measurement time, during which neither the x-ray energy, the sample orientation, nor the detectormore » position were scanned. In conclusion, these results demonstrate how time-domain measurements can complement conventional frequency domain inelastic-scattering techniques.« less

  20. Microbunching-instability-induced sidebands in a seeded free-electron laser

    DOE PAGES

    Zhang, Zhen; Lindberg, Ryan; Fawley, William M.; ...

    2016-05-02

    Measurements of the multishot-averaged, soft x-ray, self-seeding spectrum at the LCLS free-electron laser often have a pedestal-like distribution around the seeded wavelength, which limits the spectral purity and can negatively affect some user applications not employing a post-undulator monochromator. In this paper, we study the origins of such pedestals, focusing on longitudinal phase space modulations produced by the microbunching instability upstream of the free-electron laser (FEL) undulator. Furthermore, we show from theory and numerical simulation that both energy and density modulations can induce sidebands in a high-gain, seeded FEL whose fractional strength typically grows as the square of the undulatormore » length. The results place a tight constraint on the longitudinal phase space uniformity of the electron beam for a seeded FEL, possibly requiring the amplitude of long-wavelength modulations to be much smaller than the typical incoherent energy spread if the output sideband power is to remain only a couple percent or less of the amplified seed power.« less

  1. Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene.

    PubMed

    Shang, Jingzhi; Yu, Ting; Lin, Jianyi; Gurzadyan, Gagik G

    2011-04-26

    Ultrafast quasiparticle dynamics in graphene grown by chemical vapor deposition (CVD) has been studied by UV pump/white-light probe spectroscopy. Transient differential transmission spectra of monolayer graphene are observed in the visible probe range (400-650 nm). Kinetics of the quasiparticle (i.e., low-energy single-particle excitation with renormalized energy due to electron-electron Coulomb, electron-optical phonon (e-op), and optical phonon-acoustic phonon (op-ap) interactions) was monitored with 50 fs resolution. Extending the probe range to near-infrared, we find the evolution of quasiparticle relaxation channels from monoexponential e-op scattering to double exponential decay due to e-op and op-ap scattering. Moreover, quasiparticle lifetimes of mono- and randomly stacked graphene films are obtained for the probe photon energies continuously from 1.9 to 2.3 eV. Dependence of quasiparticle decay rate on the probe energy is linear for 10-layer stacked graphene films. This is due to the dominant e-op intervalley scattering and the linear density of states in the probed electronic band. A dimensionless coupling constant W is derived, which characterizes the scattering strength of quasiparticles by lattice points in graphene.

  2. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    NASA Astrophysics Data System (ADS)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  3. Observation of soft phonon mode in TbFe 3 ( BO 3 ) 4 by inelastic neutron scattering

    DOE PAGES

    Pavlovskiy, M. S.; Shaykhutdinov, Krill A.; Wu, L. S.; ...

    2018-02-28

    In this study, the phonon dispersion in terbium iron borate TbFe 3(BO 3) 4 has been measured by inelastic neutron scattering in a temperature range 180S=192.5 K and studied by ab initio calculations. Significant, but not complete, softening of the transverse acoustic (TA) branch has been observed at the corner of the Brillouin zone (Λ point) at temperatures T≳T S, in full agreement with theoretical calculations. Finally, the TA soft mode undergoes considerable broadening at the Λ point near the transition temperature that can be attributed to the anharmonic interference between transverse acoustic and optical modes.

  4. Observation of soft phonon mode in TbFe 3 ( BO 3 ) 4 by inelastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlovskiy, M. S.; Shaykhutdinov, Krill A.; Wu, L. S.

    In this study, the phonon dispersion in terbium iron borate TbFe 3(BO 3) 4 has been measured by inelastic neutron scattering in a temperature range 180S=192.5 K and studied by ab initio calculations. Significant, but not complete, softening of the transverse acoustic (TA) branch has been observed at the corner of the Brillouin zone (Λ point) at temperatures T≳T S, in full agreement with theoretical calculations. Finally, the TA soft mode undergoes considerable broadening at the Λ point near the transition temperature that can be attributed to the anharmonic interference between transverse acoustic and optical modes.

  5. Optic phonons and anisotropic thermal conductivity in hexagonal Ge 2Sb 2Te 5

    DOE PAGES

    Mukhopadhyay, Saikat; Lindsay, Lucas R.; Singh, David

    2016-11-16

    The lattice thermal conductivity ($κ$) of hexagonal Ge 2Sb 2Tesub>5 (h-GST) is studied via direct first-principles calculations. We find significant intrinsic anisotropy of ( $κ$ a/$κ$ c~2) of $κ$ in bulk h-GST along different transport directions. The dominant contribution to$κ$ is from optic phonons, ~75%. This is extremely unusual as the acoustic phonon modes carry most of the heat in typical semiconductors and insulators with small unit cells. Very recently, Lee et. al. observed anisotropic in GST thin films and attributed this to thermal resistance of amorphous regions near grain boundaries. However, our results suggest an additional strong intrinsic anisotropymore » for the pure hexagonal phase. This derives from bonding anisotropy along different crystal directions, specifically from weak interlayer coupling, which gives anisotropic phonon dispersions. The phonon spectrum of h-GST has very dispersive optic branches with higher group velocities along the a-axis as compared to flat optic bands along the c-axis. The importance of optic mode contributions for the thermal conductivity in low-$κ$ h-GST is unusual, and development of fundamental physical understanding of these contributions may be critical to better understanding of thermal conduction in other complex layered materials.« less

  6. Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles

    DOE PAGES

    Protik, Nakib Haider; Katre, Ankita; Lindsay, Lucas R.; ...

    2017-06-07

    Here, silicon carbide (SiC) is a wide band gap semiconductor with a variety of industrial applications. Among its many useful properties is its high thermal conductivity, which makes it advantageous for thermal management applications. In this paper we present ab initio calculations of the in-plane and cross-plane thermal conductivities, κ in and κ out, of three common hexagonal polytypes of SiC: 2H, 4H and 6H. The phonon Boltzmann transport equation is solved iteratively using as input interatomic force constants determined from density functional theory. Both κ in and κ out decrease with increasing n in nH SiC because of additionalmore » low-lying optic phonon branches. These optic branches are characterized by low phonon group velocities, and they increase the phase space for phonon-phonon scattering of acoustic modes. Also, for all n, κ in is found to be larger than κ out in the temperature range considered. At electron concentrations present in experimental samples, scattering of phonons by electrons is shown to be negligible except well below room temperature where it can lead to a significant reduction of the lattice thermal conductivity. This work highlights the power of ab initio approaches in giving quantitative, predictive descriptions of thermal transport in materials. It helps explain the qualitative disagreement that exists among different sets of measured thermal conductivity data and provides information of the relative quality of samples from which measured data was obtained.« less

  7. Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protik, Nakib Haider; Katre, Ankita; Lindsay, Lucas R.

    Here, silicon carbide (SiC) is a wide band gap semiconductor with a variety of industrial applications. Among its many useful properties is its high thermal conductivity, which makes it advantageous for thermal management applications. In this paper we present ab initio calculations of the in-plane and cross-plane thermal conductivities, κ in and κ out, of three common hexagonal polytypes of SiC: 2H, 4H and 6H. The phonon Boltzmann transport equation is solved iteratively using as input interatomic force constants determined from density functional theory. Both κ in and κ out decrease with increasing n in nH SiC because of additionalmore » low-lying optic phonon branches. These optic branches are characterized by low phonon group velocities, and they increase the phase space for phonon-phonon scattering of acoustic modes. Also, for all n, κ in is found to be larger than κ out in the temperature range considered. At electron concentrations present in experimental samples, scattering of phonons by electrons is shown to be negligible except well below room temperature where it can lead to a significant reduction of the lattice thermal conductivity. This work highlights the power of ab initio approaches in giving quantitative, predictive descriptions of thermal transport in materials. It helps explain the qualitative disagreement that exists among different sets of measured thermal conductivity data and provides information of the relative quality of samples from which measured data was obtained.« less

  8. Heating of carriers as controlled by the combined interactions with acoustic and piezoelectric phonons in degenerate III-V semiconductors at low lattice temperature

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D. P.; Das, J.; Basu, A.; Das, B.

    2017-09-01

    In compound semiconductors which lack inversion symmetry, the combined interaction of the electrons with both acoustic and piezoelectric phonons is dominant at low lattice temperatures ( 20 K). The field dependence of the effective electron temperature under these conditions, has been calculated by solving the modified energy balance equation that takes due account of the degeneracy. The traditionally used heated Fermi-Dirac (F.D.) function for the non-equilibrium distribution function is approximated by some well tested model distribution. This makes it possible to carry out the integrations quite easily and, thus to obtain some more realistic results in a closed form, without taking recourse to any oversimplified approximations. The numerical results that follow for InSb, InAs and GaN, from the present analysis, are then compared with the available theoretical and experimental data. The degeneracy and the piezoelectric interaction, both are seen to bring about significant changes in the electron temperature characteristics. The scope for further refinement is discussed.

  9. Mapping momentum-dependent electron-phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering

    NASA Astrophysics Data System (ADS)

    Stern, Mark J.; René de Cotret, Laurent P.; Otto, Martin R.; Chatelain, Robert P.; Boisvert, Jean-Philippe; Sutton, Mark; Siwick, Bradley J.

    2018-04-01

    Despite their fundamental role in determining material properties, detailed momentum-dependent information on the strength of electron-phonon and phonon-phonon coupling (EPC and PPC, respectively) across the entire Brillouin zone has remained elusive. Here we demonstrate that ultrafast electron diffuse scattering (UEDS) directly provides such information. By exploiting symmetry-based selection rules and time resolution, scattering from different phonon branches can be distinguished even without energy resolution. Using graphite as a model system, we show that UEDS patterns map the relative EPC and PPC strength through their profound sensitivity to photoinduced changes in phonon populations. We measure strong EPC to the K -point TO phonon of A1' symmetry (K -A1' ) and along the entire TO branch between Γ -K , not only to the Γ -E2 g phonon. We also determine that the subsequent phonon relaxation of these strongly coupled optical phonons involve three stages: decay via several identifiable channels to TA and LA phonons (1 -2 ps), intraband thermalization of the non-equilibrium TA/LA phonon populations (30 -40 ps) and interband relaxation of the TA/LA modes (115 ps). Combining UEDS with ultrafast angle-resolved photoelectron spectroscopy will yield a complete picture of the dynamics within and between electron and phonon subsystems, helping to unravel complex phases in which the intertwined nature of these systems has a strong influence on emergent properties.

  10. Optimizing phonon space in the phonon-coupling model

    NASA Astrophysics Data System (ADS)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.

    2017-08-01

    We present a new scheme to select the most relevant phonons in the phonon-coupling model, named here the time-blocking approximation (TBA). The new criterion, based on the phonon-nucleon coupling strengths rather than on B (E L ) values, is more selective and thus produces much smaller phonon spaces in the TBA. This is beneficial in two respects: first, it curbs the computational cost, and second, it reduces the danger of double counting in the expansion basis of the TBA. We use here the TBA in a form where the coupling strength is regularized to keep the given Hartree-Fock ground state stable. The scheme is implemented in a random-phase approximation and TBA code based on the Skyrme energy functional. We first explore carefully the cutoff dependence with the new criterion and can work out a natural (optimal) cutoff parameter. Then we use the freshly developed and tested scheme for a survey of giant resonances and low-lying collective states in six doubly magic nuclei looking also at the dependence of the results when varying the Skyrme parametrization.

  11. Relative sideband amplitudes versus modulation index for common functions using frequency and phase modulation. [for design and testing of communication system

    NASA Technical Reports Server (NTRS)

    Stocklin, F.

    1973-01-01

    The equations defining the amplitude of sidebands resulting from either frequency modulation or phase modulation by either square wave, sine wave, sawtooth or triangular modulating functions are presented. Spectral photographs and computer generated tables of modulation index vs. relative sideband amplitudes are also included.

  12. Microwave bulk-acoustic-wave reflection-grating resonators.

    PubMed

    Oates, D E; Pan, J Y

    1988-01-01

    A technique for fabrication of bulk-acoustic-wave (BAW) resonators operating at fundamental frequencies between 1 and 10 GHz is presented. The resonators utilize a reflection grating made by optical holographic methods in iron-doped lithium niobate. Q factors of 30000 at 1 GHz have been demonstrated. Extension to Q of 10000 at 10 GHz appears feasible. Projected limitations to performance are discussed. The high Q at the high fundamental frequency directly results in low-phase noise. Phase-noise measurements of BAW resonator-stabilized oscillators operating at 1.14 GHz are presented. The single-sideband noise floor of <-140 dBc/Hz is shown to be in agreement with an analytical model. Projected improvements in the devices and circuits promise performance of <-160 dBc/Hz.

  13. Phonons in a magnetized Coulomb crystal of ions with polarizable electron background

    NASA Astrophysics Data System (ADS)

    Baiko, D. A.; Kozhberov, A. A.

    2017-11-01

    We have studied phonon modes of a body-centered cubic (bcc) Coulomb crystal of ions in the presence of a uniform magnetic field B taking into account the polarizability of the electron background (electron screening) described by the Thomas-Fermi formalism. For k ≫κTF (k and κTF are the phonon wavevector and Thomas-Fermi wavenumber, respectively), electron polarizability is not important. At k ≪κTF , the electron response results in a pronounced effect. One of the three available modes is acoustic. For orthogonal propagation ( k ⊥B ), its frequency Ω is independent of B and κTF . For k ∥B , Ω∝1 /κTF and is independent of B. Another mode is quadratic. Its frequency is ∝1 /(B κTF) for orthogonal propagation and ∝1 /B and independent of κTF for the parallel case. The third mode is optic with Ω≈ωB ( ωB is the ion cyclotron frequency). A general expression is derived for the dynamic matrix of a Coulomb crystal with a polarizable background and more than one ion in the primitive cell. It is employed for a study of a magnetized hexagonal close-packed Coulomb crystal. We have also presented an analysis of phonon polarization vectors in a magnetized bcc crystal with or without screening. The results obtained can be used for realistic calculations of electron-phonon scattering rates and electron thermal and electrical conductivities in neutron star crusts.

  14. Hot LO-phonon limited electron transport in ZnO/MgZnO channels

    NASA Astrophysics Data System (ADS)

    Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Toporkov, M.; Özgür, Ü.; Morkoç, H.

    2018-05-01

    High-field electron transport in two-dimensional channels at ZnO/MgZnO heterointerfaces has been investigated experimentally. Pulsed current-voltage (I-V) and microwave noise measurements used voltage pulse widths down to 30 ns and electric fields up to 100 kV/cm. The samples investigated featured electron densities in the range of 4.2-6.5 × 1012 cm-2, and room temperature mobilities of 142-185 cm2/V s. The pulsed nature of the applied field ensured negligible, if any, change in the electron density, thereby allowing velocity extraction from current with confidence. The highest extracted electron drift velocity of ˜0.5 × 107 cm/s is somewhat smaller than that estimated for bulk ZnO; this difference is explained in the framework of longitudinal optical phonon accumulation (hot-phonon effect). The microwave noise data allowed us to rule out the effect of excess acoustic phonon temperature caused by Joule heating. Real-space transfer of hot electrons into the wider bandgap MgZnO layer was observed to be a limiting factor in samples with a high Mg content (48%), due to phase segregation and the associated local lowering of the potential barrier.

