Science.gov

Sample records for acoustic signature recognition

  1. Event identification by acoustic signature recognition

    SciTech Connect

    Dress, W.B.; Kercel, S.W.

    1995-07-01

    Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and future applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.

  2. A survey on acoustic signature recognition and classification techniques for persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Alkilani, Amjad

    2012-06-01

    Application of acoustic sensors in Persistent Surveillance Systems (PSS) has received considerable attention over the last two decades because they can be rapidly deployed and have low cost. Conventional utilization of acoustic sensors in PSS spans a wide range of applications including: vehicle classification, target tracking, activity understanding, speech recognition, shooter detection, etc. This paper presents a current survey of physics-based acoustic signature classification techniques for outdoor sounds recognition and understanding. Particularly, this paper focuses on taxonomy and ontology of acoustic signatures resulted from group activities. The taxonomy and supportive ontology considered include: humanvehicle, human-objects, and human-human interactions. This paper, in particular, exploits applicability of several spectral analysis techniques as a means to maximize likelihood of correct acoustic source detection, recognition, and discrimination. Spectral analysis techniques based on Fast Fourier Transform, Discrete Wavelet Transform, and Short Time Fourier Transform are considered for extraction of features from acoustic sources. In addition, comprehensive overviews of most current research activities related to scope of this work are presented with their applications. Furthermore, future potential direction of research in this area is discussed for improvement of acoustic signature recognition and classification technology suitable for PSS applications.

  3. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  4. Methods and apparatus for multi-parameter acoustic signature inspection

    DOEpatents

    Diaz, Aaron A.; Samuel, Todd J.; Valencia, Juan D.; Gervais, Kevin L.; Tucker, Brian J.; Kirihara, Leslie J.; Skorpik, James R.; Reid, Larry D.; Munley, John T.; Pappas, Richard A.; Wright, Bob W.; Panetta, Paul D.; Thompson, Jason S.

    2007-07-24

    A multiparameter acoustic signature inspection device and method are described for non-invasive inspection of containers. Dual acoustic signatures discriminate between various fluids and materials for identification of the same.

  5. Active place recognition using image signatures

    NASA Astrophysics Data System (ADS)

    Engelson, Sean P.

    1992-11-01

    For reliable navigation, a mobile robot needs to be able to recognize where it is in the world. We previously described an efficient and effective image-based representation of perceptual information for place recognition. Each place is associated with a set of stored image signatures, each a matrix of numbers derived by evaluating some measurement functions over large blocks of pixels. One difficulty, though, is the large number of inherently ambiguous signatures which bloats the database and makes recognition more difficult. Furthermore, since small differences in orientation can produce very different images, reliable recognition requires many images. These problems can be ameliorated by using active methods to select the best signatures to use for the recognition. Two criteria for good images are distinctiveness (is the scene distinguishable from others?) and stability (how much do small viewpoint motions change image recognizability?). We formulate several heuristic distinctiveness metrics which are good predictors of real image distinctiveness. These functions are then used to direct the motion of the camera to find locally distinctive views for use in recognition. This method also produces some modicum of stability, since it uses a form of local optimization. We present the results of applying this method with a camera mounted on a pan-tilt platform.

  6. Acoustic/infrasonic rocket engine signatures

    NASA Astrophysics Data System (ADS)

    Tenney, Stephen M.; Noble, John M.; Whitaker, Rodney W.; ReVelle, Douglas O.

    2003-09-01

    Infrasonics offers the potential of long-range acoustic detection of explosions, missiles and even sounds created by manufacturing plants. The atmosphere attenuates acoustic energy above 20 Hz quite rapidly, but signals below 10 Hz can propagate to long ranges. Space shuttle launches have been detected infrasonically from over 1000 km away and the Concorde airliner from over 400 km. This technology is based on microphones designed to respond to frequencies from .1 to 300 Hz that can be operated outdoors for extended periods of time with out degrading their performance. The US Army Research Laboratory and Los Alamos National Laboratory have collected acoustic and infrasonic signatures of static engine testing of two missiles. Signatures were collected of a SCUD missile engine at Huntsville, AL and a Minuteman engine at Edwards AFB. The engines were fixed vertically in a test stand during the burn. We will show the typical time waveform signals of these static tests and spectrograms for each type. High resolution, 24-bit data were collected at 512 Hz and 16-bit acoustic data at 10 kHz. Edwards data were recorded at 250 Hz and 50 Hz using a Geotech Instruments 24 bit digitizer. Ranges from the test stand varied from 1 km to 5 km. Low level and upper level meteorological data was collected to provide full details of atmospheric propagation during the engine test. Infrasonic measurements were made with the Chaparral Physics Model 2 microphone with porous garden hose attached for wind noise suppression. A B&K microphone was used for high frequency acoustic measurements. Results show primarily a broadband signal with distinct initiation and completion points. There appear to be features present in the signals that would allow identification of missile type. At 5 km the acoustic/infrasonic signal was clearly present. Detection ranges for the types of missile signatures measured will be predicted based on atmospheric modeling. As part of an experiment conducted by ARL

  7. Timecourse of neural signatures of object recognition.

    PubMed

    Johnson, Jeffrey S; Olshausen, Bruno A

    2003-01-01

    How long does it take for the human visual system to recognize objects? This issue is important for understanding visual cortical function as it places constraints on models of the information processing underlying recognition. We designed a series of event-related potential (ERP) experiments to measure the timecourse of electrophysiological correlates of object recognition. We find two distinct types of components in the ERP recorded during categorization of natural images. One is an early presentation-locked signal arising around 135 ms that is present when there are low-level feature differences between images. The other is a later, recognition-related component arising between 150-300 ms. Unlike the early component, the latency of the later component covaries with the subsequent reaction time. In contrast to previous studies suggesting that the early, presentation-locked component of neural activity is correlated to recognition, these results imply that the neural signatures of recognition have a substantially later and variable time of onset. PMID:14507255

  8. Speech recognition: Acoustic, phonetic and lexical knowledge

    NASA Astrophysics Data System (ADS)

    Zue, V. W.

    1985-08-01

    During this reporting period we continued to make progress on the acquisition of acoustic-phonetic and lexical knowledge. We completed development of a continuous digit recognition system. The system was constructed to investigate the use of acoustic-phonetic knowledge in a speech recognition system. The significant achievements of this study include the development of a soft-failure procedure for lexical access and the discovery of a set of acoustic-phonetic features for verification. We completed a study of the constraints that lexical stress imposes on word recognition. We found that lexical stress information alone can, on the average, reduce the number of word candidates from a large dictionary by more than 80 percent. In conjunction with this study, we successfully developed a system that automatically determines the stress pattern of a word from the acoustic signal. We performed an acoustic study on the characteristics of nasal consonants and nasalized vowels. We have also developed recognition algorithms for nasal murmurs and nasalized vowels in continuous speech. We finished the preliminary development of a system that aligns a speech waveform with the corresponding phonetic transcription.

  9. Speech recognition: Acoustic, phonetic and lexical

    NASA Astrophysics Data System (ADS)

    Zue, V. W.

    1985-10-01

    Our long-term research goal is the development and implementation of speaker-independent continuous speech recognition systems. It is our conviction that proper utilization of speech-specific knowledge is essential for advanced speech recognition systems. With this in mind, we have continued to make progress on the acquisition of acoustic-phonetic and lexical knowledge. We have completed the development of a continuous digit recognition system. The system was constructed to investigate the utilization of acoustic phonetic knowledge in a speech recognition system. Some of the significant development of this study includes a soft-failure procedure for lexical access, and the discovery of a set of acoustic-phonetic features for verification. We have completed a study of the constraints provided by lexical stress on word recognition. We found that lexical stress information alone can, on the average, reduce the number of word candidates from a large dictionary by more than 80%. In conjunction with this study, we successfully developed a system that automatically determines the stress pattern of a word from the acoustic signal.

  10. Hybrid Speaker Recognition Using Universal Acoustic Model

    NASA Astrophysics Data System (ADS)

    Nishimura, Jun; Kuroda, Tadahiro

    We propose a novel speaker recognition approach using a speaker-independent universal acoustic model (UAM) for sensornet applications. In sensornet applications such as “Business Microscope”, interactions among knowledge workers in an organization can be visualized by sensing face-to-face communication using wearable sensor nodes. In conventional studies, speakers are detected by comparing energy of input speech signals among the nodes. However, there are often synchronization errors among the nodes which degrade the speaker recognition performance. By focusing on property of the speaker's acoustic channel, UAM can provide robustness against the synchronization error. The overall speaker recognition accuracy is improved by combining UAM with the energy-based approach. For 0.1s speech inputs and 4 subjects, speaker recognition accuracy of 94% is achieved at the synchronization error less than 100ms.

  11. Effective acoustic modeling for robust speaker recognition

    NASA Astrophysics Data System (ADS)

    Hasan Al Banna, Taufiq

    Robustness due to mismatched train/test conditions is the biggest challenge facing the speaker recognition community today, with transmission channel and environmental noise degradation being the prominent factors. Performance of state-of-the art speaker recognition methods aim at mitigating these factors by effectively modeling speech in multiple recording conditions, so that it can learn to distinguish between inter-speaker and intra-speaker variability. The increasing demand and availability of large development corpora introduces difficulties in effective data utilization and computationally efficient modeling. Traditional compensation strategies operate on higher dimensional utterance features, known as supervectors, which are obtained from the acoustic modeling of short-time features. Feature compensation is performed during front-end processing. Motivated by the covariance structure of conventional acoustic features, we envision that feature normalization and compensation can be integrated into the acoustic modeling. In this dissertation, we investigate the following fundamental research challenges: (i) analysis of data requirements for effective and efficient background model training, (ii) introducing latent factor analysis modeling of acoustic features, (iii) integration of channel compensation strategies in mixture-models, and (iv) development of noise robust background models using factor analysis. The effectiveness of the proposed solutions are demonstrated in various noisy and channel degraded conditions using the recent evaluation datasets released by the National Institute of Standards and Technology (NIST). These research accomplishments make an important step towards improving speaker recognition robustness in diverse acoustic conditions.

  12. Modeling ground vehicle acoustic signatures for analysis and synthesis

    SciTech Connect

    Haschke, G.; Stanfield, R.

    1995-07-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems.

  13. Acoustic-phonetic representations in word recognition*

    PubMed Central

    PISONI, DAVID B.; LUCE, PAUL A.

    2012-01-01

    This paper reviews what is currently known about the sensory and perceptual input that is made available to the word recognition system by processes typically assumed to be related to speech sound perception. In the first section, we discuss several of the major problems that speech researchers have tried to deal with over the last thirty years. In the second section, we consider one attempt to conceptualize the speech perception process within a theoretical framework that equates processing stages with levels of linguistic analysis. This framework assumes that speech is processed through a series of analytic stages ranging from peripheral auditory processing, acoustic-phonetic and phonological analysis, to word recognition and lexical access. Finally, in the last section, we consider several recent approaches to spoken word recognition and lexical access. We examine a number of claims surrounding the nature of the bottom-up input assumed by these models, postulated perceptual units, and the interaction of different knowledge sources in auditory word recognition. An additional goal of this paper was to establish the need to employ segmental representations in spoken word recognition. PMID:3581727

  14. Image signatures for place recognition and map construction

    NASA Astrophysics Data System (ADS)

    Engelson, Sean P.; McDermott, Drew V.

    1992-04-01

    For reliable navigation, a mobile robot needs to be able to recognize where it is in the world. We describe an efficient and effective image-based representation of perceptual information for place recognition. Each place is associated with a set of stored image signatures, each a matrix of numbers derived by evaluating some measurement function over large blocks of pixels. Measurements are chosen to be characteristic of a location yet reasonably invariant over different viewing conditions. Signature matching can be done quickly by element wise comparison. Additional stability can be gotten by matching signatures at offsets or across scales. Signatures can be stored in a k-d tree so that retrieval of similar signatures is fast. We can also use several types of measurements in tandem to enhance recognition accuracy. We present preliminary experimental results which show up to 90% recognition accuracy. When used together with prior position information, we suggest that this performance is good enough to support reliable place recognition from a series of images.

  15. Toward an automated signature recognition toolkit for mission operations

    NASA Technical Reports Server (NTRS)

    Cleghorn, T.; Laird, P; Perrine, L.; Culbert, C.; Macha, M.; Saul, R.; Hammen, D.; Moebes, T.; Shelton, R.

    1994-01-01

    Signature recognition is the problem of identifying an event or events from its time series. The generic problem has numerous applications to science and engineering. At NASA's Johnson Space Center, for example, mission control personnel, using electronic displays and strip chart recorders, monitor telemetry data from three-phase electrical buses on the Space Shuttle and maintain records of device activation and deactivation. Since few electrical devices have sensors to indicate their actual status, changes of state are inferred from characteristic current and voltage fluctuations. Controllers recognize these events both by examining the waveform signatures and by listening to audio channels between ground and crew. Recently the authors have developed a prototype system that identifies major electrical events from the telemetry and displays them on a workstation. Eventually the system will be able to identify accurately the signatures of over fifty distinct events in real time, while contending with noise, intermittent loss of signal, overlapping events, and other complications. This system is just one of many possible signature recognition applications in Mission Control. While much of the technology underlying these applications is the same, each application has unique data characteristics, and every control position has its own interface and performance requirements. There is a need, therefore, for CASE tools that can reduce the time to implement a running signature recognition application from months to weeks or days. This paper describes our work to date and our future plans.

  16. Feasibility of a phased acoustic array for monitoring acoustic signatures from meshing gear teeth.

    PubMed

    Hood, Adrian A; Pines, Darryll J

    2002-12-01

    This paper investigates the feasibility of sensing damage emanating from rotating drivetrain elements such as bearings, gear teeth, and drive shafts via airborne paths. A planar phased acoustic array is evaluated as a potential fault detection scheme for detecting spatially filtered acoustic signatures radiating from gearbox components. Specifically, the use of beam focusing and steering to monitor individual tooth mesh dynamics is analyzed taking into consideration the constraints of the array/gearbox geometry and the spectral content of typical gear noise. Experimental results for a linear array are presented to illustrate the concepts of adaptive beam steering and spatial acoustic filtering. This feasibility study indicates that the planar array can be used to track the acoustic signatures at higher harmonics of the gear mesh frequency. PMID:12509006

  17. Acoustic ship signature measurements by cross-correlation method.

    PubMed

    Fillinger, Laurent; Sutin, Alexander; Sedunov, Alexander

    2011-02-01

    Cross-correlation methods were applied for the estimation of the power spectral density and modulation spectrum of underwater noise generated by moving vessels. The cross-correlation of the signal from two hydrophones allows the separation of vessel acoustic signatures in a busy estuary. Experimental data recorded in the Hudson River are used for demonstration that cross-correlation method measured the same ship noise and ship noise modulation spectra as conventional methods. The cross-correlation method was then applied for the separation of the acoustic signatures of two ships present simultaneously. Presented methods can be useful for ship traffic monitoring and small ship classification, even in noisy harbor environments. PMID:21361436

  18. A smart pattern recognition system for the automatic identification of aerospace acoustic sources

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Fuller, C. R.

    1989-01-01

    An intelligent air-noise recognition system is described that uses pattern recognition techniques to distinguish noise signatures of five different types of acoustic sources, including jet planes, propeller planes, a helicopter, train, and wind turbine. Information for classification is calculated using the power spectral density and autocorrelation taken from the output of a single microphone. Using this system, as many as 90 percent of test recordings were correctly identified, indicating that the linear discriminant functions developed can be used for aerospace source identification.

  19. Ionospheric signatures of acoustic waves generated by transient tropospheric forcing

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.

    2013-10-01

    Acoustic waves generated by tropospheric sources may attain significant amplitudes in the thermosphere and overlying ionosphere. Although they are weak precursors to gravity waves in the mesosphere below, acoustic waves may achieve temperature and vertical wind perturbations on the order of approximately tens of Kelvin and m/s throughout the E and F regions. Their perturbations to total electron content are predicted to be detectable by ground-based radar and GPS receivers; they also drive field-aligned currents that may be detectable in situ via magnetometers. Although transient and short lived, ionospheric signatures of acoustic waves may provide new and quantitative insight into the forcing of the upper atmosphere from below.

  20. Invariant recognition to position, rotation, and scale considering vectorial signatures

    NASA Astrophysics Data System (ADS)

    Lerma A., Jesús R.; Álvarez-Borrego, Josué; González-Fraga, José Ángel

    2008-08-01

    This work presents the development and utilization of vectorial signatures filters obtained from the application of properties of the scale and Fourier transform for images recognition. The filters were applied to different input scene, which consisted in the 26 letters of the alphabet. Each letter is an image of 256 × 256 pixels of black background with a centered white Arial letter. The image was rotated 360 degrees in increment of 1o and scaled from 70% to 130% in increment of 0.5%. In order to find a new invariant correlation digital system we obtained two unidimensional vector after to achieve different mathematical transformation in the target as well as the input scene. To recognize a target, signatures were compared, calculating the Euclidean distance between the target and the input scene; then, confidence levels are obtained. The results demonstrate that this system has a good performance to discriminate between letters.

  1. Exploiting vibration-based spectral signatures for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Crider, Lauren; Kangas, Scott

    2014-06-01

    Feature extraction algorithms for vehicle classification techniques represent a large branch of Automatic Target Recognition (ATR) efforts. Traditionally, vehicle ATR techniques have assumed time series vibration data collected from multiple accelerometers are a function of direct path, engine driven signal energy. If data, however, is highly dependent on measurement location these pre-established feature extraction algorithms are ineffective. In this paper, we examine the consequences of analyzing vibration data potentially contingent upon transfer path effects by exploring the sensitivity of sensor location. We summarize our analysis of spectral signatures from each accelerometer and investigate similarities within the data.

  2. Speech recognition: Acoustic-phonetic knowledge acquisition and representation

    NASA Astrophysics Data System (ADS)

    Zue, Victor W.

    1987-09-01

    A long-term research goal is the development and implementation of speaker-independent continuous speech recognition systems. It is believed that the proper utilization of speech-specific knowledge is essential for such advanced systems. Research is thus directed toward the acquisition of acoustic-phonetic and lexical knowledge, and the application of this knowledge to speech recognition algorithms. Investigation into the contextual variations of speech sounds has continued, emphasizing the role of the syllable in these variations. Analysis revealed that the acoustic realization of a stop depends greatly on its position within a syllable. In order to represent and utilize this information in speech recognition, a hierarchical syllable description has been adopted that enables us to specify the constraints in terms of an immediate constituent grammar. We will continue to quantify the effect of context on the acoustic realization of phonemes using larger constituent units such as syllables. In addition, a grammar will be developed to describe the relationship between phonemes and acoustic segments, and a parser that will make use of this grammar for phonetic recognition and lexical access.

  3. Speech recognition: Acoustic phonetic and lexical knowledge representation

    NASA Astrophysics Data System (ADS)

    Zue, V. W.

    1983-02-01

    The purpose of this program is to develop a speech data base facility under which the acoustic characteristics of speech sounds in various contexts can be studied conveniently; investigate the phonological properties of a large lexicon of, say 10,000 words, and determine to what extent the phontactic constraints can be utilized in speech recognition; study the acoustic cues that are used to mark work boundaries; develop a test bed in the form of a large-vocabulary, IWR system to study the interactions of acoustic, phonetic and lexical knowledge; and develop a limited continuous speech recognition system with the goal of recognizing any English word from its spelling in order to assess the interactions of higher-level knowledge sources.

  4. Speech recognition: Acoustic phonetic and lexical knowledge representation

    NASA Astrophysics Data System (ADS)

    Zue, V. W.

    1984-02-01

    The purpose of this program is to develop a speech data base facility under which the acoustic characteristics of speech sounds in various contexts can be studied conveniently; investigate the phonological properties of a large lexicon of, say 10,000 words and determine to what extent the phonotactic constraints can be utilized in speech recognition; study the acoustic cues that are used to mark work boundaries; develop a test bed in the form of a large-vocabulary, IWR system to study the interactions of acoustic, phonetic and lexical knowledge; and develop a limited continuous speech recognition system with the goal of recognizing any English word from its spelling in order to assess the interactions of higher-level knowledge sources.

  5. Adding articulatory features to acoustic features for automatic speech recognition

    SciTech Connect

    Zlokarnik, I.

    1995-05-01

    A hidden-Markov-model (HMM) based speech recognition system was evaluated that makes use of simultaneously recorded acoustic and articulatory data. The articulatory measurements were gathered by means of electromagnetic articulography and describe the movement of small coils fixed to the speakers` tongue and jaw during the production of German V{sub 1}CV{sub 2} sequences [P. Hoole and S. Gfoerer, J. Acoust. Soc. Am. Suppl. 1 {bold 87}, S123 (1990)]. Using the coordinates of the coil positions as an articulatory representation, acoustic and articulatory features were combined to make up an acoustic--articulatory feature vector. The discriminant power of this combined representation was evaluated for two subjects on a speaker-dependent isolated word recognition task. When the articulatory measurements were used both for training and testing the HMMs, the articulatory representation was capable of reducing the error rate of comparable acoustic-based HMMs by a relative percentage of more than 60%. In a separate experiment, the articulatory movements during the testing phase were estimated using a multilayer perceptron that performed an acoustic-to-articulatory mapping. Under these more realistic conditions, when articulatory measurements are only available during the training, the error rate could be reduced by a relative percentage of 18% to 25%.

  6. Wavelet-based ground vehicle recognition using acoustic signals

    NASA Astrophysics Data System (ADS)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  7. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, J.F.; Ng, L.C.

    1998-03-17

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.

  8. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, John F.; Ng, Lawrence C.

    1998-01-01

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching.

  9. Applying dynamic methods in off-line signature recognition

    NASA Astrophysics Data System (ADS)

    Igarza, Juan Jose; Hernaez, Inmaculada; Goirizelaia, Inaki; Espinosa, Koldo

    2004-08-01

    In this paper we present the work developed on off-line signature verification using Hidden Markov Models (HMM). HMM is a well-known technique used by other biometric features, for instance, in speaker recognition and dynamic or on-line signature verification. Our goal here is to extend Left-to-Right (LR)-HMM to the field of static or off-line signature processing using results provided by image connectivity analysis. The chain encoding of perimeter points for each blob obtained by this analysis is an ordered set of points in the space, clockwise around the perimeter of the blob. We discuss two different ways of generating the models depending on the way the blobs obtained from the connectivity analysis are ordered. In the first proposed method, blobs are ordered according to their perimeter length. In the second proposal, blobs are ordered in their natural reading order, i.e. from the top to the bottom and left to right. Finally, two LR-HMM models are trained using the parameters obtained by the mentioned techniques. Verification results of the two techniques are compared and some improvements are proposed.

  10. Algorithm for classifying multiple targets using acoustic signatures

    NASA Astrophysics Data System (ADS)

    Damarla, Thyagaraju; Pham, Tien; Lake, Douglas

    2004-08-01

    In this paper we discuss an algorithm for classification and identification of multiple targets using acoustic signatures. We use a Multi-Variate Gaussian (MVG) classifier for classifying individual targets based on the relative amplitudes of the extracted harmonic set of frequencies. The classifier is trained on high signal-to-noise ratio data for individual targets. In order to classify and further identify each target in a multi-target environment (e.g., a convoy), we first perform bearing tracking and data association. Once the bearings of the targets present are established, we next beamform in the direction of each individual target to spatially isolate it from the other targets (or interferers). Then, we further process and extract a harmonic feature set from each beamformed output. Finally, we apply the MVG classifier on each harmonic feature set for vehicle classification and identification. We present classification/identification results for convoys of three to five ground vehicles.

  11. A static acoustic signature system for the analysis of dynamic flight information

    NASA Technical Reports Server (NTRS)

    Ramer, D. J.

    1978-01-01

    The Army family of helicopters was analyzed to measure the polar octave band acoustic signature in various modes of flight. A static array of calibrated microphones was used to simultaneously acquire the signature and differential times required to mathematically position the aircraft in space. The signature was then reconstructed, mathematically normalized to a fixed radius around the aircraft.

  12. Wavelet-based acoustic recognition of aircraft

    SciTech Connect

    Dress, W.B.; Kercel, S.W.

    1994-09-01

    We describe a wavelet-based technique for identifying aircraft from acoustic emissions during take-off and landing. Tests show that the sensor can be a single, inexpensive hearing-aid microphone placed close to the ground the paper describes data collection, analysis by various technique, methods of event classification, and extraction of certain physical parameters from wavelet subspace projections. The primary goal of this paper is to show that wavelet analysis can be used as a divide-and-conquer first step in signal processing, providing both simplification and noise filtering. The idea is to project the original signal onto the orthogonal wavelet subspaces, both details and approximations. Subsequent analysis, such as system identification, nonlinear systems analysis, and feature extraction, is then carried out on the various signal subspaces.

  13. Unvoiced Speech Recognition Using Tissue-Conductive Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Heracleous, Panikos; Kaino, Tomomi; Saruwatari, Hiroshi; Shikano, Kiyohiro

    2006-12-01

    We present the use of stethoscope and silicon NAM (nonaudible murmur) microphones in automatic speech recognition. NAM microphones are special acoustic sensors, which are attached behind the talker's ear and can capture not only normal (audible) speech, but also very quietly uttered speech (nonaudible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech transform, etc.) for sound-impaired people. Using adaptation techniques and a small amount of training data, we achieved for a 20 k dictation task a[InlineEquation not available: see fulltext.] word accuracy for nonaudible murmur recognition in a clean environment. In this paper, we also investigate nonaudible murmur recognition in noisy environments and the effect of the Lombard reflex on nonaudible murmur recognition. We also propose three methods to integrate audible speech and nonaudible murmur recognition using a stethoscope NAM microphone with very promising results.

  14. Feature extraction from time domain acoustic signatures of weapons systems fire

    NASA Astrophysics Data System (ADS)

    Yang, Christine; Goldman, Geoffrey H.

    2014-06-01

    The U.S. Army is interested in developing algorithms to classify weapons systems fire based on their acoustic signatures. To support this effort, an algorithm was developed to extract features from acoustic signatures of weapons systems fire and applied to over 1300 signatures. The algorithm filtered the data using standard techniques then estimated the amplitude and time of the first five peaks and troughs and the location of the zero crossing in the waveform. The results were stored in Excel spreadsheets. The results are being used to develop and test acoustic classifier algorithms.

  15. Acoustic signature of violins based on bridge transfer mobility measurements.

    PubMed

    Elie, Benjamin; Gautier, François; David, Bertrand

    2014-09-01

    This paper is an attempt to solve two problems related to musical acoustics. The first one consists in defining a signature of an instrument, namely, summarizing its vibroacoustical behavior. The second one deals with the existing relationship between the musical sound and the vibroacoustic properties of the instrument body. The violin is the application of this paper. A proposed solution for the first problem consists in an estimation of the bridge transfer mobility and the mean-value of the lateral bridge transfer mobility. The second problem is studied via the comparison between the amplitudes of harmonics, extracted from a glissando audio signal, and the lateral bridge transfer mobility: Both curves exhibit similar features. This is the main result of the paper. This is evidenced by studying the effect of a violin mute on both the lateral bridge transfer mobility and the produced sound. Finally, this is evidenced by successfully identifying which violin is played in an audio recording, using the computation of the Pearson distance between the distribution of the amplitude of harmonics and a database of measured mobilities. PMID:25190411

  16. Acoustic signatures of sound source-tract coupling

    NASA Astrophysics Data System (ADS)

    Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Mindlin, Gabriel B.

    2011-04-01

    Birdsong is a complex behavior, which results from the interaction between a nervous system and a biomechanical peripheral device. While much has been learned about how complex sounds are generated in the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among bird species makes birdsong a most suitable model to study phenomena associated to the production of complex vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed phenomena in birdsong, such as unilaterally produced “frequency jumps,” enhancement of resonances, and the shift of the fundamental frequency observed in heliox experiments.

  17. Speech recognition: Acoustic-phonetic knowledge acquisition and representation

    NASA Astrophysics Data System (ADS)

    Zue, Victor W.

    1988-09-01

    The long-term research goal is to develop and implement speaker-independent continuous speech recognition systems. It is believed that the proper utilization of speech-specific knowledge is essential for such advanced systems. This research is thus directed toward the acquisition, quantification, and representation, of acoustic-phonetic and lexical knowledge, and the application of this knowledge to speech recognition algorithms. In addition, we are exploring new speech recognition alternatives based on artificial intelligence and connectionist techniques. We developed a statistical model for predicting the acoustic realization of stop consonants in various positions in the syllable template. A unification-based grammatical formalism was developed for incorporating this model into the lexical access algorithm. We provided an information-theoretic justification for the hierarchical structure of the syllable template. We analyzed segmented duration for vowels and fricatives in continuous speech. Based on contextual information, we developed durational models for vowels and fricatives that account for over 70 percent of the variance, using data from multiple, unknown speakers. We rigorously evaluated the ability of human spectrogram readers to identify stop consonants spoken by many talkers and in a variety of phonetic contexts. Incorporating the declarative knowledge used by the readers, we developed a knowledge-based system for stop identification. We achieved comparable system performance to that to the readers.

  18. Mate vocal recognition in the Scopoli's shearwater Calonectris diomedea: do females and males share the same acoustic code?

    PubMed

    Curé, Charlotte; Mathevon, Nicolas; Aubin, Thierry

    2016-07-01

    Vocal recognition is an important process allowing partners' reunion in most seabirds. Although the acoustic basis of this recognition has been explored in several species, only a few studies have experimentally tested the acoustic coding-decoding strategy used for mate identification. Here, we investigated mate recognition in the Scopoli's shearwater (Calonectris diomedea) by conducting playbacks of calls with modified acoustic features. We showed that females and males in a seabird species with a moderate vocal dimorphism are likely to share the same coding-decoding rule for vocal mate identification. Specifically, a disruption of call temporal structure prevented mate recognition in both sexes, in line with the parameters previously identified as supporting an individual signature. Modifications of spectral cues and envelope structure also impaired recognition, but at a lesser extent: almost half of the tested males and females were still able to recognise their partner. It is likely that this equal ability of female and male Scopoli's shearwaters to vocally recognise their partner could be found in other seabirds. PMID:27126987

  19. The acoustic signatures of cavitation erosion on grade DH36 steel

    NASA Astrophysics Data System (ADS)

    Armakolas, I.; Carlton, J.; Vidakovic, M.; Sun, T.; Grattan, K. T. V.

