Phonon sidebands of photoluminescence in single wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Yu, Guili; Liang, Qifeng; Jia, Yonglei; Dong, Jinming
2010-01-01
The multiphonon-assisted photoluminescence (PL) of the single wall carbon nanotubes (SWNTs) have been studied by solving the Schrödinger equation, showing a set of phonon sidebands, both the Stokes and anti-Stokes lines, which are induced by the longitudinal optical phonon and radial breathing mode phonon. All the calculated results are in a good agreement with the recent experimental PL spectra of the SWNTs [F. Plentz, H. B. Ribeiro, A. Jorio, M. S. Strano, and M. A. Pimenta, Phys. Rev. Lett. 95, 247401 (2005)] and J. Lefebvre and P. Finnie, Phys. Rev. Lett. 98, 167406 (2007)]. In addition, it is very interesting to find in the calculated PL several additional phonon sidebands with rather weak intensities, which are caused by the exciton's coupling with two kinds of phonons, and expected to be observed in future experiments.
Coherent acoustic phonons in nanostructures
NASA Astrophysics Data System (ADS)
Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.
2008-02-01
Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.
Phonon sideband studies of the spin-triplet optical transition in diamond nitrogen-vacancy centers
NASA Astrophysics Data System (ADS)
Alkauskas, Audrius; Toyli, David M.; Buckley, Bob B.; Awschalom, David D.; van de Walle, Chris G.
2013-03-01
In the past decade, the nitrogen-vacancy center in diamond has emerged as a promising solid-state system for quantum-information processing, and also for nanoscale magnetic, electric, and thermal sensing. All of these applications are partly enabled because the spin of the center can be measured through photoluminescence. This calls for a deeper understanding of the photoluminescence spectrum, in particular its phonon side-band. In this work we study the coupling of lattice vibrations to the triplet (3E -->3A2) optical transition from first-principles electronic structure calculations. Our formulation includes both quasi-localized and bulk phonons, and leads to an excellent agreement of the calculated and the measured photoluminescence lineshape. This good agreement enables the application of the developed methodology to other defects in semiconductors that are currently being investigated as viable quantum bits. This work has been supported by the NSF, AFOSR, and the Swiss NSF.
Acoustic superfocusing by solid phononic crystals
Zhou, Xiaoming; Assouar, M. Badreddine Oudich, Mourad
2014-12-08
We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.
Phonon Emission from Acoustic Black Hole
NASA Astrophysics Data System (ADS)
Fang, Hengzhong; Zhou, Kaihu; Song, Yuming
2012-08-01
We study the phonon tunneling through the horizon of an acoustic black hole by solving the Hamilton-Jacobi equation. We also make use of the closed-path integral to calculate the tunneling probability, and an improved way to determine the temporal contribution is used. Both the results from the two methods agree with Hawking's initial analysis.
Correlated anomalous phase diffusion of sideband-excited phonons in an electromechanical resonator
NASA Astrophysics Data System (ADS)
Dong, Xiaoshi; Sun, Fengpei; Zou, Jie; Dykman, Mark; Chan, Hobun
We study the phase fluctuations of self-sustained oscillations induced by dynamical backaction in a micromechanical resonator. The resonatorhas two vibrational modes with strongly differing frequencies and decay rates. The high-frequency mode acts as a phonon cavity mode, playing a similar role as photon modes in optomechanical systems. When sufficiently strong pumping is applied at the blue-detuned sideband of the cavity, the dynamical backaction leads to a parametric instability accompanied by self-sustained oscillations. We find that self-sustained oscillations are induced not only in the low frequency mechanical mode, but also in the high frequency cavity mode. The nonlinear nature of the backaction leads to hysteresis of this self-sustained oscillations. In each mode, the phase undergoes anomalous diffusion, where the mean square phase change in time follows a superlinear power law. The exponent of this power law is determined by the 1/f-type intrinsic frequency noise of the resonator. Remarkably, the phase fluctuation of the two modes show near perfect anti-correlation, our findings show that self-sustained oscillations induced by dynamical backaction offer new opportunities of phase manipulation and investigation of fundamental properties of resonating.
Nanowave devices for terahertz acoustic phonons
NASA Astrophysics Data System (ADS)
Lanzillotti-Kimura, N. D.; Fainstein, A.; Lemaître, A.; Jusserand, B.
2006-02-01
The emergence of the area of nanophononics requires the development of terahertz (THz) acoustic devices with tailored properties. We describe nonperiodic planar nanostructures with specific THz phononic response and superior performance. We show that improved devices based on GaAs and AlAs layers can be designed using an optimization Nelder-Mead simplex method, and grown with state-of-the-art molecular beam epitaxy. We also demonstrate that high-resolution Raman scattering provides a powerful tool to characterize these devices. We illustrate the concept with results on acoustic THz edge and color filters.
Propagation of large-wavevector acoustic phonons new perspectives from phonon imaging
NASA Astrophysics Data System (ADS)
Wolfe, James P.
Within the last decade a number of attempts have been made to observe the ballistic propagation of large wavevector acoustic phonons in crystals at low temperatures. Time-of-flight heat-pulse methods have difficulty in distinguishing between scattered phonons and ballistic phonons which travel dispersively at subsonic velocities. Fortunately, ballistic phonons can be identified by their highly anisotropic flux, which is observed by phonon imaging techniques. In this paper, several types of phonon imaging experiments are described which reveal the dispersive propagation of large-wavevector phonons and expose interesting details of the phonon scattering processes.
Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity
NASA Astrophysics Data System (ADS)
Li, Wu; Carrete, Jesús; Madsen, Georg K. H.; Mingo, Natalio
2016-05-01
We predict a marked effect of optical-acoustic phonon hybridization on phonon scattering and lattice thermal conductivity (κ ), and illustrate it in the case of Fe2Ge3 . This material presents very low-lying optical phonons with an energy of 1.8 meV at the Brillouin zone center, which show avoided crossings with longitudinal acoustic (LA) phonons, due to optical-acoustic phonon polarization hybridization. Because the optical phonons have nonvanishing scattering rates, even a small amount of hybridization with the optical phonon can increase the scattering rates of LA phonons by much more than one order of magnitude, causing the contribution of these phonons to κ to vanish. At low temperatures, the contributions of all LA phonons are eliminated, and thus the avoided crossing leads to a reduction of thermal conductivity by more than half. The scattering rates are very sensitive to the optical-acoustic phonon hybridization strength, characterized by the gap at the avoided crossing point and varied with the wave-vector direction. Our work presents a different reduction mechanism of κ in systems with optical-acoustic phonon hybridization, which can benefit the search for new thermoelectric materials.
Coherent phonon modulation by nanoscale acoustically mismatched interface
NASA Astrophysics Data System (ADS)
Yu, Shangjie; Ouyang, Min
2015-03-01
Precise engineering of phonon spectrum by material design is essential for in-depth understanding of fundamental physical phenomena as well as new technology breakthrough. When phonons propagate through two different constituents, their mismatched interface can coherently modulate phonon spectrum. In this talk, we will demonstrate the phonon characteristics can be precisely tailored through nanoscale interfacial coupling by investigating acoustically mismatched core-shell hetero-nanostructures with ultrafast pump-probe technique. Coherent phonon coupling between core and shell through their interface has been experimentally revealed, which agrees well with theoretical simulation. This interfacial phonon coupling also represents a unique fingerprint of complex nanostructures.
Phonon Diodes and Transistors from Magneto-acoustics
NASA Astrophysics Data System (ADS)
Sklan, Sophia; Grossman, Jeffrey
2014-03-01
The creation of non-reciprocal phononic systems holds the promise of allowing computers that would process thermal or acoustic (rather than electronic) signals. By sculpting the magnetic field applied to magneto-acoustic materials (which couple phonons to a magnetic field, typically due to effects like magnon-phonon coupling in yttrium iron garnet), phonons can be used for information processing in analogy with photonic computing. Using a combination of analytic and numerical techniques, we demonstrate designs for diodes (isolators) and transistors that are independent of their conventional, electronic formulation. We analyze the experimental feasibility of these systems, including the sensitivity of the circuits to likely systematic and random errors.
Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R
2014-11-21
We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics. PMID:25479504
Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.
2015-10-28
We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D=180-nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25-nm and 40-nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D<40 nm.
Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.
2015-10-28
We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D=180-nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25-nm and 40-nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data andmore » calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D<40 nm.« less
The phononic crystals: An unending quest for tailoring acoustics
NASA Astrophysics Data System (ADS)
Kushwaha, Manvir S.
2016-07-01
Periodicity (in time or space) is a part and parcel of every living being: one can see, hear and feel it. Everyday examples are locomotion, respiration and heart beat. The reinforced N-dimensional periodicity over two or more crystalline solids results in the so-called phononic band gap crystals. These can have dramatic consequences on the propagation of phonons, vibrations and sound. The fundamental physics of cleverly fabricated phononic crystals can offer a systematic route to realize the Anderson localization of sound and vibrations. As to the applications, the phononic crystals are envisaged to find ways in the architecture, acoustic waveguides, designing transducers, elastic/acoustic filters, noise control, ultrasonics, medical imaging and acoustic cloaking, to mention a few. This review focuses on the brief sketch of the progress made in the field that seems to have prospered even more than was originally imagined in the early nineties.
Electrical modulation and switching of transverse acoustic phonons
NASA Astrophysics Data System (ADS)
Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.
2016-07-01
We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.
Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices.
Poyser, Caroline L; Czerniuk, Thomas; Akimov, Andrey; Diroll, Benjamin T; Gaulding, E Ashley; Salasyuk, Alexey S; Kent, Anthony J; Yakovlev, Dmitri R; Bayer, Manfred; Murray, Christopher B
2016-01-26
The phonon properties of films fabricated from colloidal semiconductor nanocrystals play a major role in thermal conductance and electron scattering, which govern the principles for building colloidal-based electronics and optics including thermoelectric devices with a high ZT factor. The key point in understanding the phonon properties is to obtain the strength of the elastic bonds formed by organic ligands connecting the individual nanocrystallites. In the case of very weak bonding, the ligands become the bottleneck for phonon transport between infinitively rigid nanocrystals. In the opposite case of strong bonding, the colloids cannot be considered as infinitively rigid beads and the distortion of the superlattice caused by phonons includes the distortion of the colloids themselves. We use the picosecond acoustics technique to study the acoustic coherent phonons in superlattices of nanometer crystalline CdSe colloids. We observe the quantization of phonons with frequencies up to 30 GHz. The frequencies of quantized phonons depend on the thickness of the colloidal films and possess linear phonon dispersion. The measured speed of sound and corresponding wave modulus in the colloidal films point on the strong elastic coupling provided by organic ligands between colloidal nanocrystals. PMID:26696021
Coupling of Excitons and Discrete Acoustic Phonons in Vibrationally Isolated Quantum Emitters.
Werschler, Florian; Hinz, Christopher; Froning, Florian; Gumbsheimer, Pascal; Haase, Johannes; Negele, Carla; de Roo, Tjaard; Mecking, Stefan; Leitenstorfer, Alfred; Seletskiy, Denis V
2016-09-14
The photoluminescence emission by mesoscopic condensed matter is ultimately dictated by the fine-structure splitting of the fundamental exciton into optically allowed and dipole-forbidden states. In epitaxially grown semiconductor quantum dots, nonradiative equilibration between the fine-structure levels is mediated by bulk acoustic phonons, resulting in asymmetric spectral broadening of the excitonic luminescence. In isolated colloidal quantum dots, spatial confinement of the vibrational motion is expected to give rise to an interplay between the quantized electronic and phononic degrees of freedom. In most cases, however, zero-dimensional colloidal nanocrystals are strongly coupled to the substrate such that the charge relaxation processes are still effectively governed by the bulk properties. Here we show that encapsulation of single colloidal CdSe/CdS nanocrystals into individual organic polymer shells allows for systematic vibrational decoupling of the semiconductor nanospheres from the surroundings. In contrast to epitaxially grown quantum dots, simultaneous quantization of both electronic and vibrational degrees of freedom results in a series of strong and narrow acoustic phonon sidebands observed in the photoluminescence. Furthermore, an individual analysis of more than 200 compound particles reveals that enhancement or suppression of the radiative properties of the fundamental exciton is controlled by the interaction between fine-structure states via the discrete vibrational modes. For the first time, pronounced resonances in the scattering rate between the fine-structure states are directly observed, in good agreement with a quantum mechanical model. The unambiguous assignment of mediating acoustic modes to the observed scattering resonances complements the experimental findings. Thus, our results form an attractive basis for future studies on subterahertz quantum opto-mechanics and efficient laser cooling at the nanoscale. PMID:27550902
Generation mechanism of terahertz coherent acoustic phonons in Fe
NASA Astrophysics Data System (ADS)
Henighan, T.; Trigo, M.; Bonetti, S.; Granitzka, P.; Higley, D.; Chen, Z.; Jiang, M. P.; Kukreja, R.; Gray, A.; Reid, A. H.; Jal, E.; Hoffmann, M. C.; Kozina, M.; Song, S.; Chollet, M.; Zhu, D.; Xu, P. F.; Jeong, J.; Carva, K.; Maldonado, P.; Oppeneer, P. M.; Samant, M. G.; Parkin, S. S. P.; Reis, D. A.; Dürr, H. A.
2016-06-01
We use femtosecond time-resolved hard x-ray scattering to detect coherent acoustic phonons generated during ultrafast laser excitation of ferromagnetic bcc Fe films grown on MgO(001). We observe the coherent longitudinal-acoustic phonons as a function of wave vector through analysis of the temporal oscillations in the x-ray scattering signal. The width of the extracted strain wave front associated with this coherent motion is ˜100 fs. An effective electronic Grüneisen parameter is extracted within a two-temperature model. However, ab initio calculations show that the phonons are nonthermal on the time scale of the experiment, which calls into question the validity of extracting physical constants by fitting such a two-temperature model.
Nonlinear Transport and Noise Properties of Acoustic Phonons
NASA Astrophysics Data System (ADS)
Walczak, Kamil
We examine heat transport carried by acoustic phonons in molecular junctions composed of organic molecules coupled to two thermal baths of different temperatures. The phononic heat flux and its dynamical noise properties are analyzed within the scattering (Landauer) formalism with transmission probability function for acoustic phonons calculated within the method of atomistic Green's functions (AGF technique). The perturbative computational scheme is used to determine nonlinear corrections to phononic heat flux and its noise power spectral density with up to the second order terms with respect to temperature difference. Our results show the limited applicability of ballistic Fourier's law and fluctuation-dissipation theorem to heat transport in quantum systems. We also derive several noise-signal relations applicable to nanoscale heat flow carried by phonons, but valid for electrons as well. We also discuss the extension of the perturbative transport theory to higher order terms in order to address a huge variety of problems related to nonlinear thermal effects which may occur at nanoscale and at strongly non-equilibrium conditions with high-intensity heat fluxes. This work was supported by Pace University Start-up Grant.
Uniaxial strain-induced Kohn anomaly and electron-phonon coupling in acoustic phonons of graphene
NASA Astrophysics Data System (ADS)
Cifuentes-Quintal, M. E.; de la Peña-Seaman, O.; Heid, R.; de Coss, R.; Bohnen, K.-P.
2016-08-01
Recent advances in strain engineering at the nanoscale have shown the feasibility to modulate the properties of graphene. Although the electron-phonon (e-ph) coupling and Kohn anomalies in graphene define the phonon branches contributing to the resonance Raman scattering and are relevant to the electronic and thermal transport as a scattering source, the evolution of the e-ph coupling as a function of strain has been less studied. In this work, the Kohn anomalies and the e-ph coupling in uniaxially strained graphene along armchair and zigzag directions were studied by means of density functional perturbation theory calculations. In addition to the phonon anomaly at the transversal optical (TO) phonon branch in the K point for pristine graphene, we found that uniaxial strain induces a discontinuity in the frequency derivative of the longitudinal acoustic phonon branch. This behavior corresponds to the emergence of a Kohn anomaly, as a consequence of a strain-enhanced e-ph coupling. Thus, the present results for uniaxially strained graphene contrast with the commonly assumed view that the e-ph coupling around the K point is only present in the TO phonon branch.
Hot electron cooling by acoustic phonons in graphene.
Betz, A C; Vialla, F; Brunel, D; Voisin, C; Picher, M; Cavanna, A; Madouri, A; Fève, G; Berroir, J-M; Plaçais, B; Pallecchi, E
2012-08-01
We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T ∝ V at low bias in agreement with the heat diffusion to the leads described by the Wiedemann-Franz law. We report on T ∝ √V behavior at high bias, which corresponds to a T(4) dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant Σ in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of Σ, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors. PMID:23006198
Hot Electron Cooling by Acoustic Phonons in Graphene
NASA Astrophysics Data System (ADS)
Betz, A. C.; Vialla, F.; Brunel, D.; Voisin, C.; Picher, M.; Cavanna, A.; Madouri, A.; Fève, G.; Berroir, J.-M.; Plaçais, B.; Pallecchi, E.
2012-08-01
We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T∝V at low bias in agreement with the heat diffusion to the leads described by the Wiedemann-Franz law. We report on T∝V behavior at high bias, which corresponds to a T4 dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant Σ in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of Σ, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors.
Electrical manipulation of crystal symmetry for switching transverse acoustic phonons.
Jeong, H; Jho, Y D; Stanton, C J
2015-01-30
We experimentally explore the use of a novel device where lateral electric fields can be applied to break the translational symmetry within the isotropic plane and hence change the selection rules to allow normally forbidden transverse acoustic (TA) phonon generations. The ultrafast screening of the lateral electric field by the photocarriers relieves shear strain in the structure and switches on the propagating TA waves. The amplitude and on-state time of the TA mode can be modulated by the external field strength and size of the laterally biased region. The observed frequency shift with an external bias as well as the strong geometrical dependence confirm the role of the asymmetric potential distribution in electrically manipulating the crystal symmetry to control modal behavior of acoustic phonons. PMID:25679892
Electrical Manipulation of Crystal Symmetry for Switching Transverse Acoustic Phonons
NASA Astrophysics Data System (ADS)
Jeong, H.; Jho, Y. D.; Stanton, C. J.
2015-01-01
We experimentally explore the use of a novel device where lateral electric fields can be applied to break the translational symmetry within the isotropic plane and hence change the selection rules to allow normally forbidden transverse acoustic (TA) phonon generations. The ultrafast screening of the lateral electric field by the photocarriers relieves shear strain in the structure and switches on the propagating TA waves. The amplitude and on-state time of the TA mode can be modulated by the external field strength and size of the laterally biased region. The observed frequency shift with an external bias as well as the strong geometrical dependence confirm the role of the asymmetric potential distribution in electrically manipulating the crystal symmetry to control modal behavior of acoustic phonons.
Nonlinear propagation and control of acoustic waves in phononic superlattices
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Mehrem, Ahmed; Picó, Rubén; García-Raffi, Lluís M.; Sánchez-Morcillo, Víctor J.
2016-05-01
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime. xml:lang="fr"
Electron - acoustic phonon coupling in colloidal lead sulfide quantum dots
NASA Astrophysics Data System (ADS)
Cho, Byungmoon; Tiwari, Vivek; Spencer, Austin; Baranov, Dmitry; Park, Samuel; Jonas, David
2014-03-01
Lead chalcogenide quantum dots (QDs) with bandgaps in the shortwave infrared are candidate materials for next generation photovoltaics exceeding the Shockley-Queisser limit. Despite ongoing controversy, multiple exciton generation (MEG) in QDs offers potential for improved photovoltaic efficiency. Hot carriers from high energy photoexcitation dissipate excess energy via coupled phonons; this is detrimental to MEG. The electron-phonon coupling (EPC) magnitude, partitioning among modes and dependence on the size/shape are poorly understood. We performed degenerate femtosecond pump-probe spectroscopy to investigate Auger recombination dynamics, a reverse process of MEG. We observe a quantum beat due to coherent acoustic phonons in femtosecond pump-probe signals from oleate capped colloidal lead sulfide QDs in toluene. A 3.4 ps period oscillation decays with 4.6 ps damping constant in 8 nm diameter dots; the amplitude increases linearly with pump energy and modulation is weaker than reported in smaller dots. An elastic continuum model for acoustic phonon frequency vs. dot diameter suggests a not yet understood quantitative discrepancy with prior work. These relaxation processes have important implications for QD photovoltaics.
Femtosecond optical excitation of coherent acoustic phonons in a piezoelectric p-n junction
NASA Astrophysics Data System (ADS)
Wen, Yu-Chieh; Chern, Gia-Wei; Lin, Kung-Hsuan; Yeh, Jeffrey Jarren; Sun, Chi-Kuang
2011-11-01
We present a theoretical model for the photogeneration of coherent acoustic phonons in a piezoelectric p-n junction. In our model, the transport of photoexcited carriers is governed by the drift-diffusion equation, whereas the dynamics of acoustic phonons obeys a loaded string equation. Among various mechanisms, the piezoelectric coupling is found to dominate the acoustic-phonon generation process. The waveform of the photogenerated acoustic pulse is strongly influenced by the various dynamics of the photoexcited carriers, especially the picosecond hole drifting. Our calculation also confirms the crucial role of the built-in electric field in the formation of coherent acoustic phonons under optical excitations.
Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon
NASA Astrophysics Data System (ADS)
Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-03-01
Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.
Theoretical study on ultrafast dynamics of coherent acoustic phonons in semiconductor nanocrystals
NASA Astrophysics Data System (ADS)
Huang, Tongyun; Han, Peng; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng; Ye, Jiasheng; Zhang, Yan
2016-05-01
We present a theoretical study on the ultrafast dynamics of coherent acoustic phonons in semiconductor quantum dots using continuum model calculations. The excitonic states and the coherent acoustic vibrational modes of semiconductor quantum dots are calculated using the effective mass approximation and continuum elastic medium model, respectively. By solving the Liouville–von Neumann equation and the equation of motion, we obtain the oscillation of coherent acoustic phonon amplitude excited by a pump pulse laser. Owing to the ultrafast excitation of coherent phonons, both the amplitude and the phase of the coherent phonon oscillation are constant with time. This coherent phonon oscillation results in conservation of the coherence of the exciton state, which cannot exist in a system interacting with incoherent phonons. We further study the amplitude and the period of coherent acoustic phonon oscillation as a function of pump pulse energy detuning, quantum dot size, and material.
Numerical investigation of diffraction of acoustic waves by phononic crystals
NASA Astrophysics Data System (ADS)
Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent
2012-05-01
Diffraction as well as transmission of acoustic waves by two-dimensional phononic crystals (PCs) composed of steel rods in water are investigated in this paper. The finite element simulations were performed in order to compute pressure fields generated by a line source that are incident on a finite size PC. Such field maps are analyzed based on the complex band structure for the infinite periodic PC. Finite size computations indicate that the exponential decrease of the transmission at deaf frequencies is much stronger than that in Bragg band gaps.
Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments
Galliou, Serge; Goryachev, Maxim; Bourquin, Roger; Abbé, Philippe; Aubry, Jean Pierre; Tobar, Michael E.