  15. Dynamics of a Cr spin in a semiconductor quantum dot: Hole-Cr flip-flops and spin-phonon coupling

    NASA Astrophysics Data System (ADS)

    Lafuente-Sampietro, A.; Utsumi, H.; Sunaga, M.; Makita, K.; Boukari, H.; Kuroda, S.; Besombes, L.

    2018-04-01

    A detailed analysis of the photoluminescence (PL) intensity distribution in singly Cr-doped CdTe/ZnTe quantum dots (QDs) is performed. First of all, we demonstrate that hole-Cr flip-flops induced by an interplay of the hole-Cr exchange interaction and the coupling with acoustic phonons are the main source of spin relaxation within the exciton-Cr complex. This spin flip mechanism appears in the excitation power dependence of the PL of the exciton as well as in the intensity distribution of the resonant PL. The resonant optical pumping of the Cr spin which was recently demonstrated can also be explained by these hole-Cr flip-flops. Despite the fast exciton-Cr spin dynamics, an analysis of the PL intensity under magnetic field shows that the hole-Cr exchange interaction in CdTe/ZnTe QDs is antiferromagnetic. In addition to the Cr spin dynamics induced by the interaction with carriers' spin, we finally demonstrate using time resolved optical pumping measurements that a Cr spin interacts with nonequilibrium acoustic phonons generated during the optical excitation inside or near the QD.

  16. Demonstration of acoustic waveguiding and tight bending in phononic crystals

    DOE PAGES

    Ghasemi Baboly, M.; Raza, A.; Brady, J.; ...

    2016-10-31

    The systematic design, fabrication, and characterization of an isolated, single-mode, 90° bend phononic crystal (PnC) waveguide are presented. A PnC consisting of a 2D square array of circular air holes in an aluminum substrate is used, and waveguides are created by introducing a line defect in the PnC lattice. A high transmission coefficient is observed (–1 dB) for the straight sections of the waveguide, and an overall 2.3 dB transmission loss is observed (a transmission coefficient of 76%) for the 90° bend. Further optimization of the structure may yield higher transmission efficiencies. Lastly, this manuscript shows the complete design processmore » for an engineered 90° bend PnC waveguide from inception to experimental demonstration.« less

  17. Elastic and viscoelastic effects in rubber/air acoustic band gap structures: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Merheb, B.; Deymier, P. A.; Jain, M.; Aloshyna-Lesuffleur, M.; Mohanty, S.; Berker, A.; Greger, R. W.

    2008-09-01

    The transmission of acoustic waves through centimeter-scale elastic and viscoelastic two-dimensional silicone rubber/air phononic crystal structures is investigated theoretically and experimentally. We introduce a finite difference time domain method for two-dimensional elastic and viscoelastic composite structures. Elastic fluid-solid phononic crystals composed of a two-dimensional array of cylindrical air inclusions in a solid rubber matrix, as well as an array of rubber cylinders in an air matrix, are shown to behave similarly to fluid-fluid composite structures. These systems exhibit very wide band gaps in their transmission spectra that extend to frequencies in the audible range of the spectrum. This effect is associated with the very low value of the transverse speed of sound in rubber compared to that of the longitudinal polarization. The difference in transmission between elastic and viscoelastic rubber/air crystals results from attenuation of transmission over a very wide frequency range, leaving only narrow passing bands at very low frequencies. These phononic crystals demonstrate the practical design of elastic or viscoelastic solid rubber/air acoustic band gap sound barriers with small dimensions.

  18. Electronic structure and electron-phonon coupling in TiH$$_2$$

    DOE PAGES

    Shanavas, Kavungal Veedu; Lindsay, Lucas R.; Parker, David S.

    2016-06-15

    Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiHmore » $$_2$$. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-$$t_{2g}$$ states and leads to a structural instability against tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Furthermore, calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter $$\\lambda$$ and critical temperature of several K. Contribution of the hydrogen sublattice to $$\\lambda$$ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-$s$ DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites.« less

  19. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    PubMed

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  20. Modeling of phonon scattering in n-type nanowire transistors using one-shot analytic continuation technique

    NASA Astrophysics Data System (ADS)

    Bescond, Marc; Li, Changsheng; Mera, Hector; Cavassilas, Nicolas; Lannoo, Michel

    2013-10-01

    We present a one-shot current-conserving approach to model the influence of electron-phonon scattering in nano-transistors using the non-equilibrium Green's function formalism. The approach is based on the lowest order approximation (LOA) to the current and its simplest analytic continuation (LOA+AC). By means of a scaling argument, we show how both LOA and LOA+AC can be easily obtained from the first iteration of the usual self-consistent Born approximation (SCBA) algorithm. Both LOA and LOA+AC are then applied to model n-type silicon nanowire field-effect-transistors and are compared to SCBA current characteristics. In this system, the LOA fails to describe electron-phonon scattering, mainly because of the interactions with acoustic phonons at the band edges. In contrast, the LOA+AC still well approximates the SCBA current characteristics, thus demonstrating the power of analytic continuation techniques. The limits of validity of LOA+AC are also discussed, and more sophisticated and general analytic continuation techniques are suggested for more demanding cases.

  1. Sideband cooling of small ion Coulomb crystals in a Penning trap

    NASA Astrophysics Data System (ADS)

    Stutter, G.; Hrmo, P.; Jarlaud, V.; Joshi, M. K.; Goodwin, J. F.; Thompson, R. C.

    2018-03-01

    We have recently demonstrated the laser cooling of a single ? ion to the motional ground state in a Penning trap using the resolved-sideband cooling technique on the electric quadrupole transition S? D?. Here we report on the extension of this technique to small ion Coulomb crystals made of two or three ? ions. Efficient cooling of the axial motion is achieved outside the Lamb-Dicke regime on a two-ion string along the magnetic field axis as well as on two- and three-ion planar crystals. Complex sideband cooling sequences are required in order to cool both axial degrees of freedom simultaneously. We measure a mean excitation after cooling of ? for the centre of mass (COM) mode and ? for the breathing mode of the two-ion string with corresponding heating rates of 11(2) ? and ? at a trap frequency of 162 kHz. The occupation of the ground state of the axial modes (?) is above 75% for the two-ion planar crystal and the associated heating rates 0.8(5) ? at a trap frequency of 355 kHz.

  2. Electron and phonon transport in Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Fu, Chenguang; Liu, Yintu; Xie, Hanhui; Liu, Xiaohua; Zhao, Xinbing; Jeffrey Snyder, G.; Xie, Jian; Zhu, Tiejun

    2013-10-01

    The electron and phonon transport characteristics of n-type Fe1-xCoxV0.6Nb0.4Sb half-Heusler thermoelectric compounds is analyzed. The acoustic phonon scattering is dominant in the carrier transport. The deformation potential of Edef = 14.1 eV and the density of state effective mass m* ≈ 2.0 me are derived under a single parabolic band assumption. The band gap is calculated to be ˜0.3 eV. Electron and phonon mean free paths are estimated based on the low and high temperature measurements. The electron mean free path is higher than the phonon one above room temperature, which is consistent with the experimental result that the electron mobility decreases more than the lattice thermal conductivity by grain refinement to enhance boundary scattering. A maximum ZT value of ˜0.33 is obtained at 650 K for x = 0.015, an increase by ˜60% compared with FeVSb. The optimal doping level is found to be ˜3.0 × 1020 cm-3 at 600 K.

  3. Propagation of THz acoustic wave packets in GaN at room temperature

    NASA Astrophysics Data System (ADS)

    Maznev, A. A.; Hung, T.-C.; Yao, Y.-T.; Chou, T.-H.; Gandhi, J. S.; Lindsay, L.; Shin, H. D.; Stokes, D. W.; Forrest, R. L.; Bensaoula, A.; Sun, C.-K.; Nelson, K. A.

    2018-02-01

    We use femtosecond laser pulses to generate coherent longitudinal acoustic phonons at frequencies of 1-1.4 THz and study their propagation in GaN-based structures at room temperature. Two InGaN-GaN multiple-quantum-well (MQW) structures separated by a 2.3 μm-thick GaN spacer are used to simultaneously generate phonon wave packets with a central frequency determined by the period of the MQW and detect them after passing through the spacer. The measurements provide lower bounds for phonon lifetimes in GaN, which are still significantly lower than those from first principles predictions. The material Q-factor at 1 THz is found to be at least as high as 900. The measurements also demonstrate a partial specular reflection from the free surface of GaN at 1.4 THz. This work shows the potential of laser-based methods for THz range phonon spectroscopy and the promise for extending the viable frequency range of GaN-based acousto-electronic devices.

  4. Effective combined water and sideband suppression for low-speed tissue and in vivo MAS NMR.

    PubMed

    Mobarhan, Yalda Liaghati; Struppe, Jochem; Fortier-McGill, Blythe; Simpson, André J

    2017-08-01

    High-resolution magic angle spinning (HR-MAS) NMR is a powerful technique that can provide metabolic profiles and structural constraints on intact biological and environmental samples such as cells, tissues and living organisms. However, centripetal force from fast spinning can lead to a loss of sample integrity. In analyses focusing on structural organization, metabolite compartmentalization or in vivo studies, it is critical to keep the sample intact. As such, there is growing interest in slow spinning studies that preserve sample longevity. In this study, for example, reducing the spinning rate from 2500 to 500 Hz during the analysis of a living freshwater shrimp increased the 100% survivability threshold from ~14 to 40 h. Unfortunately, reducing spinning rate decreases the intensity of the isotropic signals and increases both the intensity and number of spinning sidebands, which mask spectral information. Interestingly, water suppression approaches such as excitation sculpting and W5 WATERGATE, which are effective at higher spinning rates, fail at lower spinning rates (<2500 Hz) while simpler approaches such as presaturation are not able to effectively suppress water when the ratio of water to biomass is very high, as is the case in vivo. As such there is a considerable gap in NMR approaches which can be used to suppress water signals and sidebands in biological samples at lower spinning rates. This research presents simple but practically important sequences that combine PURGE water suppression with both phase-adjusted spinning sidebands and an analogue of TOSS termed TOSS.243. The result is simple and effective water and sideband suppression even in extremely dilute samples in pure water down to ~100 Hz spinning rate. The approach is introduced, described and applied to a range of samples including, ex vivo worm tissue, Daphnia magna (water fleas), and in vivo Hyalella azteca (shrimp).

  5. Phonon Self-Energy Corrections to Nonzero Wave-Vector Phonon Modes in Single-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S.

    2012-07-01

    Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q=0) wave vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene originating from a double-resonant Raman process with q≠0. The observed phonon renormalization effects are different from what is observed for the zone-center q=0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with nonzero wave vectors (q≠0) in single-layer graphene in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q=0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G⋆ Raman feature at 2450cm-1 to include the iTO+LA combination modes with q≠0 and also the 2iTO overtone modes with q=0, showing both to be associated with wave vectors near the high symmetry point K in the Brillouin zone.

  6. Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization.

    PubMed

    Dong, Hao-Wen; Wang, Yue-Sheng; Zhang, Chuanzeng

    2017-04-01

    Topology optimization of a waveguide-cavity structure in phononic crystals for designing narrow band filters under the given operating frequencies is presented in this paper. We show that it is possible to obtain an ultra-high-Q filter by only optimizing the cavity topology without introducing any other coupling medium. The optimized cavity with highly symmetric resonance can be utilized as the multi-channel filter, raising filter and T-splitter. In addition, most optimized high-Q filters have the Fano resonances near the resonant frequencies. Furthermore, our filter optimization based on the waveguide and cavity, and our simple illustration of a computational approach to wave control in phononic crystals can be extended and applied to design other acoustic devices or even opto-mechanical devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Vacuum phonon tunneling.

    PubMed

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  8. Forbidden phonon: Dynamical signature of bond symmetry breaking in the iron chalcogenides

    DOE PAGES

    Fobes, David M.; Zaliznyak, Igor A.; Tranquada, John M.; ...

    2016-09-01

    Investigation of the inelastic neutron scattering spectra in Fe 1+yTe 1₋xSe x near a signature wave vector Q=(1,0,0) for the bond-order wave (BOW) formation of parent compound Fe 1+yTe reveals an acoustic-phonon-like dispersion present in all structural phases. While a structural Bragg peak accompanies the mode in the low-temperature phase of Fe 1+yTe, it is absent in the high-temperature tetragonal phase, where Bragg scattering at this Q is forbidden by symmetry. Notably, this mode is also observed in superconducting FeTe 0.55Se 0.45, where structural and magnetic transitions are suppressed, and no BOW has been observed. Lastly, the presence of thismore » “forbidden” phonon indicates that the lattice symmetry is dynamically or locally broken by magneto-orbital BOW fluctuations, which are strongly coupled to lattice in these materials.« less

  9. Soft-phonon dynamics of the thermoelectric β-SnSe at high temperatures

    NASA Astrophysics Data System (ADS)

    Chatterji, Tapan; Wdowik, Urszula D.; Jagło, Grzegorz; Rols, Stéphane; Wagner, Frank R.

    2018-07-01

    Results of inelastic neutron scattering experiments on SnSe single crystals at high temperatures along with theoretical studies based on the density functional theory are reported. Our experiments reveal significant softening of the transverse acoustic branch along the [ 0 , ξ , 0 ] direction in the low-temperature α-SnSe of Pbnm symmetry as temperature approaches Tc = 807 K from below. This process is followed by a condensation of the zone-boundary Y-phonon of the high-temperature β-SnSe with Cmcm symmetry at the onset of phase transition. The employed theoretical approach supports experimental observations and demonstrates that the phase change in SnSe is mediated by an unstable zone-boundary phonon with the Y2+ irreducible representation within the Cmcm symmetry space group of the high-temperature β-SnSe. The present work provides a detailed understanding of the soft-mode dynamics in SnSe and conclusively shows that the α ⇌ β structural transformation in this currently topical thermoelectric material is of displacive type.

  10. Single-photon driven high-order sideband transitions in an ultrastrongly coupled circuit quantum electrodynamics system

    NASA Astrophysics Data System (ADS)

    Li, Tiefu; Chen, Zhen; Wang, Yimin; Tian, Lin; Qiu, Yueyin; Inomata, Kunihiro; Yoshihara, Fumiki; Han, Siyuan; Nori, Franco; Tsai, Jaw-Shen; You, J. Q.

    We report the experimental observation of high-order sideband transitions at the single-photon level in a quantum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the coupling strength reaching 10 % of the resonator's fundamental frequency, we obtain clear signatures of higher-order red- and first-order blue-sideband transitions. These transitions are owing to the ultrastrong Rabi coupling, instead of the driving power. Our observation advances the understanding of ultrastrongly-coupled systems and paves the way to study high-order processes in the quantum Rabi model. This work is supported by the National Basic Research Program of China and the National Natural Science Foundation of China.

  11. Studies of Phonon Anharmonicity in Solids

    NASA Astrophysics Data System (ADS)

    Lan, Tian

    Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject. Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods. We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts

  12. Phonon properties of lutetium pnictides

    NASA Astrophysics Data System (ADS)

    Arya, Balwant Singh; Aynyas, Mahendra; Sanyal, Sankar P.