    2015-12-01

    Cavitation can cause considerable erosion to adjacent materials. Erosion is accompanied by acoustic emissions, related to crack formation and propagation inside the material. In this study a piezoelectric acoustic sensor mounted on the back of a grade DH36 steel plate is used to identify the acoustic signatures of cavitation. Cavitation is induced near the plate by means of an ultrasonic transducer (sonotrode). Various ‘non-erosive’ and erosive test rig configurations are examined and an acoustic threshold value for the onset of cavitation erosion is identified and presented. The use of a fibre Bragg grating (FBG)-based acoustic sensor developed at City University London for acoustic monitoring purposes is also examined. Acoustic signals from both sensors are analysed, by means of a fast Fourier transform, showing a very good agreement in terms of captured frequencies.

  20. Time and timing in the acoustic recognition system of crickets

    PubMed Central

    Hennig, R. Matthias; Heller, Klaus-Gerhard; Clemens, Jan

    2014-01-01

    The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast in a long trill or as a chirped song. This pattern appears to be analyzed on two timescales, short and long. Recent evidence suggests that song recognition in crickets relies on two computations with respect to time; a short linear-nonlinear (LN) model that operates as a filter for pulse rate and a longer integration time window for monitoring song energy over time. Therefore, there is a twofold role for timing. A filter for pulse rate shows differentiating properties for which the specific timing of excitation and inhibition is important. For an integrator, however, the duration of the time window is more important than the precise timing of events. Here, we first review evidence for the role of LN-models and integration time windows for song recognition in crickets. We then parameterize the filter part by Gabor functions and explore the effects of duration, frequency, phase, and offset as these will correspond to differently timed patterns of excitation and inhibition. These filter properties were compared with known preference functions of crickets and katydids. In a comparative approach, the power for song discrimination by LN-models was tested with the songs of over 100 cricket species. It is demonstrated how the acoustic signals of crickets occupy a simple 2-dimensional space for song recognition that arises from timing, described by a Gabor function, and time, the integration window. Finally, we discuss the evolution of recognition systems in insects based on simple sensory computations. PMID:25161622

  1. Door latching recognition apparatus and process

    DOEpatents

    Eakle, Jr., Robert F.

    2012-05-15

    An acoustic door latch detector is provided in which a sound recognition sensor is integrated into a door or door lock mechanism. The programmable sound recognition sensor can be trained to recognize the acoustic signature of the door and door lock mechanism being properly engaged and secured. The acoustic sensor will signal a first indicator indicating that proper closure was detected or sound an alarm condition if the proper acoustic signature is not detected within a predetermined time interval.

  2. Signature-extendable technology - Global space-based crop recognition

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Badhwar, Gautam D.

    1987-01-01

    The use of signature-extendable technology to improve the efficiency of machine processing of remotely sensed data is examined. Temporal profile technology is employed to automatically recognize crops; the technique uses the Kauth and Thomas (1976) transform of Landsat, multidata, and parameters derived from a model of each crop's greenness-time trajectory. The basic characteristics of temporal profile technology and the U.S. based labeling algorithm are described. Consideration is given to signature extension, signature-extendable spaces, and signature-extendable features. The greenness and brightness parameters used in temporal profile technology are derived. The signature extendability of the parameters is evaluated by applying them to the analysis of corn and soybean crops in the U.S. and Argentina. It is noted that the technique is an affordable and efficient method for deriving data on crops on a global basis.

  3. Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures.

    PubMed

    Stoddard, Mary Caswell; Kilner, Rebecca M; Town, Christopher

    2014-01-01

    Pattern-based identity signatures are commonplace in the animal kingdom, but how they are recognized is poorly understood. Here we develop a computer vision tool for analysing visual patterns, NATUREPATTERNMATCH, which breaks new ground by mimicking visual and cognitive processes known to be involved in recognition tasks. We apply this tool to a long-standing question about the evolution of recognizable signatures. The common cuckoo (Cuculus canorus) is a notorious cheat that sneaks its mimetic eggs into nests of other species. Can host birds fight back against cuckoo forgery by evolving highly recognizable signatures? Using NATUREPATTERNMATCH, we show that hosts subjected to the best cuckoo mimicry have evolved the most recognizable egg pattern signatures. Theory predicts that effective pattern signatures should be simultaneously replicable, distinctive and complex. However, our results reveal that recognizable signatures need not incorporate all three of these features. Moreover, different hosts have evolved effective signatures in diverse ways. PMID:24939367

  4. Mesospheric hydroxyl airglow signatures of acoustic and gravity waves generated by transient tropospheric forcing

    NASA Astrophysics Data System (ADS)

    Snively, J. B.

    2013-09-01

    Numerical model results demonstrate that acoustic waves generated by tropospheric sources may produce cylindrical "concentric ring" signatures in the mesospheric hydroxyl airglow layer. They may arrive as precursors to upward propagating gravity waves, generated simultaneously by the same sources, and produce strong temperature perturbations in the thermosphere above. Transient and short-lived, the acoustic wave airglow intensity and temperature signatures are predicted to be detectable by ground-based airglow imaging systems and may provide new insight into the forcing of the upper atmosphere from below.

  5. Acoustic emission signatures of damage modes in concrete

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Mpalaskas, A. C.; Matikas, T. E.; Van Hemelrijck, D.

    2014-03-01

    The characterization of the dominant fracture mode may assist in the prediction of the remaining life of a concrete structure due to the sequence between successive tensile and shear mechanisms. Acoustic emission sensors record the elastic responses after any fracture event converting them into electric waveforms. The characteristics of the waveforms vary according to the movement of the crack tips, enabling characterization of the original mode. In this study fracture experiments on concrete beams are conducted. The aim is to examine the typical acoustic signals emitted by different fracture modes (namely tension due to bending and shear) in a concrete matrix. This is an advancement of a recent study focusing on smaller scale mortar and marble specimens. The dominant stress field and ultimate fracture mode is controlled by modification of the four-point bending setup while acoustic emission is monitored by six sensors at fixed locations. Conclusions about how to distinguish the sources based on waveform parameters of time domain (duration, rise time) and frequency are drawn. Specifically, emissions during the shear loading exhibit lower frequencies and longer duration than tensile. Results show that, combination of AE features may help to characterize the shift between dominant fracture modes and contribute to the structural health monitoring of concrete. This offers the basis for in-situ application provided that the distortion of the signal due to heterogeneous wave path is accounted for.

  6. Researches of the Electrotechnical Laboratory. No. 955: Speech recognition by description of acoustic characteristic variations

    NASA Astrophysics Data System (ADS)

    Hayamizu, Satoru

    1993-09-01

    A new speech recognition technique is proposed. This technique systematically describes acoustic characteristic variations using a large scale speech database, thereby, obtaining high recognition accuracy. Rules are extracted to represent knowledge concerning acoustic characteristic variations by observing the actual speech database. A general framework based on maps of the sets of variation factors to the acoustic feature spaces is proposed. A single recognition model is not used for each element of descriptive units regardless of the states of the variation factors. Large-scaled and systematic different recognition models are used for different states. A technique to structurize the representation of acoustic characteristic variations by clustering recognition models depending on variation factors is proposed. To investigate acoustic characteristic variations for phonetic contexts efficiently, word sets for reading texts of speech database are selected so that the maximum number of three phoneme sequences are covered in small number of words as possible. A selection algorithm, in which the first criterion is to maximize the number of different three phoneme sequences in the word set and the second criterion is to maximize the entropy of the three phonemes, is proposed. Read speed data of the word sets are collected and labelled as acoustic-phonetic segments. Experiments of speaker-independent word recognition using this speech database were conducted to show the description effectiveness of the acoustic characteristic variations using networks of acoustic-phonetic segments. The experiment shows the recognition errors are reduced. Basic framework for estimating the acoustic characteristics in unknown phonetic contexts using decision trees is proposed.

  7. Speech and melody recognition in binaurally combined acoustic and electric hearing

    NASA Astrophysics Data System (ADS)

    Kong, Ying-Yee; Stickney, Ginger S.; Zeng, Fan-Gang

    2005-03-01

    Speech recognition in noise and music perception is especially challenging for current cochlear implant users. The present study utilizes the residual acoustic hearing in the nonimplanted ear in five cochlear implant users to elucidate the role of temporal fine structure at low frequencies in auditory perception and to test the hypothesis that combined acoustic and electric hearing produces better performance than either mode alone. The first experiment measured speech recognition in the presence of competing noise. It was found that, although the residual low-frequency (<1000 Hz) acoustic hearing produced essentially no recognition for speech recognition in noise, it significantly enhanced performance when combined with the electric hearing. The second experiment measured melody recognition in the same group of subjects and found that, contrary to the speech recognition result, the low-frequency acoustic hearing produced significantly better performance than the electric hearing. It is hypothesized that listeners with combined acoustic and electric hearing might use the correlation between the salient pitch in low-frequency acoustic hearing and the weak pitch in the envelope to enhance segregation between signal and noise. The present study suggests the importance and urgency of accurately encoding the fine-structure cue in cochlear implants. .

  8. Signature analysis of acoustic emission from graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Henneke, E. G., II

    1977-01-01

    Acoustic emissions were monitored for crack extension across and parallel to the fibers in a single ply and multiply laminates of graphite epoxy composites. Spectrum analysis was performed on the transient signal to ascertain if the fracture mode can be characterized by a particular spectral pattern. The specimens were loaded to failure quasistatically in a tensile machine. Visual observations were made via either an optical microscope or a television camera. The results indicate that several types of characteristics in the time and frequency domain correspond to different types of failure.

  9. Development of a Transient Acoustic Boundary Element Method to Predict the Noise Signature of Swimming Fish

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2015-11-01

    Animals have evolved flexible wings and fins to efficiently and quietly propel themselves through the air and water. The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates three essential features: the fluid mechanics, the elastic structural response, and the noise generation. This study focuses on the development, validation, and demonstration of a transient, two-dimensional acoustic boundary element solver accelerated by a fast multipole algorithm. The resulting acoustic solver is used to characterize the acoustic signature produced by a vortex street advecting over a NACA 0012 airfoil, which is representative of vortex-body interactions that occur in schools of swimming fish. Both 2S and 2P canonical vortex streets generated by fish are investigated over the range of Strouhal number 0 . 2 < St < 0 . 4 , and the acoustic signature of the airfoil is quantified. This study provides the first estimate of the noise signature of a school of swimming fish. Lehigh University CORE Grant.

  10. Off-line signature recognition based on dynamic methods

    NASA Astrophysics Data System (ADS)

    Igarza, Juan J.; Hernaez, Inmaculada; Goirizelaia, Inaki; Espinosa, Koldo; Escolar, Jon

    2005-03-01

    In this paper we present the work developed on off-line signature verification as a continuation of a previous work using Left-to-Right Hidden Markov Models (LR-HMM) in order to extend those models to the field of static or off-line signature processing using results provided by image connectivity analysis. The chain encoding of perimeter points for each blob obtained by this analysis is an ordered set of points in the space, clockwise around the perimeter of the blob. Two models are generated depending on the way the blobs obtained from the connectivity analysis are ordered. In the first one, blobs are ordered according to their perimeter length. In the second proposal, blobs are ordered in their natural reading order, i.e. from the top to the bottom and left to right. Finally, two LR-HMM models are trained using the (x,y) coordinates of the chain codes obtained by the two mentioned techniques and a set of geometrical local features obtained from them such as polar coordinates referred to the center of ink, local radii, segment lengths and local tangent angle. Verification results of the two techniques are compared over a biometrical database containing skilled forgeries.

  11. FY-93 noncontacting acoustic ultrasonic signature analysis development

    SciTech Connect

    Tow, D.M.; Rodriguez, J.G.; Williamson, R.L.; Blackwood, L.G.

    1994-04-01

    A noncontacting, long-standoff inspection system with proven capabilities in container fill identification has been under development at the Idaho National Engineering Laboratory. The system detects subtle change in container vibration characteristics caused by differences in the physical properties of the fill materials. A container is inspected by acoustically inducting it to vibrate and sensing the vibrational response with a laser vibrometer. A standoff distance of several meters is feasible. In previous work the system proved to be a reliable means of distinguishing between munitions with a variety of chemical fills. During FY-93, the system was modified to improve performance and simplify operation. Other FY-93 accomplishments include progress in modeling the vibrational characteristics of containers and refinements to the statistical classification algorithms. Progress was also made in identifying other applications for this technology.

  12. Identification of cavitation signatures using both optical and PZT acoustic sensors

    NASA Astrophysics Data System (ADS)

    Vidakovic, M.; Armakolas, I.; Sun, T.; Carlton, J.; Grattan, K. T. V.

    2015-09-01

    This paper presents the results obtained from monitoring a simulated material cavitation process using both a fibre Bragg grating (FBG)-based acoustic sensor system developed at City University London and a commercial PZT (Piezoelectric Transducer) acoustic sensor, with an aim to identify the cavitation signatures. In the experiment, a sample metal plate with its back surface being instrumented with both sensors is positioned very close to an excitation sonotrode with a standard frequency of 19.5kHz. The data obtained from both sensors are recorded and analyzed, showing a very good agreement.

  13. Mechanical and Acoustic Signature of Slow Earthquakes on Laboratory Faults

    NASA Astrophysics Data System (ADS)

    Scuderi, Marco Maria; Marone, Chris; Tinti, Elisa; Scognamiglio, Laura; Di Stefano, Giuseppe; Collettini, Cristiano

    2015-04-01

    Recent seismic and geodetic observations show that fault slip occurs via a spectrum of behaviors that range from seismic (fast dynamic) to aseismic (creep). Indeed faults can slip via a variety of quasi-dynamic processes such as Slow-Slip, Low Frequency Earthquakes (LFE), and Tremor. These transient modes of slip represent slow, but self-propagating acceleration of slip along fault zones. These phenomena have been observed worldwide in a variety of active tectonic environments, however the physics of quasi-dynamic rupture and the underlying fault zone processes are still poorly understood. Rate- and State- frictional constitutive equations predict that fast dynamic slip will occur when the stiffness of the loading system (k) is less than a critical stiffness (kc) characterizing the fault gouge. In order to investigate quasi-dynamic transients, we performed laboratory experiments on simulated fault gouge (silica powders) in the double direct shear configuration with a compliant central block allowing boundary conditions where k≈kc. In addition, PZTs were used to measure acoustical properties of the gouge layers during shear. We document an evolution of the fault mechanical properties as the σn is increased. For σn < 10 MPa we observe a steady state frictional type of shear. When σn ≥ 15 MPa we observe emergent slow-slip events from steady state shear with accumulated shear displacement of about 10 mm. The typical values of stress drop (Δτ) vary between 0.2 and 0.8 MPa, and have typical duration from 0.5 up to 3 seconds giving the characteristics of slow stick-slip. As σn is varied we observe different characteristics of slow slip. For σn = 15MPa a repetitive double period oscillation is observed with slow slip growing until a maximum stress drop and then self attenuating. When σn is increased to 20 and 25 MPa slow slip are characterized by larger Δτ with constant τmax and τmin, however still showing a co-seismic duration of ~2 seconds. Our results

  14. Intelligent target recognition using micro-Doppler radar signatures

    NASA Astrophysics Data System (ADS)

    Thayaparan, Thayananthan; Stankovic, Ljubisa; Djurovic, Igor; Penamati, Suresh; Venkataramaniah, Kamisetti

    2009-05-01

    We present an effective quadratic time-frequency S-method based approach in conjunction with the Viterbi algorithm to extract m-D features. The effectiveness of the S-method in extracting m-D features is demonstrated through the application to indoor and outdoor experimental data sets such as rotating fan and human gait. The Viterbi algorithm for the instantaneous frequency estimation is used to enhance the weak human micro-Doppler features in relatively high noise environments. As such, this paper contributes additional experimental micro-Doppler data and analysis, which should help in developing a better picture of the human gait micro-Doppler research and its applications to indoor and outdoor imaging and automatic gait recognition systems.

  15. Source signature and acoustic field of seismic physical modeling

    NASA Astrophysics Data System (ADS)

    Lin, Q.; Jackson, C.; Tang, G.; Burbach, G.

    2004-12-01

    As an important tool of seismic research and exploration, seismic physical modeling simulates the real world data acquisition by scaling the model, acquisition parameters, and some features of the source generated by a transducer. Unlike the numerical simulation where a point source is easily satisfied, the transducer can't be made small enough for approximating the point source in physical modeling, therefore yield different source signature than the sources applied in the field data acquisition. To better understand the physical modeling data, characterizing the wave field generated by ultrasonic transducers is desirable and helpful. In this study, we explode several aspects of source characterization; including their radiation pattern, directivity, sensitivity and frequency response. We also try to figure out how to improve the acquired data quality, such as minimize ambient noise, use encoded chirp to prevent ringing, apply deterministic deconvolution to enhance data resolution and t-P filtering to remove linear events. We found that the transducer and their wave field, the modeling system performance, as well as material properties of the model and their coupling conditions all play roles in the physical modeling data acquisition.

  16. Hearing tongue loops: Perceptual sensitivity to acoustic signatures of articulatory dynamics

    PubMed Central

    Nam, Hosung; Mooshammer, Christine; Iskarous, Khalil; Whalen, D. H.

    2013-01-01

    Previous work has shown that velar stops are produced with a forward movement during closure, forming a forward (anterior) loop for a VCV sequence, when the preceding vowels are back or mid. Are listeners aware of this aspect of articulatory dynamics? The current study used articulatory synthesis to examine how such kinematic patterns are reflected in the acoustics, and whether those acoustic patterns elicit different goodness ratings. In Experiment I, the size and direction of loops was modulated in articulatory synthesis. The resulting stimuli were presented to listeners for a naturalness judgment. Results show that listeners rate forward loops as more natural than backward loops, in agreement with typical productions. Acoustic analysis of the synthetic stimuli shows that forward loops exhibit shorter and shallower VC transitions than CV transitions. In Experiment II, three acoustic parameters were employed incorporating F3-F2 distance, transition slope, and transition length to systematically modulate the magnitude of VC and CV transitions. Listeners rated the naturalness in accord with those of Experiment I. This study reveals that there is sufficient information in the acoustic signature of “velar loops” to affect perceptual preference. Similarity to typical productions seemed to determine preferences, not acoustic distinctiveness. PMID:24180790

  17. In situ measurements of the fragipan acoustic to seismic coupling signature

    NASA Astrophysics Data System (ADS)

    Howard, Wheeler; Hickey, Craig J.

    2002-05-01

    The phenomena of acoustic to seismic (A/S) coupling, observed and studied since the 1950s, has most recently been used to detect shallow buried objects [Sabatier and Xiang, J. Acoust. Soc. Am. 105, 1383 (1999); 106, 2143 (1999)] and monitor detonation of nuclear weapons [Orcutt, J. Acoust. Soc. Am. 105, 1038 (1999)]. At an air-surface interface airborne acoustic energy is coupled into the ground as seismic energy. The ratio of the seismic and airborne waves constitutes the A/S coupling signature, which is distinctive to the underlying structure. Seismic energy received by a geophone at the interface contains information, via reflected waves, about the underlying subsurface layer, media, and boundaries. Of particular interest in the Mississippi River Valley is the fragipan layer. The fragipan is the layer that directly affects the growth of crops, rate of soil erosion, and rate of water absorption in underlying layers. In this presentation, the A/S coupling signature data taken at an agricultural field station and forward model are discussed.

  18. Speaker recognition with temporal cues in acoustic and electric hearing

    NASA Astrophysics Data System (ADS)

    Vongphoe, Michael; Zeng, Fan-Gang

    2005-08-01

    Natural spoken language processing includes not only speech recognition but also identification of the speaker's gender, age, emotional, and social status. Our purpose in this study is to evaluate whether temporal cues are sufficient to support both speech and speaker recognition. Ten cochlear-implant and six normal-hearing subjects were presented with vowel tokens spoken by three men, three women, two boys, and two girls. In one condition, the subject was asked to recognize the vowel. In the other condition, the subject was asked to identify the speaker. Extensive training was provided for the speaker recognition task. Normal-hearing subjects achieved nearly perfect performance in both tasks. Cochlear-implant subjects achieved good performance in vowel recognition but poor performance in speaker recognition. The level of the cochlear implant performance was functionally equivalent to normal performance with eight spectral bands for vowel recognition but only to one band for speaker recognition. These results show a disassociation between speech and speaker recognition with primarily temporal cues, highlighting the limitation of current speech processing strategies in cochlear implants. Several methods, including explicit encoding of fundamental frequency and frequency modulation, are proposed to improve speaker recognition for current cochlear implant users.

  19. Theory of the acoustic signature of topological and morphological defects in SiC/porous SiC laminated ceramics

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, R.; Noguez, Cecilia

    1997-10-01

    The sensitivity of acoustic techniques to topological and/or morphological variations in SiC/porous SiC laminated ceramics is studied within the transfer matrix formalism. To implement this theoretical formalism, the mechanical properties of the SiC porous layers are calculated using the effective medium approximation of Kuster and Toksöz [Geophys. 39, 587 (1974)]. We show that topological defects have a stronger acoustic signature than morphological defects. Also, we observe that there are particular frequencies at which the defects do not present any acoustic signature.

  20. Individual vocal signatures in barn owl nestlings: does individual recognition have an adaptive role in sibling vocal competition?

    PubMed

    Dreiss, A N; Ruppli, C A; Roulin, A

    2014-01-01

    To compete over limited parental resources, young animals communicate with their parents and siblings by producing honest vocal signals of need. Components of begging calls that are sensitive to food deprivation may honestly signal need, whereas other components may be associated with individual-specific attributes that do not change with time such as identity, sex, absolute age and hierarchy. In a sib-sib communication system where barn owl (Tyto alba) nestlings vocally negotiate priority access to food resources, we show that calls have individual signatures that are used by nestlings to recognize which siblings are motivated to compete, even if most vocalization features vary with hunger level. Nestlings were more identifiable when food-deprived than food-satiated, suggesting that vocal identity is emphasized when the benefit of winning a vocal contest is higher. In broods where siblings interact iteratively, we speculate that individual-specific signature permits siblings to verify that the most vocal individual in the absence of parents is the one that indeed perceived the food brought by parents. Individual recognition may also allow nestlings to associate identity with individual-specific characteristics such as position in the within-brood dominance hierarchy. Calls indeed revealed age hierarchy and to a lower extent sex and absolute age. Using a cross-fostering experimental design, we show that most acoustic features were related to the nest of origin (but not the nest of rearing), suggesting a genetic or an early developmental effect on the ontogeny of vocal signatures. To conclude, our study suggests that sibling competition has promoted the evolution of vocal behaviours that signal not only hunger level but also intrinsic individual characteristics such as identity, family, sex and age. PMID:24266879

  1. Methods and apparatus for non-acoustic speech characterization and recognition

    DOEpatents

    Holzrichter, John F.

    1999-01-01

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  2. Methods and apparatus for non-acoustic speech characterization and recognition

    SciTech Connect

    Holzrichter, J.F.

    1999-12-21

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  3. Effect of acoustic fine structure cues on the recognition of auditory-only and audiovisual speech.

    PubMed

    Meister, Hartmut; Fuersen, Katrin; Schreitmueller, Stefan; Walger, Martin

    2016-06-01

    This study addressed the hypothesis that an improvement in speech recognition due to combined envelope and fine structure cues is greater in the audiovisual than the auditory modality. Normal hearing listeners were presented with envelope vocoded speech in combination with low-pass filtered speech. The benefit of adding acoustic low-frequency fine structure to acoustic envelope cues was significantly greater for audiovisual than for auditory-only speech. It is suggested that this is due to complementary information of the different acoustic and visual cues. The results have potential implications for the assessment of bimodal cochlear implant fittings or electroacoustic stimulation. PMID:27369134

  4. Acoustic hole filling for sparse enrollment data using a cohort universal corpus for speaker recognition.

    PubMed

    Suh, Jun-Won; Hansen, John H L

    2012-02-01

    In this study, the problem of sparse enrollment data for in-set versus out-of-set speaker recognition is addressed. The challenge here is that both the training speaker data (5 s) and test material (2~6 s) is of limited test duration. The limited enrollment data result in a sparse acoustic model space for the desired speaker model. The focus of this study is on filling these acoustic holes by harvesting neighbor speaker information to leverage overall system performance. Acoustically similar speakers are selected from a separate available corpus via three different methods for speaker similarity measurement. The selected data from these similar acoustic speakers are exploited to fill the lack of phone coverage caused by the original sparse enrollment data. The proposed speaker modeling process mimics the naturally distributed acoustic space for conversational speech. The Gaussian mixture model (GMM) tagging process allows simulated natural conversation speech to be included for in-set speaker modeling, which maintains the original system requirement of text independent speaker recognition. A human listener evaluation is also performed to compare machine versus human speaker recognition performance, with machine performance of 95% compared to 72.2% accuracy for human in-set/out-of-set performance. Results show that for extreme sparse train/reference audio streams, human speaker recognition is not nearly as reliable as machine based speaker recognition. The proposed acoustic hole filling solution (MRNC) produces an averaging 7.42% relative improvement over a GMM-Cohort UBM baseline and a 19% relative improvement over the Eigenvoice baseline using the FISHER corpus. PMID:22352521

  5. Acoustic Signatures of a Model Fan in the NASA-Lewis Anechoic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Dietrich, D. A.; Heidmann, M. F.; Abbott, J. M.

    1977-01-01

    One-third octave band and narrowband spectra and continuous directivity patterns radiated from an inlet are presented over ranges of fan operating conditions, tunnel velocity, and angle of attack. Tunnel flow markedly reduced the unsteadiness and level of the blade passage tone, revealed the cutoff design feature of the blade passage tone, and exposed a lobular directivity pattern for the second harmonic tone. The full effects of tunnel flow are shown to be complete above a tunnel velocity of 20 meters/second. The acoustic signatures are also shown to be strongly affected by fan rotational speed, fan blade loading, and inlet angle of attack.

  6. [Acoustic recognition of emotions and musical perceptive abilities in young deaf person].

    PubMed

    Fiol, L; Rousteau, G

    2012-01-01

    What influence does being deaf have on the ability to recognise emotions in other people? What perceptive abilities can be found in deaf people that are based on the acoustic recognition of emotions? Studies concerning the most useful acoustic clues in the recognition of emotions remain scarce. Beyond the uttered words, emotions are perceptible through the music of speech i.e. its words, its parameters (namely the intensity), the pitch and the timbre or colour of a sound, as well as its rhythm. The protocol of assessment developed in this study shows evidence of a correlation between the recognition of fundamental emotions and the perceptive musical abilities of deaf patients. This concept is relevant when regarding any deaf patient; irrespective of hearing aid type or re-education method. PMID:23074825

  7. What's in a voice? Cues used by dolphins in individual recognition of signature whistles

    NASA Astrophysics Data System (ADS)

    Sayigh, Laela S.; Janik, Vincent M.; Wells, Randall S.

    2005-09-01

    Cues that bottlenose dolphins may use for individual recognition of signature whistles are (1) the individually distinctive frequency modulation patterns of whistles; and (2) voice cues caused by the anatomy of the vocal apparatus. Experiments were designed to determine whether dolphins use either or both of these cues in recognizing whistles. Temporarily held wild dolphins listened to whistles of a close relative and of a known conspecific of the same sex and similar age. To test the hypothesis that dolphins recognize the frequency modulation patterns of whistles, signature whistles were synthesized and all general voice features removed. In playbacks to 14 individuals, dolphins turned significantly more often towards the speaker if they heard the synthetic signature whistle of a close relative than that of another individual. To test the hypothesis that dolphins may also be using voice cues to recognize whistles, natural variant (nonsignature) whistles were played back, which are highly variable in contour. Preliminary analysis of seven playbacks showed no difference in responses to variant whistles of kin versus nonkin. Thus, the frequency modulation pattern of signature whistles alone provides information on the identity of the caller, and voice cues are likely not used by dolphins to identify individuals.

  8. Post-analysis report on Chesapeake Bay data processing. [spectral analysis and recognition computer signature extension

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The additional processing performed on data collected over the Rhode River Test Site and Forestry Site in November 1970 is reported. The techniques and procedures used to obtain the processed results are described. Thermal data collected over three approximately parallel lines of the site were contoured, and the results color coded, for the purpose of delineating important scene constituents and to identify trees attacked by pine bark beetles. Contouring work and histogram preparation are reviewed and the important conclusions from the spectral analysis and recognition computer (SPARC) signature extension work are summarized. The SPARC setup and processing records are presented and recommendations are made for future data collection over the site.

  9. Acoustic signatures of different damage modes in plain and repaired granite specimens

    NASA Astrophysics Data System (ADS)

    Mpalaskas, A. C.; Matikas, T. E.; Van Hemelrijck, D.; Iliopoulos, S.; Papakitsos, G. S.; Aggelis, D. G.

    2015-03-01

    In construction sector marble and granite are widespread because of their unique properties through the centuries. The issue of repair in these materials is crucial in structural integrity and maintenance of the monuments through the world, as well as in modern buildings. In this study fracture experiments on granite specimens are conducted. The goal is to compare the typical acoustic emission (AE) signals from different modes (namely bending and shear) in plain granite and marble specimens as well as repaired in the crack surface with polyester adhesive. The distinct signature of the cracking modes is reflected on acoustic waveform parameters like the amplitude, rise time and frequency. Conclusions about how the repair affects the mechanical properties as well as the acoustic waveform parameters are drawn. Results show that AE helps to characterize the shift between dominant fracture modes using a simple analysis of AE descriptors as well as the integrity of the specimen (plain or repaired). This offers the potential for in-situ application mainly in the maintenance of the monuments where the need for continuous and nondestructive monitoring is imperative, but always care should be taken for the distortion of the signal, which increases with the propagation distance and can seriously mask the results in an actual case.