2013-01-01
Low loss Bulk Acoustic Wave devices are considered from the point of view of the solid state approach as phonon-confining cavities. We demonstrate effective design of such acoustic cavities with phonon-trapping techniques exhibiting extremely high quality factors for trapped longitudinally-polarized phonons of various wavelengths. Quality factors of observed modes exceed 1 billion, with a maximum Q-factor of 8 billion and Q × f product of 1.6 · 1018 at liquid helium temperatures. Such high sensitivities allow analysis of intrinsic material losses in resonant phonon systems. Various mechanisms of phonon losses are discussed and estimated. PMID:23823569
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
NASA Astrophysics Data System (ADS)
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-02-01
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li E-mail: elaineli@physics.utexas.edu; Li, Xiaoqin E-mail: elaineli@physics.utexas.edu
2015-02-02
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
Material and Phonon Engineering for Next Generation Acoustic Devices
NASA Astrophysics Data System (ADS)
Kuo, Nai-Kuei
This thesis presents the theoretical and experimental work related to micromachining of low intrinsic loss sapphire and phononic crystals for engineering new classes of electroacoustic devices for frequency control applications. For the first time, a low loss sapphire suspended membrane was fabricated and utilized to form the main body of a piezoelectric lateral overtone bulk acoustic resonator (LOBAR). Since the metalized piezoelectric transducer area in a LOBAR is only a small fraction of the overall resonant cavity (made out of sapphire), high quality factor (Q) overtones are attained. The experiment confirms the low intrinsic mechanical loss of the transferred sapphire thin film, and the resonators exhibit the highest Q of 5,440 at 2.8 GHz ( f·Q of 1.53.1013 Hz). This is also the highest f·Q demonstrated for aluminum-nitride-(AIN)-based Lamb wave devices to date. Beyond demonstrating a low loss device, this experimental work has laid the foundation for the future development of new micromechanical devices based on a high Q, high hardness and chemically resilient material. The search for alternative ways to more efficiently perform frequency control functionalities lead to the exploration of Phononic Crystal (PnC) structures in AIN thin films. Four unit cell designs were theoretically and experimentally investigated to explore the behavior of phononic bandgaps (PBGs) in the ultra high frequency (UHF) range: (i) the conventional square lattice with circular air scatterer, (ii) the inverse acoustic bandgap (IABG) structure, (iii) the fractal PnC, and (iv) the X-shaped PnC. Each unit cell has its unique frequency characteristic that was exploited to synthesize either cavity resonators or improve the performance of acoustic delay lines. The PBGs operate in the range of 770 MHz to 1 GHz and exhibit a maximum acoustic rejection of 40 dB. AIN Lamb wave transducers (LWTs) were employed for the experimental demonstration of the PBGs and cavity resonances. Ultra
Acoustic scattering from phononic crystals with complex geometry.
Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J
2016-05-01
This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique. PMID:27250192
NASA Astrophysics Data System (ADS)
Wang, T.; Ke, M.; Qiu, C.; Liu, Z.
2016-06-01
We present the design for an acoustic system that can achieve particle trapping and transport using the acoustic force field above a phononic crystal plate. The phononic crystal plate comprised a thin brass plate with periodic slits alternately embedded with two kinds of elastic inclusions. Enhanced acoustic transmission and localized acoustic fields were achieved when the structure was excited by external acoustic waves. Because of the different resonant frequencies of the two elastic inclusions, the acoustic field could be controlled via the working frequency. Particles were transported between adjacent traps under the influence of the adjustable acoustic field. This device provides a new and versatile avenue for particle manipulation that would complement other means of particle manipulation.
Phonon-Photon Mapping in a Color Center in Hexagonal Boron Nitride.
Vuong, T Q P; Cassabois, G; Valvin, P; Ouerghi, A; Chassagneux, Y; Voisin, C; Gil, B
2016-08-26
We report on the ultraviolet optical response of a color center in hexagonal boron nitride. We demonstrate a mapping between the vibronic spectrum of the color center and the phonon dispersion in hexagonal boron nitride, with a striking suppression of the phonon assisted emission signal at the energy of the phonon gap. By means of nonperturbative calculations of the electron-phonon interaction in a strongly anisotropic phonon dispersion, we reach a quantitative interpretation of the acoustic phonon sidebands from cryogenic temperatures up to room temperature. Our analysis provides an original method for estimating the spatial extension of the electronic wave function in a point defect. PMID:27610882
Mante, Pierre-Adrien; Huang, Yu-Ru; Yang, Szu-Chi; Liu, Tzu-Ming; Maznev, Alexei A; Sheu, Jinn-Kong; Sun, Chi-Kuang
2015-02-01
Thanks to ultrafast acoustics, a better understanding of acoustic dynamics on a short time scale has been obtained and new characterization methods at the nanoscale have been developed. Among the materials that were studied during the development of ultrafast acoustics, nitride based heterostructures play a particular role due to their piezoelectric properties and the possibility to generate phonons with over-THz frequency and bandwidth. Here, we review some of the work performed using this type of structure, with a focus on THz phonon spectroscopy and nanoscopy. First, we present a brief description of the theory of coherent acoustic phonon generation by piezoelectric heterostructure. Then the first experimental observation of coherent acoustic phonon generated by the absorption of ultrashort light pulses in piezoelectric heterostructures is presented. From this starting point, we then present some methods developed to realize customizable phonon generation. Finally we review some more recent applications of these structures, including imaging with a nanometer resolution, broadband attenuation measurements with a frequency up to 1THz and phononic bandgap characterization. PMID:25455189
Jean, Cyril; Belliard, Laurent; Cornelius, Thomas W; Thomas, Olivier; Toimil-Molares, Maria Eugenia; Cassinelli, Marco; Becerra, Loïc; Perrin, Bernard
2014-12-01
We report on gigahertz acoustic phonon waveguiding in free-standing single copper nanowires studied by femtosecond transient reflectivity measurements. The results are discussed on the basis of the semianalytical resolution of the Pochhammer and Chree equation. The spreading of the generated Gaussian wave packet of two different modes is derived analytically and compared with the observed oscillations of the sample reflectivity. These experiments provide a unique way to independently obtain geometrical and material characterization. This direct observation of coherent guided acoustic phonons in a single nano-object is also the first step toward nanolateral size acoustic transducer and comprehensive studies of the thermal properties of nanowires. PMID:26278939
Interface nano-confined acoustic waves in polymeric surface phononic crystals
Travagliati, Marco; Nardi, Damiano; Giannetti, Claudio; Ferrini, Gabriele; Banfi, Francesco; Gusev, Vitalyi; Pingue, Pasqualantonio; Piazza, Vincenzo
2015-01-12
The impulsive acoustic dynamics of soft polymeric surface phononic crystals is investigated here in the hypersonic frequency range by near-IR time-resolved optical diffraction. The acoustic response is analysed by means of wavelet spectral methods and finite element modeling. An unprecedented class of acoustic modes propagating within the polymer surface phononic crystal and confined within 100 nm of the nano-patterned interface is revealed. The present finding opens the path to an alternative paradigm for characterizing the mechanical properties of soft polymers at interfaces and for sensing schemes exploiting polymers as embedding materials.
Acoustic-phonon-limited mobility and giant phonon-drag thermopower in MgZnO/ZnO heterostructures
Tsaousidou, M.
2013-12-04
We present numerical simulations for the acoustic-phonon-limited mobility, μ{sub ac}, in two-dimensional electron gases (2DEGs) confined in MgZnO/ZnO heterostructures for temperatures 0.4–20 K. The calculations are based on the semiclassical Boltzmann equation. We examine two 2DEGs with sheet densities 1.4 and 7×10{sup 15} m{sup −2}. Good agreement is found with recent experimental data without any adjustable parameter. We also calculate the contribution to thermopower that arises due to the phonon wind set up by a temperature gradient (the so-called phonon-drag thermopower, S{sup g}). A giant magnitude of S{sup g} is predicted that exceeds 50–100 mV/K at 5 K depending on the sheet density. Our findings suggest that the ZnO based heterostructures could be promising materials for thermoelectric applications at low temperatures.
NASA Astrophysics Data System (ADS)
Pop, Eric; Dutton, Robert W.; Goodson, Kenneth E.
2004-11-01
We describe the implementation of a Monte Carlo model for electron transport in silicon. The model uses analytic, nonparabolic electron energy bands, which are computationally efficient and sufficiently accurate for future low-voltage (<1V) nanoscale device applications. The electron-lattice scattering is incorporated using an isotropic, analytic phonon-dispersion model, which distinguishes between the optical/acoustic and the longitudinal/transverse phonon branches. We show that this approach avoids introducing unphysical thresholds in the electron distribution function, and that it has further applications in computing detailed phonon generation spectra from Joule heating. A set of deformation potentials for electron-phonon scattering is introduced and shown to yield accurate transport simulations in bulk silicon across a wide range of electric fields and temperatures. The shear deformation potential is empirically determined at Ξu=6.8eV, and consequently, the isotropically averaged scattering potentials with longitudinal and transverse acoustic phonons are DLA=6.39eV and DTA=3.01eV, respectively, in reasonable agreement with previous studies. The room-temperature electron mobility in strained silicon is also computed and shown to be in better agreement with the most recent phonon-limited data available. As a result, we find that electron coupling with g-type phonons is about 40% lower, and the coupling with f-type phonons is almost twice as strong as previously reported.
Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action.
Ruello, Pascal; Gusev, Vitalyi E
2015-02-01
In this review we address the microscopic mechanisms that are involved in the photogeneration processes of GHz-THz coherent acoustic phonons (CAP) induced by an ultrafast laser pulse. Understanding and describing the underlying physics is necessary indeed for improving the future sources of coherent acoustic phonons useful for the non-destructive testing optoacoustic techniques. Getting more physical insights on these processes also opens new perspectives for the emerging field of the opto-mechanics where lattice motions (surface and/or interfaces ultrafast displacements, nanostructures resonances) are controlled by light. We will then remind the basics of electron-phonon and photon-phonon couplings by discussing the deformation potential mechanism, the thermoelasticity, the inverse piezoelectric effect and the electrostriction in condensed matter. Metals, semiconductors and oxide materials will be discussed. The contribution of all these mechanisms in the photogeneration process of sound will be illustrated over several examples coming from the rich literature. PMID:25038958
Direct measurement of coherent subterahertz acoustic phonons mean free path in GaAs
NASA Astrophysics Data System (ADS)
Legrand, R.; Huynh, A.; Jusserand, B.; Perrin, B.; Lemaître, A.
2016-05-01
The phonon mean free path is generally inferred from the measurement of thermal conductivity and we are still lacking precise information on this quantity. Recent advances in the field of high-frequency phonons transduction using semiconductor superlattices give the opportunity to fill this gap. We present experimental results on the attenuation of longitudinal acoustic phonons in GaAs in the frequency and temperature ranges 0.2-1 THz and 10-80 K respectively. Surprisingly, we observe a plateau in the frequency dependence of the attenuation above 0.7 THz, that we ascribe to a breakdown of Herring processes.
Hybrid phononic crystal plates for lowering and widening acoustic band gaps.
Badreddine Assouar, M; Sun, Jia-Hong; Lin, Fan-Shun; Hsu, Jin-Chen
2014-12-01
We propose hybrid phononic-crystal plates which are composed of periodic stepped pillars and periodic holes to lower and widen acoustic band gaps. The acoustic waves scattered simultaneously by the pillars and holes in a relevant frequency range can generate low and wide acoustic forbidden bands. We introduce an alternative double-sided arrangement of the periodic stepped pillars for an enlarged pillars' head diameter in the hybrid structure and optimize the hole diameter to further lower and widen the acoustic band gaps. The lowering and widening effects are simultaneously achieved by reducing the frequencies of locally resonant pillar modes and prohibiting suitable frequency bands of propagating plate modes. PMID:24996255
Dexterous acoustic trapping and patterning of particles assisted by phononic crystal plate
Wang, Tian; Ke, Manzhu Xu, Shengjun; Feng, Junheng; Qiu, Chunyin; Liu, Zhengyou
2015-04-20
In this letter, we present experimental demonstration of multi-particles trapping and patterning by the artificially engineered acoustic field of phononic crystal plate. Polystyrene particles are precisely trapped and patterned in two dimensional arrays, for example, the square, triangular, or quasi-periodic arrays, depending on the structures of the phononic crystal plates with varying sub-wavelength holes array. Analysis shows that the enhanced acoustic radiation force, induced by the resonant transmission field highly localized near the sub-wavelength apertures, accounts for the particles self-organizing. It can be envisaged that this kind of simple design of phononic crystal plates would pave an alternative route for self-assembly of particles and may be utilized in the lab-on-a-chip devices.
Negative refraction of phonons and acoustic lensing effect of a crystalline slab
NASA Astrophysics Data System (ADS)
Imamura, K.; Tamura, S.
2004-11-01
We study how good a flat slab of a bulk crystalline solid with a large elastic anisotropy exhibits a lensing action for phonons or sound waves. The slowness and group-velocity surfaces of an ideal elastic solid for a flat phonon lens are analyzed in the geometrical acoustic approximation. These surfaces are compared with the corresponding surfaces of an existing bulk crystal (a zinc crystal) with hexagonal symmetry. To demonstrate the lensing effect we calculate the intensity distribution of phonons emitted from a point source in an isotropic medium (on one side of the lens), propagating through the slab lens and then transmitted into the isotropic medium in the other side. A similar calculation for sound waves with a finite-difference-time-domain method is performed to see the effects neglected in the geometrical acoustic approximation, that is, the effects of finite wavelength, mode conversion, and finite transmission at the interfaces.
Design of acoustic beam aperture modifier using gradient-index phononic crystals
Lin, Sz-Chin Steven; Tittmann, Bernhard R.; Huang, Tony Jun
2012-01-01
This article reports the design concept of a novel acoustic beam aperture modifier using butt-jointed gradient-index phononic crystals (GRIN PCs) consisting of steel cylinders embedded in a homogeneous epoxy background. By gradually tuning the period of a GRIN PC, the propagating direction of acoustic waves can be continuously bent to follow a sinusoidal trajectory in the structure. The aperture of an acoustic beam can therefore be shrunk or expanded through change of the gradient refractive index profiles of the butt-jointed GRIN PCs. Our computational results elucidate the effectiveness of the proposed acoustic beam aperture modifier. Such an acoustic device can be fabricated through a simple process and will be valuable in applications, such as biomedical imaging and surgery, nondestructive evaluation, communication, and acoustic absorbers. PMID:22807585
Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals
NASA Astrophysics Data System (ADS)
Kubakaddi, S. S.
2016-05-01
Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd3As2 in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity vd is greater than the sound velocity vs. This occurs at small E (˜few V/cm) due to large mobility. Frequency (ωq) and angular (θ) distribution of phonon emission spectrum P(ωq, θ) are studied for different electron drift velocities vd (i.e., different E) and electron concentrations ne. The frequency dependence of P(ωq, θ) shows a maximum Pm(ωq, θ) at about ωm ≈ 1 THz and is found to increase with the increasing vd and ne. The value of ωm shifts to higher region for larger ne. It is found that ωm/ne1/3 and Pm(ωq, θ)/ne2/3 are nearly constants. The latter is in contrast with the Pm(ωq, θ)ne1/2 = constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly "2kf cutoff," where kf is the Fermi wave vector. Angular dependence of P(ωq, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing vd. P(θ) is found to increase linearly with ne giving the ratio P(θ)/(nevd) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and ne. 3DDS with large ne and mobility can be a good source of acoustic phonon generation in ˜THz regime.
Observation of induced longitudinal and shear acoustic phonons by Brillouin scattering.
Yoshida, Taisuke; Matsukawa, Mami; Yanagitani, Takahiko
2011-06-01
To improve the accuracy of velocity measurements in the Brillouin scattering technique using weak thermal phonons, we have used induced coherent phonons, which intensify the scattering. To induce phonons in the gigahertz range, we used a c-axis tilted ZnO film transducer that was developed in our laboratory. This allowed us to induce longitudinal and shear acoustic phonons effectively at hypersonic frequencies. As a result, we obtained scattered light in the silica glass sample that was much more intense than that obtained from the thermal phonons. Because the Brillouin scattering from induced phonons was measured, the shift frequency was that of the electric signal applied to the ZnO transducer. Strong peaks lead to a reduction of the measurement time. This is useful for two-dimensional mapping of thin film elasticity using Brillouin scattering. Additionally, Brillouin scattering enables the simultaneous measurement of longitudinal and shear phonon velocities in the sample plane. This opens up a potential new technique for non-destructive elasticity measurements of various materials. PMID:21693407
Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter
Ceban, V. Macovei, M. A.
2015-11-15
The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.
Resonant raman scattering and dispersion of polar optical and acoustic phonons in hexagonal inn
Davydov, V. Yu. Klochikhin, A. A.; Smirnov, A. N.; Strashkova, I. Yu.; Krylov, A. S.; Lu Hai; Schaff, William J.; Lee, H.-M.; Hong, Y.-L.; Gwo, S.
2010-02-15
It is shown that a study of the dependence of impurity-related resonant first-order Raman scattering on the frequency of excitation light makes it possible to observe the dispersion of polar optical and acoustic branches of vibrational spectrum in hexagonal InN within a wide range of wave vectors. It is established that the wave vectors of excited phonons are uniquely related to the energy of excitation photon. Frequencies of longitudinal optical phonons E{sub 1}(LO) and A{sub 1}(LO) in hexagonal InN were measured in the range of excitation-photon energies from 2.81 to 1.17 eV and the frequencies of longitudinal acoustic phonons were measured in the range 2.81-1.83 eV of excitation-photon energies. The obtained dependences made it possible to extrapolate the dispersion of phonons A{sub 1}(LO) and E{sub 1}(LO) to as far as the point {Gamma} in the Brillouin zone and estimate the center-band energies of these phonons (these energies have not been uniquely determined so far).
Persson, A. I. H.; Andreasson, B. P.; Enquist, H.; Jurgilaitis, A.; Larsson, J.
2015-11-14
The spectrum of laser-generated acoustic phonons in indium antimonide coated with a thin nickel film has been studied using time-resolved x-ray diffraction. Strain pulses that can be considered to be built up from coherent phonons were generated in the nickel film by absorption of short laser pulses. Acoustic reflections at the Ni–InSb interface leads to interference that strongly modifies the resulting phonon spectrum. The study was performed with high momentum transfer resolution together with high time resolution. This was achieved by using a third-generation synchrotron radiation source that provided a high-brightness beam and an ultrafast x-ray streak camera to obtain a temporal resolution of 10 ps. We also carried out simulations, using commercial finite element software packages and on-line dynamic diffraction tools. Using these tools, it is possible to calculate the time-resolved x-ray reflectivity from these complicated strain shapes. The acoustic pulses have a peak strain amplitude close to 1%, and we investigated the possibility to use this device as an x-ray switch. At a bright source optimized for hard x-ray generation, the low reflectivity may be an acceptable trade-off to obtain a pulse duration that is more than an order of magnitude shorter.
Acoustic phonons and strain in core/shell nanowires
NASA Astrophysics Data System (ADS)
Kloeffel, Christoph; Trif, Mircea; Loss, Daniel
2014-09-01
We study theoretically the low-energy phonons and the static strain in cylindrical core/shell nanowires (NWs). Assuming pseudomorphic growth, isotropic media, and a force-free wire surface, we derive algebraic expressions for the dispersion relations, the displacement fields, and the stress and strain components from linear elasticity theory. Our results apply to NWs with arbitrary radii and arbitrary elastic constants for both core and shell. The expressions for the static strain are consistent with experiments, simulations, and previous analytical investigations; those for phonons are consistent with known results for homogeneous NWs. Among other things, we show that the dispersion relations of the torsional, longitudinal, and flexural modes change differently with the relative shell thickness, and we identify new terms in the corresponding strain tensors that are absent for uncapped NWs. We illustrate our results via the example of Ge/Si core/shell NWs and demonstrate that shell-induced strain has large effects on the hole spectrum of these systems.
NASA Astrophysics Data System (ADS)
Vardanyan, K. A.; Vartanian, A. L.; Stepanyan, A. G.; Kirakosyan, A. A.
2015-10-01
The spin-relaxation time due to the electron-acoustic phonon scattering in GaAs quantum dots is studied after the exact diagonalization of the electron Hamiltonian with the spin-orbit coupling. It has been shown that in comparison with flexural phonons, the electron coupling with the dilatational phonons causes 3 orders faster spin relaxation. We have found that the relaxation rate of the spin-flip is an order of magnitude smaller than that of the spin- conserving.
Long-Lived, Coherent Acoustic Phonon Oscillations in GaN Single Crystals
Wu, S.; Geiser, P.; Jun, J.; Karpinski, J.; Park, J.-R.; Sobolewski, R.
2006-01-31
We report on coherent acoustic phonon (CAP) oscillations studied in high-quality bulk GaN single crystals with a two-color femtosecond optical pump-probe technique. Using a far-above-the-band gap ultraviolet excitation (~270 nm wavelength) and a near-infrared probe beam (~810 nm wavelength), the long-lived, CAP transients were observed within a 10 ns time-delay window between the pump and probe pulses, with a dispersionless (proportional to the probe-beam wave vector) frequency of ~45 GHz. The measured CAP attenuation corresponded directly to the absorption of the probe light in bulk GaN, indicating that the actual (intrinsic) phonon-wave attenuation in our crystals was significantly smaller than the measured 65.8 cm^-1 value. The velocity of the phonon propagation was equal to the velocity of sound in GaN.
Acoustic beam splitting in two-dimensional phononic crystals using self-collimation effect
Li, Jing; Wu, Fugen Zhong, Huilin; Yao, Yuanwei; Zhang, Xin
2015-10-14
We propose two models of self-collimation-based beam splitters in phononic crystals. The finite element method is used to investigate the propagation properties of acoustic waves in two-dimensional phononic crystals. The calculated results show that the efficiency of the beam splitter can be controlled systematically by varying the radius of the rods or by changing the orientation of the square rods in the line defect. The effect of changing the side length of the square rods on acoustic wave propagation is discussed. The results show that the total transmission/reflection range decreases/increases as the side length increases. We also find that the relationship between the orientation of the transflective point and the side length of the square rods is quasi-linear.
Acoustic beam splitting in two-dimensional phononic crystals using self-collimation effect
NASA Astrophysics Data System (ADS)
Li, Jing; Wu, Fugen; Zhong, Huilin; Yao, Yuanwei; Zhang, Xin
2015-10-01
We propose two models of self-collimation-based beam splitters in phononic crystals. The finite element method is used to investigate the propagation properties of acoustic waves in two-dimensional phononic crystals. The calculated results show that the efficiency of the beam splitter can be controlled systematically by varying the radius of the rods or by changing the orientation of the square rods in the line defect. The effect of changing the side length of the square rods on acoustic wave propagation is discussed. The results show that the total transmission/reflection range decreases/increases as the side length increases. We also find that the relationship between the orientation of the transflective point and the side length of the square rods is quasi-linear.
Second Harmonic Generation and Confined Acoustic Phonons in HighlyExcited Semiconductor Nanocrystals
Son, Dong Hee; Wittenberg, Joshua S.; Banin, Uri; Alivisatos, A.Paul
2006-03-30
The photo-induced enhancement of second harmonic generation, and the effect of nanocrystal shape and pump intensity on confined acoustic phonons in semiconductor nanocrystals, has been investigated with time-resolved scattering and absorption measurements. The second harmonic signal showed a sublinear increase of the second order susceptibility with respect to the pump pulse energy, indicating a reduction of the effective one-electron second-order nonlinearity with increasing electron-hole density in the nanocrystals. The coherent acoustic phonons in spherical and rod-shaped semiconductor nanocrystals were detected in a time-resolved absorption measurement. Both nanocrystal morphologies exhibited oscillatory modulation of the absorption cross section, the frequency of which corresponded to their coherent radial breathing modes. The amplitude of the oscillation also increased with the level of photoexcitation, suggesting an increase in the amplitude of the lattice displacement as well.
Electron-acoustic phonon interaction and mobility in stressed rectangular silicon nanowires
NASA Astrophysics Data System (ADS)
Zhu, Lin-Li
2015-01-01
We investigate the effects of pre-stress and surface tension on the electron-acoustic phonon scattering rate and the mobility of rectangular silicon nanowires. With the elastic theory and the interaction Hamiltonian for the deformation potential, which considers both the surface energy and the acoustoelastic effects, the phonon dispersion relation for a stressed nanowire under spatial confinement is derived. The subsequent analysis indicates that both surface tension and pre-stress can dramatically change the electron-acoustic phonon interaction. Under a negative (positive) surface tension and a tensile (compressive) pre-stress, the electron mobility is reduced (enhanced) due to the decrease (increase) of the phonon energy as well as the deformation-potential scattering rate. This study suggests an alternative approach based on the strain engineering to tune the speed and the drive current of low-dimensional electronic devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11472243, 11302189, and 11321202), the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175), the Zhejiang Provincial Qianjiang Talent Program, China (Grant No. QJD1202012), and the Educational Commission of Zhejiang Province, China (Grant No. Y201223476).