    2018-05-01

    Phonon properties of Lutetium pnictides (LuX : X = P, As) have been studied by using breathing shell model (BSM) which includes breathing motion of electrons of the Lu atoms due to f-d hybridization to establish their predominant ionic nature. The calculated phonon dispersion curves of these compounds are presented follow the same trend as observed in ytterbium pnictides (YbP and YbAs). We also report one phonon density of states and specific heat for these compounds. We discuss the significance of this approach in predicting the phonon dispersion curves and examine the role of electron-phonon interaction.

  13. Phonon self-energy corrections to non-zero wavevector phonon modes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Araujo, Paulo; Mafra, Daniela; Sato, Kentaro; Saito, Richiiro; Kong, Jing; Dresselhaus, Mildred

    2012-02-01

    Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the frequency range from 2350 to 2750 cm-1, which shows the G* and the G'-band features originating from a double-resonant Raman process with q 0. The observed phonon renormalization effects are different from what is observed for the zone-center q = 0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with non-zero wave-vectors (q 0) in 1LG in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q = 0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G* Raman feature at 2450 cm-1 to include the iTO+LA combination modes with q 0 and the 2iTO overtone modes with q = 0, showing both to be associated with wave-vectors near the high symmetry point K in the Brillouin zone.

  14. Ballistic phonon transport in holey silicon.

    PubMed

    Lee, Jaeho; Lim, Jongwoo; Yang, Peidong

    2015-05-13

    When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments demonstrate room-temperature evidence of ballistic phonon transport in various nanomaterials, the thermal conductivity data for silicon in the length scale of 10-100 nm is still not available due to experimental challenges. Here we show ballistic phonon transport prevails in the cross-plane direction of holey silicon from 35 to 200 nm. The thermal conductivity scales linearly with the length (thickness) even though the lateral dimension (neck) is as narrow as 20 nm. We assess the impact of long-wavelength phonons and predict a transition from ballistic to diffusive regime using scaling models. Our results support strong persistence of long-wavelength phonons in nanostructures and are useful for controlling phonon transport for thermoelectrics and potential phononic applications.

  15. Close correlation between magnetic properties and the soft phonon mode of the structural transition in BaFe 2 As 2 and SrFe 2 As 2

    DOE PAGES

    Parshall, D.; Pintschovius, L.; Niedziela, Jennifer L.; ...

    2015-04-27

    Pmore » arent compounds of Fe-based superconductors undergo a structural phase transition from a tetragonal to an orthorhombic structure. We investigated the temperature dependence of the frequencies of TA phonons that extrapolate to the shear vibrational mode at the zone center, which corresponds to the orthorhombic deformation of the crystal structure at low temperatures in BaFe 2 As 2 and SrFe 2 As 2 . We found that acoustic phonons at small wave vectors soften gradually towards the transition from high temperatures, tracking the increase of the size of slowly fluctuating magnetic domains. On cooling below the transition to base temperature the phonons harden, following the square of the magnetic moment (which we find is proportional to the anisotropy gap). Finally, our results provide evidence for close correlation between magnetic and phonon properties in Fe-based superconductors.« less

  16. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    NASA Astrophysics Data System (ADS)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  17. The transmission spectrum of sound through a phononic crystal subjected to liquid flow

    NASA Astrophysics Data System (ADS)

    Declercq, Nico F.; Chehami, Lynda; Moiseyenko, Rayisa P.

    2018-01-01

    The influence of liquid-flow up to 7 mm/s is examined on transmission spectra of phononic crystals, revealing a potential use for slow liquid-flow measurement techniques. It is known that transmission of ultrasound through a phononic crystal is determined by its periodicity and depends on the material characteristics of the crystal's constituents. Here, the crystal consists of metal rods with the space in between filled with water. Previous studies have assumed still water in the crystal, and here, we consider flowing liquid. First, the crystal bandgaps are investigated in still water, and the results of transmission experiments are compared with theoretical band structures obtained with the finite element method. Then, changes in transmission spectra are investigated for different speeds of liquid flow. Two situations are investigated: a crystal is placed with a principal symmetry axis in the flow direction ( ΓX) and then at an angle ( ΓM). The good stability of the bandgap structure of the transmission spectrum for both directions is observed, which may be of importance for the application of phononic crystals as acoustic filters in an environment of flowing liquid. Minor transmission amplitude changes on the other hand reveal a possibility for slow liquid flow measurements.

  18. Structural investigations of sol-gel derived silicate gels using Eu 3+ ion-probe luminescence

    NASA Astrophysics Data System (ADS)

    Secu, C. E.; Predoi, D.; Secu, M.; Cernea, M.; Aldica, G.

    2009-09-01

    Undoped and Eu 3+-doped CaF 2-SiO 2 gels were prepared by the sol-gel method and their optical properties have been studied. The UV-VIS-NIR absorption and photoluminescence spectra have shown the bands typical for the Eu 3+ ions transitions. When the Eu-doped gel is annealed at temperatures up to 800 °C (i.e. above the CaF 2 crystallisation peak at ˜460 °C) the photoluminescence spectra intensity increase, the 590 nm (5D→7F) and 620 nm (5D→7F) luminescence bands become comparable and a structuring of the 620 nm band is observed. The phonon sidebands peaks associated with the 5F→7D transition of the Eu 3+ ion were observed at around 1000 and 620 cm -1 and have been assigned to the Si-O and Ca-O bonds, respectively. A phonon sideband signal in the range of 300-400 cm -1 was attributed to Ca-F bonds in the precipitated CaF 2 phase. From the optical absorption, photoluminescence and phonon sidebands spectra we have concluded that in the gels annealed at 800 °C, the Eu 3+ ions are incorporated into the silica network and in the precipitated CaF 2 phase.

  19. Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Casadei, Filippo; Bertoldi, Katia

    2014-01-01

    The design of phononic crystals and acoustic metamaterials with tunable and adaptive wave properties remains one of the outstanding challenges for the development of next generation acoustic devices. We report on the numerical and experimental demonstration of a locally resonant acoustic metamaterial with dispersion characteristics, which autonomously adapt in response to changes of an incident aerodynamic flow. The metamaterial consists of a slender beam featuring a periodic array or airfoil-shaped masses supported by a linear and torsional springs. The resonance characteristics of the airfoils lead to strong attenuation at frequencies defined by the properties of the airfoils and the speed on the incident fluid. The proposed concept expands the ability of existing acoustic bandgap materials to autonomously adapt their dispersion properties through fluid-structure interactions, and has the potential to dramatically impact a variety of applications, such as robotics, civil infrastructures, and defense systems.

  20. Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casadei, Filippo; Bertoldi, Katia; Kavli Institute for Bionano Science, Harvard University, Cambridge, Massachusetts 02138

    The design of phononic crystals and acoustic metamaterials with tunable and adaptive wave properties remains one of the outstanding challenges for the development of next generation acoustic devices. We report on the numerical and experimental demonstration of a locally resonant acoustic metamaterial with dispersion characteristics, which autonomously adapt in response to changes of an incident aerodynamic flow. The metamaterial consists of a slender beam featuring a periodic array or airfoil-shaped masses supported by a linear and torsional springs. The resonance characteristics of the airfoils lead to strong attenuation at frequencies defined by the properties of the airfoils and the speedmore » on the incident fluid. The proposed concept expands the ability of existing acoustic bandgap materials to autonomously adapt their dispersion properties through fluid-structure interactions, and has the potential to dramatically impact a variety of applications, such as robotics, civil infrastructures, and defense systems.« less

  1. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids

    PubMed Central

    Alonso-Redondo, E.; Schmitt, M.; Urbach, Z.; Hui, C. M.; Sainidou, R.; Rembert, P.; Matyjaszewski, K.; Bockstaller, M. R.; Fytas, G.

    2015-01-01

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to ‘manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the ‘anisotropic elasticity' across the particle–polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies. PMID:26390851

  2. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids.

    PubMed

    Alonso-Redondo, E; Schmitt, M; Urbach, Z; Hui, C M; Sainidou, R; Rembert, P; Matyjaszewski, K; Bockstaller, M R; Fytas, G

    2015-09-22

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to 'manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the 'anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies.

  3. Imaginary geometric phases of quantum trajectories in high-order terahertz sideband generation

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Liu, Ren-Bao

    2014-03-01

    Quantum evolution of particles under strong fields can be described by a small number of quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integral. The quantum trajectories are the key concept to understand the high-order terahertz siedeband generation (HSG) in semiconductors. Due to the nontrivial ``vacuum'' states of band materials, the quantum trajectories of optically excited electron-hole pairs in semiconductors can accumulate geometric phases under the driving of an elliptically polarized THz field. We find that the geometric phase of the stationary trajectory is generally complex with both real and imaginary parts. In monolayer MoS2, the imaginary parts of the geometric phase leads to a changing of the polarization ellipticity of the sideband. We further show that the imaginary part originates from the quantum interference of many trajectories with different phases. Thus the observation of the polarization ellipticity of the sideband shall be a good indication of the quantum nature of the stationary trajectory. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  4. Investigation of strain effect on electronic, chemical bonding, magnetic and phonon properties of ScNiBi: a DFT study

    NASA Astrophysics Data System (ADS)

    Bano, Amreen; Gaur, N. K.

    2018-04-01

    In this paper, we have investigated the electronic band structure, magnetic state, chemical bonding and phonon properties of intermetallic compound ScNiBi (SNB) under the effect of strain using first-principles calculations. Our results showed that at 0% strain, SNB appears to be semiconducting with 0.22 eV energy gap. As the amount of strain increases over the system, the energy gap disappears and metallic character with ionic bonding appears. Covalent bonding at 0% lattice strain is observed between Bi-6p and Ni-3{d}{z2} orbitals with small contribution of Sc-3d states, with increasing strain, this bonding becomes ionic as SNB becomes a metal. From density of states (DoS), similar occupancy of energy states in the same energy range is observed in both spin channels, i.e. spin up and spin down. Hence, no spin polarization is found. From magnetic susceptibility as a function of temperature, we conclude that magnetic state of SNB is paramagnetic. Also, from phonon dispersion curves, we find that with increasing lattice strain, the frequency gap between acoustic phonon branches and optical phonon branches reduced and instability with negative frequencies at Γ are observed.

  5. Automatic characteristic frequency association and all-sideband demodulation for the detection of a bearing fault

    NASA Astrophysics Data System (ADS)

    Firla, Marcin; Li, Zhong-Yang; Martin, Nadine; Pachaud, Christian; Barszcz, Tomasz

    2016-12-01

    This paper proposes advanced signal-processing techniques to improve condition monitoring of operating machines. The proposed methods use the results of a blind spectrum interpretation that includes harmonic and sideband series detection. The first contribution of this study is an algorithm for automatic association of harmonic and sideband series to characteristic fault frequencies according to a kinematic configuration. The approach proposed has the advantage of taking into account a possible slip of the rolling-element bearings. In the second part, we propose a full-band demodulation process from all sidebands that are relevant to the spectral estimation. To do so, a multi-rate filtering process in an iterative schema provides satisfying precision and stability over the targeted demodulation band, even for unsymmetrical and extremely narrow bands. After synchronous averaging, the filtered signal is demodulated for calculation of the amplitude and frequency modulation functions, and then any features that indicate faults. Finally, the proposed algorithms are validated on vibration signals measured on a test rig that was designed as part of the European Innovation Project 'KAStrion'. This rig simulates a wind turbine drive train at a smaller scale. The data show the robustness of the method for localizing and extracting a fault on the main bearing. The evolution of the proposed features is a good indicator of the fault severity.

  6. Self-consistency in the phonon space of the particle-phonon coupling model

    NASA Astrophysics Data System (ADS)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.

    2018-04-01

    In the paper the nonlinear generalization of the time blocking approximation (TBA) is presented. The TBA is one of the versions of the extended random-phase approximation (RPA) developed within the Green-function method and the particle-phonon coupling model. In the generalized version of the TBA the self-consistency principle is extended onto the phonon space of the model. The numerical examples show that this nonlinear version of the TBA leads to the convergence of results with respect to enlarging the phonon space of the model.

  7. Thermal conductivity and phonon transport properties of silicon using perturbation theory and the environment-dependent interatomic potential

    NASA Astrophysics Data System (ADS)

    Pascual-Gutiérrez, José A.; Murthy, Jayathi Y.; Viskanta, Raymond

    2009-09-01

    Silicon thermal conductivities are obtained from the solution of the linearized phonon Boltzmann transport equation without the use of any parameter-fitting. Perturbation theory is used to compute the strength of three-phonon and isotope scattering mechanisms. Matrix elements based on Fermi's golden rule are computed exactly without assuming either average or mode-dependent Grüeisen parameters, and with no underlying assumptions of crystal isotropy. The environment-dependent interatomic potential is employed to describe the interatomic force constants and the perturbing Hamiltonians. A detailed methodology to accurately find three-phonon processes satisfying energy- and momentum-conservation rules is also described. Bulk silicon thermal conductivity values are computed across a range of temperatures and shown to match experimental data very well. It is found that about two-thirds of the heat transport in bulk silicon may be attributed to transverse acoustic modes. Effective relaxation times and mean free paths are computed in order to provide a more complete picture of the detailed transport mechanisms and for use with carrier transport models based on the Boltzmann transport equation.

  8. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    DOE PAGES

    John A. Schneeloch; Xu, Zhijun; Winn, B.; ...

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg 1/3Nb 2/3O 3 doped with 32% PbTiO 3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E showmore » no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less

  9. Propagation of THz acoustic wave packets in GaN at room temperature

    DOE PAGES

    Maznev, A. A.; Hung, T.-C.; Yao, Y.-T.; ...

    2018-02-05

    We use femtosecond laser pulses to generate coherent longitudinal acoustic phonons at frequencies of 1–1.4 THz and study their propagation in GaN-based structures at room temperature. Two InGaN-GaN multiple-quantum-well (MQW) structures separated by a 2.3 μm-thick GaN spacer are used to simultaneously generate phonon wave packets with a central frequency determined by the period of the MQW and detect them after passing through the spacer. The measurements provide lower bounds for phonon lifetimes in GaN, which are still significantly lower than those from first principles predictions. The material Q-factor at 1 THz is found to be at least as highmore » as 900. The measurements also demonstrate a partial specular reflection from the free surface of GaN at 1.4 THz. This work shows the potential of laser-based methods for THz range phonon spectroscopy and the promise for extending the viable frequency range of GaN-based acousto-electronic devices.« less

  10. Propagation of THz acoustic wave packets in GaN at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maznev, A. A.; Hung, T.-C.; Yao, Y.-T.

    We use femtosecond laser pulses to generate coherent longitudinal acoustic phonons at frequencies of 1–1.4 THz and study their propagation in GaN-based structures at room temperature. Two InGaN-GaN multiple-quantum-well (MQW) structures separated by a 2.3 μm-thick GaN spacer are used to simultaneously generate phonon wave packets with a central frequency determined by the period of the MQW and detect them after passing through the spacer. The measurements provide lower bounds for phonon lifetimes in GaN, which are still significantly lower than those from first principles predictions. The material Q-factor at 1 THz is found to be at least as highmore » as 900. The measurements also demonstrate a partial specular reflection from the free surface of GaN at 1.4 THz. This work shows the potential of laser-based methods for THz range phonon spectroscopy and the promise for extending the viable frequency range of GaN-based acousto-electronic devices.« less

  11. One-electron propagation in Fermi, Pasta, Ulam disordered chains with Gaussian acoustic pulse pumping

    NASA Astrophysics Data System (ADS)

    Silva, L. D. Da; Dos Santos, J. L. L.; Ranciaro Neto, A.; Sales, M. O.; de Moura, F. A. B. F.