  10. Segment-based acoustic models for continuous speech recognition

    NASA Astrophysics Data System (ADS)

    Ostendorf, Mari; Rohlicek, J. R.

    1993-07-01

    This research aims to develop new and more accurate stochastic models for speaker-independent continuous speech recognition, by extending previous work in segment-based modeling and by introducing a new hierarchical approach to representing intra-utterance statistical dependencies. These techniques, which are more costly than traditional approaches because of the large search space associated with higher order models, are made feasible through rescoring a set of HMM-generated N-best sentence hypotheses. We expect these different modeling techniques to result in improved recognition performance over that achieved by current systems, which handle only frame-based observations and assume that these observations are independent given an underlying state sequence. In the fourth quarter of the project, we have completed the following: (1) ported our recognition system to the Wall Street Journal task, a standard task in the ARPA community; (2) developed an initial dependency-tree model of intra-utterance observation correlation; and (3) implemented baseline language model estimation software. Our initial results on the Wall Street Journal task are quite good and represent significantly improved performance over most HMM systems reporting on the Nov. 1992 5k vocabulary test set.

  11. [Recognition of vocal expression of emotion and its acoustic attributes].

    PubMed

    Shigeno, Sumi

    2004-02-01

    The vocal expression of emotion was examined with both an auditory experiment and objective acoustic analyses. In the auditory experiment the stimuli were words or short sentences with six basic emotions expressed by two actors. Forty-five undergraduate and graduate students participated in the experiment. The results showed that the vocal expression of emotion was strongly identified, except in the case of fear, and that the six basic emotions could be plotted in a psychological space with two dimensions calculated from multidimensional scaling. The plot formed a roughly circular surface, with locations very similar to those of the facial expressions. One dimension was considered to represent the element of pleasantness-unpleasantness. The actors voices were then acoustically analyzed. The results suggested that the mean fundamental frequency (F0), the standard deviation (SD) of F0, and the SD of the energy are the important factors that define the characteristics of the vocal expression of emotions. To determine the most important parameter(s) and explain the two dimensions of the psychological space, canonical correlation analysis was conducted. The analysis indicated that F0 was correlated with the pleasantness-unpleasantness dimension. PMID:15112509

  12. Pattern recognition and tomography using crosswell acoustic data

    SciTech Connect

    Albright, J.N.; Terry, D.A.; Bradley, C.R.

    1985-01-01

    Measurements of the travel time of acoustic signals transmitted between wells at the Department of Energy Multi-Well Experiment site (MWX) near Rifle, Colorado, are processed and analyzed. Interpretations relevant to sand geometry and continuity have proved possible through inspection of the signal travel time plotted against the coordinates of transmitter and receiver wellbore positions, or against the depth of receiver and ray path inclination. The continuity of several sands between wells is corroborated. A major lenticular sand terminating between wells could be inferred. To explore the possible distortions in tomographic images derived from crosswell data, synthetic tomographs are constructed from computed travel times of signals transmitted through idealized models from stratigraphy thought to be present at the MWX site. The synthetic tomographs, although preserving the general character of the model stratigraphy, are distorted enough that detailed interpretations are not possible. Horizontal distortions predominate in reconstructions of flat-lying stratigraphy. 7 refs., 9 figs.

  13. Acoustic emission and acousto-ultrasonic signature analysis of failure mechanisms in carbon fiber reinforced polymer materials

    NASA Astrophysics Data System (ADS)

    Carey, Shawn Allen

    Fiber reinforced polymer composite materials, particularly carbon (CFRPs), are being used for primary structural applications, particularly in the aerospace and naval industries. Advantages of CFRP materials, compared to traditional materials such as steel and aluminum, include: light weight, high strength to weight ratio, corrosion resistance, and long life expectancy. A concern with CFRPs is that despite quality control during fabrication, the material can contain many hidden internal flaws. These flaws in combination with unseen damage due to fatigue and low velocity impact have led to catastrophic failure of structures and components. Therefore a large amount of research has been conducted regarding nondestructive testing (NDT) and structural health monitoring (SHM) of CFRP materials. The principal objective of this research program was to develop methods to characterize failure mechanisms in CFRP materials used by the U.S. Army using acoustic emission (AE) and/or acousto-ultrasonic (AU) data. Failure mechanisms addressed include fiber breakage, matrix cracking, and delamination due to shear between layers. CFRP specimens were fabricated and tested in uniaxial tension to obtain AE and AU data. The specimens were designed with carbon fibers in different orientations to produce the different failure mechanisms. Some specimens were impacted with a blunt indenter prior to testing to simulate low-velocity impact. A signature analysis program was developed to characterize the AE data based on data examination using visual pattern recognition techniques. It was determined that it was important to characterize the AE event , using the location of the event as a parameter, rather than just the AE hit (signal recorded by an AE sensor). A back propagation neural network was also trained based on the results of the signature analysis program. Damage observed on the specimens visually with the aid of a scanning electron microscope agreed with the damage type assigned by the

  14. Paternal signature in kin recognition cues of a social insect: concealed in juveniles, revealed in adults

    PubMed Central

    Wong, Janine W. Y.; Meunier, Joël; Lucas, Christophe; Kölliker, Mathias

    2014-01-01

    Kin recognition is a key mechanism to direct social behaviours towards related individuals or avoid inbreeding depression. In insects, recognition is generally mediated by cuticular hydrocarbon (CHC) compounds, which are partly inherited from parents. However, in social insects, potential nepotistic conflicts between group members from different patrilines are predicted to select against the expression of patriline-specific signatures in CHC profiles. Whereas this key prediction in the evolution of insect signalling received empirical support in eusocial insects, it remains unclear whether it can be generalized beyond eusociality to less-derived forms of social life. Here, we addressed this issue by manipulating the number of fathers siring clutches tended by females of the European earwig, Forficula auricularia, analysing the CHC profiles of the resulting juvenile and adult offspring, and using discriminant analysis to estimate the information content of CHC with respect to the maternal and paternal origin of individuals. As predicted, if paternally inherited cues are concealed during family life, increases in mating number had no effect on information content of CHC profiles among earwig juveniles, but significantly decreased the one among adult offspring. We suggest that age-dependent expression of patriline-specific cues evolved to limit the risks of nepotism as family-living juveniles and favour sibling-mating avoidance as group-living adults. These results highlight the role of parental care and social life in the evolution of chemical communication and recognition cues. PMID:25165768

  15. Paternal signature in kin recognition cues of a social insect: concealed in juveniles, revealed in adults.

    PubMed

    Wong, Janine W Y; Meunier, Joël; Lucas, Christophe; Kölliker, Mathias

    2014-10-22

    Kin recognition is a key mechanism to direct social behaviours towards related individuals or avoid inbreeding depression. In insects, recognition is generally mediated by cuticular hydrocarbon (CHC) compounds, which are partly inherited from parents. However, in social insects, potential nepotistic conflicts between group members from different patrilines are predicted to select against the expression of patriline-specific signatures in CHC profiles. Whereas this key prediction in the evolution of insect signalling received empirical support in eusocial insects, it remains unclear whether it can be generalized beyond eusociality to less-derived forms of social life. Here, we addressed this issue by manipulating the number of fathers siring clutches tended by females of the European earwig, Forficula auricularia, analysing the CHC profiles of the resulting juvenile and adult offspring, and using discriminant analysis to estimate the information content of CHC with respect to the maternal and paternal origin of individuals. As predicted, if paternally inherited cues are concealed during family life, increases in mating number had no effect on information content of CHC profiles among earwig juveniles, but significantly decreased the one among adult offspring. We suggest that age-dependent expression of patriline-specific cues evolved to limit the risks of nepotism as family-living juveniles and favour sibling-mating avoidance as group-living adults. These results highlight the role of parental care and social life in the evolution of chemical communication and recognition cues. PMID:25165768

  16. Computational principles underlying the recognition of acoustic signals in insects.

    PubMed

    Clemens, Jan; Hennig, R Matthias

    2013-08-01

    Many animals produce pulse-like signals during acoustic communication. These signals exhibit structure on two time scales: they consist of trains of pulses that are often broadcast in packets-so called chirps. Temporal parameters of the pulse and of the chirp are decisive for female preference. Despite these signals being produced by animals from many different taxa (e.g. frogs, grasshoppers, crickets, bushcrickets, flies), a general framework for their evaluation is still lacking. We propose such a framework, based on a simple and physiologically plausible model. The model consists of feature detectors, whose time-varying output is averaged over the signal and then linearly combined to yield the behavioral preference. We fitted this model to large data sets collected in two species of crickets and found that Gabor filters--known from visual and auditory physiology--explain the preference functions in these two species very well. We further explored the properties of Gabor filters and found a systematic relationship between parameters of the filters and the shape of preference functions. Although these Gabor filters were relatively short, they were also able to explain aspects of the preference for signal parameters on the longer time scale due to the integration step in our model. Our framework explains a wide range of phenomena associated with female preference for a widespread class of signals in an intuitive and physiologically plausible fashion. This approach thus constitutes a valuable tool to understand the functioning and evolution of communication systems in many species. PMID:23417450

  17. Linking acoustic emission signatures with grain-scale mechanical interactions during granular shearing

    NASA Astrophysics Data System (ADS)

    Michlmayr, G.; Cohen, D.; Or, D.

    2012-04-01

    Acoustic Emissions (AE) are high frequency (kHz range) elastic body waves, generated in deforming granular material during particle collisions, frictional slip, or other types of abrupt grain-scale mechanical interactions. The direct link with particle micro-mechanics makes AE a useful tool for gaining insights into mechanical aspects of progressive shear failure in granular material and slow granular flows. The formation of shear plane in granular matter involves numerous internal restructuring and failure events with distinct dynamics resembling features of critical phase transition. Following establishment of a shear plane, subsequent deformation involves episodic slip events interrupted by arrested flow (stick-slip behavior). We developed a model for interpreting measured AE signatures in terms of micro-failures during progressive granular shear a considering AE generation mechanisms and propagation of acoustic signals within granular material. Results from shear frame experiments include information on strains, stresses and acoustic emissions during deformation controlled tests on glass beads and sand. The number of failure associated AE event rates peaks with maximum shear resistance of the granular material. Intermittent slip events during stick-slip deformation are found to be closely related to low frequency AE events (~1kHz). Statistics of AE events and their temporal development are reproduced using a simple fiber-bundle model. A conceptual AE generation and propagation model accounts for conversion of mechanical events into elastic waves. In addition to gaining insights concerning grain-scale mechanical interactions, the AE method offers a useful tool for monitoring hazardous geologic mass movements, such as landslides, rock avalanches or debris flows.

  18. Speech Recognition and Acoustic Features in Combined Electric and Acoustic Stimulation

    ERIC Educational Resources Information Center

    Yoon, Yang-soo; Li, Yongxin; Fu, Qian-Jie

    2012-01-01

    Purpose: In this study, the authors aimed to identify speech information processed by a hearing aid (HA) that is additive to information processed by a cochlear implant (CI) as a function of signal-to-noise ratio (SNR). Method: Speech recognition was measured with CI alone, HA alone, and CI + HA. Ten participants were separated into 2 groups; good…

  19. Illumination analysis of the digital pattern recognition system by Bessel masks and one-dimensional signatures

    NASA Astrophysics Data System (ADS)

    Solorza, S.; Álvarez-Borrego, J.

    2013-11-01

    The effects of illumination variations in digital images are a trend topic of the pattern recognition field. The luminance information of the objects help to classify them, however the environment illumination could cause a lot of problem if the system is not illumination invariant. Some applications of this topic include image and video quality, biometrics classification, etc. In this work an illumination analysis for a digital system invariant to position and rotation based on Fourier transform, Bessel masks, one-dimensional signatures and linear correlations are presented. The digital system was tested using a reference database of 21 fossil diatoms images of gray-scale and 307 x 307 pixels. The digital system has shown an excellent performance in the classification of 60,480 problem images which have different non-homogeneous illumination.

  20. Implementation of algorithms to discriminate chemical/biological airbursts from high explosive airbursts utilizing acoustic signatures

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Desai, Sachi; Morcos, Amir

    2006-05-01

    The Army is currently developing acoustic sensor systems that will provide extended range surveillance, detection, and identification for force protection and tactical security. A network of such sensors remotely deployed in conjunction with a central processing node (or gateway) will provide early warning and assessment of enemy threats, near real-time situational awareness to commanders, and may reduce potential hazards to the soldier. In contrast, the current detection of chemical/biological (CB) agents expelled into a battlefield environment is limited to the response of chemical sensors that must be located within close proximity to the CB agent. Since chemical sensors detect hazardous agents through contact, the sensor range to an airburst is the key-limiting factor in identifying a potential CB weapon attack. The associated sensor reporting latencies must be minimized to give sufficient preparation time to field commanders, who must assess if an attack is about to occur, has occurred, or if occurred, the type of agent that soldiers might be exposed to. The long-range propagation of acoustic blast waves from heavy artillery blasts, which are typical in a battlefield environment, introduces a feature for using acoustics and other sensor suite technologies for the early detection and identification of CB threats. Employing disparate sensor technologies implies that warning of a potential CB attack can be provided to the solider more rapidly and from a safer distance when compared to current conventional methods. Distinct characteristics arise within the different airburst signatures because High Explosive (HE) warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over immense areas, therefore utilizing a slower burning, less intensive explosion to mix and distribute their contents. Highly reliable discrimination (100%) has been demonstrated at the Portable Area Warning Surveillance System

  1. Detection of Delamination in Composite Beams Using Broadband Acoustic Emission Signatures

    NASA Technical Reports Server (NTRS)

    Okafor, A. C.; Chandrashekhara, K.; Jiang, Y. P.

    1996-01-01

    Delamination in composite structure may be caused by imperfections introduced during the manufacturing process or by impact loads by foreign objects during the operational life. There are some nondestructive evaluation methods to detect delamination in composite structures such as x-radiography, ultrasonic testing, and thermal/infrared inspection. These methods are expensive and hard to use for on line detection. Acoustic emission testing can monitor the material under test even under the presence of noise generated under load. It has been used extensively in proof-testing of fiberglass pressure vessels and beams. In the present work, experimental studies are conducted to investigate the use of broadband acoustic emission signatures to detect delaminations in composite beams. Glass/epoxy beam specimens with full width, prescribed delamination sizes of 2 inches and 4 inches are investigated. The prescribed delamination is produced by inserting Teflon film between laminae during the fabrication of composite laminate. The objectives of this research is to develop a method for predicting delamination size and location in laminated composite beams by combining smart materials concept and broadband AE analysis techniques. More specifically, a piezoceramic (PZT) patch is bonded on the surface of composite beams and used as a pulser. The piezoceramic patch simulates the AE wave source as a 3 cycles, 50KHz, burst sine wave. One broadband AE sensor is fixed near the PZT patch to measure the AE wave near the AE source. A second broadband AE sensor, which is used as a receiver, is scanned along the composite beams at 0.25 inch step to measure propagation of AE wave along the composite beams. The acquired AE waveform is digitized and processed. Signal strength, signal energy, cross-correlation of AE waveforms, and tracking of specific cycle of AE waveforms are used to detect delamination size and location.

  2. Auditory emotion recognition impairments in Schizophrenia: Relationship to acoustic features and cognition

    PubMed Central

    Gold, Rinat; Butler, Pamela; Revheim, Nadine; Leitman, David; Hansen, John A.; Gur, Ruben; Kantrowitz, Joshua T.; Laukka, Petri; Juslin, Patrik N.; Silipo, Gail S.; Javitt, Daniel C.

    2013-01-01

    Objective Schizophrenia is associated with deficits in ability to perceive emotion based upon tone of voice. The basis for this deficit, however, remains unclear and assessment batteries remain limited. We evaluated performance in schizophrenia on a novel voice emotion recognition battery with well characterized physical features, relative to impairments in more general emotional and cognitive function. Methods We studied in a primary sample of 92 patients relative to 73 controls. Stimuli were characterized according to both intended emotion and physical features (e.g., pitch, intensity) that contributed to the emotional percept. Parallel measures of visual emotion recognition, pitch perception, general cognition, and overall outcome were obtained. More limited measures were obtained in an independent replication sample of 36 patients, 31 age-matched controls, and 188 general comparison subjects. Results Patients showed significant, large effect size deficits in voice emotion recognition (F=25.4, p<.00001, d=1.1), and were preferentially impaired in recognition of emotion based upon pitch-, but not intensity-features (group X feature interaction: F=7.79, p=.006). Emotion recognition deficits were significantly correlated with pitch perception impairments both across (r=56, p<.0001) and within (r=.47, p<.0001) group. Path analysis showed both sensory-specific and general cognitive contributions to auditory emotion recognition deficits in schizophrenia. Similar patterns of results were observed in the replication sample. Conclusions The present study demonstrates impairments in auditory emotion recognition in schizophrenia relative to acoustic features of underlying stimuli. Furthermore, it provides tools and highlights the need for greater attention to physical features of stimuli used for study of social cognition in neuropsychiatric disorders. PMID:22362394

  3. Optimal design and evaluation criteria for acoustic emission pulse signature analysis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Townsend, M. A.; Packman, P. F.

    1977-01-01

    Successful pulse recording and evaluation is strongly dependent on the instrumentation system selected and the method of analyzing the pulse signature. The paper studies system design, signal analysis techniques, and interdependences with a view toward defining optimal approaches to pulse signal analysis. For this purpose, the instrumentation system is modeled, and analytical pulses, representative of the types of acoustic emissions to be distinguished are passed through the system. Particular attention is given to comparing frequency spectrum analysis and deconvolution referred to as time domain reconstruction of the pulse or pulse train. The possibility of optimal transducer-filter system parameters is investigated. Deconvolution of a pulse is shown to be a superior approach for transient pulse analysis. Reshaping of a transducer output back to the original input pulse is possible and gives an accurate representation of the generating pulse in the time domain. Any definable transducer and filter system can be used for measurement of pulses by means of the deconvolution method. Selection of design variables for general usage is discussed.

  4. Health sensor for human body by using infrared, acoustic energy and magnetic signature

    NASA Astrophysics Data System (ADS)

    Wu, Jerry

    2013-05-01

    There is a general chain of events that applies to infections. Human body infection could causes by many different types of bacteria and virus in different areas or organ systems. In general, doctor can't find out the right solution/treatment for infections unless some certain types of bacteria or virus are detected. These detecting processes, usually, take few days to one week to accomplish. However, some infections of the body may not be able to detect at first round and the patient may lose the timing to receive the proper treatment. In this works, we base on Chi's theory which is an invisible circulation system existed inside the body and propose a novel health sensor which summarizes human's infrared, acoustic energy and magnetic signature and find out, in minutes, the most possible area or organ system that cause the infection just like what Chi-Kung master can accomplish. Therefore, the detection process by doctor will be shortened and it raises the possibility to give the proper treatment to the patient in the earliest timing.

  5. A Bayesian view on acoustic model-based techniques for robust speech recognition

    NASA Astrophysics Data System (ADS)

    Maas, Roland; Huemmer, Christian; Sehr, Armin; Kellermann, Walter

    2015-12-01

    This article provides a unifying Bayesian view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By identifying and converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules. We thus summarize the various approaches as approximations or modifications of the same Bayesian decoding rule leading to a unified view on known derivations as well as to new formulations for certain approaches.

  6. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.

    1999-01-01

    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  7. Acoustic cues for the recognition of self-voice and other-voice

    PubMed Central

    Xu, Mingdi; Homae, Fumitaka; Hashimoto, Ryu-ichiro; Hagiwara, Hiroko

    2013-01-01

    Self-recognition, being indispensable for successful social communication, has become a major focus in current social neuroscience. The physical aspects of the self are most typically manifested in the face and voice. Compared with the wealth of studies on self-face recognition, self-voice recognition (SVR) has not gained much attention. Converging evidence has suggested that the fundamental frequency (F0) and formant structures serve as the key acoustic cues for other-voice recognition (OVR). However, little is known about which, and how, acoustic cues are utilized for SVR as opposed to OVR. To address this question, we independently manipulated the F0 and formant information of recorded voices and investigated their contributions to SVR and OVR. Japanese participants were presented with recorded vocal stimuli and were asked to identify the speaker—either themselves or one of their peers. Six groups of 5 peers of the same sex participated in the study. Under conditions where the formant information was fully preserved and where only the frequencies lower than the third formant (F3) were retained, accuracies of SVR deteriorated significantly with the modulation of the F0, and the results were comparable for OVR. By contrast, under a condition where only the frequencies higher than F3 were retained, the accuracy of SVR was significantly higher than that of OVR throughout the range of F0 modulations, and the F0 scarcely affected the accuracies of SVR and OVR. Our results indicate that while both F0 and formant information are involved in SVR, as well as in OVR, the advantage of SVR is manifested only when major formant information for speech intelligibility is absent. These findings imply the robustness of self-voice representation, possibly by virtue of auditory familiarity and other factors such as its association with motor/articulatory representation. PMID:24133475

  8. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2016-07-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  9. Accelerometer-Based Gait Recognition by Sparse Representation of Signature Points With Clusters.

    PubMed

    Zhang, Yuting; Pan, Gang; Jia, Kui; Lu, Minlong; Wang, Yueming; Wu, Zhaohui

    2015-09-01

    Gait, as a promising biometric for recognizing human identities, can be nonintrusively captured as a series of acceleration signals using wearable or portable smart devices. It can be used for access control. Most existing methods on accelerometer-based gait recognition require explicit step-cycle detection, suffering from cycle detection failures and intercycle phase misalignment. We propose a novel algorithm that avoids both the above two problems. It makes use of a type of salient points termed signature points (SPs), and has three components: 1) a multiscale SP extraction method, including the localization and SP descriptors; 2) a sparse representation scheme for encoding newly emerged SPs with known ones in terms of their descriptors, where the phase propinquity of the SPs in a cluster is leveraged to ensure the physical meaningfulness of the codes; and 3) a classifier for the sparse-code collections associated with the SPs of a series. Experimental results on our publicly available dataset of 175 subjects showed that our algorithm outperformed existing methods, even if the step cycles were perfectly detected for them. When the accelerometers at five different body locations were used together, it achieved the rank-1 accuracy of 95.8% for identification, and the equal error rate of 2.2% for verification. PMID:25423662

  10. Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish.

    PubMed

    McKibben, J R; Bass, A H

    1998-12-01

    Acoustic signal recognition depends on the receiver's processing of the physical attributes of a sound. This study takes advantage of the simple communication sounds produced by plainfin midshipman fish to examine effects of signal variation on call recognition and preference. Nesting male midshipman generate both long duration (> 1 min) sinusoidal-like "hums" and short duration "grunts." The hums of neighboring males often overlap, creating beat waveforms. Presentation of humlike, single tone stimuli, but not grunts or noise, elicited robust attraction (phonotaxis) by gravid females. In two-choice tests, females differentiated and chose between acoustic signals that differed in duration, frequency, amplitude, and fine temporal content. Frequency preferences were temperature dependent, in accord with the known temperature dependence of hum fundamental frequency. Concurrent hums were simulated with two-tone beat stimuli, either presented from a single speaker or produced more naturally by interference between adjacent sources. Whereas certain single-source beats reduced stimulus attractiveness, beats which resolved into unmodulated tones at their sources did not affect preference. These results demonstrate that phonotactic assessment of stimulus relevance can be applied in a teleost fish, and that multiple signal parameters can affect receiver response in a vertebrate with relatively simple communication signals. PMID:9857511

  11. Surface acoustic wave sensor array system for trace organic vapor detection using pattern recognition analysis

    NASA Astrophysics Data System (ADS)

    Rose-Pehrsson, Susan L.; Grate, Jay W.; Klusty, Mark

    1993-03-01

    A sensor system using surface acoustic wave (SAW) vapor sensors has been fabricated and tested against hazardous organic vapors, simulants of these vapors, and potential background vapors. The vapor tests included two- and three-component mixtures, and covered a wide relative humidity range. The sensor system was compared of four SAW devices coated with different sorbent materials with different vapor selectivities. Preconcentrators were included to improve sensitivity. The vapor experiments were organized into a large data set analyzed using pattern recognition techniques. Pattern recognition algorithms were developed to identify two different classes of hazards. The algorithms were verified against a second data set not included in the training. Excellent sensitivity was achieved by the sensor coatings, and the pattern recognition analysis, and was also examined by the preconcentrators. The system can detect hazardous vapors of interest in the ppb range even in varying relative humidity and in the presence of background vapors. The system does not false alarm to a variety of other vapors including gasoline, jet fuel, diesel fuel and cigarette smoke.

  12. Investigation of the ocean acoustic signatures from strong explosions at a long distance in the ocean sound channel by computer simulation

    SciTech Connect

    Kamegai, M.; White, J.W.; Clarke, D.B.

    1994-05-01

    The principal objective of the non-proliferation program is to discourage clandestine testing of nuclear explosives by maintaining an effective global surveillance system. The methods of detection include underwater and atmospheric acoustics, seismology and atmospheric photometry. The goals of the underwater acoustics are the identification and location of ocean acoustic signatures. The investigation is directed toward obtaining t quantitative correlation between the initial explosion source under various conditions and the final acoustical signatures received at a great distance for different paths. By computer simulations, we calculated the energy coupling and dissipation in the water and studied the signature patterns. In this paper, we report preliminary results of the study on the signals from 1 kt explosions after the signals have propagated a significant distance in the SOFAR channel. The third step in the model has not yet been addressed.

  13. An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements

    SciTech Connect

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Lake, Joe E

    2012-01-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  14. An energy signature scheme for steam trap assessment and flow rate estimation using pipe-induced acoustic measurements

    NASA Astrophysics Data System (ADS)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Lake, Joe E.

    2012-06-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  15. Acoustic diagnosis of pulmonary hypertension: automated speech- recognition-inspired classification algorithm outperforms physicians.

    PubMed

    Kaddoura, Tarek; Vadlamudi, Karunakar; Kumar, Shine; Bobhate, Prashant; Guo, Long; Jain, Shreepal; Elgendi, Mohamed; Coe, James Y; Kim, Daniel; Taylor, Dylan; Tymchak, Wayne; Schuurmans, Dale; Zemp, Roger J; Adatia, Ian

    2016-01-01

    We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p  < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral. PMID:27609672

  16. Acoustic diagnosis of pulmonary hypertension: automated speech- recognition-inspired classification algorithm outperforms physicians

    PubMed Central

    Kaddoura, Tarek; Vadlamudi, Karunakar; Kumar, Shine; Bobhate, Prashant; Guo, Long; Jain, Shreepal; Elgendi, Mohamed; Coe, James Y; Kim, Daniel; Taylor, Dylan; Tymchak, Wayne; Schuurmans, Dale; Zemp, Roger J.; Adatia, Ian

    2016-01-01

    We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p  < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral. PMID:27609672

  17. On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses

    NASA Astrophysics Data System (ADS)

    Gutkin, R.; Green, C. J.; Vangrattanachai, S.; Pinho, S. T.; Robinson, P.; Curtis, P. T.

    2011-05-01

    This paper investigates failure in Carbon Fibre Reinforced Plastics CFRP using Acoustic Emission (AE). Signals have been collected and post-processed for various test configurations: tension, Compact Tension (CT), Compact Compression (CC), Double Cantilever Beam (DCB) and four-point bend End Notched Flexure (4-ENF). The signals are analysed with three different pattern recognition algorithms: k-means, Self Organising Map (SOM) combined with k-means and Competitive Neural Network (CNN). The SOM combined with k-means appears as the most effective of the three algorithms. The results from the clustering analysis follow patterns found in the peak frequencies distribution. A detailed study of the frequency content of each test is then performed and the classification of several failure modes is achieved.