Phonon-Electron Interactions in Piezoelectric Semiconductor Bulk Acoustic Wave Resonators
Gokhale, Vikrant J.; Rais-Zadeh, Mina
2014-01-01
This work presents the first comprehensive investigation of phonon-electron interactions in bulk acoustic standing wave (BAW) resonators made from piezoelectric semiconductor (PS) materials. We show that these interactions constitute a significant energy loss mechanism and can set practical loss limits lower than anharmonic phonon scattering limits or thermoelastic damping limits. Secondly, we theoretically and experimentally demonstrate that phonon-electron interactions, under appropriate conditions, can result in a significant acoustic gain manifested as an improved quality factor (Q). Measurements on GaN resonators are consistent with the presented interaction model and demonstrate up to 35% dynamic improvement in Q. The strong dependencies of electron-mediated acoustic loss/gain on resonance frequency and material properties are investigated. Piezoelectric semiconductors are an extremely important class of electromechanical materials, and this work provides crucial insights for material choice, material properties, and device design to achieve low-loss PS-BAW resonators along with the unprecedented ability to dynamically tune resonator Q. PMID:25001100
Polarization transport of transverse acoustic waves: Berry phase and spin Hall effect of phonons
NASA Astrophysics Data System (ADS)
Bliokh, K. Yu.; Freilikher, V. D.
2006-11-01
We carry out a detailed analysis of the short-wave (semiclassical) approximation for the linear equations of the elasticity in a smoothly inhomogeneous isotropic medium. It is shown that the polarization properties of the transverse waves are completely analogous to those of electromagnetic waves and can be considered as spin properties of optical phonons. In particular, the Hamiltonian of the transverse waves contains an additional term of the phonon spin-orbit interaction arising from the Berry gauge potential in the momentum space. This potential is diagonal in the basis of the circularly polarized waves and corresponds to the field of two “magnetic monopoles” of opposite signs for phonons of opposite helicities. This leads to the appearance of the Berry phase in the equation for the polarization evolution and an additional “anomalous velocity” term in the ray equations. The anomalous velocity has the form of the “Lorentz force” caused by the Berry gauge field in momentum space and gives rise to the transverse transport of waves of opposite helicities in opposite directions. This is a manifestation of the spin Hall effect of optical phonons. The effect directly relates to the conservation of total angular momentum of phonons and also influences reflection from a sharp boundary (acoustic analog of the transverse Ferdorov-Imbert shift).
Wang, Mingchao; Lin, Shangchao
2015-01-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30–110 ps and mean free path of 0.5–2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices. PMID:26658143
NASA Astrophysics Data System (ADS)
Wang, Mingchao; Lin, Shangchao
2015-12-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30-110 ps and mean free path of 0.5-2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices.
Gravitational wave detection with high frequency phonon trapping acoustic cavities
NASA Astrophysics Data System (ADS)
Goryachev, Maxim; Tobar, Michael E.
2014-11-01
There are a number of theoretical predictions for astrophysical and cosmological objects, which emit high frequency (1 06-1 09 Hz ) gravitation waves (GW) or contribute somehow to the stochastic high frequency GW background. Here we propose a new sensitive detector in this frequency band, which is based on existing cryogenic ultrahigh quality factor quartz bulk acoustic wave cavity technology, coupled to near-quantum-limited SQUID amplifiers at 20 mK. We show that spectral strain sensitivities reaching 1 0-22 per √{Hz } per mode is possible, which in principle can cover the frequency range with multiple (>100 ) modes with quality factors varying between 1 06 and 1 010 allowing wide bandwidth detection. Due to its compactness and well-established manufacturing process, the system is easily scalable into arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence analysis to ensure no false detections.
Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco
2011-10-12
High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426
2011-01-01
High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426
Addouche, Mahmoud Al-Lethawe, Mohammed A. Choujaa, Abdelkrim Khelif, Abdelkrim
2014-07-14
We demonstrate super resolution imaging for surface acoustic waves using a phononic structure displaying negative refractive index. This phononic structure is made of a monolithic square lattice of cylindrical pillars standing on a semi-infinite medium. The pillars act as acoustic resonator and induce a surface propagating wave with unusual dispersion. We found, under specific geometrical parameters, one propagating mode that exhibits negative refraction effect with negative effective index close to −1. Furthermore, a flat lens with finite number of pillars is designed to allow the focusing of an acoustic point source into an image with a resolution of (λ)/3 , overcoming the Rayleigh diffraction limit.
NASA Astrophysics Data System (ADS)
Zou, Qiushun; Yu, Tianbao; Liu, Jiangtao; Liu, Nianhua; Wang, Tongbiao; Liao, Qinghua
2015-09-01
We report an acoustic multimode interference effect and self-imaging phenomena in an acoustic multimode waveguide system which consists of M parallel phononic crystal waveguides (M-PnCWs). Results show that the self-imaging principle remains applicable for acoustic waveguides just as it does for optical multimode waveguides. To achieve the dispersions and replicas of the input acoustic waves produced along the propagation direction, we performed the finite element method on M-PnCWs, which support M guided modes within the target frequency range. The simulation results show that single images (including direct and mirrored images) and N-fold images (N is an integer) are identified along the propagation direction with asymmetric and symmetric incidence discussed separately. The simulated positions of the replicas agree well with the calculated values that are theoretically decided by self-imaging conditions based on the guided mode propagation analysis. Moreover, the potential applications based on this self-imaging effect for acoustic wavelength de-multiplexing and beam splitting in the acoustic field are also presented.
Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate
NASA Astrophysics Data System (ADS)
Amoudache, Samira; Moiseyenko, Rayisa; Pennec, Yan; Rouhani, Bahram Djafari; Khater, Antoine; Lucklum, Ralf; Tigrine, Rachid
2016-03-01
We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.
Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering
Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,; Alatas, A.
2009-01-01
Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocity of (9200 {+-} 600) m/s.
Tunneling times of acoustic phonon packets through a distributed Bragg reflector
2014-01-01
The longwave phenomenological model is used to make simple and precise calculations of various physical quantities such as the vibrational energy density, the vibrational energy, the relative mechanical displacement, and the one-dimensional stress tensor of a porous silicon distributed Bragg reflector. From general principles such as invariance under time reversal, invariance under space reflection, and conservation of energy density flux, the equivalence of the tunneling times for both transmission and reflection is demonstrated. Here, we study the tunneling times of acoustic phonon packets through a distributed Bragg reflector in porous silicon multilayer structures, and we report the possibility that a phenomenon called Hartman effect appears in these structures. PMID:25237288
BLF-SSH polarons coupled to acoustic phonons in the adiabatic limit
NASA Astrophysics Data System (ADS)
Chandler, Carl J.; Marsiglio, F.
2014-12-01
We survey polaron formation in the Barisić-Labbé-Friedel and Su-Schrieffer-Heeger (BLF-SSH) model using acoustic phonons in the adiabatic limit. Multiple different numerical optimization routines and strong-coupling analytical calculations are used to find a robust ground-state energy for a wide range of coupling strengths. The electronic configuration and accompanying ionic distortions of the polaron were determined, as well as a nonzero critical coupling strength for polaron formation in two and three dimensions.
Tunneling times of acoustic phonon packets through a distributed Bragg reflector.
Lazcano, Zorayda; Valdés Negrín, Pedro Luis; Villegas, Diosdado; Arriaga, Jesus; Pérez-Álvarez, Rolando
2014-01-01
The longwave phenomenological model is used to make simple and precise calculations of various physical quantities such as the vibrational energy density, the vibrational energy, the relative mechanical displacement, and the one-dimensional stress tensor of a porous silicon distributed Bragg reflector. From general principles such as invariance under time reversal, invariance under space reflection, and conservation of energy density flux, the equivalence of the tunneling times for both transmission and reflection is demonstrated. Here, we study the tunneling times of acoustic phonon packets through a distributed Bragg reflector in porous silicon multilayer structures, and we report the possibility that a phenomenon called Hartman effect appears in these structures. PMID:25237288
Controlled exciton transfer between quantum dots with acoustic phonons taken into account
Golovinski, P. A.
2015-09-15
A system of excitons in two quantum dots coupled by the dipole–dipole interaction is investigated. The excitation transfer process controlled by the optical Stark effect at nonresonant frequencies is considered and the effect of the interaction between excitons and acoustic phonons in a medium on this process is taken into account. The system evolution is described using quantum Heisenberg equations. A truncated set of equations is obtained and the transfer dynamics is numerically simulated. High-efficiency picosecond switching of the excitation transfer by a laser pulse with a rectangular envelope is demonstrated. The dependence of picosecond switching on the quantum-dot parameters and optical-pulse length is presented.
Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.
2015-05-15
In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering.
NASA Astrophysics Data System (ADS)
Wilson, T.; Kasper, E.; Oehme, M.; Schulze, J.; Korolev, K.
2014-11-01
We report on the direct excitation of 246 GHz longitudinal acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation of the same frequency. A longitudinally polarized evanescent laser light field is coupled to the superlattice through a germanium prism providing total internal reflection at the superlattice interface. The ballistic phonon signal is detected by a superconducting aluminum bolometer. The sample is immersed in low-temperature liquid helium.
Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.
2014-06-23
Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.
Coherent Control of Optically Generated and Detected Picosecond Surface Acoustic Phonons
David H. Hurley
2006-11-01
Coherent control of elementary optical excitations is a key issue in ultrafast materials science. Manipulation of electronic and vibronic excitations in solids as well as chemical and biological systems on ultrafast time scales has attracted a great deal of attention recently. In semiconductors, coherent control of vibronic excitations has been demonstrated for bulk acoustic and optical phonons generated in superlattice structures. The bandwidth of these approaches is typically fully utilized by employing a 1-D geometry where the laser spot size is much larger than the superlattice repeat length. In this presentation we demonstrate coherent control of optically generated picosecond surface acoustic waves using sub-optical wavelength absorption gratings. The generation and detection characteristics of two material systems are investigated (aluminum absorption gratings on Si and GaAs substrates).
Surface acoustic waves in two dimensional phononic crystal with anisotropic inclusions
NASA Astrophysics Data System (ADS)
Ketata, H.; Hédi Ben Ghozlen, M.
2012-06-01
An analysis is given to the band structure of the two dimensional solid phononic crystal considered as a semi infinite medium. The lattice includes an array of elastic anisotropic materials with different shapes embedded in a uniform matrix. For illustration two kinds of phononic materials are assumed. A particular attention is devoted to the computational procedure which is mainly based on the plane wave expansion (PWE) method. It has been adapted to Matlab environment. Numerical calculations of the dispersion curves have been achieved by introducing particular functions which transform motion equations into an Eigen value problem. Significant improvements are obtained by increasing reasonably the number of Fourier components even when a large elastic mismatch is assumed. Such approach can be generalized to different types of symmetry and permit new physical properties as piezoelectricity to be added. The actual semi infinite phononic structure with a free surface has been shown to support surface acoustic waves (SAW). The obtained dispersion curves reveal band gaps in the SAW branches. It has been found that the influence, of the filling factor and anisotropy on their band gaps, is different from that of bulk waves.
Morvan, B.; Tinel, A.; Sainidou, R.; Rembert, P.; Vasseur, J. O.; Hladky-Hennion, A.-C.; Swinteck, N.; Deymier, P. A.
2014-12-07
Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.
NASA Astrophysics Data System (ADS)
Lin, Ja-Hon; Shen, Yu-Kai; Liu, Wei-Rein; Lu, Chia-Hui; Chen, Yao-Hui; Chang, Chun-peng; Lee, Wei-Chin; Hong, Minghwei; Kwo, Jueinai-Raynien; Hsu, Chia-Hung; Hsieh, Wen-Feng
2016-08-01
Unlike coherent acoustic phonons (CAPs) generated from heat induced thermal stress by the coated Au film, we demonstrated the oscillation from c-ZnO epitaxial film on oxide buffered Si through a degenerate pump–probe technique. As the excited photon energy was set below the exciton resonance, the electronic stress that resulted from defect resonance was used to induce acoustic wave. The damped oscillation revealed a superposition of a high frequency and long decay CAP signal with a backward propagating acoustic pulse which was generated by the absorption of the penetrated pump beam at the Si surface and selected by the ZnO layer as the acoustic resonator.
NASA Astrophysics Data System (ADS)
Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Hou, Hong
2016-06-01
This paper investigates ultralow frequency acoustic properties and energy recovery of tetragonal folding beam phononic crystal (TFBPC) and its complementary structure. The dispersion curve relationships, transmission spectra and displacement fields of the eigenmodes are studied with FEA in detail. Compared with the traditional three layer phononic crystal (PC) structure, this structure proposed in this paper not only unfold bandgaps (BGs) in lower frequency range (below 300 Hz), but also has lighter weight because of beam structural cracks. We analyze the relevant physical mechanism behind this phenomenon, and discuss the effects of the tetragonal folding beam geometric parameters on band structure maps. FEM proves that the multi-cell structures with different arrangements have different acoustic BGs when compared with single cell structure. Harmonic frequency response and piezoelectric properties of TFBPC are specifically analyzed. The results confirm that this structure does have the recovery ability for low frequency vibration energy in environment. These conclusions in this paper could be indispensable to PC practical applications such as BG tuning and could be applied in portable devices, wireless sensor, micro-electro mechanical systems which can recycle energy from vibration environment as its own energy supply.
Acoustic phonon dynamics in thin-films of the topological insulator Bi{sub 2}Se{sub 3}
Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David
2015-04-28
Transient reflectivity traces measured for nanometer-sized films (6–40 nm) of the topological insulator Bi{sub 2}Se{sub 3} revealed GHz-range oscillations driven within the relaxation of hot carriers photoexcited with ultrashort (∼100 fs) laser pulses of 1.51 eV photon energy. These oscillations have been suggested to result from acoustic phonon dynamics, including coherent longitudinal acoustic phonons in the form of standing acoustic waves. An increase of oscillation frequency from ∼35 to ∼70 GHz with decreasing film thickness from 40 to 15 nm was attributed to the interplay between two different regimes employing traveling-acoustic-waves for films thicker than 40 nm and the film bulk acoustic wave resonator (FBAWR) modes for films thinner than 40 nm. The amplitude of oscillations decays rapidly for films below 15 nm thick when the indirect intersurface coupling in Bi{sub 2}Se{sub 3} films switches the FBAWR regime to that of the Lamb wave excitation. The frequency range of coherent longitudinal acoustic phonons is in good agreement with elastic properties of Bi{sub 2}Se{sub 3}.
Zhao, J.; Boyko, O.; Bonello, B.
2014-12-15
This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.
Acoustic add-drop filters based on phononic crystal ring resonators
NASA Astrophysics Data System (ADS)
Rostami-Dogolsara, Babak; Moravvej-Farshi, Mohammad Kazem; Nazari, Fakhroddin
2016-01-01
We report the design procedure for an acoustic add-drop filter (ADF) composed of two line-defect waveguides coupled through a ring resonator cavity (RRC) all based on a phononic crystal (PnC) platform. Using finite difference time domain and plane wave expansion methods, we study the propagation of acoustic waves through the PnC based ADF structures. Numerical results show that the quality factor for the ADF with a quasisquare ring resonator with a frequency band of 95 Hz centered about 75.21 kHz is Q ˜ 800. We show that the addition of an appropriate scatterer at each RRC corner can reduce the scattering loss, enhancing the quality factor and the transmission efficiency. Moreover, it is also shown that by increasing the coupling gaps between the RRC and waveguides the quality factor can be increased by ˜25 times, at the expense of a significant reduction in the transmission efficiency this is attributed to the enhanced selectivity in expense of weakened coupling. Finally, by varying the effective path length of the acoustic wave in the RRC, via selectively varying the inclusions physical and geometrical properties, we show how one can ultra-fine and fine-tune the resonant frequency of the ADF.
Photoreflectance investigation of exciton-acoustic phonon scattering in GaN grown by MOVPE
NASA Astrophysics Data System (ADS)
Bouzidi, M.; Soltani, S.; Halidou, I.; Chine, Z.; El Jani, B.
2016-04-01
In this paper, we report a systematic investigation of the near band edge (NBE) excitonic states in GaN using low temperature photoluminescence (PL) and photoreflectance (PR) measurements. For this purpose, GaN films of different thicknesses have been grown on silicon nitride (SiN) treated c-plane sapphire substrates by atmospheric pressure metalorganic vapor phase epitaxy (MOVPE). Low temperature PR spectra exhibit well-defined spectral features related to the A, B and C free excitons denoted by FXA FXB and FXC, respectively. In contrast, PL spectra are essentially dominated by the A free and donor bound excitons. By combining PR spectra and Hall measurements a strong correlation between residual electron concentration and exciton linewidths is observed. From the temperature dependence of the excitonic linewidths, the exciton-acoustic phonon coupling constant is determined for FXA, FXB and FXC. We show that this coupling constant is strongly related to the exciton kinetic energy and to the strain level.
NASA Astrophysics Data System (ADS)
Xie, Zhong-Xiang; Liu, Jing-Zhong; Yu, Xia; Wang, Hai-Bin; Deng, Yuan-Xiang; Li, Ke-Min; Zhang, Yong
2015-03-01
We investigate acoustic phonon transmission and thermal conductance in three dimensional (3D) quasi-periodically stubbed waveguides according to the Fibonacci sequence. Results show that the transmission coefficient exhibits the periodic oscillation upon varying the length of stub/waveguide at low frequency, and the period of such oscillation is tunably decreased with increasing the Fibonacci number N. Interestingly, there also exist some anti-resonant dips that gradually develop into wide stop-frequency gaps with increasing N. As the temperature goes up, a transition of the thermal conductance from the decrease to the increase occurs in these systems. When N is increased, the thermal conductance is approximately decreased with a linear trend. Moreover, the decreasing degree sensitively depends on the variation of temperature. A brief analysis of these results is given.
Measurement of the acoustic-to-optical phonon coupling in multicomponent systems
NASA Astrophysics Data System (ADS)
Caretta, Antonio; Donker, Michiel C.; Perdok, Diederik W.; Abbaszadeh, Davood; Polyakov, Alexey O.; Havenith, Remco W. A.; Palstra, Thomas T. M.; van Loosdrecht, Paul H. M.
2015-02-01
In this paper we investigate the acoustic-to-optical up-conversion phonon processes in a multicomponent system. These processes take place during heat transport and limit the efficiency of heat flow. By combining time-resolved optical and heat capacity experiments we quantify the thermal coupling constant to be g ˜0.4 1017 W/Km3 . The method is based on selective excitation of a part of a multicomponent system, and the measurement of the thermalization dynamics by probing the linear birefringence of the sample with femtosecond resolution. In particular, we study a layered multiferroic organic-inorganic hybrid, in the vicinity of the ferroelectric phase transition. A diverging term of the heat capacity is associated to soft-mode dynamics, in agreement with previous spectroscopy measurements.
Strain enhancement of acoustic phonon limited mobility in monolayer TiS3.
Aierken, Yierpan; Çakır, Deniz; Peeters, Francois M
2016-06-01
Strain engineering is an effective way to tune the intrinsic properties of a material. Here, we show by using first-principles calculations that both uniaxial and biaxial tensile strain applied to monolayer TiS3 are able to significantly modify its intrinsic mobility. From the elastic modulus and the phonon dispersion relation we determine the tensile strain range where structure dynamical stability of the monolayer is guaranteed. Within this region, we find more than one order of enhancement of the acoustic phonon limited mobility at 300 K (100 K), i.e. from 1.71 × 10(4) (5.13 × 10(4)) cm(2) V(-1) s(-1) to 5.53 × 10(5) (1.66 × 10(6)) cm(2) V(-1) s(-1). The degree of anisotropy in both mobility and effective mass can be tuned by using tensile strain. Furthermore, we can either increase or decrease the band gap of TiS3 monolayer by applying strain along different crystal directions. This property allows us to use TiS3 not only in electronic but also in optical applications. PMID:27171542
Development of an acoustic filter for parametric loudspeaker using phononic crystals.
Ji, Peifeng; Hu, Wenlin; Yang, Jun
2016-04-01
The spurious signal generated as a result of nonlinearity at the receiving system affects the measurement of the difference-frequency sound in the parametric loudspeaker, especially in the nearfield or near the beam axis. In this paper, an acoustic filter is designed using phononic crystals and its theoretical simulations are carried out by quasi-one- and two-dimensional models with Comsol Multiphysics. According to the simulated transmission loss (TL), an acoustic filter is prototyped consisting of 5×7 aluminum alloy cylinders and its performance is verified experimentally. There is good agreement with the simulation result for TL. After applying our proposed filter in the axial measurement of the parametric loudspeaker, a clear frequency dependence from parametric array effect is detected, which exhibits a good match with the well-known theory described by the Gaussian-beam expansion technique. During the directivity measurement for the parametric loudspeaker, the proposed filter has also proved to be effective and is only needed for small angles. PMID:26855254
A computational and experimental study of surface acoustic waves in phononic crystals
NASA Astrophysics Data System (ADS)
Petrus, Joseph Andrew
The unique frequency range and robustness of surface acoustic wave (SAW) devices has been a catalyst for their adoption as integral components in a range of consumer and military electronics. Furthermore, the strain and piezoelectric fields associated with SAWs are finding novel applications in nanostructured devices. In this thesis, the interaction of SAWs with periodic elastic structures, such as photonic or phononic crystals (PnCs), is studied both computationally and experimentally. To predict the behaviour of elastic waves in PnCs, a finite-difference time-domain simulator (PnCSim) was developed using C++. PnCSim was designed to calculate band structures and transmission spectra of elastic waves through two-dimensional PnCs. By developing appropriate boundary conditions, bulk waves, surface acoustic waves, and plate waves can be simulated. Results obtained using PnCSim demonstrate good agreement with theoretical data reported in the literature. To experimentally investigate the behaviour of SAWs in PnCs, fabrication procedures were developed to create interdigitated transducers (IDTs) and PnCs. Using lift-off photolithography, IDTs with finger widths as low as 1:8 mum were fabricated on gallium arsenide (GaAs), corresponding to a SAW frequency of 397 MHz. A citric acid and hydrogen peroxide wet-etching solution was used to create shallow air hole PnCs in square and triangular lattice configurations, with lattice constants of 8 mum and 12 mum, respectively. The relative transmission of SAWs through these PnCs as a function of frequency was determined by comparing the insertion losses before and after etching the PnCs. In addition, using a scanning Sagnac interferometer, displacement maps were measured for SAWs incident on square lattice PnCs by Mathew (Creating and Imaging Surface Acoustic Waves on GaAs, Master's Thesis). Reasonable agreement was found between simulations and measurements. Additional simulations indicate that SAW waveguiding should be possible
NASA Astrophysics Data System (ADS)
Plemmons, Dayne; Flannigan, David
Coherent collective lattice oscillations known as phonons dictate a broad range of physical observables in condensed matter and act as primary energy carriers across a wide range of material systems. Despite this omnipresence, analysis of phonon dynamics on their ultrashort native spatiotemporal length scale - that is, the combined nanometer (nm), spatial and femtosecond (fs), temporal length-scales - has largely remained experimentally inaccessible. Here, we employ ultrafast electron microscopy (UEM) to directly image discrete acoustic phonons in real-space with combined nm-fs resolution. By directly probing electron scattering in the image plane (as opposed to the diffraction plane), we retain phase information critical for following the evolution, propagation, scattering, and decay of phonons in relation to morphological features of the specimen (i.e. interfaces, grain boundaries, voids, ripples, etc.). We extract a variety of morphologically-specific quantitative information from the UEM videos including phonon frequencies, phase velocities, and decays times. We expect these direct manifestations of local elastic properties in the vicinity of material defects and interfaces will aide in the understanding and application of phonon-mediated phenomena in nanostructures. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
NASA Astrophysics Data System (ADS)
Kaasbjerg, Kristen; Bhargavi, K. S.; Kubakaddi, S. S.