    In this work, we consider a one-electron moving on a Fermi, Pasta, Ulam disordered chain under effect of electron-phonon interaction and a Gaussian acoustic pulse pumping. We describe electronic dynamics using quantum mechanics formalism and the nonlinear atomic vibrations using standard classical physics. Solving numerical equations related to coupled quantum/classical behavior of this system, we study electronic propagation properties. Our calculations suggest that the acoustic pumping associated with the electron-lattice interaction promote a sub-diffusive electronic dynamics.

  12. Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles

    NASA Astrophysics Data System (ADS)

    Ribeiro, Guilherme A. S.; Paulatto, Lorenzo; Bianco, Raffaello; Errea, Ion; Mauri, Francesco; Calandra, Matteo

    2018-01-01

    At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depend on the approximation used for the exchange-correlation kernel in density-functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the phonon frequencies as obtained from the diagonalization of the free-energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe we evaluate the linear thermal expansion coefficient γ =2.3 ×10-5K-1 , finding it to be in good agreement with experimental value of γ =2.04 ×10-5K-1 . Furthermore, we study the phonon spectrum and we do reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the Γ X direction. The phonon satellite becomes broader at high temperatures but its energy is essentially temperature independent, in agreement with experiments. We decompose the self-consistent harmonic free energy in second-, third-, and fourth-order anharmonic terms. We find that the third- and fourth-order terms are small. However, treating the third-order term perturbatively on top of the second-order self-consistent harmonic free energy overestimates the energy of the satellite associated with the transverse optical mode. On the contrary, a perturbative treatment on top of the harmonic Hamiltonian breaks down and leads to imaginary phonon frequencies already at 300 K. In the case of SnTe, we describe the occurrence of a ferroelectric

  13. Spacetime representation of topological phononics

    NASA Astrophysics Data System (ADS)

    Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.

    2018-05-01

    Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.

  14. Optic phonon bandwidth and lattice thermal conductivity: The case of L i2X (X =O , S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-01

    We examine the lattice thermal conductivities (κl) of L i2X (X =O ,S ,Se ,Te ) using a first-principles Peierls-Boltzmann transport methodology. We find low κl values ranging between 12 and 30 W m-1K-1 despite light Li atoms, a large mass difference between constituent atoms, and tightly bunched acoustic branches, all features that give high κl in other materials including BeSe (630 W m-1K-1 ), BeTe (370 W m-1K-1 ), and cubic BAs (3170 W m-1K-1 ). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict κl. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in L i2Se and L i2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in L i2X materials. These considerations are important for the discovery and design of new materials for thermal management applications and give a more comprehensive understanding of thermal transport in crystalline solids.

  15. Optic phonon bandwidth and lattice thermal conductivity: The case of L i 2 X ( X = O , S, Se, Te)

    DOE PAGES

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-07

    Here, we examine the lattice thermal conductivities ( l) of Li 2X (X=O, S, Se, Te) using a first-principles Peierls-Boltzmann transport methodology. We find low l values ranging between 12 and 30 W/m-K despite light Li atoms, a large mass difference between constituent atoms and tightly bunched acoustic branches, all features that give high l in other materials including BeSe (630 W/m -1K -1), BeTe (370 W/m -1K -1) and cubic BAs (3150 W/m -1K -1). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict l. Unlike typical simple systems (e.g., Si,more » GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in Li 2Se and Li 2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in Li 2X materials. Finally, these considerations are important for the discovery and design of new materials for thermal management applications, and give a more comprehensive understanding of thermal transport in crystalline solids.« less

  16. First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Lu, Zexi; Ruan, Xiulin, E-mail: ruan@purdue.edu

    2016-06-14

    The effect of phonon-electron (p-e) scattering on lattice thermal conductivity is investigated for Cu, Ag, Au, Al, Pt, and Ni. We evaluate both phonon-phonon (p-p) and p-e scattering rates from first principles and calculate the lattice thermal conductivity (κ{sub L}). It is found that p-e scattering plays an important role in determining the κ{sub L} of Pt and Ni at room temperature, while it has negligible effect on the κ{sub L} of Cu, Ag, Au, and Al. Specifically, the room temperature κ{sub L}s of Cu, Ag, Au, and Al predicted from density-functional theory calculations with the local density approximation aremore » 16.9, 5.2, 2.6, and 5.8 W/m K, respectively, when only p-p scattering is considered, while it is almost unchanged when p-e scattering is also taken into account. However, the κ{sub L} of Pt and Ni is reduced from 7.1 and 33.2 W/m K to 5.8 and 23.2 W/m K by p-e scattering. Even though Al has quite high electron-phonon coupling constant, a quantity that characterizes the rate of heat transfer from hot electrons to cold phonons in the two-temperature model, p-e scattering is not effective in reducing κ{sub L} owing to the relatively low p-e scattering rates in Al. The difference in the strength of p-e scattering in different metals can be qualitatively understood by checking the amount of electron density of states that is overlapped with the Fermi window. Moreover, κ{sub L} is found to be comparable to the electronic thermal conductivity in Ni.« less

  17. Generalization of soft phonon modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, Sven P.

    Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. In this paper, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system withmore » $N$ atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, $${\\mathrm{PVM}}_{0}$$, represents the $3N$-dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, $${\\mathrm{PVM}}_{0}$$ serves as a generalization of soft phonon modes. At low temperatures, $${\\mathrm{PVM}}_{0}$$ reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case $${\\mathrm{PVM}}_{0}$$ culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, $${\\mathrm{PVM}}_{0}$$ can be equally well calculated on either side of the structural phase transition. Finally, two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the $${\\beta}$$ phase of uranium, the higher-symmetry structure of which stabilizes with temperature.« less

  18. Generalization of soft phonon modes

    DOE PAGES

    Rudin, Sven P.

    2018-04-27

    Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. In this paper, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system withmore » $N$ atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, $${\\mathrm{PVM}}_{0}$$, represents the $3N$-dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, $${\\mathrm{PVM}}_{0}$$ serves as a generalization of soft phonon modes. At low temperatures, $${\\mathrm{PVM}}_{0}$$ reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case $${\\mathrm{PVM}}_{0}$$ culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, $${\\mathrm{PVM}}_{0}$$ can be equally well calculated on either side of the structural phase transition. Finally, two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the $${\\beta}$$ phase of uranium, the higher-symmetry structure of which stabilizes with temperature.« less

  19. Generalization of soft phonon modes

    NASA Astrophysics Data System (ADS)

    Rudin, Sven P.

    2018-04-01

    Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. Here, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system with N atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, PVM0, represents the 3 N -dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, PVM0 serves as a generalization of soft phonon modes. At low temperatures, PVM0 reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case PVM0 culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, PVM0 can be equally well calculated on either side of the structural phase transition. Two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the β phase of uranium, the higher-symmetry structure of which stabilizes with temperature.

  20. Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Hao, E-mail: haoxiong1217@gmail.com; Si, Liu-Gang, E-mail: siliugang@gmail.com; Lü, Xin-You

    2014-10-15

    We propose an interesting scheme for tunable high-order sideband comb generation by utilizing ultrastrong optomechanical interaction in a GaAs optomechanical disk resonator beyond the perturbative approximation. We analyze the nonlinear nature of the optomechanical interaction, and give a full description of the non-perturbative effects. It is shown, within the non-perturbative regime, that high-order sideband comb with large intensities can be realized and controlled in a GaAs optomechanical disk resonator with experimentally achievable system parameters, and the non-perturbative regime leads to rich and nontrivial behavior.

  1. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    DOEpatents

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  2. Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement

    NASA Astrophysics Data System (ADS)

    Mo, Di; Wang, Ran; Li, Guang-zuo; Wang, Ning; Zhang, Ke-shu; Wu, Yi-rong

    2017-11-01

    Absolute distance measurements can be achieved by frequency scanning interferometry which uses a tunable laser. The main drawback of this method is that it is extremely sensitive to the movement of targets. In addition, since this method is limited to the linearity of frequency scanning, it is commonly used for close measurements within tens of meters. In order to solve these problems, a double-sideband frequency scanning interferometry system is presented in the paper. It generates two opposite frequency scanning signals through a fixed frequency laser and a Mach-Zehnder modulator. And the system distinguishes the two interference fringe patterns corresponding to the two signals by IQ demodulation (i.e., quadrature detection) of the echo. According to the principle of double-sideband modulation, the two signals have the same characteristics. Therefore, the error caused by the target movement can be effectively eliminated, which is similar to dual-laser frequency scanned interferometry. In addition, this method avoids the contradiction between laser frequency stability and swept performance. The system can be applied to measure the distance of the order of kilometers, which profits from the good linearity of frequency scanning. In the experiment, a precision about 3 μm was achieved for a kilometer-level distance.

  3. On the Induction of the First-Order Phase Magnetic Transitions by Acoustic Vibrations in MnSi

    NASA Astrophysics Data System (ADS)

    Pikin, S. A.

    2017-12-01

    The main result of the paper contains the conclusion that the magnetic phase transition in MnSi always remains first order at any temperature and magnetic field. In these aims, a model of coupling of an order parameter with other degrees of freedom is used. The coupling of magnetic order parameters with long-wave acoustic phonons, in the presence of the nonsingular parts of the bulk and shear moduli, a first-order transition occurs, participle near the transition the heat capacity and the compressibility remain finite, if the heat capacity becomes infinite in the system disregarding the acoustic phonons. The role of the Frenkel heterophase fluctuations is discussed. The impurity effect shows that, for some phases, the heat capacity of the system remains continuous and finite at the transition point. It is supposed that the transition is progressively smoothed by these fluctuations at the application of the magnetic field.

  4. On the induction of the first-order phase magnetic transitions by acoustic vibrations in MnSi

    NASA Astrophysics Data System (ADS)

    Pikin, S. A.

    2017-12-01

    The main result of the paper contains the conclusion that the magnetic phase transition in MnSi always remains first order at any temperature and magnetic field. In these aims, a model of coupling of an order parameter with other degrees of freedom is used. The coupling of magnetic order parameters with longwave acoustic phonons, in the presence of the nonsingular parts of the bulk and shear moduli, a first-order transition occurs, participle near the transition the heat capacity and the compressibility remain finite, if in the system without allowance of the acoustic phonons the heat capacity becomes infinite. The role of the Frenkel heterophase fluctuations is discussed. The impurity effect shows that, for some phases, the heat capacity of the system remains continuous and finite at the transition point. It is supposed that the transition is progressively smoothed by these fluctuations at the application of the magnetic field.

  5. Sensing coherent phonons with two-photon interference

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Yin, Xiaobo; Li, Baowen

    2018-02-01

    Detecting coherent phonons pose different challenges compared to coherent photons due to the much stronger interaction between phonons and matter. This is especially true for high frequency heat carrying phonons, which are intrinsic lattice vibrations experiencing many decoherence events with the environment, and are thus generally assumed to be incoherent. Two photon interference techniques, especially coherent population trapping (CPT) and electromagnetically induced transparency (EIT), have led to extremely sensitive detection, spectroscopy and metrology. Here, we propose the use of two photon interference in a three-level system to sense coherent phonons. Unlike prior works which have treated phonon coupling as damping, we account for coherent phonon coupling using a full quantum-mechanical treatment. We observe strong asymmetry in absorption spectrum in CPT and negative dispersion in EIT susceptibility in the presence of coherent phonon coupling which cannot be accounted for if only pure phonon damping is considered. Our proposal has application in sensing heat carrying coherent phonons effects and understanding coherent bosonic multi-pathway interference effects in three coupled oscillator systems.

  6. Superradiance-Driven Phonon Laser

    NASA Astrophysics Data System (ADS)

    Jiang, Ya-Jing; Lü, Hao; Jing, Hui

    2018-04-01

    We propose to enhance the generation of a phonon laser by exploiting optical superradiance. In our scheme, the optomechanical cavity contains a movable membrane, which supports a mechanical mode, and the superradiance cavity can generate the coherent collective light emissions by applying a transverse pump to an ultracold intracavity atomic gas. The superradiant emission turns out to be capable of enhancing the phonon laser performance. This indicates a new way to operate a phonon laser with the assistance of coherent atomic gases trapped in a cavity or lattice potentials.

  7. Electron-Phonon Systems on a Universal Quantum Computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macridin, Alexandru; Spentzouris, Panagiotis; Amundson, James

    We present an algorithm that extends existing quantum algorithms forsimulating fermion systems in quantum chemistry and condensed matter physics toinclude phonons. The phonon degrees of freedom are represented with exponentialaccuracy on a truncated Hilbert space with a size that increases linearly withthe cutoff of the maximum phonon number. The additional number of qubitsrequired by the presence of phonons scales linearly with the size of thesystem. The additional circuit depth is constant for systems with finite-rangeelectron-phonon and phonon-phonon interactions and linear for long-rangeelectron-phonon interactions. Our algorithm for a Holstein polaron problem wasimplemented on an Atos Quantum Learning Machine (QLM) quantum simulatoremployingmore » the Quantum Phase Estimation method. The energy and the phonon numberdistribution of the polaron state agree with exact diagonalization results forweak, intermediate and strong electron-phonon coupling regimes.« less

  8. Mirror-assisted coherent backscattering from the Mollow sidebands

    NASA Astrophysics Data System (ADS)

    Piovella, N.; Teixeira, R. Celistrino; Kaiser, R.; Courteille, Ph. W.; Bachelard, R.

    2017-11-01

    In front of a mirror, the radiation of weakly driven large disordered clouds presents an interference fringe in the backward direction, on top of an incoherent background. Although strongly driven atoms usually present little coherent scattering, we show here that the mirror-assisted version can produce high contrast fringes, for arbitrarily high saturation parameters. The contrast of the fringes oscillates with the Rabi frequency of the atomic transition and the distance between the mirror and the atoms, due to the coherent interference between the carrier and the Mollow sidebands of the saturated resonant fluorescence spectrum emitted by the atoms. The setup thus represents a powerful platform to study the spectral properties of ensembles of correlated scatterers.

  9. Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime

    NASA Astrophysics Data System (ADS)

    Moores, Bradley A.; Sletten, Lucas R.; Viennot, Jeremie J.; Lehnert, K. W.

    2018-06-01

    We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300 μ m long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.

  10. Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, Gazi N., E-mail: g.aliev@bath.ac.uk; Goller, Bernhard

    2014-09-07

    A one-dimensional Fibonacci phononic crystal and a distributed Bragg reflector were constructed from porous silicon. The structures had the same number of layers and similar acoustic impedance mismatch, and were electrochemically etched in highly boron doped silicon wafers. The thickness of the individual layers in the stacks was approximately 2 μm. Both types of hypersonic band gap structure were studied by direct measurement of the transmittance of longitudinal acoustic waves in the 0.1–2.6 GHz range. Acoustic band gaps deeper than 50 dB were detected in both structures. The experimental results were compared with model calculations employing the transfer matrix method. The acoustic propertiesmore » of periodic and quasi-periodic structures in which half-wave retarding bi-layers do not consist of two quarter-wave retarding layers are discussed. The strong correlation between width and depth of gaps in the transmission spectra is demonstrated. The dominant mechanisms of acoustic losses in porous multilayer structures are discussed. The elastic constants remain proportional over our range of porosity, and hence, the Grüneisen parameter is constant. This simplifies the expression for the porosity dependence of the Akhiezer damping.« less

  11. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber.

