Sample records for acoustic pressure oscillations

  1. Experimental study of the oscillation of spheres in an acoustic levitator.

    PubMed

    Andrade, Marco A B; Pérez, Nicolás; Adamowski, Julio C

    2014-10-01

    The spontaneous oscillation of solid spheres in a single-axis acoustic levitator is experimentally investigated by using a high speed camera to record the position of the levitated sphere as a function of time. The oscillations in the axial and radial directions are systematically studied by changing the sphere density and the acoustic pressure amplitude. In order to interpret the experimental results, a simple model based on a spring-mass system is applied in the analysis of the sphere oscillatory behavior. This model requires the knowledge of the acoustic pressure distribution, which was obtained numerically by using a linear finite element method (FEM). Additionally, the linear acoustic pressure distribution obtained by FEM was compared with that measured with a laser Doppler vibrometer. The comparison between numerical and experimental pressure distributions shows good agreement for low values of pressure amplitude. When the pressure amplitude is increased, the acoustic pressure distribution becomes nonlinear, producing harmonics of the fundamental frequency. The experimental results of the spheres oscillations for low pressure amplitudes are consistent with the results predicted by the simple model based on a spring-mass system.

  2. Synchronized oscillations and acoustic fluidization in confined granular materials

    NASA Astrophysics Data System (ADS)

    Giacco, F.; de Arcangelis, L.; Ciamarra, M. Pica; Lippiello, E.

    2018-01-01

    According to the acoustic fluidization hypothesis, elastic waves at a characteristic frequency form inside seismic faults even in the absence of an external perturbation. These waves are able to generate a normal stress which contrasts the confining pressure and promotes failure. Here, we study the mechanisms responsible for this wave activation via numerical simulations of a granular fault model. We observe the particles belonging to the percolating backbone, which sustains the stress, to perform synchronized oscillations over ellipticlike trajectories in the fault plane. These oscillations occur at the characteristic frequency of acoustic fluidization. As the applied shear stress increases, these oscillations become perpendicular to the fault plane just before the system fails, opposing the confining pressure, consistently with the acoustic fluidization scenario. The same change of orientation can be induced by external perturbations at the acoustic fluidization frequency.

  3. Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1993-01-01

    The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes which have detrimental effects on the experimental data. Acoustic treatment is proposed to rectify this problem.

  4. Shape oscillations of acoustically levitated drops in water: Early research with Bob Apfel on modulated radiation pressure

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2004-05-01

    In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.

  5. Behaviour of a Premixed Flame Subjected to Acoustic Oscillations

    PubMed Central

    Qureshi, Shafiq R.; Khan, Waqar A.; Prosser, Robert

    2013-01-01

    In this paper, a one dimensional premixed laminar methane flame is subjected to acoustic oscillations and studied. The purpose of this analysis is to investigate the effects of acoustic perturbations on the reaction rates of different species, with a view to their respective contribution to thermoacoustic instabilities. Acoustically transparent non reflecting boundary conditions are employed. The flame response has been studied with acoustic waves of different frequencies and amplitudes. The integral values of the reaction rates, the burning velocities and the heat release of the acoustically perturbed flame are compared with the unperturbed case. We found that the flame's sensitivity to acoustic perturbations is greatest when the wavelength is comparable to the flame thickness. Even in this case, the perturbations are stable with time. We conclude that acoustic fields acting on the chemistry do not contribute significantly to the emergence of large amplitude pressure oscillations. PMID:24376501

  6. Injection locking of optomechanical oscillators via acoustic waves

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-01

    Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  7. Combustor oscillating pressure stabilization and method

    DOEpatents

    Gemmen, R.S.; Richards, G.A.; Yip, M.T.J.; Robey, E.H.; Cully, S.R.; Addis, R.E.

    1998-08-11

    High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time. 7 figs.

  8. Injection locking of optomechanical oscillators via acoustic waves.

    PubMed

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-02

    Injection locking is an effective technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators. As such, exploring new mechanisms for injection locking of emerging oscillators is important for their usage in various systems. Here, we present the first demonstration of injection locking of a radiation pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can be easily implemented on various platforms to lock different types of OMOs independent of their size and structure. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance, matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity, and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology, and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  9. Distributed feedback acoustic surface wave oscillator

    NASA Technical Reports Server (NTRS)

    Elachi, C. (Inventor)

    1977-01-01

    An acoustic surface wave oscillator is constructed from a semiconductor piezoelectric acoustic surface wave amplifier by providing appropriate perturbations at the piezoelectric boundary. The perturbations cause Bragg order reflections that maintain acoustic wave oscillation under certain conditions of gain and feedback.

  10. Stable And Oscillating Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  11. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  12. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets.

    PubMed

    Kremer, J; Kilzer, A; Petermann, M

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  13. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    NASA Astrophysics Data System (ADS)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  14. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, Vladmir

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  15. Multiple time scale analysis of pressure oscillations in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  16. Acoustic Oscillations in Volcanoes

    NASA Astrophysics Data System (ADS)

    Garces, M.; Marchetti, E.; Ripepe, M.

    2004-12-01

    The intensity of infrasonic waves produced by volcanic activity ranges from very low amplitude pressure signals (mPa) to violent shock waves produced during explosive eruptions (MPa). Recorded waveforms vary from simple single pulses to complicated, long lasting signals where echoes and/or multiple pulses may be present. Whether echoes occur, are sustained, and are recorded depends on the elasticity of the surrounding walls, the attenuation of the fluid, the depth of the source, and the relative position of the sensor. A shallow explosion would release most of its energy to the atmosphere. In this case, echoes would be primarily associated with reflections from crater walls or nearby mountains. A deep explosion in a vesiculated magma column may not be multiply reflected (and thus maintain resonance) in a conduit if it has to propagate through a heavily attenuating magma-gas mixture. Yet highly vesiculated foams, with their low sound speeds and their sensitive dependence of gas exsolution and viscosity on ambient pressure, are extremely unstable under any fluid flow conditions. Due to the decrease in density and sound speed with increased vesiculation, an acoustic pulse arriving from some depth in a moving magma column would encounter an increase in Mach number as it approaches a highly vesiculated region. When this pulse reaches the foam, the pressure perturbation and its associated streaming may induce rapid exsolution and trigger a fragmentation-enhanced explosive eruption that could lower the fragmentation void fraction threshold and enhance jet flow. Lowering of the fragmentation threshold may permit conduit reverberation. Cavitation may occur when a fluid is excessively tensed. Flow acceleration through a constriction (choked flow), or the passage of an intense sound pulse can induce cavitation and produce a bubble oscillation. The precondition of existing bubbles for cavitation lend vesiculated foams particularly vulnerable to collapse. Sound from periodic

  17. Nonlinear evolution of baryon acoustic oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocce, Martin; Institut de Ciencies de l'Espai, IEEC-CSIC, Campus UAB, Facultat de Ciencies, Torre C5 par-2, Barcelona 08193; Scoccimarro, Roman

    2008-01-15

    We study the nonlinear evolution of baryon acoustic oscillations in the dark matter power spectrum and the correlation function using renormalized perturbation theory. In a previous paper we showed that renormalized perturbation theory successfully predicts the damping of acoustic oscillations; here we extend our calculation to the enhancement of power due to mode coupling. We show that mode coupling generates additional oscillations that are out of phase with those in the linear spectrum, leading to shifts in the scales of oscillation nodes defined with respect to a smooth spectrum. When Fourier transformed, these out-of-phase oscillations induce percent-level shifts in themore » acoustic peak of the two-point correlation function. We present predictions for these shifts as a function of redshift; these should be considered as a robust lower limit to the more realistic case that includes, in addition, redshift distortions and galaxy bias. We show that these nonlinear effects occur at very large scales, leading to a breakdown of linear theory at scales much larger than commonly thought. We discuss why virialized halo profiles are not responsible for these effects, which can be understood from basic physics of gravitational instability. Our results are in excellent agreement with numerical simulations, and can be used as a starting point for modeling baryon acoustic oscillations in future observations. To meet this end, we suggest a simple physically motivated model to correct for the shifts caused by mode coupling.« less

  18. Investigations of High Pressure Acoustic Waves in Resonators with Seal-like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher; Steinetz, Bruce; Finkbeiner, Joshua

    2003-01-01

    A conical resonator (having a dissonant acoustic design) was tested in four configurations: (1) baseline resonator with closed ends and no blockage, (2) closed resonator with internal blockage, (3) ventilated resonator with no blockage, and (4) ventilated resonator with an applied pressure differential. These tests were conducted to investigate the effects of blockage and ventilation holes on dynamic pressurization. Additionally, the investigation was to determine the ability of acoustic pressurization to impede flow through the resonator. In each of the configurations studied, the entire resonator was oscillated at the gas resonant frequency while dynamic pressure, static pressure, and temperature of the fluid were measured. In the final configuration, flow through the resonator was recorded for three oscillation conditions. Ambient condition air was used as the working fluid.

  19. Surface oscillation and jetting from surface attached acoustic driven bubbles.

    PubMed

    Prabowo, Firdaus; Ohl, Claus-Dieter

    2011-01-01

    We report on an experimental study of the onset of surface oscillation and jetting of bubbles attached to a rigid surface. The driving frequency is 16.27 kHz and the radius of the spherical capped bubble is 160 ± 5 μm. The acoustic amplitude is increased from 0 to 0.085 bar while the oscillation is recorded with a high-speed camera at 180,000 frames/s over 8100 periods of oscillations. The radial and surface modes are analyzed from a Fourier decomposition. With increasing pressure amplitude we find three regimes: pure radial oscillation, development of surface oscillations, and a chaotic surface oscillation regime. These regimes appear abrupt and are repeatable. In the chaotic regime, fast liquid jetting towards the rigid surface is observed. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Numerical Investigations of High Pressure Acoustic Waves in Resonators

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Pindera, Maciej; Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    This presentation presents work on numerical investigations of nonlinear acoustic phenomena in resonators that can generate high-pressure waves using acoustic forcing of the flow. Time-accurate simulations of the flow in a closed cone resonator were performed at different oscillation frequencies and amplitudes, and the numerical results for the resonance frequency and fluid pressure increase match the GRC experimental data well. Work on cone resonator assembly simulations has started and will involve calculations of the flow through the resonator assembly with and without acoustic excitation. A new technique for direct calculation of resonance frequency of complex shaped resonators is also being investigated. Script-driven command procedures will also be developed for optimization of the resonator shape for maximum pressure increase.

  1. Suppression of Spontaneous Gas Oscillations by Acoustic Self-Feedback

    NASA Astrophysics Data System (ADS)

    Biwa, Tetsushi; Sawada, Yoshiki; Hyodo, Hiroaki; Kato, Soichiro

    2016-10-01

    This paper demonstrates a method of acoustical self-feedback to suppress spontaneous gas oscillations such as those observed in combustors of gas-turbine engines. Whereas a conventional feedback system consists of electromechanical devices, the present method achieves acoustical self-feedback with a hollow tube that connects two positions of the oscillation system. A model oscillator of combustion-driven gas oscillations is designed and built to demonstrate the applicability of the self-feedback concept. Stability analysis through measurements of Q values (quality factor) of oscillations shows that the desired delay time and gain are obtained when the tube length is equal to the odd integer times half the wavelength of the anticipated acoustic oscillations.

  2. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  3. Distributed feedback acoustic surface wave oscillator

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1974-01-01

    Using a simple model, the feasibility of applying the distributed feedback concept to the generation of acoustic surface waves is evaluated. It is shown that surface corrugation of the piezoelectric boundary in a semiconductor-piezoelectric surface acoustic wave amplifier could lead to self-sustained oscillations.

  4. Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Masaya; Yoshida, Shohei; Hirata, Yoshitaka; Kobayashi, Nariyoshi

    Acoustically-coupled combustion oscillation is studied for premixed flame with pilot fuel to be used in gas turbine combustors. Premixed gas is passed through swirl vanes and burnt with the centrally injected pilot fuel. The dependencies of pressure, fuel to air ratio, premixed fuel rate, inlet velocity and air temperature on the combustion oscillation are investigated. Two kinds of oscillation modes of ˜100Hz and ˜350Hz are activated according to inlet velocities. Fluctuating pressures are amplified when the premixed fuel rate is over ˜80% at elevated pressures. The fluctuating pressure peak moves to a higher premixed fuel ratio region with increased pressure or fuel to air ratio for the Helmholz type mode. Combustion oscillation occurs when the pilot fuel velocity is changed proportionally with the flame length.

  5. Real-time combustion control and diagnostics sensor-pressure oscillation monitor

    DOEpatents

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV

    2009-07-14

    An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.

  6. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding.

    PubMed

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  7. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  8. Visualization of the Mode Shapes of Pressure Oscillation in a Cylindrical Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xin; Qi, Yunliang; Wang, Zhi

    Our work describes a novel experimental method to visualize the mode shapes of pressure oscillation in a cylindrical cavity. Acoustic resonance in a cavity is a grand old problem that has been under investigation (using both analytical and numerical methods) for more than a century. In this article, a novel method based on high speed imaging of combustion chemiluminescence was presented to visualize the mode shapes of pressure oscillation in a cylindrical cavity. By generating high-temperature combustion gases and strong pressure waves simultaneously in a cylindrical cavity, the pressure oscillation can be inferred due to the chemiluminescence emissions of themore » combustion products. We can then visualized the mode shapes by reconstructing the images based on the amplitudes of the luminosity spectrum at the corresponding resonant frequencies. Up to 11 resonant mode shapes were clearly visualized, each matching very well with the analytical solutions.« less

  9. Induction of slow oscillations by rhythmic acoustic stimulation.

    PubMed

    Ngo, Hong-Viet V; Claussen, Jens C; Born, Jan; Mölle, Matthias

    2013-02-01

    Slow oscillations are electrical potential oscillations with a spectral peak frequency of ∼0.8 Hz, and hallmark the electroencephalogram during slow-wave sleep. Recent studies have indicated a causal contribution of slow oscillations to the consolidation of memories during slow-wave sleep, raising the question to what extent such oscillations can be induced by external stimulation. Here, we examined whether slow oscillations can be effectively induced by rhythmic acoustic stimulation. Human subjects were examined in three conditions: (i) with tones presented at a rate of 0.8 Hz ('0.8-Hz stimulation'); (ii) with tones presented at a random sequence ('random stimulation'); and (iii) with no tones presented in a control condition ('sham'). Stimulation started during wakefulness before sleep and continued for the first ∼90 min of sleep. Compared with the other two conditions, 0.8-Hz stimulation significantly delayed sleep onset. However, once sleep was established, 0.8-Hz stimulation significantly increased and entrained endogenous slow oscillation activity. Sleep after the 90-min period of stimulation did not differ between the conditions. Our data show that rhythmic acoustic stimulation can be used to effectively enhance slow oscillation activity. However, the effect depends on the brain state, requiring the presence of stable non-rapid eye movement sleep. © 2012 European Sleep Research Society.

  10. Thermal acoustic oscillations, volume 2. [cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Sims, W. H.; Fan, C.

    1975-01-01

    A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions.

  11. How does non-linear dynamics affect the baryon acoustic oscillation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Naonori S.; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: dns@astro.princeton.edu

    2014-02-01

    We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do notmore » guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.« less

  12. Excitation of acoustic oscillations in superconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golub, A.A.

    1973-11-01

    A study is made of the excitation of sound in a superconducting film by electromagnetic waves incident on the surface of the film. It is assumed that the thickness of the film d is much greater than the penetration depth of the field. If the acoustic wave is damped over a distance of the order of d, traveling acoustic waves can be excited in the superconductor; otherwise, standing waves are excited. The low-temperature contribution of acoustic oseillations to the surface resistence of pure superconductors ia calculated. At very low temperatures, the absorption of electromagnetic waves is mainly governed by themore » loss due to acoustic oscillations. (auth)« less

  13. Manipulation of micro-objects using acoustically oscillating bubbles based on the gas permeability of PDMS.

    PubMed

    Liu, Bendong; Tian, Baohua; Yang, Xu; Li, Mohan; Yang, Jiahui; Li, Desheng; Oh, Kwang W

    2018-05-01

    This paper presents a novel manipulation method for micro-objects using acoustically oscillating bubbles with a controllable position based on the gas permeability of polydimethylsiloxane. The oscillating bubble trapped within the side channel attracts the neighboring micro-objects, and the position of the air-liquid interface is controlled by generating temporary pressure difference between the side channel and the air channel. To demonstrate the feasibility of the method in technological applications, polystyrene microparticles of 10  μ m in diameter were successfully captured, transported, and released. The influence of pressure difference on the movement speed of the air-liquid interface was demonstrated in our experiments, and the manipulation performance was also characterized by varying the frequency of the acoustic excitation and the pressure difference. Since the bubble generation and the air-liquid interface movement in our manipulation method do not need any electrochemical reaction and any high temperature, this on-chip manipulation method provides a controllable, efficient, and noninvasive tool for handling micro-objects such as particles, cells, and other entities. The whole manipulation process, including capturing, transporting, and releasing of particles, spent less than 1 min. It can be used to select the cells and particles in the microfluidic device or change the cell culture medium.

  14. Sectorial oscillation of acoustically levitated nanoparticle-coated droplet

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Chen, Zhen; Geng, Xingguo

    2016-01-01

    We have investigated the dynamics of a third mode sectorial oscillation of nanoparticle-coated droplets using acoustic levitation in combination with active modulation. The presence of nanoparticles at the droplet surface changes its oscillation amplitude and frequency. A model linking the interfacial rheology and oscillation dynamics has been proposed in which the compression modulus ɛ of the particle layer is introduced into the analysis. The ɛ obtained with the model is in good agreement with that obtained by the Wilhelmy plate approach, highlighting the important role of interfacial rheological properties in the sectorial oscillation of droplets.

  15. Physics behind the oscillation of pressure tensor autocorrelation function for nanocolloidal dispersions.

    PubMed

    Wang, Tao; Wang, Xinwei; Luo, Zhongyang; Cen, Kefa

    2008-08-01

    In this work, extensive equilibrium molecular dynamics simulations are conducted to explore the physics behind the oscillation of pressure tensor autocorrelation function (PTACF) for nanocolloidal dispersions, which leads to strong instability in viscosity calculation. By reducing the particle size and density, we find the intensity of the oscillation decreases while the frequency of the oscillation becomes higher. Careful analysis of the relationship between the oscillation and nanoparticle characteristics reveals that the stress wave scattering/reflection at the particle-liquid interface plays a critical role in PTACF oscillation while the Brownian motion/vibration of solid particles has little effect. Our modeling proves that it is practical to eliminate the PTACF oscillation through suppressing the acoustic mismatch at the solid-liquid interface by designing special nanoparticle materials. It is also found when the particle size is comparable with the wavelength of the stress wave, diffraction of stress wave happens at the interface. Such effect substantially reduces the PTACF oscillation and improves the stability of viscosity calculation.

  16. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    NASA Astrophysics Data System (ADS)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  17. Baryon acoustic oscillation intensity mapping of dark energy.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  18. Pressure Oscillations and Structural Vibrations in Space Shuttle RSRM and ETM-3 Motors

    NASA Technical Reports Server (NTRS)

    Mason, D. R.; Morstadt, R. A.; Cannon, S. M.; Gross, E. G.; Nielsen, D. B.

    2004-01-01

    The complex interactions between internal motor pressure oscillations resulting from vortex shedding, the motor's internal acoustic modes, and the motor's structural vibration modes were assessed for the Space Shuttle four-segment booster Reusable Solid Rocket Motor and for the five-segment engineering test motor ETM-3. Two approaches were applied 1) a predictive procedure based on numerically solving modal representations of a solid rocket motor s acoustic equations of motion and 2) a computational fluid dynamics two-dimensional axi-symmetric large eddy simulation at discrete motor burn times.

  19. Thermal Acoustic Oscillation: Causes, Detection, Analysis and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Hartwig, Jason W.

    2014-01-01

    The presentation discusses the causes of Thermal Acoustic Oscillations, how it can be detected, analyzed and prevented. It also discusses where it can occur, where it doesn't occur and practical mitigation techniques.

  20. Numerical simulation of single bubble dynamics under acoustic travelling waves.

    PubMed

    Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu

    2018-04-01

    The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  2. The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.

    PubMed

    Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh

    2015-07-01

    Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry. © The Author(s) 2015.

  3. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  4. Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity

    NASA Astrophysics Data System (ADS)

    Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun

    2018-05-01

    Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.

  5. Acoustic resonances in cylinder bundles oscillating in a compressibile fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W.H.; Raptis, A.C.

    1984-12-01

    This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determinedmore » from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.« less

  6. Oscillations of a deformed liquid drop in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Apfel, Robert E.

    1995-07-01

    The oscillations of an axially symmetric liquid drop in an acoustic standing wave field in air have been studied using the boundary integral method. The interaction between the drop oscillation and sound field has been included in this analysis. Our computations focus on the frequency shift of small-amplitude oscillations of an acoustically deformed drop typical of a drop levitated in air. In the presence or absence of gravity, the trend and the magnitude of the frequency shift have been given in terms of drop size, drop deformation, and the strength of the sound field. Our calculations are compared with experiments performed on the United States Microgravity Laboratory (USML-1) and with ground-based measurements, and are found to be in good agreement within the accuracy of the experimental data.

  7. Acoustic cymbal performance under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Jenne, Kirk E.; Huang, Dehua; Howarth, Thomas R.

    2004-05-01

    Continual awareness about the need to develop light-weight, low-volume, broadband, underwater acoustic projector and receive arrays that perform consistently in diverse environments is evident in recent Navy acoustic system initiatives. Acoustic cymbals, so named for resemblance to the percussive musical instruments, are miniature flextensional transducers that may perhaps meet the performance criteria for consistent performance under hydrostatic pressure after modifications in the design. These acoustic cymbals consist of a piezoceramic disk (or ring) bonded to two opposing cymbal-shaped metal shells. Operating as mechanical transformers, the two metal shells convert the large generative force inherently within the disk's radial mode into increased volume displacement at the metal shell surface to obtain volume displacement that translates into usable source levels and/or sensitivities at sonar frequencies in a relatively broad band. The air-backed design for standard acoustic cymbal transducers presents a barrier to deepwater applications. A new acoustic cymbal design for high-pressure applications will be presented for the first time. This practical pressure compensation is designed to diminish the effects of hydrostatic pressure to maintain consistent acoustic cymbal performance. Transmit and receive performance data, determined at the Naval Undersea Warfare Center's (NUWC) Acoustic Pressure Tank Facility (APTF), is presented.

  8. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    DOE PAGES

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This workmore » also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.« less

  9. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.

    PubMed

    Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2014-04-01

    The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.

  10. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  11. Oscillational instabilities in single-mode acoustic levitators

    NASA Technical Reports Server (NTRS)

    Rudnick, Joseph; Barmatz, M.

    1990-01-01

    An extension of standard results for the acoustic force on an object in a single-mode resonant chamber yields predictions for the onset of oscillational instabilities when objects are levitated or positioned in these chambers. The results are consistent with experimental investigations. The present approach accounts for the effect of time delays on the response of a cavity to the motion of an object inside it. Quantitative features of the instabilities are investigated. The experimental conditions required for sample stability, saturation of sample oscillations, hysteretic effects, and the loss of the ability to levitate are discussed.

  12. Oscillational instabilities in single mode acoustics levitators

    NASA Technical Reports Server (NTRS)

    Rudnick, J.; Barmatz, Martin

    1990-01-01

    An extention of standard results for the acoustic force on an object in a single-mode resonant chamber yields predictions for the onset of oscillational instabilities when objects are levitated or positioned in these chambers. The authors' results are consistent with those of experimental investigators. The present approach accounts for the effects of time delays in the response of a cavity to the motion of an object inside of it. Quantitative features of the instabilities are investigated. The experimental conditions required for sample stability, saturation of sample oscillations, hysteretic effects, and the loss of ability to levitate are discussed.

  13. Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2018-01-01

    The theoretical foundation of acoustic radiation pressure in plane wave beams is reexamined. It is shown from finite deformation theory and the Boltzmann-Ehrenfest Adiabatic Principle that the Brillouin stress tensor (BST) is the radiation stress in Lagrangian coordinates (not Eulerian coordinates) and that the terms in the BST are not the momentum flux density and mean excess Eulerian stress but are simply contributions to the variation in the wave oscillation period resulting from changes in path length and true wave velocity, respectively, from virtual variations in the strain. It is shown that the radiation stress in Eulerian coordinates is the mean Cauchy stress (not the momentum flux density, as commonly assumed) and that Langevin's second relation does not yield an assessment of the mean Eulerian pressure, since the enthalpy used in the traditional derivations is a function of the thermodynamic tensions - not the Eulerian pressure. It is shown that the transformation between Lagrangian and Eulerian quantities cannot be obtained from the commonly-used expansion of one of the quantities in terms of the particle displacement, since the expansion provides only the difference between the value of the quantity at two different points in Cartesian space separated by the displacement. The proper transformation is obtained only by employing the transformation coefficients of finite deformation theory, which are defined in terms of the displacement gradients. Finite deformation theory leads to the result that for laterally unconfined, plane waves the Lagrangian and Eulerian radiation pressures are equal with the value (1/4)(2K) along the direction of wave propagation, where (K) is the mean kinetic energy density, and zero in directions normal to the propagation direction. This is contrary to the Langevin result that the Lagrangian radiation pressure in the propagation direction is equal to (2K) and the BST result that the Eulerian radiation pressure in that direction

  14. Acoustically induced oscillation and rotation of a large drop in space

    NASA Astrophysics Data System (ADS)

    Jacobi, N.; Croonquist, A. P.; Elleman, D. D.; Wang, T. G.

    1982-03-01

    A 2.5 cm diameter water drop was successfully deployed and manipulated in a triaxial acoustic resonance chamber during a 240 sec low-gravity SPAR rocket flight. Oscillation and rotation were induced by modulating and phase shifting the signals to the speakers. Portions of the film record were digitized and analyzed. Spectral analysis brought out the n = 2, 3, 4 free oscillation modes of the drop, its very low-frequency center-of-mass motion in the acoustic potential well, and the forced oscillation frequency. The drop boundaries were least-square fitted to general ellipses, providing eccentricities of the distorted drop. The normalized equatorial area of the rotating drop was plotted vs a rotational parameter, and was in excellent agreement with values derived from the theory of equilibrium shapes of rotating liquid drops.

  15. Dynamics of an acoustically levitated particle using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Barrios, G.; Rechtman, R.

    When the acoustic force inside a cavity balances the gravitational force on a particle the result is known as acoustic levitation. Using the lattice Boltzmann equation method we find the acoustic force acting on a rounded particle for two different single-axis acoustic levitators in two dimensions, the first with plane waves, the second with a rounded reflector that enhances the acoustic force. With no gravitational force, a particle oscillates around a pressure node; in the presence of gravity the oscillation is shifted a small vertical distance below the pressure node. This distance increases linearly as the density ratio between the solid particle and fluid grows. For both cavities, the particle oscillates with the frequency of the sound source and its harmonics and in some cases there is a much smaller second dominant frequency. When the momentum of the acoustic source changes, the oscillation around the average vertical position can have both frequencies mentioned above. However, if this quantity is large enough, the oscillations of the particle are aperiodic in the cavity with a rounded reflector.

  16. A Study of Standing Pressure Waves Within Open and Closed Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2002-01-01

    The first section of the results presented herein was conducted on an axisymmetric resonator configured with open ventilation ports on either end of the resonator, but otherwise closed and free from obstruction. The remaining section presents the results of a similar resonator shape that was closed, but contained an axisymmetric blockage centrally located through the axis of the resonator. Ambient air was used as the working fluid. In each of the studies, the resonator was oscillated at the resonant frequency of the fluid contained within the cavity while the dynamic pressure, static pressure, and temperature of the fluid were recorded at both ends of the resonator. The baseline results showed a marked reduction in the amplitude of the dynamic pressure waveforms over previous studies due to the use of air instead of refrigerant as the working fluid. A sharp reduction in the amplitude of the acoustic pressure waves was expected and recorded when the configuration of the resonators was modified from closed to open. A change in the resonant frequency was recorded when blockages of differing geometries were used in the closed resonator, while acoustic pressure amplitudes varied little from baseline measurements.

  17. Three-step approach for prediction of limit cycle pressure oscillations in combustion chambers of gas turbines

    NASA Astrophysics Data System (ADS)

    Iurashev, Dmytro; Campa, Giovanni; Anisimov, Vyacheslav V.; Cosatto, Ezio

    2017-11-01

    Currently, gas turbine manufacturers frequently face the problem of strong acoustic combustion driven oscillations inside combustion chambers. These combustion instabilities can cause extensive wear and sometimes even catastrophic damages to combustion hardware. This requires prevention of combustion instabilities, which, in turn, requires reliable and fast predictive tools. This work presents a three-step method to find stability margins within which gas turbines can be operated without going into self-excited pressure oscillations. As a first step, a set of unsteady Reynolds-averaged Navier-Stokes simulations with the Flame Speed Closure (FSC) model implemented in the OpenFOAM® environment are performed to obtain the flame describing function of the combustor set-up. The standard FSC model is extended in this work to take into account the combined effect of strain and heat losses on the flame. As a second step, a linear three-time-lag-distributed model for a perfectly premixed swirl-stabilized flame is extended to the nonlinear regime. The factors causing changes in the model parameters when applying high-amplitude velocity perturbations are analysed. As a third step, time-domain simulations employing a low-order network model implemented in Simulink® are performed. In this work, the proposed method is applied to a laboratory test rig. The proposed method permits not only the unsteady frequencies of acoustic oscillations to be computed, but the amplitudes of such oscillations as well. Knowing the amplitudes of unstable pressure oscillations, it is possible to determine how these oscillations are harmful to the combustor equipment. The proposed method has a low cost because it does not require any license for computational fluid dynamics software.

  18. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    NASA Astrophysics Data System (ADS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  19. Activation of immobilized enzymes by acoustic wave resonance oscillation.

    PubMed

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-12-01

    Acoustic wave resonance oscillation has been used successfully in the development of methods to activate immobilized enzyme catalysts. In this study, resonance oscillation effects were demonstrated for enzyme reactions on galactose oxidase (GAD), D-amino acid oxidase (DAAO), and L-amino acid oxidase (LAAO), all of which were immobilized covalently on a ferroelectric lead zirconate titanate (PZT) device that could generate thickness-extensional resonance oscillations (TERO) of acoustic waves. For galactose oxidation on immobilized GAD in a microreactor, TERO generation immediately increased enzyme activity 2- to 3-fold. Eliminating TERO caused a slight decrease in the activity, with ∼90% of the enhanced activity retained while the reaction proceeded. Contact of the enhanced enzyme with a galactose-free solution caused almost complete reversion of the activity to the original low level before TERO generation, indicating that, not only TERO-induced GAD activation, but also preservation of the increased activity, required a galactose substrate. Similar activity changes with TERO were observed for enzyme reactions on DAAO and LAAO. Kinetic analysis demonstrated that TERO helped strengthen the interactions of the immobilized enzyme with the reactant substrate and promoted formation of an activation complex. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Pressure oscillations and instability of working processes in the combustion chambers of solid rocket motors

    NASA Astrophysics Data System (ADS)

    Emelyanov, V. N.; Teterina, I. V.; Volkov, K. N.; Garkushev, A. U.

    2017-06-01

    Metal particles are widely used in space engineering to increase specific impulse and to supress acoustic instability of intra-champber processes. A numerical analysis of the internal injection-driven turbulent gas-particle flows is performed to improve the current understanding and modeling capabilities of the complex flow characteristics in the combustion chambers of solid rocket motors (SRMs) in presence of forced pressure oscillations. The two-phase flow is simulated with a combined Eulerian-Lagrangian approach. The Reynolds-averaged Navier-Stokes equations and transport equations of k - ε model are solved numerically for the gas. The particulate phase is simulated through a Lagrangian deterministic and stochastic tracking models to provide particle trajectories and particle concentration. The results obtained highlight the crucial significance of the particle dispersion in turbulent flowfield and high potential of statistical methods. Strong coupling between acoustic oscillations, vortical motion, turbulent fluctuations and particle dynamics is observed.

  1. Theoretical Estimation of the Acoustic Energy Generation and Absorption Caused by Jet Oscillation

    NASA Astrophysics Data System (ADS)

    Takahashi, Kin'ya; Iwagami, Sho; Kobayashi, Taizo; Takami, Toshiya

    2016-04-01

    We investigate the energy transfer between the fluid field and acoustic field caused by a jet driven by an acoustic particle velocity field across it, which is the key to understanding the aerodynamic sound generation of flue instruments, such as the recorder, flute, and organ pipe. Howe's energy corollary allows us to estimate the energy transfer between these two fields. For simplicity, we consider the situation such that a free jet is driven by a uniform acoustic particle velocity field across it. We improve the semi-empirical model of the oscillating jet, i.e., exponentially growing jet model, which has been studied in the field of musical acoustics, and introduce a polynomially growing jet model so as to apply Howe's formula to it. It is found that the relative phase between the acoustic oscillation and jet oscillation, which changes with the distance from the flue exit, determines the quantity of the energy transfer between the two fields. The acoustic energy is mainly generated in the downstream area, but it is consumed in the upstream area near the flue exit in driving the jet. This theoretical examination well explains the numerical calculation of Howe's formula for the two-dimensional flue instrument model in our previous work [http://doi.org/10.1088/0169-5983/46/6/061411, Fluid Dyn. Res. 46, 061411 (2014)] as well as the experimental result of Yoshikawa et al. [http://doi.org/10.1016/j.jsv.2012.01.026, J. Sound Vib. 331, 2558 (2012)].

  2. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  3. Forced synchronization and asynchronous quenching in a thermo-acoustic system

    NASA Astrophysics Data System (ADS)

    Mondal, Sirshendu; Pawar, Samadhan A.; Sujith, Raman

    2017-11-01

    Forced synchronization, which has been extensively studied in theory and experiments, occurs through two different mechanisms known as phase locking and asynchronous quenching. The latter indicates the suppression of oscillation amplitude. In most practical combustion systems such as gas turbine engines, the main concern is high amplitude pressure oscillations, known as thermo-acoustic instability. Thermo-acoustic instability is undesirable and needs to be suppressed because of its damaging consequences to an engine. In the present study, a systematic experimental investigation of forced synchronization is performed in a prototypical thermo-acoustic system, a Rijke tube, in its limit cycle operation. Further, we show a qualitatively similar behavior using a reduced order model. In the phase locking region, the simultaneous occurrence of synchronization and resonant amplification leads to high amplitude pressure oscillations. However, a reduction in the amplitude of natural oscillations by about 78% of the unforced amplitude is observed when the forcing frequency is far lower than the natural frequency. This shows the possibility of suppression of the oscillation amplitude through asynchronous quenching in thermo-acoustic systems.

  4. PRSA hydrogen tank thermal acoustic oscillation study

    NASA Technical Reports Server (NTRS)

    Riemer, D. H.

    1979-01-01

    The power reactant storage assembly (PRSA) hydrogen tank test data were reviewed. Two hundred and nineteen data points illustrating the effect of flow rate, temperature ratio and configuration were identified. The test data were reduced to produce the thermal acoustic oscillation parameters. Frequency and amplitude were determined for model correlation. A comparison of PRSA hydrogen tank test data with the analytical models indicated satisfactory agreement for the supply and poor agreement for the full line.

  5. Acoustic near-field characteristics of a conical, premixed flame

    NASA Astrophysics Data System (ADS)

    Lee, Doh-Hyoung; Lieuwen, Tim C.

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  6. Acoustic near-field characteristics of a conical, premixed flame.

    PubMed

    Lee, Doh-Hyoung; Lieuwen, Tim C

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  7. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, George A.; Gemmen, Randall S.

    1998-01-01

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value.

  8. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    NASA Astrophysics Data System (ADS)

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-07-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process.

  9. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    PubMed Central

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-01-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process. PMID:26223474

  10. Acoustic Effects in Classical Nucleation Theory

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Su, C.-H.

    2017-01-01

    The effect of sound wave oscillations on the rate of nucleation in a parent phase can be calculated by expanding the free energy of formation of a nucleus of the second phase in powers of the acoustic pressure. Since the period of sound wave oscillation is much shorter than the time scale for nucleation, the acoustic effect can be calculated as a time average of the free energy of formation of the nucleus. The leading non-zero term in the time average of the free energy is proportional to the square of the acoustic pressure. The Young-Laplace equation for the surface tension of the nucleus can be used to link the time average of the square of the pressure in the parent phase to its time average in the nucleus of the second phase. Due to the surface tension, the pressure in the nuclear phase is higher than the pressure in the parent phase. The effect is to lower the free energy of formation of the nucleus and increase the rate of nucleation.

  11. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, G.A.; Gemmen, R.S.

    1998-09-22

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value. 9 figs.

  12. Oscillating microbubbles for selective particle sorting in acoustic microfluidic devices

    NASA Astrophysics Data System (ADS)

    Rogers, Priscilla; Xu, Lin; Neild, Adrian

    2012-05-01

    In this study, acoustic waves were used to excite a microbubble for selective particle trapping and sorting. Excitation of the bubble at its volume resonance, as necessary to drive strong fluid microstreaming, resulted in the particles being either selectively attracted to the bubble or continuing to follow the local microstreamlines. The operating principle exploited two acoustic phenomena acting on the particle suspension: the drag force arising from the acoustic microstreaming and the secondary Bjerknes force, i.e. the attractive radiation force produced between an oscillating bubble and a non-buoyant particle. It was also found that standing wave fields within the fluid chamber could be used to globally align bubbles and particles for local particle sorting by the bubble.

  13. Quasinormal acoustic oscillations in the Michel flow

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Morales, Manuel D.; Sarbach, Olivier

    2015-05-01

    We study spherical and nonspherical linear acoustic perturbations of the Michel flow, which describes the steady radial accretion of a perfect fluid into a nonrotating black hole. The dynamics of such perturbations are governed by a scalar wave equation on an effective curved background geometry determined by the acoustic metric, which is constructed from the spacetime metric and the particle density and four-velocity of the fluid. For the problem under consideration in this paper the acoustic metric has the same qualitative features as an asymptotically flat, static and spherically symmetric black hole, and thus it represents a natural astrophysical analogue black hole. As for the case of a scalar field propagating on a Schwarzschild background, we show that acoustic perturbations of the Michel flow exhibit quasinormal oscillations. Based on a new numerical method for determining the solutions of the radial mode equation, we compute the associated frequencies and analyze their dependency on the mass of the black hole, the radius of the sonic horizon and the angular momentum number. Our results for the fundamental frequencies are compared to those obtained from an independent numerical Cauchy evolution, finding good agreement between the two approaches. When the radius of the sonic horizon is large compared to the event horizon radius, we find that the quasinormal frequencies scale approximately like the surface gravity associated with the sonic horizon.

  14. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  15. Transverse acoustic forcing of a round hydrodynamically self-excited jet

    NASA Astrophysics Data System (ADS)

    Kushwaha, Abhijit Kumar; Mazur, Marek; Worth, Nicholas; Dawson, James; Li, Larry K. B.

    2017-11-01

    Hydrodynamically self-excited jets can readily synchronize with longitudinal acoustic forcing, but their response to transverse acoustic forcing is less clear. In this experimental study, we apply transverse acoustic forcing to an axisymmetric low-density jet at frequencies around its natural global frequency. We place the jet in a rectangular box containing two loudspeakers, one at each end, producing nominally one-dimensional standing pressure waves. By traversing the jet across this box, we subject it to a range of acoustic modes, from purely longitudinal (streamwise) modes at the pressure anti-node to purely transverse (cross-stream) modes at the pressure node. Using time-resolved Background-Oriented Schlieren (BOS) imaging and hot-wire anemometry, we characterize the jet response for different forcing frequencies, amplitudes and mode shapes, providing new insight into the way transverse acoustic oscillations interact with axisymmetric hydrodynamic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  16. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  17. High frequency pressure oscillator for microcryocoolers

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  18. Vertical vibration and shape oscillation of acoustically levitated water drops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, D. L.; Xie, W. J.; Yan, N.

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  19. Ultrasound acoustic energy for microbubble manipulation

    NASA Astrophysics Data System (ADS)

    Bakhtiari-Nejad, Marjan; Elnahhas, Ahmed; Jung, Sunghwan; Shahab, Shima

    2017-04-01

    Many bio-medical applications entail the problems of spatially manipulating of bubbles by means of acoustic radiation. The examples are ultrasonic noninvasive-targeted drug delivery and therapeutic applications. This paper investigates the nonlinear coupling between radial pulsations, axisymmetric modes of shape oscillations and translational motion of a single spherical gas bubble in a host liquid, when it is subjected to an acoustic pressure wave field. A mathematical model is developed to account for both small and large amplitudes of bubble oscillations. The coupled system dynamics under various conditions is studied. Specifically, oscillating behaviors of a bubble (e.g. the amplitudes and instability of oscillations) undergoing resonance and off-resonance excitation in low- and high- intensity acoustic fields are studied. Instability of the shape modes of a bubble, which is contributing to form the translational instability, known as dancing motion, is analyzed. Dynamic responses of the bubble exposed to low- and high-intensity acoustic excitation are compared in terms of translational motion and surface shape of the bubble. Acoustic streaming effects caused by radial pulsations of the bubble in the surrounding liquid domain are also reported.

  20. Experimental investigation of acoustic self-oscillation influence on decay process for underexpanded supersonic jet in submerged space

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. Yu.; Arefyev, K. Yu.; Ilchenko, M. A.