2014-10-01
We study hot-electron cooling by acoustic and optical phonons in monolayer MoS2. The cooling power P (Pe=P /n ) is investigated as a function of electron temperature Te (0-500 K) and carrier density n (1010-1013 cm-2) taking into account all relevant electron-phonon (el-ph) couplings. We find that the crossover from acoustic phonon dominated cooling at low Te to optical phonon dominated cooling at higher Te takes place at Te˜50 -75 K. The unscreened deformation potential (DP) coupling to the TA phonon is shown to dominate P due to acoustic phonon scattering over the entire temperature and density range considered. The cooling power due to screened DP coupling to the LA phonon and screened piezoelectric (PE) coupling to the TA and LA phonons is orders of magnitude lower. In the Bloch-Grüneisen (BG) regime, P ˜Te4(Te6) is predicted for unscreened (screened) el-ph interaction and P ˜n-1 /2(Pe˜n-3 /2) for both unscreened and screened el-ph interaction. The cooling power due to optical phonons is dominated by zero-order DP couplings and the Fröhlich interaction, and is found to be significantly reduced by the hot-phonon effect when the phonon relaxation time due to phonon-phonon scattering is large compared to the relaxation time due to el-ph scattering. The Te and n dependence of the hot-phonon distribution function is also studied. Our results for monolayer MoS2 are compared with those in conventional two-dimensional electron gases (2DEGs) as well as monolayer and bilayer graphene.
NASA Astrophysics Data System (ADS)
Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia
2015-05-01
A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.
Rury, Aaron S; Sorenson, Shayne; Dawlaty, Jahan M
2016-03-14
Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm(-1) oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology. PMID:26979698
NASA Astrophysics Data System (ADS)
Rury, Aaron S.; Sorenson, Shayne; Dawlaty, Jahan M.
2016-03-01
Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm-1 oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.
NASA Astrophysics Data System (ADS)
Roy-Choudhury, Kaushik; Hughes, Stephen
2015-11-01
Electron-phonon coupling in semiconductor quantum dots plays a significant role in determining the optical properties of excited excitons, especially the spectral nature of emitted photons. This paper presents a comprehensive theory and analysis of emission spectra from artificial atoms or quantum dots coupled to structured photon reservoirs and acoustic phonons, when excited with incoherent pump fields. As specific examples of structured reservoirs, we chose a Lorentzian cavity and a slow-light coupled-cavity waveguide, which have both been explored experimentally. For the case of optical cavities, we directly compare and contrast the spectra from three well-known and distinct theoretical approaches to treat electron-phonon coupling, including a Markovian polaron master equation, a non-Markovian phonon correlation expansion technique, and a semiclassical linear susceptibility approach, and we point out the limitations of these models. For the cavity-QED polaron master equation, which treats the cavity-mode operator at the level of a system operator, we give closed form analytical solutions to the phonon-assisted scattering rates in the weak excitation approximation, fully accounting for temperature, cavity-exciton detuning, and cavity-dot coupling. We also show explicitly why the semiclassical linear susceptibility approach fails to correctly account for phonon-mediated cavity feeding. For weakly coupled cavities, we calculate the optical spectra using a more general photon reservoir polaron master-equation approach, and explain its differences from the above approaches in the low-Q limit of a Lorentzian cavity. We subsequently use this general reservoir approach to calculate the emission spectra from quantum dots coupled to slow-light photonic crystal waveguides, which demonstrate a number of striking photon-phonon coupling effects.
Coherent acoustic phonons in YBa2Cu3O7/La1/3Ca2/3MnO3 superlattices
NASA Astrophysics Data System (ADS)
Li, Wei; He, Bin; Zhang, Chunfeng; Liu, Shenghua; Liu, Xiaoran; Middey, S.; Chakhalian, J.; Wang, Xiaoyong; Xiao, Min
2016-03-01
We investigate photo-induced coherent acoustic phonons in complex oxide superlattices consisting of high-Tc superconductor YBa2Cu3O7-x and ferromagnetic manganite La1/3Ca2/3MnO3 epitaxial layers with broadband pump-probe spectroscopy. Two oscillatory components have been observed in time-resolved differential reflectivity spectra. Based on the analysis, the slow oscillation mode with a frequency sensitive to the probe wavelength is ascribed to the stimulated Brillouin scattering due to the photon reflection by propagating train of coherent phonons. The fast oscillation mode with a probe-wavelength-insensitive frequency is attributed to the Bragg oscillations caused by specular phonon reflections at oxide interfaces or the electron-coupling induced modulation due to free carrier absorption in the metallic superlattices. Our findings suggest that oxide superlattice is an ideal system to tailor the coherent behaviors of acoustic phonons and to manipulate the thermal and acoustic properties.
NASA Astrophysics Data System (ADS)
Mizoguchi, K.; Hino, T.; Nakayama, M.; Dekorsy, T.; Bartels, A.; Kurz, H.; Nakashima, S.
2004-03-01
Coherent folded longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice (SL) have been investigated by using a reflection-type two-color pump-probe technique under the condition that the wave vector of the probe pulse in the sample exceeds the mini-Brillouin zone. The coherent oscillations observed in the time-domain signals indicate the propagation of the phonon wave packet through the whole SL layer. The Fourier transform spectrum of the time-domain signals is compared with the dispersion relation of the folded longitudinal acoustic phonons in the long-period SL calculated using a transfer matrix method on the bases of an elastic continuum model. This comparison indicates that the folded longitudinal acoustic phonons in the long-period SL are observed through the umklapp process.
NASA Astrophysics Data System (ADS)
Lee, Kang Il; Kang, Hwi Suk; Yoon, Suk Wang
2016-04-01
The present work reports a combined experimental and theoretical study on the acoustic band gaps in a two-dimensional (2D) phononic crystal (PC) consisting of periodic square arrays of stainless-steel cylinders with diameters of 1.0 mm and a lattice constant of 1.5 mm in water. The theoretical band structure of the 2D PC was calculated along the ΓX direction of the first Brillouin zone. The transmission and the reflection coefficients were obtained both experimentally and theoretically along the ΓX direction of the 2D PC. The 2D PC exhibited 5 band gaps at frequencies below 2.0 MHz, with the first Bragg gap being around a frequency of 0.5 MHz. To understand the band gaps in the 2D PC, we calculated the acoustic pressure fields at specific frequencies of interest for normal incidence, and we explained them from the perspective of acoustic diffraction gratings.
Coherent heat transport in 2D phononic crystals with acoustic impedance mismatch
NASA Astrophysics Data System (ADS)
Arantes, A.; Anjos, V.
2016-03-01
In this work we have calculated the cumulative thermal conductivities of micro-phononic crystals formed by different combinations of inclusions and matrices at a sub-Kelvin temperature regime. The low-frequency phonon spectra (up to tens of GHz) were obtained by solving the generalized wave equation for inhomogeneous media with the plane wave expansion method. The thermal conductivity was calculated from Boltzmann transport theory highlighting the role of the low-frequency thermal phonons and neglecting phonon-phonon scattering. A purely coherent thermal transport regime was assumed throughout the structures. Our findings show that the cumulative thermal conductivity drops dramatically when compared with their bulk counterpart. Depending on the structural composition this reduction may be attributed to the phonon group velocity due to a flattening of the phonon dispersion relation, the extinction of phonon modes in the density of states or due to the presence of complete band gaps. According to the contrast between the inclusions and the matrices, three types of two dimensional phononic crystals were considered: carbon/epoxy, carbon/polyethylene and tungsten/silicon, which correspond respectively to a moderate, strong and very strong mismatch in the mechanical properties of these materials.
Fernée, Mark J; Sinito, Chiara; Louyer, Yann; Potzner, Christian; Nguyen, Tich-Lam; Mulvaney, Paul; Tamarat, Philippe; Lounis, Brahim
2012-01-01
Charged quantum dots provide an important platform for a range of emerging quantum technologies. Colloidal quantum dots in particular offer unique advantages for such applications (facile synthesis, manipulation and compatibility with a wide range of environments), especially if stable charged states can be harnessed in these materials. Here we engineer the CdSe nanocrystal core and shell structure to efficiently ionize at cryogenic temperatures, resulting in trion emission with a single sharp zero-phonon line and a mono exponential decay. Magneto-optical spectroscopy enables direct determination of electron and hole g-factors. Spin relaxation is observed in high fields, enabling unambiguous identification of the trion charge. Importantly, we show that spin flips are completely inhibited for Zeeman splittings below the low-energy bound for confined acoustic phonons. This reveals a characteristic unique to colloidal quantum dots that will promote the use of these versatile materials in challenging quantum technological applications. PMID:23250417
Zhao Degang; Liu Zhengyou; Qiu Chunyin; He Zhaojian; Cai Feiyan; Ke Manzhu
2007-10-01
In this paper, we have demonstrated the existence of surface acoustic waves in two-dimensional phononic crystals with fluid matrix, which is composed of a square array of steel cylinders put in air background. By using the supercell method, we investigate the dispersion relation and the eigenfield distribution of surface modes. Surface waves can be easily excited at the surface of a finite size phononic crystal by line source or Gaussian beam placed in or launched from the background medium, and they propagate along the surface with the form of 'beat.' Taking advantage of these surface modes, we can obtain a highly directional emission wave beam by introducing an appropriate corrugation layer on the surface of a waveguide exit.
NASA Astrophysics Data System (ADS)
Fernée, Mark J.; Sinito, Chiara; Louyer, Yann; Potzner, Christian; Nguyen, Tich-Lam; Mulvaney, Paul; Tamarat, Philippe; Lounis, Brahim
2012-12-01
Charged quantum dots provide an important platform for a range of emerging quantum technologies. Colloidal quantum dots in particular offer unique advantages for such applications (facile synthesis, manipulation and compatibility with a wide range of environments), especially if stable charged states can be harnessed in these materials. Here we engineer the CdSe nanocrystal core and shell structure to efficiently ionize at cryogenic temperatures, resulting in trion emission with a single sharp zero-phonon line and a mono exponential decay. Magneto-optical spectroscopy enables direct determination of electron and hole g-factors. Spin relaxation is observed in high fields, enabling unambiguous identification of the trion charge. Importantly, we show that spin flips are completely inhibited for Zeeman splittings below the low-energy bound for confined acoustic phonons. This reveals a characteristic unique to colloidal quantum dots that will promote the use of these versatile materials in challenging quantum technological applications.
NASA Astrophysics Data System (ADS)
Zhao, Degang; Liu, Zhengyou; Qiu, Chunyin; He, Zhaojian; Cai, Feiyan; Ke, Manzhu
2007-10-01
In this paper, we have demonstrated the existence of surface acoustic waves in two-dimensional phononic crystals with fluid matrix, which is composed of a square array of steel cylinders put in air background. By using the supercell method, we investigate the dispersion relation and the eigenfield distribution of surface modes. Surface waves can be easily excited at the surface of a finite size phononic crystal by line source or Gaussian beam placed in or launched from the background medium, and they propagate along the surface with the form of “beat.” Taking advantage of these surface modes, we can obtain a highly directional emission wave beam by introducing an appropriate corrugation layer on the surface of a waveguide exit.
NASA Astrophysics Data System (ADS)
He, Chuan; Daniel, Marcus; Grossmann, Martin; Ristow, Oliver; Brick, Delia; Schubert, Martin; Albrecht, Manfred; Dekorsy, Thomas
2014-05-01
Skutterudites are considered as interesting material for thermoelectric applications. Filling foreign atoms into the cagelike structure of a CoSb3 skutterudite is beneficial to its thermoelectric properties by increasing phonon scattering while maintaining the electrical conductivity. In this paper we demonstrate the generation and detection of coherent acoustic phonons in thin films of CoSb3 and partially filled YbxCo4Sb12 skutterudites using femtosecond pump-probe spectroscopy. By using a pulse-echo method, the longitudinal sound velocity of amorphous and polycrystalline CoSb3 thin films is obtained. For partially filled YbxCo4Sb12 thin films, an obvious decrease of the longitudinal sound velocity is observed at high filling fraction. Concomitantly, the high frequency acoustic phonon modes are strongly damped as the Yb filling fraction increases, which gives direct evidence for acoustic phonon scattering processes. It is shown that the reduction of lattice thermal conductivity after Yb filling is mainly achieved by the strong scattering of acoustic phonons.
Shinokita, Keisuke; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Hey, Rudolf; Flytzanis, Christos
2016-02-19
Sound amplification in an electrically biased superlattice (SL) is studied in optical experiments with 100 fs time resolution. Coherent SL phonons with frequencies of 40, 375, and 410 GHz give rise to oscillatory reflectivity changes. With currents from 0.5 to 1.3 A, the Fourier amplitude of the 410 GHz phonon increases by more than a factor of 2 over a 200 ps period. This amplification is due to stimulated Čerenkov phonon emission by electrons undergoing intraminiband transport. The gain coefficient of 8×10^{3} cm^{-1} is reproduced by theoretical calculations and holds potential for novel sub-THz phonon emitters. PMID:26943546
High order sideband generation in terahertz quantum cascade lasers
NASA Astrophysics Data System (ADS)
Cavalié, P.; Freeman, J.; Maussang, K.; Strupiechonski, E.; Xu, G.; Colombelli, R.; Li, L.; Davies, A. G.; Linfield, E. H.; Tignon, J.; Dhillon, S. S.
2013-06-01
We demonstrate the generation of high order terahertz (THz) frequency sidebands (up to 3rd order) on a near infrared (NIR) optical carrier within a THz quantum cascade laser (QCL). The NIR carrier is resonant with the interband transition of the quantum wells composing the QCL, allowing the nonlinearity to be enhanced and leading to frequency mixing. A phonon depopulation based QCL with a double metal cavity was used to enhance the intracavity power density and to demonstrate the higher order sidebands. The 1st order sideband intensity shows a linear dependence with THz power corresponding to a single THz photon, while the second order sideband has a quadratic dependence implying a two THz photon interaction and hence a third order susceptibility. These measurements are compared to the photoluminescence and the QCL bandstructure to identify the states involved, with the lowest conduction band states contributing the most to the sideband intensity. We also show that the interaction for the second order sideband corresponds to an enhanced direct third order susceptibility χ(3) of ˜7 × 10-16(m/V)2, two orders of magnitude greater than the bulk value.
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.; Yu, Nan
2010-01-01
Optical sidebands have been generated with relative frequency tens to hundreds of GHz by using optical sidebands that are generated in a cascade process in high-quality optical resonators with Kerr nonlinearity, such as whispering gallery mode (WGM) resonators. For this purpose, the WGM resonator needs to be optically pumped at two frequencies matching its resonances. These two optical components can be one or several free spectral ranges (FSRs), equal to approximately 12 GHz, in this example, apart from each other, and can be easily derived from a monochromatic pump with an ordinary EOM (electro-optic modulation) operating at half the FSR frequency. With sufficient nonlinearity, an optical cascade process will convert the two pump frequencies into a comb-like structure extending many FSRs around the carrier frequency. This has a demonstratively efficient frequency conversion of this type with only a few milliwatt optical pump power. The concept of using Kerr nonlinearity in a resonator for non-degenerate wave mixing has been discussed before, but it was a common belief that this was a weak process requiring very high peak powers to be observable. It was not thought possible for this approach to compete with electro-optical modulators in CW applications, especially those at lower optical powers. By using the high-Q WGM resonators, the effective Kerr nonlinearity can be made so high that, using even weak seeding bands available from a conventional EOM, one can effectively multiply the optical sidebands, extending them into an otherwise inaccessible frequency range.
Ultra-wide acoustic band gaps in pillar-based phononic crystal strips
Coffy, Etienne Lavergne, Thomas; Addouche, Mahmoud; Euphrasie, Sébastien; Vairac, Pascal; Khelif, Abdelkrim
2015-12-07
An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distribution within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.
Ultra-wide acoustic band gaps in pillar-based phononic crystal strips
NASA Astrophysics Data System (ADS)
Coffy, Etienne; Lavergne, Thomas; Addouche, Mahmoud; Euphrasie, Sébastien; Vairac, Pascal; Khelif, Abdelkrim
2015-12-01
An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distribution within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.
NASA Astrophysics Data System (ADS)
Fukasawa, Ryoichi; Okubo, Yusei; Abe, Osamu; Ohta, Kimihiro
1992-03-01
We report the Raman scattering spectra of the folded longitudinal acoustic phonon of AlxGa1-xAs/GaAs superlattices for various aluminium (Al) mole fractions. The effect of Al mole fraction increases on the Raman intensities and the frequencies was studied.
Acoustic phonon-limited diffusion thermopower in monolayer MoS{sub 2}
Patil, S. B.; Sankeshwar, N. S. Kubakaddi, S. S.
2015-06-24
Diffusion thermopower S{sub d} is investigated, theoretically, as a function of temperature, T and electron concentration, n{sub s} in a n-type monolayer molebdenum disulfide (MoS{sub 2}). Electron scattering due to unscreened deformation potential (DP) coupling of TA phonons, screened DP coupling of LA phonons, and screened piezoelectric (PE) coupling of LA and TA phonons is considered. Total S{sub d} is dominated by electron scattering by TA phonons via unscreened DP coupling. S{sub d} is found to increase (decrease) with increasing T (n{sub s}). At low T and for high n{sub s}, S{sub d} ∼ T and n{sub s}{sup −1} as found from the Mott formula. At a given T and for given ns, S{sub d} in MoS{sub 2} is much larger than that in GaAs, due to the larger electron effective mass in the former.
NASA Astrophysics Data System (ADS)
Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen
2016-05-01
We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2.
Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen
2016-01-01
We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2. PMID:27180873
Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen
2016-01-01
We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2. PMID:27180873
NASA Astrophysics Data System (ADS)
Birt, Daniel R.; An, Kyongmo; Weathers, Annie; Shi, Li; Tsoi, Maxim; Li, Xiaoqin
2013-02-01
We demonstrate the use of the micro-Brillouin light scattering (micro-BLS) technique as a local temperature sensor for magnons in a permalloy (Py) thin film and phonons in the glass substrate. When the Py film is uniformly heated, we observe a systematic shift in the frequencies of two thermally excited perpendicular standing spin wave modes. Fitting the temperature dependent magnon spectra allows us to achieve a temperature resolution better than 2.5 K. In addition, we demonstrate that the micro-BLS spectra can be used to measure the local temperature of magnons and the relative temperature shift of phonons across a thermal gradient. Such local temperature sensors are useful for investigating spin caloritronic and thermal transport phenomena in general.
Tunable broadband unidirectional acoustic transmission based on a waveguide with phononic crystal
NASA Astrophysics Data System (ADS)
Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Wan, Lele
2016-08-01
In this paper, a tunable broadband unidirectional acoustic transmission (UAT) device composed of a bended tube and a superlattice with square columns is proposed and numerically investigated by using finite element method. The UAT is realized in the proposed UAT device within two wide frequency ranges. And the effectiveness of the UAT device is demonstrated by analyzing the sound pressure distributions when the acoustic waves are incident from different directions. The unidirectional band gaps can be effectively tuned by mechanically rotating the square columns, which is a highlight of this paper. Besides, a bidirectional acoustic isolation (BAI) device is obtained by placing two superlattices in the bended tube, in which the acoustic waves cannot propagate along any directions. The physical mechanisms of the proposed UAT device and BAI device are simply discussed. The proposed models show potential applications in some areas, such as unidirectional sonic barrier or noise insulation.
Phonon-induced polariton superlattices.
de Lima, M M; van der Poel, M; Santos, P V; Hvam, J M
2006-07-28
We show that the coherent interaction between microcavity polaritons and externally stimulated acoustic phonons forms a tunable polariton superlattice with a folded energy dispersion determined by the phonon population and wavelength. Under high phonon concentration, the strong confinement of the optical and excitonic polariton components in the phonon potential creates weakly coupled polariton wires with a virtually flat energy dispersion. PMID:16907587
Phononic crystal surface mode coupling and its use in acoustic Doppler velocimetry.
Cicek, Ahmet; Salman, Aysevil; Kaya, Olgun Adem; Ulug, Bulent
2016-02-01
It is numerically shown that surface modes of two-dimensional phononic crystals, which are Bloch modes bound to the interface between the phononic crystal and the surrounding host, can couple back and forth between the surfaces in a length scale determined by the separation of two surfaces and frequency. Supercell band structure computations through the finite-element method reveal that the surface band of an isolated surface splits into two bands which support either symmetric or antisymmetric hybrid modes. When the surface separation is 3.5 times the lattice constant, a coupling length varying between 30 and 48 periods can be obtained which first increases linearly with frequency and, then, decreases rapidly. In the linear regime, variation of coupling length can be used as a means of measuring speeds of objects on the order of 0.1m/s by incorporating the Doppler shift. Speed sensitivity can be improved by increasing surface separation at the cost of larger device sizes. PMID:26565078
Observation of coherent acoustic phonon in titanyl phthalocyanine thin solid films
NASA Astrophysics Data System (ADS)
Ahn, Hyeyoung; Su, Shiu-Ho
2015-08-01
Ultrafast exciton dynamics is investigated in titanyl phthalocyanine (TiOPc) micrograin films in this study. Exponential exciton relaxation and oscillatory responses are observed in transient reflectivity measurements of the films. Laser-induced coherent acoustic waves (LCAW) are proposed to be responsible for this oscillation. Despite their fast attenuation with the increase in temperature, LCAWs are successfully detected at room temperature through probing at a large oblique angle near the low-energy absorption edge of the Q-Band. From the oscillation period of the LCAW, the sound velocity is estimated to be ∼3.1 × 103 m/s, and an acoustic echo arising from the boundary between the films and substrate is also observed.
Lee, Sooheyong; Williams, G. Jackson; Campana, Maria I.; Walko, Donald A.; Landahl, Eric C.
2016-01-01
Using a strain-rosette, we demonstrate the existence of transverse strain using time-resolved x-ray diffraction from multiple Bragg reflections in laser-excited bulk gallium arsenide. We find that anisotropic strain is responsible for a considerable fraction of the total lattice motion at early times before thermal equilibrium is achieved. Our measurements are described by a new model where the Poisson ratio drives transverse motion, resulting in the creation of shear waves without the need for an indirect process such as mode conversion at an interface. Using the same excitation geometry with the narrow-gap semiconductor indium antimonide, we detected coherent transverse acoustic oscillations at frequencies of several GHz. PMID:26751616
Molecular Sidebands of Refractory Elements for ISOL
Kronenberg, Andreas; Spejewski, Eugene H.; Carter, H Kennon; Mervin, Brenden T.; Jost, Cara; Stracener, Daniel W; Lapi, Suzanne; Bray, T. H.
2008-01-01
The formation of molecular sidebands of refractory elements, such as V, Re, Zr, Mo, Tc, is discussed. The focus is on in situ sideband formation and its advantage for the release process. An atomic 48V beam has been produced in a two step process, forming the oxide in situ, transporting it through the target-ion source as a chloride and destroying the chlorine sideband in the ion source. The sideband formation of Re, Zr, Mo, Tc is discussed.
Ultrafast Optimal Sideband Cooling under Non-Markovian Evolution
NASA Astrophysics Data System (ADS)
Triana, Johan F.; Estrada, Andrés F.; Pachón, Leonardo A.
2016-05-01
A sideband cooling strategy that incorporates (i) the dynamics induced by structured (non-Markovian) environments in the target and auxiliary systems and (ii) the optimally time-modulated interaction between them is developed. For the context of cavity optomechanics, when non-Markovian dynamics are considered in the target system, ground state cooling is reached at much faster rates and at a much lower phonon occupation number than previously reported. In contrast to similar current strategies, ground state cooling is reached here for coupling-strength rates that are experimentally accessible for the state-of-the-art implementations. After the ultrafast optimal-ground-state-cooling protocol is accomplished, an additional optimal control strategy is considered to maintain the phonon number as close as possible to the one obtained in the cooling procedure. Contrary to the conventional expectation, when non-Markovian dynamics are considered in the auxiliary system, the efficiency of the cooling protocol is undermined.