    PubMed

    Dashti, Pedram Z; Alhassen, Fares; Lee, Henry P

    2006-02-03

    Acousto-optic interaction in optical fiber is examined from the perspective of copropagating optical and acoustic vortex modes. Calculation of the acousto-optic coupling coefficient between different optical modes leads to independent conservation of spin and orbital angular momentum of the interacting photons and phonons. We show that the orbital angular momentum of the acoustic vortex can be transferred to a circularly polarized fundamental optical mode to form a stable optical vortex in the fiber carrying orbital angular momentum. The technique provides a useful way of generating stable optical vortices in the fiber medium.

  12. Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones.

    PubMed

    Mishina, T; Okano, F; Yuyama, I

    1999-06-10

    The single-sideband method of holography, as is well known, cuts off beams that come from conjugate images for holograms produced in the Fraunhofer region and from objects with no phase components. The single-sideband method with half-zone-plate processing is also effective in the Fresnel region for beams from an object that has phase components. However, this method restricts the viewing zone to a narrow range. We propose a method to improve this restriction by time-alternating switching of hologram patterns and a spatial filter set on the focal plane of a reconstruction lens.

  13. Phonon interference control of atomic-scale metamirrors, meta-absorbers, and heat transfer through crystal interfaces

    NASA Astrophysics Data System (ADS)

    Kosevich, Yu. A.; Potyomina, L. G.; Darinskii, A. N.; Strelnikov, I. A.

    2018-03-01

    crystal plane almost completely filled with heavy-isotope defects. We show that the phonon-interference-induced transparency can be produced by the defect nanolayer with the non-nearest-neighbor interactions, filled with two types of isotopes with relatively small difference in masses or binding force constants. In this case, relatively broad transmission antiresonance is accompanied by the narrow transmission peak close to the antiresonance frequency. We describe the softening of the flexural surface acoustic wave, localized at the embedded defect nanolayer, caused by negative surface stress in the layer. The surface wave softening results in spatially periodic static bending deformation of the embedded nanolayer with the definite wave number. The latter effect is estimated for graphene monolayer embedded in a strained matrix of polyethylene. We analyze the effect of nonlinearity in the dynamics of defect atoms on the one- and two-path phonon interference and show that the interference transmission resonances and antiresonances are shifted in frequencies but not completely suppressed by rather strong anharmonicity of interatomic bonds. The reduction of the Kapitza thermal interface conductance caused by the destructive phonon interference in a defect monolayer is described. We show that the additional relatively weak non-nearest-neighbor interactions through the defect crystal plane filled with heavy isotopes substantially reduces the interface thermal conductance, and this effect is stronger in the three-dimensional system than in the quasi-one-dimensional systems studied previously.

  14. Negative refraction of acoustic waves using a foam-like metallic structure

    NASA Astrophysics Data System (ADS)

    Hladky-Hennion, A.-C.; Vasseur, J. O.; Haw, G.; Croënne, C.; Haumesser, L.; Norris, A. N.

    2013-04-01

    A phononic crystal (PC) slab made of a single metallic phase is shown, theoretically and experimentally, to display perfect negative index matching and focusing capability when surrounded with water. The proposed PC slab is a centimeter scale hollow metallic foam-like structure in which acoustic energy is mediated via the metal lattice. The negative index property arises from an isolated branch of the dispersion curves corresponding to a mode that can be coupled to incident acoustic waves in surrounding water. This band also intercepts the water sound line at a frequency in the ultrasonic range. The metallic structure is consequently a candidate for the negative refraction of incident longitudinal waves.

  15. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap.

    PubMed

    Guo, San-Dong; Liu, Bang-Gui

    2018-03-14

    Topological semimetals may have potential applications such as in topological qubits, spintronics and quantum computations. Efficient heat dissipation is a key factor for the reliability and stability of topological semimetal-based nano-electronics devices, which is closely related to high thermal conductivity. In this work, the elastic properties and lattice thermal conductivity of TaN are investigated using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation. According to the calculated bulk modulus, shear modulus and C 44 , TaN can be regarded as a potential incompressible and hard material. The room-temperature lattice thermal conductivity is predicted to be 838.62 [Formula: see text] along the a axis and 1080.40 [Formula: see text] along the c axis, showing very strong anisotropy. It is found that the lattice thermal conductivity of TaN is several tens of times higher than other topological semimetals, such as TaAs, MoP and ZrTe, which is due to the very longer phonon lifetimes for TaN than other topological semimetals. The very different atomic masses of Ta and N atoms lead to a very large acoustic-optical band gap, and then prohibit the scattering between acoustic and optical phonon modes, which gives rise to very long phonon lifetimes. Calculated results show that isotope scattering has little effect on lattice thermal conductivity, and that phonons with mean free paths larger than 20 (80) [Formula: see text] along the c direction at 300 K have little contribution to the total lattice thermal conductivity. This work implies that TaN-based nano-electronics devices may be more stable and reliable due to efficient heat dissipation, and motivates further experimental works to study lattice thermal conductivity of TaN.

  16. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Liu, Bang-Gui

    2018-03-01

    Topological semimetals may have potential applications such as in topological qubits, spintronics and quantum computations. Efficient heat dissipation is a key factor for the reliability and stability of topological semimetal-based nano-electronics devices, which is closely related to high thermal conductivity. In this work, the elastic properties and lattice thermal conductivity of TaN are investigated using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation. According to the calculated bulk modulus, shear modulus and C 44, TaN can be regarded as a potential incompressible and hard material. The room-temperature lattice thermal conductivity is predicted to be 838.62 W~m-1~K^{-1} along the a axis and 1080.40 W~m-1~K^{-1} along the c axis, showing very strong anisotropy. It is found that the lattice thermal conductivity of TaN is several tens of times higher than other topological semimetals, such as TaAs, MoP and ZrTe, which is due to the very longer phonon lifetimes for TaN than other topological semimetals. The very different atomic masses of Ta and N atoms lead to a very large acoustic-optical band gap, and then prohibit the scattering between acoustic and optical phonon modes, which gives rise to very long phonon lifetimes. Calculated results show that isotope scattering has little effect on lattice thermal conductivity, and that phonons with mean free paths larger than 20 (80) μm along the c direction at 300 K have little contribution to the total lattice thermal conductivity. This work implies that TaN-based nano-electronics devices may be more stable and reliable due to efficient heat dissipation, and motivates further experimental works to study lattice thermal conductivity of TaN.

  17. Asymmetric Cherenkov acoustic reverse in topological insulators

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2014-09-01

    A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.

  18. Chaotic Electron Motion Caused by Sidebands in Free Electron Lasers

    DTIC Science & Technology

    1988-10-27

    sideband. The total vector potential is then, A (z,t) = (1) •w (e~ )ri(krZ-Wr t) l(ksZ-Wst)] -c’-[(ex-iey)AweZ% _+V-(ex+iey)Are ikrzwr _) (ex+iey)Ase... light c, ignoring the small correction of order w 2/W 2 from the dielectric contribution of the beam. Electrostatic contributions to the fields are...mass to me and the vector potentials according to ai=IeIAi/mec2 the dimensionless Hamiltonian describing the electron motion in the fields of Eq. (1

  19. Phonon properties of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Gupta, Yuhit; Goyal, Megha; Sinha, M. M.

    2018-05-01

    Earlier, it was thought there is antagonist relationship between superconductivity and ferromagnetic materials, But, a discovery of iron-based superconductors have removed this misconception. It gives an idea to make a review on the superconductivity properties of different materials. The new iron-based superconductors' present symmetry breaking competing phases in the form of tetragonal to orthorhombic transition. It consists of mainly four families [1111], [111], [122], and [11] type. Superconductivity of iron-based superconductors mainly related with the phonons and there is an excellent relation between phonons and superconductivity. Phonons properties are helpful in predicting the superconducting properties of materials. Phonon properties of iron-based superconductors in various phases are summarized in this study. We are presenting the review of phonon properties of iron-based superconductors.

  20. Electron-phonon coupling from finite differences

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  1. Electron-phonon Interactions in HTSC Cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egami, T.; Chung, J.-H.; McQueeny, R. J.

    Phonons have been generally considered to be irrelevant to the high-temperature superconductivity in the cuprates. However, such a bias is usually based upon the assumption of conventional electron-phonon coupling, while in the cuprates the coupling can be rather unconventional because of strong electron correlation. We present the results of our recent measurements of phonon dispersion in YBa{sub 2}Cu{sub 3}O{sub 6+x} by inelastic neutron scattering. These suggest certain phonon modes interact strongly with electrons and are closely involved in the superconductivity phenomenon with possible contribution to pairing.

  2. Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime.

    PubMed

    Moores, Bradley A; Sletten, Lucas R; Viennot, Jeremie J; Lehnert, K W

    2018-06-01

    We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300  μm long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.

  3. FPGA-based digital signal processing for the next generation radio astronomy instruments: ultra-pure sideband separation and polarization detection

    NASA Astrophysics Data System (ADS)

    Alvear, Andrés.; Finger, Ricardo; Fuentes, Roberto; Sapunar, Raúl; Geelen, Tom; Curotto, Franco; Rodríguez, Rafael; Monasterio, David; Reyes, Nicolás.; Mena, Patricio; Bronfman, Leonardo

    2016-07-01

    Field Programmable Gate Arrays (FPGAs) capacity and Analog to Digital Converters (ADCs) speed have largely increased in the last decade. Nowadays we can find one million or more logic blocks (slices) as well as several thousand arithmetic units (ALUs/DSP) available on a single FPGA chip. We can also commercially procure ADC chips reaching 10 GSPS, with 8 bits resolution or more. This unprecedented power of computing hardware has allowed the digitalization of signal processes traditionally performed by analog components. In radio astronomy, the clearest example has been the development of digital sideband separating receivers which, by replacing the IF hybrid and calibrating the system imbalances, have exhibited a sideband rejection above 40dB; this is 20 to 30dB higher than traditional analog sideband separating (2SB) receivers. In Rodriguez et al.,1 and Finger et al.,2 we have demonstrated very high digital sideband separation at 3mm and 1mm wavelengths, using laboratory setups. We here show the first implementation of such technique with a 3mm receiver integrated into a telescope, where the calibration was performed by quasi-optical injection of the test tone in front of the Cassegrain antenna. We also reported progress in digital polarization synthesis, particularly in the implementation of a calibrated Digital Ortho-Mode Transducer (DOMT) based on the Morgan et al. proof of concept.3 They showed off- line synthesis of polarization with isolation higher than 40dB. We plan to implement a digital polarimeter in a real-time FPGA-based (ROACH-2) platform, to show ultra-pure polarization isolation in a non-stop integrating spectrometer.

  4. Topological chiral phonons in center-stacked bilayer triangle lattices

    NASA Astrophysics Data System (ADS)

    Xu, Xifang; Zhang, Wei; Wang, Jiaojiao; Zhang, Lifa

    2018-06-01

    Since chiral phonons were found in an asymmetric two-dimensional hexagonal lattice, there has been growing interest in the study of phonon chirality, which were experimentally verified very recently in monolayer tungsten diselenide (2018 Science 359 579). In this work, we find chiral phonons with nontrivial topology in center-stacked bilayer triangle lattices. At the Brillouin-zone corners, (), circularly polarized phonons and nonzero phonon Berry curvature are observed. Moreover, we find that the phonon chirality remain robust with changing sublattice mass ratio and interlayer coupling. The chiral phonons at the valleys are demonstrated in doubler-layer sodium chloride along the [1 1 1] direction. We believe that the findings on topological chiral phonons in triangle lattices will give guidance in the study of chiral phonons in real materials and promote the phononic applications.

  5. Finite size effect on the magnetic excitations spectra, phonons and heat conduction of the quasi- one-dimensional spin chains system SrCuO2

    NASA Astrophysics Data System (ADS)

    Bounoua, Dalila; Saint-Martin, Romuald; Petit, Sylvain; Bourdarot, Frédéric; Pinsard-Gaudart, Loreynne

    2018-05-01

    We report inelastic neutron scattering measurements of the phonons modes, in the one-dimensional half integer spin chains cuprate SrCuO2. We study the longitudinal and the transverse modes propagating in the direction of the chains, along Q (0 0 L) and Q (2 0 L), respectively. On the other hand, we investigate the effect of substitution by impurities in the corresponding doped compounds, namely, SrCu0.99M0.01O2 with M=Mg or Zn, and La0.01Sr0.99CuO2. Our results evidence a systematic strong spinon-phonon interaction leading to an important decrease of the phonon scattered intensity as well as a decrease of the group velocity of the transverse acoustic modes upon substitution, and a shift of the transverse optical B3 u mode in the La-doped SrCuO2, in terms of energy.

  6. Weak coupling of pseudoacoustic phonons and magnon dynamics in the incommensurate spin-ladder compound S r 14 C u 24 O 41

    DOE PAGES

    Chen, Xi; Bansal, Dipanshu; Sullivan, Sean; ...

    2016-10-21

    Intriguing lattice dynamics have been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in Sr 14Cu 24O 41, which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct pseudoacoustic phonon modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7–1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements alsomore » reveal a gapped and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic and pseudoacoustic phonons can explain the large magnon thermal conductivity in Sr 14Cu 24O 41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. Furthermore, these findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.« less

  7. Phononic Crystal Tunable via Ferroelectric Phase Transition

    NASA Astrophysics Data System (ADS)

    Xu, Chaowei; Cai, Feiyan; Xie, Shuhong; Li, Fei; Sun, Rong; Fu, Xianzhu; Xiong, Rengen; Zhang, Yi; Zheng, Hairong; Li, Jiangyu

    2015-09-01

    Phononic crystals (PCs) consisting of periodic materials with different acoustic properties have potential applications in functional devices. To realize more smart functions, it is desirable to actively control the properties of PCs on demand, ideally within the same fabricated system. Here, we report a tunable PC made of Ba0.7Sr0.3Ti O3 (BST) ceramics, wherein a 20-K temperature change near room temperature results in a 20% frequency shift in the transmission spectra induced by a ferroelectric phase transition. The tunability phenomenon is attributed to the structure-induced resonant excitation of A0 and A1 Lamb modes that exist intrinsically in the uniform BST plate, while these Lamb modes are sensitive to the elastic properties of the plate and can be modulated by temperature in a BST plate around the Curie temperature. The study finds opportunities for creating tunable PCs and enables smart temperature-tuned devices such as the Lamb wave filter or sensor.

  8. Chirality effect on electron phonon relaxation, energy loss, and thermopower in single and bilayer graphene in BG regime

    NASA Astrophysics Data System (ADS)

    Ansari, Meenhaz; Ashraf, S. S. Z.