  18. Effects of temporal envelope modulation on acoustic signal recognition in a vocal fish, the plainfin midshipman.

    PubMed

    McKibben, J R; Bass, A H

    2001-06-01

    Amplitude modulation is an important parameter defining vertebrate acoustic communication signals. Nesting male plainfin midshipman fish, Porichthys notatus, emit simple, long duration hums in which modulation is strikingly absent. Envelope modulation is, however, introduced when the hums of adjacent males overlap to produce acoustic beats. Hums attract gravid females and can be mimicked with continuous tones at the fundamental frequency. While individual hums have flat envelopes, other midshipman signals are amplitude modulated. This study used one-choice playback tests with gravid females to examine the role of envelope modulation in hum recognition. Various pulse train and two-tone beat stimuli resembling natural communication signals were presented individually, and the responses compared to those for continuous pure tones. The effectiveness of pulse trains was graded and depended upon both pulse duration and the ratio of pulse to gap length. Midshipman were sensitive to beat modulations from 0.5 to 10 Hz, with fewer fish approaching the beat than the pure tone. Reducing the degree of modulation increased the effectiveness of beat stimuli. Hence, the lack of modulation in the midshipman's advertisement call corresponds to the importance of envelope modulation for the categorization of communication signals even in this relatively simple system. PMID:11425135

  19. Effects of contextual cues on speech recognition in simulated electric-acoustic stimulation.

    PubMed

    Kong, Ying-Yee; Donaldson, Gail; Somarowthu, Ala

    2015-05-01

    Low-frequency acoustic cues have shown to improve speech perception in cochlear-implant listeners. However, the mechanisms underlying this benefit are still not well understood. This study investigated the extent to which low-frequency cues can facilitate listeners' use of linguistic knowledge in simulated electric-acoustic stimulation (EAS). Experiment 1 examined differences in the magnitude of EAS benefit at the phoneme, word, and sentence levels. Speech materials were processed via noise-channel vocoding and lowpass (LP) filtering. The amount of spectral degradation in the vocoder speech was varied by applying different numbers of vocoder channels. Normal-hearing listeners were tested on vocoder-alone, LP-alone, and vocoder + LP conditions. Experiment 2 further examined factors that underlie the context effect on EAS benefit at the sentence level by limiting the low-frequency cues to temporal envelope and periodicity (AM + FM). Results showed that EAS benefit was greater for higher-context than for lower-context speech materials even when the LP ear received only low-frequency AM + FM cues. Possible explanations for the greater EAS benefit observed with higher-context materials may lie in the interplay between perceptual and expectation-driven processes for EAS speech recognition, and/or the band-importance functions for different types of speech materials. PMID:25994712

  20. Effects of contextual cues on speech recognition in simulated electric-acoustic stimulation

    PubMed Central

    Kong, Ying-Yee; Donaldson, Gail; Somarowthu, Ala

    2015-01-01

    Low-frequency acoustic cues have shown to improve speech perception in cochlear-implant listeners. However, the mechanisms underlying this benefit are still not well understood. This study investigated the extent to which low-frequency cues can facilitate listeners' use of linguistic knowledge in simulated electric-acoustic stimulation (EAS). Experiment 1 examined differences in the magnitude of EAS benefit at the phoneme, word, and sentence levels. Speech materials were processed via noise-channel vocoding and lowpass (LP) filtering. The amount of spectral degradation in the vocoder speech was varied by applying different numbers of vocoder channels. Normal-hearing listeners were tested on vocoder-alone, LP-alone, and vocoder + LP conditions. Experiment 2 further examined factors that underlie the context effect on EAS benefit at the sentence level by limiting the low-frequency cues to temporal envelope and periodicity (AM + FM). Results showed that EAS benefit was greater for higher-context than for lower-context speech materials even when the LP ear received only low-frequency AM + FM cues. Possible explanations for the greater EAS benefit observed with higher-context materials may lie in the interplay between perceptual and expectation-driven processes for EAS speech recognition, and/or the band-importance functions for different types of speech materials. PMID:25994712

  1. Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    WenQin, Han; Ying, Luo; AiJun, Gu; Yuan, Fuh-Gwo

    2016-04-01

    Discrimination of acoustic emission (AE) signals related to different damage modes is of great importance in carbon fiber-reinforced plastic (CFRP) composite materials. To gain a deeper understanding of the initiation, growth and evolution of the different types of damage, four types of specimens for different lay-ups and orientations and three types of specimens for interlaminar toughness tests are subjected to tensile test along with acoustic emission monitoring. AE signals have been collected and post-processed, the statistical results show that the peak frequency of AE signal can distinguish various damage modes effectively. After a AE signal were decomposed by Empirical Mode Decomposition (EMD) method, it may separate and extract all damage modes included in this AE signal apart from damage mode corresponding to the peak frequency. Hilbert-Huang Transform (HHT) of AE signals can clearly illustrate the frequency distribution of Intrinsic Mode Functions (IMF) components in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition to help understanding the damage process.

  2. Compensating Acoustic Mismatch Using Class-Based Histogram Equalization for Robust Speech Recognition

    NASA Astrophysics Data System (ADS)

    Suh, Youngjoo; Kim, Sungtak; Kim, Hoirin

    2007-12-01

    A new class-based histogram equalization method is proposed for robust speech recognition. The proposed method aims at not only compensating for an acoustic mismatch between training and test environments but also reducing the two fundamental limitations of the conventional histogram equalization method, the discrepancy between the phonetic distributions of training and test speech data, and the nonmonotonic transformation caused by the acoustic mismatch. The algorithm employs multiple class-specific reference and test cumulative distribution functions, classifies noisy test features into their corresponding classes, and equalizes the features by using their corresponding class reference and test distributions. The minimum mean-square error log-spectral amplitude (MMSE-LSA)-based speech enhancement is added just prior to the baseline feature extraction to reduce the corruption by additive noise. The experiments on the Aurora2 database proved the effectiveness of the proposed method by reducing relative errors by[InlineEquation not available: see fulltext.] over the mel-cepstral-based features and by[InlineEquation not available: see fulltext.] over the conventional histogram equalization method, respectively.

  3. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks

    PubMed Central

    Luque, Joaquín; Larios, Diego F.; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-01-01

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375

  4. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks.

    PubMed

    Luque, Joaquín; Larios, Diego F; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-01-01

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375

  5. A Frame-Based Context-Dependent Acoustic Modeling for Speech Recognition

    NASA Astrophysics Data System (ADS)

    Terashima, Ryuta; Zen, Heiga; Nankaku, Yoshihiko; Tokuda, Keiichi

    We propose a novel acoustic model for speech recognition, named FCD (Frame-based Context Dependent) model. It can obtain a probability distribution by using a top-down clustering technique to simultaneously consider the local frame position in phoneme, phoneme duration, and phoneme context. The model topology is derived from connecting left-to-right HMM models without self-loop transition for each phoneme duration. Because the FCD model can change the probability distribution into a sequence corresponding with one phoneme duration, it can has the ability to generate a smooth trajectory of speech feature vector. We also performed an experiment to evaluate the performance of speech recognition for the model. In the experiment, 132 questions for frame position, 66 questions for phoneme duration and 134 questions for phoneme context were used to train the sub-phoneme FCD model. In order to compare the performance, left-to-right HMM and two types of HSMM models with almost same number of states were also trained. As a result, 18% of relative improvement of tri-phone accuracy was achieved by the FCD model.

  6. The acoustic signatures of ground acceleration, gas expansion, and spall fallback in experimental volcanic explosions

    NASA Astrophysics Data System (ADS)

    Bowman, Daniel C.; Taddeucci, Jacopo; Kim, Keehoon; Anderson, Jacob F.; Lees, Jonathan M.; Graettinger, Alison H.; Sonder, Ingo; Valentine, Greg A.

    2014-03-01

    Infrasound and high-speed imaging during a series of field-scale buried explosions suggest new details about the generation and radiation patterns of acoustic waves from volcanic eruptions. We recorded infrasound and high-speed video from a series of subsurface explosions with differing burial depths and charge sizes. Joint observations and modeling allow the extraction of acoustic energy related to the magnitude of initial ground deformation, the contribution of gas breakout, and the timing of the fallback of displaced material. The existence and relative acoustic amplitudes of these three phases depended on the size and depth of the explosion. The results motivate a conceptual model that relates successive contributions from ground acceleration, gas breakout, and spall fallback to the acoustic amplitude and waveform characteristics of buried explosions. We place the literature on infrasound signals at Santiaguito Volcano, Guatemala, and Sakurajima and Suwonosejima Volcanoes, Japan, in the context of this model.

  7. Listening in on Friction: Stick-Slip Acoustical Signatures in Velcro

    NASA Astrophysics Data System (ADS)

    Hurtado Parra, Sebastian; Morrow, Leslie; Radziwanowski, Miles; Angiolillo, Paul

    2013-03-01

    The onset of kinetic friction and the possible resulting stick-slip motion remain mysterious phenomena. Moreover, stick-slip dynamics are typically accompanied by acoustic bursts that occur temporally with the slip event. The dry sliding dynamics of the hook-and-loop system, as exemplified by Velcro, manifest stick-slip behavior along with audible bursts that are easily micrphonically collected. Synchronized measurements of the friction force and acoustic emissions were collected as hooked Velcro was driven at constant velocity over a bed of looped Velcro in an anechoic chamber. Not surprising, the envelope of the acoustic bursts maps well onto the slip events of the friction force time series and the intensity of the bursts trends with the magnitude of the difference of the friction force during a stick-slip event. However, the analysis of the acoustic emission can serve as a sensitive tool for revealing some of the hidden details of the evolution of the transition from static to kinetic friction. For instance, small acoustic bursts are seen prior to the Amontons-Coulomb threshold, signaling precursor events prior to the onset of macroscopically observed motion. Preliminary spectral analysis of the acoustic emissions including intensity-frequency data will be presented.

  8. EFFECT OF COMBUSTOR INLET GEOMETRY ON ACOUSTIC SIGNATURE AND FLOW FIELD BEHAVIOUR OF THE LOW SWIRL INJECTOR

    SciTech Connect

    Therkelsen, Peter L.; Littlejohn, David; Cheng, Robert K.; Portillo, J. Enrique; Martin, Scott M.

    2009-11-30

    Low Swirl Injector (LSI) technology is a lean premixed combustion method that is being developed for fuel-flexible gas turbines. The objective of this study is to characterize the fuel effects and influences of combustor geometry on the LSI's overall acoustic signatures and flowfields. The experiments consist of 24 flames at atmospheric condition with bulk flows ranging between 10 and 18 m/s. The flames burn CH{sub 4} (at {phi} = 0.6 & 0.7) and a blend of 90% H{sub 2} - 10% CH{sub 4} by volume (at {phi} = 0.35 & 0.4). Two combustor configurations are used, consisting of a cylindrical chamber with and without a divergent quarl at the dump plane. The data consist of pressure spectral distributions at five positions within the system and 2D flowfield information measured by Particle Imaging Velocimetry (PIV). The results show that acoustic oscillations increase with U{sub 0} and {phi}. However, the levels in the 90% H{sub 2} flames are significantly higher than in the CH{sub 4} flames. For both fuels, the use of the quarl reduces the fluctuating pressures in the combustion chamber by up to a factor of 7. The PIV results suggest this to be a consequence of the quarl restricting the formation of large vortices in the outer shear layer. A Generalized Instability Model (GIM) was applied to analyze the acoustic response of baseline flames for each of the two fuels. The measured frequencies and the stability trends for these two cases are predicted and the triggered acoustic mode shapes identified.

  9. Signatures of Protein-DNA Recognition in Free DNA Binding Sites

    SciTech Connect

    Locasale, J.; Napoli, A; Chen, S; Berman, H; Lawson, C

    2009-01-01

    One obstacle to achieving complete understanding of the principles underlying sequence-dependent recognition of DNA is the paucity of structural data for DNA recognition sequences in their free (unbound) state. Here, we carried out crystallization screening of 50 DNA duplexes containing cognate protein binding sites and obtained new crystal structures of free DNA binding sites for three distinct modes of DNA recognition: anti-parallel ? strands (MetR), helix-turn-helix motif + hinge helices (PurR), and zinc fingers (Zif268). Structural changes between free and protein-bound DNA are manifested differently in each case. The new DNA structures reveal that distinctive sequence-dependent DNA geometry dominates recognition by MetR, protein-induced bending of DNA dictates recognition by PurR, and deformability of DNA along the A-B continuum is important in recognition by Zif268. Together, our findings show that crystal structures of free DNA binding sites provide new information about the nature of protein-DNA interactions and thus lend insights towards a structural code for DNA recognition.

  10. Selective focusing through target identification and experimental acoustic signature extraction: Numerical experiments.

    PubMed

    Rodriguez, S; Jacob, X; Gibiat, V

    2016-05-01

    Using transducer arrays and appropriate emission delays allow to focus acoustic waves at a chosen location in a medium. The focusing spatial accuracy depends on the accurate knowledge of its acoustic properties. When those properties are unknown, methods based on the Time-Reversal principle allow accurate focusing. Still, these methods are either intrusive (an active source has to be introduced at the target location first), either blind (the target cannot be selected in the presence of several objects.) The purpose of the present work is to achieve non-invasive accurate focusing on a selected target using inaccurate acoustic properties for the investigated medium. Potential applications are for instance noninvasive surgery based on High Intensity Focused Ultrasound (HIFU). Numerical experiments are presented and demonstrate accurate focusing on a previously designated target located in an unknown heterogeneous medium. PMID:26890791

  11. Small Vocabulary Recognition Using Surface Electromyography in an Acoustically Harsh Environment

    NASA Technical Reports Server (NTRS)

    Betts, Bradley J.; Jorgensen, Charles

    2005-01-01

    This paper presents results of electromyographic-based (EMG-based) speech recognition on a small vocabulary of 15 English words. The work was motivated in part by a desire to mitigate the effects of high acoustic noise on speech intelligibility in communication systems used by first responders. Both an off-line and a real-time system were constructed. Data were collected from a single male subject wearing a fireghter's self-contained breathing apparatus. A single channel of EMG data was used, collected via surface sensors at a rate of 104 samples/s. The signal processing core consisted of an activity detector, a feature extractor, and a neural network classifier. In the off-line phase, 150 examples of each word were collected from the subject. Generalization testing, conducted using bootstrapping, produced an overall average correct classification rate on the 15 words of 74%, with a 95% confidence interval of [71%, 77%]. Once the classifier was trained, the subject used the real-time system to communicate and to control a robotic device. The real-time system was tested with the subject exposed to an ambient noise level of approximately 95 decibels.

  12. Recognition of Emotions in Mexican Spanish Speech: An Approach Based on Acoustic Modelling of Emotion-Specific Vowels

    PubMed Central

    Caballero-Morales, Santiago-Omar

    2013-01-01

    An approach for the recognition of emotions in speech is presented. The target language is Mexican Spanish, and for this purpose a speech database was created. The approach consists in the phoneme acoustic modelling of emotion-specific vowels. For this, a standard phoneme-based Automatic Speech Recognition (ASR) system was built with Hidden Markov Models (HMMs), where different phoneme HMMs were built for the consonants and emotion-specific vowels associated with four emotional states (anger, happiness, neutral, sadness). Then, estimation of the emotional state from a spoken sentence is performed by counting the number of emotion-specific vowels found in the ASR's output for the sentence. With this approach, accuracy of 87–100% was achieved for the recognition of emotional state of Mexican Spanish speech. PMID:23935410

  13. Acoustic Communication and Sound Degradation: How Do the Individual Signatures of Male and Female Zebra Finch Calls Transmit over Distance?

    PubMed Central

    Mouterde, Solveig C.; Theunissen, Frédéric E.; Elie, Julie E.; Vignal, Clémentine; Mathevon, Nicolas

    2014-01-01

    Background Assessing the active space of the various types of information encoded by songbirds' vocalizations is important to address questions related to species ecology (e.g. spacing of individuals), as well as social behavior (e.g. territorial and/or mating strategies). Up to now, most of the previous studies have investigated the degradation of species-specific related information (species identity), and there is a gap of knowledge of how finer-grained information (e.g. individual identity) can transmit through the environment. Here we studied how the individual signature coded in the zebra finch long distance contact call degrades with propagation. Methodology We performed sound transmission experiments of zebra finches' distance calls at various propagation distances. The propagated calls were analyzed using discriminant function analyses on a set of analytical parameters describing separately the spectral and temporal envelopes, as well as on a complete spectrographic representation of the signals. Results/Conclusion We found that individual signature is remarkably resistant to propagation as caller identity can be recovered even at distances greater than a hundred meters. Male calls show stronger discriminability at long distances than female calls, and this difference can be explained by the more pronounced frequency modulation found in their calls. In both sexes, individual information is carried redundantly using multiple acoustical features. Interestingly, features providing the highest discrimination at short distances are not the same ones that provide the highest discrimination at long distances. PMID:25061795

  14. Bio-inspired UAV routing, source localization, and acoustic signature classification for persistent surveillance

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien

    2011-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA

  15. Acoustic signatures of the phases and phase transitions in Yb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Subhro; Erfanifam, S.; Green, E. L.; Naumann, M.; Wang, Zhaosheng; Granovsky, S.; Doerr, M.; Wosnitza, J.; Zvyagin, A. A.; Moessner, R.; Maljuk, A.; Wurmehl, S.; Büchner, B.; Zherlitsyn, S.

    2016-04-01

    We report on measurements of the sound velocity and attenuation in a single crystal of the candidate quantum-spin-ice material Yb2Ti2O7 as a function of temperature and magnetic field. The acoustic modes couple to the spins magnetoelastically and, hence, carry information about the spin correlations that sheds light on the intricate magnetic phase diagram of Yb2Ti2O7 and the nature of spin dynamics in the material. Particularly, we find a pronounced thermal hysteresis in the acoustic data with a concomitant peak in the specific heat indicating a possible first-order phase transition at about 0.17 K. At low temperatures, the acoustic response to magnetic field saturates hinting at the development of magnetic order. The experimental data are consistent with a first-order phase transition from a cooperative paramagnet to a ferromagnet below T ≈0.17 K, as shown by fitting the data with a phenomenological mean-field theory.

  16. Visual Sharpness Contingency in Recognition Memory for Orientation: Mnemonic Illusion Suppressed by Sensory Signature

    ERIC Educational Resources Information Center

    Martin, Maryanne; Jones, Gregory V.

    2006-01-01

    A striking finding about human memory is that people's level of accuracy in remembering the orientation of heads on coins is often not simply at the chance level but significantly below it. However, S. W. Kelly, A. M. Burton, T. Kato, and S. Akamatsu (2001) reported that this is not so when two-alternative forced-choice visual recognition is…

  17. Methods of extending signatures and training without ground information. [data processing, pattern recognition

    NASA Technical Reports Server (NTRS)

    Henderson, R. G.; Thomas, G. S.; Nalepka, R. F.

    1975-01-01

    Methods of performing signature extension, using LANDSAT-1 data, are explored. The emphasis is on improving the performance and cost-effectiveness of large area wheat surveys. Two methods were developed: ASC, and MASC. Two methods, Ratio, and RADIFF, previously used with aircraft data were adapted to and tested on LANDSAT-1 data. An investigation into the sources and nature of between scene data variations was included. Initial investigations into the selection of training fields without in situ ground truth were undertaken.

  18. Mutational signature of aristolochic acid: Clue to the recognition of a global disease.

    PubMed

    Rosenquist, Thomas A; Grollman, Arthur P

    2016-08-01

    Mutational signatures associated with specific forms of DNA damage have been identified in several forms of human cancer. Such signatures provide information regarding mechanisms of tumor induction which, in turn, can reduce exposure to carcinogens by shaping public health policy. Using a molecular epidemiologic approach that takes advantage of recent advances in genome sequencing while applying sensitive and specific analytical methods to characterize DNA damage, it has become increasingly possible to establish causative linkages between certain environmental mutagens and disease risk. In this perspective, we use aristolochic acid, a human carcinogen and nephrotoxin found in Aristolochia herbs, to illustrate the power and effectiveness of this multidisciplinary approach. The genome-wide mutational signature for this toxin, detected initially in cancers of the upper urinary tract, has subsequently been associated with cancers of the liver and kidney. These findings have significant implications for global public health, especially in China, where millions of individuals have used Aristolochia herbal remedies as part of traditional Chinese medicine and, thus, are at risk of developing aristolochic acid nephropathy and/or upper urinary tract carcinomas. The studies reported here set the stage for research into prevention and early detection, both of which will be required to manage a potentially devastating global disease. PMID:27237586

  19. Are you a good mimic? Neuro-acoustic signatures for speech imitation ability

    PubMed Central

    Reiterer, Susanne M.; Hu, Xiaochen; Sumathi, T. A.; Singh, Nandini C.

    2013-01-01

    We investigated individual differences in speech imitation ability in late bilinguals using a neuro-acoustic approach. One hundred and thirty-eight German-English bilinguals matched on various behavioral measures were tested for “speech imitation ability” in a foreign language, Hindi, and categorized into “high” and “low ability” groups. Brain activations and speech recordings were obtained from 26 participants from the two extreme groups as they performed a functional neuroimaging experiment which required them to “imitate” sentences in three conditions: (A) German, (B) English, and (C) German with fake English accent. We used recently developed novel acoustic analysis, namely the “articulation space” as a metric to compare speech imitation abilities of the two groups. Across all three conditions, direct comparisons between the two groups, revealed brain activations (FWE corrected, p < 0.05) that were more widespread with significantly higher peak activity in the left supramarginal gyrus and postcentral areas for the low ability group. The high ability group, on the other hand showed significantly larger articulation space in all three conditions. In addition, articulation space also correlated positively with imitation ability (Pearson's r = 0.7, p < 0.01). Our results suggest that an expanded articulation space for high ability individuals allows access to a larger repertoire of sounds, thereby providing skilled imitators greater flexibility in pronunciation and language learning. PMID:24155739

  20. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature

    PubMed Central

    Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias

    2010-01-01

    Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084

  1. Overlapping frequency coverage and simulated spatial cue effects on bimodal (electrical and acoustical) sentence recognition in noise.

    PubMed

    Green, Tim; Faulkner, Andrew; Rosen, Stuart

    2014-02-01

    Sentence recognition in 20-talker babble was measured in eight Nucleus cochlear implant (CI) users with contralateral residual acoustic hearing. Speech reception thresholds (SRTs) were measured both in standard configurations, with some frequency regions presented both acoustically and electrically, and in configurations with no spectral overlap. In both cases a continuous interleaved sampling strategy was used. Mean SRTs were around 3 dB better with bimodal presentation than with CI alone in overlap configurations. A spherical head model was used to simulate azimuthal separation of speech and noise and provided no evidence of a contribution of spatial cues to bimodal benefit. There was no effect on bimodal performance of whether spectral overlap was present or was eliminated by switching off electrodes assigned to frequencies below the upper limit of acoustic hearing. In a subsequent experiment the CI was acutely re-mapped so that all available electrodes were used to cover frequencies not presented acoustically. This gave increased spectral resolution via the CI as assessed by formant frequency discrimination, but no improvement in bimodal performance compared to the configuration with overlap. PMID:25234893

  2. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S

    2005-10-04

    This report reviews progress made on NA22 project LL251DP to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. We have met all milestones and deliverables for FY05, as shown in Table 1. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begin to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. The results obtained in FY05 further support the feasibility of successful demonstration of an NAR experiment for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs.

  3. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures: Final Report

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S B

    2006-11-02

    This is final report on NA-22 project LL251DP, where the goal was to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begun to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. Since our funding was cut in FY06, I will discuss where this project can go in the future with this technology.

  4. HELIOSEISMIC SIGNATURE OF CHROMOSPHERIC DOWNFLOWS IN ACOUSTIC TRAVEL-TIME MEASUREMENTS FROM HINODE

    SciTech Connect

    Nagashima, Kaori; Sekii, Takashi; Kosovichev, Alexander G.; Zhao Junwei; Tarbell, Theodore D.

    2009-04-01

    We report on a signature of chromospheric downflows in two emerging flux regions detected by time-distance helioseismology analysis. We use both chromospheric intensity oscillation data in the Ca II H line and photospheric Dopplergrams in the Fe I 557.6 nm line obtained by Hinode/SOT for our analyses. By cross-correlating the Ca II oscillation signals, we have detected a travel-time anomaly in the plage regions; outward travel times are shorter than inward travel times by 0.5-1 minute. However, such an anomaly is absent in the Fe I data. These results can be interpreted as evidence of downflows in the lower chromosphere. The downflow speed is estimated to be below 10 km s{sup -1}. This result demonstrates a new possibility of studying chromospheric flows by time-distance analysis.

  5. Combined Electric and Contralateral Acoustic Hearing: Word and Sentence Recognition with Bimodal Hearing

    ERIC Educational Resources Information Center

    Gifford, Rene H.; Dorman, Michael F.; McKarns, Sharon A.; Spahr, Anthony J.

    2007-01-01

    Purpose: The authors assessed whether (a) a full-insertion cochlear implant would provide a higher level of speech understanding than bilateral low-frequency acoustic hearing, (b) contralateral acoustic hearing would add to the speech understanding provided by the implant, and (c) the level of performance achieved with electric stimulation plus…

  6. Deformation and Brittle Failure of Folded Gneiss in Triaxial Compression: Failure Modes, Acoustic Signatures and Microfabric Controls

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Vinciguerra, S.; Dobbs, M. R.; Zanchetta, S.

    2014-12-01

    Fabric anisotropy is a key control of rock behavior in different geological settings and over different timescales. However, the effect of tectonically folded fabrics on the brittle strength and failure mode of metamorphic rocks is poorly understood. Recent data, obtained from uniaxial compression experiments on folded gneiss (Agliardi et al., 2014), demonstrated that their brittle failure modes depend upon the arrangement of two anisotropies (i.e. foliation and fold axial planes) and that rock strength correlates with failure mode. Since lithostatic pressure may significantly affect this rock behavior, we investigated its effect in triaxial compression experiments. We tested the Monte Canale Gneiss (Italian Alps), characterized by low phyllosilicate content and compositional layering folded at the cm-scale. We used a servo-controlled hydraulic loading system to test 19 air-dry cylindrical specimens (ø = 54 mm) that were characterized both in terms of fold geometry and orientation of foliation and fold axial planes to the axial load direction. The specimens were instrumented with direct contact axial and circumferential strain gauges. Acoustic emissions and P- and S-wave velocities were measured by piezoelectric transducers mounted in the compression platens. The tests were performed at confining pressures of 40 MPa and axial strain rates of 5*10-6 s-1. Post-failure study of fracture mechanisms and related microfabric controls was undertaken using X-ray CT, optical microscopy and SEM. Samples failed in three distinct brittle modes produced by different combinations of fractures parallel to foliation, fractures parallel to fold axial planes, or mm-scale shear bands. The failure modes, consistent with those described in uniaxial compression experiments, were found to be associated with distinct stress-strain and acoustic emission signatures. Failure modes involving quartz-dominated axial plane anisotropy correspond to higher peak strength and axial strain, less

  7. Structural and Thermodynamic Signatures of DNA Recognition by Mycobacterium tuberculosis DnaA

    SciTech Connect

    Tsodikov, Oleg V.; Biswas, Tapan

    2011-09-06

    An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 {angstrom} resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 {angstrom}). These structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.

  8. Ultrasonic thermometry simulation in a random fluctuating medium: Evidence of the acoustic signature of a one-percent temperature difference.

    PubMed

    Nagaso, M; Moysan, J; Benjeddou, S; Massacret, N; Ploix, M A; Komatitsch, D; Lhuillier, C

    2016-05-01

    We study the development potential of ultrasonic thermometry in a liquid fluctuating sodium environment similar to that present in a Sodium-cooled Fast Reactor, and thus investigate if and how ultrasonic thermometry could be used to monitor the sodium flow at the outlet of the reactor core. In particular we study if small temperature variations in the sodium flow of e.g. about 1% of the sodium temperature, i.e., about 5°C, can have a reliably-measurable acoustic signature. Since to our knowledge no experimental setups are available for such a study, and considering the practical difficulties of experimentation in sodium, we resort to a numerical technique for full wave propagation called the spectral-element method, which is a highly accurate finite-element method owing to the high-degree basis functions it uses. We obtain clear time-of-flight variations in the case of a small temperature difference of one percent in the case of a static temperature gradient as well as in the presence of a random fluctuation of the temperature field in the turbulent flow. The numerical simulations underline the potential of ultrasonic thermometry in such a context. PMID:26921558

  9. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  10. Defining the mRNA recognition signature of a bacterial toxin protein

    PubMed Central

    Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya; Miles, Stacey J.; Dunham, Christine M.

    2015-01-01

    Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. Here, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop to recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide. PMID:26508639

  11. Characterization of underwater acoustic sources recorded in reverberant environments with application to SCUBA signatures

    NASA Astrophysics Data System (ADS)

    Gemba, Kay Leonard

    The ability to accurately characterize an underwater sound source is an important prerequisite for many applications including detection, classification, monitoring and mitigation. Unfortunately, anechoic underwater recording environments, required to make ideal recordings, are generally not available. Current methods adjust source recordings with spatially averaged estimates of reverberant levels. However, adjustments can introduce significant errors due to a high degree of energy variability in reverberant enclosures and solutions are inherently limited to incoherent approximations. This dissertation introduces an approach towards a practical, improved procedure to obtain an anechoic estimate of an unknown source recorded in a reverberant environment. Corresponding research is presented in three self-contained chapters. An anechoic estimate of the source is obtained by equalizing the recording with the inverse of the channel's impulse response (IR). The IR is deconvolved using a broadband logarithmic excitation signal. The length of the IR is estimated using methods borrowed from room acoustics and inversion of non-minimum phase IR is accomplished in the least-squares sense. The proposed procedure is validated by several experiments conducted in a reverberant pool environment. Results indicate that the energy of control sources can be recovered coherently and incoherently with root-mean-square error (RMSE) of ˜ -70 dB (10 - 70 kHz band). The proposed method is subsequently applied to four recorded SCUBA configurations. Results indicate that reverberation added as much as 6.8 dB of energy. Mean unadjusted sound pressure levels (0.3 - 80 kHz band) were 130 +/- 5.9 dB re muPa at 1 m. While the dereverberation method is applied here to SCUBA signals, it is generally applicable to other sources if the impulse response of the recording channel can be obtained separately. This dissertation also presents an approach to separate all coloration from the deconvolved IR

  12. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    NASA Astrophysics Data System (ADS)

    Torres-Arredondo, M.-A.; Tibaduiza, D.-A.; McGugan, M.; Toftegaard, H.; Borum, K.-K.; Mujica, L. E.; Rodellar, J.; Fritzen, C.-P.

    2013-10-01

    Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures.

  13. Development of Microbubble Contrast Agents with Biochemical Recognition and Tunable Acoustic Response

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Matthew Allan Masao

    Microbubbles, consisting of gas-filled cores encapsulated within phospholipid or polymer shells, are the most widely used ultrasound contrast agents in the world. Because of their acoustic impedance mismatch with surrounding tissues and compressible gaseous interiors, they have high echogenicities that allow for efficient backscatter of ultrasound. They can also generate unique harmonic frequencies when insonated near their resonance frequency, depending on physical microbubble properties such as the stiffness and thickness of the encapsulating shell. Microbubbles are used to detect a number of cardiovascular diseases, but current methodologies lack the ability to detect and distinguish small, rapidly growing abnormalities that do not produce visible blockage or slowing of blood flow. This work describes the development, formulation, and validation of microbubbles with various polymer shell architectures designed to modulate their acoustic ability. We demonstrate that the addition of a thick disulfide crosslinked, poly(acrylic acid) encapsulating shell increases a bubble's resistance to cavitation and changes its resonance frequency. Modification of this shell architecture to use hybridized DNA strands to form crosslinks between the polymer chains allows for tuning of the bubble acoustic response. When the DNA crosslinks are in place, shell stiffness is increased so the bubbles do not oscillate and acoustic signal is muted. Subsequently, when these DNA strands are displaced, partial acoustic activity is restored. By using aptamer sequences with a specific affinity towards the biomolecule thrombin as the DNA crosslinking strand, this acoustic "ON/OFF" behavior can be specifically tailored towards the presence of a specific biomarker, and produces a change in acoustic signal at concentrations of thrombin consistent with acute deep venous thrombosis. Incorporation of the emulsifying agent poly(ethylene glycol) into the encapsulating shell improves microbubble yield

  14. The Acoustic Signature of Woodford Shale and Upscale Relationship from Nano-Scale Mechanical Properties and Mineralogy

    NASA Astrophysics Data System (ADS)

    Tran, M. H.; Abousleiman, Y. N.; Hoang, S. K.; Ortega, A. J.; Bobko, C.; Ulm, F.