Manipulation of thermal phonons
NASA Astrophysics Data System (ADS)
Hsu, Chung-Hao
Developing materials that can conduct electricity easily, but block the motion of phonons is necessary in the applications of thermoelectric devices, which can generate electricity from temperature differences. In converse, a key requirement as chips get faster is to obtain better ways to dissipate heat. Controlling heat transfer in these crystalline materials devices --- such as silicon --- is important. The heat is actually the motion or vibration of atoms known as phonons. Finding ways to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials --- phononic crystals --- might make manipulation of thermal phonons possible. In many fields of physical sciences and engineering, acoustic wave propagation in solids attracts many researchers. Wave propagation phenomena can be analyzed by mathematically solving the acoustic wave equation. However, wave propagation in inhomogeneous media with various geometric structures is too complex to find an exact solution. Hence, the Finite Difference Time Domain method is developed to investigate these complicated problems. In this work, the Finite-Difference Time-Domain formula is derived from acoustic wave equations based on the Taylor's expansion. The numerical dispersion and stability problems are analyzed. In addition, the convergence conditions of numerical acoustic wave are stated. Based on the periodicity of phononic crystal, the Bloch's theorem is applied to fulfill the periodic boundary condition of the FDTD method. Then a wide-band input signal is used to excite various acoustic waves with different frequencies. In the beginning of the calculation process, the wave vector is chosen and fixed. By means of recording the displacement field and taking the Fourier transformation, we can obtain the eigenmodes from the resonance peaks of the spectrum and draw the dispersion relation curve of acoustic waves
NASA Astrophysics Data System (ADS)
Fobes, David; Zaliznyak, Igor; Xu, Zhijun; Gu, Genda; Tranquada, John M.; He, Xu-Gang; Ku, Wei; Garlea, Ovidiu
2014-03-01
We have studied the evolution with temperature of the low-energy inelastic spectra of Fe1+yTe (y < 0 . 12), a parent compound of the iron-chalcogenide superconductor family, revealing an acoustic mode at an unexpected position. Recently, we found evidence for the formation of a bond-order wave leading to ferro-orbital order in the monoclinic phase, in part due to the observation of an elastic structural peak at (100) in the low-temperature monoclinic phase [D. Fobes, et al., arXiv:1307.7162]. In the inelastic spectra we observe a sharp acoustic-phonon-like mode dispersing out of the (100) position in the monoclinic phase. Surprisingly, the mode survives in the tetragonal phase, despite the absence of a Bragg peak at (100); such a peak is forbidden by symmetry. LDA calculations suggest this mode could involve significant magnetic scattering. By assuming in-phase virtual displacement of the Fe atoms from their equilibrium position in a frozen phonon calculation, we have found a small but significant imbalance in the magnetic moments between the two Fe atoms within the unit cell, suggesting magnetic contribution to the mode. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-AC02-98CH10886. Research conducted at ORNL Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE.
Birefringent phononic structures
Psarobas, I. E. Exarchos, D. A.; Matikas, T. E.
2014-12-15
Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.
Nakayama, Masaaki Ohno, Tatsuya; Furukawa, Yoshiaki
2015-04-07
We have systematically investigated the photoluminescence (PL) dynamics of free excitons in GaAs/Al{sub 0.3}Ga{sub 0.7}As single quantum wells, focusing on the energy relaxation process due to exciton–acoustic-phonon scattering under non-resonant and weak excitation conditions as a function of GaAs-layer thickness from 3.6 to 12.0 nm and temperature from 30 to 50 K. The free exciton characteristics were confirmed by observation that the PL decay time has a linear dependence with temperature. We found that the free exciton PL rise rate, which is the reciprocal of the rise time, is inversely linear with the GaAs-layer thickness and linear with temperature. This is consistent with a reported theoretical study of the exciton–acoustic-phonon scattering rate in the energy relaxation process in quantum wells. Consequently, it is conclusively verified that the PL rise rate is dominated by the exciton–acoustic-phonon scattering rate. In addition, from quantitative analysis of the GaAs-layer thickness and temperature dependences, we suggest that the PL rise rate reflects the number of exciton–acoustic-phonon scattering events.
NASA Astrophysics Data System (ADS)
Baydin, Andrey; Krzyzanowska, Halina; Dhanunjaya, Munthala; Nageswara Rao, S. V. S.; Davidson, Jimmy L.; Feldman, Leonard C.; Tolk, Norman H.
2016-06-01
Silicon carbide (SiC) is a promising material for new generation electronics including high power/high temperature devices and advanced optical applications such as room temperature spintronics and quantum computing. Both types of applications require the control of defects particularly those created by ion bombardment. In this work, modification of optical constants of 4H-SiC due to hydrogen implantation at 180 keV and at fluences ranging from 1014 to 1016 cm-2 is reported. The depth dependence of the modified optical constants was extracted from coherent acoustic phonon spectra. Implanted spectra show a strong dependence of the 4H-SiC complex refractive index depth profile on H+ fluence. These studies provide basic insight into the dependence of optical properties of 4H silicon carbide on defect densities created by ion implantation, which is of relevance to the fabrication of SiC-based photonic and optoelectronic devices.
Yarotski, Dmitry; Yan Li; Jia Quanxi; Taylor, Antoinette J.; Fu Engang; Wang Yongqiang; Uberuaga, Blas P.
2012-06-18
We apply ultrafast coherent acoustic phonon interferometry to characterize the distribution of the radiation damage near the TiO{sub 2}/SrTiO{sub 3} interfaces. We show that the optical and mechanical properties of anatase TiO{sub 2} remain unaffected by the radiation dosages in the 0.1 Division-Sign 5 dpa (displacements per atom) range, while the degraded optical response indicates a significant defect accumulation in the interfacial region of SrTiO{sub 3} at 0.1 dpa and subsequent amorphization at 3 dpa. Comparison between the theoretical simulations and the experimental results reveals an almost threefold reduction of the sound velocity in the irradiated SrTiO{sub 3} layer with peak damage levels of 3 and 5 dpa.
Bhargavi, K. S.; Patil, Sukanya; Kubakaddi, S. S.
2015-07-28
The theory of free-carrier absorption (FCA) is given for monolayers of transition-metal dichalcogenides, particularly for molybdenum disulphide (MoS{sub 2}), when carriers are scattered by phonons. Explicit expressions for the absorption coefficient α are obtained and discussed for acoustic phonon scattering via screened deformation potential and piezoelectric coupling taking polarization of the radiation in the plane of the layer. It is found that α monotonously decreases with the increasing photon frequency Ω, increases with the increasing temperature T, and linearly depends on two-dimensional electron concentration n{sub s}. Effect of screening, which is ignored in all the earlier FCA studies, is found to reduce α significantly, attributing to the larger effective mass of the electrons. Results are also obtained in the classical and quantum limit giving the power laws α ∼ Ω{sup −2} and T. Comparison of the results is made with those in bulk semiconductors and semiconductor quantum wells.
Measurement of the motional sidebands of a nanogram-scale oscillator in the quantum regime
NASA Astrophysics Data System (ADS)
Underwood, M.; Mason, D.; Lee, D.; Xu, H.; Jiang, L.; Shkarin, A. B.; Børkje, K.; Girvin, S. M.; Harris, J. G. E.
2015-12-01
We describe measurements of the motional sidebands produced by a mechanical oscillator (with effective mass 43 ng and resonant frequency 705 kHz) that is placed in an optical cavity and cooled close to its quantum ground state. The red and blue sidebands (corresponding to Stokes and anti-Stokes scattering) from a single laser beam are recorded simultaneously via a heterodyne measurement. The oscillator's mean phonon number n ¯ is inferred from the ratio of the sidebands, and reaches a minimum value of 0.84 ±0.22 (corresponding to a mode temperature T =28 ±7 μ K ). We also infer n ¯ from the calibrated area of each of the two sidebands, and from the oscillator's total damping. The values of n ¯ inferred from these four methods are in close agreement. The behavior of the sidebands as a function of the oscillator's temperature agrees well with theory that includes the quantum fluctuations of both the cavity field and the mechanical oscillator.
Blackburn, J. L.; Holt, J. M.; Irurzun, V. M.; Reasco, D. E.; Rumbles, G.
2012-03-14
A detailed knowledge of the manifold of both bright and dark excitons in single-walled carbon nanotubes (SWCNTs) is critical to understanding radiative and nonradiative recombination processes. Exciton-phonon coupling opens up additional absorption and emission channels, some of which may 'brighten' the sidebands of optically forbidden (dark) excitonic transitions in optical spectra. In this report, we compare {sup 12}C and {sup 13}C-labeled SWCNTs that are highly enriched in the (6,5) species to identify both absorptive and emissive vibronic transitions. We find two vibronic sidebands near the bright {sup 1}E{sub 11} singlet exciton, one absorptive sideband {approx}200 meV above, and one emissive sideband {approx}140 meV below, the bright singlet exciton. Both sidebands demonstrate a {approx}50 cm{sup -1} isotope-induced shift, which is commensurate with exciton-phonon coupling involving phonons of A'{sub 1} symmetry (D band, {omega} {approx} 1330 cm{sup -1}). Independent analysis of each sideband indicates that both sidebands arise from the same dark exciton level, which lies at an energy approximately 25 meV above the bright singlet exciton. Our observations support the recent prediction of, and mounting experimental evidence for, the dark K-momentum singlet exciton lying {approx}25 meV (for the (6,5) SWCNT) above the bright {Lambda}-momentum singlet. This study represents the first use of {sup 13}C-labeled SWCNTs highly enriched in a single nanotube species to unequivocally confirm these sidebands as vibronic sidebands of the dark K-momentum singlet exciton.
Phononic Molecules Studied by Raman Scattering
Lanzillotti-Kimura, N. D.; Fainstein, A.; Jusserand, B.; Lemaitre, A.
2010-01-04
An acoustic nanocavity can confine phonons in such a way that they act like electrons in an atom. By combining two of these phononic-atoms, it is possible to form a phononic 'molecule', with acoustic modes that are similar to the electronic states in a hydrogen molecule. We report Raman scattering experiments performed in a monolithic structure formed by a phononic molecule embedded in an optical cavity. The acoustic mode splitting becomes evident through both the amplification and change of selection rules induced by the optical cavity confinement. The results are in perfect agreement with photoelastic model simulations.
NASA Astrophysics Data System (ADS)
Salman, Aysevil; Adem Kaya, Olgun; Cicek, Ahmet; Ulug, Bulent
2015-06-01
Mach-Zehnder interferometer formed by liquid-filled linear defect waveguides in a two-dimensional phononic crystal is numerically realized for sensing low concentrations of an analyte. The waveguides in the square phononic crystal of void cylinders in steel, as well as their T branches and sharp bends are utilized to construct interferometer arms. Sensing low concentrations of ethanol on the order of 0.1% in a binary mixture with water is achieved by replacing the contents of a number of waveguide core cells on one arm of the interferometer with the analyte. Computations are carried out through the finite-element method in an approach that takes the solid-liquid interaction at the waveguide core cells into account. Band analyses reveal linear variation of the central frequency of the transmission band within a band gap for ethanol concentrations up to 3.0%. Phase difference due to the imbalance of the sample and reference arms of the interferometer also varies linearly with ethanol concentration, leading in turn to a cosine variation of the Fourier component of the temporal interferometer response at the central input-pulse frequency. The induced phase difference in the investigated configuration becomes a -0.78π and -0.65π per percent increase of ethanol concentration as calculated from the band-structure and transient data, respectively. This is confirmed by transient finite-element simulations where totally destructive interference occurs for a concentration of approximately 1.5%. The proposed scheme, which can easily be adopted to other binary mixtures, offers a compact implementation requiring small amounts of analyte.
Phononic crystal diffraction gratings
NASA Astrophysics Data System (ADS)
Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent
2012-02-01
When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.
Splash, pop, sizzle: Information processing with phononic computing
Sklan, Sophia R.
2015-05-15
Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics) have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic. .
NASA Astrophysics Data System (ADS)
Baydin, Andrey; Krzyzanowska, Halina; Dhanunjaya, M.; Rao, S. V. S. Nageswara; Davidson, Jimmy L.; Feldman, Leonard C.; Tolk, Norman H.
Silicon carbide (SiC) is an ideal material for new electronics, such as high power/high temperature devices, and a candidate for advanced optical applications such as room temperature spintronics and quantum computing. Both types of applications may require the control of defects created by ion bombardment. In this work, we examine depth dependent modification of optical constants of 4H-SiC due to hydrogen implantation at 180keV and low doses ranging from 1014 to 1016 cm-2probed by coherent acoustic phonon (CAP) spectroscopy. For our studies, we used Si-face 10 μm epilayers of n-type 4H-SiC grown by CVD on 4H-SiC substrate. A comprehensive analysis of the reference and implanted spectra shows a strong dependence of 4H-SiC complex refractive index shape versus depth on the H+ fluence. We extract the complex refractive index as a function of depth and ion beam dose. Our results demonstrate that the implantation-modified refractive index is distributed over a greater depth range than Monte Carlo calculation predictions of the implantation induced structural damage. These studies provide insight into the application of hydrogen ion implantation to the fabrication of SiC-based photonic and optoelectronic devices. Work is supported by ARO under Contract No. W911NF-14-1-0290.
Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity
Chen, J. C. H.; Sato, Y.; Kosaka, R.; Hashisaka, M.; Muraki, K.; Fujisawa, T.
2015-01-01
Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for surface acoustic waves, which is made of periodic metal fingers that constitute Bragg reflectors on a GaAs/AlGaAs heterostructure. Phonon band gap and cavity phonon modes are identified by frequency, time and spatially resolved measurements of the piezoelectric potential. Tunneling spectroscopy on a double quantum dot indicates the enhancement of phonon assisted transitions in a charge qubit. This encourages studying of acoustic cavity quantum electrodynamics with surface phonons. PMID:26469629
Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity
NASA Astrophysics Data System (ADS)
Chen, J. C. H.; Sato, Y.; Kosaka, R.; Hashisaka, M.; Muraki, K.; Fujisawa, T.
2015-10-01
Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for surface acoustic waves, which is made of periodic metal fingers that constitute Bragg reflectors on a GaAs/AlGaAs heterostructure. Phonon band gap and cavity phonon modes are identified by frequency, time and spatially resolved measurements of the piezoelectric potential. Tunneling spectroscopy on a double quantum dot indicates the enhancement of phonon assisted transitions in a charge qubit. This encourages studying of acoustic cavity quantum electrodynamics with surface phonons.
Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
Chen, J C H; Sato, Y; Kosaka, R; Hashisaka, M; Muraki, K; Fujisawa, T
2015-01-01
Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for surface acoustic waves, which is made of periodic metal fingers that constitute Bragg reflectors on a GaAs/AlGaAs heterostructure. Phonon band gap and cavity phonon modes are identified by frequency, time and spatially resolved measurements of the piezoelectric potential. Tunneling spectroscopy on a double quantum dot indicates the enhancement of phonon assisted transitions in a charge qubit. This encourages studying of acoustic cavity quantum electrodynamics with surface phonons. PMID:26469629
Ultrafast Optimal Sideband Cooling under Non-Markovian Evolution.
Triana, Johan F; Estrada, Andrés F; Pachón, Leonardo A
2016-05-01
A sideband cooling strategy that incorporates (i) the dynamics induced by structured (non-Markovian) environments in the target and auxiliary systems and (ii) the optimally time-modulated interaction between them is developed. For the context of cavity optomechanics, when non-Markovian dynamics are considered in the target system, ground state cooling is reached at much faster rates and at a much lower phonon occupation number than previously reported. In contrast to similar current strategies, ground state cooling is reached here for coupling-strength rates that are experimentally accessible for the state-of-the-art implementations. After the ultrafast optimal-ground-state-cooling protocol is accomplished, an additional optimal control strategy is considered to maintain the phonon number as close as possible to the one obtained in the cooling procedure. Contrary to the conventional expectation, when non-Markovian dynamics are considered in the auxiliary system, the efficiency of the cooling protocol is undermined. PMID:27203322
Watching surface waves in phononic crystals.
Wright, Oliver B; Matsuda, Osamu
2015-08-28
In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the position and widths of phonon stop bands can be obtained by temporal and spatio-temporal Fourier analysis. We further demonstrate how one can follow the temporal evolution of phononic eigenstates in k-space using data from phononic-crystal waveguides as an example. PMID:26217053
Sound and heat revolutions in phononics.
Maldovan, Martin
2013-11-14
The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics. PMID:24226887
Sound and heat revolutions in phononics
NASA Astrophysics Data System (ADS)
Maldovan, Martin
2013-11-01
The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.
Optical pulse synthesis using brillouin selective sideband amplification
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2002-01-01
Techniques for producing optical pulses based on Brillouin selective sideband amplification by using a common modulation control signal to modulate both a signal beam to produce multiple sideband signals and a single pump beam to produce multiple pump beams.
Near infrared frequency dependence of high-order sideband generation
Zaks, Benjamin; Banks, Hunter; Sherwin, Mark; Liu, Ren-Bao
2013-12-04
The near infrared frequency dependence of high order sideband generation in InGaAs quantum wells is discussed. The NIR frequency dependence of the sidebands indicates that the HSG phenomenon is excitonic in nature.
NASA Astrophysics Data System (ADS)
Perrin, Bernard
2007-06-01
The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how
Xu, Yuehua; Dai, Jun; Zeng, Xiao Cheng
2016-01-21
The intrinsic acoustic-phonon-limited carrier mobility (μ) of Al2C monolayer sheet and nanoribbons are investigated using ab initio computation and deformation potential theory. It is found that the polarity of the room-temperature carrier mobility of the Al2C monolayer is direction-dependent, with μ of electron (e) and hole (h) being 2348 and 40.77 cm(2)/V/s, respectively, in the armchair direction and 59.95 (e) and 705.8 (h) in the zigzag direction. More interestingly, one-dimensional Al2C nanoribbons not only can retain the direction-dependent polarity but also may entail even higher mobility, in contrast to either the graphene nanoribbons which tend to exhibit lower μ compared to the two-dimensional graphene or the MoS2 nanoribbons which have reversed polarity compared to the MoS2 sheet. As an example, the Al-terminated zigzag nanoribbon with a width of 4.1 nm exhibits μ of 212.6 (e) and 2087 (h) cm(2)/V/s, while the C-terminated armchair nanoribbon with a width 2.6 nm exhibits μ of 1090 (e) and 673.9 (h) cm(2)/V/s; the C-terminated zigzag nanoribbon with a width 3.7 nm exhibits μ of 177.6 (e) and 1889 (h) cm(2)/V/s, and the Al-terminated armchair nanoribbon with a width 2.4 nm exhibits μ of 6695 (e) and 518.4 (h) cm(2)/V/s. The high carrier mobility, μ, coupled with polarity and direction dependence endows the Al2C sheet and nanoribbons with unique transport properties that can be exploited for special applications in nanoelectronics. PMID:26722716
Kinetic description of an electron--LO-phonon system with finite phonon lifetime
Nguyen, V.T.; Mahler, G. )
1992-02-15
We study the cooling of an electron plasma from a kinetic point of view. For this purpose, a quantum theory of fluctuations is applied to derive the kinetic equations for an electron--LO-phonon system from various model Hamiltonians. A polarization approximation is provided that goes beyond perturbation theory of the electron-phonon interaction. The description of electron-phonon energy exchange is shown to be impossible with the interacting Hamiltonian in Froehlich's one-phonon form unless dissipation of the bare LO phonon is included. For a Hamiltonian including effects of the scattering of LO phonons by acoustic phonons, kinetic equations are derived. The equation for LO phonons is shown to describe the collective excitations with finite lifetime, in the limiting case of weak damping of the plasmon-phonon coupled modes. A reduction of the cooling rate similar to the hot-phonon'' effect is shown to occur for the case of weak coupling without assuming a steady state of the LO phonons. Finally, an electron-phonon interaction Hamiltonian in two-phonon form is considered and it is shown that electron-phonon energy exchange may be described in the polarization approximation without introducing a finite phonon lifetime.
NASA Astrophysics Data System (ADS)
The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).
Ultrasonic and hypersonic phononic crystals
NASA Astrophysics Data System (ADS)
Khelif, A.; Hsiao, F.-L.; Benchabane, S.; Choujaa, A.; Aoubiza, B.; Laude, V.
2008-02-01
We report on the experimental and theoretical investigation two kinds of acoustic waves in two dimensional phononic crystal: bulk acoustic waves and surface acoustic waves. For bulk acoustic waves, the work focuses on the experimental observation of full acoustic band gaps in a two-dimensional lattice of steel cylinders immersed in water as well as deaf bands that cause strong attenuation in the transmission for honeycomb and triangular lattices. For surface acoustic waves, complete acoustic band gaps found experimentally in a two-dimensional square-lattice piezoelectric phononic crystal etched in lithium niobate will be presented. Propagation in the phononic crystal is studied by direct generation and detection of surface waves using interdigital transducers. The complete band gap extends from 203 to 226 MHz, in good agreement with theoretical predictions. Near the upper edge of the complete band gap, it is observed that radiation to the bulk of the substrate dominates. This observation is explained by introducing the concept of sound line.
Kabuss, Julia; Carmele, Alexander; Brandes, Tobias; Knorr, Andreas
2012-08-01
We present a microscopically based scheme for the generation of coherent cavity phonons (phonon laser) by an optically driven semiconductor quantum dot coupled to a THz acoustic nanocavity. External laser pump light on an anti-Stokes resonance creates an effective Lambda system within a two-level dot that leads to coherent phonon statistics. We use an inductive equation of motion method to estimate a realistic parameter range for an experimental realization of such phonon lasers. This scheme for the creation of nonequilibrium phonons is robust with respect to radiative and phononic damping and only requires optical Rabi frequencies of the order of the electron-phonon coupling strength. PMID:23006175
Coherent phonon optics in a chip with an electrically controlled active device
Poyser, Caroline L.; Akimov, Andrey V.; Campion, Richard P.; Kent, Anthony J.
2015-01-01
Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.; Grosveld, Ferdinand
2007-01-01
The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.
ERIC Educational Resources Information Center
Beyer, Robert
1981-01-01
Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)
Existence of an independent phonon bath in a quantum device
NASA Astrophysics Data System (ADS)
Pascal, L. M. A.; Fay, A.; Winkelmann, C. B.; Courtois, H.
2013-09-01
At low temperatures, the thermal wavelength of acoustic phonons in a metallic thin film on a substrate can widely exceed the film thickness. It is thus generally believed that a mesoscopic device operating at low temperature does not carry an individual phonon population. In this work, we provide direct experimental evidence for the thermal decoupling of phonons in a mesoscopic quantum device from its substrate phonon heat bath at a sub-Kelvin temperature. A simple heat balance model assuming an independent phonon bath following the usual electron-phonon and Kapitza coupling laws can account for all experimental observations.
Wide-Stopband Aperiodic Phononic Filters
NASA Technical Reports Server (NTRS)
Rostem, Karwan; Chuss, David; Denis, K. L.; Wollack, E. J.
2016-01-01
We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6-10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.
Wide-stopband aperiodic phononic filters
NASA Astrophysics Data System (ADS)
Rostem, K.; Chuss, D. T.; Denis, K. L.; Wollack, E. J.
2016-06-01
We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6–10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.
NASA Astrophysics Data System (ADS)
Loayssa, Alayn; Hernández, Rubén; Benito, David; Galech, Sonia
2004-03-01
We introduce an enhanced method for the characterization of stimulated Brillouin scattering (SBS) spectra in single-mode fiber that is based on optical single-sideband modulation. This novel technique is shown to provide high-resolution characterization of SBS even under saturation operation in a simple and stable setup in which the spectrum is translated from the optical to the electrical domain, sweeping the frequency of an electrical signal generator. Experimental results are used to demonstrate the performance of the system in measuring the detailed structure of acoustic modes in three types of single-mode fiber.