    2017-10-01

    We investigate the energy dependent electron-phonon relaxation rate, energy loss rate, and phonon drag thermopower in single layer graphene (SLG) and bilayer graphene (BLG) under the Bloch-Gruneisen (BG) regime through coupling to acoustic phonons interacting via the Deformation potential in the Boltzmann transport equation approach. We find that the consideration of the chiral nature of electrons alters the temperature dependencies in two-dimensional structures of SLG and BLG from that shown by other conventional 2DEG system. Our investigations indicate that the BG analytical results are valid for temperatures far below the BG limit (˜TBG/4) which is in conformity with a recent experimental investigation for SLG [C. B. McKitterick et al., Phys. Rev. B 93, 075410 (2016)]. For temperatures above this renewed limit (˜TBG/4), there is observed a suppression in energy loss rate and thermo power in SLG, but enhancement is observed in relaxation rate and thermopower in BLG, while a suppression in the energy loss rate is observed in BLG. This strong nonmonotonic temperature dependence in SLG has also been experimentally observed within the BG limit [Q. Ma et al., Phys. Rev. Lett. 112, 247401 (2014)].

  9. Topological phonon modes in filamentary structures

    NASA Astrophysics Data System (ADS)

    Berg, Nina; Joel, Kira; Koolyk, Miriam; Prodan, Emil

    2011-02-01

    This work describes a class of topological phonon modes, that is, mechanical vibrations localized at the edges of special structures that are robust against the deformations of the structures. A class of topological phonons was recently found in two-dimensional structures similar to that of microtubules. The present work introduces another class of topological phonons, this time occurring in quasi-one-dimensional filamentary structures with inversion symmetry. The phenomenon is exemplified using a structure inspired from that of actin microfilaments, present in most live cells. The system discussed here is probably the simplest structure that supports topological phonon modes, a fact that allows detailed analysis in both time and frequency domains. We advance the hypothesis that the topological phonon modes are ubiquitous in the biological world and that living organisms make use of them during various processes.

  10. Mutual interactions of phonons, rotons, and gravity

    NASA Astrophysics Data System (ADS)

    Nicolis, Alberto; Penco, Riccardo

    2018-04-01

    We introduce an effective point-particle action for generic particles living in a zero-temperature superfluid. This action describes the motion of the particles in the medium at equilibrium as well as their couplings to sound waves and generic fluid flows. While we place the emphasis on elementary excitations such as phonons and rotons, our formalism applies also to macroscopic objects such as vortex rings and rigid bodies interacting with long-wavelength fluid modes. Within our approach, we reproduce phonon decay and phonon-phonon scattering as predicted using a purely field-theoretic description of phonons. We also correct classic results by Landau and Khalatnikov on roton-phonon scattering. Finally, we discuss how phonons and rotons couple to gravity, and show that the former tend to float while the latter tend to sink but with rather peculiar trajectories. Our formalism can be easily extended to include (general) relativistic effects and couplings to additional matter fields. As such, it can be relevant in contexts as diverse as neutron star physics and light dark matter detection.

  11. Variable-Range Hopping through Marginally Localized Phonons

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Altman, Ehud

    2016-03-01

    We investigate the effect of coupling Anderson localized particles in one dimension to a system of marginally localized phonons having a symmetry protected delocalized mode at zero frequency. This situation is naturally realized for electrons coupled to phonons in a disordered nanowire as well as for ultracold fermions coupled to phonons of a superfluid in a one-dimensional disordered trap. To determine if the coupled system can be many-body localized we analyze the phonon-mediated hopping transport for both the weak and strong coupling regimes. We show that the usual variable-range hopping mechanism involving a low-order phonon process is ineffective at low temperature due to discreteness of the bath at the required energy. Instead, the system thermalizes through a many-body process involving exchange of a diverging number n ∝-log T of phonons in the low temperature limit. This effect leads to a highly singular prefactor to Mott's well-known formula and strongly suppresses the variable range hopping rate. Finally, we comment on possible implications of this physics in higher dimensional electron-phonon coupled systems.

  12. Scattering Tools for Nanostructure Phonon Engineering

    DTIC Science & Technology

    2013-09-25

    characterization of phonons in nanomaterials, such as Raman scattering, are sensitive only to phonon modes with wavevectors of extremely small magnitude...Fundamentally the wavevectors that can be probed by Raman scattering are limited by the small momentum of photons in the visible spectrum. Our work...serious characterization challenge because existing experimental techniques for the characterization of phonons in nanomaterials, such as Raman

  13. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures

    DOE PAGES

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; ...

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less

  14. Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Braukmann, D.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.

    2018-05-01

    We study the circularly polarized photoluminescence of negatively charged (NV-) and neutral (NV0) nitrogen-vacancy ensembles and neutral vacancies (V0) in diamond crystals exposed to magnetic fields of up to 10 T. We determine the orbital and spin Zeeman splitting as well as the energetic ordering of their ground and first-excited states. The spin-triplet and -singlet states of the NV- are described by an orbital Zeeman splitting of about 9 μ eV /T , which corresponds to a positive orbital g -factor of gL=0.164 under application of the magnetic field along the (001) and (111) crystallographic directions, respectively. The zero-phonon line (ZPL) of the NV- singlet is defined as a transition from the 1E' states, which are split by gLμBB , to the 1A1 state. The energies of the zero-phonon triplet transitions show a quadratic dependence on intermediate magnetic field strengths, which we attribute to a mixing of excited states with nonzero orbital angular momentum. Moreover, we identify slightly different spin Zeeman splittings in the ground (gs) and excited (es) triplet states, which can be expressed by a deviation between their spin g -factors: gS ,es=gS ,gs+Δ g with values of Δ g =0.014 and 0.029 in the (001) and (111) geometries, respectively. The degree of circular polarization of the NV- ZPLs depends significantly on the temperature, which is explained by an efficient spin-orbit coupling of the excited states mediated through acoustic phonons. We further demonstrate that the sign of the circular polarization degree is switched under rotation of the diamond crystal. A weak Zeeman splitting similar to Δ g μBB measured for the NV- ZPLs is also obtained for the NV0 zero-phonon lines, from which we conclude that the ground state is composed of two optically active states with compensated orbital contributions and opposite spin-1/2 momentum projections. The zero-phonon lines of the V0 show Zeeman splittings and degrees of the circular polarization with opposite

  15. Transmission eigenchannels for coherent phonon transport

    NASA Astrophysics Data System (ADS)

    Klöckner, J. C.; Cuevas, J. C.; Pauly, F.

    2018-04-01

    We present a procedure to determine transmission eigenchannels for coherent phonon transport in nanoscale devices using the framework of nonequilibrium Green's functions. We illustrate our procedure by analyzing a one-dimensional chain, where all steps can be carried out analytically. More importantly, we show how the procedure can be combined with ab initio calculations to provide a better understanding of phonon heat transport in realistic atomic-scale junctions. In particular, we study the phonon eigenchannels in a gold metallic atomic-size contact and different single-molecule junctions based on molecules such as an alkane chain, a brominated benzene-diamine, where destructive phonon interference effects take place, and a C60 junction.

  16. Scanning Tunneling Microscopy Observation of Phonon Condensate

    PubMed Central

    Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.

    2017-01-01

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066

  17. Coherent Generation of Photo-Thermo-Acoustic Wave from Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Tian, Yichao; Tian, He; Wu, Yanling; Zhu, Leilei; Tao, Luqi; Zhang, Wei; Shu, Yi; Xie, Dan; Yang, Yi; Wei, Zhiyi; Lu, Xinghua; Ren, Tian-Ling; Shih, Chih-Kang; Zhao, Jimin

    Many remarkable properties of graphene are derived from its large energy window for Dirac-like electronic states and have been explored for applications in electronics and photonics. In addition, strong electron-phonon interaction in graphene has led to efficient photo-thermo energy conversions, which has been harnessed for energy applications. By combining the wavelength independent absorption property and the efficient photo-thermo energy conversion, here we report a new type of applications in sound wave generation underlined by a photo-thermo-acoustic energy conversion mechanism. Most significantly, by utilizing ultrafast optical pulses, we demonstrate the ability to control the phase of sound waves generated by the photo-thermal-acoustic process. Our finding paves the way for new types of applications for graphene, such as remote non-contact speakers, optical-switching acoustic devices, etc. National Basic Research Program of China MOST (2012CB821402), External Cooperation Program of Chinese Academy of Sciences (GJHZ1403), and National Natural Science Foundation of China (11274372).

  18. Emission Enhancement of Sound Emitters using an Acoustic Metamaterial Cavity

    PubMed Central

    Song, Kyungjun; Lee, Seong-Hyun; Kim, Kiwon; Hur, Shin; Kim, Jedo

    2014-01-01

    The emission enhancement of sound without electronic components has wide applications in a variety of remote systems, especially when highly miniaturized (smaller than wavelength) structures can be used. The recent advent of acoustic metamaterials has made it possible to realize this. In this study, we propose, design, and demonstrate a new class of acoustic cavity using a double-walled metamaterial structure operating at an extremely low frequency. Periodic zigzag elements which exhibit Fabry-Perot resonant behavior below the phononic band-gap are used to yield strong sound localization within the subwavelength gap, thus providing highly effective emission enhancement. We show, both theoretically and experimentally, 10 dB sound emission enhancement near 1060 Hz that corresponds to a wavelength approximately 30 times that of the periodicity. We also provide a general guideline for the independent tuning of the quality factor and effective volume of acoustic metamaterials. This approach shows the flexibility of our design in the efficient control of the enhancement rate. PMID:24584552

  19. Acoustic imaging and mirage effects with high transmittance in a periodically perforated metal slab

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Dong; Wang, Yue-Sheng; Zhang, Chuanzeng

    2016-11-01

    In this paper, we present a high-quality superlens to focus acoustic waves using a periodically perforated metallic structure which is made of zinc and immersed in water. By changing a geometrical parameter gradually, a kind of gradient-index phononic crystal lens is designed to attain the mirage effects. The acoustic waves can propagate along an arc-shaped trajectory which is precisely controlled by the angle and frequency of the incident waves. The negative refraction imaging effect depends delicately on the transmittance of the solid structure. The acoustic impedance matching between the solid and the liquid proposed in this article, which is determined by the effective density and group velocity of the unit-cell, is significant for overcoming the inefficiency problem of acoustic devices. This study focuses on how to obtain the high transmittance imaging and mirage effects based on the adequate material selection and geometrical design.

  20. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  1. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE PAGES

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...

    2017-02-22

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  2. Wave mixing in coupled phononic crystals via a variable stiffness mechanism

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Yong; Chong, Christopher; Kevrekidis, Panayotis G.; Yang, Jinkyu

    2016-10-01

    We investigate wave mixing effects in a phononic crystal that couples the wave dynamics of two channels - primary and control ones - via a variable stiffness mechanism. We demonstrate analytically and numerically that the wave transmission in the primary channel can be manipulated by the control channel's signal. We show that the application of control waves allows the selection of a specific mode through the primary channel. We also demonstrate that the mixing of two wave modes is possible whereby a modulation effect is observed. A detailed study of the design parameters is also carried out to optimize the switching capabilities of the proposed system. Finally, we verify that the system can fulfill both switching and amplification functionalities, potentially enabling the realization of an acoustic transistor.

  3. Controlling thermal emission of phonon by magnetic metasurfaces

    PubMed Central

    Zhang, X.; Liu, H.; Zhang, Z. G.; Wang, Q.; Zhu, S. N.

    2017-01-01

    Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance (MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, we can manipulate the polarization and angular radiation of thermal emission of phonon. Such metasurface provides a new kind of thermal emission structures for various thermal management applications. PMID:28157206

  4. Tunable infrared reflectance by phonon modulation

    DOEpatents

    Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.

    2018-03-06

    The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.

  5. Integer, Fractional, and Sideband Injection Locking of a Spintronic Feedback Nano-Oscillator to a Microwave Signal

    NASA Astrophysics Data System (ADS)

    Singh, Hanuman; Konishi, K.; Bhuktare, S.; Bose, A.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.

    2017-12-01

    In this paper we demonstrate the injection locking of a recently demonstrated spintronic feedback nano-oscillator to microwave magnetic fields at integers (n =1 , 2, 3) as well as fractional multiples (f =1 /2 , 3 /2 , and 5 /2 ) of its auto-oscillation frequency. Feedback oscillators have delay as a new "degree of freedom" which is absent for spin-transfer torque-based oscillators, which gives rise to side peaks along with a main peak. We show that it is also possible to lock the oscillator on its sideband peaks, which opens an alternative avenue to phase-locked oscillators with large frequency differences. We observe that for low driving fields, sideband locking improves the quality factor of the main peak, whereas for higher driving fields the main peak is suppressed. Further, measurements at two field angles provide some insight into the role of the symmetry of oscillation orbit in determining the fractional locking.

  6. Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime

    NASA Astrophysics Data System (ADS)

    Feng, Jin-Shan; Tan, Lei; Gu, Huai-Qiang; Liu, Wu-Ming

    2017-12-01

    We theoretically analyze the ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime by introducing a coupled high-quality-factor cavity. On account of the quantum interference stemming from the presence of the coupled cavity, the spectral density of the optical force exerting on the nanosphere gets changed and then the symmetry between the heating and the cooling processes is broken. Through adjusting the detuning of a strong-dissipative cavity mode, one obtains an enhanced net cooling rate for the nanosphere. It is illustrated that the ground-state cooling can be realized in the unresolved sideband regime even if the effective optomechanical coupling is weaker than the frequency of the nanosphere, which can be understood by the picture that the effective interplay of the nanosphere and the auxiliary cavity mode brings the system back to an effective resolved regime. Besides, the coupled cavity refines the dynamical stability of the system.

  7. Nonperturbative Quantum Nature of the Dislocation–Phonon Interaction

    DOE PAGES

    Li, Mingda; Ding, Zhiwei; Meng, Qingping; ...

    2017-01-31

    Despite the long history of dislocation–phonon interaction studies, there are many problems that have not been fully resolved during this development. These include an incompatibility between a perturbative approach and the long-range nature of a dislocation, the relation between static and dynamic scattering, and their capability of dealing with thermal transport phenomena for bulk material only. Here in this paper, by utilizing a fully quantized dislocation field, which we called a “dislon”, a phonon interacting with a dislocation is renormalized as a quasi-phonon, with shifted quasi-phonon energy, and accompanied by a finite quasi-phonon lifetime, which are reducible to classical results.more » A series of outstanding legacy issues including those above can be directly explained within this unified phonon renormalization approach. For instance, a renormalized phonon naturally resolves the decade-long debate between dynamic and static dislocation–phonon scattering approaches, as two limiting cases. In particular, at nanoscale, both the dynamic and static approaches break down, while the present renormalization approach remains valid by capturing the size effect, showing good agreement with lattice dynamics simulations.« less

  8. Nonperturbative Quantum Nature of the Dislocation–Phonon Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Ding, Zhiwei; Meng, Qingping

    Despite the long history of dislocation–phonon interaction studies, there are many problems that have not been fully resolved during this development. These include an incompatibility between a perturbative approach and the long-range nature of a dislocation, the relation between static and dynamic scattering, and their capability of dealing with thermal transport phenomena for bulk material only. Here in this paper, by utilizing a fully quantized dislocation field, which we called a “dislon”, a phonon interacting with a dislocation is renormalized as a quasi-phonon, with shifted quasi-phonon energy, and accompanied by a finite quasi-phonon lifetime, which are reducible to classical results.more » A series of outstanding legacy issues including those above can be directly explained within this unified phonon renormalization approach. For instance, a renormalized phonon naturally resolves the decade-long debate between dynamic and static dislocation–phonon scattering approaches, as two limiting cases. In particular, at nanoscale, both the dynamic and static approaches break down, while the present renormalization approach remains valid by capturing the size effect, showing good agreement with lattice dynamics simulations.« less

  9. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wei, E-mail: wei-g@163.com, E-mail: zhuzhihandd@sina.com; Mu, Chunyuan; Yang, Yuqiang

    A high fidelity amplification of beams carrying orbital angular momentum (OAM) is very crucial for OAM multiplexing and other OAM-based applications. Here, we report a demonstration of stimulated Brillouin amplification for OAM beams, and the energy conversion efficiency of photon-phonon coupling and the phase structure of amplified signals are investigated in collinear and noncollinear frame systems, respectively. Our results demonstrate that the OAM signals can be efficiently amplified without obvious noise introduced, and the modes of output signal are independent of the pump modes or the geometrical frames. Meanwhile, an OAM state depending on the optical modes and the geometricalmore » frames is loaded into phonons by coherent light-acoustic interaction, which reveals more fundamental significance and a great application potential in OAM-multiplexing.« less

  10. Theory of Raman scattering in coupled electron-phonon systems

    NASA Astrophysics Data System (ADS)

    Itai, K.