    2016-07-01

    Intensification of mixing between the gaseous working body ejected through a jet nozzle with ambient medium is an important scientific and technical problem. Effective mixing can increase the total efficiency of power and propulsion apparatuses. The promising approach, although poorly studied, is generation of acoustic self-oscillation inside the jet nozzle: this impact might enhance the decay of a supersonic jet and improve the mixing parameters. The paper presents peculiar properties of acoustic self-excitation in jet nozzle. The paper presents results of experimental study performed for a model injector with a set of plates placed into the flow channel, enabling the excitation of acoustic self-oscillations. The study reveals the regularity of under-expanded supersonic jet decay in submerged space for different flow modes. Experimental data support the efficiency of using the jet nozzle with acoustic self-oscillation in application to the systems of gas fuel supply. Experimental results can be used for designing new power apparatuses for aviation and space industry and for process plants.

  1. Experimental study on inter-particle acoustic forces.

    PubMed

    Garcia-Sabaté, Anna; Castro, Angélica; Hoyos, Mauricio; González-Cinca, Ricard

    2014-03-01

    A method for the experimental measurement of inter-particle forces (secondary Bjerknes force) generated by the action of an acoustic field in a resonator micro-channel is presented. The acoustic radiation force created by an ultrasonic standing wave moves suspended particles towards the pressure nodes and the acoustic pressure induces particle volume oscillations. Once particles are in the levitation plane, transverse and secondary Bjerknes forces become important. Experiments were carried out in a resonator filled with a suspension composed of water and latex particles of different size (5-15 μm) at different concentrations. Ultrasound was generated by means of a 2.5 MHz nominal frequency transducer. For the first time the acoustic force generated by oscillating particles acting on other particles has been measured, and the critical interaction distance in various cases has been determined. Inter-particle forces on the order of 10(-14) N have been measured by using this method.

  2. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  3. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.

    PubMed

    Zhang, Yuning; Du, Xiaoze

    2015-09-01

    Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Theory of acoustic radiation pressure for actual fluids

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.

    1996-12-01

    A body irradiated by a sound field is known to experience a steady force that is called the acoustic radiation pressure. This force plays an important role in many physical phenomena, such as cavitation, sonoluminescence, acoustic levitation, etc. The existing theory of acoustic radiation pressure neglects dissipative effects. The present paper develops a theory that takes these effects into account, both dissipative mechanisms, viscous and thermal, being considered. It is shown that, when they are no longer negligible, the dissipative effects drastically change the radiation pressure. As a result, its magnitude and sign become different from those predicted by the ``classical'' theory neglecting losses.

  5. An experimental and theoretical investigation of a fuel system tuner for the suppression of combustion driven oscillations

    NASA Astrophysics Data System (ADS)

    Scarborough, David E.

    Manufacturers of commercial, power-generating, gas turbine engines continue to develop combustors that produce lower emissions of nitrogen oxides (NO x) in order to meet the environmental standards of governments around the world. Lean, premixed combustion technology is one technique used to reduce NOx emissions in many current power and energy generating systems. However, lean, premixed combustors are susceptible to thermo-acoustic oscillations, which are pressure and heat-release fluctuations that occur because of a coupling between the combustion process and the natural acoustic modes of the system. These pressure oscillations lead to premature failure of system components, resulting in very costly maintenance and downtime. Therefore, a great deal of work has gone into developing methods to prevent or eliminate these combustion instabilities. This dissertation presents the results of a theoretical and experimental investigation of a novel Fuel System Tuner (FST) used to damp detrimental combustion oscillations in a gas turbine combustor by changing the fuel supply system impedance, which controls the amplitude and phase of the fuel flowrate. When the FST is properly tuned, the heat release oscillations resulting from the fuel-air ratio oscillations damp, rather than drive, the combustor acoustic pressure oscillations. A feasibility study was conducted to prove the validity of the basic idea and to develop some basic guidelines for designing the FST. Acoustic models for the subcomponents of the FST were developed, and these models were experimentally verified using a two-microphone impedance tube. Models useful for designing, analyzing, and predicting the performance of the FST were developed and used to demonstrate the effectiveness of the FST. Experimental tests showed that the FST reduced the acoustic pressure amplitude of an unstable, model, gas-turbine combustor over a wide range of operating conditions and combustor configurations. Finally, combustor

  6. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations

    PubMed Central

    Doinikov, Alexander A.; Haac, Jillian F.; Dayton, Paul A.

    2009-01-01

    Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged oscillation power of the radial bubble oscillation. The proposed procedure was verified for free bubbles in the frequency range 1–4 MHz and then applied to lipid-shelled microbubbles insonified with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in comparison with its linear resonance frequency. Analysis of existing shell models reveals that models that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion is drawn that the further development of shell models could be improved by the consideration of nonlinear rheological laws. PMID:18977009

  7. Acoustic waves in gases with strong pressure gradients

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.

  8. Semicircular Canal Pressure Changes During High-intensity Acoustic Stimulation.

    PubMed

    Maxwell, Anne K; Banakis Hartl, Renee M; Greene, Nathaniel T; Benichoux, Victor; Mattingly, Jameson K; Cass, Stephen P; Tollin, Daniel J

    2017-08-01

    Acoustic stimulation generates measurable sound pressure levels in the semicircular canals. High-intensity acoustic stimuli can cause hearing loss and balance disruptions. To examine the propagation of acoustic stimuli to the vestibular end-organs, we simultaneously measured fluid pressure in the cochlea and semicircular canals during both air- and bone-conducted sound presentation. Five full-cephalic human cadaveric heads were prepared bilaterally with a mastoidectomy and extended facial recess. Vestibular pressures were measured within the superior, lateral, and posterior semicircular canals, and referenced to intracochlear pressure within the scala vestibuli with fiber-optic pressure probes. Pressures were measured concurrently with laser Doppler vibrometry measurements of stapes velocity during stimulation with both air- and bone-conduction. Stimuli were pure tones between 100 Hz and 14 kHz presented with custom closed-field loudspeakers for air-conducted sounds and via commercially available bone-anchored device for bone-conducted sounds. Pressures recorded in the superior, lateral, and posterior semicircular canals in response to sound stimulation were equal to or greater in magnitude than those recorded in the scala vestibuli (up to 20 dB higher). The pressure magnitudes varied across canals in a frequency-dependent manner. High sound pressure levels were recorded in the semicircular canals with sound stimulation, suggesting that similar acoustical energy is transmitted to the semicircular canals and the cochlea. Since these intralabyrinthine pressures exceed intracochlear pressure levels, our results suggest that the vestibular end-organs may also be at risk for injury during exposure to high-intensity acoustic stimuli known to cause trauma in the auditory system.

  9. First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background.

    PubMed

    Follin, Brent; Knox, Lloyd; Millea, Marius; Pan, Zhen

    2015-08-28

    The unimpeded relativistic propagation of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the cosmic microwave background temperature power spectrum.

  10. Capturing Pressure Oscillations in Numerical Simulations of Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubba, Sreenivasa Rao; Jupudi, Ravichandra S.; Pasunurthi, Shyam Sundar

    In an earlier publication, the authors compared numerical predictions of the mean cylinder pressure of diesel and dual-fuel combustion, to that of measured pressure data from a medium-speed, large-bore engine. In these earlier comparisons, measured data from a flush-mounted in-cylinder pressure transducer showed notable and repeatable pressure oscillations which were not evident in the mean cylinder pressure predictions from computational fluid dynamics (CFD). In this paper, the authors present a methodology for predicting and reporting the local cylinder pressure consistent with that of a measurement location. Such predictions for large-bore, medium-speed engine operation demonstrate pressure oscillations in accordance with thosemore » measured. The temporal occurrences of notable pressure oscillations were during the start of combustion and around the time of maximum cylinder pressure. With appropriate resolutions in time steps and mesh sizes, the local cell static pressure predicted for the transducer location showed oscillations in both diesel and dual-fuel combustion modes which agreed with those observed in the experimental data. Fast Fourier transform (FFT) analysis on both experimental and calculated pressure traces revealed that the CFD predictions successfully captured both the amplitude and frequency range of the oscillations. Furthermore, resolving propagating pressure waves with the smaller time steps and grid sizes necessary to achieve these results required a significant increase in computer resources.« less

  11. Capturing Pressure Oscillations in Numerical Simulations of Internal Combustion Engines

    DOE PAGES

    Gubba, Sreenivasa Rao; Jupudi, Ravichandra S.; Pasunurthi, Shyam Sundar; ...

    2018-04-09

    In an earlier publication, the authors compared numerical predictions of the mean cylinder pressure of diesel and dual-fuel combustion, to that of measured pressure data from a medium-speed, large-bore engine. In these earlier comparisons, measured data from a flush-mounted in-cylinder pressure transducer showed notable and repeatable pressure oscillations which were not evident in the mean cylinder pressure predictions from computational fluid dynamics (CFD). In this paper, the authors present a methodology for predicting and reporting the local cylinder pressure consistent with that of a measurement location. Such predictions for large-bore, medium-speed engine operation demonstrate pressure oscillations in accordance with thosemore » measured. The temporal occurrences of notable pressure oscillations were during the start of combustion and around the time of maximum cylinder pressure. With appropriate resolutions in time steps and mesh sizes, the local cell static pressure predicted for the transducer location showed oscillations in both diesel and dual-fuel combustion modes which agreed with those observed in the experimental data. Fast Fourier transform (FFT) analysis on both experimental and calculated pressure traces revealed that the CFD predictions successfully captured both the amplitude and frequency range of the oscillations. Furthermore, resolving propagating pressure waves with the smaller time steps and grid sizes necessary to achieve these results required a significant increase in computer resources.« less

  12. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  13. Transient Simulation of Pressure Oscillations in the Fuel Feedline of the Fastrac Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Bullard, Brad

    1998-01-01

    During mainstage testing of the 60,000 lbf thrust Fastrac thrust chamber at MSFC's Test Stand 116 (TS 116), sustained, large amplitude oscillations near 530 Hz were observed in the pressure data. These oscillations were detected both in the RP-1 feedline, downstream of the cavitating venturi, and in the combustion chamber. The driver of the instability is believed to be feedline excitation driven by either periodic cavity collapse at the exit of the cavitating venturi or combustion instability. In covitating venturi, static pressure drops as the flow passes through a constriction resembling a converging-diverging nozzle until the vapor pressure is reached. At the venturi throat, the flow is essentially choked, which is why these devices are typically used for mass flow rate control and disturbance isolation. Typically, a total pressure drop of 15% or more across the venturi is required for cavitation. For much larger pressure differentials, unstable cavities can form and subsequently collapse downstream of the throat. Although the disturbances generated by cavitating venturis is generally considered to be broad-band, this type of phenomena could generate periodic behavior capable of exciting the feedline. An excitation brought about by combustion instability would result from the coupling of a combustion chamber acoustic mode and a feedline resonance frequency. This type of coupling is referred to as "buzz" and is not uncommon for engines in this thrust range.

  14. Study of Pressure Oscillations in Supersonic Parachute

    NASA Astrophysics Data System (ADS)

    Dahal, Nimesh; Fukiba, Katsuyoshi; Mizuta, Kazuki; Maru, Yusuke

    2018-04-01

    Supersonic parachutes are a critical element of planetary mission whose simple structure, light-weight characteristics together with high ratio of aerodynamic drag makes them the most suitable aerodynamic decelerators. The use of parachute in supersonic flow produces complex shock/shock and wake/shock interaction giving rise to dynamic pressure oscillations. The study of supersonic parachute is difficult, because parachute has very flexible structure which makes obtaining experimental pressure data difficult. In this study, a supersonic wind tunnel test using two rigid bodies is done. The wind tunnel test was done at Mach number 3 by varying the distance between the front and rear objects, and the distance of a bundle point which divides suspension lines and a riser. The analysis of Schlieren movies revealed shock wave oscillation which was repetitive and had large pressure variation. The pressure variation differed in each case of change in distance between the front and rear objects, and the change in distance between riser and the rear object. The causes of pressure oscillation are: interaction of wake caused by front object with the shock wave, fundamental harmonic vibration of suspension lines, interference between shock waves, and the boundary layer of suspension lines.

  15. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  16. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  17. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice.

    PubMed

    Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F

    2016-09-01

    We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the

  18. Acoustic Tests of Lorentz Symmetry Using Quartz Oscillators

    DOE PAGES

    Lo, Anthony; Haslinger, Philipp; Mizrachi, Eli; ...

    2016-02-24

    Here we propose and demonstrate a test of Lorentz symmetry based on new, compact, and reliable quartz oscillator technology. Violations of Lorentz invariance in the matter and photon sector of the standard model extension generate anisotropies in particles’ inertial masses and the elastic constants of solids, giving rise to measurable anisotropies in the resonance frequencies of acoustic modes in solids. A first realization of such a “phonon-sector” test of Lorentz symmetry using room-temperature stress-compensated-cut crystals yields 120 h of data at a frequency resolution of 2.4 × 10 -15 and a limit ofmore » $$\\bar{c}$$ $$n\\atop{Q}$$ = (- 1.8 ± 2.2) × 10 -14 GeV on the most weakly constrained neutron-sector c coefficient of the standard model extension. Future experiments with cryogenic oscillators promise significant improvements in accuracy, opening up the potential for improved limits on Lorentz violation in the neutron, proton, electron, and photon sector.« less

  19. Stabilization and Low-Frequency Oscillation of Capillary Bridges with Modulated Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.

    1996-01-01

    In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.

  20. Two-dimensional water acoustic waveguide based on pressure compensation method

    NASA Astrophysics Data System (ADS)

    Zheng, Mingye; Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2018-02-01

    A two-dimensional (2D) waveguide is a basic facility for experiment measurement due to a much more simplified wave field pattern than that in free space. A waveguide for airborne sound is easily achieved with almost any solid plates. However, the design of a 2D water acoustic waveguide is still challenging because of unavailable solids with a sufficient large impedance difference from water. In this work, a new method of constructing a 2D water acoustic waveguide is proposed based on pressure compensation and has been verified by numerical simulation. A prototype of the water acoustic waveguide is fabricated and complemented by an acoustic pressure scanning system; the measured scattered pressure fields by air and aluminum cylinders both agree quite well with numerical simulations. Most acoustic pressure fields within a frequency range 7 kHz-15 kHz can be measured in this waveguide when the required scanning region is smaller than the aluminum plate area (1800 mm × 800 mm).

  1. Parametric resonance in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Shen, C. L.; Xie, W. J.; Wei, B.

    2010-05-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  2. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  3. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  4. Acoustic streaming in simplified liquid rocket engines with transverse mode oscillations

    NASA Astrophysics Data System (ADS)

    Fischbach, Sean R.; Flandro, Gary A.; Majdalani, Joseph

    2010-06-01

    This study considers a simplified model of a liquid rocket engine in which uniform injection is imposed at the faceplate. The corresponding cylindrical chamber has a small length-to-diameter ratio with respect to solid and hybrid rockets. Given their low chamber aspect ratios, liquid thrust engines are known to experience severe tangential and radial oscillation modes more often than longitudinal ones. In order to model this behavior, tangential and radial waves are superimposed onto a basic mean-flow model that consists of a steady, uniform axial velocity throughout the chamber. Using perturbation tools, both potential and viscous flow equations are then linearized in the pressure wave amplitude and solved to the second order. The effects of the headwall Mach number are leveraged as well. While the potential flow analysis does not predict any acoustic streaming effects, the viscous solution carried out to the second order gives rise to steady secondary flow patterns near the headwall. These axisymmetric, steady contributions to the tangential and radial traveling waves are induced by the convective flow motion through interactions with inertial and viscous forces. We find that suppressing either the convective terms or viscosity at the headwall leads to spurious solutions that are free from streaming. In our problem, streaming is initiated at the headwall, within the boundary layer, and then extends throughout the chamber. We find that nonlinear streaming effects of tangential and radial waves act to alter the outer solution inside a cylinder with headwall injection. As a result of streaming, the radial wave velocities are intensified in one-half of the domain and reduced in the opposite half at any instant of time. Similarly, the tangential waves are either enhanced or weakened in two opposing sectors that are at 90° angle to the radial velocity counterparts. The second-order viscous solution that we obtain clearly displays both an oscillating and a steady flow

  5. Coherent control of acoustic vibrations in metal nanoparticles and thin films with sequences of femtosecond pulses: Harmonic-oscillator model

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.

    2002-08-01

    A harmonic oscillator model is used to demonstrate the possibility of coherent control of acoustic vibrations of metal nanoparticles and thin films with sequences of femtosecond laser pulses. When the interval between the pulses in such a sequence is chosen equal to the oscillation period of the expansion mode of a nanoscale system, the relevant acoustic vibrations can be excited in a resonant and selective way. Sequences of femtosecond pulses with picosecond time intervals between the pulses are shown to be ideally suited for a resonant excitation and coherent control of acoustic modes of silver nanoparticles.

  6. A preliminary analysis of low frequency pressure oscillations in hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Jenkins, Rhonald M.

    1994-01-01

    Past research with hybrid rockets has suggested that certain motor operating conditions are conducive to the formation of pressure oscillations, or flow instabilities, within the motor combustion chamber. These combustion-related vibrations or pressure oscillations may be encountered in virtually any type of rocket motor and typically fall into three frequency ranges: low frequency oscillations (0-300 Hz); intermediate frequency oscillations (400-1000 Hz); and high frequency oscillations (greater than 1000 Hz). In general, combustion instability is characterized by organized pressure oscillations occurring at well-defined intervals with pressure peaks that may maintain themselves, grow, or die out. Usually, such peaks exceed +/- 5% of the mean chamber pressure. For hybrid motors, these oscillations have been observed to grow to a limiting amplitude which may be dependent on factors such as fuel characteristics, oxidizer injector characteristics, average chamber pressure, oxidizer mass flux, combustion chamber length, and grain geometry. The approach taken in the present analysis is to develop a modified chamber length, L, instability theory which accounts for the relationship between pressure and oxidizer to fuel concentration ratio in the motor.

  7. Acoustics of the piezo-electric pressure probe

    NASA Technical Reports Server (NTRS)

    Dutt, G. S.

    1974-01-01

    Acoustical properties of a piezoelectric device are reported for measuring the pressure in the plasma flow from an MPD arc. A description and analysis of the acoustical behavior in a piezoelectric probe is presented for impedance matching and damping. The experimental results are presented in a set of oscillographic records.

  8. Acoustic levitation and manipulation for space applications

    NASA Technical Reports Server (NTRS)

    Wang, T. G.

    1979-01-01

    A wide spectrum of experiments to be performed in space in a microgravity environment require levitation and manipulation of liquid or molten samples. A novel acoustic method has been developed at JPL for controlling liquid samples without physical contacts. This method utilizes the static pressure generated by three orthogonal acoustic standing waves excited within an enclosure. Furthermore, this method will allow the sample to be rotated and/or oscillated by modifying the phase angles and/or the amplitude of the acoustic field. This technique has been proven both in our laboratory and in a microgravity environment provided by KC-135 flights. Samples placed within our chamber driven at (1,0,0), (0,1,0), and (0,0,1), modes were indeed levitated, rotated, and oscillated.

  9. Acoustic characteristics of simulated respiratory-induced vocal tremor.

    PubMed

    Lester, Rosemary A; Story, Brad H

    2013-05-01

    The purpose of this study was to investigate the relation of respiratory forced oscillation to the acoustic characteristics of vocal tremor. Acoustical analyses were performed to determine the characteristics of the intensity and fundamental frequency (F0) for speech samples obtained by Farinella, Hixon, Hoit, Story, and Jones (2006) using a respiratory forced oscillation paradigm with 5 healthy adult males to simulate vocal tremor involving respiratory pressure modulation. The analyzed conditions were sustained productions of /a/ with amplitudes of applied pressure of 0, 1, 2, and 4 cmH2O and a rate of 5 Hz. Forced oscillation of the respiratory system produced modulation of the intensity and F0 for all participants. Variability was observed between participants and conditions in the change in intensity and F0 per unit of pressure change, as well as in the mean intensity and F0. However, the extent of modulation of intensity and F0 generally increased as the applied pressure increased, as would be expected. These findings suggest that individuals develop idiosyncratic adaptations to pressure modulations, which are important to understanding aspects of variability in vocal tremor, and highlight the need to assess all components of the speech mechanism that may be directly or indirectly affected by tremor.

  10. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  11. Investigation of micromixing by acoustically oscillated sharp-edges

    PubMed Central

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-01-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel. PMID:27158292

  12. Investigation of micromixing by acoustically oscillated sharp-edges.

    PubMed

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-03-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel.

  13. Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction

    NASA Technical Reports Server (NTRS)

    Lee, Seongkyu; Brentner, Kenneth S.; Farassat, Fereidoun

    2007-01-01

    The scattering of rotor noise is an area that has received little attention over the years, yet the limited work that has been done has shown that both the directivity and intensity of the acoustic field may be significantly modified by the presence of scattering bodies. One of the inputs needed to compute the scattered acoustic field is the acoustic pressure gradient on a scattering surface. Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. These formulations are presented in this paper. The first formulation is derived by taking the gradient of Farassat's retarded-time Formulation 1A. Although this formulation is relatively simple, it requires numerical time differentiation of the acoustic integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. The acoustic pressure gradient predicted by these new formulations is validated through comparison with the acoustic pressure gradient determined by a purely numerical approach for two model rotors. The agreement between analytic formulations and numerical method is excellent for both stationary and moving observers case.

  14. New Insights of High-precision Asteroseismology: Acoustic Radius and χ2-matching Method for Solar-like Oscillator KIC 6225718

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Li, Yan

    2017-10-01

    Asteroseismology is a powerful tool for probing stellar interiors and determining stellar fundamental parameters. In the present work, we adopt the χ2-minimization method but only use the observed high-precision seismic observations (i.e., oscillation frequencies) to constrain theoretical models for analyzing solar-like oscillator KIC 6225718. Finally, we find the acoustic radius τ0 is the only global parameter that can be accurately measured by the χ2-matching method between observed frequencies and theoretical model calculations for a pure p-mode oscillation star. We obtain seconds for KIC 6225718. It leads that the mass and radius of the CMMs are degenerate with each other. In addition, we find that the distribution range of acoustic radius is slightly enlarged by some extreme cases, which posses both a larger mass and a higher (or lower) metal abundance, at the lower acoustic radius end.

  15. Investigation of shock-acoustic-wave interaction in transonic flow

    NASA Astrophysics Data System (ADS)

    Feldhusen-Hoffmann, Antje; Statnikov, Vladimir; Klaas, Michael; Schröder, Wolfgang

    2018-01-01

    The buffet flow field around supercritical airfoils is dominated by self-sustained shock wave oscillations on the suction side of the wing. Theories assume that this unsteadiness is driven by an acoustic feedback loop of disturbances in the flow field downstream of the shock wave whose upstream propagating part is generated by acoustic waves. Therefore, in this study, first variations in the sound pressure level of the airfoil's trailing-edge noise during a buffet cycle, which force the shock wave to move upstream and downstream, are detected, and then, the sensitivity of the shock wave oscillation during buffet to external acoustic forcing is analyzed. Time-resolved standard and tomographic particle-image velocimetry (PIV) measurements are applied to investigate the transonic buffet flow field over a supercritical DRA 2303 airfoil. The freestream Mach number is M_{∞} = 0.73, the angle of attack is α = {3.5}°, and the chord-based Reynolds number is Re_c = 1.9× 10^6. The perturbed Lamb vector field, which describes the major acoustic source term of trailing-edge noise, is determined from the tomographic PIV data. Subsequently, the buffet flow field is disturbed by an artificially generated acoustic field, the acoustic intensity of which is comparable to the Lamb vector that is determined from the PIV data. The results confirm the hypothesis that buffet is driven by an acoustic feedback loop and show the shock wave oscillation to directly respond to external acoustic forcing. That is, the amplitude modulation frequency of the artificial acoustic perturbation determines the shock oscillation.

  16. Shape oscillations of microparticles on an optical microscope stage.

    PubMed

    Zhu, Z M; Apfel, R E

    1985-11-01

    A modulated acoustic radiation pressure technique to produce quadrupole shape oscillations of drops ranging in diameter from 50-220 micron has been used by us. These drops have been suspended by acoustic levitation in a small chamber mounted on a stage of an optical microscope, which allowed easy viewing. The fission of drops and the deformation of sea urchin eggs were also observed.

  17. FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation

    NASA Astrophysics Data System (ADS)

    Švancara, Pavel; Horáček, J.; Hrůza, V.

    The flow induced self-oscillation of the human vocal folds in interaction with acoustic processes in the simplified vocal tract model was explored by three-dimensional (3D) finite element (FE) model. Developed FE model includes vocal folds pretension before phonation, large deformations of the vocal fold tissue, vocal folds contact, fluid-structure interaction, morphing the fluid mesh according the vocal folds motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. Iterative partitioned approach is used for modelling the fluid-structure interaction. Computed results prove that the developed model can be used for simulation of the vocal folds self-oscillation and resulting acoustic waves. The developed model enables to numerically simulate an influence of some pathological changes in the vocal fold tissue on the voice production.

  18. Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, R. J.; Hartwig, J. W.

    2014-01-01

    Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.

  19. Experimental and analytical study of thermal acoustic oscillations. [in the transfer and storage of cryogens

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Dean, W. G.; Karu, Z. S.

    1976-01-01

    The thermal acoustic oscillations (TAO) data base was expanded by running a large number of tubes over a wide range of parameters known to affect the TAO phenomenon. These parameters include tube length, wall thickness, diameter, material, insertion length and length-to-diameter ratio. Emphasis was placed on getting good boiloff data. A large quantity of data was obtained, reduced, correlated and analyzed and is presented. Also presented are comparisons with previous types of correlations. These comparisons show that the boiloff data did not correlate with intensity. The data did correlate in the form used by Rott, that is boiloff versus TAO pressure squared times frequency to the one-half power. However, this latter correlation required a different set of correlation constants, slope and intercept, for each tube tested.

  20. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W.

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom ofmore » the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release

  1. Suppressed Alpha Oscillations Predict Intelligibility of Speech and its Acoustic Details

    PubMed Central

    Weisz, Nathan

    2012-01-01

    Modulations of human alpha oscillations (8–13 Hz) accompany many cognitive processes, but their functional role in auditory perception has proven elusive: Do oscillatory dynamics of alpha reflect acoustic details of the speech signal and are they indicative of comprehension success? Acoustically presented words were degraded in acoustic envelope and spectrum in an orthogonal design, and electroencephalogram responses in the frequency domain were analyzed in 24 participants, who rated word comprehensibility after each trial. First, the alpha power suppression during and after a degraded word depended monotonically on spectral and, to a lesser extent, envelope detail. The magnitude of this alpha suppression exhibited an additional and independent influence on later comprehension ratings. Second, source localization of alpha suppression yielded superior parietal, prefrontal, as well as anterior temporal brain areas. Third, multivariate classification of the time–frequency pattern across participants showed that patterns of late posterior alpha power allowed best for above-chance classification of word intelligibility. Results suggest that both magnitude and topography of late alpha suppression in response to single words can indicate a listener's sensitivity to acoustic features and the ability to comprehend speech under adverse listening conditions. PMID:22100354

  2. Self-sustained oscillations with acoustic feedback in flows over a backward-facing step with a small upstream step

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hiroshi; Tsukamoto, Yuichi; Kato, Chisachi; Iida, Akiyoshi

    2007-10-01

    Self-sustained oscillations with acoustic feedback take place in a flow over a two-dimensional two-step configuration: a small forward-backward facing step, which we hereafter call a bump, and a relatively large backward-facing step (backstep). These oscillations can radiate intense tonal sound and fatigue nearby components of industrial products. We clarify the mechanism of these oscillations by directly solving the compressible Navier-Stokes equations. The results show that vortices are shed from the leading edge of the bump and acoustic waves are radiated when these vortices pass the trailing edge of the backstep. The radiated compression waves shed new vortices by stretching the vortex formed by the flow separation at the leading edge of the bump, thereby forming a feedback loop. We propose a formula based on a detailed investigation of the phase relationship between the vortices and the acoustic waves for predicting the frequencies of the tonal sound. The frequencies predicted by this formula are in good agreement with those measured in the experiments we performed.

  3. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  4. Dynamics of nonspherical microbubble oscillations above instability threshold

    NASA Astrophysics Data System (ADS)

    Guédra, Matthieu; Cleve, Sarah; Mauger, Cyril; Blanc-Benon, Philippe; Inserra, Claude

    2017-12-01

    Time-resolved dynamics of nonspherical oscillations of micrometer-sized bubbles are captured and analyzed using high-speed imaging. The axisymmetry of the bubble shape is ensured with certainty for the first time from the recordings of two synchronous high-speed cameras located at 90∘. The temporal dynamics of finite-amplitude nonspherical oscillations are then analyzed for various acoustic pressures above the instability threshold. The experimental results are compared with recent theories accounting for nonlinearities and mode coupling, highlighting particular effects inherent to these mechanisms (saturation of the instability, triggering of nonparametric shape modes). Finally, the amplitude of the nonspherical oscillations is given as function of the driving pressure both for quadrupolar and octupolar bubbles.

  5. Modulated acoustic radiation pressure and stress-coupling projections

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Thiessen, David B.

    2005-09-01

    Low-frequency deformation can be induced at a single frequency using radiation stress oscillations of double-sideband suppressed-carrier ultrasound [P. L. Marston and R. E. Apfel, J. Acoust. Soc. Am. 67, 27 (1980)]. The transducer voltage is proportional to a product of low- and high-frequency sine waves. To anticipate the shape and magnitude of induced deformations, it is helpful to expand the distribution of the radiation stress on the object to be deformed as a series of projections [P. L. Marston, J. Acoust. Soc. Am. 67, 15 (1980)]. Stress projections are also useful for unmodulated waves: the radiation force is an example. In addition to spherical and nearly spherical objects, recent experiments and calculations have concerned cylindrical objects [S. F. Morse, D. B. Thiessen, and P. L. Marston, Phys. Fluids 8, 3 (1996); W. Wei, D. B. Thiessen, and P. L. Marston, J. Acoust. Soc. Am. 116, 202 (2004)]. In standing waves the following projections are nonvanishing in the low acoustic frequency limit for appropriately situated dense objects: radial projection [M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston, Phys. Rev. Lett. 86, 2293 (2001)] and quadrupole projection [P. L. Marston et al., J. Acoust. Soc. Am. 69, 1499 (1981)].

  6. Versatile resonance-tracking circuit for acoustic levitation experiments.

    PubMed

    Baxter, K; Apfel, R E; Marston, P L

    1978-02-01

    Objects can be levitated by radiation pressure forces in an acoustic standing wave. In many circumstances it is important that the standing wave frequency remain locked on an acoustic resonance despite small changes in the resonance frequency. A self-locking oscillator circuit is described which tracks the resonance frequency by sensing the magnitude of the transducer current. The tracking principle could be applied to other resonant systems.

  7. Program for the feasibility of developing a high pressure acoustic levitator

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.

    1988-01-01

    This is the final report for the program for the feasibility of developing a high-pressure acoustic levitator (HPAL). It includes work performed during the period from February 15, 1987 to October 26, 1987. The program was conducted for NASA under contract number NAS3-25115. The HPAL would be used for containerless processing of materials in the 1-g Earth environment. Results show that the use of increased gas pressure produces higher sound pressure levels. The harmonics produced by the acoustic source are also reduced. This provides an improvement in the capabilities of acoustic levitation in 1-g. The reported processing capabilities are directly limited by the design of the Medium Pressure Acoustic Levitator used for this study. Data show that sufficient acoustic intensities can be obtained to levitate and process a specimen of density 5 g/cu cm at 1500 C. However, it is recommended that a working engineering model of the HPAL be developed. The model would be used to establish the maximum operating parameters of furnace temperature and sample density.

  8. Pressure potential and stability analysis in an acoustical noncontact transportation

    NASA Astrophysics Data System (ADS)

    Li, J.; Liu, C. J.; Zhang, W. J.

    2017-01-01

    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  9. Preliminary investigation of acoustic oscillations in an H2-O2 fired Hall generator

    NASA Technical Reports Server (NTRS)

    Phillips, B.

    1981-01-01

    Burner pressure oscillations and interelectrode voltage oscillations measured in an open-cycle supersonic flow Hall generator are presented. The ionized gas for the channel was supplied by seeding the approximately 1 lb/sec of hydrogen-oxygen combustion products with cesium. Since both the burner and the channel were located within magnetic fields exceeding 4 Tesla during operation, an infinite probe pressure measurement technique was used to measure burner pressure oscillations. Calibration of the burner pressure transducer using a resonance tube technique is presented. Evidence is presented for the existence of the first longitudinal mode of oscillations (5000 Hz) within the burner. Interelectrode voltage oscillations were simultaneously measured at two separate axial stations. The magnitude change and the phase shift between the two signals was interpreted as a decaying magnetoacoustic wave driven by the burner that propagates at local gas plus sonic velocities. The amplitude of the electrical voltage oscillations at the start of the power producing region of the channel varied with the magnetic field. This variation is compared with the results of a simple perturbation analysis. Arguments are presented for using an unsteady model for analyzing wave processes in channels.

  10. Evaluation of Start Transient Oscillations with the J-2X Engine Gas Generator Assembly

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Morgan, C. J.; Casiano, M. J.

    2015-01-01

    During development of the gas generator for the liquid oxygen/liquid hydrogen propellant J-2X rocket engine, distinctive and oftentimes high-amplitude pressure oscillations and hardware vibrations occurred during the start transient of nearly every workhorse gas generator assembly test, as well as during many tests of engine system hardware. These oscillations appeared whether the steady-state conditions exhibited stable behavior or not. They occurred similarly with three different injector types, and with every combustion chamber configuration tested, including chamber lengths ranging over a 5:1 range, several different nozzle types, and with or without a side branch line simulating a turbine spin start gas supply line. Generally, two sets of oscillations occurred, one earlier in the start transient and at higher frequencies, and the other almost immediately following and at lower frequencies. Multiple dynamic pressure measurements in the workhorse combustion chambers indicated that the oscillations were associated with longitudinal acoustic modes of the combustion chambers, with the earlier and higher frequency oscillation usually related to the second longitudinal acoustic mode and the later and lower frequency oscillation usually related to the first longitudinal acoustic mode. Given that several early development gas generator assemblies exhibited unstable behavior at frequencies near the first longitudinal acoustic modes of longer combustion chambers, the start transient oscillations are presumed to provide additional insight into the nature of the combustion instability mechanisms. Aspects of the steadystate oscillations and combustion instabilities from development and engine system test programs have been reported extensively in the three previous JANNAF Liquid Propulsion Subcommittee meetings (see references below). This paper describes the hardware configurations, start transient sequence operations, and transient and dynamic test data during the start

  11. Effects of thermoacoustic oscillations on spray combustion dynamics with implications for lean direct injection systems

    NASA Astrophysics Data System (ADS)

    Chishty, Wajid Ali

    Thermoacoustic instabilities in modern high-performance, low-emission gas turbine engines are often observable as large amplitude pressure oscillations and can result in serious performance and structural degradations. These acoustic oscillations can cause oscillations in combustor through-flows and given the right phase conditions, can also drive unsteady heat release. To curb the potential harms caused by the existence of thermoacoustic instabilities, recent efforts have focused on the active suppression of these instabilities. Intuitively, development of effective active combustion control methodologies is strongly dependent on the knowledge of the onset and sustenance of thermoacoustic instabilities. Specially, non-premixed spray combustion environment pose additional challenges due to the inherent unstable dynamics of sprays. The understanding of the manner in which the combustor acoustics affect the spray characteristics, which in turn result in heat release oscillation, is therefore, of paramount importance. The experimental investigations and the modeling studies conducted towards achieving this knowledge have been presented in this dissertation. Experimental efforts comprise both reacting and non-reacting flow studies. Reacting flow experiments were conducted on a overall lean direct injection, swirl-stabilized combustor rig. The investigations spanned combustor characterization and stability mapping over the operating regime. The onset of thermoacoustic instability and the transition of the combustor to two unstable regimes were investigated via phase-locked chemiluminescence imaging and measurement and phase-locked acoustic characterization. It was found that the onset of the thermoacoustic instability is a function of the energy gain of the system, while the sustenance of instability is due to the in-phase relationship between combustor acoustics and unsteady heat release driven by acoustic oscillations. The presence of non-linearities in the system

  12. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  13. An experimental investigation of flow-induced oscillations of the Bruel and Kjaer in-flow microphone

    NASA Technical Reports Server (NTRS)

    Fields, Richard S., Jr.

    1995-01-01

    One source contributing to wind tunnel background noise is microphone self-noise. An experiment was conducted to investigate the flow-induced acoustic oscillations of Bruel & Kjaer (B&K) in-flow microphones. The results strongly suggest the B&K microphone cavity behaves more like an open cavity. Their cavity acoustic oscillations are likely caused by strong interactions between the cavity shear layer and the cavity trailing edge. But the results also suggest that cavity shear layer oscillations could be coupled with cavity acoustic resonance to generate tones. Detailed flow velocity measurements over the cavity screen have shown inflection points in the mean velocity profiles and high disturbance and spectral intensities in the vicinity of the cavity trailing edge. These results are the evidence for strong interactions between cavity shear layer oscillations and the cavity trailing edge. They also suggest that beside acoustic signals, the microphone inside the cavity has likely recorded hydrodynamic pressure oscillations, too. The results also suggest that the forebody shape does not have a direct effect on cavity oscillations. For the FITE (Flow Induced Tone Eliminator) microphone, it is probably the forebody length and the resulting boundary layer turbulence that have made it work. Turbulence might have thickened the boundary layer at the separation point, weakened the shear layer vortices, or lifted them to miss impinging on the cavity trailing edge. In addition, the study shows that the cavity screen can modulate the oscillation frequency but not the cavity acoustic oscillation mechanisms.

  14. A hybrid electromagnetic-acoustic levitator for the containerless processing of undercooled melts

    NASA Technical Reports Server (NTRS)

    Hmelo, Anthony B.; Banerjee, Sharbari; Wang, Taylor G.

    1992-01-01

    The hybrid, acoustic-EM levitator discussed provides a small lifting force independently of its EM component by exciting an acoustic resonance that serves as a pressure node at the position of the EM-levitated specimen. The system also stabilizes and damps chaotic oscillations during specimen positioning, and can excite forced oscillations of levitated molten metals for drop-physics and thermophysical property measurements. Attention is given to the character and function of the atmosphere in the levitator. Noncontact temperature measurement is via single-color optical pyrometer.

  15. Effect of acoustic radiation on the stability of spherical bubble oscillations

    NASA Astrophysics Data System (ADS)

    Gumerov, Nail A.

    1998-07-01

    A recent analysis of the stability of spherical bubble oscillations shows that the high order shape modes are parametrically unstable with respect to small but finite perturbations [Z. C. Feng and L. G. Leal, J. Fluid Mech. 266, 209 (1994)]. Using a heuristic approach it is shown here that the acoustic radiation due to the liquid compressibility plays an important role in stabilization of the high frequency modes and overall stability of the bubble spherical shape.

  16. An experimental evaluation of the application of the Kirchhoff formulation for sound radiation from an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Brooks, T. F.

    1977-01-01

    The Kirchhoff integral formulation is evaluated for its effectiveness in quantitatively predicting the sound radiated from an oscillating airfoil whose chord length is comparable with the acoustic wavelength. A rigid airfoil section was oscillated at samll amplitude in a medium at rest to produce the sound field. Simultaneous amplitude and phase measurements were made of surface pressure and surface velocity distributions and the acoustic free field. Measured surface pressure and motion are used in applying the theory, and airfoil thickness and contour are taken into account. The result was that the theory overpredicted the sound pressure level by 2 to 5, depending on direction. Differences are also noted in the sound field phase behavior.

  17. Acoustic modes in fluid networks

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.; Clark, Robert W., Jr.; Doiron, Harold H.

    1992-01-01

    Pressure and flow rate eigenvalue problems for one-dimensional flow of a fluid in a network of pipes are derived from the familiar transmission line equations. These equations are linearized by assuming small velocity and pressure oscillations about mean flow conditions. It is shown that the flow rate eigenvalues are the same as the pressure eigenvalues and the relationship between line pressure modes and flow rate modes is established. A volume at the end of each branch is employed which allows any combination of boundary conditions, from open to closed, to be used. The Jacobi iterative method is used to compute undamped natural frequencies and associated pressure/flow modes. Several numerical examples are presented which include acoustic modes for the Helium Supply System of the Space Shuttle Orbiter Main Propulsion System. It should be noted that the method presented herein can be applied to any one-dimensional acoustic system involving an arbitrary number of branches.

  18. Tongue-Palate Contact Pressure, Oral Air Pressure, and Acoustics of Clear Speech

    ERIC Educational Resources Information Center

    Searl, Jeff; Evitts, Paul M.

    2013-01-01

    Purpose: The authors compared articulatory contact pressure (ACP), oral air pressure (Po), and speech acoustics for conversational versus clear speech. They also assessed the relationship of these measures to listener perception. Method: Twelve adults with normal speech produced monosyllables in a phrase using conversational and clear speech.…

  19. Vibration of a hydrostatic gas bearing due to supply pressure oscillations

    NASA Technical Reports Server (NTRS)

    Branch, H. D.; Watkins, C. B.; Eronini, I. E.

    1984-01-01

    The vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating supply pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and the sleeve is solved numerically together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The results presented include Bode plots of bearing oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency. The results are compared with the results of an earlier study involving the response of a similar bearing to oscillating exhaust pressure.

  20. Experimental determination of the dynamics of an acoustically levitated sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, Nicolás, E-mail: nico@fisica.edu.uy; Andrade, Marco A. B.; Canetti, Rafael

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents amore » damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.« less

  1. Experimental determination of the dynamics of an acoustically levitated sphere

    NASA Astrophysics Data System (ADS)

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-01

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  2. Nonlinear oscillations of gas in an open tube near the resonance frequency in the shock-free mode

    NASA Astrophysics Data System (ADS)

    Tkachenko, L. A.; Sergienko, M. V.