    2007-12-01

    The complex composition of shale, the most encountered and problematic lithology in the Earth's crust, has puzzled many researchers attempting to find the key for understanding their micro- and macro-scale acoustic and mechanical signatures. Recent advances in nano-technology, in particular the progress of the Atomic Force Microscope (AFM) base indentation technique, have made it possible to mechanically study porous material at a nano scale (10-9 m) and consequently have allowed linking shale mechanical properties to intrinsic micro- and macro-properties such as porosity, packing density, and mineralogy. Based on more than 20,000 nano- indentation tests conducted on a number of shales with varying physical properties, a GeoGenomeTM model was developed to upscale macroscopic shale mechanical parameters from mineralogy composition, porosity, and packing density. In this work, the mechanical properties such as the elastic stiffness coefficients, Cij, and the anisotropic Biot's Pore Pressure Coefficients, αij, of the Woodford shale, were acquired using sonic log data and Ultra-Sonic Pulse Velocity (UPV) measurements conducted on preserved retrieved shale core samples from a 200-ft well drilled in the Woodford formation, in Oklahoma. Furthermore, the dependency of the Cij and αij, on applied stresses and the relationship between the dynamic moduli and the quasi-static moduli were also investigated using an array of piezoelectric crystals mounted around the samples while subjecting the samples to different applied stress states using a series of tri-axial tests. X-Ray Diffraction (XRD) and mercury injection tests were also performed on the retrieved core samples to obtain mineralogy composition and porosity of the shale at different depths. Comparison of the simulated mechanical and poromechanical properties and stiffness coefficients using the Quantitative GeoGenomeTM Mineralogy Simulator (QGGMSTM) with field and acoustic lab measurements showed excellent agreement

  15. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  16. Molecular recognition in gas sensing: Results from acoustic wave and in-situ FTIR measurements

    SciTech Connect

    Hierlemann, A.; Ricco, A.J.; Bodenhoefer, K.; Goepel, W.

    1998-06-01

    Surface acoustic wave (SAW) measurements were combined with direct, in-situ molecular spectroscopy to understand the interactions of surface-confined sensing films with gas-phase analytes. This was accomplished by collecting Fourier-transform infrared external-reflectance spectra (FTIR-ERS) on operating SAW devices during dosing of their specifically coated surfaces with key analytes.

  17. Bioacoustic systems: insights for acoustical imaging and pattern recognition (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Altes, Richard A.

    1987-09-01

    Standard performance measures and statistical tests must be altered for research on animal sonar. The narrowband range-Doppler ambiguity function must be redefined to analyze wideband signals. A new range, cross-range ambiguity function is needed to represent angle estimation and spatial resolution properties of animal sonar systems. Echoes are transformed into time-frequency (spectrogram-like) representations by the peripheral auditory system. Detection, estimation, and pattern recognition capabilities of animals should thus be analyzed in terms of operations on spectrograms. The methods developed for bioacoustic research yield new insights into the design of man-made imaging and pattern recognition systems. The range, cross-range ambiguity function can be used to improve imaging performance. Important features for echo pattern recognition are illustrated by time-frequency plots showing (i) principal components for spectrograms and (ii) templates for optimum discrimination between data classes.

  18. Comparing the effects of reverberation and of noise on speech recognition in simulated electric-acoustic listening

    PubMed Central

    Helms Tillery, Kate; Brown, Christopher A.; Bacon, Sid P.

    2012-01-01

    Cochlear implant users report difficulty understanding speech in both noisy and reverberant environments. Electric-acoustic stimulation (EAS) is known to improve speech intelligibility in noise. However, little is known about the potential benefits of EAS in reverberation, or about how such benefits relate to those observed in noise. The present study used EAS simulations to examine these questions. Sentences were convolved with impulse responses from a model of a room whose estimated reverberation times were varied from 0 to 1 sec. These reverberated stimuli were then vocoded to simulate electric stimulation, or presented as a combination of vocoder plus low-pass filtered speech to simulate EAS. Monaural sentence recognition scores were measured in two conditions: reverberated speech and speech in a reverberated noise. The long-term spectrum and amplitude modulations of the noise were equated to the reverberant energy, allowing a comparison of the effects of the interferer (speech vs noise). Results indicate that, at least in simulation, (1) EAS provides significant benefit in reverberation; (2) the benefits of EAS in reverberation may be underestimated by those in a comparable noise; and (3) the EAS benefit in reverberation likely arises from partially preserved cues in this background accessible via the low-frequency acoustic component. PMID:22280603

  19. Application of pattern recognition techniques to the identification of aerospace acoustic sources

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.; Obrien, Walter F.; Cabell, Randolph H.

    1988-01-01

    A pattern recognition system was developed that successfully recognizes simulated spectra of five different types of transportation noise sources. The system generates hyperplanes during a training stage to separate the classes and correctly classify unknown patterns in classification mode. A feature selector in the system reduces a large number of features to a smaller optimal set, maximizing performance and minimizing computation.

  20. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and In-Situ FTIR Measurements

    SciTech Connect

    Bodenhofer, K,; Gopel, W.; Hierlemann, A.; Ricco, A.J.

    1998-12-09

    To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination, "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.

  1. Acoustic Feature Optimization Based on F-Ratio for Robust Speech Recognition

    NASA Astrophysics Data System (ADS)

    Sun, Yanqing; Zhou, Yu; Zhao, Qingwei; Yan, Yonghong

    This paper focuses on the problem of performance degradation in mismatched speech recognition. The F-Ratio analysis method is utilized to analyze the significance of different frequency bands for speech unit classification, and we find that frequencies around 1kHz and 3kHz, which are the upper bounds of the first and the second formants for most of the vowels, should be emphasized in comparison to the Mel-frequency cepstral coefficients (MFCC). The analysis result is further observed to be stable in several typical mismatched situations. Similar to the Mel-Frequency scale, another frequency scale called the F-Ratio-scale is thus proposed to optimize the filter bank design for the MFCC features, and make each subband contains equal significance for speech unit classification. Under comparable conditions, with the modified features we get a relative 43.20% decrease compared with the MFCC in sentence error rate for the emotion affected speech recognition, 35.54%, 23.03% for the noisy speech recognition at 15dB and 0dB SNR (signal to noise ratio) respectively, and 64.50% for the three years' 863 test data. The application of the F-Ratio analysis on the clean training set of the Aurora2 database demonstrates its robustness over languages, texts and sampling rates.

  2. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  3. Effect of Digital Frequency Compression (DFC) on Speech Recognition in Candidates for Combined Electric and Acoustic Stimulation (EAS)

    PubMed Central

    Gifford, René H.; Dorman, Michael F.; Spahr, Anthony J.; McKarns, Sharon A.

    2008-01-01

    Purpose To compare the effects of conventional amplification (CA) and digital frequency compression (DFC) amplification on the speech recognition abilities of candidates for a partial-insertion cochlear implant, that is, candidates for combined electric and acoustic stimulation (EAS). Method The participants were 6 patients whose audiometric thresholds at 500 Hz and below were ≤60 dB HL and whose thresholds at 2000 Hz and above were ≥80 dB HL. Six tests of speech understanding were administered with CA and DFC. The Abbreviated Profile of Hearing Aid Benefit (APHAB) was also administered following use of CA and DFC. Results Group mean scores were not statistically different in the CA and DFC conditions. However, 2 patients received substantial benefit in DFC conditions. APHAB scores suggested increased ease of communication, but also increased aversive sound quality. Conclusion Results suggest that a relatively small proportion of individuals who meet EAS candidacy will receive substantial benefit from a DFC hearing aid and that a larger proportion will receive at least a small benefit when speech is presented against a background of noise. This benefit, however, comes at a cost—aversive sound quality. PMID:17905905

  4. Speech recognition based on pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Rabiner, Lawrence R.

    1990-05-01

    Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. The use of pattern recognition techniques were applied to the problems of isolated word (or discrete utterance) recognition, connected word recognition, and continuous speech recognition. It is shown that understanding (and consequently the resulting recognizer performance) is best to the simplest recognition tasks and is considerably less well developed for large scale recognition systems.

  5. Particle Mesh Simulations of the Lyα Forest and the Signature of Baryon Acoustic Oscillations in the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    White, Martin; Pope, Adrian; Carlson, Jordan; Heitmann, Katrin; Habib, Salman; Fasel, Patricia; Daniel, David; Lukic, Zarija

    2010-04-01

    We present a set of ultra-large particle-mesh simulations of the Lyα forest targeted at understanding the imprint of baryon acoustic oscillations in the inter-galactic medium. We use nine dark matter only simulations which can, for the first time, simultaneously resolve the Jeans scale of the intergalactic gas while covering the large volumes required to adequately sample the acoustic feature. Mock absorption spectra are generated using the fluctuating Gunn-Peterson approximation which have approximately correct flux probability density functions and small-scale power spectra. On larger scales, there is clear evidence in the redshift-space correlation function for an acoustic feature, which matches a linear theory template with constant bias. These spectra, which we make publicly available, can be used to test pipelines, plan future experiments, and model various physical effects. As an illustration, we discuss the basic properties of the acoustic signal in the forest, the scaling of errors with noise and source number density, modified statistics to treat mean flux evolution and mis-estimation, and non-gravitational sources such as fluctuations in the photoionizing background and temperature fluctuations due to He II reionization.

  6. Experimental investigation of the effects of the acoustical conditions in a simulated classroom on speech recognition and learning in children a

    PubMed Central

    Valente, Daniel L.; Plevinsky, Hallie M.; Franco, John M.; Heinrichs-Graham, Elizabeth C.; Lewis, Dawna E.

    2012-01-01

    The potential effects of acoustical environment on speech understanding are especially important as children enter school where students’ ability to hear and understand complex verbal information is critical to learning. However, this ability is compromised because of widely varied and unfavorable classroom acoustics. The extent to which unfavorable classroom acoustics affect children’s performance on longer learning tasks is largely unknown as most research has focused on testing children using words, syllables, or sentences as stimuli. In the current study, a simulated classroom environment was used to measure comprehension performance of two classroom learning activities: a discussion and lecture. Comprehension performance was measured for groups of elementary-aged students in one of four environments with varied reverberation times and background noise levels. The reverberation time was either 0.6 or 1.5 s, and the signal-to-noise level was either +10 or +7 dB. Performance is compared to adult subjects as well as to sentence-recognition in the same condition. Significant differences were seen in comprehension scores as a function of age and condition; both increasing background noise and reverberation degraded performance in comprehension tasks compared to minimal differences in measures of sentence-recognition. PMID:22280587

  7. The Role of Secondary-Stressed and Unstressed-Unreduced Syllables in Word Recognition: Acoustic and Perceptual Studies with Russian Learners of English.

    PubMed

    Banzina, Elina; Dilley, Laura C; Hewitt, Lynne E

    2016-08-01

    The importance of secondary-stressed (SS) and unstressed-unreduced (UU) syllable accuracy for spoken word recognition in English is as yet unclear. An acoustic study first investigated Russian learners' of English production of SS and UU syllables. Significant vowel quality and duration reductions in Russian-spoken SS and UU vowels were found, likely due to a transfer of native phonological features. Next, a cross-modal phonological priming technique combined with a lexical decision task assessed the effect of inaccurate SS and UU syllable productions on native American English listeners' speech processing. Inaccurate UU vowels led to significant inhibition of lexical access, while reduced SS vowels revealed less interference. The results have implications for understanding the role of SS and UU syllables for word recognition and English pronunciation instruction. PMID:25980971

  8. Signatures support program

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.

    2009-05-01

    The Signatures Support Program (SSP) leverages the full spectrum of signature-related activities (collections, processing, development, storage, maintenance, and dissemination) within the Department of Defense (DOD), the intelligence community (IC), other Federal agencies, and civil institutions. The Enterprise encompasses acoustic, seismic, radio frequency, infrared, radar, nuclear radiation, and electro-optical signatures. The SSP serves the war fighter, the IC, and civil institutions by supporting military operations, intelligence operations, homeland defense, disaster relief, acquisitions, and research and development. Data centers host and maintain signature holdings, collectively forming the national signatures pool. The geographically distributed organizations are the authoritative sources and repositories for signature data; the centers are responsible for data content and quality. The SSP proactively engages DOD, IC, other Federal entities, academia, and industry to locate signatures for inclusion in the distributed national signatures pool and provides world-wide 24/7 access via the SSP application.

  9. Examination on the use of acoustic emission for monitoring metal forging process: A study using simulation technique

    SciTech Connect

    Mullins, W.M.; Malas, J.C. III; Venugopal, S.

    1997-05-01

    The aim of this study is to determine the feasibility of using acoustic emission as a monitoring technique for metal forging operations. From the sensor development paradigm proposed by McClean et al. the most likely approach to determining feasibility for application is through signal recognition. For this reason, signature prediction and analysis was chosen to determine the suitability for forging applications.

  10. Surface gravity waves and their acoustic signatures, 1-30 Hz, on the mid-Pacific sea floor.

    PubMed

    Farrell, W E; Munk, Walter

    2013-10-01

    In 1999, Duennebier et al. deployed a hydrophone and geophone below the conjugate depth in the abyssal Pacific, midway between Hawaii and California. Real time data were transmitted for 3 yr over an abandoned ATT cable. These data have been analyzed in the frequency band 1 to 30 Hz. Between 1 and 6 Hz, the bottom data are interpreted as acoustic radiation from surface gravity waves, an extension to higher frequencies of a non-linear mechanism proposed by Longuet-Higgins in 1950 to explain microseisms. The inferred surface wave spectrum for wave lengths between 6 m and 17 cm is saturated (wind-independent) and roughly consistent with the traditional Phillips κ(-4) wave number spectrum. Shorter ocean waves have a strong wind dependence and a less steep wave number dependence. Similar features are found in the bottom record between 6 and 30 Hz. But this leads to an enigma: The derived surface spectrum inferred from the Longuet-Higgins mechanism with conventional assumptions for the dispersion relation is associated with mean square slopes that greatly exceed those derived from glitter. Regardless of the generation mechanism, the measured bottom intensities between 10 and 30 Hz are well below minimum noise standards reported in the literature. PMID:24116511

  11. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  12. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    PubMed

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys. PMID:27176512

  13. Characterizing riverbed sediment using high-frequency acoustics 2: scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  14. Characterizing riverbed sediment using high-frequency acoustics: 2. Scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2014-12-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length and amplitude scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by georeferenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum and the intercept and slope from a power law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration and surveys made at calibration sites at different times were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well-understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  15. Tracking and understanding the acoustic signature of fluido-fractures: a dual optical/micro-seismic study

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume; Jørgen Måløy, Knut; Grude Flekkøy, Eirik

    2015-04-01

    The characterization and comprehension of irreversible rock deformation processes due to fluid flow is a challenging problem with numerous applications in many fields. This phenomenon has received an ever-increasing attention in Earth Science, Physics, with many applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, control the mechanical stability of rock and soil formations during the injection or extraction of fluids, landslides with hydrological control, volcanic eruptions), or in the industry, as CO2 sequestration. In this study, analogue models are developed (similar to the previous work of Johnsen[1] but in rectangular shape) to study the instabilities developing during motion of fluid in dense porous materials: fracturing, fingering, channelling… We study these complex fluid/solid mechanical systems using two imaging techniques: fast optical imaging and high frequency resolution of acoustic emissions. Additionally, we develop physical models rendering for the fluid mechanics (similar to the work of Niebling[2] but with injection of fluid) in the channels and the propagation of microseismic waves around the fracture. We then confront a numerical resolution of this physical system with the observed experimental system. The experimental setup consists in a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. During the experiments, the fluid is injected into the system with a constant injection pressure from the point opposite to the semi-permeable boundary. The fluid penetrates into the solid using the pore network. At the large enough injection pressures, the fluid also makes its way via creating channels, fractures to the semi-permeable boundary. During the experiments acoustic signals are recorded using different sensors then, those signals are compared and investigated further in both time and frequency domains

  16. Decreased Pattern Recognition Receptor Signaling, Interferon-Signature, and Bactericidal/Permeability-Increasing Protein Gene Expression in Cord Blood of Term Low Birth Weight Human Newborns

    PubMed Central

    Singh, Vikas Vikram; Chauhan, Sudhir Kumar; Rai, Richa; Kumar, Ashok; Singh, Shiva M.; Rai, Geeta

    2013-01-01

    Background Morbidity and mortality rates of low birth weight (LBW) newborns at term are higher than rates in normal birth weight (NBW) newborns. LBW newborns are at greater risk to acquire recurrent bacterial and viral infections during their first few weeks of life possibly as an outcome of compromised innate immune functions. As adaptive immunity is in a naive state, increased risk of infection of LBW as compared to NBW newborns may reflect impairments in innate immunity. Methodology To characterize the increased susceptibility to infections in LBW newborns we used microarray technology to identify differences in gene expression in LBW newborns (n = 8) compared to NBW newborns (n = 4) using cord blood. The results obtained from the microarray study were validated on a larger number of samples using real time RT-PCR (LBW = 22, NBW = 18) and western blotting (LBW = 12, NBW = 12). The Interferome database was used to identify interferon (IFN) signature genes and ingenuity pathway analysis identified canonical pathways and biological functions associated with the differentially expressed genes in LBW newborns. ELISAs for IFNs and bactericidal/permeability-increasing protein were performed in both LBW and NBW newborns and in adults (LBW = 18, NBW = 18, Adults  = 8). Principal Findings Upon microarray analysis, we identified 1,391 differentially expressed genes, of which, 1,065 genes were down-regulated and 326 genes were up-regulated in the LBW compared to NBW newborns. Of note, 70 IFN-signature genes were found to be significantly down-regulated in LBW compared to NBW newborns. Ingenuity pathway analysis revealed pattern recognition receptors signaling including Toll-Like Receptors (TLRs) -1, -5, and -8 genes and IFN signaling as the most significantly impacted pathways. Respiratory infectious diseases were the most significantly affected bio-functions in LBW newborns. Conclusion and Significance Diminished PRRs, IFN-signature, and

  17. Parent-offspring communication in the Nile crocodile Crocodylus niloticus: do newborns' calls show an individual signature?

    PubMed

    Vergne, Amélie L; Avril, Alexis; Martin, Samuel; Mathevon, Nicolas

    2007-01-01

    Young Nile crocodiles Crocodylus niloticus start to produce calls inside the egg and carry on emitting sounds after hatching. These vocalizations elicit maternal care and influence the behaviour of other juveniles. In order to investigate the acoustic structure of these calls, focusing on a possible individual signature, we have performed acoustic analyses on 400 calls from ten young crocodiles during the first 4 days after hatching. Calls have a complex acoustic structure and are strongly frequency modulated. We assessed the differences between the calls of the individuals. We found a weak individual signature. An individual call-based recognition of young by the mother is thus unlikely. In other respects, the call acoustic structure changes from the first to the fourth day after hatching: fundamental frequency progressively decreases. These modifications might provide important information to the mother about her offspring--age and size--allowing her to customize her protective care to best suit the needs of each individual. PMID:17106675

  18. Parent-offspring communication in the Nile crocodile Crocodylus niloticus: do newborns' calls show an individual signature?

    NASA Astrophysics Data System (ADS)

    Vergne, Amélie L.; Avril, Alexis; Martin, Samuel; Mathevon, Nicolas

    2007-01-01

    Young Nile crocodiles Crocodylus niloticus start to produce calls inside the egg and carry on emitting sounds after hatching. These vocalizations elicit maternal care and influence the behaviour of other juveniles. In order to investigate the acoustic structure of these calls, focusing on a possible individual signature, we have performed acoustic analyses on 400 calls from ten young crocodiles during the first 4 days after hatching. Calls have a complex acoustic structure and are strongly frequency modulated. We assessed the differences between the calls of the individuals. We found a weak individual signature. An individual call-based recognition of young by the mother is thus unlikely. In other respects, the call acoustic structure changes from the first to the fourth day after hatching: fundamental frequency progressively decreases. These modifications might provide important information to the mother about her offspring—age and size—allowing her to customize her protective care to best suit the needs of each individual.

  19. Acoustic network event classification using swarm optimization

    NASA Astrophysics Data System (ADS)

    Burman, Jerry

    2013-05-01

    Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

  20. On the recognition of compromise in sensing systems: rewired acoustic arrays and distorted route estimation and classification

    NASA Astrophysics Data System (ADS)

    Thornley, David J.; Damarla, Thyagaraju; Srivastava, Mani B.; Mylaraswami, Dinkar

    2009-09-01

    A group of acoustic arrays that provide direction of approach estimates also support classification of vehicles using the beams formed during that estimation. Successful simultaneous tracking and classification has demonstrated the value of such a sensing resource as a UGS installation. We now consider potential attacks on the integrity of such an installation, describing the effect of compromised acoustic arrays in the data analysis and tracking and classification results. We indicate how these can be automatically recognized, and note that calibration methods intended for deployment time can be used for recovery during operation, which opens the door to methods for recovery from the compromise without re-configuring the equipment, using abductive reasoning to discover the necessary re-processing structure. By rotating an acoustic array, the tracking stability and implied path of a tracked entity can be distorted while leaving the data and analysis from individual arrays self-consistent. Less structured modifications, such as unstructured re-ordering of microphone connections, impact the basic data analysis. We examine the effect of these classes of attack on the integrity of a set of unattended acoustic arrays, and consider the steps necessary for detection, diagnosis, and recovering an effective sensing system. Understaning these steps plays an important part in reasoning in support of balance of investment, planning, operation and post-hoc analysis.

  1. Individual acoustic variation in Belding's ground squirrel alarm chirps in the High Sierra Nevada

    NASA Astrophysics Data System (ADS)

    McCowan, Brenda; Hooper, Stacie L.

    2002-03-01

    The acoustic structure of calls within call types can vary as function of individual identity, sex, and social group membership and is important in kin and social group recognition. Belding's ground squirrels (Spermophilus beldingi) produce alarm chirps that function in predator avoidance but little is known about the acoustic variability of these alarm chirps. The purpose of this preliminary study was to analyze the acoustic structure of alarm chirps with respect to individual differences (e.g., signature information) from eight Belding's ground squirrels from four different lakes in the High Sierra Nevada. Results demonstrate that alarm chirps are individually distinctive, and that acoustic similarity among individuals may correspond to genetic similarity and thus dispersal patterns in this species. These data suggest, on a preliminary basis, that the acoustic structure of calls might be used as a bioacoustic tool for tracking individuals, dispersal, and other population dynamics in Belding's ground squirrels, and perhaps other vocal species.

  2. Revealing, identifying, and assessing flaws in operating equipment by the acoustic emission image recognition method under strong background noise condition

    NASA Astrophysics Data System (ADS)

    Muravin, Gregory; Muravin, Boris; Lezvisky, Ludmila

    2004-05-01

    The analysis has shown that high pressure and high temperature piping in fossil and nuclear power plants suffer from unexpected and rarely predictable failures. To guarantee operational safety and to prevent failures authors have performed the complex investigations and have created Quantitative Acoustic Emission NDI technology for revealing, identifying and assessing flaws in equipment operated under strong background noise condition. These enabled: Overall inspection of the piping operated under stress, temperature, pressure, steam flow and loading, variation. Locating suspected zones and zones of flaw development with low J-integral value and the great variation of the dynamic range of flaws danger level. Identification of flaw types and their danger level. Detection of defective components in service prior to shut down. The continuous and the burst Acoustic Emission (AE) were used in combination as an information tool. As result, the significant number of flaws such as creep at stage 3a-3b, closed-edge micro-cracks, systems of randomly dispersed pores and inclusions, plastic deformation development around them, or/and individual micro-cracking were revealed, identified and assessed in 50 operating high energy piping. The findings and assessing flaw danger level obtained by QAE NDI were confirmed by independent NDI methods as TOFD, X-ray, replication, metallurgical investigations, etc. The findings and assessing flaw danger level obtained by QAE NDI were confirmed by independent NDI methods such as TOFD, X-ray, replication, metallurgical investigations, etc

  3. Acoustic properties of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Evans, N.; Ramaekers, J.; Trevino, J.; Rassoul, H.; Lucia, R. J.; Dwyer, J. R.; Uman, M. A.; Jordan, D. M.

    2014-12-01

    Acoustic signatures from rocket-triggered lightning are measured by a 15m long, one-dimensional microphone array consisting of 16 receivers situated 90 meters from the lightning channel. Measurements were taken at the International Center for Lightning Research and Testing (ICLRT) in Camp Blanding, FL during the summer of 2014. The linear array was oriented in an end-fire position so that the peak acoustic reception pattern can be steered vertically along the channel with a frequency-dependent spatial resolution, enabling us to sample the acoustic signatures from different portions along the lightning channel. We report on the characteristics of acoustic signatures associated with several return strokes in 6 measured flashes (total of 29 return strokes). In addition, we study the relationship between the amplitude, peak frequency, and inferred energy input of each stroke acoustic signature and the associated measured lightning parameters. Furthermore, challenges of obtaining acoustic measurements in thunderstorm harsh conditions and their countermeasures will also be discussed.

  4. Passive acoustic monitoring of human physiology during activity indicates health and performance of soldiers and firefighters

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-04-01

    The Army Research Laboratory has developed a unique gel-coupled acoustic physiological monitoring sensor that has acoustic impedance properties similar to the skin. This facilitates the transmission of body sounds into the sensor pad, yet significantly repels ambient airborne noises due to an impedance mismatch. The sensor's sensitivity and bandwidth produce excellent signatures for detection and spectral analysis of diverse physiological events. Acoustic signal processing detects heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. Comfortable acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Noise-canceling sensor arrays help remove out-of-phase motion noise and enhance covariant physiology by using two acoustic sensors on the front sides of the neck and two additional acoustic sensors on each wrist. Pulse wave transit time between neck and wrist acoustic sensors will indicate systolic blood pressure. Larger torso-sized arrays can be used to acoustically inspect the lungs and heart, or built into beds for sleep monitoring. Acoustics is an excellent input for sensor fusion.

  5. Acoustic analysis of explosions in high noise environment

    NASA Astrophysics Data System (ADS)

    Man, Hong; Desai, Sachi

    2008-04-01

    Explosion detection and recognition is a critical capability to provide situational awareness to the war-fighters in battlefield. Acoustic sensors are frequently deployed to detect such events and to trigger more expensive sensing/sensor modalities (i.e. radar, laser spectroscope, IR etc.). Acoustic analysis of explosions has been intensively studied to reliably discriminate mortars, artillery, round variations, and type of blast (i.e. chemical/biological or high-explosive). One of the major challenges is high level of noise, which may include non-coherent noise generated from the environmental background and coherent noise induced by possible mobile acoustic sensor platform. In this work, we introduce a new acoustic scene analysis method to effectively enhance explosion classification reliability and reduce the false alarm rate at low SNR and with high coherent noise. The proposed method is based on acoustic signature modeling using Hidden Markov Models (HMMs). Special frequency domain acoustic features characterizing explosions as well as coherent noise are extracted from each signal segment, which forms an observation vector for HMM training and test. Classification is based on a unique model similarity measure between the HMM estimated from the test observations and the trained HMMs. Experimental tests are based on the acoustic explosion dataset from US ARMY ARDEC, and experimental results have demonstrated the effectiveness of the proposed method.

  6. An acoustical bubble counter for superheated drop detectors.

    PubMed

    Taylor, Chris; Montvila, Darius; Flynn, David; Brennan, Christopher; d'Errico, Francesco

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons. PMID:16891351

  7. Time-Frequency Feature Representation Using Multi-Resolution Texture Analysis and Acoustic Activity Detector for Real-Life Speech Emotion Recognition

    PubMed Central

    Wang, Kun-Ching

    2015-01-01

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech. PMID:25594590

  8. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  9. Acoustic data transmission through a drill string

    DOEpatents

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  10. Evaluation of the in-flight noise signature of a 32-chute suppressor nozzle: Acoustic data report. [outdoor static and 40 x 80 ft. wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Moore, M. T.; Doyle, V. L.

    1977-01-01

    Outdoor static and 40 x 80 FT wind tunnel tests of the J79-15 engine/nacelle system with the conic nozzle and 32-chute exhaust suppressor were conducted to acquire the data necessary to evaluate the simulated in-flight signature of an engine-size 32-chute exhaust nozzle suppressor using the 40 x 80 ft wind tunnel and to study possible engine core noise contamination of the jet signature. The tests are described and and a sampling of the data acquired is presented. Included are aero performance summaries, as-measured and composite 1/3 OBSPL spectra for the 70 ft sideline high and low mics from the outdoor static tests, sideline traverse spectra and internal noise measurements from both the outdoor static and the 40 x 80 ft wind tunnel tests.

  11. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    SciTech Connect

    Cheng, Ying; Liu, XiaoJun; Zhou, Chen; Wei, Qi; Wu, DaJian

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  12. Use of Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometric Detection and Random Forest Pattern Recognition Techniques for Classifying Chemical Threat Agents and Detecting Chemical Attribution Signatures.

    PubMed

    Strozier, Erich D; Mooney, Douglas D; Friedenberg, David A; Klupinski, Theodore P; Triplett, Cheryl A

    2016-07-19

    In this proof of concept study, chemical threat agent (CTA) samples were classified to their sources with accuracies of 87-100% by applying a random forest statistical pattern recognition technique to analytical data acquired by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC-TOFMS). Three organophosphate pesticides, chlorpyrifos, dichlorvos, and dicrotophos, were used as the model CTAs, with data collected for 4-6 sources per CTA and 7-10 replicate analyses per source. The analytical data were also evaluated to determine tentatively identified chemical attribution signatures for the CTAs by comparing samples from different sources according to either the presence/absence of peaks or the relative responses of peaks. These results demonstrate that GC × GC-TOFMS analysis in combination with a random forest technique can be useful in sample classification and signature identification for pesticides. Furthermore, the results suggest that this combination of analytical chemistry and statistical approaches can be applied to forensic analysis of other chemicals for similar purposes. PMID:27295356

  13. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  14. Signature control

    NASA Astrophysics Data System (ADS)

    Pyati, Vittal P.