NASA Astrophysics Data System (ADS)
Gao, Song; Pei, Li; Li, Zhuoxuan; Liu, Chao; Wang, Yiqun; Weng, Sijun
2013-03-01
An optical single sideband (OSSB) modulation radio over a fiber system, by using an acousto-optic filter (AOF), is proposed and demonstrated. In the AOF, a uniform fiber Bragg grating is etched and modulated by an axially propagating acoustic wave. Due to the acousto-optic superlattice modulation, two secondary reflection peaks, centered on the primary reflection peak, are generated. In the scheme, an optical double-sideband signal passes though the AOF to realize OSSB modulation. Because the reflect depth of the primary peak is much deeper than those of the secondary peaks, the carrier experiences higher attenuation than the upper sideband, which means the carrier-to-sideband ratio (CSR) can be optimized at the same time. We demonstrate this scheme via simulations, and successfully reduce the CSR from 9.73 to 2.9 dB. As a result, the receiving sensitivity improved from -23.43 to -31.18 dBm at BER of 10-9 with 30 km long SMF.
Phonon manipulation with phononic crystals.
Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F.; El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III
2012-01-01
In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power
Phononic crystals and elastodynamics: Some relevant points
Aravantinos-Zafiris, N.; Sigalas, M. M.; Kafesaki, M.; Economou, E. N.
2014-12-15
In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.
Harvesting vibrations via 3D phononic isolators
NASA Astrophysics Data System (ADS)
Psarobas, Ioannis E.; Yannopapas, Vassilios; Matikas, Theodore E.
2016-05-01
We report on the existence of unidirectional phononic band gaps that may span over extended regions of the Brillouin zone and can find application in trapping elastic (acoustic) waves in properly designed multilayered 3D structures. Phononic isolators operate as a result of asymmetrical wave transmission through a slab of a crystallographic phononic structure with broken mirror symmetry. Due to the use of lossless materials in the crystal, the absorption rate is dramatically enhanced when the proposed isolator is placed next to a vibrational harvesting cell. xml:lang="fr"
NASA Astrophysics Data System (ADS)
Sudhir, Vivishek; Wilson, Dalziel; Schilling, Ryan; Schuetz, Hendrik; Nunnenkamp, Andreas; Kippenberg, Tobias
Measurement-based feedback provides an avenue to study the delicate interplay between the quantum correlations established during the process of measurement, and their progressive obfuscation when exposed to uncorrelated noise in the form of fundamental quantum fluctuations in the feedback path. Here we demonstrate this tradeoff using a feedback strategy whose objective is to cool a nano-mechanical oscillator close to its ground state. The correlations established due to the measurement are revealed in the appearance of motional sideband asymmetry. The latter, faithfully measured using an optical heterodyne interferometer with an imprecision ~17 dB below that at the standard quantum limit, increases to 6% as the oscillator is feedback cooled to an occupation of 15 phonons. Further increase in the gain of the feedback loop leads to a decrease in the asymmetry. This is due to the addition of unavoidable quantum fluctuations in a feedback amplifier - photon shot-noise amplified by a homodyne detector in our case.
Xia, H. Patterson, R.; Feng, Y.; Shrestha, S.; Conibeer, G.
2014-08-11
The rates of charge carrier relaxation by phonon emission are of substantial importance in the field of hot carrier solar cell, primarily in investigation of mechanisms to slow down hot carrier cooling. In this work, energy and momentum resolved deformation potentials relevant to electron-phonon scattering are computed for wurtzite InN and GaN as well as an InN/GaN multiple quantum well (MQW) superlattice using ab-initio methods. These deformation potentials reveal important features such as discontinuities across the electronic bandgap of the materials and variations over tens of eV. The energy dependence of the deformation potential is found to be very similar for wurtzite nitrides despite differences between the In and Ga pseudopotentials and their corresponding electronic band structures. Charge carrier relaxation by this mechanism is expected to be minimal for electrons within a few eV of the conduction band edge. However, hole scattering at energies more accessible to excitation by solar radiation is possible between heavy and light hole states. Moderate reductions in overall scattering rates are observed in MQW relative to the bulk nitride materials.
NASA Astrophysics Data System (ADS)
Xia, H.; Patterson, R.; Feng, Y.; Shrestha, S.; Conibeer, G.
2014-08-01
The rates of charge carrier relaxation by phonon emission are of substantial importance in the field of hot carrier solar cell, primarily in investigation of mechanisms to slow down hot carrier cooling. In this work, energy and momentum resolved deformation potentials relevant to electron-phonon scattering are computed for wurtzite InN and GaN as well as an InN/GaN multiple quantum well (MQW) superlattice using ab-initio methods. These deformation potentials reveal important features such as discontinuities across the electronic bandgap of the materials and variations over tens of eV. The energy dependence of the deformation potential is found to be very similar for wurtzite nitrides despite differences between the In and Ga pseudopotentials and their corresponding electronic band structures. Charge carrier relaxation by this mechanism is expected to be minimal for electrons within a few eV of the conduction band edge. However, hole scattering at energies more accessible to excitation by solar radiation is possible between heavy and light hole states. Moderate reductions in overall scattering rates are observed in MQW relative to the bulk nitride materials.
Nano-optomechanical system based on microwave frequency surface acoustic waves
NASA Astrophysics Data System (ADS)
Tadesse, Semere Ayalew
Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic
Doppler Sideband Spectra for Ions in a Linear Trap
NASA Technical Reports Server (NTRS)
Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.
1993-01-01
We describe a spectroscopic measurement of the temperature and linear density of HG+ ions held in a linear ion trap (LIT). The inferred temperature and number result from analysis of sidebands on the 40.5 GHz resonance line.
Radiation pressure induced difference-sideband generation beyond linearized description
NASA Astrophysics Data System (ADS)
Xiong, Hao; Fan, Yu-Wan; Yang, Xiaoxue; Wu, Ying
2016-08-01
We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.
Raman sideband cooling of 138 Ba+ on a Zeeman transition
NASA Astrophysics Data System (ADS)
Seck, Christopher; Kokish, Mark; Dietrich, Matthew; Odom, Brian
2016-05-01
Here, we report motional ground state preparation of a single 138 Ba+ ion using Raman sideband cooling with the two S1/2 Zeeman sublevels. Owing to the small Zeeman splitting, Raman sideband cooling of 138 Ba+ requires only two AOMs and the Doppler cooling lasers. Additionally, we demonstrate coherent operations using a second, far-off-resonant laser driving Raman π-pulses between the two Zeeman sublevels to characterize our mean motional occupation number, Raman sideband cooling frequency resonance, Raman sideband cooling rate, and ion trap motional heating rate. Motional ground state cooling and molecular internal state preparation, both realized in our group, are important elements for molecular quantum logic spectroscopy (mQLS). We are now working towards motional ground state preparation of a 138 Ba+ and AlH+ ion pair for mQLS. Supported by the AFOSR and the NSF.
Optical frequency tripling with improved suppression and sideband selection.
Thakur, Manoj P; Medeiros, Maria C R; Laurêncio, Paula; Mitchell, John E
2011-12-12
A novel optical dispersion tolerant millimetre-wave radio-over-fibre system using optical frequency tripling technique with enhanced and selectable sideband suppression is demonstrated. The implementation utilises cascaded optical modulators to achieve either an optical single sideband (OSSB) or double sideband-suppressed carrier (DSB-SC) signal with high sideband suppression. Our analysis and simulation results indicate that the achievable suppression ratio of this configuration is only limited by other system factors such as optical noise and drifting of the operational conditions. The OSSB transmission system performance is assessed experimentally by the transport of 4 WiMax channels modulating a 10 GHz optical upconverted RF carrier as well as for optical frequency doubling and tripling. The 10 GHz and tripled carrier at 30 GHz are dispersion tolerant resulting both in an average relative constellation error (RCE) of -28.7 dB after 40 km of fibre. PMID:22274056
Non-equilibrium phonon generation and detection in microstructure devices
Hertzberg, Jared B.; Otelaja, Obafemi O.; Yoshida, Naoki J.; Robinson, Richard D.
2011-01-01
We demonstrate a method to excite locally a controllable, non-thermal distribution of acoustic phonon modes ranging from 0 to -200 GHz in a silicon microstructure, by decay of excited quasiparticle states in an attached superconducting tunnel junction (STJ). The phonons transiting the structure ballistically are detected by a second STJ, allowing comparison of direct with indirect transport pathways. This method may be applied to study how different phonon modes contribute to the thermal conductivity of nanostructures.
El-Kady, Ihab F.; Olsson, Roy H.
2012-01-10
Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.
Tunable Topological Phononic Crystals
NASA Astrophysics Data System (ADS)
Chen, Ze-Guo; Wu, Ying
2016-05-01
Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.
NASA Astrophysics Data System (ADS)
Vasseur, J. O.; Morvan, B.; Tinel, A.; Swinteck, N.; Hladky-Hennion, A.-C.; Deymier, P. A.
2012-10-01
The square symmetry of the equifrequency contour of longitudinal waves in a solid/solid two-dimensional phononic crystal (PC) is shown through numerical calculations and experiments to lead to peculiar propagation phenomena. A slab of steel/epoxy PC immersed in water refracts incident longitudinal waves by an angle of zero degrees. The waves propagate along the shortest path between the slab faces. This characteristic enables the superposition within the same volume of the PC of waves with different incidence angles. Two incident waves with symmetrical incident angles can interfere constructively or destructively inside the PC depending on their initial phase difference. This phase difference is shown to enable control of wave propagation through the PC.
Phononic filter effect of rattling phonons in the thermoelectric clathrate Ba8Ge40+xNi6-x
NASA Astrophysics Data System (ADS)
Euchner, H.; Pailhès, S.; Nguyen, L. T. K.; Assmus, W.; Ritter, F.; Haghighirad, A.; Grin, Y.; Paschen, S.; de Boissieu, M.
2012-12-01
One of the key requirements for good thermoelectric materials is a low lattice thermal conductivity. Here we present a combined neutron scattering and theoretical investigation of the lattice dynamics in the type I clathrate system Ba-Ge-Ni, which fulfills this requirement. We observe a strong hybridization between phonons of the Ba guest atoms and acoustic phonons of the Ge-Ni host structure over a wide region of the Brillouin zone, which is in contrast with the frequently adopted picture of isolated Ba atoms in Ge-Ni host cages. It occurs without a strong decrease of the acoustic phonon lifetime, which contradicts the usual assumption of strong anharmonic phonon-phonon scattering processes. Within the framework of ab initio density-functional theory calculations we interpret these hybridizations as a series of anticrossings which act as a low-pass filter, preventing the propagation of acoustic phonons. To highlight the effect of such a phononic low-pass filter on the thermal transport, we compute the contribution of acoustic phonons to the thermal conductivity of Ba8Ge40Ni6 and compare it to those of pure Ge and a Ge46 empty-cage model system.
Phonon populations and electrical power dissipation in carbon nanotube transistors.
Steiner, Mathias; Freitag, Marcus; Perebeinos, Vasili; Tsang, James C; Small, Joshua P; Kinoshita, Megumi; Yuan, Dongning; Liu, Jie; Avouris, Phaedon
2009-05-01
Carbon nanotubes and graphene are candidate materials for nanoscale electronic devices. Both materials show weak acoustic phonon scattering and long mean free paths for low-energy charge carriers. However, high-energy carriers couple strongly to optical phonons, which leads to current saturation and the generation of hot phonons. A non-equilibrium phonon distribution has been invoked to explain the negative differential conductance observed in suspended metallic nanotubes, while Raman studies have shown the electrical generation of hot G-phonons in metallic nanotubes. Here, we present a complete picture of the phonon distribution in a functioning nanotube transistor including the G and the radial breathing modes, the Raman-inactive zone boundary K mode and the intermediate-frequency mode populated by anharmonic decay. The effective temperatures of the high- and intermediate-frequency phonons are considerably higher than those of acoustic phonons, indicating a phonon-decay bottleneck. Most importantly, inclusion of scattering by substrate polar phonons is needed to fully account for the observed electronic transport behaviour. PMID:19421219
NASA Astrophysics Data System (ADS)
Yankin, S.; Talbi, A.; Du, Y.; Gerbedoen, J.-C.; Preobrazhensky, V.; Pernod, P.; Bou Matar, O.
2014-06-01
We study both theoretically and experimentally the interaction of surface elastic waves with 2D surface phononic crystal (PnC) on a piezoelectric substrate. A rigorous analysis based on 3D finite element method is conducted to calculate the band structure of the PnC and to analyze the transmission spectrum (module and phase). Interdigital transducers (IDTs) are considered for electrical excitation and detection, and absorbing boundary conditions are used to suppress wave's reflection from the edges. The PnCs are composed of an array of 20 Nickel cylindrical pillars arranged in a square lattice symmetry, and deposited on a LiNbO3 substrate (128°Y cut-X propagating) between two dispersive IDTs. We investigate by means of band diagrams and transmission spectrum the opening band-gaps originating from pillars resonant modes and from Bragg band-gap. The physical parameters that influence and determine their appearance are also discussed. Experimental validation is achieved through electrical measurement of the transmission characteristics, including amplitude and phase.
Phonon bandgap engineering of strained monolayer MoS2
NASA Astrophysics Data System (ADS)
Jiang, Jin-Wu
2014-06-01
The phonon band structure of monolayer MoS2 is characteristic of a large energy gap between acoustic and optical branches, which protects the vibration of acoustic modes from being scattered by optical phonon modes. Therefore, the phonon bandgap engineering is of practical significance for the manipulation of phonon-related mechanical or thermal properties in monolayer MoS2. We perform both phonon analysis and molecular dynamics simulations to investigate the tension effect on the phonon bandgap and the compression induced instability of the monolayer MoS2. Our key finding is that the phonon bandgap can be narrowed by the uniaxial tension, and is completely closed at ε = 0.145; while the biaxial tension only has a limited effect on the phonon bandgap. We also demonstrate the compression induced buckling for the monolayer MoS2. The critical strain for buckling is extracted from the band structure analysis of the flexure mode in the monolayer MoS2 and is further verified by molecular dynamics simulations and the Euler buckling theory. Our study illustrates the uniaxial tension as an efficient method for manipulating the phonon bandgap of the monolayer MoS2, while the biaxial compression as a powerful tool to intrigue buckling in the monolayer MoS2.
Phonon bandgap engineering of strained monolayer MoS₂.
Jiang, Jin-Wu
2014-07-21
The phonon band structure of monolayer MoS₂ is characteristic of a large energy gap between acoustic and optical branches, which protects the vibration of acoustic modes from being scattered by optical phonon modes. Therefore, the phonon bandgap engineering is of practical significance for the manipulation of phonon-related mechanical or thermal properties in monolayer MoS₂. We perform both phonon analysis and molecular dynamics simulations to investigate the tension effect on the phonon bandgap and the compression induced instability of the monolayer MoS₂. Our key finding is that the phonon bandgap can be narrowed by the uniaxial tension, and is completely closed at ε = 0.145; while the biaxial tension only has a limited effect on the phonon bandgap. We also demonstrate the compression induced buckling for the monolayer MoS₂. The critical strain for buckling is extracted from the band structure analysis of the flexure mode in the monolayer MoS₂ and is further verified by molecular dynamics simulations and the Euler buckling theory. Our study illustrates the uniaxial tension as an efficient method for manipulating the phonon bandgap of the monolayer MoS₂, while the biaxial compression as a powerful tool to intrigue buckling in the monolayer MoS₂. PMID:24932612
Methods and devices based on brillouin selective sideband amplification
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2003-01-01
Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.
177-207 GHz Radiometer Front End: Single Sideband Measurements
NASA Technical Reports Server (NTRS)
Galin, I.; Schnitzer, C. A.; Dengler, R. J.; Quintero, O.
1999-01-01
Twenty years of progress in 200 GHz receivers for spaceborne remote sensing has yielded a 180-220 GHz technology with maturing characteristics, as evident by increasing availability of relevant hardware, paralleled by further refinement in receiver performance requirements at this spectrum band. The 177-207 GHz superheterodyne receiver, for the Earth observing system (EOS) microwave limb sounder (MLS), effectively illustrates such technology developments. This MLS receiver simultaneously detects six different signals, located at sidebands below and above its 191.95 GHZ local-oscillator (LO). The paper describes the MLS 177-207 GHz receiver front-end (RFE), and provides measured data for its lower and upper sidebands. Sideband ratio data is provided as a function of IF frequency, at different LO power drive, and for variation in the ambient temperature.
Manipulation of Phonons with Phononic Crystals
Leseman, Zayd Chad
2015-07-09
There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.
NASA Astrophysics Data System (ADS)
Maier, S.; Port, H.
1987-11-01
Photoexcitation spectra of triplet (T1← S0) zero-phonon lines and phonon sidebands in different anthracene electron donor-acceptor (EDA) complex crystals (A-PMDA, A-TCNB, A-TCPA) have been analyzed between 1.3 K and 50 K at high spectral resolution. From the electron-phonon coupling strength at T = 0 K values of the charge-transfer (CT) character in the range between 6% and 10% are calculated. The differences in these values are found to be correlated with the energetic positions of the triplet state, which are explained within the framework of the Mulliken theory.
Ballistic phonon production in photoexcited Ge, GaAs, and Si
NASA Astrophysics Data System (ADS)
Msall, M. E.; Wolfe, J. P.
2002-05-01
Phonon imaging and photoluminescence measurements are used to determine the frequency and spatial distribution of optically generated nonequilibrium phonons in Si, Ge, and GaAs at 1.7 K. At low excitation levels the thermalization of photoexcited carriers and the subsequent phonon down-conversion produce a broad frequency distribution of acoustic phonons that ``quasidiffuse'' in the crystal. These phonons produce a temporally broad heat pulse when detected at a distance from the excitation point. At moderate excitation levels (typically a 10-nS pulse with a power density of ~20 W/mm2), the laser pulse produces a dense electron-hole plasma that can radically change the frequency distribution of nonequilibrium phonons. The plasma is a potentially rich source of low-frequency acoustic phonons, characterized by a temporally sharp heat pulse at a remote detector. The fraction of low-frequency phonons in the heat pulses is smallest in the direct-gap semiconductor GaAs, where rapid recombination depletes the populations of electrons and holes in just a few nanoseconds. More noticeable low frequency phonon components are seen in heat pulses in the indirect-gap semiconductors Ge and Si. At sufficiently high excitation densities (~60 W/mm2) in Ge, there is a suppression of the low-frequency phonon signal, which may result from phonon absorption within a cloud of electron hole droplets. An interesting alternative hypothesis is that the acoustic phonons created in the plasma are sufficiently dense to initiate phonon coalescence, whereby phonons are localized by phonon-phonon scattering over a relatively long period (500 ns). This localized ``hot spot'' could provide the phonon wind that drives the initial rapid expansion of the electron-hole plasma into the crystal.
Sideband analysis and seismic detection in a large ring laser
NASA Astrophysics Data System (ADS)
Stedman, G. E.; Li, Z.; Bilger, H. R.
1995-08-01
A ring laser unlocked by the Earth's Sagnac effect has attained a frequency resolution of 1 part in 3 \\times 1021 and a rotational resolution of 300 prad. We discuss both theoretically and experimentally the sideband structure of the Earth rotation-induced spectral line induced in the microhertz-hertz region by frequency modulation associated with extra mechanical motion, such as seismic events. The relative sideband height is an absolute measure of the rotational amplitude of that Fourier component. An initial analysis is given of the ring laser record from the Arthur's Pass-Coleridge seismic event of 18 June 1994.
Phonon Scattering Dynamics of Thermophoretic Motion in Carbon Nanotube Oscillators.
Prasad, Matukumilli V D; Bhattacharya, Baidurya
2016-04-13
Using phonon wave packet molecular dynamics simulations, we find that anomalous longitudinal acoustic (LA) mode phonon scattering in low to moderate energy ranges is responsible for initiating thermophoretic motion in carbon nanotube oscillators. The repeated scattering of a single mode LA phonon wave packet near the ends of the inner nanotube provides a net unbalanced force that, if large enough, initiates thermophoresis. By applying a coherent phonon pulse on the outer tube, which generalizes the single mode phonon wave packet, we are able to achieve thermophoresis in a carbon nanotube oscillator. We also find the nature of the unbalanced force on end-atoms to be qualitatively similar to that under an imposed thermal gradient. The thermodiffusion coefficient obtained for a range of thermal gradients and core lengths suggest that LA phonon scattering is the dominant mechanism for thermophoresis in longer cores, whereas for shorter cores, it is the highly diffusive mechanism that provides the effective force. PMID:26965789
Phonon dynamics of graphene on metals.
Al Taleb, Amjad; Farías, Daniel
2016-03-16
The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate's Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed. PMID:26886508
Phonon dynamics of graphene on metals
NASA Astrophysics Data System (ADS)
Taleb, Amjad Al; Farías, Daniel
2016-03-01
The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate‧s Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.
Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator.
Sun, F; Dong, X; Zou, J; Dykman, M I; Chan, H B
2016-01-01
The dynamical backaction from a periodically driven optical cavity can reduce the damping of a mechanical resonator, leading to parametric instability accompanied by self-sustained oscillations. Here we study experimentally and theoretically new aspects of the backaction and the discrete time-translation symmetry of a driven system using a micromechanical resonator with two nonlinearly coupled vibrational modes with strongly differing frequencies and decay rates. We find self-sustained oscillations in both the low- and high-frequency modes. Their frequencies and amplitudes are determined by the nonlinearity, which also leads to bistability and hysteresis. The phase fluctuations of the two modes show near-perfect anti-correlation, a consequence of the discrete time-translation symmetry. Concurrently, the phase of each mode undergoes anomalous diffusion. The phase variance follows a power law time dependence, with an exponent determined by the 1/f-type resonator frequency noise. Our findings enable compensating for the fluctuations using a feedback scheme to achieve stable frequency downconversion. PMID:27576597
Impact of resistive MHD plasma response on perturbation field sidebands
NASA Astrophysics Data System (ADS)
Orlov, D. M.; Evans, T. E.; Moyer, R. A.; Lyons, B. C.; Ferraro, N. M.; Park, G.-Y.
2016-07-01
Single fluid linear simulations of a KSTAR RMP ELM suppressed discharge with the M3D-C1 resistive magnetohydrodynamic code have been performed for the first time. The simulations show that the application of the n = 1 perturbation using the KSTAR in-vessel control coils (IVCC), which apply modest levels of n = 3 sidebands (~20% of the n = 1), leads to levels of n = 3 sideband that are comparable to the n = 1 when plasma response is included. This is due to the reduced level of screening of the rational-surface-resonant n = 3 component relative to the rational-surface-resonant n = 1 component. The n = 3 sidebands could play a similar role in ELM suppression on KSTAR as the toroidal sidebands (n = 1, 2, 4) in DIII-D n = 3 ELM suppression with missing I-coil segments (Paz Soldan et al 2014 Nucl. Fusion 54 073013). This result may help to explain the uniqueness of ELM suppression with n = 1 perturbations in KSTAR since the effective perturbation is a mixed n = 1/n = 3 perturbation similar to n = 3 ELM suppression in DIII-D.