    2014-11-01

    The forced oscillations of gas in an open tube, excited by harmonical oscillations of piston in the shock-free mode were investigated near the first first eigenfrequencies. An expression for the pressure oscillations of gas was obtained for the tube with unrounded end without flange. The amplitude impact of piston displacement on the oscillations of pressure and velocity of the secondary flow of gas was investigated. The comparison of theoretical calculations with experimental data was executed. The effect of secondary flow on the particle drift along the tube axis with acoustic oscillations of gas was shown.

  3. Surface acoustic wave oxygen pressure sensor

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  4. Considerations for acoustic emission monitoring of spherical Kevlar/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.; Patterson, R. G.

    1977-01-01

    We are continuing to research the applications of acoustic emission testing for predicting burst pressure of filament-wound Kevlar 49/epoxy pressure vessels. This study has focused on three specific areas. The first area involves development of an experimental technique and the proper instrumentation to measure the energy given off by the acoustic emission transducer per acoustic emission burst. The second area concerns the design of a test fixture in which to mount the composite vessel so that the acoustic emission transducers are held against the outer surface of the composite. Included in this study area is the calibration of the entire test setup including couplant, transducer, electronics, and the instrument measuring the energy per burst. In the third and final area of this study, we consider the number, location, and sensitivity of the acoustic emission transducers used for proof testing composite pressure vessels.

  5. Acoustic pressure wound therapy to facilitate granulation tissue in sacral pressure ulcers in patients with compromised mobility: a case series.

    PubMed

    Schmuckler, Jo

    2008-08-01

    Electrical stimulation and other modalities are recommended for treatment of pressure ulcers in spinal cord injury patients but their use may be limited by clinical contraindications such as necrosis and infection. Acoustic pressure wound therapy can be used to address infection and has no known contraindications related to wound status. A retrospective nonconsecutive study was conducted involving five inpatients with sacral pressure ulcers and compromised mobility (spinal cord injury, ventilator/mobility dependency, or persistent vegetative state) treated with acoustic pressure wound therapy three times per week, 4 to 6 minutes per session, for 5 weeks to 5.5 months. Acoustic pressure wound therapy was administered until necrotic tissue was removed, granulation was complete, drainage resolved to moderate levels, and wound size was compatible with indications for high-voltage electrical stimulation. Within 1 to 4 weeks of starting acoustic pressure wound therapy, four out of five wounds with substantial yellow slough or eschar demonstrated 100% granulation tissue and wound area and volume decreased 71% to 97% and 75% to 99%, respectively. Subsequent treatments included electrical stimulation alone (three patients) or in conjunction with negative pressure wound therapy (one patient), and silver foam (one patient). Acoustic pressure wound therapy was found to be an effective option in preparing wounds for subsequent therapy.

  6. Acoustic emission testing of 12-nickel maraging steel pressure vessels

    NASA Technical Reports Server (NTRS)

    Dunegan, H. L.

    1973-01-01

    Acoustic emission data were obtained from three point bend fracture toughness specimens of 12-nickel maraging steel, and two pressure vessels of the same material. One of the pressure vessels contained a prefabricated flaw which was extended and sharpened by fatigue cycling. It is shown that the flawed vessel had similar characteristics to the fracture specimens, thereby allowing estimates to be made of its nearness to failure during a proof test. Both the flawed and unflawed pressure vessel survived the proof pressure and 5 cycles to the working pressure, but it was apparent from the acoustic emission response during the proof cycle and the 5 cycles to the working pressure that the flawed vessel was very near failure. The flawed vessel did not survive a second cycle to the proof pressure before failure due to flaw extension through the wall (causing a leak).

  7. Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing

    PubMed Central

    Doelling, Keith; Arnal, Luc; Ghitza, Oded; Poeppel, David

    2013-01-01

    A growing body of research suggests that intrinsic neuronal slow (< 10 Hz) oscillations in auditory cortex appear to track incoming speech and other spectro-temporally complex auditory signals. Within this framework, several recent studies have identified critical-band temporal envelopes as the specific acoustic feature being reflected by the phase of these oscillations. However, how this alignment between speech acoustics and neural oscillations might underpin intelligibility is unclear. Here we test the hypothesis that the ‘sharpness’ of temporal fluctuations in the critical band envelope acts as a temporal cue to speech syllabic rate, driving delta-theta rhythms to track the stimulus and facilitate intelligibility. We interpret our findings as evidence that sharp events in the stimulus cause cortical rhythms to re-align and parse the stimulus into syllable-sized chunks for further decoding. Using magnetoencephalographic recordings, we show that by removing temporal fluctuations that occur at the syllabic rate, envelope-tracking activity is reduced. By artificially reinstating these temporal fluctuations, envelope-tracking activity is regained. These changes in tracking correlate with intelligibility of the stimulus. Together, the results suggest that the sharpness of fluctuations in the stimulus, as reflected in the cochlear output, drive oscillatory activity to track and entrain to the stimulus, at its syllabic rate. This process likely facilitates parsing of the stimulus into meaningful chunks appropriate for subsequent decoding, enhancing perception and intelligibility. PMID:23791839

  8. Experimental investigation of a reacting transverse jet in a high pressure oscillating vitiated crossflow

    NASA Astrophysics Data System (ADS)

    Fugger, Christopher A.

    Staged combustion is one design approach in a gas turbine engine to reduce pollutant emission levels. In axially staged combustion, portions of the air and fuel are injected downstream of a lean premixed low NOx primary combustion zone. The gas residence time at elevated temperatures is decreased resulting in lower thermal NOx, and the reduced oxygen and high temperature vitiated primary zone flow further help to reduce pollutant emissions and quickly complete combustion. One implementation of axially staged combustion is transverse fuel jet injection. An important consideration for staged combustion systems, though, is how the primary and secondary combustion zones can couple through the acoustic resonances of the chamber. These couplings can lead to additional source terms that pump energy into the resonant acoustic field and help sustain the high-amplitude combustor pressure oscillations. An understanding of these couplings is important so that it may be possible to design a secondary combustion system that provides inherent damping to the combustor system. To systematically characterize the coupling of a reacting jet in unsteady crossflow in detail, the effects of an an unsteady pressure flowfield and an unsteady velocity flowfield are separately investigated. An optically accessible resonant combustion chamber was designed and built as part of this work to generate a standing wave unsteady vitiated crossflow at a chamber pressure of 0.9 MPa. The location of transverse jet injection corresponds to one of two locations, where one location is the pressure node and the other location the pressure anti-node of the resonant chamber acoustic mode. The injection location is optically accessible, and the dynamic interactions between the transverse jet flow and the 1st and 2nd axial combustor modes are measured using 10 kHz OH-PLIF and 2D PIV. This document analyzes five test cases: two non-reacting jets and three reacting jets. All cases correspond to jet injection

  9. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?

    PubMed

    Harvey, Brian C; Parameswaran, Harikrishnan; Lutchen, Kenneth R

    2015-07-01

    Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction. Copyright © 2015 the American Physiological Society.

  10. Charged drop dynamics experiment using an electrostatic-acoustic hybrid system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Chung, S. K.; Trinh, E. H.; Elleman, D. D.

    1987-01-01

    The design and the performance of an electrostatic-acoustic hybrid system and its application to a charge drop rotation experiment are presented. This system can levitate a charged drop electrostatically and induce drop rotation or oscillation by imposing an acoustic torque or an oscillating acoustic pressure. Using this system, the equilibrium shapes and stability of a rotating charged drop were experimentally investigated. A 3 mm size water drop was rotated as a rigid body and its gyrostatic equilibrium shapes were observed. Families of axisymmetric shapes, two-lobed shapes, and eventual fissioning have been observed. With the assumption of 'effective surface tension' in which the surface charge simply modified the surface tension of neutral liquid, the results agree exceptionally well with the Brown and Scriven's (1980) prediction for uncharged drops.

  11. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    PubMed

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  12. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    NASA Technical Reports Server (NTRS)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  13. Effects of acoustic wave resonance oscillation on immobilized enzyme

    NASA Astrophysics Data System (ADS)

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-03-01

    In aiming at developing a new method to artificially activate enzyme catalysts immobilized on surface, the effects of resonance oscillation of bulk acoustic waves were studied. Glucose oxidase (GOD) was immobilized by a covalent coupling method on a ferroelectric lead zirconate titanate (PZT) device that was able to generate thickness-extensional resonance oscillation (TERO). Glucose oxidation by the GOD enzyme was studied in a microreactor. The generation of TERO immediately increased the catalytic activity of immobilized GOD by a factor of 2-3. With turn-off of TERO, no significant activity decrease occurred, and 80-90% of the enhanced activity was maintained while the reaction proceeded. The almost complete reversion of the activity to the original low level before TERO generation was observed when the immobilized GOD was exposed to a glucose substrate-free solution. These results indicated that the presence of glucose substrate was essential for TERO-induced GOD activation and preservation of the increased activity level. The influences of reaction temperature, glucose concentration, pH, and rf electric power on the TERO activation showed that TERO strengthened the interactions of the immobilized enzyme with glucose substrate and hence promoted the formation of an activation complex.

  14. Negative pressure wound therapy combined with acoustic pressure wound therapy for infected post surgery wounds: a case series.

    PubMed

    Howell-Taylor, Melania; Hall, Macy G; Brownlee Iii, William J; Taylor, Mary

    2008-09-01

    Acute infection of surgical incision sites often requires specialized wound care in preparation for surgical closure. Optimal therapy for preparing such wounds for a secondary closure procedure remains uncertain. The authors report wound outcomes after administering acoustic pressure wound therapy in conjunction with negative pressure wound therapy with reticulated open-cell foam dressing changes to assist with bacteria removal from open, infected surgical-incision sites in preparation for secondary surgical closure in three patients. Before incorporating acoustic pressure wound therapy at the authors' facility, the average negative pressure wound therapy with reticulated open-cell foam dressing course prior to secondary surgical closure was 30 days; with its addition, two of three patients underwent successful surgical closure with no postoperative complications after 21 and 14 days, respectively; one patient succumbed to nonwound-related complications before wound closure. Larger, prospective studies are needed to evaluate combining negative pressure wound therapy with reticulated open-cell foam dressing and acoustic pressure wound therapy for infected, acute post surgery wounds.

  15. Acoustic pressure measurement of pulsed ultrasound using acousto-optic diffraction

    NASA Astrophysics Data System (ADS)

    Jia, Lecheng; Chen, Shili; Xue, Bin; Wu, Hanzhong; Zhang, Kai; Yang, Xiaoxia; Zeng, Zhoumo

    2018-01-01

    Compared with continuous ultrasound wave, pulsed ultrasound has been widely used in ultrasound imaging. The aim of this work is to show the applicability of acousto-optic diffraction on pulsed ultrasound transducer. In this paper, acoustic pressure of two ultrasound transducers is measured based on Raman-Nath diffraction. The frequencies of transducers are 5MHz and 10MHz. The pulse-echo method and simulation data are used to evaluate the results. The results show that the proposed method is capable to measure the absolute sound pressure. We get a sectional view of acoustic pressure using a displacement platform as an auxiliary. Compared with the traditional sound pressure measurement methods, the proposed method is non-invasive with high sensitivity and spatial resolution.

  16. Phenomena of oscillations in atmospheric pressure direct current glow discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fu-cheng; Yan, Wen; Wang, De-zhen

    2013-12-15

    Self-sustained oscillations in a dc glow discharge with a semiconductor layer at atmospheric pressure were investigated by means of a one-dimensional fluid model. It is found that the dc glow discharge initially becomes unstable in the subnormal glow region and gives rise to oscillations of plasma parameters. A variety of oscillations with one or more frequencies have been observed under different conditions. The discharge oscillates between the glow discharge mode and the Townsend discharge mode in the oscillations with large amplitude while operates in the subnormal glow discharge mode all the while in the oscillations with small amplitude. Fourier Transformmore » spectra of oscillations reveal the transition mechanism between different oscillations. The effects of semiconductor conductivity on the oscillation frequency of the dominant mode, gas voltage, as well as the discharge current have also been analyzed.« less

  17. An approach for estimating acoustic power in a pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao; Qiu, Limin; Duan, Chaoxiang; You, Xiaokuan; Zhi, Xiaoqin

    2017-10-01

    Acoustic power at the cold end of regenerator is the measure of gross cooling capacity for a pulse tube cryocooler (PTC), which cannot be measured directly. Conventionally, the acoustic power can only be derived from the measurement of velocity, pressure and their phase angle, which is still a challenge for an oscillating flow at cryogenic temperatures. A new method is proposed for estimating the acoustic power, which takes use of the easily measurable parameters, such as the pressure and temperature, instead of the velocity and phase angle between the pressure and velocity at cryogenic temperatures. The ratio of acoustic powers at the both ends of isothermal components, like regenerator, heat exchangers, can be conveniently evaluated by using the ratio of pressure amplitudes and the local temperatures. The ratio of acoustic powers at the both ends of adiabatic components, like transfer line and pulse tube, is obtained by using the ratio of pressure amplitudes. Accuracy of the approach for evaluating the acoustic power for the regenerator is analyzed by comparing the results with those from REGEN 3.3 and references. For the cold end temperature range of 40-80 K, the deviation is less than 5% if the phase angle at the cold end of regenerator is around -30°. The simple method benefits estimating the acoustic power and optimizing the PTC performance without interfering the cryogenic flow field.

  18. Measuring the speed of light with baryon acoustic oscillations.

    PubMed

    Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth

    2015-03-13

    In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.

  19. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  20. Baryon Acoustic Oscillations reconstruction with pixels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obuljen, Andrej; Villaescusa-Navarro, Francisco; Castorina, Emanuele

    2017-09-01

    Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present and analyse a reconstruction method that consists of displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that this method is equivalent to the standard reconstruction technique in the limit where the number of pixelsmore » becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate this method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that this method is able to decrease the uncertainty in the BAO peak position by 30-50% over the typical angular resolution scales of 21 cm intensity mapping experiments.« less

  1. One-dimensional pressure transfer models for acoustic-electric transmission channels

    NASA Astrophysics Data System (ADS)

    Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.

    2015-09-01

    A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.

  2. Deformation of biological cells in the acoustic field of an oscillating bubble.

    PubMed

    Zinin, Pavel V; Allen, John S

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin, Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell's oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell's shell deforms due to a change in the shell area this oscillation depends on the surface area modulus K{A} , (c) the relative change in the area has a maximum at frequency f{K} approximately 1/2pi square root[K{A}(rhoa;{3})] , where a is the cell's radius and rho is its density. It was predicted that deformation of the cell wall at the frequency f{K} is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1). For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency f{K} however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

  3. Deformation of biological cells in the acoustic field of an oscillating bubble

    PubMed Central

    Zinin, Pavel V.; Allen, John S.

    2009-01-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin et al., Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA, (c) the relative change in the area has a maximum at frequency fK∼12πKA/(ρa3), where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E. coli in which the quality factor of natural vibrations is less than 1 (Q < 1). For bacteria with high value quality factors (Q > 1), the area deformation has a strong peak near a resonance frequency fK; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  4. Deformation of biological cells in the acoustic field of an oscillating bubble

    NASA Astrophysics Data System (ADS)

    Zinin, Pavel V.; Allen, John S., III

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin , Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA , (c) the relative change in the area has a maximum at frequency fK˜(1)/(2π)KA/(ρa3) , where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1) . For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency fK ; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

  5. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  6. Baryon acoustic oscillations in 2D. II. Redshift-space halo clustering in N-body simulations

    NASA Astrophysics Data System (ADS)

    Nishimichi, Takahiro; Taruya, Atsushi

    2011-08-01

    We measure the halo power spectrum in redshift space from cosmological N-body simulations, and test the analytical models of redshift distortions particularly focusing on the scales of baryon acoustic oscillations. Remarkably, the measured halo power spectrum in redshift space exhibits a large-scale enhancement in amplitude relative to the real-space clustering, and the effect becomes significant for the massive or highly biased halo samples. These findings cannot be simply explained by the so-called streaming model frequently used in the literature. By contrast, a physically motivated perturbation theory model developed in the previous paper reproduces the halo power spectrum very well, and the model combining a simple linear scale-dependent bias can accurately characterize the clustering anisotropies of halos in two dimensions, i.e., line-of-sight and its perpendicular directions. The results highlight the significance of nonlinear coupling between density and velocity fields associated with two competing effects of redshift distortions, i.e., Kaiser and Finger-of-God effects, and a proper account of this effect would be important in accurately characterizing the baryon acoustic oscillations in two dimensions.

  7. Frequency hopping due to acousto-electric interaction in ZnO based surface acoustic wave oscillator

    NASA Astrophysics Data System (ADS)

    Dasgupta, Daipayan; Sreenivas, K.

    2011-08-01

    A 36 MHz surface acoustic wave delay line based oscillator has been used to study the effect of acousto-electric interaction due to photo generated charge carriers in rf sputtered ZnO film under UV illumination (λ = 365 nm, 20-100 μW/cm2). Design aspects for developing a delay line based SAW oscillator are specified. The observed linear downshift in frequency (2.2 to 19.0 kHz) with varying UV intensity (20-100 μW/cm2) is related to the fractional velocity change due to acousto-electric interaction. UV illumination level of 100 μW/cm2 leads to a characteristic frequency hopping behavior arising due to a change in the oscillation criteria, and is attributed to the complex interplay between the increased attenuation and velocity shift.

  8. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  9. A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    The equations of momentum annd continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in Earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.

  10. A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    The equations of momentum and continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.

  11. Investigations of High Pressure Acoustic Waves in Resonators with Seal-Like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh

    2004-01-01

    1) Standing waves with maximum pressures of 188 kPa have been produced in resonators containing ambient pressure air; 2) Addition of structures inside the resonator shifts the fundamental frequency and decreases the amplitude of the generated pressure waves; 3) Addition of holes to the resonator does reduce the magnitude of the acoustic waves produced, but their addition does not prohibit the generation of large magnitude non-linear standing waves; 4) The feasibility of reducing leakage using non-linear acoustics has been confirmed.

  12. Effect of standing transverse acoustic oscillations on fuel-oxidant mixing in cylindrical combustion chambers

    NASA Technical Reports Server (NTRS)

    Mickelsen, William R

    1957-01-01

    Vapor fuel-oxidant mixing is analyzed for standing transverse acoustic fields simulating those existing in screeching or screaming combustors. The additional mixing due to the acoustic field is shown to be a function of sound pressure and frequency, stream velocity, and turbulence. The effects of these parameters are shown graphically for a realistic range of combustor conditions. The fuel-oxidant ratio at various combustor stations is shown to have a cyclic fluctuation which is in phase with the pressure fluctuations. Possible mechanisms contributing to screech and scream are discussed.

  13. Numerical calculations of velocity and pressure distribution around oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.; Kobiske, M.

    1974-01-01

    An analytical procedure based on the Navier-Stokes equations was developed for analyzing and representing properties of unsteady viscous flow around oscillating obstacles. A variational formulation of the vorticity transport equation was discretized in finite element form and integrated numerically. At each time step of the numerical integration, the velocity field around the obstacle was determined for the instantaneous vorticity distribution from the finite element solution of Poisson's equation. The time-dependent boundary conditions around the oscillating obstacle were introduced as external constraints, using the Lagrangian Multiplier Technique, at each time step of the numerical integration. The procedure was then applied for determining pressures around obstacles oscillating in unsteady flow. The obtained results for a cylinder and an airfoil were illustrated in the form of streamlines and vorticity and pressure distributions.

  14. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic Baryon Acoustic Oscillations measurements in Fourier-space with optimal redshift weights

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Zhao, Gong-Bo; Wang, Yuting; Percival, Will J.; Ruggeri, Rossana; Zhu, Fangzhou; Tojeiro, Rita; Myers, Adam D.; Chuang, Chia-Hsun; Baumgarten, Falk; Zhao, Cheng; Gil-Marín, Héctor; Ross, Ashley J.; Burtin, Etienne; Zarrouk, Pauline; Bautista, Julian; Brinkmann, Jonathan; Dawson, Kyle; Brownstein, Joel R.; de la Macorra, Axel; Schneider, Donald P.; Shafieloo, Arman

    2018-06-01

    We present a measurement of the anisotropic and isotropic Baryon Acoustic Oscillations (BAO) from the extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample with optimal redshift weights. Applying the redshift weights improves the constraint on the BAO dilation parameter α(zeff) by 17 per cent. We reconstruct the evolution history of the BAO distance indicators in the redshift range of 0.8 < z < 2.2. This paper is part of a set that analyses the eBOSS DR14 quasar sample.

  15. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    PubMed

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  16. Free-Space Oscillating Pressures Near the Tips of Rotating Propellers

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H; Regier, Arthur A

    1950-01-01

    The theory is given for calculating the free-space oscillating pressures associated with a rotating propeller, at any point in space. Because of its complexity this analysis is convenient only for use in the critical region near the propeller tips where the assumptions used by Gutin to simplify his final equations are not valid. Good agreement was found between analytical and experimental results in the tip Mach number range 0.45 to two, three, four, five, six, on eight-blade propellers and for a range of tip clearances from 0.04 to 0.30 times the propeller diameter. If the power coefficient, tip Mach number, and the tip clearance are known for a given propeller, the designer may determine from these charts the average maximum free-space oscillating pressure in the critical region near the plane of rotation. A section of the report is devoted to the fuselage response to these oscillating pressures and indicates some of the factors to be considered in solving the problems of fuselage vibration and noise.

  17. Liquid jet response to internal modulated ultrasonic radiation pressure and stimulated drop production.

    PubMed

    Lonzaga, Joel B; Osterhoudt, Curtis F; Thiessen, David B; Marston, Philip L

    2007-06-01

    Experimental evidence shows that a liquid jet in air is an acoustic waveguide having a cutoff frequency inversely proportional to the jet diameter. Ultrasound applied to the jet supply liquid can propagate within the jet when the acoustic frequency is near to or above the cutoff frequency. Modulated radiation pressure is used to stimulate large amplitude deformations and the breakup of the jet into drops. The jet response to the modulated internal ultrasonic radiation pressure was monitored along the jet using (a) an optical extinction method and (b) images captured by a video camera. The jet profile oscillates at the frequency of the radiation pressure modulation and where the response is small, the amplitude was found to increase in proportion to the square of the acoustic pressure amplitude as previously demonstrated for oscillating drops [P.L. Marston and R.E. Apfel, J. Acoust. Soc. Am. 67, 27-37 (1980)]. Small amplitude deformations initially grow approximately exponentially with axial distance along the jet. Though aspects of the perturbation growth can be approximated from Rayleigh's analysis of the capillary instability, some detailed features of the observed jet response to modulated ultrasound are unexplained neglecting the effects of gravity.

  18. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  19. Bubble oscillation and inertial cavitation in viscoelastic fluids.

    PubMed

    Jiménez-Fernández, J; Crespo, A

    2005-08-01

    Non-linear acoustic oscillations of gas bubbles immersed in viscoelastic fluids are theoretically studied. The problem is formulated by considering a constitutive equation of differential type with an interpolated time derivative. With the aid of this rheological model, fluid elasticity, shear thinning viscosity and extensional viscosity effects may be taken into account. Bubble radius evolution in time is analyzed and it is found that the amplitude of the bubble oscillations grows drastically as the Deborah number (the ratio between the relaxation time of the fluid and the characteristic time of the flow) increases, so that, even for moderate values of the external pressure amplitude, the behavior may become chaotic. The quantitative influence of the rheological fluid properties on the pressure thresholds for inertial cavitation is investigated. Pressure thresholds values in terms of the Deborah number for systems of interest in ultrasonic biomedical applications, are provided. It is found that these critical pressure amplitudes are clearly reduced as the Deborah number is increased.

  20. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.

    PubMed

    Chan, Roger W; Titze, Ingo R

    2006-04-01

    Analytical and computer simulation studies have shown that the acoustic impedance of the vocal tract as well as the viscoelastic properties of vocal fold tissues are critical for determining the dynamics and the energy transfer mechanism of vocal fold oscillation. In the present study, a linear, small-amplitude oscillation theory was revised by taking into account the propagation of a mucosal wave and the inertive reactance (inertance) of the supraglottal vocal tract as the major energy transfer mechanisms for flow-induced self-oscillation of the vocal fold. Specifically, analytical results predicted that phonation threshold pressure (Pth) increases with the viscous shear properties of the vocal fold, but decreases with vocal tract inertance. This theory was empirically tested using a physical model of the larynx, where biological materials (fat, hyaluronic acid, and fibronectin) were implanted into the vocal fold cover to investigate the effect of vocal fold tissue viscoelasticity on Pth. A uniform-tube supraglottal vocal tract was also introduced to examine the effect of vocal tract inertance on Pth. Results showed that Pth decreased with the inertive impedance of the vocal tract and increased with the viscous shear modulus (G") or dynamic viscosity (eta') of the vocal fold cover, consistent with theoretical predictions. These findings supported the potential biomechanical benefits of hyaluronic acid as a surgical bioimplant for repairing voice disorders involving the superficial layer of the lamina propria, such as scarring, sulcus vocalis, atrophy, and Reinke's edema.

  1. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes

    NASA Astrophysics Data System (ADS)

    Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk

    2017-04-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressure node in terms of throughput.

  2. Cosmological implications of baryon acoustic oscillation measurements

    DOE PAGES

    Aubourg, Eric

    2015-12-01

    Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibratedmore » physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H 0=67.3±1.1 km s -1 Mpc -1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ω m=0.301±0.008 and curvature Ω k=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ 2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H 0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Σm ν<0.56 eV (95% confidence), improving to Σm ν<0.25 eV if we

  3. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.

    PubMed

    Koyama, Daisuke; Kotera, Hironori; Kitazawa, Natsuko; Yoshida, Kenji; Nakamura, Kentaro; Watanabe, Yoshiaki

    2011-04-01

    Observation techniques for measuring the small vibration of a single microcapsule of tens of nanometers in an acoustic standing wave field are discussed. First, simultaneous optical observation of a microbubble vibration by two methods is investigated, using a high-speed video camera, which permits two-dimensional observation of the bubble vibration, and a laser Doppler vibrometer (LDV), which can observe small bubble vibration amplitudes at high frequency. Bubbles of tens of micrometers size were trapped at the antinode of an acoustic standing wave generated in an observational cell. Bubble vibration at 27 kHz could be observed and the experimental results for the two methods showed good agreement. The radial vibration of microcapsules with a hard plastic shell was observed using the LDV and the measurement of the capsule vibration with radial oscillation amplitude of tens of nanometers was successful. The acoustic radiation force acting on microcapsules in the acoustic standing wave was measured from the trapped position of the standing wave and the radial oscillation amplitude of the capsules was estimated from the theoretical equation of the acoustic radiation force, giving results in good agreement with the LDV measurements. The radial oscillation amplitude of a capsule was found to be proportional to the amplitude of the driving sound pressure. A larger expansion ratio was observed for capsules closer to the resonance condition under the same driving sound pressure and frequency. © 2011 IEEE

  4. Three-dimensional finite element analysis of acoustic instability of solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Hackett, R. M.; Juruf, R. S.

    1976-01-01

    A three dimensional finite element solution of the acoustic vibration problem in a solid propellant rocket motor is presented. The solution yields the natural circular frequencies of vibration and the corresponding acoustic pressure mode shapes, considering the coupled response of the propellant grain to the acoustic oscillations occurring in the motor cavity. The near incompressibility of the solid propellant is taken into account in the formulation. A relatively simple example problem is solved in order to illustrate the applicability of the analysis and the developed computer code.

  5. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.

  6. Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    2000-01-01

    A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.

  7. Analyses of Sea Surface Height, Bottom Pressure and Acoustic Travel Time in the Japan/East Sea

    DTIC Science & Technology

    2006-01-01

    ANALYSES OF SEA SURFACE HEIGHT, BOTTOM PRESSURE AND ACOUSTIC TRAVEL TIME IN THE JAPAN/EAST SEA BY YONGSHENG XU A DISSERTATION SUBMITTED IN PARTIAL...COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Analyses of Sea Surface Height, Bottom Pressure and Acoustic Travel Time in the Japan/East Sea...1999 to July 2001. The PIESs recorded hourly vertical acoustic travel time and pressure, which are respectively good proxies of baroclinic and

  8. Demonstration of nonlinear effects in acoustic landmine experiments using a clamped-plate soil oscillator

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Bond, Emilia

    2005-09-01

    Current nonlinear experiments involving the detection of plastic landmines using acoustic-to-seismic coupling have been developed from Sabatier's (linear) and Donskoy's (nonlinear) earlier methods. A laboratory apparatus called the soil-plate oscillator has been developed at the National Center for Physical Acoustics, and later at the U.S. Naval Academy, to model acoustic mine detection. The apparatus consists of a thick-walled cylinder filled with sifted homogeneous soil resting on a thin elastic plate that is clamped to the bottom of the column. It represents a good simplified physical model for VS 1.6 and VS 2.2 inert anti-tank plastic buried landmines. Using a loudspeaker (located over the soil) that is driven by a swept sinusoid, tuning curve experiments are performed. The vibration amplitude versus frequency is measured on a swept spectrum analyzer using an accelerometer located on the soil-air interface or under the plate. The backbone curve shows a linear decrease in peak frequency versus increasing amplitude. A two-tone test experiment is performed using two loudspeakers generating acoustic frequencies (closely spaced on either side of resonance, typically ~100 Hz). A rich vibration spectrum of combination frequency tones (along with the primaries) is observed which is characteristic of actual nonlinear detection schemes.

  9. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    DTIC Science & Technology

    2014-06-01

    Hall thruster , a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper will focus on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of

  10. Phase measurement by using a forced delay-line oscillator and its application for an acoustic fiber sensor.

    PubMed

    Fleyer, Michael; Horowitz, Moshe

    2018-04-02

    We demonstrate, theoretically and experimentally, a new method to measure small changes in the cavity length of oscillators. The method is based on the high sensitivity of the phase of forced delay-line oscillators to changes in their cavity length. The oscillator phase is directly detected by mixing the oscillator output with the injected signal. We describe a comprehensive theoretical model for studying the signal and the noise at the output of a general forced delay-line oscillator with an instantaneous gain saturation and an amplitude-to-phase conversion. The results indicate that the magnitude and the bandwidth of the oscillator response to a small perturbation can be controlled by adjusting the injection ratio and the injected frequency. For signals with a frequency that is smaller than the device bandwidth, the oscillator noise is dominated by the noise of the injected signal. This noise is highly suppressed by mixing the oscillator output with the injected signal. Hence, the device sensitivity at frequencies below its bandwidth is limited only by the internal noise that is added in a single roundtrip in the oscillator cavity. We demonstrate the use of a forced oscillator as an acoustic fiber sensor in an optoelectronic oscillator. A good agreement is obtained between theory and experiments. The magnitude of the output signal can be controlled by adjusting the injection ratio while the noise power at low frequencies is not enhanced as in sensors that are based on a free-running oscillator.

  11. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis.

    PubMed

    Lucero, Jorge C; Koenig, Laura L; Lourenço, Kelem G; Ruty, Nicolas; Pelorson, Xavier

    2011-03-01

    This paper examines an updated version of a lumped mucosal wave model of the vocal fold oscillation during phonation. Threshold values of the subglottal pressure and the mean (DC) glottal airflow for the oscillation onset are determined. Depending on the nonlinear characteristics of the model, an oscillation hysteresis phenomenon may occur, with different values for the oscillation onset and offset threshold. The threshold values depend on the oscillation frequency, but the occurrence of the hysteresis is independent of it. The results are tested against pressure data collected from a mechanical replica of the vocal folds, and oral airflow data collected from speakers producing intervocalic /h/. In the human speech data, observed differences between voice onset and offset may be attributed to variations in voice pitch, with a very small or inexistent hysteresis phenomenon. © 2011 Acoustical Society of America

  12. Isobaric Reconstruction of the Baryonic Acoustic Oscillation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Yu, Hao-Ran; Zhu, Hong-Ming; Yu, Yu; Pan, Qiaoyin; Pen, Ue-Li

    2017-06-01

    In this Letter, we report a significant recovery of the linear baryonic acoustic oscillation (BAO) signature by applying the isobaric reconstruction algorithm to the nonlinear matter density field. Assuming only the longitudinal component of the displacement being cosmologically relevant, this algorithm iteratively solves the coordinate transform between the Lagrangian and Eulerian frames without requiring any specific knowledge of the dynamics. For dark matter field, it produces the nonlinear displacement potential with very high fidelity. The reconstruction error at the pixel level is within a few percent and is caused only by the emergence of the transverse component after the shell-crossing. As it circumvents the strongest nonlinearity of the density evolution, the reconstructed field is well described by linear theory and immune from the bulk-flow smearing of the BAO signature. Therefore, this algorithm could significantly improve the measurement accuracy of the sound horizon scale s. For a perfect large-scale structure survey at redshift zero without Poisson or instrumental noise, the fractional error {{Δ }}s/s is reduced by a factor of ˜2.7, very close to the ideal limit with the linear power spectrum and Gaussian covariance matrix.

  13. Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction

    NASA Technical Reports Server (NTRS)

    Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.

    2008-01-01

    Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.

  14. Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system

    USGS Publications Warehouse

    Lane, S.J.; Chouet, B.A.; Phillips, J.C.; Dawson, P.; Ryan, G.A.; Hurst, E.

    2001-01-01

    Gas-liquid flows, designed to be analogous to those in volcanic conduits, are generated in the laboratory using organic gas-gum rosin mixtures expanding in a vertically mounted tube. The expanding fluid shows a range of both flow and pressure oscillation behaviors. Weakly supersaturated source liquids produce a low Reynolds number flow with foam expanding from the top surface of a liquid that exhibits zero fluid velocity at the tube wall; i.e., the conventional "no-slip" boundary condition. Pressure oscillations, often with strong long-period characteristics and consistent with longitudinal and radial resonant oscillation modes, are detected in these fluids. Strongly supersaturated source liquids generate more energetic flows that display a number of flow regimes. These regimes include a static liquid source, viscous flow, detached flow (comprising gas-pockets-at-wall and foam-in-gas annular flow, therefore demonstrating strong radial heterogeneity), and a fully turbulent transonic fragmented or mist flow. Each of these flow regimes displays characteristic pressure oscillations that can be related to resonance of flow features or wall impact phenomena. The pressure oscillations are produced by the degassing processes without the need of elastic coupling to the confining medium or flow restrictors and valvelike features. The oscillatory behavior of the experimental flows is compared to seismoacoustic data from a range of volcanoes where resonant oscillation of the fluid within the conduit is also often invoked as controlling the observed oscillation frequencies. On the basis of the experimental data we postulate on the nature of seismic signals that may be measured during large-scale explosive activity. Copyright 2001 by the American Geophysical Union.

  15. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  16. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper focuses on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of high-speed Langmuir probes. The results show a rise in the oscillation frequency of the "breathing" mode with rising background pressure, which is hypothesized to be due to a shortening acceleration/ionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  17. Servo-controlled pneumatic pressure oscillator for respiratory impedance measurements and high-frequency ventilation.

    PubMed

    Kaczka, David W; Lutchen, Kenneth R

    2004-04-01

    The ability to provide forced oscillatory excitation of the respiratory system can be useful in mechanical impedance measurements as well as high frequency ventilation (HFV). Experimental systems currently used for generating forced oscillations are limited in their ability to provide high amplitude flows or maintain the respiratory system at a constant mean pressure during excitation. This paper presents the design and implementation of a pneumatic pressure oscillator based on a proportional solenoid valve. The device is capable of providing forced oscillatory excitations to the respiratory system over a bandwidth suitable for mechanical impedance measurements and HVF. It delivers high amplitude flows (> 1.4 l/s) and utilizes a servo-control mechanism to maintain a load at a fixed mean pressure during simultaneous oscillation. Under open-loop conditions, the device exhibited a static hysteresis of approximately 7%, while its dynamic magnitude and phase responses were flat out to 10 Hz. Broad-band measurement of total harmonic distortion was approximately 19%. Under closed-loop conditions, the oscillator was able to maintain a mechanical test load at both positive and negative mean pressures during oscillatory excitations from 0.1 to 10.0 Hz. Impedance of the test load agreed closely with theoretical predictions. We conclude that this servo-controlled oscillator can be a useful tool for respiratory impedance measurements as well as HFV.

  18. Resonance Shift of Single-Axis Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jun; Wei, Bing-Bo

    2007-01-01

    The resonance shift due to the presence and movement of a rigid spherical sample in a single-axis acoustic levitator is studied with the boundary element method on the basis of a two-cylinder model of the levitator. The introduction of a sample into the sound pressure nodes, where it is usually levitated, reduces the resonant interval Hn (n is the mode number) between the reflector and emitter. The larger the sample radius, the greater the resonance shift. When the sample moves along the symmetric axis, the resonance interval Hn varies in an approximately periodical manner, which reaches the minima near the pressure nodes and the maxima near the pressure antinodes. This suggests a resonance interval oscillation around its minimum if the stably levitated sample is slightly perturbed. The dependence of the resonance shift on the sample radius R and position h for the single-axis acoustic levitator is compared with Leung's theory for a closed rectangular chamber, which shows a good agreement.

  19. Effects of Transducer Installation on Unsteady Pressure Measurements on Oscillating Blades

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2006-01-01

    Unsteady pressures were measured above the suction side of a blade that was oscillated to simulate blade stall flutter. Measurements were made at blade oscillation frequencies up to 500 Hz. Two types of miniature pressure transducers were used: surface-mounted flat custom-made, and conventional miniature, body-mounted transducers. The signals of the surface-mounted transducers are significantly affected by blade acceleration, whereas the signals of body-mounted transducers are practically free of this distortion. A procedure was introduced to correct the signals of surface-mounted transducers to rectify the signal distortion due to blade acceleration. The signals from body-mounted transducers, and corrected signals from surface-mounted transducers represent true unsteady pressure signals on the surface of a blade subjected to forced oscillations. However, the use of body-mounted conventional transducers is preferred for the following reasons: no signal corrections are needed for blade acceleration, the conventional transducers are noticeably less expensive than custom-made flat transducers, the survival rate of body-mounted transducers is much higher, and finally installation of body-mounted transducers does not disturb the blade surface of interest.

  20. Effect of the spectrum of a high-intensity sound source on the sound-absorbing properties of a resonance-type acoustic lining

    NASA Astrophysics Data System (ADS)

    Ipatov, M. S.; Ostroumov, M. N.; Sobolev, A. F.

    2012-07-01

    Experimental results are presented on the effect of both the sound pressure level and the type of spectrum of a sound source on the impedance of an acoustic lining. The spectra under study include those of white noise, a narrow-band signal, and a signal with a preset waveform. It is found that, to obtain reliable data on the impedance of an acoustic lining from the results of interferometric measurements, the total sound pressure level of white noise or the maximal sound pressure level of a pure tone (at every oscillation frequency) needs to be identical to the total sound pressure level of the actual source at the site of acoustic lining on the channel wall.

  1. Unsteady Pressures in a Transonic Fan Cascade Due to a Single Oscillating Airfoil

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Hayden, J.

    2002-01-01

    An extensive set of unsteady pressure data was acquired along the midspan of a modern transonic fan blade for simulated flutter conditions. The data set was acquired in a nine-blade linear cascade with an oscillating middle blade to provide a database for the influence coefficient method to calculate instantaneous blade loadings. The cascade was set for an incidence of 10 dg. The data were acquired on three stationary blades on each side of the middle blade that was oscillated at an amplitude of 0.6 dg. The matrix of test conditions covered inlet Mach numbers of 0.5, 0.8, and 1.1 and the oscillation frequencies of 200, 300, 400, and 500 Hz. A simple quasiunsteady two-dimensional computer simulation was developed to aid in the running of the experimental program. For high Mach number subsonic inlet flows the blade pressures exhibit very strong, low-frequency, self-induced oscillations even without forced blade oscillations, while for low subsonic and supersonic inlet Mach numbers the blade pressure unsteadiness is quite low. The amplitude of forced pressure fluctuations on neighboring stationary blades strongly depends on the inlet Mach number and forcing frequency. The flowfield behavior is believed to be governed by strong nonlinear effects due to a combination of viscosity, compressibility, and unsteadiness. Therefore, the validity of the quasi-unsteady simplified computer simulation is limited to conditions when the flowfield is behaving in a linear, steady manner. Finally, an extensive set of unsteady pressure data was acquired to help development and verification of computer codes for blade flutter effects.

  2. Motion measurement of acoustically levitated object

    NASA Technical Reports Server (NTRS)

    Watkins, John L. (Inventor); Barmatz, Martin B. (Inventor)

    1993-01-01

    A system is described for determining motion of an object that is acoustically positioned in a standing wave field in a chamber. Sonic energy in the chamber is sensed, and variation in the amplitude of the sonic energy is detected, which is caused by linear motion, rotational motion, or drop shape oscillation of the object. Apparatus for detecting object motion can include a microphone coupled to the chamber and a low pass filter connected to the output of the microphone, which passes only frequencies below the frequency of sound produced by a transducer that maintains the acoustic standing wave field. Knowledge about object motion can be useful by itself, can be useful to determine surface tension, viscosity, and other information about the object, and can be useful to determine the pressure and other characteristics of the acoustic field.

  3. Modeling of Structural-Acoustic Interaction Using Coupled FE/BE Method and Control of Interior Acoustic Pressure Using Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shi, Yacheng

    1997-01-01

    A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.