    The reduction of vehicle radar signature is accomplished by means of vehicle shaping, the use of microwave frequencies-absorbent materials, and either passive or active cancellation techniques; such techniques are also useful in the reduction of propulsion system-associated IR emissions. In some anticipated scenarios, the objective is not signature-reduction but signature control, for deception, via decoy vehicles that mimic the signature characteristics of actual weapons systems. As the stealthiness of airframes and missiles increases, their propulsion systems' exhaust plumes assume a more important role in detection by an adversary.

  15. Paternal kin recognition in the high frequency / ultrasonic range in a solitary foraging mammal

    PubMed Central

    2012-01-01

    Background Kin selection is a driving force in the evolution of mammalian social complexity. Recognition of paternal kin using vocalizations occurs in taxa with cohesive, complex social groups. This is the first investigation of paternal kin recognition via vocalizations in a small-brained, solitary foraging mammal, the grey mouse lemur (Microcebus murinus), a frequent model for ancestral primates. We analyzed the high frequency/ultrasonic male advertisement (courtship) call and alarm call. Results Multi-parametric analyses of the calls’ acoustic parameters and discriminant function analyses showed that advertisement calls, but not alarm calls, contain patrilineal signatures. Playback experiments controlling for familiarity showed that females paid more attention to advertisement calls from unrelated males than from their fathers. Reactions to alarm calls from unrelated males and fathers did not differ. Conclusions 1) Findings provide the first evidence of paternal kin recognition via vocalizations in a small-brained, solitarily foraging mammal. 2) High predation, small body size, and dispersed social systems may select for acoustic paternal kin recognition in the high frequency/ultrasonic ranges, thus limiting risks of inbreeding and eavesdropping by predators or conspecific competitors. 3) Paternal kin recognition via vocalizations in mammals is not dependent upon a large brain and high social complexity, but may already have been an integral part of the dispersed social networks from which more complex, kin-based sociality emerged. PMID:23198727

  16. Infrasound Rocket Signatures

    NASA Astrophysics Data System (ADS)

    Olson, J.

    2012-09-01

    This presentation reviews the work performed by our research group at the Geophysical Institute as we have applied the tools of infrasound research to rocket studies. This report represents one aspect of the effort associated with work done for the National Consortium for MASINT Research (NCMR) program operated by the National MASINT Office (NMO) of the Defense Intelligence Agency (DIA). Infrasound, the study of acoustic signals and their propagation in a frequency band below 15 Hz, enables an investigator to collect and diagnose acoustic signals from distant sources. Absorption of acoustic energy in the atmosphere decreases as the frequency is reduced. In the infrasound band signals can propagate hundreds and thousands of kilometers with little degradation. We will present an overview of signatures from rockets ranging from small sounding rockets such as the Black Brandt and Orion series to larger rockets such as Delta 2,4 and Atlas V. Analysis of the ignition transients provides information that can uniquely identify the motor type. After the rocket ascends infrasound signals can be used to characterize the rocket and identify the various events that take place along a trajectory such as staging and maneuvering. We have also collected information on atmospheric shocks and sonic booms from the passage of supersonic vehicles such as the shuttle. This review is intended to show the richness of the unique signal set that occurs in the low-frequency infrasound band.

  17. ACOUSTIC SIGNATURES OF THE HELIUM CORE FLASH

    SciTech Connect

    Bildsten, Lars; Paxton, Bill; Moore, Kevin; Macias, Phillip J.

    2012-01-15

    All evolved stars with masses M {approx}< 2 M{sub Sun} undergo an initiating off-center helium core flash in their M{sub c} Almost-Equal-To 0.48 M{sub Sun} He core as they ascend the red giant branch (RGB). This off-center flash is the first of a few successive helium shell subflashes that remove the core electron degeneracy over 2 Myr, converting the object into a He-burning star. Though characterized by Thomas over 40 years ago, this core flash phase has yet to be observationally probed. Using the Modules for Experiments in Stellar Astrophysics (MESA) code, we show that red giant asteroseismology enabled by space-based photometry (i.e., Kepler and CoRoT) can probe these stars during the flash. The rapid ({approx}< 10{sup 5} yr) contraction of the red giant envelope after the initiating flash dramatically improves the coupling of the p-modes to the core g-modes, making the detection of l = 1 mixed modes possible for these 2 Myr. This duration implies that 1 in 35 stars near the red clump in the H-R diagram will be in their core flash phase. During this time, the star has a g-mode period spacing of {Delta}P{sub g} Almost-Equal-To 70-100 s, lower than the {Delta}P{sub g} Almost-Equal-To 250 s of He-burning stars in the red clump, but higher than the RGB stars at the same luminosity. This places them in an underpopulated part of the large frequency spacing ({Delta}{nu}) versus {Delta}P{sub g} diagram that should ease their identification among the thousands of observed red giants.

  18. Cytotoxic lesion of the medial prefrontal cortex abolishes the partial reinforcement extinction effect, attenuates prepulse inhibition of the acoustic startle reflex and induces transient hyperlocomotion, while sparing spontaneous object recognition memory in the rat.

    PubMed

    Yee, B K

    2000-01-01

    The partial reinforcement extinction effect refers to the increase in resistance to extinction of an operant response acquired under partial reinforcement relative to that acquired under continuous reinforcement. Prepulse inhibition of the acoustic startle response refers to the reduction in startle reactivity towards an intense acoustic pulse stimulus when it is shortly preceded by a weak prepulse stimulus. These two behavioural phenomena appear to be related to different forms of attentional processes. While the prepulse inhibition effect reflects an inherent early attentional gating mechanism, the partial reinforcement extinction effect is believed to involve the development of acquired inattention, i.e. the latter requires the animals to learn about what to and what not to attend. Impairments in prepulse inhibition and the partial reinforcement extinction effect have been independently linked to the neuropsychology of attentional dysfunctions seen in schizophrenia. The proposed neural substrates underlying these behaviourial phenomena also appear to overlap considerably: both focus on the nucleus accumbens and emphasize the functional importance of its limbic afferents, including that originating from the medial prefrontal cortex, on accumbal output/activity. The present study demonstrated that cytotoxic medial prefrontal cortex lesions which typically damaged the prelimbic, the infralimbic and the dorsal anterior cingulate areas could lead to the abolition of the partial reinforcement extinction effect and the attenuation of prepulse inhibition. The lesions also resulted in a transient elevation of spontaneous locomotor activity. In contrast, the same lesions spared performance in a spontaneous object recognition memory test, in which the lesioned animals displayed normal preference for a novel object when the novel object was presented in conjunction with a familiar object seen 10 min earlier within an open field arena. The present results lend support to the

  19. Temperature coupling in cricket acoustic communication. I. Field and laboratory studies of temperature effects on calling song production and recognition in Gryllus firmus.

    PubMed

    Pires, A; Hoy, R R

    1992-08-01

    Temperature effects on calling song production and recognition were investigated in the North American field cricket, Gryllus firmus. Temporal parameters of field-recorded G. firmus calling song are strongly affected by temperature. Chirp rate and syllable rate increase, by factors of 4 and 2, respectively, as linear functions of temperature over the range in which these animals sing in the field (12 degrees-30 degrees C). Temperature affects syllable duration to a lesser extent, and does not influence calling song carrier frequency. Female phonotactic preference, measured on a spherical treadmill in the laboratory, also changes with temperature such that warmer females prefer songs with faster chirp and syllable rates. Best phonotaxis, measured as accuracy of orientation to the sound source, and highest walking velocity, occur in response to temperature-matched songs at 15 degrees, 21 degrees, and 30 degrees C. Experiments under semi-natural conditions in an outdoor arena revealed that females perform phonotaxis at temperatures as low as 13 degrees C. Taken together, the song and phonotaxis data demonstrate that this communication system is temperature coupled. A strategy is outlined by which temperature coupling may be exploited to test hypotheses about the organization of neural networks subserving song recognition. PMID:1403992

  20. Detection of ``single-leg separated`` heart valves using statistical pattern recognition with the nearest neighbor classifier. Revision 1

    SciTech Connect

    Buhl, M.R.; Clark, G.A.; Candy, J.V.; Thomas, G.H.

    1993-12-01

    The goal of this work was to detect ``single-leg separated`` Bjoerk-Shiley Convexo-Concave heart valves which had been implanted in sheep. A ``single-leg separated`` heart valve contains a fracture in the outlet strut resulting in an increased risk of mechanical failure. The approach presented in this report detects such fractures by applying statistical pattern recognition with the nearest neighbor classifier to the acoustic signatures of the valve opening. This approach is discussed and results of applying it to real data are given.

  1. Detection of ``single-leg separated`` heart valves using statistical pattern recognition with the nearest neighbor classifier

    SciTech Connect

    Buhl, M.R.; Clark, G.A.; Candy, J.V.; Thomas, G.H.

    1993-07-16

    The goal of this work was to detect ``single-leg separated`` Bjoerk-Shiley Convexo-Concave heart valves which had been implanted in sheep. A ``single-leg separated`` heart valve contains a fracture in the outlet strut resulting in an increased risk of mechanical failure. The approach presented in this report detects such fractures by applying statistical pattern recognition with the nearest neighbor classifier to the acoustic signatures of the valve opening. This approach is discussed and results of applying it to real data are given.

  2. Early recognition of speech

    PubMed Central

    Remez, Robert E; Thomas, Emily F

    2013-01-01

    Classic research on the perception of speech sought to identify minimal acoustic correlates of each consonant and vowel. In explaining perception, this view designated momentary components of an acoustic spectrum as cues to the recognition of elementary phonemes. This conceptualization of speech perception is untenable given the findings of phonetic sensitivity to modulation independent of the acoustic and auditory form of the carrier. The empirical key is provided by studies of the perceptual organization of speech, a low-level integrative function that finds and follows the sensory effects of speech amid concurrent events. These projects have shown that the perceptual organization of speech is keyed to modulation; fast; unlearned; nonsymbolic; indifferent to short-term auditory properties; and organization requires attention. The ineluctably multisensory nature of speech perception also imposes conditions that distinguish language among cognitive systems. WIREs Cogn Sci 2013, 4:213–223. doi: 10.1002/wcs.1213 PMID:23926454

  3. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  4. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  5. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  6. Social Communication and Vocal Recognition in Free-Ranging Rhesus Monkeys

    NASA Astrophysics Data System (ADS)

    Rendall, Christopher Andrew

    Kinship and individual identity are key determinants of primate sociality, and the capacity for vocal recognition of individuals and kin is hypothesized to be an important adaptation facilitating intra-group social communication. Research was conducted on adult female rhesus monkeys on Cayo Santiago, Puerto Rico to test this hypothesis for three acoustically distinct calls characterized by varying selective pressures on communicating identity: coos (contact calls), grunts (close range social calls), and noisy screams (agonistic recruitment calls). Vocalization playback experiments confirmed a capacity for both individual and kin recognition of coos, but not screams (grunts were not tested). Acoustic analyses, using traditional spectrographic methods as well as linear predictive coding techniques, indicated that coos (but not grunts or screams) were highly distinctive, and that the effects of vocal tract filtering--formants --contributed more to statistical discriminations of both individuals and kin groups than did temporal or laryngeal source features. Formants were identified from very short (23 ms.) segments of coos and were stable within calls, indicating that formant cues to individual and kin identity were available throughout a call. This aspect of formant cues is predicted to be an especially important design feature for signaling identity efficiently in complex acoustic environments. Results of playback experiments involving manipulated coo stimuli provided preliminary perceptual support for the statistical inference that formant cues take precedence in facilitating vocal recognition. The similarity of formants among female kin suggested a mechanism for the development of matrilineal vocal signatures from the genetic and environmental determinants of vocal tract morphology shared among relatives. The fact that screams --calls strongly expected to communicate identity--were not individually distinctive nor recognized suggested the possibility that their

  7. Acoustic habitat and shellfish mapping and monitoring in shallow coastal water - Sidescan sonar experiences in The Netherlands

    NASA Astrophysics Data System (ADS)

    van Overmeeren, Ronnie; Craeymeersch, Johan; van Dalfsen, Jan; Fey, Frouke; van Heteren, Sytze; Meesters, Erik

    2009-11-01

    Sidescan sonar has been applied in a number of shallow water environments along the Dutch coast to map and monitor shellfish and seabed habitats. The littoral setting of these surveys may hamper data acquisition flying the towfish in zones of turbulence and waves, but also offers valuable opportunities for understanding, interpreting and validating sidescan sonar images because of the ability to ground-truth during low water periods, enabling easy identification and validation. Acoustical images of some of the mussel banks on the tidal flats of the Wadden Sea, recorded at high tide, show a marked resemblance with optical Google Earth images of the same banks. These sonar images may thus serve as ' acoustic type signatures' for the interpretation of sonar patterns recorded in deeper water where ground-truthing is more difficult and more expensive. Similarly, acoustic type signatures of (Japanese) oyster banks were obtained in the estuaries in the southwest of the Netherlands. Automated acoustic pattern recognition of different habitats and acoustical estimation of faunal cover and density are possible applications of sidescan sonar. Both require that the backscattering observed on the sidescan sonar images is directly caused by the biological component of the seafloor. Filtering offers a simple and effective pre-processing technique to separate the faunal signals from linear trends such as emanating from wave ripples or the central tracks of the towfish. Acoustically estimating the faunal density is approached by in-situ counting peaks in backscattering in unit squares. These counts must be calibrated by ground-truthing. Ground-truthing on littoral mussel banks in the Wadden Sea has been carried out by measuring their cover along lines during low tide. Due to its capacity of yielding full-cover, high resolution images of large surfaces, sidescan sonar proves to be an excellent, cost-effective tool for quantitative time-lapse monitoring of habitats.

  8. Modeling the origins of mammalian sociality: moderate evidence for matrilineal signatures in mouse lemur vocalizations

    PubMed Central

    2014-01-01

    Mouse lemur agonistic calls are moderately distinctive by matriline. Because sleeping groups consisted of close maternal kin, both genetics and social learning may have generated these acoustic signatures. As mouse lemurs are models for solitary foragers, we recommend further studies testing whether the lemurs use these calls to recognize kin. This would enable further modeling of how kin recognition in ancestral species could have shaped the evolution of complex sociality. PMID:24555438

  9. First images of thunder: Acoustic imaging of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  10. Comments on "Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations" [J. Acoust. Soc. Am. 114, 66-69 (2003)].

    PubMed

    Sousa-Lima, Renata S

    2006-06-01

    This letter concerns the paper "Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations" [Nowacek et al., J. Acoust. Soc. Am. 114, 66-69 (2003)]. The purpose here is to correct the fundamental frequency range and information on intraindividual variation in the vocalizations of Amazonian manatees reported by Nowacek et al. (2003) in citing the paper "Signature information and individual recognition in the isolation calls of Amazonian manatees, Trichechus inunguis (Mammalia: Sirenia)" [Sousa-Lima et al., Anim. Behav. 63, 301-310 (2002)]. PMID:16838493

  11. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  12. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273

  13. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... 177. Battista RA. Gamma knife radiosurgery for vestibular schwannoma. Otolaryngol Clin North Am . 2009;42:635-654. ...

  14. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  15. Place recognition using batlike sonar.

    PubMed

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-01-01

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map. PMID:27481189

  16. Developing composite signatures

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.; Carpenter, Tom; Cappelaere, Patrice G.; Frye, Stu; Lemoigne-Stewart, Jacqueline J.; Mandle, Dan; Montgomery, Sarah; Williams-Bess, Autumn

    2011-06-01

    A composite signature is a group of signatures that are related in such a way to more completely or further define a target or operational endeavor at a higher fidelity. This paper explores the merits of using composite signatures, in lieu of waiting for opportunities for the more elusive diagnostic signatures, to satisfy key essential elements of information Keywords: signature, composite signature, civil disaster (EEI) associated with civil disaster-related problems. It discusses efforts to refine composite signature development methodology and quantify the relative value of composite vs. diagnostic signatures. The objectives are to: 1) investigate and develop innovative composite signatures associated with civil disasters, including physical, chemical and pattern/behavioral; 2) explore the feasibility of collecting representative composite signatures using current and emerging intelligence, surveillance, and reconnaissance (ISR) collection architectures leveraging civilian and commercial architectures; and 3) collaborate extensively with scientists and engineers from U.S. government organizations and laboratories, the defense industry, and academic institutions.

  17. Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency.

    PubMed

    Branstetter, Brian K; DeLong, Caroline M; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly

    2016-01-01

    Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin's (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin's ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin's acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition. PMID:26863519

  18. Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency

    PubMed Central

    Branstetter, Brian K.; DeLong, Caroline M.; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly

    2016-01-01

    Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin’s (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin’s ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin’s acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition. PMID:26863519

  19. Fast recognition of musical sounds based on timbre.

    PubMed

    Agus, Trevor R; Suied, Clara; Thorpe, Simon J; Pressnitzer, Daniel

    2012-05-01

    Human listeners seem to have an impressive ability to recognize a wide variety of natural sounds. However, there is surprisingly little quantitative evidence to characterize this fundamental ability. Here the speed and accuracy of musical-sound recognition were measured psychophysically with a rich but acoustically balanced stimulus set. The set comprised recordings of notes from musical instruments and sung vowels. In a first experiment, reaction times were collected for three target categories: voice, percussion, and strings. In a go/no-go task, listeners reacted as quickly as possible to members of a target category while withholding responses to distractors (a diverse set of musical instruments). Results showed near-perfect accuracy and fast reaction times, particularly for voices. In a second experiment, voices were recognized among strings and vice-versa. Again, reaction times to voices were faster. In a third experiment, auditory chimeras were created to retain only spectral or temporal features of the voice. Chimeras were recognized accurately, but not as quickly as natural voices. Altogether, the data suggest rapid and accurate neural mechanisms for musical-sound recognition based on selectivity to complex spectro-temporal signatures of sound sources. PMID:22559384

  20. Interpreting Underwater Acoustic Images of the Upper Ocean Boundary Layer

    ERIC Educational Resources Information Center

    Ulloa, Marco J.

    2007-01-01

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of…

  1. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  2. Biometric watermarking based on face recognition

    NASA Astrophysics Data System (ADS)

    Satonaka, Takami

    2002-04-01

    We describe biometric watermarking procedure based on object recognition for accurate facial signature authentication. An adaptive metric learning algorithm incorporating watermark and facial signatures is introduced to separate an arbitrary pattern of unknown intruder classes from that of known true-user ones. The verification rule of multiple signatures is formulated to map a facial signature pattern in the overlapping classes to a separable disjoint one. The watermark signature, which is uniquely assigned to each face image, reduces the uncertainty of modeling missing facial signature patterns of the unknown intruder classes. The adaptive metric learning algorithm proposed improves a recognition error rate from 2.4% to 0.07% using the ORL database, which is better than previously reported numbers using the Karhunen-Loeve transform, convolution network and the hidden Marcov model. The face recognition facilitates generation and distribution of the watermark key. The watermarking approach focuses on using salient facial features to make watermark signatures robust to various attacks and transformation. The coarse-to-fine approach is presented to integrate pyramidal face detection, geometry analysis and face segmentation for watermarking. We conclude with an assessment of the strength and weakness of the chosen approach as well as possible improvements of the biometric watermarking system.

  3. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  4. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  5. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  6. Human signatures in urban environments using low cost sensors

    NASA Astrophysics Data System (ADS)

    Winston, Mark; Zong, Lei; Calcutt, Wade; Jones, Barry; Houser, Jeff

    2006-05-01

    McQ has produced a family of small (98 cm 3), inexpensive ($100), unattended ground sensors well suited for urban environments. As a result, a broad range of data has been collected in urban settings. This paper discusses human signatures in urban environments using low cost seismic, infrared, acoustic, and magnetic transducers. Transducer performance and the effects of orientation, building construction, and environmental noise will be focused on. Detection methods used to exploit signatures and resulting performance statistics will also be discussed.

  7. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  8. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  9. Anonymous Signatures Revisited

    NASA Astrophysics Data System (ADS)

    Saraswat, Vishal; Yun, Aaram

    We revisit the notion of the anonymous signature, first formalized by Yang, Wong, Deng and Wang [10], and then further developed by Fischlin [4] and Zhang and Imai [11]. We present a new formalism of anonymous signature, where instead of the message, a part of the signature is withheld to maintain anonymity. We introduce the notion unpretendability to guarantee infeasibility for someone other than the correct signer to pretend authorship of the message and signature. Our definition retains applicability for all previous applications of the anonymous signature, provides stronger security, and is conceptually simpler. We give a generic construction from any ordinary signature scheme, and also show that the short signature scheme by Boneh and Boyen [2] can be naturally regarded as such a secure anonymous signature scheme according to our formalism.

  10. Italians Use Abstract Knowledge about Lexical Stress during Spoken-Word Recognition

    ERIC Educational Resources Information Center

    Sulpizio, Simone; McQueen, James M.

    2012-01-01

    In two eye-tracking experiments in Italian, we investigated how acoustic information and stored knowledge about lexical stress are used during the recognition of tri-syllabic spoken words. Experiment 1 showed that Italians use acoustic cues to a word's stress pattern rapidly in word recognition, but only for words with antepenultimate stress.…

  11. Modeling words with subword units in an articulatorily constrained speech recognition algorithm

    SciTech Connect

    Hogden, J.

    1997-11-20

    The goal of speech recognition is to find the most probable word given the acoustic evidence, i.e. a string of VQ codes or acoustic features. Speech recognition algorithms typically take advantage of the fact that the probability of a word, given a sequence of VQ codes, can be calculated.

  12. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  13. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  14. Neural mechanisms for voice recognition.

    PubMed

    Andics, Attila; McQueen, James M; Petersson, Karl Magnus; Gál, Viktor; Rudas, Gábor; Vidnyánszky, Zoltán

    2010-10-01

    We investigated neural mechanisms that support voice recognition in a training paradigm with fMRI. The same listeners were trained on different weeks to categorize the mid-regions of voice-morph continua as an individual's voice. Stimuli implicitly defined a voice-acoustics space, and training explicitly defined a voice-identity space. The pre-defined centre of the voice category was shifted from the acoustic centre each week in opposite directions, so the same stimuli had different training histories on different tests. Cortical sensitivity to voice similarity appeared over different time-scales and at different representational stages. First, there were short-term adaptation effects: increasing acoustic similarity to the directly preceding stimulus led to haemodynamic response reduction in the middle/posterior STS and in right ventrolateral prefrontal regions. Second, there were longer-term effects: response reduction was found in the orbital/insular cortex for stimuli that were most versus least similar to the acoustic mean of all preceding stimuli, and, in the anterior temporal pole, the deep posterior STS and the amygdala, for stimuli that were most versus least similar to the trained voice-identity category mean. These findings are interpreted as effects of neural sharpening of long-term stored typical acoustic and category-internal values. The analyses also reveal anatomically separable voice representations: one in a voice-acoustics space and one in a voice-identity space. Voice-identity representations flexibly followed the trained identity shift, and listeners with a greater identity effect were more accurate at recognizing familiar voices. Voice recognition is thus supported by neural voice spaces that are organized around flexible 'mean voice' representations. PMID:20553895

  15. Voice recognition.

    PubMed

    Mehta, Amit; McLoud, Theresa C

    2003-07-01

    Voice recognition represents one of the new technologies that are changing the practice of radiology. Thirty percent of radiology practices are either currently or plan to have voice recognition (VR) systems. VR software encompasses 4 core processes: spoken recognition of human speech, synthesis of human readable characters into speech, speaker identification and verification, and comprehension. Many software packages are available offering VR. All these packages should contain an interface with the radiology information system. The benefits include decreased turnaround time and cost savings. Its advantages include the transfer of secretarial duties to the radiologist with a result in decreased productivity. PMID:12867815

  16. Infra-sound Signature of Lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Badillo, E.; Johnson, J.; Edens, H. E.; Rison, W.; Thomas, R. J.

    2012-12-01

    We have analyzed thunder from over 200 lightning flashes to determine which part of thunder comes from the gas dynamic expansion of portions of the rapidly heated lightning channel and which from electrostatic field changes. Thunder signals were recorded by a ~1500 m network of 3 to 4 4-element microphone deployed in the Magdalena mountains of New Mexico in the summers of 2011 and 2012. The higher frequency infra-sound and audio-range portion of thunder is thought to come from the gas dynamic expansion, and the electrostatic mechanism gives rise to a signature infra-sound pulse peaked at a few Hz. More than 50 signature infra-sound pulses were observed in different portions of the thunder signal, with no preference towards the beginning or the end of the signal. Detection of the signature pulse occurs sometimes only for one array and sometimes for several arrays, which agrees with the theory that the pulse is highly directional (i.e., the recordings have to be in a specific position with respect to the cloud generating the pulse to be able to detect it). The detection of these pulses under quiet wind conditions by different acoustic arrays corroborates the electrostatic mechanism originally proposed by Wilson [1920], further studied by Dessler [1973] and Few [1985], observed by Bohannon [1983] and Balachandran [1979, 1983], and recently analyzed by Pasko [2009]. Pasko employed a model to explain the electrostatic-to-acoustic energy conversion and the initial compression waves in observed infrasonic pulses, which agrees with the observations we have made. We present thunder samples that exhibit signature infra-sound pulses at different times and acoustic source reconstruction to demonstrate the beaming effect.

  17. Acoustic transmitters for underwater neutrino telescopes.

    PubMed

    Ardid, Miguel; Martínez-Mora, Juan A; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  18. Acoustic Transmitters for Underwater Neutrino Telescopes

    PubMed Central

    Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  19. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    Westerberg, I. K.; McMillan, H. K.

    2015-09-01

    Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, e.g. for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40 % relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.

  20. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    Westerberg, I. K.; McMillan, H. K.

    2015-04-01

    Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, including for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40% relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.

  1. Effects of Cognitive Load on Speech Recognition

    ERIC Educational Resources Information Center

    Mattys, Sven L.; Wiget, Lukas

    2011-01-01

    The effect of cognitive load (CL) on speech recognition has received little attention despite the prevalence of CL in everyday life, e.g., dual-tasking. To assess the effect of CL on the interaction between lexically-mediated and acoustically-mediated processes, we measured the magnitude of the "Ganong effect" (i.e., lexical bias on phoneme…

  2. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  3. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  4. Dimensionality analysis of facial signatures in visible and thermal spectra

    NASA Astrophysics Data System (ADS)

    Short, Nathan; Hu, Shuowen; Gurram, Prudhvi

    2015-06-01

    Face images are an important source of information for biometric recognition and intelligence gathering. While face recognition research has made significant progress over the past few decades, recognition of faces at extended ranges is still highly problematic. Recognition of a low-resolution probe face image from a gallery database, typically containing high resolution facial imagery, leads to lowered performance than traditional face recognition techniques. Learning and super-resolution based approaches have been proposed to improve face recognition at extended ranges; however, the resolution threshold for face recognition has not been examined extensively. Establishing a threshold resolution corresponding to the theoretical and empirical limitations of low resolution face recognition will allow algorithm developers to avoid focusing on improving performance where no distinguishable information for identification exists in the acquired signal. This work examines the intrinsic dimensionality of facial signatures and seeks to estimate a lower bound for the size of a face image required for recognition. We estimate a lower bound for face signatures in the visible and thermal spectra by conducting eigenanalysis using principal component analysis (PCA) (i.e., eigenfaces approach). We seek to estimate the intrinsic dimensionality of facial signatures, in terms of reconstruction error, by maximizing the amount of variance retained in the reconstructed dataset while minimizing the number of reconstruction components. Extending on this approach, we also examine the identification error to estimate the dimensionality lower bound for low-resolution to high-resolution (LR-to-HR) face recognition performance. Two multimodal face datasets are used for this study to evaluate the effects of dataset size and diversity on the underlying intrinsic dimensionality: 1) 50-subject NVESD face dataset (containing visible, MWIR, LWIR face imagery) and 2) 119-subject WSRI face dataset

  5. Automatic speech recognition

    NASA Astrophysics Data System (ADS)

    Espy-Wilson, Carol

    2005-04-01

    Great strides have been made in the development of automatic speech recognition (ASR) technology over the past thirty years. Most of this effort has been centered around the extension and improvement of Hidden Markov Model (HMM) approaches to ASR. Current commercially-available and industry systems based on HMMs can perform well for certain situational tasks that restrict variability such as phone dialing or limited voice commands. However, the holy grail of ASR systems is performance comparable to humans-in other words, the ability to automatically transcribe unrestricted conversational speech spoken by an infinite number of speakers under varying acoustic environments. This goal is far from being reached. Key to the success of ASR is effective modeling of variability in the speech signal. This tutorial will review the basics of ASR and the various ways in which our current knowledge of speech production, speech perception and prosody can be exploited to improve robustness at every level of the system.

  6. Tracking and Characterization of Aircraft Wakes Using Acoustic and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Humphreys, William M., Jr.

    2005-01-01

    Data from the 2003 Denver International Airport Wake Acoustics Test are further examined to discern spectral content of aircraft wake signatures, and to compare three dimensional wake tracking from acoustic data to wake tracking data obtained through use of continuous wave and pulsed lidar. Wake tracking data derived from acoustic array data agree well with both continuous wave and pulsed lidar in the horizontal plane, but less well with pulsed lidar in the vertical direction. Results from this study show that the spectral distribution of acoustic energy in a wake signature varies greatly with aircraft type.

  7. MMW, IR, and SAM signature collection

    NASA Astrophysics Data System (ADS)

    Reichstetter, Fred; Ward, Mary E.