    1992-01-01

    The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.

  11. Detection scheme for acoustic quantum radiation in Bose-Einstein condensates.

    PubMed

    Schützhold, Ralf

    2006-11-10

    Based on doubly detuned Raman transitions between (meta)stable atomic or molecular states and recently developed atom counting techniques, a detection scheme for sound waves in dilute Bose-Einstein condensates is proposed whose accuracy might reach down to the level of a few or even single phonons. This scheme could open up a new range of applications including the experimental observation of quantum radiation phenomena such as the Hawking effect in sonic black-hole analogues or the acoustic analogue of cosmological particle creation.

  12. Surface induced phonon decay rates in thin film nano-structures

    NASA Astrophysics Data System (ADS)

    Photiadis, D. M.

    2007-12-01

    Nano-scale structure significantly impacts phonon transport and related phonon relaxation rates, with order of magnitude effects on the thermal conductivity of dielectric thin films and quantum wires, and even larger effects on the lifetimes of ultrasonic phonons of micro- (nano-) oscillators. In both cases, efforts to explain the data have been hampered by our lack of knowledge of the effects of confined dimensionality on phonon-phonon scattering rates. Using a phonon Boltzmann equation with appropriate boundary conditions on the free surfaces to take surface roughness into account, we have obtained an expression yielding phonon lifetimes in 2-D dielectric nanostructures(thin films) resulting from phonon-phonon scattering in conjunction with phonon-surface scattering. We present these theoretical results and, in the limit in which surface induced losses dominate, obtain explicit predictions for the phonon lifetimes. The predicted temperature dependence of the ultrason! ic loss does not explain the observed saturation of the loss at low temperatures(τ(T) → const), but does give results of the order of magnitude of measured ultrasonic lifetimes.

  13. Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures

    NASA Astrophysics Data System (ADS)

    Li, Guanpeng; Yao, Kailun; Gao, Guoying

    2018-01-01

    Using first-principle calculations combined with Boltzmann transport theory, we investigate the biaxial strain effect on the electronic and phonon thermal transport properties of a 1 T (CdI2-type) structural TiS2 monolayer, a recent experimental two-dimensional (2D) material. It is found that the electronic band structure can be effectively modulated and that the band gap experiences an indirect-direct-indirect transition with increasing tensile strain. The band convergence induced by the tensile strain increases the Seebeck coefficient and the power factor, while the lattice thermal conductivity is decreased under the tensile strain due to the decreasing group velocity and the increasing scattering chances between the acoustic phonon modes and the optical phonon modes, which together greatly increase the thermoelectric performance. The figure of merit can reach 0.95 (0.82) at an 8 percent tensile strain for the p-type (n-type) doping, which is much larger than that without strain. The present work suggests that the TiS2 monolayer is a good candidate for 2D thermoelectric materials, and that biaxial strain is a powerful tool with which to enhance thermoelectric performance.

  14. Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures.

    PubMed

    Li, Guanpeng; Yao, Kailun; Gao, Guoying

    2018-01-05

    Using first-principle calculations combined with Boltzmann transport theory, we investigate the biaxial strain effect on the electronic and phonon thermal transport properties of a 1 T (CdI 2 -type) structural TiS 2 monolayer, a recent experimental two-dimensional (2D) material. It is found that the electronic band structure can be effectively modulated and that the band gap experiences an indirect-direct-indirect transition with increasing tensile strain. The band convergence induced by the tensile strain increases the Seebeck coefficient and the power factor, while the lattice thermal conductivity is decreased under the tensile strain due to the decreasing group velocity and the increasing scattering chances between the acoustic phonon modes and the optical phonon modes, which together greatly increase the thermoelectric performance. The figure of merit can reach 0.95 (0.82) at an 8 percent tensile strain for the p-type (n-type) doping, which is much larger than that without strain. The present work suggests that the TiS 2 monolayer is a good candidate for 2D thermoelectric materials, and that biaxial strain is a powerful tool with which to enhance thermoelectric performance.

  15. Phonon optimized interatomic potential for aluminum

    NASA Astrophysics Data System (ADS)

    Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor; Henry, Asegun

    2017-12-01

    We address the problem of generating a phonon optimized interatomic potential (POP) for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA) to optimize the free parameters in an empirical interatomic potential (EIP). For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom method (EAM) and charge-optimized many-body (COMB3) potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD) simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE), employing Fermi's Golden Rule to predict the phonon-phonon relaxation times.

  16. Scattering of phonons by dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, A. C.

    1979-01-01

    By 1950, an explicit effort had been launched to use lattice thermal conductivity measurements in the investigation of defect structures in solids. This technique has been highly successful, especially when combined with the measurements of other properties such as optical absorption. One exception has been the study of dislocations. Although dislocations have a profound effect on the phonon thermal conductivity, the mechanisms of the phonon-dislocation interaction are poorly understood. The most basic questions are still debated in the literature. It therefore is pointless to attempt a quantitative comparison between an extensive accumulation of experimental data on the one hand, andmore » the numerous theoretical models on the other. Instead, this chapter will attempt to glean a few qualitative conclusions from the existing experimental data. These results will then be compared with two general models which incorporate, in a qualitative manner, most of the proposed theories of the phonon-dislocation interaction. Until very recently, measurement of thermal conductivity was the only means available to probe the interaction between phonons and defects at phonon frequencies above the standard ultrasonic range of approx. = 10/sup 9/ Hz. The introductory paragraphs provide a brief review of the thermal-conductivity technique and the problems which are encountered in practice. There is also a brief presentation of the theoretical models and the complications that may occur in more realistic situations.« less

  17. Electronic structure, transport, and phonons of SrAg ChF ( Ch = S,Se,Te): Bulk superlattice thermoelectrics

    DOE PAGES

    Gudelli, Vijay Kumar; Kanchana, V.; Vaitheeswaran, G.; ...

    2015-07-15

    Here, we report calculations of the electronic structure, vibrational properties, and transport for the p-type semiconductors, SrAg ChF ( Ch = S, Se, and Te). We find soft phonons with low frequency optical branches intersecting the acoustic modes below 50 cm –1, indicative of a material with low thermal conductivity. The bands at and near the valence-band maxima are highly two-dimensional, which leads to high thermopowers even at high carrier concentrations, which is a combination that suggests good thermoelectric performance. These materials may be regarded as bulk realizations of superlattice thermoelectrics.

  18. Bilayer graphene phonovoltaic-FET: In situ phonon recycling

    NASA Astrophysics Data System (ADS)

    Melnick, Corey; Kaviany, Massoud

    2017-11-01

    A new heat harvester, the phonovoltaic (pV) cell, was recently proposed. The device converts optical phonons into power before they become heat. Due to the low entropy of a typical hot optical phonon population, the phonovoltaic can operate at high fractions of the Carnot limit and harvest heat more efficiently than conventional heat harvesting technologies such as the thermoelectric generator. Previously, the optical phonon source was presumed to produce optical phonons with a single polarization and momentum. Here, we examine a realistic optical phonon source in a potential pV application and the effects this has on pV operation. Supplementing this work is our investigation of bilayer graphene as a new pV material. Our ab initio calculations show that bilayer graphene has a figure of merit exceeding 0.9, well above previously investigated materials. This allows a room-temperature pV to recycle 65% of a highly nonequilibrium, minimum entropy population of phonons. However, full-band Monte Carlo simulations of the electron and phonon dynamics in a bilayer graphene field-effect transistor (FET) show that the optical phonons emitted by field-accelerated electrons can only be recycled in situ with an efficiency of 50%, and this efficiency falls as the field strength grows. Still, an appropriately designed FET-pV can recycle the phonons produced therein in situ with a much higher efficiency than a thermoelectric generator can harvest heat produced by a FET ex situ.

  19. Imaginary parts of coupled electron and phonon propagators

    NASA Astrophysics Data System (ADS)

    Schwartzman, K.; Lawrence, W. E.

    1988-01-01

    Quasiparticle and phonon damping rates due to the electron-phonon and Coulomb interactions are obtained directly from the self-energy formalism of strong-coupling theory. This accounts for all processes involving phonon or quasiparticle decay into a single particle-hole pair, or quasiparticle decay by emission or absorption of a single real phonon. The two quasiparticle decay modes are treated on a common footing, without ad hoc separation, by accounting fully for the dynamics of the phonon propagator and the Coulomb vertex-the latter by expansion of the four-point Coulomb vertex function. The results are shown to be expressible in terms of only the physical (i.e., fully renormalized) energies and coupling constants, and are written in terms of spectral functions such as α2F(ω) and its generalizations. Expansion of these in powers of a phonon linewidth parameter distinguishes (in lowest orders) between quasiparticle decay modes involving real and virtual phonons. However, the simplest prescription for calculating decay rates involves an effective scattering amplitude in which this distinction is not made.

  20. Electron-Mediated Phonon-Phonon Coupling Drives the Vibrational Relaxation of CO on Cu(100)

    NASA Astrophysics Data System (ADS)

    Novko, D.; Alducin, M.; Juaristi, J. I.

    2018-04-01

    We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-the-art nonadiabatic theories to quantitatively reproduce the experimental linewidth of the CO internal stretch mode on Cu(100) and it emphasizes the crucial role of the electron-mediated phonon-phonon coupling in this regard. The results demonstrate a strong electron-mediated coupling between the internal stretch and low-energy CO modes, but also a significant role of surface motion. Our nonadiabatic theory is also able to explain the temperature dependence of the internal stretch phonon linewidth, thus far considered a sign of the direct anharmonic coupling.

  1. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.

    PubMed

    Jiang, Tao; Hong, Hao; Liu, Can; Liu, Wei-Tao; Liu, Kaihui; Wu, Shiwei

    2018-04-11

    Interactions between elementary excitations, such as carriers, phonons, and plasmons, are critical for understanding the optical and electronic properties of materials. The significance of these interactions is more prominent in low-dimensional materials and can dominate their physical properties due to the enhanced interactions between these excitations. One-dimensional single-walled carbon nanotubes provide an ideal system for studying such interactions due to their perfect physical structures and rich electronic properties. Here we investigated G-mode phonon dynamics in individual suspended chirality-resolved single-walled carbon nanotubes by time-resolved anti-Stokes Raman spectroscopy. The improved technique allowed us to probe the intrinsic phonon information on a single-tube level and exclude the influences of tube-tube and tube-substrate interactions. We found that the G-mode phonon lifetime ranges from 0.75-2.25 ps and critically depends on whether the tube is metallic or semiconducting. In comparison with the phonon lifetimes in graphene and graphite, we revealed structure-dependent carrier-phonon and phonon-phonon interactions in nanotubes. Our results provide new information for optimizing the design of nanotube electronic/optoelectronic devices by better understanding and utilizing their phonon decay channels.

  2. Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout

    NASA Astrophysics Data System (ADS)

    Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.

    2017-04-01

    We introduce and experimentally characterize a superconducting single-sideband modulator compatible with cryogenic microwave circuits and propose its use for frequency domain multiplexing of superconducting qubit readout. The monolithic double-balanced modulators that comprise the device are formed with purely reactive elements (capacitors and Josephson junction inductors) and require no microwave-frequency control tones. Microwave signals in the 4 to 8 GHz band, with power up to -85 dBm, are converted up or down in frequency by as much as 120 MHz. Spurious harmonics in the device can be suppressed by up to 25 dB for select probe and modulation frequencies.

  3. 80GHz waveform generator by optical Fourier synthesis of four spectral sidebands (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fatome, Julien; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe

    2016-04-01

    Versatile and easy to implement methods to generate arbitrary optical waveforms at high repetition rates are of considerable interest with applications in optical communications, all-optical signal processing, instrumentation systems and microwave signal manipulation. While shaping sinusoidal, Gaussian or hyperbolic secant intensity profiles is commonly achieved by means of modulators or mode-locked lasers, other pulse profiles such as parabolic, triangular or flat-top shapes still remain challenging to synthesize. In this context, several strategies were already explored. First, the linear pulse shaping is a common method to carve an initial ultrashort pulse train into the desired shape. The line-by-line shaping of a coherent frequency comb made of tens of spectral components was also investigated to generate more complex structures whereas Fourier synthesis of a few discrete frequencies spectrum was exploited to efficiently generate high-fidelity ultrafast periodic intensity profiles. Besides linear shaping techniques, several nonlinear methods were implemented to benefit from the adiabatic evolution of the intensity pulse profile upon propagation in optical fibers. Other examples of efficient methods are based on the photonic generation involving specific Mach-Zehnder modulators, microwave photonic filters as well as frequency-to-time conversion. In this contribution, we theoretically and experimentally demonstrate a new approach enabling the synthesis of periodic high-repetition rate pulses with various intensity profiles ranging from parabola to triangular and flat-top pulses. More precisely by linear phase and amplitude shaping of only four spectral lines is it possible to reach the targeted temporal profile. Indeed, tailoring the input symmetric spectrum only requires the determination of two physical parameters: the phase difference between the inner and outer spectral sidebands and the ratio between the amplitude of these sidebands. Therefore, a systematic

  4. Electron-phonon superconductivity in YIn3

    NASA Astrophysics Data System (ADS)

    Billington, D.; Llewellyn-Jones, T. M.; Maroso, G.; Dugdale, S. B.

    2013-08-01

    First-principles calculations of the electron-phonon coupling were performed on the cubic intermetallic compound YIn3. The electron-phonon coupling constant was found to be λep = 0.42. Using the Allen-Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a Tc of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron-phonon coupling is capable of producing the superconductivity in this compound.

  5. Hot-phonon generation in THz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Spagnolo, V.; Vitiello, M. S.; Scamarcio, G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.

    2007-12-01

    Observation of non-equilibrium optical phonons population associated with electron transport in THz quantum cascade lasers is reported. The phonon occupation number was measured by using a combination of micro-probe photoluminescence and Stokes/Anti-Stokes Raman spectroscopy. Energy balance analysis allows us to estimate the phonon relaxation rate, that superlinearly increases with the electrical power in the range 1.5 W - 1.95 W, above laser threshold. This observation suggests the occurrence of stimulated emission of optical phonons.