  4. Lipid shedding from single oscillating microbubbles.

    PubMed

    Luan, Ying; Lajoinie, Guillaume; Gelderblom, Erik; Skachkov, Ilya; van der Steen, Antonius F W; Vos, Hendrik J; Versluis, Michel; De Jong, Nico

    2014-08-01

    Lipid-coated microbubbles are used clinically as contrast agents for ultrasound imaging and are being developed for a variety of therapeutic applications. The lipid encapsulation and shedding of the lipids by acoustic driving of the microbubble has a crucial role in microbubble stability and in ultrasound-triggered drug delivery; however, little is known about the dynamics of lipid shedding under ultrasound excitation. Here we describe a study that optically characterized the lipid shedding behavior of individual microbubbles on a time scale of nanoseconds to microseconds. A single ultrasound burst of 20 to 1000 cycles, with a frequency of 1 MHz and an acoustic pressure varying from 50 to 425 kPa, was applied. In the first step, high-speed fluorescence imaging was performed at 150,000 frames per second to capture the instantaneous dynamics of lipid shedding. Lipid detachment was observed within the first few cycles of ultrasound. Subsequently, the detached lipids were transported by the surrounding flow field, either parallel to the focal plane (in-plane shedding) or in a trajectory perpendicular to the focal plane (out-of-plane shedding). In the second step, the onset of lipid shedding was studied as a function of the acoustic driving parameters, for example, pressure, number of cycles, bubble size and oscillation amplitude. The latter was recorded with an ultrafast framing camera running at 10 million frames per second. A threshold for lipid shedding under ultrasound excitation was found for a relative bubble oscillation amplitude >30%. Lipid shedding was found to be reproducible, indicating that the shedding event can be controlled. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. A spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures.

    PubMed

    Huang, Po-Hsun; Chan, Chung Yu; Li, Peng; Nama, Nitesh; Xie, Yuliang; Wei, Cheng-Hsin; Chen, Yuchao; Ahmed, Daniel; Huang, Tony Jun

    2015-11-07

    The ability to generate stable, spatiotemporally controllable concentration gradients is critical for resolving the dynamics of cellular response to a chemical microenvironment. Here we demonstrate an acoustofluidic gradient generator based on acoustically oscillating sharp-edge structures, which facilitates in a step-wise fashion the rapid mixing of fluids to generate tunable, dynamic chemical gradients. By controlling the driving voltage of a piezoelectric transducer, we demonstrated that the chemical gradient profiles can be conveniently altered (spatially controllable). By adjusting the actuation time of the piezoelectric transducer, moreover, we generated pulsatile chemical gradients (temporally controllable). With these two characteristics combined, we have developed a spatiotemporally controllable gradient generator. The applicability and biocompatibility of our acoustofluidic gradient generator are validated by demonstrating the migration of human dermal microvascular endothelial cells (HMVEC-d) in response to a generated vascular endothelial growth factor (VEGF) gradient, and by preserving the viability of HMVEC-d cells after long-term exposure to an acoustic field. Our device features advantages such as simple fabrication and operation, compact and biocompatible device, and generation of spatiotemporally tunable gradients.

  6. Sound pressure level gain in an acoustic metamaterial cavity.

    PubMed

    Song, Kyungjun; Kim, Kiwon; Hur, Shin; Kwak, Jun-Hyuk; Park, Jihyun; Yoon, Jong Rak; Kim, Jedo

    2014-12-11

    The inherent attenuation of a homogeneous viscous medium limits radiation propagation, thereby restricting the use of many high-frequency acoustic devices to only short-range applications. Here, we design and experimentally demonstrate an acoustic metamaterial localization cavity which is used for sound pressure level (SPL) gain using double coiled up space like structures thereby increasing the range of detection. This unique behavior occurs within a subwavelength cavity that is 1/10(th) of the wavelength of the incident acoustic wave, which provides up to a 13 dB SPL gain. We show that the amplification results from the Fabry-Perot resonance of the cavity, which has a simultaneously high effective refractive index and effective impedance. We also experimentally verify the SPL amplification in an underwater environment at higher frequencies using a sample with an identical unit cell size. The versatile scalability of the design shows promising applications in many areas, especially in acoustic imaging and underwater communication.

  7. Sound Pressure Level Gain in an Acoustic Metamaterial Cavity

    PubMed Central

    Song, Kyungjun; Kim, Kiwon; Hur, Shin; Kwak, Jun-Hyuk; Park, Jihyun; Yoon, Jong Rak; Kim, Jedo

    2014-01-01

    The inherent attenuation of a homogeneous viscous medium limits radiation propagation, thereby restricting the use of many high-frequency acoustic devices to only short-range applications. Here, we design and experimentally demonstrate an acoustic metamaterial localization cavity which is used for sound pressure level (SPL) gain using double coiled up space like structures thereby increasing the range of detection. This unique behavior occurs within a subwavelength cavity that is 1/10th of the wavelength of the incident acoustic wave, which provides up to a 13 dB SPL gain. We show that the amplification results from the Fabry-Perot resonance of the cavity, which has a simultaneously high effective refractive index and effective impedance. We also experimentally verify the SPL amplification in an underwater environment at higher frequencies using a sample with an identical unit cell size. The versatile scalability of the design shows promising applications in many areas, especially in acoustic imaging and underwater communication. PMID:25502279

  8. Fuel Line Based Acoustic Flame-Out Detection System

    NASA Technical Reports Server (NTRS)

    Puster, Richard L. (Inventor); Franke, John M. (Inventor)

    1997-01-01

    An acoustic flame-out detection system that renders a large high pressure combustor safe in the event of a flame-out and possible explosive reignition. A dynamic pressure transducer is placed in the fuel and detects the stabilizing fuel pressure oscillations, caused by the combustion process. An electric circuit converts the signal from the combustion vortices, and transmitted to the fuel flow to a series of pulses. A missing pulse detector counts the pulses and continuously resets itself. If three consecutive pulses are missing, the circuit closes the fuel valve. With fuel denied the combustor is shut down or restarted under controlled conditions.

  9. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    NASA Astrophysics Data System (ADS)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  10. Capacitive Micro Pressure Sensor Integrated with a Ring Oscillator Circuit on Chip

    PubMed Central

    Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang

    2009-01-01

    The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0–300 kPa. PMID:22303167

  11. Capacitive micro pressure sensor integrated with a ring oscillator circuit on chip.

    PubMed

    Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang

    2009-01-01

    The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0-300 kPa.

  12. Dynamic characteristics of a hydrostatic gas bearing driven by oscillating exhaust pressure

    NASA Technical Reports Server (NTRS)

    Watkins, C. B.; Eronini, I. E.; Branch, H. D.

    1984-01-01

    Vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating exhaust pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and sleeve is solved together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The numerical solutions of the perturbation equations are obtained by discretizing the pressure field using finite-difference aproximations with a discrete, nonuniform line-source model which excludes effects due to feeding hole volume. An iterative scheme is used to simultaneously satisfy the equations of motion for the journal. The results presented include Bode plots of bearing-oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency.

  13. Galaxy Bias and its Effects on the Baryon Acoustic Oscillations Measurements

    NASA Astrophysics Data System (ADS)

    Mehta, Kushal; Seo, H.; Eckel, J.; Eisenstein, D.; Metchnik, M.; Pinto, P.; Xu, X.

    2011-05-01

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al (2010). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07% - 0.15%.

  14. Galaxy Bias and Its Effects on the Baryon Acoustic Oscillation Measurements

    NASA Astrophysics Data System (ADS)

    Mehta, Kushal T.; Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Metchnik, Marc; Pinto, Philip; Xu, Xiaoying

    2011-06-01

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the nonlinear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields, achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.

  15. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    PubMed

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  16. Acoustic gravity microseismic pressure signal at shallow stations

    NASA Astrophysics Data System (ADS)

    Peureux, Charles; Ardhuin, Fabrice; Royer, Jean-Yves

    2017-04-01

    It has been known for decades that the background permanent seismic noise, the so-called microseimic signal, is generated by the nonlinear interaction of oppositely travelling ocean surface waves [Longuet-Higgins 1951]. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean. The pressure field at depths less than an acoustic wave length to the surface is made of evanescent acoustic-gravity modes [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, at the ocean bottom and 100 m below sea-surface and in the upper part of the water column respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modelling framework help assessing its performances and can be used to help future model improvements. References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, The Royal Society, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.

  17. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults

    PubMed Central

    Papalambros, Nelly A.; Santostasi, Giovanni; Malkani, Roneil G.; Braun, Rosemary; Weintraub, Sandra; Paller, Ken A.; Zee, Phyllis C.

    2017-01-01

    Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60–84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses (“ON interval”) was followed by a pause of approximately equal length (“OFF interval”). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity. PMID:28337134

  18. Pressure sensitivity of flow oscillations in postocclusive reactive skin hyperemia.

    PubMed

    Strucl, M; Peterec, D; Finderle, Z; Maver, J

    1994-05-01

    Skin blood flow was monitored using a laser-Doppler (LD) flowmeter in 21 healthy volunteers after an occlusion of the digital arteries. The peripheral vascular bed was exposed to occlusion ischemia of varying duration (1, 4, or 8 min) and to a change in digital arterial pressure produced by different positions of the arm above heart level to characterize the pattern of LD flow oscillations in postocclusive reactive hyperemia (PRH) and to elucidate the relevance of metabolic and myogenic mechanisms in governing its fundamental frequency. The descending part of the hyperemic flow was characterized by the appearance of conspicuous periodic oscillations with a mean fundamental frequency of 7.2 +/- 1.5 cycles/min (SD, n = 9), as assessed by a Fourier transform frequency analysis of 50-s sections of flow. The mean respiratory frequency during the periods of flow frequency analysis was 17.0 +/- 2.2 (SD, n = 9), and the PRH oscillations remained during apnea in all tested subjects. The area under the maximum flow curve increased significantly with prolongation of the occlusion (paired t test, P < 0.001; n = 9), but showed no dependence on the estimated blood pressure in the digital arteries, which suggests the predominant role of a metabolic component in this part of the PRH response. In contrast, the fundamental frequency of PRH oscillations exhibited a significant decrease with a reduction in the estimated digital arterial pressure (linear regression, b = 0.08, P < 0.001; n = 12), but did not change with the prolongation of arterial occlusion despite a significant increase in mean LD flow (paired t test, P < 0.001; n = 9).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  20. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1994-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  1. An efficient model for coupling structural vibrations with acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Ting, LU

    1993-01-01

    The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.

  2. Internal Acoustics of a Pintle Valve with Supercritical Helium Flow

    NASA Technical Reports Server (NTRS)

    Fishbach, Sean R.; Davis, R. Benjamin

    2010-01-01

    Large amplitude flow unsteadiness is a common phenomenon within the high flow rate ducts and valves associated with propulsion systems. Boundary layer noise, shear layers and vortex shedding are a few of the many sources of flow oscillations. The presence of lightly damped acoustic modes can organize and amplify these sources of flow perturbation, causing undesirable loading of internal parts. The present study investigates the self-induced acoustic environment within a pintle valve subject to high Reynolds Number flow of helium gas. Experiments were conducted to measure the internal pressure oscillations of the Ares I Launch Abort System (LAS) Attitude Control Motor (ACM) valve. The AGM consists of a solid propellant gas generator with eight pintle valves attached to the aft end. The pintle valve is designed to deliver variable upstream conditions to an attache( converging diverging nozzle. In order to investigate the full range of operating conditions 28 separate tests were conducted with varying pintle position and upstream pressure. Helium gas was utilized in order to closely mimic the speed of sound of the gas generator exhaust, minimizing required scaling during data analysis. The recordec pressure measurements were interrogated to multiple ends. The development of root mean square (RMS) value! versus Reynolds Number and Pintle position are important to creating bounding unsteady load curves for valve internal parts. Spectral analysis was also performed, helping to identify power spectral densities (PSD) of acoustic natural frequencies and boundary layer noise. An interesting and unexpected result was the identification of an acoustic mode within the valve which does not respond until the valve was over 60% open. Further, the response amplitude around this mode can be as large or larger than those associated with lower frequency modes.

  3. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  4. Large eddy simulations of a transcritical round jet submitted to transverse acoustic modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Flesca, M.; CNES DLA, 52 Rue Jacques Hillairet, 75612 Paris Cedex; Schmitt, T.

    This article reports numerical computations of a turbulent round jet of transcritical fluid (low temperature nitrogen injected under high pressure conditions) surrounded by the same fluid at rest under supercritical conditions (high temperature and high pressure) and submitted to transverse acoustic modulations. The numerical framework relies on large eddy simulation in combination with a real-gas description of thermodynamics and transport properties. A stationary acoustic field is obtained by modulating the normal acoustic velocity at the lateral boundaries of the computational domain. This study specifically focuses on the interaction of the jet with the acoustic field to investigate how the roundmore » transcritical jet changes its shape and mixes with the surrounding fluid. Different modulation amplitudes and frequencies are used to sweep a range of conditions. When the acoustic field is established in the domain, the jet length is notably reduced and the jet is flattened in the spanwise direction. Two regimes of oscillation are identified: for low Strouhal numbers a large amplitude motion is observed, while for higher Strouhal numbers the jet oscillates with a small amplitude around the injector axis. The minimum length is obtained for a Strouhal number of 0.3 and the jet length increases with increasing Strouhal numbers after reaching this minimum value. The mechanism of spanwise deformation is shown to be linked with dynamical effects resulting from reduction of the pressure in the transverse direction in relation with increased velocities on the two sides of the jet. A propagative wave is then introduced in the domain leading to similar effects on the jet, except that a bending is also observed in the acoustic propagation direction. A kinematic model, combining hydrodynamic and acoustic contributions, is derived in a second stage to represent the motion of the jet centerline. This model captures details of the numerical simulations quite well. These

  5. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  6. Capillary bridge stability and dynamics: Active electrostatic stress control and acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    Wei, Wei

    2005-11-01

    In low gravity, the stability of liquid bridges and other systems having free surfaces is affected by the ambient vibration of the spacecraft. Such vibrations are expected to excite capillary modes. The lowest unstable mode of cylindrical liquid bridges, the (2,0) mode, is particularly sensitive to the vibration when the ratio of the bridge length to the diameter approaches pi. In this work, a Plateau tank has been used to simulate the weightless condition. An optical system has been used to detect the (2,0) mode oscillation amplitude and generate an error signal which is determined by the oscillation amplitude. This error signal is used by the feedback system to produce proper voltages on the electrodes which are concentric with the electrically conducting, grounded bridge. A mode-coupled electrostatic stress is thus generated on the surface of the bridge. The feedback system is designed such that the modal force applied by the Maxwell stress can be proportional to the modal amplitude or modal velocity, which is the derivative of the modal amplitude. Experiments done in the Plateau tank demonstrate that the damping of the capillary oscillation can be enhanced by using the electrostatic stress in proportion to the modal velocity. On the other hand, using the electrostatic stress in proportion to the modal amplitude can raise the natural frequency of the bridge oscillation. If a spacecraft vibration frequency is close to a capillary mode frequency, the amplitude gain can be used to shift the mode frequency away from that of the spacecraft and simultaneously add some artificial damping to further reduce the effect of g-jitter. It is found that the decay of a bridge (2,0) mode oscillation is well modeled by a Duffing equation with a small cubic soft-spring term. The nonlinearity of the bridge (3,0) mode is also studied. The experiments reveal the hysteresis of (3,0) mode bridge oscillations, and this behavior is a property of the soft nonlinearity of the bridge

  7. Response of space shuttle insulation panels to acoustic noise pressure

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1976-01-01

    The response of reusable space shuttle insulation panels to random acoustic pressure fields are studied. The basic analytical approach in formulating the governing equations of motion uses a Rayleigh-Ritz technique. The input pressure field is modeled as a stationary Gaussian random process for which the cross-spectral density function is known empirically from experimental measurements. The response calculations are performed in both frequency and time domain.

  8. Optically driven self-oscillations of a silica nanospike at low gas pressures

    NASA Astrophysics Data System (ADS)

    Xie, Shangran; Pennetta, Riccardo; Noskov, Roman E.; Russell, Philip St. J.

    2016-09-01

    We report light-driven instability and optomechanical self-oscillation of a fused silica "nanospike" at low gas pressures. The nanospike (tip diameter 400 nm), fabricated by thermally tapering and HF-etching a single mode fiber (SMF), was set pointing at the endface of a hollow-core photonic crystal fiber (HC-PCF) into the field created by the fundamental optical mode emerging from the HC-PCF. At low pressures, the nanospike became unstable and began to self-oscillate for optical powers above a certain threshold, acting like a phonon laser or "phaser". Because the nanospike is robustly connected to the base, direct measurement of the temporal dynamics of the instability is possible. The experiment sheds light on why particles escape from optical traps at low pressures.

  9. Suitability of surface acoustic wave oscillators fabricated using low temperature-grown AlN films on GaN/sapphire as UV sensors.

    PubMed

    Chen, Tzu Chieh; Lin, Yueh Ting; Lin, Chung Yi; Chen, W C; Chen, Meei Ru; Kao, Hui-Ling; Chyi, J I; Hsu, C H

    2008-02-01

    Epitaxial AlN films were prepared on GaN/sapphire using a helicon sputtering system at the low temperature of 300 degrees C. Surface acoustic wave (SAW) devices fabricated on AlN/GaN/sapphire exhibited superior characteristics compared with those made on GaN/sapphire. An oscillator using an AlN/GaN/sapphirebased SAW device is presented. The oscillation frequency decreased when the device was illuminated by ultraviolet (UV) radiation, and the downshift of the oscillation frequency increased with the illuminating UV power density. The results showed that the AlN/GaN/sapphire-layered structure SAW oscillators are suitable for visible blind UV detection and opened up the feasibility of developing remote UV sensors for different ranges of wavelengths on the III-nitrides.

  10. Development of high sensitivity eight-element multiplexed fiber laser acoustic pressure hydrophone array and interrogation system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Sun, Zhihui; Zhang, Xiaolei; Li, Shujuan; Song, Zhiqiang; Wang, Meng; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding; Xu, Xiangang

    2017-09-01

    Fiber laser hydrophones have got widespread concerns due to the unique advantages and broad application prospects. In this paper, the research results of the eight-element multiplexed fiber laser acoustic pressure array and the interrogation system are introduced, containing low-noise distributed feedback fiber laser (DFB-FL) fabrication, sensitivity enhancement packaging, and interferometric signal demodulation. The frequency response range of the system is 10Hz-10kHz, the laser frequency acoustic pressure sensitivity reaches 115 dB re Hz/Pa, and the equivalent noise acoustic pressure is less than 60μPa/Hz1/2. The dynamic range of the system is greater than 120 dB.

  11. Improved rat liver decellularization by arterial perfusion under oscillating pressure conditions.

    PubMed

    Struecker, Benjamin; Butter, Antje; Hillebrandt, Karl; Polenz, Dietrich; Reutzel-Selke, Anja; Tang, Peter; Lippert, Steffen; Leder, Anne; Rohn, Susanne; Geisel, Dominik; Denecke, Timm; Aliyev, Khalid; Jöhrens, Korinna; Raschzok, Nathanael; Neuhaus, Peter; Pratschke, Johann; Sauer, Igor M

    2017-02-01

    One approach of regenerative medicine to generate functional hepatic tissue in vitro is decellularization and recellularization, and several protocols for the decellularization of livers of different species have been published. This appears to be the first report on rat liver decellularization by perfusion under oscillating pressure conditions, intending to optimize microperfusion and minimize damage to the ECM. Four decellularization protocols were compared: perfusion via the portal vein (PV) or the hepatic artery (HA), with (+P) or without (-P) oscillating pressure conditions. All rat livers (n = 24) were perfused with 1% Triton X-100 and 1% sodium dodecyl sulphate, each for 90 min with a perfusion rate of 5 ml/min. Perfusion decellularization was observed macroscopically and the decellularized liver matrices were analysed by histology and biochemical analyses (e.g. levels of DNA, glycosaminoglycans and hepatocyte growth factor). Livers decellularized via the hepatic artery and under oscillating pressure showed a more homogeneous decellularization and less remaining DNA, compared with the livers of the other experimental groups. The novel decellularization method described is effective, quick (3 h) and gentle to the extracellular matrix and thus represents an improvement of existing methodology. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Acoustic response of compliable microvessels containing ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Qin, Shengping; Ferrara, Katherine W.

    2006-10-01

    The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble's oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than the UCA diameter. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA's oscillation and the microvessel's acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 µm vessel with a peak negative pressure of 0.1 MPa and a centre frequency of 1 MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with a diameter equal to or greater than 8 µm, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless of the vessel diameter; however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a centre frequency of 1 MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 µm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease; however the

  13. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  14. A Numerical Method of Calculating Propeller Noise Including Acoustic Nonlinear Effects

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.

    1985-01-01

    Using the transonic flow fields(s) generated by the NASPROP-E computer code for an eight blade SR3-series propeller, a theoretical method is investigated to calculate the total noise values and frequency content in the acoustic near and far field without using the Ffowcs Williams - Hawkings equation. The flow field is numerically generated using an implicit three dimensional Euler equation solver in weak conservation law form. Numerical damping is required by the differencing method for stability in three dimensions, and the influence of the damping on the calculated acoustic values is investigated. The acoustic near field is solved by integrating with respect to time the pressure oscillations induced at a stationary observer location. The acoustic far field is calculated from the near field primitive variables as generated by NASPROP-E computer code using a method involving a perturbation velocity potential as suggested by Hawkings in the calculation of the acoustic pressure time-history at a specified far field observed location. the methodologies described are valid for calculating total noise levels and are applicable to any propeller geometry for which a flow field solution is available.

  15. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    DTIC Science & Technology

    2016-07-27

    Transverse Acoustic Forcing in a High Pressure Environment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mario ...Acoustic Forcing in a High Pressure Environment Mario Roa, Sierra Lobo, Inc. Alex Schumaker, AFRL Doug Talley, AFRL 24-27 July 2016 Joint Propulsion...Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16333 9 Parametric Sweep Super -Critical Results Differences between

  16. Investigations on the self-excited oscillations in a kerosene spray flame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de la Cruz Garcia, M.; Mastorakos, E.; Dowling, A.P.

    2009-02-15

    A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH{sup *} chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer functionmore » between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone. (author)« less

  17. ACOUSTIC LOCATION OF LEAKS IN PRESSURIZED UNDERGROUND PETROLEUM PIPELINES

    EPA Science Inventory

    Experiments were conducted at the UST Test Apparatus Pipeline in which three acoustic sensors separated by a maximum distance of 38 m (125-ft) were used to monitor signals produced by 3.0-, 1.5-, and 1.0-gal/h leaks in the wall of a 2-in.-diameter pressurized petroleum pipeline. ...

  18. Open-loop control of quasiperiodic thermoacoustic oscillations

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Gupta, Vikrant; Kashinath, Karthik; Li, Larry K. B.

    2017-11-01

    The open-loop application of periodic acoustic forcing has been shown to be a potentially effective strategy for controlling periodic thermoacoustic oscillations, but its effectiveness on aperiodic thermoacoustic oscillations is less clear. In this experimental study, we apply periodic acoustic forcing to a ducted premixed flame oscillating quasiperiodically at two incommensurate natural frequencies, f1 and f2. We find that (i) above a critical forcing amplitude, the system locks into the forcing by oscillating only at the forcing frequency ff, producing a closed periodic orbit in phase space with no evidence of the original T2 torus attractor; (ii) the critical forcing amplitude required for lock-in decreases as ff approaches either f1 or f2, resulting in characteristic ∨-shaped lock-in boundaries around the two natural modes; and (iii) for a wide range of forcing frequencies, the system's oscillation amplitude can be reduced to less than 20% of that of the unforced system. These findings show that the open-loop application of periodic acoustic forcing can be an effective strategy for controlling aperiodic thermoacoustic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  19. Capacitive acoustic wave detector and method of using same

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor)

    1994-01-01

    A capacitor having two substantially parallel conductive faces is acoustically coupled to a conductive sample end such that the sample face is one end of the capacitor. A non-contacting dielectric may serve as a spacer between the two conductive plates. The formed capacitor is connected to an LC oscillator circuit such as a Hartley oscillator circuit producing an output frequency which is a function of the capacitor spacing. This capacitance oscillates as the sample end coating is oscillated by an acoustic wave generated in the sample by a transmitting transducer. The electrical output can serve as an absolute indicator of acoustic wave displacement.

  20. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  1. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  2. The effects of external acoustic pressure fields on a free-running supercavitating projectile.

    PubMed

    Cameron, Peter J K; Rogers, Peter H; Doane, John W

    2010-12-01

    Proliferation of supercavitating torpedoes has motivated research on countermeasures against them as well as on the fluid phenomenon which makes them possible. The goal of this research was to investigate an envisaged countermeasure, an acoustic field capable of slowing or diverting the weapon by disrupting the cavitation envelope. The research focused on the interactions between high pressure amplitude sound waves and a supercavity produced by a small free-flying projectile. The flight dynamics and cavity geometry measurements were compared to control experiments and theoretical considerations were made for evaluating the effects. Corrugations on the cavity/water interface caused by the pressure signal have been observed and characterized. Results also show that the accuracy of a supercavitating projectile can be adversely affected by the sound signal. This research concludes with results that indicate that it is acoustic cavitation in the medium surrounding the supercavity, caused by the high pressure amplitude sound, that is responsible for the reduced accuracy. A hypothesis has been presented addressing the means by which the acoustic cavitation could cause this effect.

  3. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  4. A Comparison of Measured and Predicted XV-15 Tiltrotor Surface Acoustic Pressures

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Burley, Casey L.; Prichard, Devon S.

    1997-01-01

    Predicted XV-15 exterior surface acoustic pressures are compared with previously published experimental data. Surface acoustic pressure transducers were concentrated near the tip-path-plane of the rotor in airplane mode. The comparison emphasized cruise conditions which are of interest for tiltrotor interior noise - level flight for speeds ranging from 72 m/s to 113 m/s. The predictions were produced by components of the NASA Langley Tiltrotor Aeroacoustic Code (TRAC) system of computer codes. Comparisons between measurements and predictions were made in both the time and frequency domains, as well as overall sound pressure levels. In general, the predictions replicated the measured data well. Discrepancies between measurements and predictions were noted. Some of the discrepancies were due to poor correlation of the measured data with the rotor tach signal. In other cases limitations of the predictive methodology have been indicated.

  5. Attenuation of the Acoustic Signal Propagating Through a Bubbly Liquid Layer

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Nikiforov, A. A.

    2018-01-01

    The acoustic signal dynamics in a five-layer medium containing two liquid layers with polydisperse gas bubbles has been investigated. Calculations have been made for the interaction between the pulse perturbation of smallamplitude pressure and a multilayer sample containing two layers of industrial gel with polydisperse air bubbles. It has been shown that a small content of bubbles (about 0.1 vol. %) in a thin gel layer decreases tenfold or more the amplitude of acoustic waves with frequencies close to the resonance frequency of natural oscillations of bubbles. There are frequency ranges thereby where the influence of the bubbly layer is insignificant.

  6. Study on the bubble transport mechanism in an acoustic standing wave field.

    PubMed

    Xi, Xiaoyu; Cegla, Frederic B; Lowe, Michael; Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2011-12-01

    The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller-Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton's second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of

  7. Variabilities detected by acoustic emission from filament-wound Aramid fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.

    1978-01-01

    Two hundred and fifty Aramid fiber/epoxy pressure vessels were filament-wound over spherical aluminum mandrels under controlled conditions typical for advanced filament-winding. A random set of 30 vessels was proof-tested to 74% of the expected burst pressure; acoustic emission data were obtained during the proof test. A specially designed fixture was used to permit in situ calibration of the acoustic emission system for each vessel by the fracture of a 4-mm length of pencil lead (0.3 mm in diameter) which was in contact with the vessel. Acoustic emission signatures obtained during testing showed larger than expected variabilities in the mechanical damage done during the proof tests. To date, identification of the cause of these variabilities has not been determined.

  8. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    DOEpatents

    Ziminsky, Willy Steve [Simpsonville, SC; Krull, Anthony Wayne [Anderson, SC; Healy, Timothy Andrew , Yilmaz, Ertan

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  9. Intracochlear pressure measurements during acoustic shock wave exposure.

    PubMed

    Greene, Nathaniel T; Alhussaini, Mohamed A; Easter, James R; Argo, Theodore F; Walilko, Tim; Tollin, Daniel J

    2018-05-19

    Injuries to the peripheral auditory system are among the most common results of high intensity impulsive acoustic exposure. Prior studies of high intensity sound transmission by the ossicular chain have relied upon measurements in animal models, measurements at more moderate sound levels (i.e. < 130 dB SPL), and/or measured responses to steady-state noise. Here, we directly measure intracochlear pressure in human cadaveric temporal bones, with fiber optic pressure sensors placed in scala vestibuli (SV) and tympani (ST), during exposure to shock waves with peak positive pressures between ∼7 and 83 kPa. Eight full-cephalic human cadaver heads were exposed, face-on, to acoustic shock waves in a 45 cm diameter shock tube. Specimens were exposed to impulses with nominal peak overpressures of 7, 28, 55, & 83 kPa (171, 183, 189, & 192 dB pSPL), measured in the free field adjacent to the forehead. Specimens were prepared bilaterally by mastoidectomy and extended facial recess to expose the ossicular chain. Ear canal (EAC), middle ear, and intracochlear sound pressure levels were measured with fiber-optic pressure sensors. Surface-mounted sensors measured SPL and skull strain near the opening of each EAC and at the forehead. Measurements on the forehead showed incident peak pressures approximately twice that measured by adjacent free-field and EAC entrance sensors, as expected based on the sensor orientation (normal vs tangential to the shock wave propagation). At 7 kPa, EAC pressure showed gain, calculated from the frequency spectra, consistent with the ear canal resonance, and gain in the intracochlear pressures (normalized to the EAC pressure) were consistent with (though somewhat lower than) previously reported middle ear transfer functions. Responses to higher intensity impulses tended to show lower intracochlear gain relative to EAC, suggesting sound transmission efficiency along the ossicular chain is reduced at high intensities. Tympanic membrane

  10. A Semi-implicit Method for Resolution of Acoustic Waves in Low Mach Number Flows

    NASA Astrophysics Data System (ADS)

    Wall, Clifton; Pierce, Charles D.; Moin, Parviz

    2002-09-01

    A semi-implicit numerical method for time accurate simulation of compressible flow is presented. By extending the low Mach number pressure correction method, a Helmholtz equation for pressure is obtained in the case of compressible flow. The method avoids the acoustic CFL limitation, allowing a time step restricted only by the convective velocity, resulting in significant efficiency gains. Use of a discretization that is centered in both time and space results in zero artificial damping of acoustic waves. The method is attractive for problems in which Mach numbers are low, and the acoustic waves of most interest are those having low frequency, such as acoustic combustion instabilities. Both of these characteristics suggest the use of time steps larger than those allowable by an acoustic CFL limitation. In some cases it may be desirable to include a small amount of numerical dissipation to eliminate oscillations due to small-wavelength, high-frequency, acoustic modes, which are not of interest; therefore, a provision for doing this in a controlled manner is included in the method. Results of the method for several model problems are presented, and the performance of the method in a large eddy simulation is examined.

  11. Dynamics of acoustically levitated disk samples.

    PubMed

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gammaacoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  12. Dynamics of acoustically levitated disk samples

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King’s theory, and a larger force can be obtained for thin disks. When the disk aspect ratio γ is larger than a critical value γ*(≈1.9) and the disk radius a is smaller than the critical value a*(γ) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples (γ⩽γ*) can be formulated by the shape factor f(γ,a) when a⩽a*(γ) . It is found experimentally that a necessary condition of the acoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval Hn . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  13. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?

    PubMed Central

    Salamon, David; Eriksson, Mirva; Nygren, Mats; Shen, Zhijian

    2012-01-01

    The spark plasma sintering (SPS) process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current–pressure–temperature relations might increase understanding of the SPS process. PMID:27877472

  14. The detectability of baryonic acoustic oscillations in future galaxy surveys

    NASA Astrophysics Data System (ADS)

    Angulo, R. E.; Baugh, C. M.; Frenk, C. S.; Lacey, C. G.

    2008-01-01

    We assess the detectability of baryonic acoustic oscillation (BAO) in the power spectrum of galaxies using ultralarge volume N-body simulations of the hierarchical clustering of dark matter and semi-analytical modelling of galaxy formation. A step-by-step illustration is given of the various effects (non-linear fluctuation growth, peculiar motions, non-linear and scale-dependent bias) which systematically change the form of the galaxy power spectrum on large scales from the simple prediction of linear perturbation theory. Using a new method to extract the scale of the oscillations, we nevertheless find that the BAO approach gives an unbiased estimate of the sound horizon scale. Sampling variance remains the dominant source of error despite the huge volume of our simulation box (=2.41h-3Gpc3). We use our results to forecast the accuracy with which forthcoming surveys will be able to measure the sound horizon scale, s, and, hence constrain the dark energy equation of state parameter, w (with simplifying assumptions and without marginalizing over the other cosmological parameters). Pan-STARRS could potentially yield a measurement with an accuracy of Δs/s = 0.5-0.7 per cent (corresponding to Δw ~ 2-3 per cent), which is competitive with the proposed WFMOS survey (Δs/s = 1 per cent Δw ~ 4 per cent). Achieving Δw <= 1 per cent using BAO alone is beyond any currently commissioned project and will require an all-sky spectroscopic survey, such as would be undertaken by the SPACE mission concept under proposal to ESA.

  15. THE BARYON ACOUSTIC OSCILLATION BROADBAND AND BROAD-BEAM ARRAY: DESIGN OVERVIEW AND SENSITIVITY FORECASTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pober, Jonathan C.; Parsons, Aaron R.; McQuinn, Matthew

    2013-03-15

    This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z {approx} 10. At z {approx} 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver formore » these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z {approx} 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from {approx}0.5 to 1.5.« less

  16. An Experimental Study of Pressure Oscillation in a Capillary Pumped Loop with Multiple Evaporators and Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Hoang, Triem T.

    1998-01-01

    The heat transport capability of a capillary pumped loop (CPL) is limited by the pressure drop that its evaporator wick can sustain. The pressure drop in a CPL is not constant even under seemingly steady operation, but rather exhibits an oscillatory behavior. A hydrodynamic theory based on a mass-spring-dashpot model was previously developed to predict the pressure oscillation in a CPL with a single evaporator and a single condenser. The theory states that the pressure oscillation is a function of physical dimensions of the CPL components and operating conditions. Experimental data agreed very well with theoretical predictions. The hydrodynamic stability theory has recently been extended to predict the pressure oscillations in CPLs with multiple evaporators and multiple condensers. Concurrently, an experimental study was conducted to verify the theory and to investigate the effects of various parameters on the pressure oscillation. Four evaporators with different wick properties were tested using a test loop containing two condenser plates. The test loop allowed the four evaporators to be tested in a single-pump, two-pump or four-pump configuration, and the two condenser plates to be plumbed either in parallel or in series. Test conditions included varying the power input, the reservoir set point temperature, the condenser sink temperature, and the flow resistance between the reservoir and the loop. Experimental results agreed well with theoretical predictions.

  17. Study on the impulsive pressure of tank oscillating by force towards multiple degrees of freedom

    NASA Astrophysics Data System (ADS)

    Hibi, Shigeyuki

    2018-06-01

    Impulsive loads should be excited under nonlinear phenomena with free surface fluctuating severely such as sloshing and slamming. Estimating impulsive loads properly are important to recent numerical simulations. But it is still difficult to rely on the results of simulations perfectly because of the nonlinearity of the phenomena. In order to develop the algorithm of numerical simulations experimental results of nonlinear phenomena are needed. In this study an apparatus which can oscillate a tank by force was introduced in order to investigate impulsive pressure on the wall of the tank. This apparatus can oscillate it simultaneously towards 3 degrees of freedom with each phase differences. The impulsive pressure under the various combinations of oscillation direction was examined and the specific phase differences to appear the largest peak values of pressure were identified. Experimental results were verified through FFT analysis and statistical methods.

  18. Experimental and numerical characterization of the sound pressure in standing wave acoustic levitators

    NASA Astrophysics Data System (ADS)

    Stindt, A.; Andrade, M. A. B.; Albrecht, M.; Adamowski, J. C.; Panne, U.; Riedel, J.

    2014-01-01

    A novel method for predictions of the sound pressure distribution in acoustic levitators is based on a matrix representation of the Rayleigh integral. This method allows for a fast calculation of the acoustic field within the resonator. To make sure that the underlying assumptions and simplifications are justified, this approach was tested by a direct comparison to experimental data. The experimental sound pressure distributions were recorded by high spatially resolved frequency selective microphone scanning. To emphasize the general applicability of the two approaches, the comparative studies were conducted for four different resonator geometries. In all cases, the results show an excellent agreement, demonstrating the accuracy of the matrix method.

  19. Acoustic levitator for structure measurements on low temperature liquid droplets.

    PubMed

    Weber, J K R; Rey, C A; Neuefeind, J; Benmore, C J

    2009-08-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 degrees C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of approximately 22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  20. Acoustic levitator for structure measurements on low temperature liquid droplets

    NASA Astrophysics Data System (ADS)

    Weber, J. K. R.; Rey, C. A.; Neuefeind, J.; Benmore, C. J.

    2009-08-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 °C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ˜22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  1. Pressure wave propagation studies for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1992-01-01

    The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.

  2. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jin-Han, E-mail: J.H.Xie@ed.ac.uk; Vanneste, Jacques

    2014-10-15

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, andmore » viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.« less

  3. Dynamics of Oscillating and Rotating Liquid Drop using Electrostatic Levitator

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Awazu, Shigeru; Abe, Yutaka; Watanabe, Tadashi; Nishinari, Katsuhiro; Yoda, Shinichi

    2006-11-01

    In order to understand the nonlinear behavior of liquid drop with oscillatory and/or rotational motions, an experimental study was performed. The electrostatic levitator was employed to achieve liquid drop formation on ground. A liquid drop with about 3 mm in diameter was levitated. The oscillation of mode n=2 along the vertical axis was induced by an external electrostatic force. The oscillatory motions were observed to clarify the nonlinearities of oscillatory behavior. A relationship between amplitude and frequency shift was made clear and the effect of frequency shift on amplitude agreed well with the theory. The frequency shift became larger with increasing the amplitude of oscillation. To confirm the nonlinear effects, we modeled the oscillation by employing the mass-spring-damper system included the nonlinear term. The result indicates that the large-amplitude oscillation includes the effect of nonlinear oscillation. The sound pressure was imposed to rotate the liquid drop along a vertical axis by using a pair of acoustic transducers. The drop transited to the two lobed shape due to centrifugal force when nondimensional angular velocity exceeded to 0.58.

  4. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically

  5. Numerical simulation of the processes in the normal incidence tube for high acoustic pressure levels

    NASA Astrophysics Data System (ADS)

    Fedotov, E. S.; Khramtsov, I. V.; Kustov, O. Yu.

    2016-10-01

    Numerical simulation of the acoustic processes in an impedance tube at high levels of acoustic pressure is a way to solve a problem of noise suppressing by liners. These studies used liner specimen that is one cylindrical Helmholtz resonator. The evaluation of the real and imaginary parts of the liner acoustic impedance and sound absorption coefficient was performed for sound pressure levels of 130, 140 and 150 dB. The numerical simulation used experimental data having been obtained on the impedance tube with normal incidence waves. At the first stage of the numerical simulation it was used the linearized Navier-Stokes equations, which describe well the imaginary part of the liner impedance whatever the sound pressure level. These equations were solved by finite element method in COMSOL Multiphysics program in axisymmetric formulation. At the second stage, the complete Navier-Stokes equations were solved by direct numerical simulation in ANSYS CFX in axisymmetric formulation. As the result, the acceptable agreement between numerical simulation and experiment was obtained.

  6. Aerodynamic and acoustic effects of abrupt frequency changes in excised larynges.

    PubMed

    Alipour, Fariborz; Finnegan, Eileen M; Scherer, Ronald C

    2009-04-01

    To determine the aerodynamic and acoustic effects due to a sudden change from chest to falsetto register or vice versa. It was hypothesized that the continuous change in subglottal pressure and flow rate alone (pressure-flow sweep [PFS]) can trigger a mode change in the canine larynx. Ten canine larynges were each mounted over a tapered tube that supplied pressurized, heated, and humidified air. Glottographic signals were recorded during each PFS experiment, during which airflow was increased in a gradual manner for a period of 20-30 s. Abrupt changes in fundamental frequency (F(0)) and mode of vibration occurred during the PFS in the passive larynx without any change in adduction or elongation. The lower frequency mode of oscillation of the vocal folds, perceptually identified as the chest register, had relatively large amplitude oscillation, significant vocal fold contact, a rich spectral content, and a relatively loud audio signal. The higher frequency mode of oscillation, perceptually identified as falsetto, had little or no vocal fold contact and a dominant first partial. Relatively abrupt F(0) changes also occurred for gradual adduction changes, with the chest register corresponding to greater adduction, falsetto to less adduction.

  7. Assessment of chamber pressure oscillations in the Shuttle SRB

    NASA Technical Reports Server (NTRS)

    Mathes, H. B.

    1980-01-01

    Combustion stability evaluations of the Shuttle solid propellant booster motor are reviewed. Measurement of the amplitude and frequency of low level chamber pressure oscillations which have been detected in motor firings, are discussed and a statistical analysis of the data is presented. Oscillatory data from three recent motor firings are shown and the results are compared with statistical predictions which are based on earlier motor firings.

  8. How hummingbirds hum: Acoustic holography of hummingbirds during maneuvering flight

    NASA Astrophysics Data System (ADS)

    Hightower, Ben; Wijnings, Patrick; Ingersoll, Rivers; Chin, Diana; Scholte, Rick; Lentink, David

    2017-11-01

    Hummingbirds make a characteristic humming sound when they flap their wings. The physics and the biological significance of hummingbird aeroacoustics is still poorly understood. We used acoustic holography and high-speed cameras to determine the acoustic field of six hummingbirds while they either hovered stationary in front of a flower or maneuvered to track flower motion. We used a robotic flower that oscillated either laterally or longitudinally with a linear combination of 20 different frequencies between 0.2 and 20 Hz, a range that encompasses natural flower vibration frequencies in wind. We used high-speed marker tracking to dissect the transfer function between the moving flower, the head, and body of the bird. We also positioned four acoustic arrays equipped with 2176 microphones total above, below, and in front of the hummingbird. Acoustic data from the microphones were back-propagated to planes adjacent to the hummingbird to create the first real-time holograms of the pressure field a hummingbird generates in vivo. Integration of all this data offers insight into how hummingbirds modulate the acoustic field during hovering and maneuvering flight.