    2002-08-01

    During the development of smart weapon's seeker/sensors, it is imperative to collect high quality signatures of the targets the system is intended to engage. These signatures are used to support algorithm development so the system can find and engage the targets of interest in the specific kill area on the target. Englin AFB FL is the AF development center for munitions; and in support of the development effort, the 46th Test Wing (46 TW) has initiated significant improvements in collection capabilities for signatures in the MMW, Infrared and Seismic, Acoustic and Magnetic (SAM) spectrum. Additionally, the Joint Munitions Test and Evaluation program office maintains a fleet of foreign ground vehicle targets used for such signature collection including items such as tanks, SCUD missile launchers, air defense units such as SA-06, SA-8, SA-13, and associated ground support trucks and general purpose vehicles. The major test facility includes a 300 ft tower used for mounting the instrumentation suite that currently includes, 10, 35 and 94 GHz MMW and 2-5(mu) and 8-12(mu) IR instrumentation systems. This facility has undergone major improvements in terms of background signature reduction, construction of a high bay building to house the turntable on which the targets are mounted, and an additional in- ground stationary turntable primarily for IR signature collection. Our experience using this facility to collect signatures for the smart weapons development community has confirmed a significant improvement in quality and efficiency. The need for the stationary turntable signature collection capability was driven by the requirements of the IR community who are interested in collecting signatures in clutter. This tends to be contrary to the MMW community that desires minimum background clutter. The resulting location, adjacent to the MMW tower, allows variations in the type and amount of clutter background that could be incorporated and also provides maximum utilization of

  8. Signature-whistle production in undisturbed free-ranging bottlenose dolphins (Tursiops truncatus).

    PubMed Central

    Cook, Mandy L. H.; Sayigh, Laela S.; Blum, James E.; Wells, Randall S.

    2004-01-01

    Data from behavioural observations and acoustic recordings of free-ranging bottlenose dolphins (Tursiops truncatus) were analysed to determine whether signature whistles are produced by wild undisturbed dolphins, and how whistle production varies with activity and group size. The study animals were part of a resident community of bottlenose dolphins near Sarasota, Florida, USA. This community of dolphins provides a unique opportunity for the study of signature-whistle production, since most animals have been recorded during capture-release events since 1975. Three mother-calf pairs and their associates were recorded for a total of 141.25 h between May and August of 1994 and 1995. Whistles of undisturbed dolphins were compared with those recorded from the same individuals during capture-release events. Whistles were conservatively classified into one of four categories: signature, probable signature, upsweep or other. For statistical analyses, signature and probable signature whistles were combined into a 'signature' category; upsweep and other whistles were combined into a 'non-signature' category. Both 'signature' and 'non-signature' whistle frequencies significantly increased as group size increased. There were significant differences in whistle frequencies across activity types: both 'signature' and 'non-signature' whistles were most likely to occur during socializing and least likely to occur during travelling. There were no significant interactions between group size and activity type. Signature and probable signature whistles made up ca. 52% of all whistles produced by these free-ranging bottlenose dolphins. PMID:15293858

  9. A micro-Doppler sonar for acoustic surveillance in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  10. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  11. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  12. Seismic augmentation of acoustic monitoring of mortar fire

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas S.

    2007-10-01

    The US Army Corps of Engineers Research and Development Center participated in a joint ARL-NATO TG-53 field experiment and data collect at Yuma Proving Ground, AZ in early November 2005. Seismic and acoustic signatures from both muzzle blasts and impacts of small arms fire and artillery were recorded using 7 seismic arrays and 3 acoustic arrays. Arrays comprised of 12 seismic and 12 acoustic sensors each were located from 700 m to 18 km from gun positions. Preliminary analysis of signatures attributed to 60mm, 81mm, 120 mm mortars recorded at a seismic-acoustic array 1.1 km from gun position are presented. Seismic and acoustic array f-k analysis is performed to detect and characterize the source signature. Horizontal seismic data are analyzed to determine efficacy of a seismic discriminant for mortar and artillery sources. Rotation of North and East seismic components to radial and transverse components relative to the source-receiver path provide maximum surface wave amplitude on the transverse component. Angles of rotation agree well with f-k analysis of both seismic and acoustic signals. The spectral energy of the rotated transverse surface wave is observable on the all caliber of mortars at a distance of 1.1 km and is a reliable source discriminant for mortar sources at this distance. In a step towards automation, travel time stencils using local seismic and acoustic velocities are applied to seismic data for analysis and determination of source characteristics.

  13. Identification and Characteristics of Signature Whistles in Wild Bottlenose Dolphins (Tursiops truncatus) from Namibia

    PubMed Central

    Elwen, Simon Harvey; Nastasi, Aurora

    2014-01-01

    A signature whistle type is a learned, individually distinctive whistle type in a dolphin's acoustic repertoire that broadcasts the identity of the whistle owner. The acquisition and use of signature whistles indicates complex cognitive functioning that requires wider investigation in wild dolphin populations. Here we identify signature whistle types from a population of approximately 100 wild common bottlenose dolphins (Tursiops truncatus) inhabiting Walvis Bay, and describe signature whistle occurrence, acoustic parameters and temporal production. A catalogue of 43 repeatedly emitted whistle types (REWTs) was generated by analysing 79 hrs of acoustic recordings. From this, 28 signature whistle types were identified using a method based on the temporal patterns in whistle sequences. A visual classification task conducted by 5 naïve judges showed high levels of agreement in classification of whistles (Fleiss-Kappa statistic, κ = 0.848, Z = 55.3, P<0.001) and supported our categorisation. Signature whistle structure remained stable over time and location, with most types (82%) recorded in 2 or more years, and 4 identified at Walvis Bay and a second field site approximately 450 km away. Whistle acoustic parameters were consistent with those of signature whistles documented in Sarasota Bay (Florida, USA). We provide evidence of possible two-voice signature whistle production by a common bottlenose dolphin. Although signature whistle types have potential use as a marker for studying individual habitat use, we only identified approximately 28% of those from the Walvis Bay population, despite considerable recording effort. We found that signature whistle type diversity was higher in larger dolphin groups and groups with calves present. This is the first study describing signature whistles in a wild free-ranging T. truncatus population inhabiting African waters and it provides a baseline on which more in depth behavioural studies can be based. PMID:25203814

  14. Towards acoustic UHE neutrino detection in the Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.

    2012-11-01

    Acoustic detection is proposed as a promising detection technique for Extreme High energy neutrinos. This technique is based on the detection of the acoustic signature of neutrino-induced showers in water: a bipolar signal, having a bandwidth of few 10 kHz, with cylindrical wave front. During the last decade, the possibility of access to deep-sea infrastructures developed for Cherenkov telescopes, allowed start-up of intense R&D activities on acoustic detection. In the framework of the activities of ANTARES, NEMO and KM3NeT, several small size experiments were run in order to measure acoustic noise in deep sea and test “neutrino-like” acoustic event detection. These activities have set milestones both for future HE neutrino detectors, for innovative deep-sea technology and for Earth-Sea science. A review on acoustic neutrino detection and projects running in the Mediterranean Sea is presented.

  15. Novel underwater soundscape: acoustic repertoire of plainfin midshipman fish.

    PubMed

    McIver, Eileen L; Marchaterre, Margaret A; Rice, Aaron N; Bass, Andrew H

    2014-07-01

    Toadfishes are among the best-known groups of sound-producing (vocal) fishes and include species commonly known as toadfish and midshipman. Although midshipman have been the subject of extensive investigation of the neural mechanisms of vocalization, this is the first comprehensive, quantitative analysis of the spectro-temporal characters of their acoustic signals and one of the few for fishes in general. Field recordings of territorial, nest-guarding male midshipman during the breeding season identified a diverse vocal repertoire composed of three basic sound types that varied widely in duration, harmonic structure and degree of amplitude modulation (AM): 'hum', 'grunt' and 'growl'. Hum duration varied nearly 1000-fold, lasting for minutes at a time, with stable harmonic stacks and little envelope modulation throughout the sound. By contrast, grunts were brief, ~30-140 ms, broadband signals produced both in isolation and repetitively as a train of up to 200 at intervals of ~0.5-1.0 s. Growls were also produced alone or repetitively, but at variable intervals of the order of seconds with durations between those of grunts and hums, ranging 60-fold from ~200 ms to 12 s. Growls exhibited prominent harmonics with sudden shifts in pulse repetition rate and highly variable AM patterns, unlike the nearly constant AM of grunt trains and flat envelope of hums. Behavioral and neurophysiological studies support the hypothesis that each sound type's unique acoustic signature contributes to signal recognition mechanisms. Nocturnal production of these sounds against a background chorus dominated constantly for hours by a single sound type, the multi-harmonic hum, reveals a novel underwater soundscape for fish. PMID:24737759

  16. Digital Signature Management.

    ERIC Educational Resources Information Center

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  17. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  18. The detection and recognition of underground nuclear explosions

    NASA Astrophysics Data System (ADS)

    Argo, P.; Clark, R. A.; Douglas, A.; Gupta, V.; Hassard, J.; Lewis, P. M.; Maguire, P. K. H.; Playford, K.; Ringdal, F.

    1995-07-01

    This paper reports on a joint meeting of the Royal Astronomical Society's Joint Association for Geophysics and VERTIC (the Verification Technology Information Centre) held in London in 1992. The topics presented focused on the detection and recognition of underground nuclear explosions. The objective of the meeting was to emphasize the multi-methodological approach that is important in verifying compliance with test-ban treaties. An overview of seismological monitoring was followed by a discussion of the technical and scientific aspects of a global seismic monitoring network, and in particular of the 1991 experiment to test the large-scale international exchange of seismic data between recording stations and data centres world-wide. The current capabilities of satellite remote-sensing were presented, and their use explained in terms of both the provision of information for monitoring the development of foreign nuclear testing programmes and also for providing sufficient information for the evaluation of treaty compliance. A review of radio-isotope sampling showed how the isotopic signature of both air and ground based sampling programmes can be diagnostic of the nuclear source. Finally, previously classified research on the ionospheric effects of underground nuclear explosions was presented, the generated acoustic waves disturbing the ionosphere and producing detectable changes in the reflection of radio and radar signals which have potential as a monitoring technique.

  19. Theoretical Basis for Finite Difference Extrapolation of Sonic Boom Signatures

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.

    1996-01-01

    Calculation of sonic boom signatures for aircraft has traditionally followed the methods of Whitham' and Walkden. The wave disturbance generated by the vehicle is obtained by area rule linearized supersonic flow methods, which yield a locally axisymmetric asymptotic solution. This solution is acoustic in nature, i.e., first order in disturbance quantities, and corresponds to ray acoustics. Cumulative nonlinear distortion of the signature is incorporated by using this solution to adjust propagation speed to first order, thus yielding a solution second order in disturbance quantities. The effects of atmospheric gradients are treated by Blokhintzov's method of geometrical acoustics. Both nonlinear signature evolution and ray tracing are applied as if the pressure field very close to the vehicle were actually that given by the source term (the 'F-function') of the asymptotic linearized flow solution. The viewpoint is thus that the flow solution exists at a small radius near the vehicle, and may be treated as an input to an extrapolation procedure consisting of ray tracing and nonlinear aging. The F-function is often regarded as a representation of a near-field pressure signature, and it is common for computational implementations to treat it interchangeably with the pressure signature. There is a 'matching radius' between the source function and the subsequent propagation extrapolation. This viewpoint has been supported by wind tunnel tests of simple models, and very typically yields correct results for actual flight vehicles. The assumption that the F-function and near-field signature are interchangeable is generally not correct. The flowfield of a vehicle which is not axisymmetric contains crossflow components which are very significant at small radii and less so at larger distances. From an acoustical viewpoint, the crossflow is equivalent to source diffraction portions of the wave field. Use of the F-function as a near field signature effectively assumes that the

  20. UV Signature Mutations †

    PubMed Central

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  1. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  2. Traceable Ring Signature

    NASA Astrophysics Data System (ADS)

    Fujisaki, Eiichiro; Suzuki, Koutarou

    The ring signature allows a signer to leak secrets anonymously, without the risk of identity escrow. At the same time, the ring signature provides great flexibility: No group manager, no special setup, and the dynamics of group choice. The ring signature is, however, vulnerable to malicious or irresponsible signers in some applications, because of its anonymity. In this paper, we propose a traceable ring signature scheme. A traceable ring scheme is a ring signature except that it can restrict “excessive” anonymity. The traceable ring signature has a tag that consists of a list of ring members and an issue that refers to, for instance, a social affair or an election. A ring member can make any signed but anonymous opinion regarding the issue, but only once (per tag). If the member submits another signed opinion, possibly pretending to be another person who supports the first opinion, the identity of the member is immediately revealed. If the member submits the same opinion, for instance, voting “yes” regarding the same issue twice, everyone can see that these two are linked. The traceable ring signature can suit to many applications, such as an anonymous voting on a BBS. We formalize the security definitions for this primitive and show an efficient and simple construction in the random oracle model.

  3. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  4. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  5. Place recognition using batlike sonar

    PubMed Central

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-01-01

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map. DOI: http://dx.doi.org/10.7554/eLife.14188.001 PMID:27481189

  6. Emotion Recognition

    NASA Astrophysics Data System (ADS)

    Neiberg, Daniel; Elenius, Kjell; Burger, Susanne

    Studies of expressive speech have shown that discrete emotions such as anger, fear, joy, and sadness can be accurately communicated, also cross-culturally, and that each emotion is associated with reasonably specific acoustic characteristics [8]. However, most previous research has been conducted on acted emotions. These certainly have something in common with naturally occurring emotions but may also be more intense and prototypical than authentic, everyday expressions [6, 13]. Authentic emotions are, on the other hand, often a combination of different affective states and occur rather infrequently in everyday life.

  7. Research in continuous speech recognition

    NASA Astrophysics Data System (ADS)

    Schwartz, R. M.; Chow, Y. L.; Makhoul, J.

    1983-12-01

    This annual report describes the work performed during the past year in an ongoing effort to design and implement a system that performs phonetic recognition of continuous speech. The general approach used it to develop a Hidden Markov Model (HMM) of speech parameter movements, which can be used to distinguish among the different phonemes. The resulting phoneme models incorporate the contextural effects of neighboring phonemes. One main aspect of this research is to incorporate both spectral parameters and acoustic-phonetic features into the HMM formalism.

  8. Signature extension studies

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.; Thomas, G. S.; Nalepka, R. F.

    1974-01-01

    The importance of specific spectral regions to signature extension is explored. In the recent past, the signature extension task was focused on the development of new techniques. Tested techniques are now used to investigate this spectral aspect of the large area survey. Sets of channels were sought which, for a given technique, were the least affected by several sources of variation over four data sets and yet provided good object class separation on each individual data set. Using sets of channels determined as part of this study, signature extension was accomplished between data sets collected over a six-day period and over a range of about 400 kilometers.

  9. Assessing the acoustical climate of underground stations.

    PubMed

    Nowicka, Elzbieta

    2007-01-01

    Designing a proper acoustical environment--indispensable to speech recognition--in long enclosures is difficult. Although there is some literature on the acoustical conditions in underground stations, there is still little information about methods that make estimation of correct reverberation conditions possible. This paper discusses the assessment of the reverberation conditions of underground stations. A comparison of the measurements of reverberation time in Warsaw's underground stations with calculated data proves there are divergences between measured and calculated early decay time values, especially for long source-receiver distances. Rapid speech transmission index values for measured stations are also presented. PMID:18082025

  10. MORPHOLOGICAL SIGNATURES AND GENOMIC CORRELATES IN GLIOBLASTOMA

    PubMed Central

    Cooper, Lee A.D.; Kong, Jun; Wang, Fusheng; Kurc, Tahsin; Moreno, Carlos S.; Brat, Daniel J.; Saltz, Joel H.

    2011-01-01

    Large multimodal datasets such as The Cancer Genome Atlas present an opportunity to perform correlative studies of tissue morphology and genomics to explore the morphological phenotypes associated with gene expression and genetic alterations. In this paper we present an investigation of Cancer Genome Atlas data that correlates morphology with recently discovered molecular subtypes of glioblastoma. Using image analysis to segment and extract features from millions of cells, we calculate high-dimensional morphological signatures to describe trends of nuclear morphology and cytoplasmic staining in whole-slide images. We illustrate the similarities between the analysis of these signatures and predictive studies of gene expression, both in terms of limited sample size and high-dimensionality. Our top-down analysis demonstrates the power of morphological signatures to predict clinically-relevant molecular tumor subtypes, with 85.4% recognition of the proneural subtype. A complementary bottom-up analysis shows that self-aggregating clusters have statistically significant associations with tumor subtype and reveals the existence of remarkable structure in the morphological signature space of glioblastomas. PMID:22183148

  11. Are there molecular signatures?

    SciTech Connect

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  12. Molecular Recognition and Ligand Association

    NASA Astrophysics Data System (ADS)

    Baron, Riccardo; McCammon, J. Andrew

    2013-04-01

    We review recent developments in our understanding of molecular recognition and ligand association, focusing on two major viewpoints: (a) studies that highlight new physical insight into the molecular recognition process and the driving forces determining thermodynamic signatures of binding and (b) recent methodological advances in applications to protein-ligand binding. In particular, we highlight the challenges posed by compensating enthalpic and entropic terms, competing solute and solvent contributions, and the relevance of complex configurational ensembles comprising multiple protein, ligand, and solvent intermediate states. As more complete physics is taken into account, computational approaches increase their ability to complement experimental measurements, by providing a microscopic, dynamic view of ensemble-averaged experimental observables. Physics-based approaches are increasingly expanding their power in pharmacology applications.

  13. Acoustic Microfluidics for Bioanalytical Application

    NASA Astrophysics Data System (ADS)

    Lopez, Gabriel

    2013-03-01

    This talk will present new methods the use of ultrasonic standing waves in microfluidic systems to manipulate microparticles for the purpose of bioassays and bioseparations. We have recently developed multi-node acoustic focusing flow cells that can position particles into many parallel flow streams and have demonstrated the potential of such flow cells in the development of high throughput, parallel flow cytometers. These experiments show the potential for the creation of high throughput flow cytometers in applications requiring high flow rates and rapid detection of rare cells. This talk will also present the development of elastomeric capture microparticles and their use in acoustophoretic separations. We have developed simple methods to form elastomeric particles that are surface functionalized with biomolecular recognition reagents. These compressible particles exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. These particles can be continuously separated from cells by flowing them through a microfluidic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast elastomeric particles at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast particles and cells. Separated elastomeric particles were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers (including biomolecules and cells) in a number of biological sample types. We acknowledge support through the NSF Research Triangle MRSEC.

  14. Meteor signature interpretation

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  15. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  16. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  17. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  18. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  19. Improved shape-signature and matching methods for model-based robotic vision

    NASA Technical Reports Server (NTRS)

    Schwartz, J. T.; Wolfson, H. J.

    1987-01-01

    Researchers describe new techniques for curve matching and model-based object recognition, which are based on the notion of shape-signature. The signature which researchers use is an approximation of pointwise curvature. Described here is curve matching algorithm which generalizes a previous algorithm which was developed using this signature, allowing improvement and generalization of a previous model-based object recognition scheme. The results and the experiments described relate to 2-D images. However, natural extensions to the 3-D case exist and are being developed.

  20. UV signature mutations.

    PubMed

    Brash, Douglas E

    2015-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations—deviations from a random distribution of base changes to create a pattern typical of that mutagen—and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the nontranscribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; UV's nonsignature mutations may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  1. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  2. Offline signature verification and skilled forgery detection using HMM and sum graph features with ANN and knowledge based classifier

    NASA Astrophysics Data System (ADS)

    Mehta, Mohit; Choudhary, Vijay; Das, Rupam; Khan, Ilyas

    2010-02-01

    Signature verification is one of the most widely researched areas in document analysis and signature biometric. Various methodologies have been proposed in this area for accurate signature verification and forgery detection. In this paper we propose a unique two stage model of detecting skilled forgery in the signature by combining two feature types namely Sum graph and HMM model for signature generation and classify them with knowledge based classifier and probability neural network. We proposed a unique technique of using HMM as feature rather than a classifier as being widely proposed by most of the authors in signature recognition. Results show a higher false rejection than false acceptance rate. The system detects forgeries with an accuracy of 80% and can detect the signatures with 91% accuracy. The two stage model can be used in realistic signature biometric applications like the banking applications where there is a need to detect the authenticity of the signature before processing documents like checks.

  3. Potential Competitive Dynamics of Acoustic Ecology.

    PubMed

    Radford, C A; Montgomery, J C

    2016-01-01

    The top predators in coastal marine ecosystems, such as whales, dolphins, seabirds, and large predatory fishes (including sharks), may compete with each other to exploit food aggregations. Finding these patchy food sources and being first to a food patch could provide a significant competitive advantage. Our hypothesis is that food patches have specific sound signatures that marine predators could detect and that acoustic sources and animal sensory capabilities may contribute to competition dynamics. Preliminary analysis shows that diving gannets have a distinct spectral signature between 80 and 200 Hz, which falls within the hearing sensitivity of large pelagic fishes. Therefore, we suggest that diving birds may contribute to the sound signatures of food aggregations, linking competition dynamics both above and below the water surface. PMID:26611047

  4. Improving Acoustic Models by Watching Television

    NASA Technical Reports Server (NTRS)

    Witbrock, Michael J.; Hauptmann, Alexander G.

    1998-01-01

    Obtaining sufficient labelled training data is a persistent difficulty for speech recognition research. Although well transcribed data is expensive to produce, there is a constant stream of challenging speech data and poor transcription broadcast as closed-captioned television. We describe a reliable unsupervised method for identifying accurately transcribed sections of these broadcasts, and show how these segments can be used to train a recognition system. Starting from acoustic models trained on the Wall Street Journal database, a single iteration of our training method reduced the word error rate on an independent broadcast television news test set from 62.2% to 59.5%.

  5. Invisibly Sanitizable Signature without Pairings

    NASA Astrophysics Data System (ADS)

    Yum, Dae Hyun; Lee, Pil Joong

    Sanitizable signatures allow sanitizers to delete some pre-determined parts of a signed document without invalidating the signature. While ordinary sanitizable signatures allow verifiers to know how many subdocuments have been sanitized, invisibly sanitizable signatures do not leave any clue to the sanitized subdocuments; verifiers do not know whether or not sanitizing has been performed. Previous invisibly sanitizable signature scheme was constructed based on aggregate signature with pairings. In this article, we present the first invisibly sanitizable signature without using pairings. Our proposed scheme is secure under the RSA assumption.

  6. Recognition intent and visual word recognition.

    PubMed

    Wang, Man-Ying; Ching, Chi-Le

    2009-03-01

    This study adopted a change detection task to investigate whether and how recognition intent affects the construction of orthographic representation in visual word recognition. Chinese readers (Experiment 1-1) and nonreaders (Experiment 1-2) detected color changes in radical components of Chinese characters. Explicit recognition demand was imposed in Experiment 2 by an additional recognition task. When the recognition was implicit, a bias favoring the radical location informative of character identity was found in Chinese readers (Experiment 1-1), but not nonreaders (Experiment 1-2). With explicit recognition demands, the effect of radical location interacted with radical function and word frequency (Experiment 2). An estimate of identification performance under implicit recognition was derived in Experiment 3. These findings reflect the joint influence of recognition intent and orthographic regularity in shaping readers' orthographic representation. The implication for the role of visual attention in word recognition was also discussed. PMID:19036609

  7. NATO TG-53: acoustic detection of weapon firing joint field experiment

    NASA Astrophysics Data System (ADS)

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  8. Weapon identification using hierarchical classification of acoustic signatures

    NASA Astrophysics Data System (ADS)

    Khan, Saad; Divakaran, Ajay; Sawhney, Harpreet S.

    2009-05-01

    We apply a unique hierarchical audio classification technique to weapon identification using gunshot analysis. The Audio Classification classifies each audio segment as one of ten weapon classes (e.g., 9mm, 22, shotgun etc.) using lowcomplexity Gaussian Mixture Models (GMM). The first level of hierarchy consists of classification into broad weapons categories such as Rifle, Hand-Gun etc. and the second consists of classification into specific weapons such as 9mm, 357 etc. Our experiments have yielded over 90% classification accuracy at the coarse (rifle-handgun) level of the classification hierarchy and over 85% accuracy at the finer level (weapon category such as 9mm).

  9. Limitations on wind-tunnel pressure signature extrapolation

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Darden, Christine M.

    1992-01-01

    Analysis of some recent experimental sonic boom data has revived the hypothesis that there is a closeness limit to the near-field separation distance from which measured wind tunnel pressure signatures can be extrapolated to the ground as though generated by a supersonic-cruise aircraft. Geometric acoustic theory is used to derive an estimate of this distance and the sample data is used to provide a preliminary indication of practical separation distance values.

  10. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  11. Recognition Tunneling

    PubMed Central

    Lindsay, Stuart; He, Jin; Sankey, Otto; Hapala, Prokop; Jelinek, Pavel; Zhang, Peiming; Chang, Shuai; Huang, Shuo

    2010-01-01

    Single molecules in a tunnel junction can now be interrogated reliably using chemically-functionalized electrodes. Monitoring stochastic bonding fluctuations between a ligand bound to one electrode and its target bound to a second electrode (“tethered molecule-pair” configuration) gives insight into the nature of the intermolecular bonding at a single molecule-pair level, and defines the requirements for reproducible tunneling data. Simulations show that there is an instability in the tunnel gap at large currents, and this results in a multiplicity of contacts with a corresponding spread in the measured currents. At small currents (i.e. large gaps) the gap is stable, and functionalizing a pair of electrodes with recognition reagents (the “free analyte” configuration) can generate a distinct tunneling signal when an analyte molecule is trapped in the gap. This opens up a new interface between chemistry and electronics with immediate implications for rapid sequencing of single DNA molecules. PMID:20522930

  12. Practical quantum digital signature

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  13. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  14. Fifty years of progress in acoustic phonetics

    NASA Astrophysics Data System (ADS)

    Stevens, Kenneth N.

    2004-10-01

    Three events that occurred 50 or 60 years ago shaped the study of acoustic phonetics, and in the following few decades these events influenced research and applications in speech disorders, speech development, speech synthesis, speech recognition, and other subareas in speech communication. These events were: (1) the source-filter theory of speech production (Chiba and Kajiyama; Fant); (2) the development of the sound spectrograph and its interpretation (Potter, Kopp, and Green; Joos); and (3) the birth of research that related distinctive features to acoustic patterns (Jakobson, Fant, and Halle). Following these events there has been systematic exploration of the articulatory, acoustic, and perceptual bases of phonological categories, and some quantification of the sources of variability in the transformation of this phonological representation of speech into its acoustic manifestations. This effort has been enhanced by studies of how children acquire language in spite of this variability and by research on speech disorders. Gaps in our knowledge of this inherent variability in speech have limited the directions of applications such as synthesis and recognition of speech, and have led to the implementation of data-driven techniques rather than theoretical principles. Some examples of advances in our knowledge, and limitations of this knowledge, are reviewed.

  15. Current signature sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Karin E. (Inventor)

    2005-01-01

    A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.

  16. Current Signature Sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Mario (Inventor); Bassignani, Karin E. (Inventor)

    2005-01-01

    A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.

  17. Recognition of information-bearing elements in speech

    NASA Astrophysics Data System (ADS)

    Hermansky, Hynek

    2003-10-01

    An acoustic speech signal carries many different kinds of information: the basic linguistic message, many characteristics of the speaker of the message, details of the environment in which the message was produced and transmitted, etc. The human auditory/cognitive system is able to detect, decode, and separate all these information sources. Understanding this ability and emulating it on a machine has been an important but elusive scientific and engineering goal for a long time. This talk critically surveys the situation in the speech recognition field. It puts automatic recognition of speech in perspective with other acoustic signal detection and classification tasks, reviews some historical, contemporary, and evolving techniques for machine recognition of speech, critically compares competing techniques, and gives some examples of applications in speech, speaker, and language recognition and identification. The talk is intended for an audience interested but not directly involved in the processing of speech.

  18. Call recognition and individual identification of fish vocalizations based on automatic speech recognition: An example with the Lusitanian toadfish.

    PubMed

    Vieira, Manuel; Fonseca, Paulo J; Amorim, M Clara P; Teixeira, Carlos J C

    2015-12-01

    The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types. PMID:26723348

  19. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  20. Acoustic vs VHF Lightning Location Systems

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Lapierre, J. L.; Stock, M.; Erives, H.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    A single acoustic array can determine the 3-D location of lightning sources by using time of arrival differences arriving at the microphones and ranging techniques. The range is obtained from the time difference between the electromagnetic emission (detected by the acoustic data logger) and the acoustic signal produced by lightning. Audio frequency acoustic location systems are sensitive to the gas dynamic expansion of portions of a rapidly heating lightning channel, and so acoustic signatures are produced by a wide variety of different lightning discharge processes including: return strokes, K changes, M components, leader stepping and more. Infrasonic frequency range acoustic sensors are also sensitive to gas dynamic expansion, and in addition are also sensitive to processes which are electro-static in nature. RF location systems such as the Lightning Mapping Array (LMA) and the Continuous Sampling Broadband VHF Digital Interferometer (DITF) from New Mexico Tech (NMT) produce high quality maps of lightning discharges; however, they are sensitive to breakdown processes only and can not locate sources originating in already well conducting channels. During the summer of 2013 an acoustic audio-range array and an infrasound array were co-located with the NMT DITF in the Magdalena mountains of central New Mexico, where an LMA is also operating. The audio-range acoustic array consists of custom-designed GPS-synced data loggers with a 50 kHz sampling rate and audio range omnidirectional dynamic microphones. The infrasound array uses GPS time-synced data logger and custom-designed broadband microphones with flat response in the band of 0.01 to 500 Hz. The DITF uses flat plate dE/dt antennas bandpass filtered to 20 to 80 MHz, providing 2D maps of lightning emissions with very high (sub-microsecond) timing resolution. Both acoustic and interferometric arrays of antennas determine location of sources by coherently comparing the signals arriving at the antennas (or

  1. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  2. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with "sound visualization," acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-reverberation methods, both essentialfor visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, "Can we see two birds singing or one bird with two beaks?"