Theoretical Study of the Free-Electron Laser Sideband Instability
NASA Astrophysics Data System (ADS)
Yang, Tser-Yuan Brian
Detailed properties of the sideband instability are investigated for a helical wiggler free-electron laser. The model describes the nonlinear evolution of a right-circularly polarized primary electromagnetic wave. The nonlinear evolution of a free electron laser is investigated within the framework of a macroclump model for the trapped electrons. The macroclump model assumes that the trapped electrons can be treated as tightly bunched macroclumps that interact coherently with the radiation field. The nonlinear evolution of the primary signal is examined when there is no spatial variation of the wave amplitude and phase. The evolution equations are reduced to quadrature, and the maximum excursion of the wave amplitude a_{s,max} is calculated analytically. The nonlinear evolution of the sideband instability is investigated. In the present analysis, the sideband signals are treated as perturbations (not necessarily small) about a constant-amplitude primary electromagnetic wave with slowly varying phase. The coupled orbit and field equations are investigated analytically and numerically over a wide range of system parameters to determine detailed scaling properties of the sideband instability. The results of the present analysis suggest that free electron lasers operating with system parameters corresponding to the strong -pump regime are least vulnerable to the sideband instability. Detailed properties of the sideband instability are investigated for small-amplitude perturbations about a quasi-steady state. A formal dispersion relation is derived for perturbations about a general equilibrium distribution f^{0}(gamma_sp{0 }{'}) which may include both trapped and untrapped electrons. For the case where only trapped electrons are present, the dispersion relation is reduced to a simple analytical form. Detailed properties of the sideband instability are investigated for the case where the trapped electrons uniformly populate the ponderomotive potential up to an energy
NASA Astrophysics Data System (ADS)
Robinson, Richard; Otelaja, Obafemi; Hertzberg, Jared; Aksit, Mahmut; Stewart, Derek
2013-03-01
Phonons are the dominant heat carriers in dielectrics and a clear understanding of their behavior at the nanoscale is important for the development of efficient thermoelectric devices. In this work we show how acoustic phonon transport can be directly probed by the generation and detection of non-equilibrium phonons in microscale and nanoscale structures. Our technique employs a scalable method of fabricating phonon generators and detectors by forming Al-AlxOy-Al superconducting tunnel junctions on the sidewalls of a silicon mesa etched with KOH and an operating temperature of 0.3K. In the line-of-sight path along the width of these mesas, phonons with frequency ~100 GHz can propagate ballistically The phonons radiate into the mesa and are observed by the detector after passing through the mesa. We fabricated silicon nanosheets of width 100 to 300 nm along the ballistic path and observe surface scattering effects on phonon transmission when the characteristic length scale of a material is less than the phonon mean free path. We compare our results to the Casimir-Ziman theory. Our methods can be adapted for studying phonon transport in other nanostructures and will improve the understanding of phonon contribution to thermal transport. The work was supported in part by the National Science Foundation under Agreement No. DMR-1149036.
Gilman, J.J.
1996-12-31
In crystals (and/or glasses) with localized sp{sup 3} or spd-bonding orbitals, dislocations have very low mobilities, making the crystals very hard. Classical Peierls-Nabarro theory does not account for the low mobility. The breaking of spin-pair bonds which creates internal free-radicals must be considered. Therefore, a theory based on quantum mechanics has been proposed (Science, 261, 1436 (1993)). It has been applied successfully to diamond, Si, Ge, SiC, and with a modification to TiC and WC. It has recently been extended to account for the temperature independence of the hardness of silicon at low temperatures together with strong softening at temperatures above the Debye temperature. It is quantitatively consistent with the behaviors of the Group 4 elements (C, Si, Ge, Sn) when their Debye temperatures are used as normalizing factors; and appears to be consistent with data for TiC if an Einstein temperature for carbon is used. Since the Debye temperature marks the approximate point at which phonons of atomic wavelengths become excited (as contrasted with collective acoustic waves), this confirms the idea that the process which limits dislocation mobility is localized to atomic dimensions (sharp kinks).
Sideband characterization and atmospheric observations with various 340 GHz heterodyne receivers.
Renker, Matthias; Murk, Axel; Rea, Simon P; Emrich, A; Frisk, U
2014-08-01
This paper describes sideband response measurements and atmospheric observations with a double sideband and two Single Sideband (SSB) receiver prototypes developed for the multi-beam limb sounder instrument stratosphere-troposphere exchange and climate monitor radiometer. We first show an advanced Fourier-Transform Spectroscopy (FTS) method for sideband response and spurious signal characterization. We then present sideband response measurements of the different prototype receivers and we compare the results of the SSB receivers with sideband measurements by injecting a continuous wave signal into the upper and lower sidebands. The receivers were integrated into a total-power radiometer and atmospheric observations were carried out. The observed spectra were compared to forward model spectra to conclude on the sideband characteristics of the different receivers. The two sideband characterization methods show a high degree of agreement for both SSB receivers with various local oscillator settings. The measured sideband response was used to correct the forward model simulations. This improves the agreement with the atmospheric observations and explains spectral features caused by an unbalanced sideband response. The FTS method also allows to quantify the influence of spurious harmonic responses of the receiver. PMID:25173294
Sideband characterization and atmospheric observations with various 340 GHz heterodyne receivers
Renker, Matthias Murk, Axel; Rea, Simon P.; Emrich, A.; Frisk, U.
2014-08-15
This paper describes sideband response measurements and atmospheric observations with a double sideband and two Single Sideband (SSB) receiver prototypes developed for the multi-beam limb sounder instrument stratosphere-troposphere exchange and climate monitor radiometer. We first show an advanced Fourier-Transform Spectroscopy (FTS) method for sideband response and spurious signal characterization. We then present sideband response measurements of the different prototype receivers and we compare the results of the SSB receivers with sideband measurements by injecting a continuous wave signal into the upper and lower sidebands. The receivers were integrated into a total-power radiometer and atmospheric observations were carried out. The observed spectra were compared to forward model spectra to conclude on the sideband characteristics of the different receivers. The two sideband characterization methods show a high degree of agreement for both SSB receivers with various local oscillator settings. The measured sideband response was used to correct the forward model simulations. This improves the agreement with the atmospheric observations and explains spectral features caused by an unbalanced sideband response. The FTS method also allows to quantify the influence of spurious harmonic responses of the receiver.
Acoustic Faraday rotation in Weyl semimetals
NASA Astrophysics Data System (ADS)
Liu, Donghao; Shi, Junren
We investigate the phonon problems in Weyl semimetals, from which both the phonon Berry curvature and the phonon Damping could be obtained. We show that even without a magnetic field, the degenerate transverse acoustic modes could also be split due to the adiabatic curvature. In three dimensional case, acoustic Faraday rotation shows up. And furthermore, since the attenuation procedure could distinguish the polarized mode, single circularly polarized acoustic wave could be realized. We study the mechanism in the novel time reversal symmetry broken Weyl semimetal. New effects rise because of the linear dispersion, which give enlightenment in the measurement of this new kind of three-dimensional material.
Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors
NASA Astrophysics Data System (ADS)
Pistol, M. E.; Monemar, B.
1986-05-01
A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.
NASA Astrophysics Data System (ADS)
Nissimagoudar, A. S.; Sankeshwar, N. S.
2014-06-01
Lattice thermal conductivity, κp, of suspended and supported graphene nanoribbons (GNRs) is studied over a wide temperature range, taking into account the dispersive nature of confined acoustic phonon modes. Employing a modified Callaway model, an expression for κp is developed, considering the explicit contributions from in-plane longitudinal, transverse, and torsional acoustic, and out-of-plane flexural acoustic phonon modes. Numerical calculations of κp(T) are presented assuming the confined acoustic phonons to be scattered by sample boundaries, impurities, and other phonons via both normal and umklapp processes. The effect of phonon confinement is to modify the phonon group velocities and the temperature dependence of κp. In a suspended 5-nm-wide GNR at room temperature, a decrease in κp by ˜70% is predicted. Our study brings out the relative importance of the contributing phonon modes and reveals the influence of flexural phonons on κp as a marked shoulder at low temperatures. The role of the various sample-dependent scattering mechanisms is examined. The substrate, in supported GNRs, is shown to curtail the phonon mean free path and suppress the low-temperature κp. Our results are in good agreement with recent experimental data of Bae et al. [M. H. Bae, Z. Li, Z. Aksamija, P. N. Martin, F. Xiong, Z. Y. Ong, I. Knezevic, and E. Pop, Nat. Commun. 4, 1734 (2013), 10.1038/ncomms2755] for supported GNRs.
Phonon anharmonicity in bulk Td-MoTe2
NASA Astrophysics Data System (ADS)
Joshi, Jaydeep; Stone, Iris R.; Beams, Ryan; Krylyuk, Sergiy; Kalish, Irina; Davydov, Albert V.; Vora, Patrick M.
2016-07-01
We examine anharmonic contributions to the optical phonon modes in bulk Td-MoTe2 through temperature-dependent Raman spectroscopy. At temperatures ranging from 100 K to 200 K, we find that all modes redshift linearly with temperature in agreement with the Grüneisen model. However, below 100 K, we observe nonlinear temperature-dependent frequency shifts in some modes. We demonstrate that this anharmonic behavior is consistent with the decay of an optical phonon into multiple acoustic phonons. Furthermore, the highest frequency Raman modes show large changes in intensity and linewidth near T ≈ 250 K that correlate well with the T d → 1 T ' structural phase transition. These results suggest that phonon-phonon interactions can dominate anharmonic contributions at low temperatures in bulk Td-MoTe2, an experimental regime that is currently receiving attention in efforts to understand Weyl semimetals.
Finite element analysis of surface modes in phononic crystal waveguides
NASA Astrophysics Data System (ADS)
Guo, Yuning; Schubert, Martin; Dekorsy, Thomas
2016-03-01
The study of surface modes in phononic crystal waveguides in the hypersonic regime is a burgeoning field with a large number of possible applications. By using the finite element method, the band structure and the corresponding transmission spectrum of surface acoustic waves in phononic crystal waveguides generated by line defects in a silicon pillar-substrate system were calculated and investigated. The bandgaps are caused by the hybridization effect of band branches induced by local resonances and propagating modes in the substrate. By changing the sizes of selected pillars in the phononic crystal waveguides, the corresponding bands shift and localized modes emerge due to the local resonance effect induced by the pillars. This effect offers further possibilities for tailoring the propagation and filtering of elastic waves. The presented results have implications for the engineering of phonon dynamics in phononic nanostructures.
Imaging velocities of a vibrating object by stroboscopic sideband holography.
Verpillat, F; Joud, F; Atlan, M; Gross, M
2012-09-24
We propose here to combine sideband holography with stroboscopic illumination synchronized with the vibration of an object. By sweeping the optical frequency of the reference beam such a way the holographic detection is tuned on the successive sideband harmonic ranks, we are able to image the instantaneous velocities of the object. Since the stroboscopic illumination is made with an electronic device, the method is compatible with fast (up to several MHz) vibration motions. The method is demonstrated with a vibrating clarinet reed excited sinusoidally at 2 kHz, and a stroboscopic illumination with cyclic ratio 0.15. Harmonic rank up to n = ± 100 are detected, and a movie of the instantaneous velocities is reported. PMID:23037435
Phononic crystals of spherical particles: A tight binding approach
Mattarelli, M.; Secchi, M.; Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Trento ; Montagna, M.
2013-11-07
The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.
Molding Phonon Flow with Symmetry: Rational Design of Hypersonic Phononic Crystals
NASA Astrophysics Data System (ADS)
Koh, Cheong Yang; Thomas, Edwin L.
2009-03-01
Phononic crystals structured at appropriate length scales allow control over the flow of phonons, leading to new possibilities in applications such as heat-management, sound isolation and even energy transfer and conversion. Symmetry provides a unified framework for the interpretation 1D to 3D phononic band structures, allowing utilization of a common set of principles for designing band structures of phononic crystals as well as actual purposeful defects such as waveguide location and boundary termination in finite devices. In this work, we explore the band structure properties of phononic crystals with non-symmorphic space groups, as well as those having quasi-crystalline approximants. We demonstrate gap opening abilities from both anti-crossing and Bragg scattering, as well as unique features like ``sticking'' bands. Symmetry concepts are also powerful means to tune the density of states of the structures. Importantly, we fabricate various theoretical designs and measure their experimental dispersion diagrams for comparison with theoretical calculation. This affords an elegant approach toward a design blueprint for fabricating phononic structures for applications such as opto-acoustic coupling.
NASA Astrophysics Data System (ADS)
Shen, Yulu; Xie, Guofeng; Wei, Xiaolin; Zhang, Kaiwang; Tang, Minghua; Zhong, Jianxin; Zhang, Gang; Zhang, Yong-Wei
2014-02-01
Although graphene holds great promise in thermal applications owing to its superior thermal conductivity, an intriguing question remains as to which polarizations and frequencies are dominant in its heat conduction. In this work, by incorporating the direction-dependent phonon-boundary scattering and the special selection rule for three-phonon scattering into the linearized phonon Boltzmann transport equation, we systematically investigate the relative contributions from longitudinal-acoustic, transverse-acoustic, and out-of-plane acoustic (ZA) branches to the thermal conductivity of graphene ribbons, focusing on the effects of their size and temperature. We find that the relative contribution from ZA branch to heat conduction increases with decreasing the size, specularity parameter, and temperature of graphene ribbons. Our analysis reveals that this change arises from the huge difference in the phonon dispersion and in the phonon mean free path of Umklapp process between in-plane and out-of-plane branches.
Research on micro-sized acoustic bandgap structures.
Fleming, James Grant; McCormick, Frederick Bossert; Su, Mehmet F.; El-Kady, Ihab Fathy; Olsson, Roy H., III; Tuck, Melanie R.
2010-01-01
Phononic crystals (or acoustic crystals) are the acoustic wave analogue of photonic crystals. Here a periodic array of scattering inclusions located in a homogeneous host material forbids certain ranges of acoustic frequencies from existence within the crystal, thus creating what are known as acoustic (or phononic) bandgaps. The vast majority of phononic crystal devices reported prior to this LDRD were constructed by hand assembling scattering inclusions in a lossy viscoelastic medium, predominantly air, water or epoxy, resulting in large structures limited to frequencies below 1 MHz. Under this LDRD, phononic crystals and devices were scaled to very (VHF: 30-300 MHz) and ultra (UHF: 300-3000 MHz) high frequencies utilizing finite difference time domain (FDTD) modeling, microfabrication and micromachining technologies. This LDRD developed key breakthroughs in the areas of micro-phononic crystals including physical origins of phononic crystals, advanced FDTD modeling and design techniques, material considerations, microfabrication processes, characterization methods and device structures. Micro-phononic crystal devices realized in low-loss solid materials were emphasized in this work due to their potential applications in radio frequency communications and acoustic imaging for medical ultrasound and nondestructive testing. The results of the advanced modeling, fabrication and integrated transducer designs were that this LDRD produced the 1st measured phononic crystals and phononic crystal devices (waveguides) operating in the VHF (67 MHz) and UHF (937 MHz) frequency bands and established Sandia as a world leader in the area of micro-phononic crystals.
Wang, Wen Ting; Liu, Jian Guo; Mei, Hai Kuo; Zhu, Ning Hua
2016-01-11
We propose and experimentally verify a novel approach to achieve phase-coherence orthogonally polarized optical single sideband (OSSB) modulation with a tunable optically carrier-to-sideband ratio (OCSR). In our scheme, the orthogonally polarized OSSB signal is achieved using a dual-polarization quadrature phase shift keying (DP-QPSK) modulator without an optical band-pass filter (OBPF). Therefore, the proposed method is wavelength independent. The DP-QPSK modulator includes two parallel QPSK modulators locating on its two arms. The upper QPSK modulator of the DP-QPSK modulator is driven by two quadrature sinusoidal microwave signals and works at the frequency shifting condition whose bias voltages are optimized to suppress the optical. The lower QPSK modulator of that works at the maximum transmission point and the optical carrier is not modulated. The OCSR is continuously tunable by simply adjusting the bias voltages of the lower modulator. The frequency shifting optical signal from the upper QPSK modulator and the optical carrier from the lower QPSK modulator are combined together at the output of the DP-QPSK modulator. The optical carrier and sideband are polarized orthogonally. The generated OSSB signals could be used to shift and code the phase of the microwave signal and generate ultra-wideband (UWB) microwave pulse. The proposed method is analyzed and experimental demonstrated. PMID:26832269
Phonon engineering for nanostructures.
Aubry, Sylvie; Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H.; Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen
2010-01-01
Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.
NASA Astrophysics Data System (ADS)
Sohier, Thibault; Calandra, Matteo; Park, Cheol-Hwan; Bonini, Nicola; Marzari, Nicola; Mauri, Francesco
2014-09-01
We use first-principles calculations, at the density-functional-theory (DFT) and GW levels, to study both the electron-phonon interaction for acoustic phonons and the "synthetic" vector potential induced by a strain deformation (responsible for an effective magnetic field in case of a nonuniform strain). In particular, the interactions between electrons and acoustic phonon modes, the so-called gauge-field and deformation potential, are calculated at the DFT level in the framework of linear response. The zero-momentum limit of acoustic phonons is interpreted as a strain of the crystal unit cell, allowing the calculation of the acoustic gauge-field parameter (synthetic vector potential) within the GW approximation as well. We find that using an accurate model for the polarizations of the acoustic phonon modes is crucial to obtain correct numerical results. Similarly, in the presence of a strain deformation, the relaxation of atomic internal coordinates cannot be neglected. The role of electronic screening on the electron-phonon matrix elements is carefully investigated. We then solve the Boltzmann equation semianalytically in graphene, including both acoustic and optical phonon scattering. We show that, in the Bloch-Grüneisen and equipartition regimes, the electronic transport is mainly ruled by the unscreened acoustic gauge field, while the contribution due to the deformation potential is negligible and strongly screened. We show that the contribution of acoustic phonons to resistivity is doping and substrate independent, in agreement with experimental observations. The first-principles calculations, even at the GW level, underestimate this contribution to resistivity by ≈30%. At high temperature (T >270 K), the calculated resistivity underestimates the experimental one more severely, the underestimation being larger at lower doping. We show that, besides remote phonon scattering, a possible explanation for this disagreement is the electron-electron interaction
The effect of sideband ratio on line intensity for Herschel/HIFI
NASA Astrophysics Data System (ADS)
Higgins, Ronan; Teyssier, David; Borys, Colin; Braine, Jonathan; Comito, Claudia; Delforge, Bertrand; Helmich, Frank; Olberg, Michael; Ossenkopf, Volker; Pearson, John; Shipman, Russell
2014-07-01
The Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory is composed of a set of fourteen double sideband mixers. We discuss the general problem of the sideband ratio (SBR) determination and the impact of an imbalanced sideband ratio on the line calibration in double sideband heterodyne receivers. The HIFI SBR is determined from a combination of data taken during pre-launch gas cell tests and in-flight. The results and some of the calibration artefacts discovered in the gas cell test data are presented here along with some examples of how these effects appear in science data taken in orbit.
Nanoscale interface engineering in ZnO twin nanorods for proposed phonon tunnel devices.
Singh, Avanendra; Senapati, Kartik; Satpati, Biswarup; Kumar, Mohit; Sahoo, Pratap K
2015-02-14
Zinc oxide twin nanorods, with two identical crystalline sections connected by an amorphous layer, were reproducibly grown using a simple one-step hydrothermal technique. The thickness of the amorphous layer between the crystalline segments was tunable with growth parameters, as confirmed by high resolution transmission electron microscopy. The photoluminescence spectra of these twin nanorods exhibit strong near band edge emission in the UV range, with convoluted phonon sidebands. De-convolution analyses of these spectra showed that the amorphous interlayers act as effective phonon barriers beyond a certain thickness. Such oriented grown individual crystalline-amorphous-crystalline structures may be a suitable test system for fundamental studies of phonon tunneling in the nanostructure. While physical vapor deposition techniques are seriously constrained in realizing crystalline-amorphous-crystalline structures, our results show the viability of engineering embedded interfaces via chemical routes. PMID:25572135
Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals
He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-hu; Xiao, Min
2016-01-01
A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction. PMID:27457385
Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals
NASA Astrophysics Data System (ADS)
He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-Hu; Xiao, Min
2016-07-01
A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction.
Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals.
He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-Hu; Xiao, Min
2016-01-01
A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction. PMID:27457385
A quantum optomechanical interface beyond the resolved sideband limit
NASA Astrophysics Data System (ADS)
Bennett, James S.; Khosla, Kiran; Madsen, Lars S.; Vanner, Michael R.; Rubinsztein-Dunlop, Halina; Bowen, Warwick P.
2016-05-01
Mechanical oscillators which respond to radiation pressure are a promising means of transferring quantum information between light and matter. Optical–mechanical state swaps are a key operation in this setting. Existing proposals for optomechanical state swap interfaces are only effective in the resolved sideband limit. Here, we show that it is possible to fully and deterministically exchange mechanical and optical states outside of this limit, in the common case that the cavity linewidth is larger than the mechanical resonance frequency. This high-bandwidth interface opens up a significantly larger region of optomechanical parameter space, allowing generation of non-classical motional states of high-quality, low-frequency mechanical oscillators.
Terahertz sideband-tuned quantum cascade laser radiation.
Danylov, Andriy A; Waldman, Jerry; Goyette, Thomas M; Gatesman, Andrew J; Giles, Robert H; Li, Jin; Goodhue, William D; Linden, Kurt J; Nixon, William E
2008-04-14
A compact, tunable, narrowband terahertz source was demonstrated by mixing a single longitudinal mode 2.408 THz, free running quantum cascade laser with a 2-20 GHz microwave sweeper in a conventional corner-cube-mounted Schottky diode. The sideband spectra were characterized with a Fourier transform spectrometer, and the radiation was tuned through several D(2)O rotational transitions to estimate the longer term (t > or = several sec) bandwidth of the source. A spectral resolution of 2 MHz in CW regime was observed. PMID:18542618
Resolved Atomic Interaction Sidebands in an Optical Clock Transition
Bishof, M.; Lin, Y.; Swallows, M. D.; Ye, J.; Rey, A. M.; Gorshkov, A. V.
2011-06-24
We report the observation of resolved atomic interaction sidebands (ISB) in the {sup 87}Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional optical lattice. The ISB are a manifestation of the strong interactions that occur between atoms confined in a quasi-one-dimensional geometry and disappear when the confinement is relaxed along one dimension. The emergence of ISB is linked to the recently observed suppression of collisional frequency shifts. At the current temperatures, the ISB can be resolved but are broad. At lower temperatures, ISB are predicted to be substantially narrower and useful spectroscopic tools in strongly interacting alkaline-earth gases.
Asymmetric laser sideband generation with a tapered semiconductor amplifier
NASA Astrophysics Data System (ADS)
Yanakas, Michael; Lim, Michael
2013-03-01
We have constructed a free-space, frequency-shifted feedback amplifier using a tapered semiconductor gain element. The general layout of the system is similar to that described in Littler, et al., Opt. Comm. 88, 523 (1992). Traveling-wave feedback is demonstrated with the m = - 1 order of several different acousto-optic modulators driven at variable frequency. Asymmetric sideband production is observed in the rf spectrum of a fast photodiode and in the transmission of a scanning Fabry-Perot interferometer. The number of asymmetric modes is controlled with the AOM rf drive power and the seed laser optical power. Supported by NSF PHY-0613659
``Forbidden'' phonon in the iron chalcogenide series
NASA Astrophysics Data System (ADS)
Fobes, David M.; Zaliznyak, Igor A.; Xu, Zhijun; Gu, Genda; Tranquada, John M.
2015-03-01
Recently, we uncovered evidence for the formation of a bond-order wave (BOW) leading to ferro-orbital order at low temperature, acting to stabilize the bicollinear AFM order, in the iron-rich parent compound, Fe1+yTe. Investigating the inelastic spectra centered near (100) in Fe1+yTe, a signature peak for the BOW formation in the monoclinic phase, we observed an acoustic phonon dispersion in both tetragonal and monoclinic phases. While a structural Bragg peak accompanies the mode in the monoclinic phase, in the tetragonal phase Bragg scattering at this Q is forbidden by symmetry, and we observed no elastic peak. This phonon mode was also observed in superconducting FeTe0.6Se0.4, where structural and magnetic transitions are suppressed. LDA frozen phonon calculations suggested that this mode could result from a spin imbalance between neighboring Fe atoms, but polarized neutron measurements revealed no additional magnetic scattering. We propose that this ``forbidden'' phonon mode may originate from dynamically broken symmetry, perhaps related to the strong dynamic spin correlations in these materials. Work at BNL was supported by BES, US DOE, under Contract No. DE-AC02-98CH10886. Research at ORNL's HFIR and SNS sponsored by Scientific User Facilities Division, BES, US DOE. We acknowledge the support of NIST, in providing neutron research facilities.