  9. Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Finneran, James J.; Carder, Donald A.; Ridgway, Sam H.

    2002-01-01

    The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.

  10. An oxygen pressure sensor using surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  11. Acoustically enhanced heat exchange and drying apparatus

    DOEpatents

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  12. Understanding the use of continuous oscillating positive airway pressure (bubble CPAP) to treat neonatal respiratory disease: an engineering approach.

    PubMed

    Manilal-Reddy, P I; Al-Jumaily, A M

    2009-01-01

    A continuous oscillatory positive airway pressure with pressure oscillations incidental to the mean airway pressure (bubble CPAP) is defined as a modified form of traditional continuous positive airway pressure (CPAP) delivery where pressure oscillations in addition to CPAP are administered to neonates with lung diseases. The mechanical effect of the pressure oscillations on lung performance is investigated by formulating mathematical models of a typical bubble CPAP device and a simple representation of a neonatal respiratory system. Preliminary results of the respiratory system's mechanical response suggest that bubble CPAP may improve lung performance by minimizing the respiratory system impedance and that the resonant frequency of the respiratory system may be a controlling factor. Additional steps in terms of clinical trials and a more complex respiratory system model are required to gain a deeper insight into the mechanical receptiveness of the respiratory system to pressure oscillations. However, the current results are promising in that they offer a deeper insight into the trends of variations that can be expected in future extended models as well as the model philosophies that need to be adopted to produce results that are compatible with experimental verification.

  13. Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: the example of the accordion reed.

    PubMed

    Ricot, Denis; Caussé, René; Misdariis, Nicolas

    2005-04-01

    The accordion reed is an example of a blown-closed free reed. Unlike most oscillating valves in wind musical instruments, self-sustained oscillations occur without acoustic coupling. Flow visualizations and measurements in water show that the flow can be supposed incompressible and potential. A model is developed and the solution is calculated in the time domain. The excitation force is found to be associated with the inertial load of the unsteady flow through the reed gaps. Inertial effect leads to velocity fluctuations in the reed opening and then to an unsteady Bernoulli force. A pressure component generated by the local reciprocal air movement around the reed is added to the modeled aerodynamic excitation pressure. Since the model is two-dimensional, only qualitative comparisons with air flow measurements are possible. The agreement between the simulated pressure waveforms and measured pressure in the very near-field of the reed is reasonable. In addition, an aeroacoustic model using the permeable Ffowcs Williams-Hawkings integral method is presented. The integral expressions of the far-field acoustic pressure are also computed in the time domain. In agreement with experimental data, the sound is found to be dominated by the dipolar source associated by the strong momentum fluctuations of the flow through the reed gaps.

  14. Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: The example of the accordion reed

    NASA Astrophysics Data System (ADS)

    Ricot, Denis; Caussé, René; Misdariis, Nicolas

    2005-04-01

    The accordion reed is an example of a blown-closed free reed. Unlike most oscillating valves in wind musical instruments, self-sustained oscillations occur without acoustic coupling. Flow visualizations and measurements in water show that the flow can be supposed incompressible and potential. A model is developed and the solution is calculated in the time domain. The excitation force is found to be associated with the inertial load of the unsteady flow through the reed gaps. Inertial effect leads to velocity fluctuations in the reed opening and then to an unsteady Bernoulli force. A pressure component generated by the local reciprocal air movement around the reed is added to the modeled aerodynamic excitation pressure. Since the model is two-dimensional, only qualitative comparisons with air flow measurements are possible. The agreement between the simulated pressure waveforms and measured pressure in the very near-field of the reed is reasonable. In addition, an aeroacoustic model using the permeable Ffowcs Williams-Hawkings integral method is presented. The integral expressions of the far-field acoustic pressure are also computed in the time domain. In agreement with experimental data, the sound is found to be dominated by the dipolar source associated by the strong momentum fluctuations of the flow through the reed gaps. .

  15. Surface-acoustic-wave (SAW) flow sensor

    NASA Astrophysics Data System (ADS)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  16. Surface-acoustic-wave (SAW) flow sensor.

    PubMed

    Joshi, S G

    1991-01-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  17. Evaluation of Acoustic Emission SHM of PRSEUS Composite Pressure Cube Tests

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2013-01-01

    A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) pressure cube were conducted during third quarter 2011 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. The AE signals of the later tests are consistent with the final failure progression through two of the pressure cube panels. Calibration tests and damage precursor AE indications, from preliminary checkout pressurizations, indicated areas of concern that eventually failed. Hence those tests have potential for vehicle health monitoring.

  18. The trade-off characteristics of acoustic and pressure sensors for the NASP

    NASA Technical Reports Server (NTRS)

    Winkler, Martin; Bush, Chuck

    1992-01-01

    Results of a trade study for the development of pressure and acoustic sensors for use on the National Aerospace Plane (NASP) are summarized. Pressure sensors are needed to operate to 100 psia; acoustic sensors are needed that can give meaningful information about a 200 dB sound pressure level (SPL) environment. Both sensors will have to operate from a high temperature of 2000 F down to absolute zero. The main conclusions of the study are the following: (1) Diaphragm materials limit minimum size and maximum frequency response attainable. (2) No transduction is available to meet all the NASP requirements with existing technology. (3) Capacitive sensors are large relative to the requirement, have limited resolution and frequency response due to noise, and cable length is limited to approximately 20 feet. (4) Eddy current sensors are large relative to the requirement and have limited cable lengths. (5) Fiber optic sensors provide the possibility for a small sensor, even though present developments do not exhibit that characteristic. The need to use sapphire at high temperature complicates the design. Present high temperature research sensors suffer from poor resolution. A significant development effort will be required to realize the potential of fiber optics. (6) Short-term development seems to favor eddy current techniques with the penalty of larger size and reduced dynamic range for acoustic sensors. (7) Long-term development may favor fiber optics with the penalties of cost, schedule, and uncertainty.

  19. Acoustic velocity measurements in materials using a regenerative method

    DOEpatents

    Laine, Edwin F.

    1986-01-01

    Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  20. Acoustic-velocity measurements in materials using a regenerative method

    DOEpatents

    Laine, E.F.

    1982-09-30

    Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  1. An acoustic switch.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2014-01-01

    The benefits derived from the development of acoustic transistors which act as switches or amplifiers have been reported in the literature. Here we propose a model of acoustic switch. We theoretically demonstrate that the device works: the input signal is totally restored at the output when the switch is on whereas the output signal nulls when the switch is off. The switch, on or off, depends on a secondary acoustic field capable to manipulate the main acoustic field. The model relies on the attenuation effect of many oscillating bubbles on the main travelling wave in the liquid, as well as on the capacity of the secondary acoustic wave to move the bubbles. This model evidences the concept of acoustic switch (transistor) with 100% efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A linear acoustic model for intake wave dynamics in IC engines

    NASA Astrophysics Data System (ADS)

    Harrison, M. F.; Stanev, P. T.

    2004-01-01

    In this paper, a linear acoustic model is described that has proven useful in obtaining a better understanding of the nature of acoustic wave dynamics in the intake system of an internal combustion (IC) engine. The model described has been developed alongside a set of measurements made on a Ricardo E6 single cylinder research engine. The simplified linear acoustic model reported here produces a calculation of the pressure time-history in the port of an IC engine that agrees fairly well with measured data obtained on the engine fitted with a simple intake system. The model has proved useful in identifying the role of pipe resonance in the intake process and has led to the development of a simple hypothesis to explain the structure of the intake pressure time history: the early stages of the intake process are governed by the instantaneous values of the piston velocity and the open area under the valve. Thereafter, resonant wave action dominates the process. The depth of the early depression caused by the moving piston governs the intensity of the wave action that follows. A pressure ratio across the valve that is favourable to inflow is maintained and maximized when the open period of the valve is such to allow at least, but no more than, one complete oscillation of the pressure at its resonant frequency to occur while the valve is open.

  3. Panel acoustic contribution analysis.

    PubMed

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  4. 1998 Physical Acoustics Summer School (PASS 98). Volume III: Background Materials.

    DTIC Science & Technology

    1998-01-01

    propagating hydrodynamic soliton ■ Shock waves, N waves, and sound eating sound ■ Acoustic Bernoulli effect ■ Acoustic levitation ■ Acoustic match ...cess. The resulting saturation values are given in the diagrams and nicely match the values given in (10). Delay reconstructions using the experimen...VOLUME 47, NUMBER 20 PHYSICAL REVIEW LETTERS 16 NOVEMBER 1981 oscillations of the driving sound field match three oscillations of the natural

  5. Neural Network Burst Pressure Prediction in Graphite/Epoxy Pressure Vessels from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Walker, James L., II; Rowell, Ginger H.

    1995-01-01

    Acoustic emission (AE) data were taken during hydroproof for three sets of ASTM standard 5.75 inch diameter filament wound graphite/epoxy bottles. All three sets of bottles had the same design and were wound from the same graphite fiber; the only difference was in the epoxies used. Two of the epoxies had similar mechanical properties, and because the acoustic properties of materials are a function of their stiffnesses, it was thought that the AE data from the two sets might also be similar; however, this was not the case. Therefore, the three resin types were categorized using dummy variables, which allowed the prediction of burst pressures all three sets of bottles using a single neural network. Three bottles from each set were used to train the network. The resin category, the AE amplitude distribution data taken up to 25 % of the expected burst pressure, and the actual burst pressures were used as inputs. Architecturally, the network consisted of a forty-three neuron input layer (a single categorical variable defining the resin type plus forty-two continuous variables for the AE amplitude frequencies), a fifteen neuron hidden layer for mapping, and a single output neuron for burst pressure prediction. The network trained on all three bottle sets was able to predict burst pressures in the remaining bottles with a worst case error of + 6.59%, slightly greater than the desired goal of + 5%. This larger than desired error was due to poor resolution in the amplitude data for the third bottle set. When the third set of bottles was eliminated from consideration, only four hidden layer neurons were necessary to generate a worst case prediction error of - 3.43%, well within the desired goal.

  6. Unsteady pressure measurements on a biconvex airfoil in a transonic oscillating cascade

    NASA Technical Reports Server (NTRS)

    Shaw, L. M.; Boldman, D. R.; Buggele, A. E.; Buffum, D. H.

    1985-01-01

    Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfroils were simultaneously driven to provide 1.2 deg of pitching motion about the midchord. Initial tests were performed at an incidence and angle of 0 deg and A Mach number of 0.65 in order to obtain results in a shock-free compressible flowfield. Subsequent tests were performed at an incidence angle of 7 deg and Mach number of 0.8 in order to observe the surface pressures with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90 and -90 deg and at blade oscillatory frequencies of 200 and 500 Hz (semi-chord reduced frequencies up to about 0.5 at a Mach number of 0.8). Results from the zero-incidence cascade are compared with a classical unsteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airfoil pressure data are tabulated.

  7. The efficiency of ultrasonic oscillations transfer into the load

    NASA Astrophysics Data System (ADS)

    Abramov, O. V.; Abramov, V. O.; Mullakaev, M. S.; Artem'ev, V. V.

    2009-11-01

    The results of ultrasonic action to the substances have been presented. It is examined, the correlation between the electrical parameters of ultrasonic equipment and acoustic performances of the ultrasonic field in treating the medium, the efficiency of ultrasonic technological facility, and the peculiarities of oscillations introduced into the load under cavitation development. The correlation between the acoustic powers of oscillations securing the needed level of cavitation and desired technological effect, and the electrical parameters of the ultrasonic facility, first of all, the power, is established. The peculiarities of cavitation development in liquids with different physical-chemical properties (including the molten low-melting metals) have been studied, and the acoustic power of oscillations introduced into the load under input variation of electric power to the generator has been also estimated.

  8. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H [Albuquerque, NM; Fleming, James G [Albuquerque, NM; Tuck, Melanie R [Albuquerque, NM

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  9. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  10. Acoustic radiation from weakly wrinkled premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh

    2006-01-01

    This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of themore » flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.« less

  11. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  12. PACT - a bottom pressure based, compact deep-ocean tsunameter with acoustic surface coupling

    NASA Astrophysics Data System (ADS)

    Macrander, A.; Gouretski, V.; Boebel, O.

    2009-04-01

    The German-Indonsian Tsunami Early Warning System (GITEWS) processes a multitude of information to comprehensively and accurately evaluate the possible risks inherent to seismic events around Indonesia. Within just a few minutes, measurements of the vibration and horizontal movements off the coastal regions of Indonesia provide a clear picture of the location and intensity of a seaquake. However, not every seaquake causes a tsunami, nor is every tsunami caused by a seaquake. To avoid nerve-wrecking and costly false alarms and to protect against tsunamis caused by landslides, the oceanic sea-level must be measured directly. This goal is pursued in the GITEWS work package "ocean instrumentation", aiming at a a highest reliability and redundancy by developing a set of independent instruments, which measure the sea-level both offshore in the deep ocean and at the coast on the islands off Indonesia. Deep ocean sea-level changes less than a centimetre can be detected by pressure gauges deployed at the sea floor. Based on some of the concepts developed as part of the US DART system, a bottom pressure based, acoustically coupled tsunami detector (PACT) was developed under the auspices of the AWI in collaboration with two German SME and with support of University of Bremen and University of Rhode Island. The PACT system records ocean bottom pressure, performs on-board tsunami detection and acoustically relays the data to the surface buoy. However, employing computational powers and communication technologies of the new millennium, PACT integrates the entire sea-floor package (pressure gauge, data logger and analyzer, acoustic modem, acoustic release and relocation aids) into a single unit, i.e. a standard benthos sphere. PACT thereby reduces costs, minimizes the deployment efforts, while maximizing reliability and maintenance intervals. Several PACT systems are scheduled for their first deployment off Indonesia during 2009. In this presentation, the technical specifications

  13. Correlation of combustor acoustic power levels inferred from internal fluctuating pressure measurements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1978-01-01

    Combustion chamber acoustic power levels inferred from internal fluctuating pressure measurements are correlated with operating conditions and chamber geometries over a wide range. The variables include considerations of chamber design (can, annular, and reverse-flow annular) and size, number of fuel nozzles, burner staging and fuel split, airflow and heat release rates, and chamber inlet pressure and temperature levels. The correlated data include those obtained with combustion component development rigs as well as engines.

  14. Determination of decay coefficients for combustors with acoustic absorbers

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.; Espander, W. R.; Baer, M. R.

    1972-01-01

    An analytical technique for the calculation of linear decay coefficients in combustors with acoustic absorbers is presented. Tuned circumferential slot acoustic absorbers were designed for the first three transverse modes of oscillation, and decay coefficients for these absorbers were found as a function of backing distance for seven different chamber configurations. The effectiveness of the absorbers for off-design values of the combustion response and acoustic mode is also investigated. Results indicate that for tuned absorbers the decay coefficient increases approximately as the cube of the backing distance. For most off-design situations the absorber still provides a damping effect. However, if an absorber designed for some higher mode of oscillation is used to damp lower mode oscillations, a driving effect is frequently found.

  15. Investigation of the Mechanism of Generation of Acoustic Oscillations inside Complicated Curvilinear Channels

    NASA Astrophysics Data System (ADS)

    Mitrofanova, O. V.; Bayramukov, A. S.; Fedorinov, A. V.

    2017-11-01

    There are presented some results of computational-theoretical research on identifying thermo-physical features and topology of high-velocity curved and swirl flows, which are occur inside complicated channels of collector systems, active zones and nuclear power installations equipment with pressurized water reactors. Cylindrical curved channels of different configurations and various combinations of bends and cross sectional areas were considered as modeling objects. Results of computational experiments to determine velocity, pressure, vorticity and temperature fields in transverse and longitudinal sections of the pipeline showed that the complicated geometry of the channels can cause to large-scale swirl of flow, cavitation effects and generation acoustic fluctuations with wide spectrum of sound frequencies for the coolant in the dynamic modes.

  16. The Effect of Fabric Position to the Distribution of Acoustic Pressure Field in Ultrasonic Bath

    NASA Astrophysics Data System (ADS)

    Gürses, B. O.; Özdemir, A. O.; Tonay, Ö.; Şener, M.; Perinçek, S.

    2017-10-01

    Nowadays, the use of ultrasonic energy in textile wet processes at industrial-scale is limited. It is largely due to the lack of understanding about design, operational and performance characteristics of the ultrasonic bath, suitable for textile treatments. In the context of this study, the effect of fabric position, as one of the design parameter, to the distribution of acoustic pressure field in ultrasonic bath was investigated. The ultrasonic bath in the size 20×30 cm2 with one transducer at frequency 40 kHz was used in experiments. The cotton fabric with 1 mm thickness was moved along vertical and horizontal directions of the ultrasonic bath. The acoustic field and cavitation volume density in the bath is analyzed by COMSOL Multiphysic. The cavitation volume density is calculated by comparing the pressure points in the bath with cavitation threshold pressure. Consequently, it was found that the position of the textile material in the ultrasonic bath is one of the most important factors to achieve the uniform and maximum acoustic cavitation field. So, it should be taken into consideration during the design of industrial-scale ultrasonic bath used in textile wet processes.

  17. Pattern-formation under acoustic driving forces

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  18. GHz Yb:KYW oscillators in time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Changxiu; Krauß, Nico; Schäfer, Gerhard; Ebner, Lukas; Kliebisch, Oliver; Schmidt, Johannes; Winnerl, Stephan; Hettich, Mike; Dekorsy, Thomas

    2018-02-01

    A high-speed asynchronous optical sampling system (ASOPS) based on Yb:KYW oscillators with 1-GHz repetition rate is reported. Two frequency-offset-stabilized diode-pumped Yb:KYW oscillators are employed as pump and probe source, respectively. The temporal resolution of this system within 1-ns time window is limited to 500 fs and the noise floor around 10-6 (ΔR/R) close to the shot-noise level is obtained within an acquisition time of a few seconds. Coherent acoustic phonons are investigated by measuring multilayer semiconductor structures with multiple quantum wells and aluminum/silicon membranes in this ASOPS system. A wavepacket-like phonon sequence at 360 GHz range is detected in the semiconductor structures and a decaying sequence of acoustic oscillations up to 200 GHz is obtained in the aluminum/silicon membranes. Coherent acoustic phonons generated from semiconductor structures are further manipulated by a double pump scheme through pump time delay control.

  19. Fracture hydromechanical response measured by fiber optic distributed acoustic sensing at milliHertz frequencies

    NASA Astrophysics Data System (ADS)

    Becker, M. W.; Ciervo, C.; Cole, M.; Coleman, T.; Mondanos, M.

    2017-07-01

    A new method of measuring dynamic strain in boreholes was used to record fracture displacement in response to head oscillation. Fiber optic distributed acoustic sensing (DAS) was used to measure strain at mHz frequencies, rather than the Hz to kHz frequencies typical for seismic and acoustic monitoring. Fiber optic cable was mechanically coupled to the wall of a borehole drilled into fractured crystalline bedrock. Oscillating hydraulic signals were applied at a companion borehole 30 m away. The DAS instrument measured fracture displacement at frequencies of less than 1 mHz and amplitudes of less than 1 nm, in response to fluid pressure changes of less 20 Pa (2 mm H2O). Displacement was linearly related to the log of effective stress, a relationship typically explained by the effect of self-affine fracture roughness on fracture closure. These results imply that fracture roughness affects closure even when displacement is a million times smaller than the fracture aperture.

  20. The acoustic characteristics of turbomachinery cavities

    NASA Technical Reports Server (NTRS)

    Lucas, M. J.; Noreen, R.; Southerland, L. D.; Cole, J., III; Junger, M.

    1995-01-01

    Internal fluid flows are subject not only to self-sustained oscillations of the purely hydrodynamic type but also to the coupling of the instability with the acoustic mode of the surrounding cavity. This situation is common to turbomachinery, since flow instabilities are confined within a flow path where the acoustic wavelength is typically smaller than the dimensions of the cavity and flow speeds are low enough to allow resonances. When acoustic coupling occurs, the fluctuations can become so severe in amplitude that it may induce structural failure of engine components. The potential for catastrophic failure makes identifying flow-induced noise and vibration sources a priority. In view of the complexity of these types of flows, this report was written with the purpose of presenting many of the methods used to compute frequencies for self-sustained oscillations. The report also presents the engineering formulae needed to calculate the acoustic resonant modes for ducts and cavities. Although the report is not a replacement for more complex numerical or experimental modeling techniques, it is intended to be used on general types of flow configurations that are known to produce self-sustained oscillations. This report provides a complete collection of these models under one cover.

  1. A Neural Network/Acoustic Emission Analysis of Impact Damaged Graphite/Epoxy Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Hill, Erik v. K.; Workman, Gary L.; Russell, Samuel S.

    1995-01-01

    Acoustic emission (AE) signal analysis has been used to measure the effects of impact damage on burst pressure in 5.75 inch diameter, inert propellant filled, filament wound pressure vessels. The AE data were collected from fifteen graphite/epoxy pressure vessels featuring five damage states and three resin systems. A burst pressure prediction model was developed by correlating the AE amplitude (frequency) distribution, generated during the first pressure ramp to 800 psig (approximately 25% of the average expected burst pressure for an undamaged vessel) to known burst pressures using a four layered back propagation neural network. The neural network, trained on three vessels from each resin system, was able to predict burst pressures with a worst case error of 5.7% for the entire fifteen bottle set.

  2. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    PubMed

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.

  3. The effect of the configuration of a single electrode corona discharge on its acoustic characteristics

    NASA Astrophysics Data System (ADS)

    Zhu, Xinlei; Zhang, Liancheng; Huang, Yifan; Wang, Jin; Liu, Zhen; Yan, Keping

    2017-07-01

    A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that of arc discharge based systems. A simple electrode structure was investigated in order to improve the electro-acoustic energy efficiency of the spark discharge. Experiments were carried out on an experimental setup with discharge in water driven by a pulsed power source. The voltage-current waveform, acoustic signal and bubble oscillation were recorded when the relative position of the electrode varied. The electro-acoustic energy efficiency was also calculated. The load voltage had a saltation for the invaginated electrode tip, namely an obvious voltage remnant. The more the electrode tip was invaginated, the larger the pressure peaks and first period became. The results show that electrode recessing into the insulating layer is a simple and effective way to improve the electro-acoustic energy efficiency from 2% to about 4%.

  4. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  5. Liquid mercury sound velocity measurements under high pressure and high temperature by picosecond acoustics in a diamond anvils cell

    NASA Astrophysics Data System (ADS)

    Decremps, F.; Belliard, L.; Couzinet, B.; Vincent, S.; Munsch, P.; Le Marchand, G.; Perrin, B.

    2009-07-01

    Recent improvements to measure ultrasonic sound velocities of liquids under extreme conditions are described. Principle and feasibility of picosecond acoustics in liquids embedded in a diamond anvils cell are given. To illustrate the capability of these advances in the sound velocity measurement technique, original high pressure and high temperature results on the sound velocity of liquid mercury up to 5 GPa and 575 K are given. This high pressure technique will certainly be useful in several fundamental and applied problems in physics and many other fields such as geophysics, nonlinear acoustics, underwater sound, petrology or physical acoustics.

  6. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to

  7. Fourier and wavelet analyses of intermittent and resonant pressure components in a slot burner

    NASA Astrophysics Data System (ADS)

    Pagliaroli, Tiziano; Mancinelli, Matteo; Troiani, Guido; Iemma, Umberto; Camussi, Roberto

    2018-01-01

    In laboratory-scale burner it has been observed that the acoustic excitations change the flame topology inducing asymmetry and oscillations. Hence, an acoustic and aeroacoustic study in non reactive condition is of primary importance during the design stage of a new burner in order to avoid the development of standing waves which can force the flame. So wall pressure fluctuations inside and outside of a novel slot burner have been studied experimentally and numerically for a broad range of geometrical parameters and mass flow rates. Wall pressure fluctuations have been measured through cavity-mounted microphones, providing uni- and multi-variate pressure statistics in both the time and frequency domains. Furthermore, since the onset of combustion-driven oscillations is always presaged by intermittent bursts of high amplitude, a wavelet-based conditional sampling procedure was applied to the database in order to detect coherent signatures embedded in the pressure time signals. Since for a particular case the coherent structures identified have a multi-scale signature, a wavelet-based decomposition technique was proposed as well to separate the contribution of the large- and small-scale flow structures to the pressure fluctuation field. As a main outcome of the activity no coupling between standing waves and velocity fluctuations was observed, but only well localized pressure signatures with shape strongly affected by the neighbouring flow physics.

  8. Investigation of energetic particle induced geodesic acoustic mode

    NASA Astrophysics Data System (ADS)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  9. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-11-01

    Electron Acoustic Waves (EAW) are the low frequency branch of electrostatic plasma waves. These waves exist in neutralized plasmas, pure electron plasmas and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing mθ= 0 mz= 1 EAWs in a pure ion plasma column. At small amplitude, the EAWs have a phase velocity vph ˜1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v <=vph <=2.1 v. This frequency variability comes from the plasma adjusting its velocity distribution so as to make the EAW resonant with the drive frequency. Our wave-coherent laser-induced fluorescence diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.

  10. Research on Acoustical Scattering, Diffraction Catastrophes, Optics of Bubbles, Photoacoustics, and Acoustical Phase Conjugation.

    DTIC Science & Technology

    1987-09-15

    optical levitation of bubbles; D. Acoustical and optical diffraction catastrophes (theory and optical simulation of transverse cusps, experiments with...35 C. Optical Levitation of Bubbles in Water by the Radiation Pressure of a Laser Beam: An Acoustically Quiet Levitator ...radiation pressure of a laser beam: an acoustically quiet levitator ," J. Acoust . Soc. Am. (submitted July 1987). C. Books (and sections thereof) Published

  11. Frequency response of nonlinear oscillations of air column in a tube with an array of Helmholtz resonators.

    PubMed

    Sugimoto, N; Masuda, M; Hashiguchi, T

    2003-10-01

    Nonlinear cubic theory is developed to obtain a frequency response of shock-free, forced oscillations of an air column in a closed tube with an array of Helmholtz resonators connected axially. The column is assumed to be driven by a plane piston sinusoidally at a frequency close or equal to the lowest resonance frequency with its maximum displacement fixed. By applying the method of multiple scales, the equation for temporal modulation of a complex pressure amplitude of the lowest mode is derived in a case that a typical acoustic Mach number is comparable with the one-third power of the piston Mach number, while the relative detuning of a frequency is comparable with the quadratic order of the acoustic Mach number. The steady-state solution gives the asymmetric frequency response curve with bending (skew) due to nonlinear frequency upshift in addition to the linear downshift. Validity of the theory is checked against the frequency response obtained experimentally. For high amplitude of oscillations, an effect of jet loss at the throat of the resonator is taken into account, which introduces the quadratic loss to suppress the peak amplitude. It is revealed that as far as the present check is concerned, the weakly nonlinear theory can give quantitatively adequate description up to the pressure amplitude of about 3% to the equilibrium pressure.

  12. Acoustic design of boundary segments in aircraft fuselages using topology optimization and a specialized acoustic pressure function

    NASA Astrophysics Data System (ADS)

    Radestock, Martin; Rose, Michael; Monner, Hans Peter

    2017-04-01

    In most aviation applications, a major cost benefit can be achieved by a reduction of the system weight. Often the acoustic properties of the fuselage structure are not in the focus of the primary design process, too. A final correction of poor acoustic properties is usually done using insulation mats in the chamber between the primary and secondary shell. It is plausible that a more sophisticated material distribution in that area can result in a substantially reduced weight. Topology optimization is a well-known approach to reduce material of compliant structures. In this paper an adaption of this method to acoustic problems is investigated. The gap full of insulation mats is suitably parameterized to achieve different material distributions. To find advantageous configurations, the objective in the underlying topology optimization is chosen to obtain good acoustic pressure patterns in the aircraft cabin. An important task in the optimization is an adequate Finite Element model of the system. This can usually not be obtained from commercially available programs due to the lack of special sensitivity data with respect to the design parameters. Therefore an appropriate implementation of the algorithm has been done, exploiting the vector and matrix capabilities in the MATLABQ environment. Finally some new aspects of the Finite Element implementation will also be presented, since they are interesting on its own and can be generalized to efficiently solve other partial differential equations as well.

  13. Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures

    PubMed Central

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2015-01-01

    Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques. PMID:24351961

  14. Transcranial Assessment and Visualization of Acoustic Cavitation: Modeling and Experimental Validation

    PubMed Central

    Clement, Gregory T.; McDannold, Nathan

    2015-01-01

    The interaction of ultrasonically-controlled microbubble oscillations (acoustic cavitation) with tissues and biological media has been shown to induce a wide range of bioeffects that may have significant impact to therapy and diagnosis of central nervous system diseases and disorders. However, the inherently non-linear microbubble oscillations combined with the micrometer and microsecond scales involved in these interactions and the limited methods to assess and visualize them transcranially hinder both their optimal use and translation to the clinics. To overcome these challenges, we present a noninvasive and clinically relevant framework that combines numerical simulations with multimodality imaging to assess and visualize the microbubble oscillations transcranially. In the present work, acoustic cavitation was studied with an integrated US and MR imaging guided clinical FUS system in non-human primates. This multimodality imaging system allowed us to concurrently induce and visualize acoustic cavitation transcranially. A high-resolution brain CT-scan that allowed us to determine the head acoustic properties (density, speed of sound, and absorption) was also co-registered to the US and MR images. The derived acoustic properties and the location of the targets that were determined by the 3D-CT scans and the post sonication MRI respectively were then used as inputs to two-and three-dimensional Finite Difference Time Domain (2D, 3D-FDTD) simulations that matched the experimental conditions and geometry. At the experimentally-determined target locations, synthetic point sources with pressure amplitude traces derived by either a Gaussian function or the output of a microbubble dynamics model were numerically excited and propagated through the skull towards a virtual US imaging array. Then, using passive acoustic mapping that was refined to incorporate variable speed of sound, we assessed the losses and aberrations induced by the skull as a function of the acoustic

  15. Baryon acoustic oscillations in the Ly α forest of BOSS quasars

    DOE PAGES

    Busca, N. G.; Delubac, T.; Rich, J.; ...

    2013-04-04

    In this paper, we report a detection of the baryon acoustic oscillation (BAO) feature in the three-dimensional correlation function of the transmitted flux fraction in the Lyα forest of high-redshift quasars. The study uses 48,640 quasars in the redshift rangemore » $$2.1\\le z \\le 3.5$$ from the Baryon Oscillation Spectroscopic Survey (BOSS) of the third generation of the Sloan Digital Sky Survey (SDSS-III). At a mean redshift $z=2.3$, we measure the monopole and quadrupole components of the correlation function for separations in the range 20 h -1 Mpc < r < 200 h -1. A peak in the correlation function is seen at a separation equal to $$(1.01\\pm0.03)$$ times the distance expected for the BAO peak within a concordance $$\\Lambda$$CDM cosmology. This first detection of the BAO peak at high redshift, when the universe was strongly matter dominated, results in constraints on the angular diameter distance D A and the expansion rate $H$ at $z=2.3$ that, combined with priors on $$H_0$$ and the baryon density, require the existence of dark energy. Combined with constraints derived from Cosmic Microwave Background (CMB) observations, this result implies $$H(z=2.3)=(224\\pm8){\\rm km\\,s^{-1}Mpc^{-1}}$$, indicating that the time derivative of the cosmological scale parameter $$\\dot{a}=H(z=2.3)/(1+z)$$ is significantly greater than that measured with BAO at $$z\\sim0.5$$. This demonstrates that the expansion was decelerating in the range 0.7 < z < 2.3 , as expected from the matter domination during this epoch. Finally, combined with measurements of H 0, one sees the pattern of deceleration followed by acceleration characteristic of a dark-energy dominated universe.« less

  16. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  17. Giant frequency down-conversion of the dancing acoustic bubble

    PubMed Central

    Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.

    2016-01-01

    We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave. PMID:27857217

  18. Giant frequency down-conversion of the dancing acoustic bubble

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.

    2016-11-01

    We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave.

  19. α-Adrenergic effects on low-frequency oscillations in blood pressure and R-R intervals during sympathetic activation.

    PubMed

    Kiviniemi, Antti M; Frances, Maria F; Tiinanen, Suvi; Craen, Rosemary; Rachinsky, Maxim; Petrella, Robert J; Seppänen, Tapio; Huikuri, Heikki V; Tulppo, Mikko P; Shoemaker, J Kevin

    2011-08-01

    The present study was designed to address the contribution of α-adrenergic modulation to the genesis of low-frequency (LF; 0.04-0.15 Hz) oscillations in R-R interval (RRi), blood pressure (BP) and muscle sympathetic nerve activity (MSNA) during different sympathetic stimuli. Blood pressure and RRi were measured continuously in 12 healthy subjects during 5 min periods each of lower body negative pressure (LBNP; -40 mmHg), static handgrip exercise (HG; 20% of maximal force) and postexercise forearm circulatory occlusion (PECO) with and without α-adrenergic blockade by phentolamine. Muscle sympathetic nerve activity was recorded in five subjects during LBNP and in six subjects during HG and PECO. Low-frequency powers and median frequencies of BP, RRi and MSNA were calculated from power spectra. Low-frequency power during LBNP was lower with phentolamine versus without for both BP and RRi oscillations (1.6 ± 0.6 versus 1.2 ± 0.7 ln mmHg(2), P = 0.049; and 6.9 ± 0.8 versus 5.4 ± 0.9 ln ms(2), P = 0.001, respectively). In contrast, the LBNP with phentolamine increased the power of high-frequency oscillations (0.15-0.4 Hz) in BP and MSNA (P < 0.01 for both), which was not observed during saline infusion. Phentolamine also blunted the increases in the LBNP-induced increase in frequency of LF oscillations in BP and RRi. Phentolamine decreased the LF power of RRi during HG (P = 0.015) but induced no other changes in LF powers or frequencies during HG. Phentolamine resulted in decreased frequency of LF oscillations in RRi (P = 0.004) during PECO, and a similar tendency was observed in BP and MSNA. The power of LF oscillation in MSNA did not change during any intervention. We conclude that α-adrenergic modulation contributes to LF oscillations in BP and RRi during baroreceptor unloading (LBNP) but not during static exercise. Also, α-adrenergic modulation partly explains the shift to a higher frequency of LF oscillations during baroreceptor unloading and muscle

  20. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Coronal magnetohydrodynamic waves and oscillations: observations and quests.

    PubMed

    Aschwanden, Markus J

    2006-02-15

    Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.

  2. Magnetic Oscillations Mark Sites of Magnetic Transients in an Acoustically Active Flare

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles A.; Donea, A.; Hudson, H. S.; Martinez Oliveros, J.; Hanson, C.

    2011-05-01

    The flare of 2011 February 15, in NOAA AR11158, was the first acoustically active flare of solar cycle 24, and the first observed by the Solar Dynamics Observatory (SDO). It was exceptional in a number of respects (Kosovichev 2011a,b). Sharp ribbon-like transient Doppler, and magnetic signatures swept over parts of the active region during the impulsive phase of the flare. We apply seismic holography to a 2-hr time series of HMI observations encompassing the flare. The acoustic source distribution appears to have been strongly concentrated in a single highly compact penumbral region in which the continuum-intensity signature was unusually weak. The line-of-sight magnetic transient was strong in parts of the active region, but relatively weak in the seismic-source region. On the other hand, the neighbourhoods of the regions visited by the strongest magnetic transients maintained conspicuous 5-minutes-period variations in the line of sight magnetic signature for the full 2-hr duration of the time series, before the flare as well as after. We apply standard helioseismic control diagnostics for clues as to the physics underlying 5-minute magnetic oscillations in regions conducive to magnetic transients during a flare and consider the prospective development of this property as an indicator of flare potentiality on some time scale. We make use of high-resolution data from AIA, using diffracted images where necessary to obtain good photometry where the image is otherwise saturated. This is relevant to seismic emission driven by thick-target heating in the absence of back-warming. We also use RHESSI imaging spectroscopy to compare the source distributions of HXR and seismic emission.

  3. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    USGS Publications Warehouse

    Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.

    2006-01-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.

  4. Investigation of the Influence of Acoustic Oscillation Parameters on the Mechanism of Waste Rubber Products Combustion

    NASA Astrophysics Data System (ADS)

    Shakurov, R. F.; Sitnikov, O. R.; Galimova, A. I.; Sabitova, A. F.

    2018-03-01

    The article presents an analysis of the used methods of recycling of waste rubber products. The worn out tires are exposed to natural decomposition only after 50 - 100 years, and toxic organic compounds used in the manufacture constitute a danger to the environment. It contemplates a method of recycling waste rubber products in devices where pulsating combustion is realized. The dependence of the influence of acoustic pulsation parameters on the combustion mechanism of waste rubber products and on the composition of combustion products was experimentally investigated and established. For this purpose, the setup scheme based on the Rijke effect is optimized. The resonance pipe is coaxially embedded in the shaft. The known mathematical model of finding the combustion zones in the Rijke pipe, corresponding to the gas flow oscillations with the maximum amplitude, is applied to the chosen scheme. Investigations were carried out for three positions of the grate relative to the lower section of the experimental pipe, in which 1st, 2nd, 3rd modes of oscillation are formed. There are favorable conditions arise for the secondary combustion of mechanical particles entrained in the gas flow in the tube. The favorable conditions for afterburning also include the fact that through the upper section of the resonant pipe, the ambient air, caused by the features of the standing wave, is mixed into the gas stream. A comparative analysis of the change of gas concentration composition along the length of the resonance tube is carried out. It is established that the basic mode of oscillations contributes to the reduction of nitrogen oxides, in comparison with the oscillations occurring simultaneously at several harmonics, considering the main one. The results of research for the three positions of the grate in relation to the lower section of the installation are presented in tabular form, in which 1, 2, 3 modes of oscillation are formed. The analysis of experimental results confirms

  5. Theoretical Systematics of Future Baryon Acoustic Oscillation Surveys

    NASA Astrophysics Data System (ADS)

    Ding, Zhejie; Seo, Hee-Jong; Vlah, Zvonimir; Feng, Yu; Schmittfull, Marcel; Beutler, Florian

    2018-05-01

    Future Baryon Acoustic Oscillation surveys aim at observing galaxy clustering over a wide range of redshift and galaxy populations at great precision, reaching tenths of a percent, in order to detect any deviation of dark energy from the ΛCDM model. We utilize a set of paired quasi-N-body FastPM simulations that were designed to mitigate the sample variance effect on the BAO feature and evaluated the BAO systematics as precisely as ˜0.01%. We report anisotropic BAO scale shifts before and after density field reconstruction in the presence of redshift-space distortions over a wide range of redshift, galaxy/halo biases, and shot noise levels. We test different reconstruction schemes and different smoothing filter scales, and introduce physically-motivated BAO fitting models. For the first time, we derive a Galilean-invariant infrared resummed model for halos in real and redshift space. We test these models from the perspective of robust BAO measurements and non-BAO information such as growth rate and nonlinear bias. We find that pre-reconstruction BAO scale has moderate fitting-model dependence at the level of 0.1% - 0.2% for matter while the dependence is substantially reduced to less than 0.07% for halos. We find that post-reconstruction BAO shifts are generally reduced to below 0.1% in the presence of galaxy/halo bias and show much smaller fitting model dependence. Different reconstruction conventions can potentially make a much larger difference on the line-of-sight BAO scale, upto 0.3%. Meanwhile, the precision (error) of the BAO measurements is quite consistent regardless of the choice of the fitting model or reconstruction convention.

  6. Measurements of Free-Space Oscillating Pressures Near Propellers at Flight Mach Numbers to 0.72

    NASA Technical Reports Server (NTRS)

    Kurbjun, Max C; Vogeley, Arthur W

    1958-01-01

    In the course of a short flight program initiated to check the theory of Garrick and Watkins (NACA rep. 1198), a series of measurements at three stations were made of the oscillating pressures near a tapered-blade plan-form propeller and rectangular-blade plan form propeller at flight Mach numbers up to 0.72. In contradiction to the results for the propeller studied in NACA rep. 1198, the oscillating pressures in the plane ahead of the propeller were found to be higher than those immediately behind the propeller. Factors such as variation in torque and thrust distribution, since the blades of the present investigation were operating above their design forward speed, may account for this contradiction. The effect of blade plan form shows that a tapered-blade plan-form propeller will produce lower sound-pressure levels than a rectangular-blade plan-form propeller for the low blade-passage harmonics (the frequencies where structural considerations are important) and produce higher sound-pressure levels for the higher blade-passage harmonics (frequencies where passenger comfort is important).

  7. Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo

    2016-09-01

    We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.

  8. Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators

    NASA Astrophysics Data System (ADS)

    Manimala, James Mathew

    Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation

  9. Acoustic vibration effects in classical nucleation theory

    NASA Astrophysics Data System (ADS)

    Baird, James K.; Su, C.-H.