  6. Plasphonics: local hybridization of plasmons and phonons.

    PubMed

    Marty, Renaud; Mlayah, Adnen; Arbouet, Arnaud; Girard, Christian; Tripathy, Sudhiranjan

    2013-02-25

    We show that the interaction between localized surface plasmons sustained by a metallic nano-antenna and delocalized phonons lying at the surface of an heteropolar semiconductor can generate a new class of hybrid electromagnetic modes. These plasphonic modes are investigated using an analytical model completed by accurate Green dyadic numerical simulations. When surface plasmon and surface phonon frequencies match, the optical resonances exhibit a large Rabi splitting typical of strongly interacting two-level systems. Based on numerical simulations of the electric near-field maps, we investigate the nature of the plaphonic excitations. In particular, we point out a strong local field enhancement boosted by the phononic surface. This effect is interpreted in terms of light harvesting by the plasmonic antenna from the phononic surface. We thus introduce the concept of active phononic surfaces that may be exploited for far-infared optoelectronic devices and sensors.

  7. Multi-stage phononic crystal structure for anchor-loss reduction of thin-film piezoelectric-on-silicon microelectromechanical-system resonator

    NASA Astrophysics Data System (ADS)

    Bao, Fei-Hong; Bao, Lei-Lei; Li, Xin-Yi; Ammar Khan, Muhammad; Wu, Hua-Ye; Qin, Feng; Zhang, Ting; Zhang, Yi; Bao, Jing-Fu; Zhang, Xiao-Sheng

    2018-06-01

    Thin-film piezoelectric-on-silicon acoustic wave resonators are promising for the development of system-on-chip integrated circuits with micro/nano-engineered timing reference. However, in order to realize their large potentials, a further enhancement of the quality factor (Q) is required. In this study, a novel approach, based on a multi-stage phononic crystal (PnC) structure, was proposed to achieve an ultra-high Q. A systematical study revealed that the multi-stage PnC structure formed a frequency-selective band-gap to effectively prohibit the dissipation of acoustic waves through tethers, which significantly reduced the anchor loss, leading to an insertion-loss reduction and enhancement of Q. The maximum unloaded Q u of the fabricated resonators reached the value of ∼10,000 at 109.85 MHz, indicating an enhancement by 19.4 times.

  8. Temperature Dependence of Phonons in Pyrolitic Graphite

    DOE R&D Accomplishments Database

    Brockhouse, B. N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4?K and 1500?C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes.

  9. Ultrafast Photo-Carrier Dynamics and Coherent Phonon Excitations in Topological Dirac Semimetal Cd3As2

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Wu, Qiong; Wu, Yanling; Tian, Yichao; Shi, Youguo; Zhao, Jimin

    Three dimensional (3D) topological Dirac semimetal has attracted growing research interest owing to its intriguing quantum properties such as high bulk carrier mobility and quantum spin Hall effects. However, so far, the ultrafast dynamics of a typical 3D topological Dirac semimetal, Cd3As2, as well as its coherent phonon has not been thoroughly investigated. Here we report the ultrafast dynamics of Cd3As2 by using femtosecond pump-probe spectroscopy. Two distinct relaxation processes was observed, with the lifetimes (at 5 K) of 2.4 ps and 18.6 ps, respectively. Variable temperature experiment from 5 K to 295 K also reveals signatures of phase transitions. Furthermore, coherent optical (8.1 meV) and acoustic (0.036 THz) phonon modes were generated and detected, respectively, with signatures of hybrid-excitation of the two modes. The National Basic Research Program of China (2012CB821402), the National Natural Science Foundation of China (11274372), and the External Cooperation Program of the Chinese Academy of Sciences (GJHZ1403).

  10. Phonon Recycling for Ultrasensitive Kinetic Inductance Detectors

    NASA Astrophysics Data System (ADS)

    Zmuidzinas, Jonas

    Initially proposed (Day et al. 2003; Zmuidzinas 2012) in 1999 by our Caltech/JPL group, and thanks to strong support from NASA, the superconducting (microwave) kinetic inductance detector (MKID or KID) technology continues to develop rapidly as it transitions into applications. The development effort worldwide is intensifying and NASA's continued support of KID development is essential in order to keep pace. Here we propose to investigate and demonstrate a new, low-TRL concept, which we call phonon recycling, that promises to open broad new avenues in KID design and performance. Briefly, phonon recycling allows the detector designer to tailor the responsivity and sensitivity of a KID to match the needs of the application by using geometry to restrict the rate at which recombination phonons are allowed to escape from the detector. In particular, phonon recycling should allow very low noise-equivalent power (NEP) to be achieved without requiring very low operating tem- peratures. Phonon recycling is analogous to the use of micromachined suspension legs to control the flow of heat in a bolometer, as measured by the thermal conductivity G. However, phonon recycling exploits the non-thermal distribution of recombination phonons as well as their very slow decay in crystals at low temperatures. These properties translate to geometrical and mechanical requirements for a phonon-recycled KID that are considerably more relaxed than for a bolometer operating at the same temperature and NEP. Our ultimate goal is to develop detector arrays suitable for a far-infrared (FIR) space mission, which will impose strict requirements on the array sensitivity, yield, uniformity, multiplexing density, etc. Through previous NASA support under the Strategic Astrophysics Technology (SAT) program, we have successfully demonstrated the MAKO submillimeter camera at the Caltech Submillimeter Observatory and have become familiar with these practical issues. If our demonstration of phonon recycling

  11. Phonon localization transition in relaxor ferroelectric PZN-5%PT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manley, Michael E.; Christianson, Andrew D.; Abernathy, Douglas L.

    Relaxor ferroelectric behavior occurs in many disordered ferroelectric materials but is not well understood at the atomic level. Recent experiments and theoretical arguments indicate that Anderson localization of phonons instigates relaxor behavior by driving the formation of polar nanoregions (PNRs). Here, we use inelastic neutron scattering to observe phonon localization in relaxor ferroelectric PZN-5%PT (0.95[Pb(Zn 1/3 Nb 2/3)O 3]–0.05PbTiO 3) and detect additional features of the localization process. In the lead, up to phonon localization on cooling, the local resonant modes that drive phonon localization increase in number. The increase in resonant scattering centers is attributed to a known increasemore » in the number of locally off centered Pb atoms on cooling. The transition to phonon localization occurs when these random scattering centers increase to a concentration where the Ioffe-Regel criterion is satisfied for localizing the phonon. Finally, we also model the effects of damped mode coupling on the observed phonons and phonon localization structure.« less

  12. Phonon localization transition in relaxor ferroelectric PZN-5%PT

    DOE PAGES

    Manley, Michael E.; Christianson, Andrew D.; Abernathy, Douglas L.; ...

    2017-03-27

    Relaxor ferroelectric behavior occurs in many disordered ferroelectric materials but is not well understood at the atomic level. Recent experiments and theoretical arguments indicate that Anderson localization of phonons instigates relaxor behavior by driving the formation of polar nanoregions (PNRs). Here, we use inelastic neutron scattering to observe phonon localization in relaxor ferroelectric PZN-5%PT (0.95[Pb(Zn 1/3 Nb 2/3)O 3]–0.05PbTiO 3) and detect additional features of the localization process. In the lead, up to phonon localization on cooling, the local resonant modes that drive phonon localization increase in number. The increase in resonant scattering centers is attributed to a known increasemore » in the number of locally off centered Pb atoms on cooling. The transition to phonon localization occurs when these random scattering centers increase to a concentration where the Ioffe-Regel criterion is satisfied for localizing the phonon. Finally, we also model the effects of damped mode coupling on the observed phonons and phonon localization structure.« less

  13. Investigation of Sideband Index Response to Prototype Gear Tooth Damage

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2013-01-01

    The objective of this analysis was to evaluate the ability of gear condition indicators (CI) to detect contact fatigue damage on spiral bevel gear teeth. Tests were performed in the NASA Glenn Spiral Bevel Gear Fatigue Rig on eight prototype gear sets (pinion/gear). Damage was initiated and progressed on the gear and pinion teeth. Vibration data was measured during damage progression at varying torque values while varying damage modes to the gear teeth were observed and documented with inspection photos. Sideband indexes (SI) and root mean square (RMS) CIs were calculated from the time synchronous averaged vibration data. Results found that both CIs respond differently to varying torque levels, damage levels and damage modes

  14. High-amplitude VLF transmitter signals and associated sidebands observed near the magnetic equatorial plane on the ISEE 1 satellite

    NASA Technical Reports Server (NTRS)

    Bell, T. F.

    1985-01-01

    New high-altitude ISEE 1 satellite observations of high-amplitude nonducted signals from the Omega navigation transmitter in North Dakota are reported. The amplitude of the signal was approximately 16-26 dB higher than that of similar signals observed at comparable locations on other days. Over the range L = 3.3-3.7, the transmitter pulses at 13.1 and 13.6 kHz were associated with sideband signals spaced in frequency roughly symmetrically about the carrier and generally reduced in amplitude by about 5 dB with respect to the carrier. The strongest sidebands were generally offset in frequency from the carrier by about + or - 55 Hz. Reasons are discussed for believing that the unusually high amplitude of the signals was due to wave amplification through the whistler-mode instability.

  15. Exploiting One-Dimensional Exciton-Phonon Coupling for Tunable and Efficient Single-Photon Generation with a Carbon Nanotube.

    PubMed

    Jeantet, A; Chassagneux, Y; Claude, T; Roussignol, P; Lauret, J S; Reichel, J; Voisin, C

    2017-07-12

    Condensed-matter emitters offer enriched cavity quantum electrodynamical effects due to the coupling to external degrees of freedom. In the case of carbon nanotubes, a very peculiar coupling between localized excitons and the one-dimensional acoustic phonon modes can be achieved, which gives rise to pronounced phonon wings in the luminescence spectrum. By coupling an individual nanotube to a tunable optical microcavity, we show that this peculiar exciton-phonon coupling is a valuable resource to enlarge the tuning range of the single-photon source while keeping an excellent exciton-photon coupling efficiency and spectral purity. Using the unique flexibility of our scanning fiber cavity, we are able to measure the efficiency spectrum of the very same nanotube in the Purcell regime for several mode volumes. Whereas this efficiency spectrum looks very much like the free-space luminescence spectrum when the Purcell factor is small (large mode volume), we show that the deformation of this spectrum at lower mode volumes can be traced back to the strength of the exciton-photon coupling. It shows an enhanced efficiency on the red wing that arises from the asymmetry of the incoherent energy exchange processes between the exciton and the cavity. This allows us to obtain a tuning range up to several hundred times the spectral width of the source.

  16. Engineering thermal conductance using a two-dimensional phononic crystal.

    PubMed

    Zen, Nobuyuki; Puurtinen, Tuomas A; Isotalo, Tero J; Chaudhuri, Saumyadip; Maasilta, Ilari J

    2014-03-19

    Controlling thermal transport has become relevant in recent years. Traditionally, this control has been achieved by tuning the scattering of phonons by including various types of scattering centres in the material (nanoparticles, impurities, etc). Here we take another approach and demonstrate that one can also use coherent band structure effects to control phonon thermal conductance, with the help of periodically nanostructured phononic crystals. We perform the experiments at low temperatures below 1 K, which not only leads to negligible bulk phonon scattering, but also increases the wavelength of the dominant thermal phonons by more than two orders of magnitude compared to room temperature. Thus, phononic crystals with lattice constants ≥1 μm are shown to strongly reduce the thermal conduction. The observed effect is in quantitative agreement with the theoretical calculation presented, which accurately determined the ballistic thermal conductance in a phononic crystal device.

  17. Design of phononic band gaps in functionally graded piezocomposite materials by using topology optimization

    NASA Astrophysics Data System (ADS)

    Vatanabe, Sandro L.; Silva, Emílio C. N.

    2011-04-01

    One of the properties of composite materials is the possibility of having phononic band gaps, within which sound and vibrations at certain frequencies do not propagate. These materials are called Phononic Crystals (PCs). PCs with large band gaps are of great interest for many applications, such as transducers, elastic/ acoustic filters, noise control, and vibration shields. Most of previous works concentrates on PCs made of elastic isotropic materials; however, band gaps can be enlarged by using non-isotropic materials, such as piezoelectric materials. Since the main property of PCs is the presence of band gaps, one possible way to design structures which have a desired band gap is through Topology Optimization Method (TOM). TOM is a computational technique that determines the layout of a material such that a prescribed objective is maximized. Functionally Graded Materials (FGM) are composite materials whose properties vary gradually and continuously along a specific direction within the domain of the material. One of the advantages of applying the FGM concept to TOM is that it is not necessary a discrete 0-1 result, once the material gradation is part of the solution. Therefore, the interpretation step becomes easier and the dispersion diagram obtained from the optimization is not significantly modified. In this work, the main objective is to optimize the position and width of piezocomposite materials band gaps. Finite element analysis is implemented with Bloch-Floquet theory to solve the dynamic behavior of two-dimensional functionally graded unit cells. The results demonstrate that phononic band gaps can be designed by using this methodology.

  18. Ternary mixed crystal effects on interface optical phonon and electron-phonon coupling in zinc-blende GaN/AlxGa1-xN spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wen Deng; Chen, Guang De; Yuan, Zhao Lin; Yang, Chuang Hua; Ye, Hong Gang; Wu, Ye Long

    2016-02-01

    The theoretical investigations of the interface optical phonons, electron-phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron-phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1-xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron-phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1-xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron-phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron-phonon coupling strengths appear linear changes.

  19. Excellent low-frequency sound absorption of radial membrane acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Hou, Hong; Yu, Lie

    2017-01-01

    This paper proposes a new radial membrane acoustic metamaterial (RMAM) structure, wherein a layer membrane substrate is covered with a rigid ring (polymethyl methacrylate frame and aluminum lump). The dispersion relationships, transmission spectra and displacement fields of the eigenmodes of this radial membrane acoustic metamaterial are studied with FEM. In contrast to the traditional radial phononic crystals (RPCs), the proposed structures can open bandgaps (BGs) in lower frequency range (0-300 Hz). Simulation results show that the physical mechanism behind the bandgaps is the coupling effects between the rotational vibration of aluminum lump and the transverse vibration of membrane. Geometrical parameters which can adjust the bandgaps’ widths or positions are analyzed. Finally, we investigate the axial sound transmission loss of this acoustic metamaterial structure, and discuss the effects of factor loss, membrane thickness and the number of layers of unit cell on the axial sound transmission loss. Dynamic effective density proves the accuracy of the FEM results. This kind of structure has potential application in pipe or circular ring structure for damping/noise reduction.

  20. Pressure-enabled phonon engineering in metals

    PubMed Central

    Lanzillo, Nicholas A.; Thomas, Jay B.; Watson, Bruce; Washington, Morris; Nayak, Saroj K.

    2014-01-01

    We present a combined first-principles and experimental study of the electrical resistivity in aluminum and copper samples under pressures up to 2 GPa. The calculations are based on first-principles density functional perturbation theory, whereas the experimental setup uses a solid media piston–cylinder apparatus at room temperature. We find that upon pressurizing each metal, the phonon spectra are blue-shifted and the net electron–phonon interaction is suppressed relative to the unstrained crystal. This reduction in electron–phonon scattering results in a decrease in the electrical resistivity under pressure, which is more pronounced for aluminum than for copper. We show that density functional perturbation theory can be used to accurately predict the pressure response of the electrical resistivity in these metals. This work demonstrates how the phonon spectra in metals can be engineered through pressure to achieve more attractive electrical properties. PMID:24889627