Anharmonic phonon decay in cubic GaN
NASA Astrophysics Data System (ADS)
Cuscó, R.; Domènech-Amador, N.; Novikov, S.; Foxon, C. T.; Artús, L.
2015-08-01
We present a Raman-scattering study of optical phonons in zinc-blende (cubic) GaN for temperatures ranging from 80 to 750 K. The experiments were performed on high-quality, cubic GaN films grown by molecular-beam epitaxy on GaAs (001) substrates. The observed temperature dependence of the optical phonon frequencies and linewidths is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional-theory calculations. The longitudinal-optical (LO) mode relaxation is found to occur via asymmetric decay into acoustic phonons, with an appreciable contribution of higher-order processes. The transverse-optical mode linewidth shows a weak temperature dependence and its frequency downshift is primarily determined by the lattice thermal expansion. The LO phonon lifetime is derived from the observed Raman linewidth and an excellent agreement with previous theoretical predictions is found.
Phonons and their interactions
Nicklow, R.M.
1982-08-01
The phonon energy spectra nu(vector q) of crystalline materials contains key information about the interatomic interactions. However, it is generally not possible to fully understand the phonon spectra without also understanding the influence on phonon energies and lifetimes caused by interactions with defects, electrons and other excitations. The study of several of these types of interactions have grown over the years so as to now constitute subfields of solid state physics and the contributions of neutron scattering research to each has been, if not of paramount importance, at least very significant. In the present review we can merely touch on a few highlights. Perhaps the largest research effort is expended on electron-phonon interactions. These interactions are, of course, fundamental to the properties of metallic solids. They are seen in the phonon nu(vector q) of metals in a wide variety of effects. We shall mention three: the relatively small fine structure produced by Kohn singularities, large anomalies and phonon lifetimes measured in some superconductors and in materials with fluctuating valence.
Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping
Bebek, M. B.; Stanley, C. M.; Gibbons, T. M.; Estreicher, S. K.
2016-01-01
The interactions between thermal phonons and defects are conventionally described as scattering processes, an idea proposed almost a century ago. In this contribution, ab-initio molecular-dynamics simulations provide atomic-level insight into the nature of these interactions. The defect is the Si|X interface in a nanowire containing a δ-layer (X is C or Ge). The phonon-defect interactions are temperature dependent and involve the trapping of phonons for meaningful lengths of time in defect-related, localized, vibrational modes. No phonon scattering occurs and the momentum of the phonons released by the defect is unrelated to the momentum of the phonons that generated the excitation. The results are extended to the interactions involving only bulk phonons and to phonon-defect interactions at high temperatures. These do resemble scattering since phonon trapping occurs for a length of time short enough for the momentum of the incoming phonon to be conserved. PMID:27535463
Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping.
Bebek, M B; Stanley, C M; Gibbons, T M; Estreicher, S K
2016-01-01
The interactions between thermal phonons and defects are conventionally described as scattering processes, an idea proposed almost a century ago. In this contribution, ab-initio molecular-dynamics simulations provide atomic-level insight into the nature of these interactions. The defect is the Si|X interface in a nanowire containing a δ-layer (X is C or Ge). The phonon-defect interactions are temperature dependent and involve the trapping of phonons for meaningful lengths of time in defect-related, localized, vibrational modes. No phonon scattering occurs and the momentum of the phonons released by the defect is unrelated to the momentum of the phonons that generated the excitation. The results are extended to the interactions involving only bulk phonons and to phonon-defect interactions at high temperatures. These do resemble scattering since phonon trapping occurs for a length of time short enough for the momentum of the incoming phonon to be conserved. PMID:27535463
Sano, Hiroyuki; Yanagitani, Takahiko; Takayanagi, Shinji; Sugimoto, Takeshi; Matsukawa, Mami
2013-05-01
To overcome the low accuracy of acoustic velocity measurements based on Brillouin scattering from thermal phonons, we attempted to utilize induced coherent phonons, which cause intense Brillouin scattering. A ZnO piezoelectric film was used to induce gigahertz-range coherent phonons in a silica glass block sample. An evanescent electromagnetic wave leaked from a coaxial resonator was applied into the film to excite phonons. The scattered light obtained using this simple system was much more intense than that obtained from thermal phonons. This technique will improve the accuracy and reduce the measurement time. PMID:23661120
Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces.
Otsuka, P H; Nanri, K; Matsuda, O; Tomoda, M; Profunser, D M; Veres, I A; Danworaphong, S; Khelif, A; Benchabane, S; Laude, V; Wright, O B
2013-01-01
Control of sound in phononic band-gap structures promises novel control and guiding mechanisms. Designs in photonic systems were quickly matched in phononics, and rows of defects in phononic crystals were shown to guide sound waves effectively. The vast majority of work in such phononic guiding has been in the frequency domain, because of the importance of the phononic dispersion relation in governing acoustic confinement in waveguides. However, frequency-domain studies miss vital information concerning the phase of the acoustic field and eigenstate coupling. Using a wide range of wavevectors k, we implement an ultrafast technique to probe the wave field evolution in straight and L-shaped phononic crystal surface-phonon waveguides in real- and k-space in two spatial dimensions, thus revealing the eigenstate-energy redistribution processes and the coupling between different frequency-degenerate eigenstates. Such use of k-t space is a first in acoustics, and should have other interesting applications such as acoustic-metamaterial characterization. PMID:24284621
Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces
Otsuka, P. H.; Nanri, K.; Matsuda, O.; Tomoda, M.; Profunser, D. M.; Veres, I. A.; Danworaphong, S.; Khelif, A.; Benchabane, S.; Laude, V.; Wright, O. B.
2013-01-01
Control of sound in phononic band-gap structures promises novel control and guiding mechanisms. Designs in photonic systems were quickly matched in phononics, and rows of defects in phononic crystals were shown to guide sound waves effectively. The vast majority of work in such phononic guiding has been in the frequency domain, because of the importance of the phononic dispersion relation in governing acoustic confinement in waveguides. However, frequency-domain studies miss vital information concerning the phase of the acoustic field and eigenstate coupling. Using a wide range of wavevectors k, we implement an ultrafast technique to probe the wave field evolution in straight and L-shaped phononic crystal surface-phonon waveguides in real- and k-space in two spatial dimensions, thus revealing the eigenstate-energy redistribution processes and the coupling between different frequency-degenerate eigenstates. Such use of k-t space is a first in acoustics, and should have other interesting applications such as acoustic-metamaterial characterization. PMID:24284621
Inelastic x-ray scattering measurements of phonon dynamics in URu2Si2
Gardner, D. R.; Bonnoit, C. J.; Chisnell, R.; Said, A. H.; Leu, B. M.; Williams, Travis J.; Luke, G. M.; Lee, Y. S.
2016-02-11
In this paper, we study high-resolution inelastic x-ray scattering measurements of the acoustic phonons of URu2Si2. At all temperatures, the longitudinal acoustic phonon linewidths are anomalously broad at small wave vectors revealing a previously unknown anharmonicity. The phonon modes do not change significantly upon cooling into the hidden order phase. In addition, our data suggest that the increase in thermal conductivity in the hidden order phase cannot be driven by a change in phonon dispersions or lifetimes. Hence, the phonon contribution to the thermal conductivity is likely much less significant compared to that of the magnetic excitations in the lowmore » temperature phase.« less
Nebulisation on a disposable array structured with phononic lattices.
Reboud, Julien; Wilson, Rab; Zhang, Yi; Ismail, Mohd H; Bourquin, Yannyk; Cooper, Jonathan M
2012-04-01
We demonstrate the use of a phononic crystal to enable the nebulisation of liquid droplets from low-cost disposable arrays, using surface acoustic waves (SAW). The SAWs were generated using interdigitated transducers (IDT) on a piezoelectric surface (LiNbO(3)) and the acoustic waves were coupled into a disposable phononic crystal structure, referred to as a superstrate. Using its excellent reflecting properties, the phononic structures confined the acoustic field within the superstrate, resulting in the concentration of the acoustic energy, in a manner controllable by the excitation frequency. We show that this capability mitigates against coupling losses incurred by the use of a disposable superstrate, greatly reducing the time needed to nebulise a drop of water with respect to an unstructured superstrate for a given power. We also demonstrate that by changing the excitation frequency, it is possible to change the spatial position at which the acoustic energy is concentrated, providing a means to specifically nebulise drops across an array. These results open up a promising future for the use of phonofluidics in high-throughput sample handling applications, such as drug delivery or the "soft" transfer of samples to a mass spectrometer in the field of proteomics. PMID:22327572
First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene
NASA Astrophysics Data System (ADS)
Gu, Xiaokun; Yang, Ronggui
2015-01-01
There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ˜10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.
First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene
Gu, Xiaokun; Yang, Ronggui
2015-01-14
There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.
NASA Astrophysics Data System (ADS)
Vallabhaneni, Ajit K.; Singh, Dhruv; Bao, Hua; Murthy, Jayathi; Ruan, Xiulin
2016-03-01
Raman spectroscopy has been widely used to measure thermal conductivity (κ ) of two-dimensional (2D) materials such as graphene. This method is based on a well-accepted assumption that different phonon polarizations are in near thermal equilibrium. However, in this paper, we show that, in laser-irradiated single-layer graphene, different phonon polarizations are in strong nonequilibrium, using predictive simulations based on first principles density functional perturbation theory and a multitemperature model. We first calculate the electron cooling rate due to phonon scattering as a function of the electron and phonon temperatures, and the results clearly illustrate that optical phonons dominate the hot electron relaxation process. We then use these results in conjunction with the phonon scattering rates computed using perturbation theory to develop a multitemperature model and resolve the spatial temperature distributions of the energy carriers in graphene under steady-state laser irradiation. Our results show that electrons, optical phonons, and acoustic phonons are in strong nonequilibrium, with the flexural acoustic (ZA) phonons showing the largest nonequilibrium to other phonon modes, mainly due to their weak coupling to other carriers in suspended graphene. Since ZA phonons are the main heat carriers in graphene, we estimate that neglecting this nonequilibrium leads to underestimation of thermal conductivity in experiments at room temperature by a factor of 1.35 to 2.6, depending on experimental conditions and assumptions used. Underestimation is also expected in Raman measurements of other 2D materials when the optical-acoustic phonon coupling is weak.
Sideband Rabi spectroscopy of finite-temperature trapped Bose gases
NASA Astrophysics Data System (ADS)
Allard, Baptiste; Fadel, Matteo; Schmied, Roman; Treutlein, Philipp
2016-04-01
We use Rabi spectroscopy to explore the low-energy excitation spectrum of a finite-temperature Bose gas of rubidium atoms across the phase transition to a Bose-Einstein condensate (BEC). To record this spectrum, we coherently drive the atomic population between two spin states. A small relative displacement of the spin-specific trapping potentials enables sideband transitions between different motional states. The intrinsic nonlinearity of the motional spectrum, mainly originating from two-body interactions, makes it possible to resolve and address individual excitation lines. Together with sensitive atom counting, this constitutes a feasible technique to count single excited atoms of a BEC and to determine the temperature of nearly pure condensates. As an example, we show that for a nearly pure BEC of N =800 atoms the first excited state has a population of less than five atoms, corresponding to an upper bound on the temperature of 30 nK .
Investigation of Sideband Index Response to Prototype Gear Tooth Damage
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2013-01-01
The objective of this analysis was to evaluate the ability of gear condition indicators (CI) to detect contact fatigue damage on spiral bevel gear teeth. Tests were performed in the NASA Glenn Spiral Bevel Gear Fatigue Rig on eight prototype gear sets (pinion/gear). Damage was initiated and progressed on the gear and pinion teeth. Vibration data was measured during damage progression at varying torque values while varying damage modes to the gear teeth were observed and documented with inspection photos. Sideband indexes (SI) and root mean square (RMS) CIs were calculated from the time synchronous averaged vibration data. Results found that both CIs respond differently to varying torque levels, damage levels and damage modes
Coherent gigahertz phonons in Ge₂Sb₂Te₅ phase-change materials.
Hase, Muneaki; Fons, Paul; Kolobov, Alexander V; Tominaga, Junji
2015-12-01
Using ≈40 fs ultrashort laser pulses, we investigate the picosecond acoustic response from a prototypical phase change material, thin Ge2Sb2Te5 (GST) films with various thicknesses. After excitation with a 1.53 eV-energy pulse with a fluence of ≈5 mJ cm(-2), the time-resolved reflectivity change exhibits transient electronic response, followed by a combination of exponential-like strain and coherent acoustic phonons in the gigahertz (GHz) frequency range. The time-domain shape of the coherent acoustic pulse is well reproduced by the use of the strain model by Thomsen et al 1986 (Phys. Rev. B 34 4129). We found that the decay rate (the inverse of the relaxation time) of the acoustic phonon both in the amorphous and in the crystalline phases decreases as the film thickness increases. The thickness dependence of the acoustic phonon decay is well modeled based on both phonon-defect scattering and acoustic phonon attenuation at the GST/Si interface, and it is revealed that those scattering and attenuation are larger in crystalline GST films than those in amorphous GST films. PMID:26570991
Coherent gigahertz phonons in Ge2Sb2Te5 phase-change materials
NASA Astrophysics Data System (ADS)
Hase, Muneaki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji
2015-12-01
Using ≈ 40 fs ultrashort laser pulses, we investigate the picosecond acoustic response from a prototypical phase change material, thin Ge2Sb2Te5 (GST) films with various thicknesses. After excitation with a 1.53 eV-energy pulse with a fluence of ≈ 5 mJ cm-2, the time-resolved reflectivity change exhibits transient electronic response, followed by a combination of exponential-like strain and coherent acoustic phonons in the gigahertz (GHz) frequency range. The time-domain shape of the coherent acoustic pulse is well reproduced by the use of the strain model by Thomsen et al 1986 (Phys. Rev. B 34 4129). We found that the decay rate (the inverse of the relaxation time) of the acoustic phonon both in the amorphous and in the crystalline phases decreases as the film thickness increases. The thickness dependence of the acoustic phonon decay is well modeled based on both phonon-defect scattering and acoustic phonon attenuation at the GST/Si interface, and it is revealed that those scattering and attenuation are larger in crystalline GST films than those in amorphous GST films.
NASA Astrophysics Data System (ADS)
Ishikawa, Makoto; Wada, Noriyuki; Miyakawa, Takahiko; Matsukawa, Hiroshi; Suzuki, Masaru; Sasaki, Naruo; Miura, Kouji
2016-05-01
We report phonon dispersion curves obtained at a Mo S2(0001 ) surface in the friction process with a load and shear. An atomic force microscope tip used to apply stresses generated lattice strain on an oscillating Mo S2(0001 ) surface, which dissipated via acoustic phonons. The dissipation energy of the phonons strongly depended on the size of the lattice strain. The motion of the acoustic phonons consisted of a longitudinal mode and a transverse mode, but the occurrence of their phonon modes depended on the crystallographic direction, which reflects the atomic arrangement of the Mo S2(0001 ) surface. Thus, we can control the energy dissipation and friction by using the phonon dissipation curves in the friction process with a load and shear.
Quantum field theory of interacting plasmon-photon-phonon system
NASA Astrophysics Data System (ADS)
Hieu Nguyen, Van; Nguyen, Bich Ha
2015-09-01
This work is devoted to the construction of the quantum field theory of the interacting system of plasmons, photons and phonons on the basis of general fundamental principles of electrodynamics and quantum field theory of many-body systems. Since a plasmon is a quasiparticle appearing as a resonance in the collective oscillation of the interacting electron gas in solids, the starting point is the total action functional of the interacting system comprising electron gas, electromagnetic field and phonon fields. By means of the powerful functional integral technique, this original total action is transformed into that of the system of the quantum fields describing plasmons, transverse photons, acoustic as well as optic longitudinal and transverse phonons. The collective oscillations of the electron gas is characterized by a real scalar field φ(x) called the collective oscillation field. This field is split into the static background field φ0(x) and the fluctuation field ζ(x). The longitudinal phonon fields {{{Q}}al}(x), {{{Q}}ol}(x) are also split into the background fields {Q}0al(x), {Q}0ol(x) and dynamical fields {{{q}}al}(x), {{{q}}ol}(x) while the transverse phonon fields {{{Q}}at}(x), {{{Q}}ot}(x) themselves are dynamical fields {{{q}}at}(x), {{{q}}ot}(x) without background fields. After the canonical quantization procedure, the background fields φ0(x), {Q}0al(x), {Q}0ol(x) remain the classical fields, while the fluctuation fields ζ(x) and dynamical phonon fields {{{q}}al}(x), {{{q}}at}(x), {{{q}}ol}(x), {{{q}}ot}(x) become quantum fields. In quantum theory, a plasmon is the quantum of Hermitian scalar field σ(x) called the plasmon field, longitudinal phonons as complex spinless quasiparticles are the quanta of the effective longitudinal phonon Hermitian scalar fields {{θ }a}(x), {{θ }0}(x), while transverse phonons are the quanta of the original Hermitian transverse phonon vector fields {{{q}}at}(x), {{{q}}ot}(x). By means of the functional integral
Low temperature phonon-drag thermopower in a monolayer MoS2
NASA Astrophysics Data System (ADS)
Bhargavi, K. S.; Kubakaddi, S. S.
2015-06-01
Phonon-drag thermopower Sg is studied theoretically in a monolayer MoS2 as a function of temperature T. Electron-acoustic phonon (el-ap) interaction via deformation potential (DP) coupling of TA (LA) phonons is taken to be unscreened (screened) and piezoelectric (PE) coupling of LA and TA phonons is taken to be screened. Sg due to DP coupling of TA phonons is found to be dominant over all other mechanisms. In the Bloch-Gruneisen (BG) regime power law Sg ˜ T3 (T 5) is predicted for unscreened (screened) el-ap interaction a characteristic of two-dimensional phonons with linear dispersion. Screening strongly suppresses Sg due to large effective mass of the electrons. We find that, Sg due to screened DP and PE couplings are nearly same in contrast with the results in GaAs heterojunctions. With the increasing T its exponent decreases and reaches a sublinear value.
Direct measurement of coherent thermal phonons in Bi2Te3/Sb2Te3 superlattice
NASA Astrophysics Data System (ADS)
He, Feng; Wu, Wenzhi; Wang, Yaguo
2016-08-01
Coherent thermal phonons (CTPs) play an important role in thermal transport in superlattice (SL) structures. To have a profound understanding of CTP transport in SL, direct measurement of CTP properties is necessary. In this study, coherent phonon spectroscopy has been utilized to generate and detect CTP in Bi2Te3/Sb2Te3 SL. Phonon lifetimes have been extracted from experimental data, with which mode-wise thermal conductivities have been calculated. Comparing with bulk Bi2Te3, the estimated mode-wise thermal conductivity of longitudinal acoustic phonons shifts to higher frequencies, due to constructive coherent phonon interference. Our results suggest that it is possible to use SL structure to manipulate coherent phonon propagation and to tailor thermal conductivity.
Hussein, Mahmoud I.; El-Kady, Ihab; Li, Baowen; Sánchez-Dehesa, José
2014-12-31
“Phononics” is an interdisciplinary branch of physics and engineering that deals with the behavior of phonons, and more broadly elastic and acoustic waves in similar context, and their manipulation in solids and/or fluids to benefit technological applications. Compared to resembling disciplines, such as electronics and photonics, phononics is a youthful field. It is growing at a remarkable rate, especially when viewed liberally with no limiting constraints on any particular length scale, discipline or application.
Cavity-type hypersonic phononic crystals
NASA Astrophysics Data System (ADS)
Sato, A.; Pennec, Y.; Yanagishita, T.; Masuda, H.; Knoll, W.; Djafari-Rouhani, B.; Fytas, G.
2012-11-01
We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter.
Note: Efficient generation of optical sidebands at GHz with a high-power tapered amplifier
Zappala, J. C.; Lu, Z.-T.; Bailey, K.; O’Connor, T. P.; Jiang, W.
2014-04-15
Two methods using a laser-diode tapered amplifier to produce high-power, high-efficiency optical frequency sidebands over a wide tunable frequency range are studied and compared. For a total output of 500 mW at 811 nm, 20% of the power can be placed in each of the first-order sidebands. Functionality and characterization are presented within the sideband frequency region of 0.8–2.3 GHz, and it is shown that both methods can be applied beyond this frequency range. These methods provide a versatile and effective tool for atomic physics experiments.
Note: efficient generation of optical sidebands at GHz with a high-power tapered amplifier.
Zappala, J C; Bailey, K; Lu, Z-T; O'Connor, T P; Jiang, W
2014-04-01
Two methods using a laser-diode tapered amplifier to produce high-power, high-efficiency optical frequency sidebands over a wide tunable frequency range are studied and compared. For a total output of 500 mW at 811 nm, 20% of the power can be placed in each of the first-order sidebands. Functionality and characterization are presented within the sideband frequency region of 0.8-2.3 GHz, and it is shown that both methods can be applied beyond this frequency range. These methods provide a versatile and effective tool for atomic physics experiments. PMID:24784682
Multiple side-band generation for two-frequency components injected into a tapered amplifier
NASA Astrophysics Data System (ADS)
Luo, Hua; Li, Kai; Zhang, Dongfang; Gao, Tianyou; Jiang, Kaijun
2013-04-01
We have experimentally studied the multiple side-band generation for two-frequency components injected into a tapered amplifier and demonstrated its effects on atomic laser cooling. A heterodyne frequency-beat measurement and a Fabry Perot interferometer have been applied to analyze the side-band generation with different experimental parameters, such as frequency difference, injection laser power and tapered amplifier current. In laser cooling potassium40 and potassium41 with hyperfine splitting of 1.3GHz and 254MHz, respectively, the side-band generation with a small frequency difference has a significant effect on the number of trapped atoms.
Note: Efficient generation of optical sidebands at GHz with a high-power tapered amplifier
NASA Astrophysics Data System (ADS)
Zappala, J. C.; Bailey, K.; Lu, Z.-T.; O'Connor, T. P.; Jiang, W.
2014-04-01
Two methods using a laser-diode tapered amplifier to produce high-power, high-efficiency optical frequency sidebands over a wide tunable frequency range are studied and compared. For a total output of 500 mW at 811 nm, 20% of the power can be placed in each of the first-order sidebands. Functionality and characterization are presented within the sideband frequency region of 0.8-2.3 GHz, and it is shown that both methods can be applied beyond this frequency range. These methods provide a versatile and effective tool for atomic physics experiments.
Multiple side-band generation for two-frequency components injected into a tapered amplifier.
Luo, Hua; Li, Kai; Zhang, Dongfang; Gao, Tianyou; Jiang, Kaijun
2013-04-01
We have experimentally studied multiple side-band generation for two-frequency components injected into a tapered amplifier (TA) and demonstrated its effects on atomic laser cooling. A heterodyne frequency-beat measurement and a Fabry-Perot interferometer have been applied to analyze the side-band generation with different experimental parameters, such as frequency difference, injection laser power, and TA current. In laser-cooling potassium40 and potassium41 with hyperfine splitting of 1.3 GHz and 254 MHz, respectively, the side-band generation with a small frequency difference has a significant effect on the number of trapped atoms. PMID:23546277
Huang, Jin; Sun, Changzheng; Xiong, Bing; Luo, Yi
2009-11-01
A Y-branch integrated dual wavelength laser diode is fabricated for optical microwave generation based on the principle of sideband injection locking. The device integrates a master laser and a slave laser with associated Y-branch coupler. By directly modulating the master laser near its relaxation resonance frequency, multiple sidebands are generated due to enhanced modulation nonlinearity. Beat signal with high spectral purity is obtained by injection locking the slave laser to one of the modulation sidebands. A millimeter-wave carrier of 42-GHz with a phase noise of -94.6 dBc/Hz at 10 kHz offset is demonstrated. PMID:19997304