    2018-04-01

    Acoustic vibration is often used to improve the yield of crystals and nanoparticles growing from solutions and melts. As there is still a debate on how acoustic vibration actually works, we have examined the possibility that acoustic pressure can affect the rate of nucleation. Our method is based on an expansion of the free energy of the nucleus in powers of the acoustic pressure. With the assumption that the period of the sound wave is short as compared to the time scale for nucleation, we replace the powers of the acoustic pressure by their time averages, retaining the average of the square of the acoustic pressure as the leading term. By assuming a nucleus having spherical shape, we use the Young-Laplace equation to relate the pressure inside the nucleus to the ambient pressure. Without making further approximations not already standard in classical nucleation theory, we find that the proximate effect of acoustic pressure is to reduce both the size of the critical nucleus as well as the work required to form it from monomers. As the work serves as the activation energy, the ultimate effect of acoustic pressure is to increase the rate of nucleation. If we assume that the atomic structure of the nucleus is the same as that of an ordinary solid, however, we find the compressibility is too small for acoustic vibration effects to be noticeable. If on the other hand, we assume that the structure is similar to that of a loosely bound colloidal particle, then the effects of acoustic vibration become potentially observable.

  10. Numerical Simulation of the Self-Oscillations of the Vocal Folds and of the Resulting Acoustic Phenomena in the Vocal Tract

    NASA Astrophysics Data System (ADS)

    Švancara, P.; Horáček, J.; Švec, J. G.

    The study presents a three-dimensional (3D) finite element (FE) model of the flow-induced self-oscillation of the human vocal folds in interaction with acoustics of simplified vocal tract models. The 3D vocal tract models of the acoustic spaces shaped for simulation of phonation of Czech vowels [a:], [i:] and [u:] were created by converting the data from the magnetic resonance images (MRI). For modelling of the fluid-structure interaction, explicit coupling scheme with separated solvers for fluid and structure domain was utilized. The FE model comprises vocal folds pretension before starting phonation, large deformations of the vocal fold tissue, vocal-fold collisions, fluid-structure interaction, morphing the fluid mesh according to the vocal-fold motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation. The developed FE model enables to study the relationship between flow-induced vibrations of the vocal folds and acoustic wave propagation in the vocal tract and can also be used to simulate for example pathological changes in the vocal fold tissue and their influence on the voice production.

  11. Passive acoustic records of two vigorous bubble-plume methane seeps on the Oregon continental margin

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Matsumoto, H.; Merle, S. G.; Embley, R. W.; Baumberger, T.; Hammond, S. R.

    2016-12-01

    We present preliminary analysis of the acoustic records of two bubble-plume methane seeps recorded by an autonomous hydrophone deployed during the E/V Nautilus expedition (NA072) in June 2016. The goal of the NA072 expedition was to use the Simrad 302 as a survey tool to map bubble plumes at a regional scale along the Oregon and northern California margins, followed by in situ investigation of bubble-plume sites using the ROV Hercules. The exploration carried out during NA072 resulted in the discovery of hundreds of new individual methane seep sites in water depths ranging from 125 to 1725 m depth. A Greenridge Acousonde 3B™ hydrophone was deployed via ROV within two vigorous bubble-plume sites. Despite persistent ship and ROV propeller noise, the acoustic signature of the bubble-plume can be seen in the hydrophone record as a broadband (0.5 - 4.5 kHz) series of short duration ( 0.2-0.5 msec) pulses that occur in clusters of dozens of pulses lasting 2-3 secs. Previous studies of the passive acoustics of seep bubble-plumes indicate sound is generated during bubble formation, where detachment of the gas bubble from the end of a tube or conduit causes the bubble to oscillate, producing sound. The peak frequency f (the zeroth oscillatory mode) and the bubble equivalent spherical radius r for a given pressure P are: f = (2πr)-1 [(3γP/ρ)]1/2 where γ is the ratio of gas specific heat at constant pressure to constant volume and ρ is the water density (Leifer and Tang, 2006). Thus the frequency of a bubble's oscillation is proportional to the bubble's volume, and therefore it may be possible to use our acoustic data to obtain an estimate of the volume of methane being released at these seafloor plume sites.

  12. Remote Acoustic Imaging of Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Watson, Z.; Hart, M.

    Identification and characterization of orbiting objects that are not spatially resolved are challenging problems for traditional remote sensing methods. Hyper temporal imaging, enabled by fast, low-noise electro-optical detectors is a new sensing modality which may allow the direct detection of acoustic resonances on satellites enabling a new regime of signature and state detection. Detectable signatures may be caused by the oscillations of solar panels, high-gain antennae, or other on-board subsystems driven by thermal gradients, fluctuations in solar radiation pressure, worn reaction wheels, or orbit maneuvers. Herein we present the first hyper-temporal observations of geosynchronous satellites. Data were collected at the Kuiper 1.54-meter telescope in Arizona using an experimental dual-channel imaging instrument that simultaneously measures light in two orthogonally polarized beams at sampling rates extending up to 1 kHz. In these observations, we see evidence of acoustic resonances in the polarization state of satellites. The technique is expected to support object identification and characterization of on-board components and to act as a discriminant between active satellites, debris, and passive bodies.

  13. Effects of Continuous Positive Airway Pressure on Middle Ear Pressure and Acoustic Stapedial Reflex.

    PubMed

    Li, Jinrang; Li, Keliang

    2016-08-01

    This study investigated the effects of continuous positive airway pressure (CPAP) on middle ear pressure and acoustic stapedial reflex and the correlation between CPAP and middle ear pressure. Prospective cohort study. Tertiary hospitals. Fifty patients with obstructive sleep apnea-hypopnea syndrome were assigned to the study group, and 50 healthy volunteers were assigned to the control group. The subjects underwent standard tympanometry while wearing a CPAP device (ie, simulated CPAP treatment), which was set to 0, 5, 10, and 15 cm H2O, respectively. Tympanometry was performed before and after swallowing at each pressure of CPAP treatment. The mean middle ear pressures were 21.2, 22.6, 22.7, and 23.4 daPa (before swallowing) and 21.6, 42.6, 81.4, and 118.6 daPa (after swallowing) in the study group and 17.6, 18.7, 19.5, and 20.8 daPa (before swallowing) and 17.7, 44.2, 85.6, and 120.5 daPa (after swallowing) in the control group at the CPAPs of 0, 5, 10, and 15 cm H2O, respectively. While the CPAPs were at 0 and 15 cm H2O, the stapedial muscle reflex at 1.0 kHz did not have a significant difference between the 2 groups (χ(2) = 0.521, P = .470). The Pearson correlation coefficient of the CPAP pressure and the middle ear pressure after swallowing was 0.812 (P < .001). CPAP affected middle ear pressure and was directly proportional to the pressure of the CPAP. However, CPAP treatment had no significant effect on stapedial muscle reflex. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  14. Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Fischbach, Sean; Fredrick, Robert

    2012-01-01

    Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.

  15. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  16. Investigation of Liquid Surface Rheology of Surfactant Solutions by Droplet Shape Oscillations: Experiments

    PubMed

    Tian; Holt; Apfel

    1997-03-01

    The experimental results of droplet shape oscillations are reported and applied to the analysis of surface rheological properties of surfactant solutions. An acoustic levitation technique is used to suspend the test drop in air and excite it into quadrupole shape oscillations. The equilibrium surface tension, Gibbs elasticity, and surface dilatational viscosity are determined from the measurements of droplet static shape under different levitation sound pressure, oscillation frequency, and free damping constant. Aqueous solutions of sodium dodecyl sulfate, dodecyltrimethylammonium bromide, and n-octyl beta-d-glucopyranoside are tested with this system. The concentrations of the solutions are below the critical micelle concentration. For these solutions it is found that the surface Gibbs elasticity approaches a maximum at a moderate concentration, and its value is less than that directly calculated from the state equation of a static liquid surface. The surface dilatational viscosity is found to be in a range around 0.1 cps.

  17. Scientific basis for modelling and calculation of acoustic vibrations in the nuclear power plant coolant

    NASA Astrophysics Data System (ADS)

    Proskuryakov, K. N.

    2017-11-01

    Created new scientific direction: “Diagnosis, prognosis and prevention of vibration - acoustic resonances in the nuclear power plant (NPP) equipment. The possibility of using methods for calculating and analyzing electric oscillation systems in the study of the properties of acoustic systems with a two-phase medium is proved, based on the similarity of the differential equations describing the state of these systems. Is shown that the developed methods can be used to predict and prevent the occurrence of vibration - acoustic resonances in the NPP equipment. Is shown that the volume of pressurizer at NPPs with VVER and PWR as well as boiling water reactor that exploded at Japan’s NPP Fukushima Daiichi is a Helmholtz resonator, which contain water and steam volumes and able many times increases the impact on them of outside periodic oscillations. Paper presents most important results published long before the severe accidents at NPPs Three Mile Island (TMI), Chernobyl and Fukushima Daiichi that could be used for the prediction of a severe accident scenario, identification of measuring data and process control in order to minimize the damage. Worked out results also could be useful in another industrial technologies based on applications of single and two-phase flows.

  18. Respiratory Muscle Strength, Sound Pressure Level, and Vocal Acoustic Parameters and Waist Circumference of Children With Different Nutritional Status.

    PubMed

    Pascotini, Fernanda dos Santos; Ribeiro, Vanessa Veis; Christmann, Mara Keli; Tomasi, Lidia Lis; Dellazzana, Amanda Alves; Haeffner, Leris Salete Bonfanti; Cielo, Carla Aparecida

    2016-01-01

    Relate respiratory muscle strength (RMS), sound pressure (SP) level, and vocal acoustic parameters to the abdominal circumference (AC) and nutritional status of children. This is a cross-sectional study. Eighty-two school children aged between 8 and 10 years, grouped by nutritional states (eutrophic, overweight, or obese) and AC percentile (≤25, 25-75, and ≥75), were included in the study. Evaluations of maximal inspiratory pressure (IPmax) and maximal expiratory pressure (EPmax) were conducted using the manometer and SP and acoustic parameters through the Multi-Dimensional Voice Program Advanced (KayPENTAX, Montvale, New Jersey). There were significant differences (P < 0.05) in the EPmax of children with AC between the 25th and 75th percentiles (72.4) and those less than or equal to the 25th percentile (61.9) and in the SP of those greater than or equal to the 75th percentile (73.4) and less than or equal to the 25th percentile (66.6). The IPmax, EPmax, SP levels, and acoustic variables were not different in relation to the nutritional states of the children. There was a strong and positive correlation between the coefficient of amplitude perturbations (shimmer), the harmonics-to-noise ratio and the variation of the fundamental frequency, respectively, 0.79 and 0.71. RMS and acoustic voice characteristics in children do not appear to be influenced by nutritional states, and respiratory pressure does not interfere with acoustic voice characteristics. However, localized fat, represented by the AC, alters the EPmax and the SP, each of which increases as the AC increases. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  19. From Cool to Hot F-stars: The Influence of Two Ionization Regions in the Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Brito, Ana; Lopes, Ilídio

    2018-02-01

    The high-precision data available from the Kepler satellite allows us to study the complex outer convective envelopes of solar-type stars. We use a seismic diagnostic, specialized for investigating the outer layers of solar-type stars, to infer the impact of the ionization processes on the oscillation spectrum, for a sample of Kepler stars. These stars, of spectral type F, cover all of the observational seismic domain of the acoustic oscillation spectrum in solar-type stars. They also cover the range between a cool F-dwarf (∼6000 K) and a hotter F-star (∼6400 K). Our study reveals the existence of two relevant ionization regions. One of these regions, which is located closer to the surface of the star, is commonly associated with the second ionization of helium, although other chemical species also contribute to ionization. The second region, located deeper in the envelope, is linked with the ionization of heavy elements. Specifically, in this study, we analyze the elements carbon, nitrogen, oxygen, neon, and iron. Both regions can be related to the K electronic shell. We show that, while for cooler stars like the Sun, the influence of this second region on the oscillation frequencies is small; in hotter stars, its influence becomes comparable to the influence of the region of the second ionization of helium. This can guide us in the study of the outer layers of F-stars, specifically with the understanding of phenomena related to rotation and magnetic activity in these stars.

  20. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    NASA Astrophysics Data System (ADS)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  1. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  2. Cosmological implications of different baryon acoustic oscillation data

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Hu, YaZhou; Li, Miao

    2017-04-01

    In this work, we explore the cosmological implications of different baryon acoustic oscillation (BAO) data, including the BAO data extracted by using the spherically averaged one-dimensional galaxy clustering (GC) statistics (hereafter BAO1) and the BAO data obtained by using the anisotropic two-dimensional GC statistics (hereafter BAO2). To make a comparison, we also take into account the case without BAO data (hereafter NO BAO). Firstly, making use of these BAO data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we give the cosmological constraints of the ΛCDM, the wCDM, and the Chevallier-Polarski-Linder (CPL) model. Then, we discuss the impacts of different BAO data on cosmological consquences, including its effects on parameter space, equation of state (EoS), figure of merit (FoM), deceleration-acceleration transition redshift, Hubble parameter H( z), deceleration parameter q( z), statefinder hierarchy S 3 (1)( z), S 4 (1)( z) and cosmic age t( z). We find that: (1) NO BAO data always give a smallest fractional matter density Ω m0, a largest fractional curvature density Ωk0 and a largest Hubble constant h; in contrast, BAO1 data always give a largest Ω m0, a smallest Ω k0 and a smallest h. (2) For the wCDM and the CPL model, NO BAO data always give a largest EoS w; in contrast, BAO2 data always give a smallest w. (3) Compared with the case of BAO1, BAO2 data always give a slightly larger FoM, and thus can give a cosmological constraint with a slightly better accuracy. (4) The impacts of different BAO data on the cosmic evolution and the comic age are very small, and cannot be distinguished by using various dark energy diagnoses and the cosmic age data.

  3. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Xiwen; Jing, Xiaodong, E-mail: jingxd@buaa.edu.cn; Sun, Xiaofeng

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensionalmore » acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.« less

  4. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space

    DOE PAGES

    Beutler, Florian; Seo, Hee -Jong; Ross, Ashley J.; ...

    2016-07-13

    Here, we analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes 1 198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this dataset into three (overlapping) redshift bins with the effective redshifts z eff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as 1000 MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density eld reconstruction to enhancemore » the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can sep-arate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance D A(z) and the Hubble parameter H ( z ) separately. We obtain two independent 1 : 6% and 1 : 5% constraints on D A(z) and 2.9% and 2.3% constraints on H(z) for the low (z eff = 0.38) and high (z eff = 0.61) redshift bin, respectively. We obtain two independent 1% and 0.9% constraints on the angular averaged distance D V(z), when ignoring the Alcock-Paczynski e ect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.« less

  5. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beutler, Florian; Seo, Hee -Jong; Ross, Ashley J.

    Here, we analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes 1 198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this dataset into three (overlapping) redshift bins with the effective redshifts z eff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as 1000 MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density eld reconstruction to enhancemore » the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can sep-arate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance D A(z) and the Hubble parameter H ( z ) separately. We obtain two independent 1 : 6% and 1 : 5% constraints on D A(z) and 2.9% and 2.3% constraints on H(z) for the low (z eff = 0.38) and high (z eff = 0.61) redshift bin, respectively. We obtain two independent 1% and 0.9% constraints on the angular averaged distance D V(z), when ignoring the Alcock-Paczynski e ect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.« less

  6. Evaluation of Acoustic Emission NDE of Kevlar Composite Over Wrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2008-01-01

    Pressurization and failure tests of small Kevlar/epoxy COPV bottles were conducted during 2006 and 2007 by Texas Research Institute Austin, Inc., at TRI facilities. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. Results of some of the tests indicate a possibility that AE can be used to track the stress-rupture degradation of COPV vessels.

  7. Optimizing baryon acoustic oscillation surveys - II. Curvature, redshifts and external data sets

    NASA Astrophysics Data System (ADS)

    Parkinson, David; Kunz, Martin; Liddle, Andrew R.; Bassett, Bruce A.; Nichol, Robert C.; Vardanyan, Mihran

    2010-02-01

    We extend our study of the optimization of large baryon acoustic oscillation (BAO) surveys to return the best constraints on the dark energy, building on Paper I of this series by Parkinson et al. The survey galaxies are assumed to be pre-selected active, star-forming galaxies observed by their line emission with a constant number density across the redshift bin. Star-forming galaxies have a redshift desert in the region 1.6 < z < 2, and so this redshift range was excluded from the analysis. We use the Seo & Eisenstein fitting formula for the accuracies of the BAO measurements, using only the information for the oscillatory part of the power spectrum as distance and expansion rate rulers. We go beyond our earlier analysis by examining the effect of including curvature on the optimal survey configuration and updating the expected `prior' constraints from Planck and the Sloan Digital Sky Survey. We once again find that the optimal survey strategy involves minimizing the exposure time and maximizing the survey area (within the instrumental constraints), and that all time should be spent observing in the low-redshift range (z < 1.6) rather than beyond the redshift desert, z > 2. We find that, when assuming a flat universe, the optimal survey makes measurements in the redshift range 0.1 < z < 0.7, but that including curvature as a nuisance parameter requires us to push the maximum redshift to 1.35, to remove the degeneracy between curvature and evolving dark energy. The inclusion of expected other data sets (such as WiggleZ, the Baryon Oscillation Spectroscopic Survey and a stage III Type Ia supernova survey) removes the necessity of measurements below redshift 0.9, and pushes the maximum redshift up to 1.5. We discuss considerations in determining the best survey strategy in light of uncertainty in the true underlying cosmological model.

  8. Relationship between acoustic voice onset and offset and selected instances of oscillatory onset and offset in young healthy males and females

    PubMed Central

    Patel, Rita; Forrest, Karen; Hedges, Drew

    2016-01-01

    Objective To investigate the relationship between (1) onset of the acoustic signal and pre-phonatory phases associated with oscillatory onset and (2) offset of the acoustic signal with the post-phonatory events associated with oscillatory offset across vocally healthy adults. Subjects and Methods High-speed videoendoscopy was captured simultaneously with the acoustic signal during repeated production of /hi.hi.hi/ at typical pitch and loudness from 56 vocally healthy adults (age 20–42 years; 21 male, 35 female). The relationship between the acoustic sound pressure signal and oscillatory onset /offset events from the glottal area waveforms (GAW), were statistically investigated using a multivariate linear regression analysis. Results The onset of the acoustic signal (X1a) is a significant predictor of the onset of first oscillations (X1g) and onset of sustained oscillations (X2g). X1a as well as gender are significant predictors of the first instance of medial contact (X1.5g). The offset of the acoustic signal (X2a) is a significant predictor of the first instance of oscillatory offset (X3g), first instance of incomplete glottal closure (X3.5g), and cessation of vocal fold motion (X4g). Conclusions The acoustic signal onset is closely related to the first medial contact of the vocal folds but the latency between these events is longer for females compared to males. The offset of the acoustic signal occurs immediately after incomplete glottal adduction. The emerging normative group latencies between the onset/offset of the acoustic and the GAW from this study appear promising for future investigations. PMID:27769696

  9. Determination of a response function of a thermocouple using a short acoustic pulse.

    PubMed

    Tashiro, Yusuke; Biwa, Tetsushi; Yazaki, Taichi

    2007-04-01

    This paper reports on an experimental technique to determine a response function of a thermocouple using a short acoustic pulse wave. A pulse of 10 ms is generated in a tube filled with 1 bar helium gas. The temperature is measured using the thermocouple. The reference temperature is deduced from the measured pressure on the basis of a laminar oscillating flow theory. The response function of the thermocouple is obtained as a function of frequency below 50 Hz through a comparison between the measured and reference temperatures.

  10. The acoustic velocity, refractive index, and equation of state of liquid ammonia dihydrate under high pressure and high temperature.

    PubMed

    Ma, Chunli; Wu, Xiaoxin; Huang, Fengxian; Zhou, Qiang; Li, Fangfei; Cui, Qiliang

    2012-09-14

    High-pressure and high-temperature Brillouin scattering studies have been performed on liquid of composition corresponding to the ammonia dihydrate stoichiometry (NH(3)·2H(2)O) in a diamond anvil cell. Using the measured Brillouin frequency shifts from 180° back- and 60° platelet-scattering geometries, the acoustic velocity, refractive index, density, and adiabatic bulk modulus have been determined under pressure up to freezing point along the 296, 338, 376, and 407 K isotherms. Along these four isotherms, the acoustic velocities increase smoothly with increasing pressure but decrease with the increased temperature. However, the pressure dependence of the refractive indexes on the four isotherms exhibits a change in slope around 1.5 GPa. The bulk modulus increases linearly with pressure and its slope, dB/dP, decreases from 6.83 at 296 K to 4.41 at 407 K. These new datasets improve our understanding of the pressure- and temperature-induced molecular structure changes in the ammonia-water binary system.

  11. Thermodynamic properties of isomeric pentanols under elevated pressures determined by the acoustic method

    NASA Astrophysics Data System (ADS)

    Dzida, M.

    2008-02-01

    Three isomeric pentanols were studied: pentan-1-ol, 2-methyl-1-buta- nol, and 2-methyl-2-butanol. Isobaric heat capacities and internal pressure at pressures up to 100 MPa and temperatures ranging from 293 K to 318 K were determined by the acoustic method. In calculations the measured speeds of sound as function of temperature and pressure together with densities as function of temperature under atmospheric pressure and the literature isobaric heat capacities for the atmospheric pressure were used. To this end, the method, based on the suggestion of Davis and Gordon [1] was applied. The results obtained show that the effect of pressure on and the values of isobaric heat capacity and internal presure of 2-methyl-2-butanol is higher than that of pentan-1-ol, 2-methyl-1-butanol over the whole pressure range. That facilitates telling 2-methyl-2-butanol from pentan-1-ol and 2-methyl-1-butanol.

  12. Experimental study of a hybrid electro-acoustic nonlinear membrane absorber

    NASA Astrophysics Data System (ADS)

    Bryk, P. Y.; Bellizzi, S.; Côte, R.

    2018-06-01

    A hybrid electro-acoustic nonlinear membrane absorber working as a nonlinear energy sink (here after named EA-NES) is described. The device is composed of a thin circular visco-elastic membrane working as an essentially cubic oscillator. One face of the membrane is coupled to the acoustic field to be reduced and the other face is enclosed. The enclosure includes a loudspeaker for the control of the acoustic pressure felt by the rear face of the membrane through proportional feedback control. An experimental set-up has been developed where the EA-NES is weakly coupled to a linear acoustic system. The linear acoustic system is an open-ended tube, coupled on one side to the EA-NES by a box, and on the other side to a source loudspeaker by another box. Only sinusoidal forcing is considered. It is shown that the EA-NES is able to perform resonance capture with the acoustic field, resulting in noise reduction by targeted energy transfer, and to operate in a large frequency band, tuning itself passively to any linear system. We demonstrate the ability of the feedback gain defining the active loop to modify the resonance frequency of the EA-NES, which is a key factor to tune the triggering threshold of energy pumping. The novelty of this work is to use active control combined to passive nonlinear transfer energy to improve it. In this paper, only experimental results are analyzed.

  13. Dark matter component decaying after recombination: Sensitivity to baryon acoustic oscillation and redshift space distortion probes

    NASA Astrophysics Data System (ADS)

    Chudaykin, A.; Gorbunov, D.; Tkachev, I.

    2018-04-01

    It has been recently suggested [1] that a subdominant fraction of dark matter decaying after recombination may alleviate tension between high-redshift (CMB anisotropy) and low-redshift (Hubble constant, cluster counts) measurements. In this report, we continue our previous study [2] of the decaying dark matter (DDM) model adding all available recent baryon acoustic oscillation (BAO) and redshift space distortions (RSD) measurements. We find that the BAO/RSD measurements generically prefer the standard Λ CDM and combined with other cosmological measurements impose an upper limit on the DDM fraction at the level of ˜5 %, strengthening by a factor of 1.5 limits obtained in [2] mostly from CMB data. However, the numbers vary from one analysis to other based on the same Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) galaxy sample. Overall, the model with a few percent DDM fraction provides a better fit to the combined cosmological data as compared to the Λ CDM : the cluster counting and direct measurements of the Hubble parameter are responsible for that. The improvement can be as large as 1.5 σ and grows to 3.3 σ when the CMB lensing power amplitude AL is introduced as a free fitting parameter.

  14. Metric Tests for Curvature from Weak Lensing and Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Bernstein, G.

    2006-02-01

    We describe a practical measurement of the curvature of the universe which, unlike current constraints, relies purely on the properties of the Robertson-Walker metric rather than any assumed model for the dynamics and content of the universe. The observable quantity is the cross-correlation between foreground mass and gravitational shear of background galaxies, which depends on the angular diameter distances dA(zl), dA(zs), and dA(zs,zl) on the degenerate triangle formed by observer, source, and lens. In a flat universe, dA(zl,zs)=dA(zs)-dA(zl), but in curved universes an additional term ~Ωk appears and alters the lensing observables even if dA(z) is fixed. We describe a method whereby weak-lensing data can be used to solve simultaneously for dA and the curvature. This method is completely insensitive to the equation of state of the contents of the universe, or amendments to general relativity that alter the gravitational deflection of light or the growth of structure. The curvature estimate is also independent of biases in the photometric redshift scale. This measurement is shown to be subject to a degeneracy among dA, Ωk, and the galaxy bias factors that may be broken by using the same imaging data to measure the angular scale of baryon acoustic oscillations. Simplified estimates of the accuracy attainable by this method indicate that ambitious weak-lensing + baryon-oscillation surveys would measure Ωk to an accuracy ~0.04f-1/2sky(σlnz/0.04)1/2, where σlnz is the photometric redshift error. The Fisher-matrix formalism developed here is also useful for predicting bounds on curvature and other characteristics of parametric dark energy models. We forecast some representative error levels and compare ours to other analyses of the weak-lensing cross-correlation method. We find both curvature and parametric constraints to be surprisingly insensitive to the systematic shear calibration errors.

  15. Simulation of Acoustics for Ares I Scale Model Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Putnam, Gabriel; Strutzenberg, Louise L.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.

  16. Method and means for measuring acoustic emissions

    DOEpatents

    Renken, Jr., Claus J.

    1976-01-06

    The detection of acoustic emissions emanating from an object is achieved with a capacitive transducer coupled to the object. The capacitive transducer is charged and then allowed to discharge with the rate of discharge being monitored. Oscillations in the rate of discharge about the normally exponential discharge curve for the capacitive transducer indicate the presence of acoustic emissions.

  17. Analysing baryon acoustic oscillations in sparse spectroscopic samples via cross-correlation with dense photometry

    NASA Astrophysics Data System (ADS)

    Patej, A.; Eisenstein, D. J.

    2018-07-01

    We develop a formalism for measuring the cosmological distance scale from baryon acoustic oscillations (BAO) using the cross-correlation of a sparse redshift survey with a denser photometric sample. This reduces the shot noise that would otherwise affect the autocorrelation of the sparse spectroscopic map. As a proof of principle, we make the first on-sky application of this method to a sparse sample defined as the z > 0.6 tail of the Sloan Digital Sky Survey's (SDSS) BOSS/CMASS sample of galaxies and a dense photometric sample from SDSS DR9. We find a 2.8σ preference for the BAO peak in the cross-correlation at an effective z = 0.64, from which we measure the angular diameter distance DM(z = 0.64) = (2418 ± 73 Mpc)(rs/rs, fid). Accordingly, we expect that using this method to combine sparse spectroscopy with the deep, high-quality imaging that is just now becoming available will enable higher precision BAO measurements than possible with the spectroscopy alone.

  18. Testing cosmic transparency with the latest baryon acoustic oscillations and type Ia supernovae data

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wu, Pu-Xun; Yu, Hong-Wei; Li, Zheng-Xiang

    2013-06-01

    Observations show that Type Ia supernovae (SNe Ia) are dimmer than expected from a matter dominated Universe. It has been suggested that this observed phenomenon can also be explained using light absorption instead of dark energy. However, there is a serious degeneracy between the cosmic absorption parameter and the present matter density parameter Ωm when one tries to place constraints on the cosmic opacity using SNe Ia data. We combine the latest baryon acoustic oscillation (BAO) and Union2 SNe Ia data in order to break this degeneracy. Assuming a flat ΛCDM model, we find that, although an opaque Universe is favored by SNe Ia+BAO since the best fit value of the cosmic absorption parameter is larger than zero, Ωm = 1 is ruled out at the 99.7% confidence level. Thus, cosmic opacity is not sufficient to account for the present observations and dark energy or modified gravity is still required.

  19. Investigation of Combustion Control in a Dump Combustor Using the Feedback Free Fluidic Oscillator

    NASA Technical Reports Server (NTRS)

    Meier, Eric J.; Casiano, Matthew J.; Anderson, William E.; Heister, Stephen D.

    2015-01-01

    A feedback free fluidic oscillator was designed and integrated into a single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. The fluidic oscillator uses internal fluid dynamics to create an unsteady outlet jet at a specific frequency. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the combustor dump plane. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide with an overall O/F ratio of 11.7. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics enabling the study of a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared against equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 67% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. Additionally, computational fluid dynamics analysis of the combustor gives insight into the flow field interaction of the fluidic oscillators. The results indicate that open loop high frequency propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate.

  20. Active control of acoustic pressure fields using smart material technologies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, R. C.

    1993-01-01

    An overview describing the use of piezoceramic patches in reducing noise in a structural acoustics setting is presented. The passive and active contributions due to patches which are bonded to an Euler-Bernoulli beam or thin shell are briefly discussed and the results are incorporated into a 2-D structural acoustics model. In this model, an exterior noise source causes structural vibrations which in turn lead to interior noise as a result of nonlinear fluid/structure coupling mechanism. Interior sound pressure levels are reduced via patches bonded to the flexible boundary (a beam in this case) which generate pure bending moments when an out-of-phase voltage is applied. Well-posedness results for the infinite dimensional system are discussed and a Galerkin scheme for approximating the system dynamics is outlined. Control is implemented by using linear quadratic regulator (LQR) optimal control theory to calculate gains for the linearized system and then feeding these gains back into the nonlinear system of interest. The effectiveness of this strategy for this problem is illustrated in an example.

  1. A simple violin oscillator

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  2. Acoustic Characteristics of Simulated Respiratory-Induced Vocal Tremor

    ERIC Educational Resources Information Center

    Lester, Rosemary A.; Story, Brad H.

    2013-01-01

    Purpose: The purpose of this study was to investigate the relation of respiratory forced oscillation to the acoustic characteristics of vocal tremor. Method: Acoustical analyses were performed to determine the characteristics of the intensity and fundamental frequency (F[subscript 0]) for speech samples obtained by Farinella, Hixon, Hoit, Story,…

  3. Acoustic Levitation and its Applications in the Study of Liquid Surface Rheology.

    NASA Astrophysics Data System (ADS)

    Tian, Yuren

    Due to its non-contact manipulation and requirement of small amounts of test sample, acoustical levitation has been used to investigate the interfacial dynamics of liquids. In this current work, the surface rheology of liquid drops levitated in air has been studied. The surrounding of a gaseous medium simplifies the theoretical analysis and the interpretation of experimental results. For a ground-based experiment, the effect of gravity and the levitation sound field can change a levitated drop into a nonspherical shape. A theory which involves the multiple interactions between the drop and the sound field, the acoustic scattering by a nonspherical object and the limitation of droplet volume variation is developed. The droplet aspect ratio is determined as a function of the sound pressure, frequency (or wavelength) and the surface tension of liquid under both zero and nonzero gravity environments. The dynamics of a liquid drop of surfactant solution is also theoretically analyzed by including the different surfactant transfer processes at the droplet surface. The approximate solutions of the resonance frequency and damping constant of droplet free quadrupole shape oscillation are derived analytically and verified with the exact numerical solutions. The phase relationship between the driving force and the droplet response is established for the case of forced droplet shape oscillation. The surface viscoelasticity of liquid has shown a strong effect on the droplet dynamics. An acoustic levitation apparatus is constructed and used to levitate a liquid drop in air. By gauging the static shape of the drop versus its spatial location, the equilibrium surface tension of the liquid can be determined. The surface elasticity and viscosity are evaluated from the measurements of the resonance frequency, damping constant and phase relationship of the droplet quadrupole shape oscillation. Different kind of liquids are tested. For surfactant solutions, the experimental results

  4. Acoustic controlled rotation and orientation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Allen, James L. (Inventor)

    1989-01-01

    Acoustic energy is applied to a pair of locations spaced about a chamber, to control rotation of an object levitated in the chamber. Two acoustic transducers applying energy of a single acoustic mode, one at each location, can (one or both) serve to levitate the object in three dimensions as well as control its rotation. Slow rotation is achieved by initially establishing a large phase difference and/or pressure ratio of the acoustic waves, which is sufficient to turn the object by more than 45 deg, which is immediately followed by reducing the phase difference and/or pressure ratio to maintain slow rotation. A small phase difference and/or pressure ratio enables control of the angular orientation of the object without rotating it. The sphericity of an object can be measured by its response to the acoustic energy.

  5. High-frequency modulation of ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.

    1972-01-01

    A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.

  6. Investigation of combustion control in a dump combustor using the feedback free fluidic oscillator

    NASA Astrophysics Data System (ADS)

    Meier, Eric J.

    The feedback free fluidic oscillator uses the unsteady nature of two colliding jets to create a single oscillating outlet jet with a wide sweep angle. These devices have the potential to provide additional combustion control, boundary layer control, thrust vectoring, and industrial flow deflection. Two-dimensional computational fluid dynamics, CFD, was used to analyze the jet oscillation frequency over a range of operating conditions and to determine the effect that geometric changes in the oscillator design have on the frequency. Results presented illustrate the changes in jet oscillation frequency with gas type, gas temperature, operating pressure, pressure ratio across the oscillator, aspect ratio of the oscillator, and the frequency trends with various changes to the oscillator geometry. A fluidic oscillator was designed and integrated into single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the dump plane using 15% of the oxidizer flow. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide at an O/F of 11.66. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics for studying a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared with equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 60% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. The results indicate open loop propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate. Three-dimensional computational fluid dynamics, 3-D CFD, was conducted to determine the

  7. Photoacoustic microbeam-oscillator with tunable resonance direction and amplitude

    NASA Astrophysics Data System (ADS)

    Wu, Qingjun; Li, Fanghao; Wang, Bo; Yi, Futing; Jiang, J. Z.; Zhang, Dongxian

    2018-01-01

    We successfully design one photoacoustic microbeam-oscillator actuated by nanosecond laser, which exhibits tunable resonance direction and amplitude. The mechanism of laser induced oscillation is systematically analyzed. Both simulation and experimental results reveal that the laser induced acoustic wave propagates in a multi-reflected mode, resulting in resonance in the oscillator. This newly-fabricated micrometer-sized beam-oscillator has an excellent actuation function, i.e., by tuning the laser frequency, the direction and amplitude of actuation can be efficiently altered, which will have potential industrial applications.

  8. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Ion acoustic wave assisted laser beat wave terahertz generation in a plasma channel

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav; Garg, Deepak

    2018-04-01

    Resonant excitation of terahertz (THz) radiation by non-linear mixing of two lasers in the presence of an electrostatic wave is investigated. The electrostatic wave assists in k matching and contributes to non-linear coupling. In this plasma channel, the electron plasma frequency becomes minimum on the axis. The beat frequency ponderomotive force imparts an oscillating velocity to the electrons. In the presence of an ion-acoustic wave, density perturbation due to the ion-acoustic wave couples with the oscillating velocity of the electrons and give rise to non-linear current that gives rise to an ion-acoustic wave frequency assisted THz radiation field. The normalized field amplitude of ion acoustic wave assisted THz varies inversely for ω/ωp . The field amplitude of ion acoustic wave assisted THz decreases as ω/ωp increases.

  10. Acoustic emissions monitoring and synchrotron X-ray diffraction analysis of mineral dehydrations at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Guillon, S.; Schubnel, A. J.; Brunet, F.; Lathe, C.; Mueller, H.

    2009-12-01

    We have monitored from in-situ X-ray diffraction coupled to Acoustic Emission (AE) imaging, the behavior of several materials under elevated pressures and temperatures (quartz, kaolinite, serpentinite). The samples were placed in a boron-epoxy assembly with an 8mm edge-length and loaded in the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg). AE were recorded using six piezoceramic transducers (2 MHz eigen frequency) glued on each of the six WC anvils. Full waveforms were acquired using an eight channel digital oscilloscope and a continuous acoustic recorder. Our system was first tested using quartz beads (500μm) aggregates. During cold compression performed on these samples many acoustic events were recorded and located inside the samples. These are obviously related to the fragile fracturing of the quartz due to the porosity loss. During the heating cycles performed on the same samples, the acoustic activity progressively vanishes between 300 and 400°C indicating the transition to the ductile regime towards higher temperatures. Further experiments were performed by mixing 20wt% of kaolinite to the quartz. As a result, the amount of acoustic emissions recorded during cold compression is significantly reduced. This is thought to be a result of the ductile behaviour of kaolinite even at low temperatures. This assumption has been confirmed by performing experiments on pure kaolinite which did not produce acoustic emissions during cold compression nor during heating cycles up to 1000°C (i.e. beyond the kaolinite dehydration temperature). This set of experiments clearly established that no acoustic activity is produced by the assembly and that AEs produced by the samples are accurately located by the software. The behaviour of serpentinite dehydration was then investigated under various pressure conditions (i.e. various volume changes), from ~0.6 to ~40kbars. These experiments were performed under deviatoric stress conditions

  11. Acoustic emissions monitoring and synchrotron X-ray diffraction analysis of mineral dehydrations at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Schubnel, Alexandre; Julien, Gasc; Sophie, Guillon; Fabrice, Brunet; Christian, Lathe; Hans-Joachim, Mueller

    2010-05-01

    We have monitored from in-situ X-ray diffraction coupled to Acoustic Emission (AE) imaging, the behavior of several materials under elevated pressures and temperatures (quartz, kaolinite, serpentinite). The samples were placed in a boron-epoxy assembly with an 8mm edge-length and loaded in the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg). AE were recorded using six piezoceramic transducers (2 MHz eigen frequency) glued on each of the six WC anvils. Full waveforms were acquired using an eight channel digital oscilloscope and a continuous acoustic recorder. Our system was first tested using quartz beads (500μm) aggregates. During cold compression performed on these samples many acoustic events were recorded and located inside the samples. These are obviously related to the fragile fracturing of the quartz due to the porosity loss. During the heating cycles performed on the same samples, the acoustic activity progressively vanishes between 300 and 400°C indicating the transition to the ductile regime towards higher temperatures. Further experiments were performed by mixing 20wt% of kaolinite to the quartz. As a result, the amount of acoustic emissions recorded during cold compression is significantly reduced. This is thought to be a result of the ductile behaviour of kaolinite even at low temperatures. This assumption has been confirmed by performing experiments on pure kaolinite which did not produce acoustic emissions during cold compression nor during heating cycles up to 1000°C (i.e. beyond the kaolinite dehydration temperature). This set of experiments clearly established that no acoustic activity is produced by the assembly and that AEs produced by the samples are accurately located by the software. The behaviour of serpentinite dehydration was then investigated under various pressure conditions (i.e. various volume changes), from ~0.6 to ~40kbars. These experiments were performed under deviatoric stress conditions

  12. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics.

    PubMed

    Hart, Roger C; Herring, G C; Balla, R Jeffrey

    2007-06-15

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  13. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  14. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations.

    PubMed

    Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D

    2012-10-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague-Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = -10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers.

  15. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations

    PubMed Central

    Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D.

    2012-01-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using wavelet analysis of blood flow oscillations in rats. Twelve Sprague Dawley rats were randomly assigned into three protocols, including pressure with local cooling (Δt= −10°C), pressure with local heating (Δt= 10°C), and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 hours. Skin blood flow was measured using laser Doppler flowmetry. The 3-hour loading period was divided into non-overlapping 30 min epochs for analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased in the conditions of pressure with heating and of pressure without temperature changes, but maintained stable in the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. PMID:23010955

  16. Acoustic Measurement Of Periodic Motion Of Levitated Object

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Barmatz, Martin B.

    1992-01-01

    Some internal vibrations, oscillations in position, and rotations of acoustically levitated object measured by use of microphone already installed in typical levitation chamber for tuning chamber to resonance and monitoring operation. Levitating acoustic signal modulated by object motion of lower frequency. Amplitude modulation detected and analyzed spectrally to determine amplitudes and frequencies of motions.

  17. Acoustic pressures emanating from a turbomachine stage

    NASA Technical Reports Server (NTRS)

    Ramachandra, S. M.

    1984-01-01

    A knowledge of the acoustic energy emission of each blade row of a turbomachine is useful for estimating the overall noise level of the machine and for determining its discrete frequency noise content. Because of the close spacing between the rotor and stator of a compressor stage, the strong aerodynamic interactions between them have to be included in obtaining the resultant flow field. A three dimensional theory for determining the discrete frequency noise content of an axial compressor consisting of a rotor and a stator each with a finite number of blades are outlined. The lifting surface theory and the linearized equation of an ideal, nonsteady compressible fluid motion are used for thin blades of arbitrary cross section. The combined pressure field at a point of the fluid is constructed by linear addition of the rotor and stator solutions together with an interference factor obtained by matching them for net zero vorticity behind the stage.

  18. On the plasma confinement by acoustic resonance. An innovation for electrodeless high-pressure discharge lamps

    NASA Astrophysics Data System (ADS)

    Courret, Gilles; Nikkola, Petri; Wasterlain, Sébastien; Gudozhnik, Olexandr; Girardin, Michel; Braun, Jonathan; Gavin, Serge; Croci, Mirko; Egolf, Peter W.

    2017-08-01

    In an applied research project on the development of a pulsed microwave sulfur lamp prototype of 1 kW, we have discovered an amazing phenomenon in which the plasma forms a ball staying at the center of the bulb despite gravity, thus protecting the glass from melting. In this paper, it is shown that this results from an acoustic resonance in a spherical mode. Measurements of the plasma response to short pulses are presented showing beats at the spherical resonance. It is demonstrated that the beats could result from the simultaneous excitation of two normal modes with a frequency difference of approximately 1%. One of the two frequencies matches precisely the microwave pulses repetition, a little below 30 kHz. Thus this one is due to a forced oscillation, whereas the other one is due to a free oscillation. The phase velocity of sound was calculated as a function of temperature in order to find the series of temperatures at which a resonance would occur if the bulb were an isothermal solid sphere. The mean temperature inside the actual bulb was determined from the only doublet of this series, that has characteristic frequencies close enough to cause the observed beats. In addition, one of these two modes has a spherical symmetry that can explain the plasma ball formation. The obtained mean temperature is consistent with the direct measurements on the bulb surface as well as with the temperature in the core of a similar plasma found in the literature. We have also proposed a model of the resonance onset based on the acoustic dispersion and the sound amplification due to electromagnetic coupling.

  19. Transmission of arterial oxygen partial pressure oscillations to the cerebral microcirculation in a porcine model of acute lung injury caused by cyclic recruitment and derecruitment.

    PubMed

    Klein, K U; Boehme, S; Hartmann, E K; Szczyrba, M; Heylen, L; Liu, T; David, M; Werner, C; Markstaller, K; Engelhard, K

    2013-02-01

    Cyclic recruitment and derecruitment (R/D) play a key role in the pathomechanism of acute lung injury (ALI) leading to respiration-dependent oscillations of arterial partial pressure of oxygen (Pa(O(2))). These Pa(O(2)) oscillations could also be forwarded to the cerebral microcirculation. In 12 pigs, partial pressure of oxygen was measured in the thoracic aorta (Pa(O(2))) and subcortical cerebral tissue (Pbr(O(2))). Cerebral cortical haemoglobin oxygen saturation (Sbr(O(2))), cerebral blood flow (CBF), and peripheral haemoglobin saturation (Sp(O(2))) were assessed by spectroscopy and laser Doppler flowmetry. Measurements at different fractions of inspired oxygen (F(I(O(2)))) were performed at baseline and during cyclic R/D. frequency domain analysis, the Mann-Whitney test, linear models to test the influence of Pa(O(2)) and systolic arterial pressure (SAP) oscillations on cerebral measurements. Parameters [mean (SD)] remained stable during baseline. Pa(O(2)) oscillations [10.6 (8) kPa, phase(reference)], systemic arterial pressure (SAP) oscillations [20 (9) mm Hg, phase(Pa(O(2))-SAP) -33 (72)°], and Sp(O(2))oscillations [1.9 (1.7)%, phase(Pa(O(2))-Sp(O(2))) 264 (72)°] were detected during lung R/D at 1.0. Pa(O(2)) oscillations decreased [2.7 (3.5) kPa, P=0.0008] and Sp(O(2)) oscillations increased [6.8 (3.9)%, P=0.0014] at F(I(O(2))) 0.3. In the brain, synchronized Pbr(O(2)) oscillations [0.6 (0.4) kPa, phase(Pa(O(2))-Pbr(O(2))) 90 (39)°], Sbr(O(2)) oscillations [4.1 (1.5)%, phase(Pa(O(2))-Sbr(O(2))) 182 (54)°], and CBF oscillations [198 (176) AU, phase(Pa(O(2))-CBF) 201 (63)°] occurred that were dependent on Pa(O(2)) and SAP oscillations. Pa(O(2)) oscillations caused by cyclic R/D are transmitted to the cerebral microcirculation in a porcine model of ALI. These cyclic oxygen alterations could play a role in the crosstalk of acute lung and brain injury.

  20. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    PubMed

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  1. The influence of charge and magnetic order on polaron and acoustic phonon dynamics in LuFe 2O 4

    DOE PAGES

    Lee, J.; Trugman, S. A.; Zhang, C. L.; ...

    2015-07-27

    Femtosecond optical pump-probe spectroscopy is used to reveal the influence of charge and magnetic order on polarondynamics and coherent acoustic phonon oscillations in single crystals of charge-ordered, ferrimagnetic LuFe 2O 4. We experimentally observed the influence of magnetic order on polarondynamics. We also observed a correlation between charge order and the amplitude of the acoustic phonon oscillations, due to photoinduced changes in the lattice constant that originate from the photoexcited electrons. As a result, this provides insight into the general behavior of coherent acoustic phonon oscillations in charge-ordered materials.

  2. Quantum Analogies in the Interaction between Acoustic Waves and Bubble Clouds

    NASA Astrophysics Data System (ADS)

    Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Analogies between quantum mechanical and acoustical propagation phenomena have a great interest in academic research due to their ability to shed light on some complex quantum effects, which are impossible to visualize directly in the macroscopic world. In this talk, we describe a number of these analogies concerning the acoustic behavior of bubble clouds. Firstly, we show that the structure of the collective oscillation modes of a spherical bubble cloud resembles that of the atomic orbitals of a hydrogen atom. Secondly, we present an analogy between some perturbation methods used in quantum-electrodynamics and the computation of the acoustic response of the randomly distributed bubble cloud by considering the contribution to the total scattered pressure of the multiple scattering paths that take place inside the clouds. As an application of this analogy, we obtain the scattering cross-section of a diluted cloud, which remarkably mimics the quantum scattering of an neutron wave when passing through an atomic nucleus. Finally, we numerically reproduce the behavior of an electron in a covalent bond between two hydrogen atoms by simulating the acoustic wave propagation through two neighboring spherical bubble assemblages. Funded by the Spanish Ministry of Economy and Competitiveness through Grants DPI2011-28356-C03-01 and DPI2011-28356-C03-02.

  3. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    PubMed Central

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2016-01-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey. PMID:28066154

  4. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints.

    PubMed

    Hinton, Samuel R; Kazin, Eyal; Davis, Tamara M; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J; Drinkwater, Michael J; Glazebrook, Karl; Jurek, Russell J; Parkinson, David; Pimbblet, Kevin A; Poole, Gregory B; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ω c   h 2 , H ( z ), and D A ( z ) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  5. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    NASA Astrophysics Data System (ADS)

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  6. Particle analysis in an acoustic cytometer

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  7. Properties of Materials Using Acoustic Waves.

    DTIC Science & Technology

    1985-10-01

    8217 cavitation , lIevitation, 20, ABSTRACT (Continue Met mrevr aide it necessary and Idenltt, A,’ block number) Our goal of characterizing materials using...to clean even though there are surfactants in it, and it allows us to study the large amplitude oscillations without worrying about cavitation or the...34Acoustics Cavitation Inception," Ultrasonics 22, 167 (1984). Richard McGowan, "Steady Second-Order Effects in Acoustics and the Method of Matched Asymptotic

  8. Coupled dynamics of translation and collapse of acoustically driven microbubbles.

    PubMed

    Reddy, Anil J; Szeri, Andrew J

    2002-10-01

    Pressure gradients drive the motion of microbubbles relative to liquids in which they are suspended. Examples include the hydrostatic pressure due to a gravitational field, and the pressure gradients in a sound field, useful for acoustic levitation. In this paper, the equations describing the coupled dynamics of radial oscillation and translation of a microbubble are given. The formulation is based on a recently derived expression for the hydrodynamic force on a bubble of changing size in an incompressible liquid [J. Magnaudet and D. Legendre, Phys. Fluids 10, 550-556 (1998)]. The complex interaction between radial and translation dynamics is best understood by examination of the added momentum associated with the liquid motion caused by the moving bubble. Translation is maximized when the bubble collapses violently. The new theory for coupled collapse and translation dynamics is compared to past experiments and to previous theories for decoupled translation dynamics. Special attention is paid to bubbles of relevance in biomedical applications.

  9. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a high-speed camera and a set of high-speed Langmuir probes were implemented to study the effect of varying facility background pressure on thruster operation. The results show a rise in the oscillation frequency of the breathing mode with rising background pressure, which is hypothesized to be due to a shortening accelerationionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  10. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    PubMed

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  11. Sound produced by an oscillating arc in a high-pressure gas

    NASA Astrophysics Data System (ADS)

    Popov, Fedor K.; Shneider, Mikhail N.

    2017-08-01

    We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

  12. Resonances, radiation pressure and optical scattering phenomena of drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, P. L.; Goosby, S. G.; Langley, D. S.; Loporto-Arione, S. E.

    1982-01-01

    Acoustic levitation and the response of fluid spheres to spherical harmonic projections of the radiation pressure are described. Simplified discussions of the projections are given. A relationship between the tangential radiation stress and the Konstantinov effect is introduced and fundamental streaming patterns for drops are predicted. Experiments on the forced shape oscillation of drops are described and photographs of drop fission are displayed. Photographs of critical angle and glory scattering by bubbles and rainbow scattering by drops are displayed.

  13. Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Liu, Yunqiao; Calvisi, Michael L.; Wang, Qianxi

    2017-04-01

    Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent collapsing EMBs to cells and tissues in clinical settings have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The system modeled consists of the external liquid, membrane and internal gases of an EMB. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow and viscoelasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single- and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency—this enriched acoustic spectrum can enhance blood-tissue contrast and improve the quality of sonographic images. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the encapsulated bubble, thereby improving the efficacy and safety of contrast-enhanced agents.

  14. Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael; Liu, Yunqiao; Wang, Qianxi

    2016-11-01

    Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent, collapsing EMBs to cells and tissues in clinical practice have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The EMB system modeled consists of the external liquid, membrane, and internal gases. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow, and elasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency. This enriched acoustic spectrum can enhance blood-tissue contrast and improve sonographic image quality. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the EMB, thereby improving the efficacy and safety of contrast-enhanced agents.

  15. An acoustofluidic micromixer based on oscillating sidewall sharp-edges†

    PubMed Central

    Huang, Po-Hsun; Xie, Yuliang; Ahmed, Daniel; Rufo, Joseph; Nama, Nitesh; Chen, Yuchao; Chan, Chung Yu; Huang, Tony Jun

    2014-01-01

    Rapid and homogeneous mixing inside a microfluidic channel is demonstrated via the acoustic streaming phenomenon induced by the oscillation of sidewall sharp-edges. By optimizing the design of the sharp-edges, excellent mixing performance and fast mixing speed can be achieved in a simple device, making our sharp-edge-based acoustic micromixer a promising candidate for a wide variety of applications. PMID:23896797

  16. An acoustofluidic micromixer based on oscillating sidewall sharp-edges.

    PubMed

    Huang, Po-Hsun; Xie, Yuliang; Ahmed, Daniel; Rufo, Joseph; Nama, Nitesh; Chen, Yuchao; Chan, Chung Yu; Huang, Tony Jun

    2013-10-07

    Rapid and homogeneous mixing inside a microfluidic channel is demonstrated via the acoustic streaming phenomenon induced by the oscillation of sidewall sharp-edges. By optimizing the design of the sharp-edges, excellent mixing performance and fast mixing speed can be achieved in a simple device, making our sharp-edge-based acoustic micromixer a promising candidate for a wide variety of applications.

  17. Analyzing Baryon Acoustic Oscillations in Sparse Spectroscopic Samples via Cross-Correlation with Dense Photometry

    NASA Astrophysics Data System (ADS)

    Patej, Anna; Eisenstein, Daniel J.

    2018-04-01

    We develop a formalism for measuring the cosmological distance scale from baryon acoustic oscillations (BAO) using the cross-correlation of a sparse redshift survey with a denser photometric sample. This reduces the shot noise that would otherwise affect the auto-correlation of the sparse spectroscopic map. As a proof of principle, we make the first on-sky application of this method to a sparse sample defined as the z > 0.6 tail of the Sloan Digital Sky Survey's (SDSS) BOSS/CMASS sample of galaxies and a dense photometric sample from SDSS DR9. We find a 2.8σ preference for the BAO peak in the cross-correlation at an effective z = 0.64, from which we measure the angular diameter distance DM(z = 0.64) = (2418 ± 73 Mpc)(rs/rs, fid). Accordingly, we expect that using this method to combine sparse spectroscopy with the deep, high quality imaging that is just now becoming available will enable higher precision BAO measurements than possible with the spectroscopy alone.

  18. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.

  19. The effects of pressure sensor acoustics on airdata derived from a high-angle-of-attack flush airdata sensing (HI-FADS) system

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen R.; Moes, Timothy R.

    1991-01-01

    The accuracy of a prototype nonintrusive airdata system derived for high-angle-of-attack measurements was demonstrated for quasi-steady maneuvers as great as 55 degrees during phase one of the F-18 high alpha research vehicle flight test program. This system consists of a matrix of nine pressure ports arranged in annular rings on the aircraft nose, and estimates the complete airdata set utilizing flow modeling and nonlinear regression. Particular attention is paid to the effects of acoustical distortions within the individual pressure sensors of the HI-FADS pressure matrix. A dynamic model to quantify these effects which describes acoustical distortion is developed and solved in closed form for frequency response.

  20. Active damping of capillary oscillations on liquid columns

    NASA Astrophysics Data System (ADS)

    Thiessen, David B.; Wei, Wei; Marston, Philip L.

    2002-05-01

    Active control of acoustic radiation pressure and of electrostatic stresses on liquid columns has been demonstrated to overcome the Rayleigh-Plateau instability that normally causes long liquid columns to break [M. J. Marr-Lyon et al., J. Fluid Mech. 351, 345 (1997); Phys. Fluids 12, 986-995 (2000)]. Though originally demonstrated for liquid-liquid systems in plateau tanks, the electrostatic method also works on columns in air in reduced gravity [D. B. Thiessen, M. J. Marr-Lyon, and P. L. Marston, ``Active electrostatic stabilization of liquid bridges in low gravity,'' J. Fluid Mech. (in press)]. In new research, the electrostatic stresses are applied in proportion to the velocity of the surface of the column so as to actively dampen capillary oscillations of the surface. The mode amplitude is optically sensed and the rate-of-change is electronically determined. Plateau tank measurements and theory both show that the change in damping rate is proportional to the feedback gain. The results suggest that either active control of electrostatic stresses or of acoustic radiation stresses can be used to suppress the response of interfaces to vibration. [Work supported by NASA.

  1. Acoustic relaxation of the hydro-mechanical system under critical expiration of swirl flow

    NASA Astrophysics Data System (ADS)

    Pozdeeva, I. G.; Mitrofanova, O. V.

    2018-03-01

    The mechanism of generation of acoustic oscillations associated with the formation of stable vortex structures in the moving fluid was considered for the impact swirl flow. Experimental studies were carried out to determine the relationship between large-scale vortex motion and acoustic effects in hydro-mechanical systems. It was shown that a sharp change of the amplitude-frequency characteristic of the acoustic oscillations of hydro-mechanical system corresponds to the maximal flow rate of the swirl flow. The established connection between the generation of sound waves and geometrical and regime parameters of the hydro-mechanical system formed the basis for the developed method of diagnostics of the processes of vortex formation.

  2. Steady and unsteady transonic pressure measurements on a clipped delta wing for pitching and control-surface oscillations

    NASA Technical Reports Server (NTRS)

    Hess, Robert W.; Cazier, F. W., Jr.; Wynne, Eleanor C.

    1986-01-01

    Steady and unsteady pressures were measured on a clipped delta wing with a 6-percent circular-arc airfoil section and a leading-edge sweep angle of 50.40 deg. The model was oscillated in pitch and had an oscillating trailing-edge control surface. Measurements were concentrated over a Mach number range from 0.88 to 0.94; less extensive measurements were made at Mach numbers of 0.40, 0.96, and 1.12. The Reynolds number based on mean chord was approximately 10 x 10 to the 6th power. The interaction of wing or control-surface deflection with the formation of shock waves and with a leading-edge vortex generated complex pressure distributions that were sensitive to frequency and to small changes in Mach number at transonic speeds.

  3. Exploratory investigation of sound pressure level in the wake of an oscillating airfoil in the vicinity of stall

    NASA Technical Reports Server (NTRS)

    Gray, R. B.; Pierce, G. A.

    1972-01-01

    Wind tunnel tests were performed on two oscillating two-dimensional lifting surfaces. The first of these models had an NACA 0012 airfoil section while the second simulated the classical flat plate. Both of these models had a mean angle of attack of 12 degrees while being oscillated in pitch about their midchord with a double amplitude of 6 degrees. Wake surveys of sound pressure level were made over a frequency range from 16 to 32 Hz and at various free stream velocities up to 100 ft/sec. The sound pressure level spectrum indicated significant peaks in sound intensity at the oscillation frequency and its first harmonic near the wake of both models. From a comparison of these data with that of a sound level meter, it is concluded that most of the sound intensity is contained within these peaks and no appreciable peaks occur at higher harmonics. It is concluded that within the wake the sound intensity is largely pseudosound while at one chord length outside the wake, it is largely true vortex sound. For both the airfoil and flat plate the peaks appear to be more strongly dependent upon the airspeed than on the oscillation frequency. Therefore reduced frequency does not appear to be a significant parameter in the generation of wake sound intensity.

  4. Calculations of combustion response profiles and oscillations

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1993-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Pressure and velocity oscillations calculated using this procedure are presented for the Space Shuttle Main Engine (SSME) to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Results of calculations to determine local combustion responses using detailed physical models for injection, atomization, and vaporization with gas phase oscillations in baffled and unbaffled SSME combustors are presented. The contributions of the various physical phenomena occurring in a combustor to oscillations in combustion response were determined.

  5. Acoustic building infiltration measurement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muehleisen, Ralph T.; Raman, Ganesh

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  6. Nonlinear optical observation of coherent acoustic Dirac plasmons in thin-film topological insulators

    NASA Astrophysics Data System (ADS)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2016-09-01

    Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.

  7. Acoustic intensity calculations for axisymmetrically modeled fluid regions

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Everstine, Gordon C.

    1992-01-01

    An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.

  8. Physics of thermo-acoustic sound generation

    NASA Astrophysics Data System (ADS)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  9. Model-independent Evidence for Dark Energy Evolution from Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Sahni, V.; Shafieloo, A.; Starobinsky, A. A.

    2014-10-01

    Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s-1 Mpc-1 at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh 2 from SDSS DR9 and DR11 data, namely, Omh 2 ≈ 0.122 ± 0.01, which is equivalent to Ω0m h 2 for the spatially flat ΛCDM model, is in tension with the value Ω0m h 2 = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.

  10. Numerical methods for large eddy simulation of acoustic combustion instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton T.

    Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion

  11. Acoustical studies of the American reed organ

    NASA Astrophysics Data System (ADS)

    Cottingham, James P.

    2004-05-01

    The reed organ enjoyed a period of great popularity in North America which reached a peak in the late 19th century, when thousands of instruments per year were manufactured and sold in the United States and Canada. Displaced by the emergence of the upright piano, the reed organ had very much fallen out of favor by 1929. In the past decade a number of acoustical investigations have been undertaken on the instrument known as the American reed organ. Observations of reed motion and velocity have been made with electronic proximity sensors and a laser vibrometer system. The variation of the frequency and amplitude of reed vibration as a function of blowing pressure has been explored in some detail and the results compared with predictions of a simple theoretical model. Measurements have been made of the spectrum of the near-field sound including the effects of changes in dimensions of the reed cell. While most treatments of free reed oscillation approximate the reed vibration as a sinusoidal oscillation of a cantilever beam in the fundamental transverse mode, recently some evidence of higher transverse modes and torsional modes of vibration have been observed.

  12. Constraints on the holographic dark energy model via type Ia supernovae, baryon acoustic oscillation, and WMAP7

    NASA Astrophysics Data System (ADS)

    Xu, Lixin

    2012-06-01

    In this paper, the holographic dark energy model, where the future event horizon is taken as an IR cutoff, is confronted by using currently available cosmic observational data sets which include type Ia supernovae, baryon acoustic oscillation, and cosmic microwave background radiation from full information of WMAP 7-yr data. Via the Markov chain Monte Carlo method, we obtain the values of model parameter c=0.696-0.0737-0.132-0.190+0.0736+0.159+0.264 with 1, 2, 3σ regions. Therefore, one can conclude that at at least 3σ level the future Universe will be dominated by phantom-like dark energy. It is not consistent with positive energy condition, however this condition must be satisfied to derive the holographic bound. It implies that the current cosmic observational data points disfavor the holographic dark energy model.

  13. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    NASA Astrophysics Data System (ADS)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  14. The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Davis, Tamara; Poole, Gregory B.; Parkinson, David; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J.; Li, I.-Hui; Madore, Barry; Martin, D. Christopher; Pimbblet, Kevin; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, H. K. C.

    2011-08-01

    We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z= 0.6, using the distribution of N= 132 509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. The results are mutually consistent, corresponding to a 4.0 per cent measurement of the cosmic distance-redshift relation at z= 0.6 [in terms of the acoustic parameter 'A(z)' introduced by Eisenstein et al., we find A(z= 0.6) = 0.452 ± 0.018]. Both BAOs and power spectrum shape information contribute towards these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2σ. The ratios of our distance measurements to those obtained using BAOs in the distribution of luminous red galaxies at redshifts z= 0.2 and 0.35 are consistent with a flat Λ cold dark matter model that also provides a good fit to the pattern of observed fluctuations in the cosmic microwave background radiation. The addition of the current WiggleZ data results in a ≈30 per cent improvement in the measurement accuracy of a constant equation of state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < -1/3) is required with a probability of 99.8 per cent, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ survey data set is complete.

  15. Combustion Instability Analysis and the Effects of Drop Size on Acoustic Driving Rocket Flow

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Ellison, L. Renea; Moser, Marlow D.

    2004-01-01

    High frequency combustion instability, the most destructive kind, is generally solved on a per engine basis. The instability often is the result of compounding acoustic oscillations, usually from the propellant combustion itself. To counteract the instability the chamber geometry can be changed and/or the method of propellant injection can be altered. This experiment will alter the chamber dimensions slightly; using a cylindrical shape of constant diameter and the length will be varied from six to twelve inches in three-inch increments. The main flowfield will be the products of a high OF hydrogen/oxygen flow. The liquid fuel will be injected into this flowfield using a modulated injector. It will allow for varied droplet size, feed rate, spray pattern, and location for the mixture within the chamber. The response will be deduced from the chamber pressure oscillations.

  16. Woodwind Tone Hole Acoustics and the Spectrum Transformation Function.

    NASA Astrophysics Data System (ADS)

    Keefe, Douglas Howard

    This report describes an investigation of woodwind musical instrument tone holes and their effect on the radiated spectrum, the total dissipation, the stability of oscillation, the psychoacoustical cues important in perception, and the tuning and response of the instrument. Varying tone hole proportions significantly affect the radiative and frictional damping near a single hole, the mutual interactions between holes, the onset of streaming and turbulence near the holes, and the perceived woodwind timbre. The interconnections between related fields are explored through a brief review of sound production in woodwinds plus more extensive reviews of room and psychological acoustics. A theoretical and experimental discussion of the spectrum transformation function from the mouthpiece into the room relates all these fields. Also, considered are differences between cylindrical and conical bore woodwinds, the systematic shifts in saxophone spectra produced by the beating of the reed, the coupling of many closely spaced tone holes to the room excitation, the role of the player, and the results pertaining to computer music synthesis. The complicated acoustical flow inside the main air column near a single tone hole has been examined using a Green function, integral equation approach. A variational formulation allows explicit calculation of the open and closed hole impedance parameters needed in the transmission line description of a woodwind, and experiments have verified the theory in detail. Major acoustical topics considered are listed below. The effective length t(,e) of an open hole, relevant for instrument design and modification, is calculated and measured in terms of the main bore diameter 2a, hole diameter 2b, and the height t of the hole chimney; the effect of a hanging pad is a semi-empirical correction on t(,e). When the fundamental plane-wave mode of the main air column oscillation is at a pressure node, both the open and closed hole series impedances are

  17. A frequency doubled pressure-tunable oscillator-amplifier dye laser system

    NASA Technical Reports Server (NTRS)

    Moriarty, A.; Heaps, W.; Davis, D. D.

    1976-01-01

    A tunable high-repetition-rate oscillator-amplifier dye-laser system is reported. The dye laser described was longitudinally pumped with the second harmonic of a Nd-YAG laser operating at 10 Hz. Using three Faraday-Perot etalons and pressure tuning, a maximum fundamental output power of the order of 6 MW with a corresponding spectral width of less than 0.003 nm at 564 nm was obtained. The fundamental at 564 nm was frequency doubled to give a maximum power level of 0.6 MW of second-harmonic output power with a spectral width less than 0.0015 nm at 282 nm. Frequency stability could be maintained to within approximately 15% of the line-width.

  18. The effects of pressure sensor acoustics on airdata derived from a High-angle-of-attack Flush Airdata Sensing (HI-FADS) system

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.

    1991-01-01

    The accuracy of a nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was verified for quasi-steady flight conditions up to 55 deg angle of attack during the F-18 High Alpha Research Vehicle (HARV) Program. The system is a matrix of nine pressure ports arranged in annular rings on the aircraft nose. The complete airdata set is estimated using nonlinear regression. Satisfactory frequency response was verified to the system Nyquist frequency (12.5 Hz). The effects of acoustical distortions within the individual pressure sensors of the nonintrusive pressure matrix on overall system performance are addressed. To quantify these effects, a frequency-response model describing the dynamics of acoustical distortion is developed and simple design criteria are derived. The model adjusts measured HI-FADS pressure data for the acoustical distortion and quantifies the effects of internal sensor geometries on system performance. Analysis results indicate that sensor frequency response characteristics very greatly with altitude, thus it is difficult to select satisfactory sensor geometry for all altitudes. The solution used presample filtering to eliminate resonance effects, and short pneumatic tubing sections to reduce lag effects. Without presample signal conditioning the system designer must use the pneumatic transmission line to attenuate the resonances and accept the resulting altitude variability.

  19. Nonlinear acoustic techniques for landmine detection.

    PubMed

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.

  20. Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony

    Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.

  1. Acoustic Methods Remove Bubbles From Liquids

    NASA Technical Reports Server (NTRS)

    Trinh, E.; Elleman, D. D.; Wang, T. G.

    1983-01-01

    Two acoustic methods applied to molten glass or other viscous liquids to remove bubbles. Bubbles are either absorbed or brought to surface by applying high-intensity Sonic field at resonant frequency. Sonic oscillation increases surface area of bubbles and causes them to dissipate.

  2. Study of Two-Dimensional Compressible Non-Acoustic Modeling of Stirling Machine Type Components

    NASA Technical Reports Server (NTRS)

    Tew, Roy C., Jr.; Ibrahim, Mounir B.

    2001-01-01

    A two-dimensional (2-D) computer code was developed for modeling enclosed volumes of gas with oscillating boundaries, such as Stirling machine components. An existing 2-D incompressible flow computer code, CAST, was used as the starting point for the project. CAST was modified to use the compressible non-acoustic Navier-Stokes equations to model an enclosed volume including an oscillating piston. The devices modeled have low Mach numbers and are sufficiently small that the time required for acoustics to propagate across them is negligible. Therefore, acoustics were excluded to enable more time efficient computation. Background information about the project is presented. The compressible non-acoustic flow assumptions are discussed. The governing equations used in the model are presented in transport equation format. A brief description is given of the numerical methods used. Comparisons of code predictions with experimental data are then discussed.

  3. Radical production inside an acoustically driven microbubble.

    PubMed

    Stricker, Laura; Lohse, Detlef

    2014-01-01

    The chemical production of radicals inside acoustically driven bubbles is determined by the local temperature inside the bubbles and by their composition at collapse. By means of a previously validated ordinary differential equations (ODE) model [L. Stricker, A. Prosperetti, D. Lohse, Validation of an approximate model for the thermal behavior in acoustically driven bubbles, J. Acoust. Soc. Am. 130 (5) (2011) 3243-3251], based on boundary layer assumption for mass and heat transport, we study the influence of different parameters on the radical production. We perform different simulations by changing the driving frequency and pressure, the temperature of the surrounding liquid and the composition of the gas inside the bubbles. In agreement with the experimental conditions of new generation sonochemical reactors, where the bubbles undergo transient cavitation oscillations [D. F. Rivas, L. Stricker, A. Zijlstra, H. Gardeniers, D. Lohse, A. Prosperetti, Ultrasound artificially nucleated bubbles and their sonochemical radical production, Ultrason. Sonochem. 20 (1) (2013) 510-524], we mainly concentrate on the initial chemical transient and we suggest optimal working ranges for technological applications. The importance of the chemical composition at collapse is reflected in the model, including the role of entrapped water vapor. We in particular study the exothermal reactions taking place in H2 and O2 mixtures. At the exact stoichiometric mixture 2:1 the highest internal bubble temperatures are achieved. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determinedmore » by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.« less

  5. Load influence on gear noise. [mathematical model for determining acoustic pressure level as function of load

    NASA Technical Reports Server (NTRS)

    Merticaru, V.

    1974-01-01

    An original mathematical model is proposed to derive equations for calculation of gear noise. These equations permit the acoustic pressure level to be determined as a function of load. Application of this method to three parallel gears is reported. The logical calculation scheme is given, as well as the results obtained.

  6. Extinction cross-section suppression and active acoustic invisibility cloaking

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-10-01

    Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility.

  7. Properties of Materials Using Acoustic Waves.

    DTIC Science & Technology

    1982-05-01

    Acoust. Soc. Am. 69, 1624 (1981). R.E. Apfel, "Acoustic Cavitation : A Possible Consequence of Biomedical Uses of Ultrasound ," Brit. J. Cancer, in...efforts can be classified into four broad categories; - Applications of acoustic levitation; nonlinear acoustics and radiation pressure; acoustic cavitation ...supercooled water - a question of concern to cryobiologists. We have also measured the properties of several lipid oils (only available in less than

  8. Full-scale hot cell test of an acoustic sensor dedicated to measurement of the internal gas pressure and composition of a LWR nuclear fuel rod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrandis, J. Y.; Rosenkrantz, E.; Leveque, G.

    2011-07-01

    A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was carried on successfully between 2008 and 2010 on irradiated fuel rods in the LECA-STAR facility at Cadarache Centre. The acoustic sensor has been specially designed in order to provide a nondestructive technique to easily carry out the measurement of the internal gas pressure and gas composition of a LWR nuclear fuel rod. This sensor has been achieved in 2007 and is now covered by an international patent. The first positive result, concerning the device behaviour, is that the sensor-operating characteristics have notmore » been altered by a two-year exposure in the hot cell ambient. We performed the gas characterisation contained in irradiated fuel rods. The acoustic method accuracy is now {+-}5 bars on the pressure measurement result and {+-}0.3% on the evaluated gas composition. The results of the acoustic method were compared to puncture results. Another significant conclusion is that the efficiency of the acoustic method is not altered by the irradiation time, and possible modification of the cladding properties. These results make it possible to demonstrate the feasibility of the technique on irradiated fuel rods. The transducer and the associated methodology are now operational. (authors)« less

  9. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  10. Neural Oscillations Carry Speech Rhythm through to Comprehension

    PubMed Central

    Peelle, Jonathan E.; Davis, Matthew H.

    2012-01-01

    A key feature of speech is the quasi-regular rhythmic information contained in its slow amplitude modulations. In this article we review the information conveyed by speech rhythm, and the role of ongoing brain oscillations in listeners’ processing of this content. Our starting point is the fact that speech is inherently temporal, and that rhythmic information conveyed by the amplitude envelope contains important markers for place and manner of articulation, segmental information, and speech rate. Behavioral studies demonstrate that amplitude envelope information is relied upon by listeners and plays a key role in speech intelligibility. Extending behavioral findings, data from neuroimaging – particularly electroencephalography (EEG) and magnetoencephalography (MEG) – point to phase locking by ongoing cortical oscillations to low-frequency information (~4–8 Hz) in the speech envelope. This phase modulation effectively encodes a prediction of when important events (such as stressed syllables) are likely to occur, and acts to increase sensitivity to these relevant acoustic cues. We suggest a framework through which such neural entrainment to speech rhythm can explain effects of speech rate on word and segment perception (i.e., that the perception of phonemes and words in connected speech is influenced by preceding speech rate). Neuroanatomically, acoustic amplitude modulations are processed largely bilaterally in auditory cortex, with intelligible speech resulting in differential recruitment of left-hemisphere regions. Notable among these is lateral anterior temporal cortex, which we propose functions in a domain-general fashion to support ongoing memory and integration of meaningful input. Together, the reviewed evidence suggests that low-frequency oscillations in the acoustic speech signal form the foundation of a rhythmic hierarchy supporting spoken language, mirrored by phase-locked oscillations in the human brain. PMID:22973251

  11. [An improved case of bedridden mental impairment with normal pressure hydrocephalus associated with acoustic neurinoma after tumor resection].

    PubMed

    Sugimoto, Seiichiro; Sugimoto, Akiko; Saita, Kazuko; Kishi, Masahiko; Shioya, Keiichi; Higa, Toshinobu

    2008-08-01

    A 67-year-old woman developed gait disturbance, dysarthria, cognitive impairment and incontinence at age 65, and became bedridden. She showed mutism, stupor and lower limb spasticity. Cranial CT and MRI revealed marked ventricular enlargement and a cerebellopontine angle tumor. CSF study showed normal pressure (125 mmH2O) and elevated protein (143 mg/dl). Radionuclide cisternography showed redistribution of radionuclide to the ventricles and intraventricular residual radionuclide after 72 hours, which allowed a diagnosis of normal pressure hydrocephalus. After removal of the tumor, ventricle size and CSF protein decreased, and the symptoms of cognitive impairment and motor dysfunction resolved. Histological examination showed acoustic neurinoma. Over the half of hydrocephalus following acoustic neurinoma shows a tendency to improve by surgical resection of the tumor. Neurologists who see cognitively impaired spastic bedridden patients should not overlook this pathology.

  12. Acoustic force measurements on polymer-coated microbubbles in a microfluidic device

    PubMed Central

    Memoli, Gianluca; Fury, Christopher R.; Baxter, Kate O.; Gélat, Pierre N.; Jones, Philip H.

    2017-01-01

    This work presents an acoustofluidic device for manipulating coated microbubbles, designed for the simultaneous use of optical and acoustical tweezers. A comprehensive characterization of the acoustic pressure in the device is presented, obtained by the synergic use of different techniques in the range of acoustic frequencies where visual observations showed aggregation of polymer-coated microbubbles. In absence of bubbles, the combined use of laser vibrometry and finite element modelling supported a non-invasive measurement of the acoustic pressure and an enhanced understanding of the system resonances. Calibrated holographic optical tweezers were used for direct measurements of the acoustic forces acting on an isolated microbubble, at low driving pressures, and to confirm the spatial distribution of the acoustic field. This allowed quantitative acoustic pressure measurements by particle tracking, using polystyrene beads, and an evaluation of the related uncertainties. This process facilitated the extension of tracking to microbubbles, which have a negative acoustophoretic contrast factor, allowing acoustic force measurements on bubbles at higher pressures than optical tweezers, highlighting four peaks in the acoustic response of the device. Results and methodologies are relevant to acoustofluidic applications requiring a precise characterization of the acoustic field and, in general, to biomedical applications with microbubbles or deformable particles. PMID:28599556

  13. Observation of contrast agent response to chirp insonation with a simultaneous optical-acoustical system.

    PubMed

    Sun, Yang; Zhao, Shukui; Dayton, Paul A; Ferrara, Katherine W

    2006-06-01

    Rayleigh-Plesset analysis, ultra-high speed photography, and single bubble acoustical recordings previously were applied independently to characterize the radial oscillation and resulting echoes from a microbubble in response to an ultrasonic pulse. In addition, high-speed photography has shown that microbubbles are destroyed over a single pulse or pulse train by diffusion and fragmentation. In order to develop a single model to characterize microbubble echoes based on oscillatory and destructive characteristics, an optical-acoustical system was developed to simultaneously record the optical image and backscattered echo from each microbubble. Combined observation provides the opportunity to compare predictions for oscillation and echoes with experimental results and identify discrepancies due to diffusion or fragmentation. Optimization of agents and insonating pulse parameters may be facilitated with this system. The mean correlation of the predicted and experimental radius-time curves and echoes exceeds 0.7 for the parameters studied here. An important application of this new system is to record and analyze microbubble response to a long pulse in which diffusion is shown to occur over the pulse duration. The microbubble response to an increasing or decreasing chirp is evaluated using this new tool. For chirp insonation beginning with the lower center frequency, low-frequency modulation of the oscillation envelope was obvious. However, low-frequency modulation was not observed in the radial oscillation produced by decreasing chirp insonation. Comparison of the echoes from similar sized microbubbles following increasing and decreasing chirp insonation demonstrated that the echoes were not time-reversed replicas. Using a transmission pressure of 620 kPa, the -6 dB echo length was 0.9 and 1.1 micros for increasing and decreasing chirp insonation, respectively (P = 0.02). The mean power in the low-frequency portion of the echoes was 8 (mV)2 and 13 (mV)2 for increasing

  14. Reconstructing baryon oscillations: A Lagrangian theory perspective

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Cohn, J. D.

    2009-03-01

    Recently Eisenstein and collaborators introduced a method to “reconstruct” the linear power spectrum from a nonlinearly evolved galaxy distribution in order to improve precision in measurements of baryon acoustic oscillations. We reformulate this method within the Lagrangian picture of structure formation, to better understand what such a method does, and what the resulting power spectra are. We show that reconstruction does not reproduce the linear density field, at second order. We however show that it does reduce the damping of the oscillations due to nonlinear structure formation, explaining the improvements seen in simulations. Our results suggest that the reconstructed power spectrum is potentially better modeled as the sum of three different power spectra, each dominating over different wavelength ranges and with different nonlinear damping terms. Finally, we also show that reconstruction reduces the mode-coupling term in the power spectrum, explaining why miscalibrations of the acoustic scale are reduced when one considers the reconstructed power spectrum.

  15. The acoustic vector sensor: a versatile battlefield acoustics sensor

    NASA Astrophysics Data System (ADS)

    de Bree, Hans-Elias; Wind, Jelmer W.

    2011-06-01

    The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.

  16. Dynamics and Instabilities of Acoustically Stressed Interfaces

    NASA Astrophysics Data System (ADS)

    Shi, William Tao

    An intense sound field exerts acoustic radiation pressure on a transitional layer between two continuous fluid media, leading to the unconventional dynamical behavior of the interface in the presence of the sound field. An understanding of this behavior has applications in the study of drop dynamics and surface rheology. Acoustic fields have also been utilized in the generation of interfacial instability, which may further encourage the dispersion or coalescence of liquids. Therefore, the study of the dynamics of the acoustically stressed interfaces is essential to infer the mechanism of the various phenomena related to interfacial dynamics and to acquire the properties of liquid surfaces. This thesis studies the dynamics of acoustically stressed interfaces through a theoretical model of surface interactions on both closed and open interfaces. Accordingly, a boundary integral method is developed to simulate the motions of a stressed interface. The method has been employed to determine the deformation, oscillation and instability of acoustically levitated drops. The generalized computations are found to be in good agreement with available experimental results. The linearized theory is also derived to predict the instability threshold of the flat interface, and is then compared with experiments conducted to observe and measure the unstable motions of the horizontal interface. This thesis is devoted to describing and classifying the simplest mechanisms by which acoustic fields provide a surface interaction with a fluid. A physical picture of the competing processes introduced by the evolution of an interface in a sound field is presented. The development of an initial small perturbation into a sharp form is observed on either a drop surface or a horizontal interface, indicating a strong focusing of acoustic energy at certain spots of the interface. Emphasis is placed on understanding the basic coupling mechanisms, rather than on particular applications that may

  17. Pressure dependence of transverse acoustic phonon energy in ferropericlase across the spin transition.

    PubMed

    Fukui, Hiroshi; Baron, Alfred Q R; Ishikawa, Daisuke; Uchiyama, Hiroshi; Ohishi, Yasuo; Tsuchiya, Taku; Kobayashi, Hisao; Matsuzaki, Takuya; Yoshino, Takashi; Katsura, Tomoo

    2017-06-21

    We investigated transverse acoustic (TA) phonons in iron-bearing magnesium oxide (ferropericlase) up to 56 GPa using inelastic x-ray scattering (IXS). The results show that the energy of the TA phonon far from the Brillouin zone center suddenly increases with increasing pressure above the spin transition pressure of ferropericlase. Ab initio calculations revealed that the TA phonon energy far from the Brillouin zone center is higher in the low-spin state than in the high spin state; that the TA phonon energy depend weakly on pressure; and that the energy gap between the TA and the lowest-energy-optic phonons is much narrower in the low-spin state than in the high-spin state. This allows us to conclude that the anomalous behavior of the TA mode in the present experiments is the result of gap narrowing due to the spin transition and explains contradictory results in previous experimental studies.

  18. Nonlinear gas oscillations in pipes. I - Theory.

    NASA Technical Reports Server (NTRS)

    Jimenez, J.

    1973-01-01

    The problem of forced acoustic oscillations in a pipe is studied theoretically. The oscillations are produced by a moving piston in one end of the pipe, while a variety of boundary conditions ranging from a completely closed to a completely open mouth at the other end are considered. The linear theory predicts large amplitudes near resonance and that nonlinear effects become crucially important. By expanding the equations of motion in a series in the Mach number, both the amplitude and waveform of the oscillation are predicted there. In both the open- and closed-end cases the need for shock waves in some range of parameters is found. The amplitude of the oscillation is different for the two cases, however, being proportional to the square root of the piston amplitude in the closed-end case and to the cube root for the open end.

  19. Uncertainty Quantification of Non-linear Oscillation Triggering in a Multi-injector Liquid-propellant Rocket Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Popov, Pavel; Sideris, Athanasios; Sirignano, William

    2014-11-01

    We examine the non-linear dynamics of the transverse modes of combustion-driven acoustic instability in a liquid-propellant rocket engine. Triggering can occur, whereby small perturbations from mean conditions decay, while larger disturbances grow to a limit-cycle of amplitude that may compare to the mean pressure. For a deterministic perturbation, the system is also deterministic, computed by coupled finite-volume solvers at low computational cost for a single realization. The randomness of the triggering disturbance is captured by treating the injector flow rates, local pressure disturbances, and sudden acceleration of the entire combustion chamber as random variables. The combustor chamber with its many sub-fields resulting from many injector ports may be viewed as a multi-scale complex system wherein the developing acoustic oscillation is the emergent structure. Numerical simulation of the resulting stochastic PDE system is performed using the polynomial chaos expansion method. The overall probability of unstable growth is assessed in different regions of the parameter space. We address, in particular, the seven-injector, rectangular Purdue University experimental combustion chamber. In addition to the novel geometry, new features include disturbances caused by engine acceleration and unsteady thruster nozzle flow.

  20. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  1. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas; Houston, Janice

    2012-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I liftoff acoustic environments and to determine the acoustic reduction gained by using an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model and Mobile Launcher with tower. Acoustic and pressure data were measured by over 200 instruments. The ASMAT results are compared to Ares I-X flight data.

  2. Comment on "Acoustical observation of bubble oscillations induced by bubble popping"

    NASA Astrophysics Data System (ADS)

    Blanc, É.; Ollivier, F.; Antkowiak, A.; Wunenburger, R.

    2015-03-01

    We have reproduced the experiment of acoustic monitoring of spontaneous popping of single soap bubbles standing in air reported by Ding et al. [2aa Phys. Rev. E 75, 041601 (2007), 10.1103/PhysRevE.75.041601]. By using a single microphone and two different signal acquisition systems recording in parallel the signal at the microphone output, among them the system used by Ding et al., we have experimentally evidenced that the acoustic precursors of bubble popping events detected by Ding et al. actually result from an acausal artifact of the signal processing performed by their acquisition system which lies outside of its prescribed working frequency range. No acoustic precursor of popping could be evidenced with the microphone used in these experiments, whose sensitivity is 1 V Pa-1 and frequency range is 500 Hz-100 kHz.

  3. Dynamics of levitated objects in acoustic vortex fields.

    PubMed

    Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W

    2017-08-02

    Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.

  4. Axial vibrations of brass wind instrument bells and their acoustical influence: Theory and simulations.

    PubMed

    Kausel, Wilfried; Chatziioannou, Vasileios; Moore, Thomas R; Gorman, Britta R; Rokni, Michelle

    2015-06-01

    Previous work has demonstrated that structural vibrations of brass wind instruments can audibly affect the radiated sound. Furthermore, these broadband effects are not explainable by assuming perfect coincidence of the frequency of elliptical structural modes with air column resonances. In this work a mechanism is proposed that has the potential to explain the broadband influences of structural vibrations on acoustical characteristics such as input impedance, transfer function, and radiated sound. The proposed mechanism involves the coupling of axial bell vibrations to the internal air column. The acoustical effects of such axial bell vibrations have been studied by extending an existing transmission line model to include the effects of a parasitic flow into vibrating walls, as well as distributed sound pressure sources due to periodic volume fluctuations in a duct with oscillating boundaries. The magnitude of these influences in typical trumpet bells, as well as in a complete instrument with an unbraced loop, has been studied theoretically. The model results in predictions of input impedance and acoustical transfer function differences that are approximately 1 dB for straight instruments and significantly higher when coiled tubes are involved or when very thin brass is used.

  5. 3D rocket combustor acoustics model

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1992-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, or three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1D, 2D, and 3D assumption with regards to capturing the physical phenomena of interest and computational requirements.

  6. Acoustic method for levitation of small living animals

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Cao, C. D.; Lü, Y. J.; Hong, Z. Y.; Wei, B.

    2006-11-01

    Ultrasonic levitation of some small living animals such as ant, ladybug, and young fish has been achieved with a single-axis acoustic levitator. The vitality of ant and ladybug is not evidently influenced during the acoustic levitation, whereas that of the young fish is reduced because of the inadequacy of water supply. Numerical analysis shows that the sound pressures on the ladybug's surface almost reach the incident pressure amplitude p0 due to sound scattering. It is estimated that 99.98% of the acoustic energy is reflected away from the ladybug. The acoustic radiation pressure pa on the ladybug's surface is only 1%-3% of p0, which plays a compression role on the central region and a suction role on the peripheral region.

  7. Simulation Study on the Self-Sustained Oscillations in DC Driven Glow Discharges at Atmospheric Pressure Under Different Gas Gaps

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; He, Yafeng; Liu, Fucheng

    2015-06-01

    In this paper, a one-dimensional plasma fluid model is employed to study the self-sustained oscillations in DC-driven helium glow discharges at atmospheric pressure under different gas gaps. Our simulation results indicate that a harmonic current oscillation with tiny amplitude always occur at the onset of instability and transits into a relaxation one as the conductivity of the semiconductor is decreased. It is found that the dynamics of the oscillations are dependent on the gas gaps. The discharge can only exhibit a simple oscillation with unique amplitude and frequency at smaller gas gaps (<2 mm) while it can exhibit a more complex oscillation with several different amplitudes and frequencies at larger gas gaps (>2 mm). The discharge modes in these current oscillations have also been analyzed. supported by National Natural Science Foundation of China (Nos. 11205044 and 11405042), Hebei Natural Science Fund of China (Nos. A2012201015 and A2011201006), the Research Foundation of Education Bureau of Hebei Province of China (No. Y2012009), the Postdoctoral Science Foundation of Hebei Province of China (No. B2014003004) and the Postdoctoral Foundation of Hebei University

  8. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  9. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  10. Theta band oscillations reflect more than entrainment: behavioral and neural evidence demonstrates an active chunking process.

    PubMed

    Teng, Xiangbin; Tian, Xing; Doelling, Keith; Poeppel, David

    2017-10-17

    Parsing continuous acoustic streams into perceptual units is fundamental to auditory perception. Previous studies have uncovered a cortical entrainment mechanism in the delta and theta bands (~1-8 Hz) that correlates with formation of perceptual units in speech, music, and other quasi-rhythmic stimuli. Whether cortical oscillations in the delta-theta bands are passively entrained by regular acoustic patterns or play an active role in parsing the acoustic stream is debated. Here, we investigate cortical oscillations using novel stimuli with 1/f modulation spectra. These 1/f signals have no rhythmic structure but contain information over many timescales because of their broadband modulation characteristics. We chose 1/f modulation spectra with varying exponents of f, which simulate the dynamics of environmental noise, speech, vocalizations, and music. While undergoing magnetoencephalography (MEG) recording, participants listened to 1/f stimuli and detected embedded target tones. Tone detection performance varied across stimuli of different exponents and can be explained by local signal-to-noise ratio computed using a temporal window around 200 ms. Furthermore, theta band oscillations, surprisingly, were observed for all stimuli, but robust phase coherence was preferentially displayed by stimuli with exponents 1 and 1.5. We constructed an auditory processing model to quantify acoustic information on various timescales and correlated the model outputs with the neural results. We show that cortical oscillations reflect a chunking of segments, > 200 ms. These results suggest an active auditory segmentation mechanism, complementary to entrainment, operating on a timescale of ~200 ms to organize acoustic information. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.

    PubMed

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-01

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24,000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad(2)/Hz at 1 kHz offset and -150 dB rad(2)/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10(-9) at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10(-11) τ(-1/2) up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  12. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-01

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad2/Hz at 1 kHz offset and -150 dB rad2/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10-9 at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10-11 τ-1/2 up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  13. Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid.

    PubMed

    Mitri, Farid G

    2015-10-01

    Based on the partial-wave series expansion (PWSE) method in spherical coordinates, a formal analytical solution for the acoustic scattering of a zeroth-order Bessel acoustic beam centered on a rigid fixed (oblate or prolate) spheroid is provided. The unknown scattering coefficients of the spheroid are determined by solving a system of linear equations derived for the Neumann boundary condition. Numerical results for the modulus of the backscattered pressure (θ = π) in the near field and the backscattering form function in the far field for both prolate and oblate spheroids are presented and discussed, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle of the Bessel beam, and the dimensionless frequency. The plots display periodic oscillations (versus the dimensionless frequency) because of the interference of specularly reflected waves in the backscattering direction with circumferential Franz' waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3-D directivity patterns illustrate the near- and far-field axisymmetric scattering. Investigations in underwater acoustics, particle levitation, scattering, and the detection of submerged elongated objects and other related applications utilizing Bessel waves would benefit from the results of the present study.

  14. Acoustic analysis of the propfan

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Succi, G. P.

    1979-01-01

    A review of propeller noise prediction technology is presented. Two methods for the prediction of the noise from conventional and advanced propellers in forward flight are described. These methods are based on different time domain formulations. Brief descriptions of the computer algorithms based on these formulations are given. The output of the programs (the acoustic pressure signature) was Fourier analyzed to get the acoustic pressure spectrum. The main difference between the two programs is that one can handle propellers with supersonic tip speed while the other is for subsonic tip speed propellers. Comparisons of the calculated and measured acoustic data for a conventional and an advanced propeller show good agreement in general.

  15. Cochlear microphonic responses to acoustic clicks in guinea pig and their relation with microphonic responses to pure tones.

    PubMed

    Echeverría, E L; Robles, L W

    1983-02-01

    Cochlear microphonic (CM) responses to acoustic transient stimuli were studied at the three more basal turns of the cochlea in the guinea pig. The responses to rarefaction and condensation pressure pulses of less than 100-mus duration were recorded using the differential electrode technique. In some animals the CM response to pure tones was recorded at the same position at which the transient response was obtained. The transient responses recorded at the three turns of the cochlea displayed a damped oscillation at a frequency consistent with the values of cutoff frequency already known for the electrode positions. Some of the responses were significantly less damped than click responses previously reported. There was a good correlation between the cutoff frequency in the frequency response curve and the frequency of oscillation in the transient response for recordings obtained at the same position in the cochlea. A nonlinear effect was observed for changes in stimulus intensity. There was a less than proportional decrease in amplitude of the initial part of the damped oscillation for a decrease of the stimulus intensity, while the late part of the response behaved almost linearly. This nonlinearity observed in the CM transient response could not be explained by a nonlinear characteristic of the sort reported in the basilar membrane of the squirrel monkey by Robles et al. [J. Acoust. Soc. Am. 59, 926-939 (1976)]; rather it seems to be a saturation nonlinearity similar to the one known for sinusoidal stimulation.

  16. Subsonic and transonic pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Watson, J. J.

    1981-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.

  17. A Detection of the Baryon Acoustic Oscillation Features in the SDSS BOSS DR12 Galaxy Bispectrum

    NASA Astrophysics Data System (ADS)

    Pearson, David W.; Samushia, Lado

    2018-05-01

    We present the first high significance detection (4.1σ) of the Baryon Acoustic Oscillations (BAO) feature in the galaxy bispectrum of the twelfth data release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample (0.43 ≤ z ≤ 0.7). We measured the scale dilation parameter, α, using the power spectrum, bispectrum, and both simultaneously for DR12, plus 2048 MultiDark-PATCHY mocks in the North and South Galactic Caps (NGC and SGC, respectively), and the volume weighted averages of those two samples (N+SGC). The fitting to the mocks validated our analysis pipeline, yielding values consistent with the mock cosmology. By fitting to the power spectrum and bispectrum separately, we tested the robustness of our results, finding consistent values from the NGC, SGC and N+SGC in all cases. We found DV = 2032 ± 24(stat.) ± 15(sys.) Mpc, DV = 2038 ± 55(stat.) ± 15(sys.) Mpc, and DV = 2031 ± 22(stat.) ± 10(sys.) Mpc from the N+SGC power spectrum, bispectrum and simultaneous fitting, respectively. Our bispectrum measurement precision was mainly limited by the size of the covariance matrix. Based on the fits to the mocks, we showed that if a less noisy estimator of the covariance were available, from either a theoretical computation or a larger suite of mocks, the constraints from the bispectrum and simultaneous fits would improve to 1.1 per cent (1.3 per cent with systematics) and 0.7 per cent (0.9 per cent with systematics), respectively, with the latter being slightly more precise than the power spectrum only constraints from the reconstructed field.

  18. Steady- and unsteady-pressure measurements on a supercritical-wing model with oscillating control surfaces at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.

    1983-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static pressure orifices and 164 in situ dynamic pressure gages for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Results from the present test (the third in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60, 0.78, and 0.86 and are presented in tabular form.

  19. Microbubbles and Blood Brain Barrier Opening: A Numerical Study on Acoustic Emissions and Wall Stress Predictions

    PubMed Central

    Goertz, David E.; Hynynen, Kullervo

    2015-01-01

    Focused ultrasound with microbubbles is an emerging technique for blood brain barrier (BBB) opening. Here, a comprehensive theoretical model of a bubble-fluid-vessel system has been developed which accounts for the bubble’s non-spherical oscillations inside a microvessel, and its resulting acoustic emissions. Numerical simulations of unbound and confined encapsulated bubbles were performed to evaluate the effect of the vessel wall on acoustic emissions and vessel wall stresses. Using a Marmottant shell model, the normalized second harmonic to fundamental emissions first decreased as a function of pressure (>50 kPa) until reaching a minima ("transition point") at which point they increased. The transition point of unbound compared to confined bubble populations occurred at different pressures and was associated with an accompanying increase in shear and circumferential wall stresses. As the wall stresses depend on the bubble to vessel wall distance, the stresses were evaluated for bubbles with their wall at a constant distance to a flat wall. As a result, the wall stresses were bubble size and frequency dependent and the peak stress values induced by bubbles larger than resonance remained constant versus frequency at a constant mechanical index. PMID:25546853

  20. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal

    NASA Astrophysics Data System (ADS)

    Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le

    2016-08-01

    The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.

  1. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: theoretical systematics and Baryon Acoustic Oscillations in the galaxy correlation function

    NASA Astrophysics Data System (ADS)

    Vargas-Magaña, Mariana; Ho, Shirley; Cuesta, Antonio J.; O'Connell, Ross; Ross, Ashley J.; Eisenstein, Daniel J.; Percival, Will J.; Grieb, Jan Niklas; Sánchez, Ariel G.; Tinker, Jeremy L.; Tojeiro, Rita; Beutler, Florian; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Seo, Hee-Jong; Brownstein, Joel R.; Olmstead, Matthew; Thomas, Daniel

    2018-06-01

    We investigate the potential sources of theoretical systematics in the anisotropic Baryon Acoustic Oscillation (BAO) distance scale measurements from the clustering of galaxies in configuration space using the final Data Release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS). We perform a detailed study of the impact on BAO measurements from choices in the methodology such as fiducial cosmology, clustering estimators, random catalogues, fitting templates, and covariance matrices. The theoretical systematic uncertainties in BAO parameters are found to be 0.002 in the isotropic dilation α and 0.003 in the quadrupolar dilation ɛ. The leading source of systematic uncertainty is related to the reconstruction techniques. Theoretical uncertainties are sub-dominant compared with the statistical uncertainties for BOSS survey, accounting 0.2σstat for α and 0.25σstat for ɛ (σα, stat ˜ 0.010 and σɛ, stat ˜ 0.012, respectively). We also present BAO-only distance scale constraints from the anisotropic analysis of the correlation function. Our constraints on the angular diameter distance DA(z) and the Hubble parameter H(z), including both statistical and theoretical systematic uncertainties, are 1.5 per cent and 2.8 per cent at zeff = 0.38, 1.4 per cent and 2.4 per cent at zeff = 0.51, and 1.7 per cent and 2.6 per cent at zeff = 0.61. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are cross-checked with other BAO analysis in Alam et al. The systematic error budget concerning the methodology on post-reconstruction BAO analysis presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  2. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    PubMed

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  3. Propagation of acoustic waves in a stratified atmosphere, 1

    NASA Technical Reports Server (NTRS)

    Kalkofen, W.; Rossi, P.; Bodo, G.; Massaglia, S.

    1994-01-01

    This work is motivated by the chromospheric 3 minute oscillations observed in the K(sub 2v) bright points. We study acoustic gravity waves in a one-dimensional, gravitationally stratified, isothermal atmosphere. The oscillations are excited either by a velocity pulse imparted to a layer in an atmosphere of infinite vertical extent, or by a piston forming the lower boundary of a semi-infinite medium. We consider both linear and non-linear waves.

  4. Acoustic concentration of particles in fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Michael W.; Kaduchak, Gregory

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less

  5. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2

    DOE PAGES

    Ata, Metin

    2017-06-20

    Here, we present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5σ . We determine the spherically averaged BAO distance to z = 1.52 to 4.4 per cent precision: D V (zmore » = 1:52) = 3855 170 (r d/r d,fid) Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Bu using these BAO data alone and marginalizing over the length of the standard ruler, we find Ω Λ > 0 at 6.5σ significance when testing a CDM model with free curvature.« less

  6. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ata, Metin

    Here, we present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5σ . We determine the spherically averaged BAO distance to z = 1.52 to 4.4 per cent precision: D V (zmore » = 1:52) = 3855 170 (r d/r d,fid) Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Bu using these BAO data alone and marginalizing over the length of the standard ruler, we find Ω Λ > 0 at 6.5σ significance when testing a CDM model with free curvature.« less

  7. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2

    NASA Astrophysics Data System (ADS)

    Ata, Metin; Baumgarten, Falk; Bautista, Julian; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R.; Blazek, Jonathan A.; Bolton, Adam S.; Brinkmann, Jonathan; Brownstein, Joel R.; Burtin, Etienne; Chuang, Chia-Hsun; Comparat, Johan; Dawson, Kyle S.; de la Macorra, Axel; Du, Wei; du Mas des Bourboux, Hélion; Eisenstein, Daniel J.; Gil-Marín, Héctor; Grabowski, Katie; Guy, Julien; Hand, Nick; Ho, Shirley; Hutchinson, Timothy A.; Ivanov, Mikhail M.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Laurent, Pierre; Le Goff, Jean-Marc; McEwen, Joseph E.; Mueller, Eva-Maria; Myers, Adam D.; Newman, Jeffrey A.; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pâris, Isabelle; Pellejero-Ibanez, Marcos; Percival, Will J.; Petitjean, Patrick; Prada, Francisco; Prakash, Abhishek; Rodríguez-Torres, Sergio A.; Ross, Ashley J.; Rossi, Graziano; Ruggeri, Rossana; Sánchez, Ariel G.; Satpathy, Siddharth; Schlegel, David J.; Schneider, Donald P.; Seo, Hee-Jong; Slosar, Anže; Streblyanska, Alina; Tinker, Jeremy L.; Tojeiro, Rita; Vargas Magaña, Mariana; Vivek, M.; Wang, Yuting; Yèche, Christophe; Yu, Liang; Zarrouk, Pauline; Zhao, Cheng; Zhao, Gong-Bo; Zhu, Fangzhou

    2018-02-01

    We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147 000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically averaged clustering in both configuration and Fourier space. Our observational data set and the 1400 simulated realizations of the data set allow us to detect a preference for BAO that is greater than 2.8σ. We determine the spherically averaged BAO distance to z = 1.52 to 3.8 per cent precision: DV(z = 1.52) = 3843 ± 147(rd/rd, fid)Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat ΛCDM best-fitting cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Using these BAO data alone and marginalizing over the length of the standard ruler, we find ΩΛ > 0 at 6.6σ significance when testing a ΛCDM model with free curvature.

  8. Relationships between objective acoustic indices and acoustic comfort evaluation in nonacoustic spaces

    NASA Astrophysics Data System (ADS)

    Kang, Jian

    2004-05-01

    Much attention has been paid to acoustic spaces such as concert halls and recording studios, whereas research on nonacoustic buildings/spaces has been rather limited, especially from the viewpoint of acoustic comfort. In this research a series of case studies has been carried out on this topic, considering various spaces including shopping mall atrium spaces, library reading rooms, football stadia, swimming spaces, churches, dining spaces, as well as urban open public spaces. The studies focus on the relationships between objective acoustic indices such as sound pressure level and reverberation time and perceptions of acoustic comfort. The results show that the acoustic atmosphere is an important consideration in such spaces and the evaluation of acoustic comfort may vary considerably even if the objective acoustic indices are the same. It is suggested that current guidelines and technical regulations are insufficient in terms of acoustic design of these spaces, and the relationships established from the case studies between objective and subjective aspects would be useful for developing further design guidelines. [Work supported partly by the British Academy.

  9. Experimental feasibility of investigating acoustic waves in Couette flow with entropy and pressure gradients

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.

    1990-01-01

    The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.

  10. Anodized aluminum pressure sensitive paint for unsteady aerodynamic applications

    NASA Astrophysics Data System (ADS)

    Sakaue, Hirotaka

    2003-06-01

    A comprehensive study of anodized aluminum pressure sensitive paint (AA-PSP) is documented. The study consisted of the development of AA-PSP and its application to unsteady aerodynamic fields at atmospheric conditions. Luminophore application mechanism and two-component application on anodized aluminum was studied for the development. Two-component application includes hydrophobic-coated AA-PSP and bi-luminophore system. It was found that the polarity of solvents and the surface charge of anodized aluminum determine the optimized luminophore application. As a result, a wide variation of luminophore can be applied on anodized aluminum. To apply both components on anodized aluminum, optimum solvent polarities for each component should match. AA-PSP performances, such as pressure sensitivity, temperature dependency, signal level, and aging were improved by the luminophore application mechanism and two-component application. AA-PSPs demonstrate the capability of measuring surface pressures on unsteady aerodynamic fields. For an application to the Purdue Mach 4 Quiet Flow Ludwieg Tube, surface pressures on the order of a hundred Pascals were measured for approximately 200ms. The measurement uncertainty of the pressure was on the order of 5%. The main uncertainty source comes from fitting the adsorption control model to calibration points. The results compared qualitatively well to CFD calculations. A miniature fluidic oscillator was used to demonstrate the capability of measuring oscillating unsteady aerodynamic fields with 6.4kHz primary frequency. Flow oscillation images as well as pressure maps of various phases were captured by AA-PSP with PtTFPP as a luminophore (AA-PSPPtTFPP ). Main uncertainty source comes from fitting the adsorption control model to calibration points and from the pulse width of illumination. The measurement uncertainty of the pressure was 4.68%. AA-PSPPtTFPP was applied to a high-amplified acoustic fielding in a standing wave tube. The maximum

  11. Directional Electrostatic Accretion Process Employing Acoustic Droplet Formation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard (Inventor)

    1998-01-01

    The present invention is directed to an apparatus for manufacturing a free standing solid metal part. In the present invention, metal droplets are ejected in a nozzleless fashion from a free surface pool of molten metal by applying focused acoustic radiation pressure. The acoustic radiation pressure is produced by high intensity acoustic tone bursts emitted from an acoustic source positioned at the bottom of the pool which directs the acoustic energy at the pool surface. The metal droplets are electrostatically charged so their trajectory can be controlled by electric fields that guide the droplets to predetermined points on a target. The droplets impinge upon the target and solidify with the target material. The accretion of the electrostatically directed solidified droplets forms the free standing metal part.

  12. Effect of acoustic resonance phenomenon on fluid flow with light dust

    NASA Astrophysics Data System (ADS)

    Hamakawa, Hiromitsu; Arshad, Azim B. M.; Ohta, Mitsuo

    2011-10-01

    In the present paper, the attention is focused on the characteristics of lightweight materials collection in the duct using acoustic resonance phenomena. The acoustic resonance was excited by using a controlled speaker at the middle of a test duct. We measured the sound pressure level, frequency response characteristics, acoustic damping ratio, mode shape, and lightweight materials response to acoustic resonance excited by a speaker. As a result, the acoustic damping ratio decreased as the mode number of acoustic resonance increased. The tissue strips and the lightweight materials were collected at the node of acoustic pressure when the acoustic resonance was excited. It was made clear that it is possible to control lightweight materials using acoustic resonance excited by a speaker.

  13. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  14. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice

    2014-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  15. Acoustic Full Waveform Inversion to Characterize Near-surface Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A. J.

    2015-12-01

    Recent high-quality, atmospheric overpressure data from chemical high-explosive experiments provide a unique opportunity to characterize near-surface explosions, specifically estimating yield and source time function. Typically, yield is estimated from measured signal features, such as peak pressure, impulse, duration and/or arrival time of acoustic signals. However, the application of full waveform inversion to acoustic signals for yield estimation has not been fully explored. In this study, we apply a full waveform inversion method to local overpressure data to extract accurate pressure-time histories of acoustics sources during chemical explosions. A robust and accurate inversion technique for acoustic source is investigated using numerical Green's functions that take into account atmospheric and topographic propagation effects. The inverted pressure-time history represents the pressure fluctuation at the source region associated with the explosion, and thus, provides a valuable information about acoustic source mechanisms and characteristics in greater detail. We compare acoustic source properties (i.e., peak overpressure, duration, and non-isotropic shape) of a series of explosions having different emplacement conditions and investigate the relationship of the acoustic sources to the yields of explosions. The time histories of acoustic sources may refine our knowledge of sound-generation mechanisms of shallow explosions, and thereby allow for accurate yield estimation based on acoustic measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles

    2015-11-15

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2–4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be −23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is −105 dB rad{sup 2}/Hz at 1 kHz offset and −150 dB rad{sup 2}/Hz at 100more » kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10{sup −9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10{sup −11} τ{sup −1/2} up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.« less

  17. The 3D rocket combustor acoustics model

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1992-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, and three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1-D, 2-D, and 3-D assumptions with regards to capturing the physical phenomena of interest and computational requirements.

  18. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  19. The effects of extra-low-frequency atmospheric pressure oscillations on human mental activity

    NASA Astrophysics Data System (ADS)

    Delyukov, A. A.; Didyk, L.

    Slight atmospheric pressure oscillations (APO) in the extra-low-frequency range below 0.1 Hz, which frequently occur naturally, can influence human mental activity. This phenomenon has been observed in experiments with a group of 12 healthy volunteers exposed to experimentally created APO with amplitudes 30-50 Pa in the frequency band 0.011-0.17 Hz. Exposure of the subjects to APO for 15-30 min caused significant changes in attention and short-term memory functions, performance rate, and mental processing flexibility. The character of the response depended on the APO frequency and coherence. Periodic APO promoted purposeful mental activity, accompanied by an increase in breath-holding duration and a slower heart rate. On the other hand, quasi-chaotic APO, similar to the natural perturbations of atmospheric pressure, disrupted mental activity. These observations suggest that APO could be partly responsible for meteorosensitivity in humans.

  20. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  1. Acoustic design of the QCSEE propulsion systems

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Smith, E. B.; Sowers, H. D.

    1976-01-01

    Acoustic design features and techniques employed in the Quiet Clean Short-Haul Experimental Engine (QCSEE) Program are described. The role of jet/flap noise in selecting the engine fan pressure ratio for powered lift propulsion systems is discussed. The QCSEE acoustic design features include a hybrid inlet (near-sonic throat velocity with acoustic treatment); low fan and core pressure ratios; low fan tip speeds; gear-driven fans; high and low frequency stacked core noise treatment; multiple-thickness treatment; bulk absorber treatment; and treatment on the stator vanes. The QCSEE designs represent and anticipated acoustic technology improvement of 12 to 16 PNdb relative to the noise levels of the low-noise engines used on current wide-body commercial jet transport aircraft.

  2. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassindale, P. G.; Drinkwater, B. W.; Phillips, D. B.

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces aremore » separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.« less

  3. Combustion Noise at Elevated Pressures in a Liquid-Fueled Premixed Combustor

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo

    1997-01-01

    Noise generated in gas turbine combustors can exist in several forms-broadband noise, sharp resonant peaks, and regular or intermittent nonlinear pulsing. In the present study, dynamic pressure measurements were made in several JP-5-fueled combustor configurations, at various mean pressures and temperatures. The fluctuating pressure was measured at mean pressures from 6 to 14 atm and inlet temperatures from 550 K to 850 K. The goal of the present work was to study the effect of changes in mean flow conditions on combustor noise: both broadband noise and sharp tones were considered. In general, the shape of the broadband noise spectrum was consistent from one configuration to another. The shape of the spectrum was influenced by the acoustic filtering of the combustion zone. This filtering ensured the basic consistency of the spectra. In general, the trends in broadband noise observed at low mean pressures were also seen at high mean pressures; that is, the total sound level decreased with both increasing equivalence ratio and increasing inlet temperature. The combustor configurations without a central pilot experienced higher broadband noise levels and were more susceptible to narrow peak resonances than configurations with a central pilot. The sharp peaks were more sensitive to the mean flow than was the broadband noise, and the effects were not always the same. In some situations, increasing the equivalence ratio made the sharp peaks grow, while at other conditions, increasing the equivalence ratio made the sharp peaks shrink. Thus, it was difficult to predict when resonances would occur; however, they were reproducible. Acoustic coupling between the upstream and downstream regions of the combustor may play a role in the sharp-peaked oscillations. Noise was also observed near lean blow out. As with other types of noise, lean blow out noise was affected by the combustion chamber acoustics, which apparently maintains the fluctuations at a uniform frequency. However

  4. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  5. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  6. The effect of photometric redshift uncertainties on galaxy clustering and baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Chaves-Montero, Jonás; Angulo, Raúl E.; Hernández-Monteagudo, Carlos

    2018-07-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of redshift uncertainties on cosmological observables. In this paper we explore the effect of sub-percent photometric redshift errors (photo-z errors) on galaxy clustering and baryonic acoustic oscillations (BAOs). Using analytic expressions and results from 1000 N-body simulations, we show how photo-z errors modify the amplitude of moments of the 2D power spectrum, their variances, the amplitude of BAOs, and the cosmological information in them. We find that (a) photo-z errors suppress the clustering on small scales, increasing the relative importance of shot noise, and thus reducing the interval of scales available for BAO analyses; (b) photo-z errors decrease the smearing of BAOs due to non-linear redshift-space distortions (RSDs) by giving less weight to line-of-sight modes; and (c) photo-z errors (and small-scale RSD) induce a scale dependence on the information encoded in the BAO scale, and that reduces the constraining power on the Hubble parameter. Using these findings, we propose a template that extracts unbiased cosmological information from samples with photo-z errors with respect to cases without them. Finally, we provide analytic expressions to forecast the precision in measuring the BAO scale, showing that spectro-photometric surveys will measure the expansion history of the Universe with a precision competitive to that of spectroscopic surveys.

  7. The effect of photometric redshift uncertainties on galaxy clustering and baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Chaves-Montero, Jonás; Angulo, Raúl E.; Hernández-Monteagudo, Carlos

    2018-04-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of redshift uncertainties on cosmological observables. In this paper we explore the effect of sub-percent photometric redshift errors (photo-z errors) on galaxy clustering and baryonic acoustic oscillations (BAO). Using analytic expressions and results from 1 000 N-body simulations, we show how photo-z errors modify the amplitude of moments of the 2D power spectrum, their variances, the amplitude of BAO, and the cosmological information in them. We find that: a) photo-z errors suppress the clustering on small scales, increasing the relative importance of shot noise, and thus reducing the interval of scales available for BAO analyses; b) photo-z errors decrease the smearing of BAO due to non-linear redshift-space distortions (RSD) by giving less weight to line-of-sight modes; and c) photo-z errors (and small-scale RSD) induce a scale dependence on the information encoded in the BAO scale, and that reduces the constraining power on the Hubble parameter. Using these findings, we propose a template that extracts unbiased cosmological information from samples with photo-z errors with respect to cases without them. Finally, we provide analytic expressions to forecast the precision in measuring the BAO scale, showing that spectro-photometric surveys will measure the expansion history of the Universe with a precision competitive to that of spectroscopic surveys.

  8. Robust intravascular optical coherence elastography driven by acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    van Soest, Gijs; Bouchard, Richard R.; Mastik, Frits; de Jong, Nico; van der Steen, Anton F. W.

    2007-07-01

    High strain spots in the vessel wall indicate the presence of vulnerable plaques. The majority of acute cardiovascular events are preceded by rupture of such a plaque in a coronary artery. Intracoronary optical coherence tomography (OCT) can be extended, in principle, to an elastography technique, mapping the strain in the vascular wall. However, the susceptibility of OCT to frame-to-frame decorrelation, caused by tissue and catheter motion, inhibits reliable tissue displacement tracking and has to date obstructed the development of OCT-based intravascular elastography. We introduce a new technique for intravascular optical coherence elastography, which is robust against motion artifacts. Using acoustic radiation force, we apply a pressure to deform the tissue synchronously with the line scan rate of the OCT instrument. Radial tissue displacement can be tracked based on the correlation between adjacent lines, instead of subsequent frames in conventional elastography. The viability of the method is demonstrated with a simulation study. The root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique. Experiments to realize this new elastographic method are presented. Simultaneous optical and ultrasonic pulse-echo tracking demonstrate that the material can be put in a high-frequency oscillatory motion with an amplitude of several micrometers, more than sufficient for accurate tracking with OCT. The resulting data are used to optimize the acoustic pushing sequence and geometry.

  9. Short period sound speed oscillation measured by intensive XBT survey and its role on GNSS/acoustic positioning

    NASA Astrophysics Data System (ADS)

    Kido, M.; Matsui, R.; Imano, M.; Honsho, C.

    2017-12-01

    In the GNSS/acoustic measurement, sound speed in ocean plays a key role of accuracy of final positioning. We have shown than longer period sound speed undulation can be properly estimated from GNSS-A analysis itself in our previous work. In this work, we have carried out intensive XBT measurement to get temporal variation of sound speed in short period to be compared with GNSS-A derived one. In the individual temperature profile obtained by intensive XBT measurements (10 minutes interval up to 12 times of cast), clear vertical oscillation up to 20 m of amplitude in the shallow part were observed. These can be interpreted as gravitational internal wave with short-period and hence short wavelength anomaly. Kido et al. (2007) proposed that horizontal variation of the ocean structure can be considered employing five or more transponders at once if the structure is expressed by two quantities, i.e., horizontal gradient in x/y directions. However, this hypothesis requires that the variation must has a large spatial scale (> 2-5km) so that the horizontal variation can be regarded as linear within the extent of acoustic path to seafloor transponders. Therefore the wavelength of the above observed internal wave is getting important. The observed period of internal wave was 30-60 minute. However its wavelength cannot be directly measured. It must be estimate based on density profile of water column. In the comparison between sound speed change and positioning, the delay of their phases were 90 degree, which indicates that most steep horizontal slope of internal wave correspond to largest apparent positioning shift.

  10. A combined analytical and numerical analysis of the flow-acoustic coupling in a cavity-pipe system

    NASA Astrophysics Data System (ADS)

    Langthjem, Mikael A.; Nakano, Masami

    2018-05-01

    The generation of sound by flow through a closed, cylindrical cavity (expansion chamber) accommodated with a long tailpipe is investigated analytically and numerically. The sound generation is due to self-sustained flow oscillations in the cavity. These oscillations may, in turn, generate standing (resonant) acoustic waves in the tailpipe. The main interest of the paper is in the interaction between these two sound sources. An analytical, approximate solution of the acoustic part of the problem is obtained via the method of matched asymptotic expansions. The sound-generating flow is represented by a discrete vortex method, based on axisymmetric vortex rings. It is demonstrated through numerical examples that inclusion of acoustic feedback from the tailpipe is essential for a good representation of the sound characteristics.

  11. Nonlinear response and bistability of driven ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  12. An analysis of blade vortex interaction aerodynamics and acoustics

    NASA Technical Reports Server (NTRS)

    Lee, D. J.

    1985-01-01

    The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.

  13. Phase I Project: Fiber Optic Distributed Acoustic Sensing for Periodic Hydraulic Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Matthew

    The extraction of heat from hot rock requires circulation of fluid through fracture networks. Because the geometry and connectivity of these fractures determines the efficiency of fluid circulation, many tools are used to characterize fractures before and after development of the reservoir. Under this project, a new tool was developed that allows hydraulic connectivity between geothermal boreholes to be identified. Nanostrain in rock fractures is measured using fiber optic distributed acoustic sensing (DAS). This strain is measured in one borehole in response to periodic pressure pulses induced in another borehole. The strain in the fractures represents hydraulic connectivity between wells.more » DAS is typically used at frequencies of Hz to kHz, but strain at mHz frequencies were measured for this project. The tool was demonstrated in the laboratory and in the field. In the laboratory, strain in fiber optic cables was measured in response to compression due to oscillating fluid pressure. DAS recorded strains as small as 10 picometer/m in response to 1 cm of water level change. At a fractured crystalline rock field site, strain was measured in boreholes. Fiber-optic cable was mechanically coupled borehole walls using pressured flexible liners. In one borehole 30 m from the oscillating pumping source, pressure and strain were measured simultaneously. The DAS system measured fracture displacement at frequencies of less than 1 mHz (18 min periods) and amplitudes of less than 1 nm, in response to fluid pressure changes of less 20 Pa (2 mm of water). The attenuation and phase shift of the monitored strain signal is indicative of the permeability and storage (compliance) of the fracture network that connects the two wells. The strain response as a function of oscillation frequency is characteristic of the hydraulic structure of the formation. This is the first application of DAS to the measurement of low frequency strain in boreholes. It has enormous potential for

  14. Nonlinear Dynamics of a Bubble Contrast Agent Oscillating near an Elastic Wall

    NASA Astrophysics Data System (ADS)

    Garashchuk, Ivan R.; Sinelshchikov, Dmitry I.; Kudryashov, Nikolay A.

    2018-05-01

    Contrast agent microbubbles, which are encapsulated gas bubbles, are widely used to enhance ultrasound imaging. There are also several new promising applications of the contrast agents such as targeted drug delivery and noninvasive therapy. Here we study three models of the microbubble dynamics: a nonencapsulated bubble oscillating close to an elastic wall, a simple coated bubble and a coated bubble near an elastic wall.We demonstrate that complex dynamics can occur in these models. We are particularly interested in the multistability phenomenon of bubble dynamics. We show that coexisting attractors appear in all of these models, but for higher acoustic pressures for the models of an encapsulated bubble.We demonstrate how several tools can be used to localize the coexisting attractors. We provide some considerations why the multistability can be undesirable for applications.

  15. Acoustic reflection log in transversely isotropic formations

    NASA Astrophysics Data System (ADS)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.

    2018-01-01

    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  16. ATK Launch Vehicle (ALV-X1) Liftoff Acoustic Environments: Prediction vs. Measurement

    NASA Technical Reports Server (NTRS)

    Houston, J.; Counter, Douglas; Kenny, Jeremy; Murphy, John

    2010-01-01

    Launched from the Mid-Atlantic Regional Spaceport (MARS) Pad 01B on August 22, 2008, the ATK Launch Vehicle (ALV-X1) provided an opportunity to measure liftoff acoustic noise data. Predicted lift-off acoustic environments were developed by both NASA MSFC and ATK engineers. ATK engineers developed predictions for use in determining vibro-acoustic loads using the method described in the monograph NASA SP-8072. The MSFC ALV-X1 lift-off acoustic prediction was made with the Vehicle Acoustic Environment Prediction Program (VAEPP). The VAEPP and SP-8072 methods predict acoustic pressures of rocket systems generally scaled to existing rocket motor data based upon designed motor or engine characteristics. The predicted acoustic pressures are sound-pressure spectra at specific positions on the vehicle. This paper presents the measured liftoff acoustics on the vehicle and tower. This data is useful for the ALV-X1 in validating the pre-launch environments and loads predictions.

  17. Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong.

    PubMed

    Mencio, Caitlin; Kuberan, Balagurunathan; Goller, Franz

    2017-02-01

    Neural control of complex vocal behaviors, such as birdsong and speech, requires integration of biomechanical nonlinearities through muscular output. Although control of airflow and tension of vibrating tissues are known functions of vocal muscles, it remains unclear how specific muscle characteristics contribute to specific acoustic parameters. To address this gap, we removed heparan sulfate chains using heparitinases to perturb neuromuscular transmission subtly in the syrinx of adult male zebra finches (Taeniopygia guttata). Infusion of heparitinases into ventral syringeal muscles altered their excitation threshold and reduced neuromuscular transmission changing their ability to modulate airflow. The changes in muscle activation dynamics caused a reduction in frequency modulation rates and elimination of many high-frequency syllables but did not alter the fundamental frequency of syllables. Sound amplitude was reduced and sound onset pressure was increased, suggesting a role of muscles in the induction of self-sustained oscillations under low-airflow conditions, thus enhancing vocal efficiency. These changes were reversed to preinfusion levels by 7 days after infusion. These results illustrate complex interactions between the control of airflow and tension and further define the importance of syringeal muscle in the control of a variety of acoustic song characteristics. In summary, the findings reported here show that altering neuromuscular transmission can lead to reversible changes to the acoustic structure of song. Understanding the full extent of muscle involvement in song production is critical in decoding the motor program for the production of complex vocal behavior, including our search for parallels between birdsong and human speech motor control. It is largely unknown how fine motor control of acoustic parameters is achieved in vocal organs. Subtle manipulation of syringeal muscle function was used to test how active motor control influences acoustic

  18. A comparative study of the effects of inhibitor stub length on solid rocket motor combustion chamber pressure oscillations: RSRM at T = 80 seconds, preliminary results

    NASA Technical Reports Server (NTRS)

    Chasman, D.; Burnette, D.; Holt, J.; Farr, R.

    1992-01-01

    Results from a continuing, time-accurate computational study of the combustion gas flow inside the Space Shuttle Redesigned Solid Rocket Motor (RSRM) are presented. These computational fluid dynamic (CFD) analyses duplicate unsteady flow effects which interact in the RSRM to produce pressure oscillations, and resulting thrust oscillations, at nominally 15, 30, and 45 Hz. Results of the Navier-Stokes computations made at mean pressure and flow conditions corresponding to 80 seconds after motor ignition both with and without a protruding, rigid inhibitor at the forward joint cavity are presented here.

  19. Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.

    2017-02-01

    We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar-Friedman-Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (I.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.

  20. Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A., E-mail: mbelyaev@berkeley.edu

    We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar–Friedman–Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitationalmore » waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.« less