  3. Multiple levels of linguistic and paralinguistic features contribute to voice recognition.

    PubMed

    Zarate, Jean Mary; Tian, Xing; Woods, Kevin J P; Poeppel, David

    2015-01-01

    Voice or speaker recognition is critical in a wide variety of social contexts. In this study, we investigated the contributions of acoustic, phonological, lexical, and semantic information toward voice recognition. Native English speaking participants were trained to recognize five speakers in five conditions: non-speech, Mandarin, German, pseudo-English, and English. We showed that voice recognition significantly improved as more information became available, from purely acoustic features in non-speech to additional phonological information varying in familiarity. Moreover, we found that the recognition performance is transferable between training and testing in phonologically familiar conditions (German, pseudo-English, and English), but not in unfamiliar (Mandarin) or non-speech conditions. These results provide evidence suggesting that bottom-up acoustic analysis and top-down influence from phonological processing collaboratively govern voice recognition. PMID:26088739

  4. Multiple levels of linguistic and paralinguistic features contribute to voice recognition

    PubMed Central

    Mary Zarate, Jean; Tian, Xing; Woods, Kevin J. P.; Poeppel, David

    2015-01-01

    Voice or speaker recognition is critical in a wide variety of social contexts. In this study, we investigated the contributions of acoustic, phonological, lexical, and semantic information toward voice recognition. Native English speaking participants were trained to recognize five speakers in five conditions: non-speech, Mandarin, German, pseudo-English, and English. We showed that voice recognition significantly improved as more information became available, from purely acoustic features in non-speech to additional phonological information varying in familiarity. Moreover, we found that the recognition performance is transferable between training and testing in phonologically familiar conditions (German, pseudo-English, and English), but not in unfamiliar (Mandarin) or non-speech conditions. These results provide evidence suggesting that bottom-up acoustic analysis and top-down influence from phonological processing collaboratively govern voice recognition. PMID:26088739

  5. What Is an Acoustic Neuroma

    MedlinePlus

    ... Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, is a rare benign tumor of the ... Acoustic Neuroma? An acoustic neuroma, known as a vestibular schwannoma, is a benign (non-cancerous) growth that ...

  6. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  7. The Johns Hopkins University multimodal dataset for human action recognition

    NASA Astrophysics Data System (ADS)

    Murray, Thomas S.; Mendat, Daniel R.; Pouliquen, Philippe O.; Andreou, Andreas G.

    2015-05-01

    The Johns Hopkins University MultiModal Action (JHUMMA) dataset contains a set of twenty-one actions recorded with four sensor systems in three different modalities. The data was collected with a data acquisition system that includes three independent active sonar devices at three different frequencies and a Microsoft Kinect sensor that provides both RGB and Depth data. We have developed algorithms for human action recognition from active acoustics and provide benchmark baseline recognition performance results.

  8. Real-time hardware continuous speech recognition system

    SciTech Connect

    Peckham, J.; Green, J.; Canning, J.; Stephens, P.

    1982-01-01

    Using both parallel and pipelined processing techniques, matching up to several hundred words from a previously stored vocabulary of whole word templates is possible in real time. An efficient single pass dynamic programming algorithm is used to find the sequence of templates that best represents the input. Continuous recognition is achieved using a traceback technique on partial recognition results. The acoustic analysis contains a number of features to improve performance. In particular a novel noise compensation algorithm is briefly described. 6 references.

  9. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  10. Pen-chant: Acoustic emissions of handwriting and drawing

    NASA Astrophysics Data System (ADS)

    Seniuk, Andrew G.

    The sounds generated by a writing instrument ('pen-chant') provide a rich and underutilized source of information for pattern recognition. We examine the feasibility of recognition of handwritten cursive text, exclusively through an analysis of acoustic emissions. We design and implement a family of recognizers using a template matching approach, with templates and similarity measures derived variously from: smoothed amplitude signal with fixed resolution, discrete sequence of magnitudes obtained from peaks in the smoothed amplitude signal, and ordered tree obtained from a scale space signal representation. Test results are presented for recognition of isolated lowercase cursive characters and for whole words. We also present qualitative results for recognizing gestures such as circling, scratch-out, check-marks, and hatching. Our first set of results, using samples provided by the author, yield recognition rates of over 70% (alphabet) and 90% (26 words), with a confidence of +/-8%, based solely on acoustic emissions. Our second set of results uses data gathered from nine writers. These results demonstrate that acoustic emissions are a rich source of information, usable---on their own or in conjunction with image-based features---to solve pattern recognition problems. In future work, this approach can be applied to writer identification, handwriting and gesture-based computer input technology, emotion recognition, and temporal analysis of sketches.

  11. A Signature Style

    ERIC Educational Resources Information Center

    Smiles, Robin V.

    2005-01-01

    This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…

  12. Privacy protection schemes for fingerprint recognition systems

    NASA Astrophysics Data System (ADS)

    Marasco, Emanuela; Cukic, Bojan

    2015-05-01

    The deployment of fingerprint recognition systems has always raised concerns related to personal privacy. A fingerprint is permanently associated with an individual and, generally, it cannot be reset if compromised in one application. Given that fingerprints are not a secret, potential misuses besides personal recognition represent privacy threats and may lead to public distrust. Privacy mechanisms control access to personal information and limit the likelihood of intrusions. In this paper, image- and feature-level schemes for privacy protection in fingerprint recognition systems are reviewed. Storing only key features of a biometric signature can reduce the likelihood of biometric data being used for unintended purposes. In biometric cryptosystems and biometric-based key release, the biometric component verifies the identity of the user, while the cryptographic key protects the communication channel. Transformation-based approaches only a transformed version of the original biometric signature is stored. Different applications can use different transforms. Matching is performed in the transformed domain which enable the preservation of low error rates. Since such templates do not reveal information about individuals, they are referred to as cancelable templates. A compromised template can be re-issued using a different transform. At image-level, de-identification schemes can remove identifiers disclosed for objectives unrelated to the original purpose, while permitting other authorized uses of personal information. Fingerprint images can be de-identified by, for example, mixing fingerprints or removing gender signature. In both cases, degradation of matching performance is minimized.

  13. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  14. Preserved Acoustic Hearing in Cochlear Implantation Improves Speech Perception

    PubMed Central

    Sheffield, Sterling W.; Jahn, Kelly; Gifford, René H.

    2015-01-01

    Background With improved surgical techniques and electrode design, an increasing number of cochlear implant (CI) recipients have preserved acoustic hearing in the implanted ear, thereby resulting in bilateral acoustic hearing. There are currently no guidelines, however, for clinicians with respect to audio-metric criteria and the recommendation of amplification in the implanted ear. The acoustic bandwidth necessary to obtain speech perception benefit from acoustic hearing in the implanted ear is unknown. Additionally, it is important to determine if, and in which listening environments, acoustic hearing in both ears provides more benefit than hearing in just one ear, even with limited residual hearing. Purpose The purposes of this study were to (1) determine whether acoustic hearing in an ear with a CI provides as much speech perception benefit as an equivalent bandwidth of acoustic hearing in the non-implanted ear, and (2) determine whether acoustic hearing in both ears provides more benefit than hearing in just one ear. Research Design A repeated-measures, within-participant design was used to compare performance across listening conditions. Study Sample Seven adults with CIs and bilateral residual acoustic hearing (hearing preservation) were recruited for the study. Data Collection and Analysis Consonant-nucleus-consonant word recognition was tested in four conditions: CI alone, CI + acoustic hearing in the nonimplanted ear, CI + acoustic hearing in the implanted ear, and CI + bilateral acoustic hearing. A series of low-pass filters were used to examine the effects of acoustic bandwidth through an insert earphone with amplification. Benefit was defined as the difference among conditions. The benefit of bilateral acoustic hearing was tested in both diffuse and single-source background noise. Results were analyzed using repeated-measures analysis of variance. Results Similar benefit was obtained for equivalent acoustic frequency bandwidth in either ear. Acoustic

  15. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  16. NW-MILO Acoustic Data Collection

    SciTech Connect

    Matzner, Shari; Myers, Joshua R.; Maxwell, Adam R.; Jones, Mark E.

    2010-02-17

    There is an enduring requirement to improve our ability to detect potential threats and discriminate these from the legitimate commercial and recreational activity ongoing in the nearshore/littoral portion of the maritime domain. The Northwest Maritime Information and Littoral Operations (NW-MILO) Program at PNNL’s Coastal Security Institute in Sequim, Washington is establishing a methodology to detect and classify these threats - in part through developing a better understanding of acoustic signatures in a near-shore environment. The purpose of the acoustic data collection described here is to investigate the acoustic signatures of small vessels. The data is being recorded continuously, 24 hours a day, along with radar track data and imagery. The recording began in August 2008, and to date the data contains tens of thousands of signals from small vessels recorded in a variety of environmental conditions. The quantity and variety of this data collection, with the supporting imagery and radar track data, makes it particularly useful for the development of robust acoustic signature models and advanced algorithms for signal classification and information extraction. The underwater acoustic sensing system is part of a multi-modal sensing system that is operating near the mouth of Sequim Bay. Sequim Bay opens onto the Straight of Juan de Fuca, which contains part of the border between the U.S. and Canada. Table 1 lists the specific components used for the NW-MILO system. The acoustic sensor is a hydrophone permanently deployed at a mean depth of about 3 meters. In addition to a hydrophone, the other sensors in the system are a marine radar, an electro-optical (EO) camera and an infra-red (IR) camera. The radar is integrated with a vessel tracking system (VTS) that provides position, speed and heading information. The data from all the sensors is recorded and saved to a central server. The data has been validated in terms of its usability for characterizing the

  17. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  18. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  19. Robust coarticulatory modeling for continuous speech recognition

    NASA Astrophysics Data System (ADS)

    Schwartz, R.; Chow, Y. L.; Dunham, M. O.; Kimball, O.; Krasner, M.; Kubala, F.; Makhoul, J.; Price, P.; Roucos, S.

    1986-10-01

    The purpose of this project is to perform research into algorithms for the automatic recognition of individual sounds or phonemes in continuous speech. The algorithms developed should be appropriate for understanding large-vocabulary continuous speech input and are to be made available to the Strategic Computing Program for incorporation in a complete word recognition system. This report describes process to date in developing phonetic models that are appropriate for continuous speech recognition. In continuous speech, the acoustic realization of each phoneme depends heavily on the preceding and following phonemes: a process known as coarticulation. Thus, while there are relatively few phonemes in English (on the order of fifty or so), the number of possible different accoustic realizations is in the thousands. Therefore, to develop high-accuracy recognition algorithms, one may need to develop literally thousands of relatively distance phonetic models to represent the various phonetic context adequately. Developing a large number of models usually necessitates having a large amount of speech to provide reliable estimates of the model parameters. The major contributions of this work are the development of: (1) A simple but powerful formalism for modeling phonemes in context; (2) Robust training methods for the reliable estimation of model parameters by utilizing the available speech training data in a maximally effective way; and (3) Efficient search strategies for phonetic recognition while maintaining high recognition accuracy.

  20. An introduction to acoustic emission

    NASA Astrophysics Data System (ADS)

    Scruby, C. B.

    1987-08-01

    The technique of acoustic emission (AE) uses one or more sensors to 'listen' to a wide range of events that may take place inside a solid material. Depending on the source of this high frequency sound, there are broadly three application areas: structural testing and surveillance, process monitoring and control, and materials characterization. In the first case the source is probably a defect which radiates elastic waves as it grows. Provided these waves are detectable, AE can be used in conjunction with other NDT techniques to assess structural integrity. Advances in deterministic and statistical analysis methods now enable data to be interpreted in greater detail and with more confidence than before. In the second area the acoustic signature of processes is monitored, ranging from for instance the machining of metallic components to the mixing of foodstuffs, and changes correlated with variations in the process, with the potential for feedback and process control. In the third area, AE is used as an additional diagnostic technique for the study of, for instance, fracture, because it gives unique dynamic information on defect growth.

  1. The Role of Visual, Acoustic, and Semantic Attributes in Children's Encoding.

    ERIC Educational Resources Information Center

    Means, Barbara M.; Rohwer, William D., Jr.

    To assess the importance of visual attributes relative to acoustic and semantic attributes in children's encoding, a 64-item recognition test was administered to first- and sixth-grade children. Recognition items were linedrawings of simple objects accompanied by aural labels. By manipulating the picture, label, and referent in various…

  2. Wake Signature Detection

    NASA Astrophysics Data System (ADS)

    Spedding, Geoffrey R.

    2014-01-01

    An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.

  3. Acoustic emission and signal analysis

    NASA Astrophysics Data System (ADS)

    Rao, A. K.

    1990-01-01

    A review is given of the acoustic emission (AE) phenomenon and its applications in NDE and geological rock mechanics. Typical instrumentation used in AE signal detection, data acquisition, processing, and analysis is discussed. The parameters used in AE signal analysis are outlined, and current methods of AE signal analysis procedures are discussed. A literature review is presented on the pattern classification of AE signals. A discussion then follows on the application of AE in aircraft component monitoring, with an experiment described which focuses on in-flight AE monitoring during fatigue crack growth in an aero engine mount. A pattern recognition approach is detailed for the classification of the experimental data. The approach subjects each of the data files to a cluster analysis by the threshold-k-means scheme. The technique is shown to classify the data successfully.

  4. Temporal scales of auditory objects underlying birdsong vocal recognition

    PubMed Central

    Gentner, Timothy Q.

    2008-01-01

    Vocal recognition is common among songbirds, and provides an excellent model system to study the perceptual and neurobiological mechanisms for processing natural vocal communication signals. Male European starlings, a species of songbird, learn to recognize the songs of multiple conspecific males by attending to stereotyped acoustic patterns, and these learned patterns elicit selective neuronal responses in auditory forebrain neurons. The present study investigates the perceptual grouping of spectrotemporal acoustic patterns in starling song at multiple temporal scales. The results show that permutations in sequencing of submotif acoustic features have significant effects on song recognition, and that these effects are specific to songs that comprise learned motifs. The observations suggest that (1) motifs form auditory objects embedded in a hierarchy of acoustic patterns, (2) that object-based song perception emerges without explicit reinforcement, and (3) that multiple temporal scales within the acoustic pattern hierarchy convey information about the individual identity of the singer. The authors discuss the results in the context of auditory object formation and talker recognition. PMID:18681620

  5. Backward propagating acoustic waves in single gold nanobeams

    NASA Astrophysics Data System (ADS)

    Jean, Cyril; Belliard, Laurent; Becerra, Loïc; Perrin, Bernard

    2015-11-01

    Femtosecond pump-probe spectroscopy has been carried out on suspended gold nanostructures with a rectangular cross section lithographed on a silicon substrate. With a thickness fixed to 110 nm and a width ranging from 200 nm to 800 nm , size dependent measurements are used to distinguish which confined acoustic modes are detected. Furthermore, in order to avoid any ambiguity due to the measurement uncertainties on both the frequency and size, pump and probe beams are also spatially shifted to detect guided acoustic phonons. This leads us to the observation of backward propagating acoustic phonons in the gigahertz range ( ˜3 GHz ) in such nanostructures. While backward wave propagation in elastic waveguides has been predicted and already observed at the macroscale, very few studies have been done at the nanoscale. Here, we show that these backward waves can be used as the unique signature of the width dilatational acoustic mode.

  6. Effects of Talker Variability on Vowel Recognition in Cochlear Implants

    ERIC Educational Resources Information Center

    Chang, Yi-ping; Fu, Qian-Jie

    2006-01-01

    Purpose: To investigate the effects of talker variability on vowel recognition by cochlear implant (CI) users and by normal-hearing (NH) participants listening to 4-channel acoustic CI simulations. Method: CI users were tested with their clinically assigned speech processors. For NH participants, 3 CI processors were simulated, using different…

  7. Cross-Modal Source Information and Spoken Word Recognition

    ERIC Educational Resources Information Center

    Lachs, Lorin; Pisoni, David B.

    2004-01-01

    In a cross-modal matching task, participants were asked to match visual and auditory displays of speech based on the identity of the speaker. The present investigation used this task with acoustically transformed speech to examine the properties of sound that can convey cross-modal information. Word recognition performance was also measured under…

  8. Distributed Recognition of Natural Songs by European Starlings

    ERIC Educational Resources Information Center

    Knudsen, Daniel; Thompson, Jason V.; Gentner, Timothy Q.

    2010-01-01

    Individual vocal recognition behaviors in songbirds provide an excellent framework for the investigation of comparative psychological and neurobiological mechanisms that support the perception and cognition of complex acoustic communication signals. To this end, the complex songs of European starlings have been studied extensively. Yet, several…

  9. Speech recognition in natural background noise.

    PubMed

    Meyer, Julien; Dentel, Laure; Meunier, Fanny

    2013-01-01

    In the real world, human speech recognition nearly always involves listening in background noise. The impact of such noise on speech signals and on intelligibility performance increases with the separation of the listener from the speaker. The present behavioral experiment provides an overview of the effects of such acoustic disturbances on speech perception in conditions approaching ecologically valid contexts. We analysed the intelligibility loss in spoken word lists with increasing listener-to-speaker distance in a typical low-level natural background noise. The noise was combined with the simple spherical amplitude attenuation due to distance, basically changing the signal-to-noise ratio (SNR). Therefore, our study draws attention to some of the most basic environmental constraints that have pervaded spoken communication throughout human history. We evaluated the ability of native French participants to recognize French monosyllabic words (spoken at 65.3 dB(A), reference at 1 meter) at distances between 11 to 33 meters, which corresponded to the SNRs most revealing of the progressive effect of the selected natural noise (-8.8 dB to -18.4 dB). Our results showed that in such conditions, identity of vowels is mostly preserved, with the striking peculiarity of the absence of confusion in vowels. The results also confirmed the functional role of consonants during lexical identification. The extensive analysis of recognition scores, confusion patterns and associated acoustic cues revealed that sonorant, sibilant and burst properties were the most important parameters influencing phoneme recognition. . Altogether these analyses allowed us to extract a resistance scale from consonant recognition scores. We also identified specific perceptual consonant confusion groups depending of the place in the words (onset vs. coda). Finally our data suggested that listeners may access some acoustic cues of the CV transition, opening interesting perspectives for future studies

  10. Speech Recognition in Natural Background Noise

    PubMed Central

    Meyer, Julien; Dentel, Laure; Meunier, Fanny

    2013-01-01

    In the real world, human speech recognition nearly always involves listening in background noise. The impact of such noise on speech signals and on intelligibility performance increases with the separation of the listener from the speaker. The present behavioral experiment provides an overview of the effects of such acoustic disturbances on speech perception in conditions approaching ecologically valid contexts. We analysed the intelligibility loss in spoken word lists with increasing listener-to-speaker distance in a typical low-level natural background noise. The noise was combined with the simple spherical amplitude attenuation due to distance, basically changing the signal-to-noise ratio (SNR). Therefore, our study draws attention to some of the most basic environmental constraints that have pervaded spoken communication throughout human history. We evaluated the ability of native French participants to recognize French monosyllabic words (spoken at 65.3 dB(A), reference at 1 meter) at distances between 11 to 33 meters, which corresponded to the SNRs most revealing of the progressive effect of the selected natural noise (−8.8 dB to −18.4 dB). Our results showed that in such conditions, identity of vowels is mostly preserved, with the striking peculiarity of the absence of confusion in vowels. The results also confirmed the functional role of consonants during lexical identification. The extensive analysis of recognition scores, confusion patterns and associated acoustic cues revealed that sonorant, sibilant and burst properties were the most important parameters influencing phoneme recognition. . Altogether these analyses allowed us to extract a resistance scale from consonant recognition scores. We also identified specific perceptual consonant confusion groups depending of the place in the words (onset vs. coda). Finally our data suggested that listeners may access some acoustic cues of the CV transition, opening interesting perspectives for future studies

  11. Features of underwater acoustics from Aristotle to our time

    NASA Astrophysics Data System (ADS)

    Bjørnø, Leif

    2003-01-01

    Underwater acoustics has been one of the fastest growing fields of research in acoustics. In particular, the 20th Century has taken our understanding of underwater acoustics phenomena a great step forward. The two World Wars contributed to the recognition of the importance of research in underwater acoustics, and the momentum in research and development gained during World War II did not reduce in the years after the war. The so-called cold war and the development in computer technology both contributed substantially to the development in underwater acoustics over the second half of the 20th Century. However, the very widespread field of underwater acoustic activities started nearly 2300 years ago with human curiosity about the fundamental nature of sound in the sea. From primitive philosophical and experimental studies of the velocity of sound in the sea and through centuries of successes and failures, the knowledge about underwater acoustics has developed into its high-technological status of today. In particular the development through the period from Aristotle (384 322 BC) to 1960 formed the basis for the tremendous research and development efforts we have witnessed in our time. In this paper most emphasis will be put on the development in underwater acoustics through this period of nearly 2300 years duration, and only the main trends in later research will be mentioned.

  12. A synthetic aperture acoustic prototype system

    NASA Astrophysics Data System (ADS)

    Luke, Robert H.; Bishop, Steven S.; Chan, Aaron M.; Gugino, Peter M.; Donzelli, Thomas P.; Soumekh, Mehrdad

    2015-05-01

    A novel quasi-monostatic system operating in a side-scan synthetic aperture acoustic (SAA) imaging mode is presented. This research project's objectives are to explore the military utility of outdoor continuous sound imaging of roadside foliage and target detection. The acoustic imaging method has several military relevant advantages such as being immune to RF jamming, superior spatial resolution as compared to 0.8-2.4 GHz ground penetrating radar (GPR), capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to GPR technologies. The prototype system's broadband 2-17 kHz LFM chirp transceiver is mounted on a manned all-terrain vehicle. Targets are positioned within the acoustic main beam at slant ranges of two to seven meters and on surfaces such as dirt, grass, gravel and weathered asphalt and with an intervening metallic chain link fence. Acoustic image reconstructions and signature plots result in means for literal interpretation and quantifiable analyses.

  13. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  14. Prosody recognition in adults with high-functioning autism spectrum disorders: from psychoacoustics to cognition.

    PubMed

    Globerson, Eitan; Amir, Noam; Kishon-Rabin, Liat; Golan, Ofer

    2015-04-01

    Prosody is an important tool of human communication, carrying both affective and pragmatic messages in speech. Prosody recognition relies on processing of acoustic cues, such as the fundamental frequency of the voice signal, and their interpretation according to acquired socioemotional scripts. Individuals with autism spectrum disorders (ASD) show deficiencies in affective prosody recognition. These deficiencies have been mostly associated with general difficulties in emotion recognition. The current study explored an additional association between affective prosody recognition in ASD and auditory perceptual abilities. Twenty high-functioning male adults with ASD and 32 typically developing male adults, matched on age and verbal abilities undertook a battery of auditory tasks. These included affective and pragmatic prosody recognition tasks, two psychoacoustic tasks (pitch direction recognition and pitch discrimination), and a facial emotion recognition task, representing nonvocal emotion recognition. Compared with controls, the ASD group demonstrated poorer performance on both vocal and facial emotion recognition, but not on pragmatic prosody recognition or on any of the psychoacoustic tasks. Both groups showed strong associations between psychoacoustic abilities and prosody recognition, both affective and pragmatic, although these were more pronounced in the ASD group. Facial emotion recognition predicted vocal emotion recognition in the ASD group only. These findings suggest that auditory perceptual abilities, alongside general emotion recognition abilities, play a significant role in affective prosody recognition in ASD. PMID:25428545

  15. Phonetic recognition of natural speech by nonstationary Markov models

    NASA Astrophysics Data System (ADS)

    Falaschi, Alessandro

    1988-04-01

    A speech recognition system based on statistical decision theory, viewing the problem as the classical design of a decoder in a communication system framework is outlined. Statistical properties of the language are used to characterize the allowable phonetic sequence inside the words, while trying to capture allophonic phoneme features into functional-dependent acoustical models with the aim of utilizing them as word segmentation cues. Experiments prove the utility of an explicit modeling of the intrinsic speech nonstationarity in a statistically based speech recognition system. The nonstationarity of phonetic chain statistics and acoustical transition probabilities can be easily taken into account, yielding recognition improvements. The use of inside syllable position dependent phonetic models does not improve recognition performance, and the iterative Viterbi training algorithm seems unable to adequately valorize this kind of acoustical modeling. As a direct consequence of the system design, the recognized phonetic sequence exhibits word boundary marks even in absence of pauses between words, thus giving anchor points to the higher level parsing algorithms needed in a complete recognition system.

  16. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  17. Statistical Trajectory Models for Phonetic Recognition.

    NASA Astrophysics Data System (ADS)

    Goldenthal, William David

    The main goal of this work is to develop an alternative methodology for acoustic-phonetic modelling of speech sounds. The approach utilizes a segment-based framework to capture the dynamical behavior and statistical dependencies of the acoustic attributes used to represent the speech waveform. Temporal behavior is modelled explicitly by creating dynamic tracks of the acoustic attributes used to represent the waveform, and by estimating the spatio-temporal correlation structure of the resulting errors. The tracks serve as templates from which synthetic segments of the acoustic attributes are generated. Scoring of an hypothesized phonetic segment is then based on the error between the measured acoustic attributes and the synthetic segments generated for each phonetic model. Phonetic contextual influences are accounted for in two ways. First, context-dependent biphone tracks are created for each phonetic model. These tracks are then merged as needed to generate triphone tracks. The error statistics are pooled over all the contexts for each phonetic model. This allows for the creation of a large number of contextual models (e.g., 2,500) without compromising the robustness of the statistical parameter estimates. The resulting triphone coverage is over 99.5%. The second method of accounting for context involves creating tracks of the transitions between phones. By clustering these tracks, complete models are constructed of over 200 "canonical" transitions. The transition models help in two ways. First, the transition scores are incorporated into the scoring framework to help determine the phonetic identity of the two phones involved. Secondly, they are used to determine likely segment boundaries within an utterance. This reduces the search space during phonetic recognition. Phonetic classification experiments are performed which demonstrate the importance of the temporal correlation information in the speech signal. A complete phonetic recognition system, incorporating

  18. Improving robustness of speech recognition systems

    NASA Astrophysics Data System (ADS)

    Mitra, Vikramjit

    2010-11-01

    Current Automatic Speech Recognition (ASR) systems fail to perform nearly as good as human speech recognition performance due to their lack of robustness against speech variability and noise contamination. The goal of this dissertation is to investigate these critical robustness issues, put forth different ways to address them and finally present an ASR architecture based upon these robustness criteria. Acoustic variations adversely affect the performance of current phone-based ASR systems, in which speech is modeled as 'beads-on-a-string', where the beads are the individual phone units. While phone units are distinctive in cognitive domain, they are varying in the physical domain and their variation occurs due to a combination of factors including speech style, speaking rate etc.; a phenomenon commonly known as 'coarticulation'. Traditional ASR systems address such coarticulatory variations by using contextualized phone-units such as triphones. Articulatory phonology accounts for coarticulatory variations by modeling speech as a constellation of constricting actions known as articulatory gestures. In such a framework, speech variations such as coarticulation and lenition are accounted for by gestural overlap in time and gestural reduction in space. To realize a gesture-based ASR system, articulatory gestures have to be inferred from the acoustic signal. At the initial stage of this research an initial study was performed using synthetically generated speech to obtain a proof-of-concept that articulatory gestures can indeed be recognized from the speech signal. It was observed that having vocal tract constriction trajectories (TVs) as intermediate representation facilitated the gesture recognition task from the speech signal. Presently no natural speech database contains articulatory gesture annotation; hence an automated iterative time-warping architecture is proposed that can annotate any natural speech database with articulatory gestures and TVs. Two natural

  19. Geo-Acoustic Doppler Spectroscopy: A Novel Acoustic Technique For Surveying The Seabed

    NASA Astrophysics Data System (ADS)

    Buckingham, Michael J.

    2010-09-01

    An acoustic inversion technique, known as Geo-Acoustic Doppler Spectroscopy, has recently been developed for estimating the geo-acoustic parameters of the seabed in shallow water. The technique is unusual in that it utilizes a low-flying, propeller-driven light aircraft as an acoustic source. Both the engine and propeller produce sound and, since they are rotating sources, the acoustic signature of each takes the form of a sequence of narrow-band harmonics. Although the coupling of the harmonics across the air-sea interface is inefficient, due to the large impedance mismatch between air and water, sufficient energy penetrates the sea surface to provide a useable underwater signal at sensors either in the water column or buried in the sediment. The received signals, which are significantly Doppler shifted due to the motion of the aircraft, will have experienced a number of reflections from the seabed and thus they contain information about the sediment. A geo-acoustic inversion of the Doppler-shifted modes associated with each harmonic yields an estimate of the sound speed in the sediment; and, once the sound speed has been determined, the known correlations between it and the remaining geo-acoustic parameters allow all of the latter to be computed. This inversion technique has been applied to aircraft data collected in the shallow water north of Scripps pier, returning values of the sound speed, shear speed, porosity, density and grain size that are consistent with the known properties of the sandy sediment in the channel.

  20. The acoustic communities: Definition, description and ecological role.

    PubMed

    Farina, Almo; James, Philip

    2016-09-01

    An acoustic community is defined as an aggregation of species that produces sound by using internal or extra-body sound-producing tools. Such communities occur in aquatic (freshwater and marine) and terrestrial environments. An acoustic community is the biophonic component of a soundtope and is characterized by its acoustic signature, which results from the distribution of sonic information associated with signal amplitude and frequency. Distinct acoustic communities can be described according to habitat, the frequency range of the acoustic signals, and the time of day or the season. Near and far fields can be identified empirically, thus the acoustic community can be used as a proxy for biodiversity richness. The importance of ecoacoustic research is rapidly growing due to the increasing awareness of the intrusion of anthropogenic sounds (technophonies) into natural and human-modified ecosystems and the urgent need to adopt more efficient predictive tools to compensate for the effects of climate change. The concept of an acoustic community provides an operational scale for a non-intrusive biodiversity survey and analysis that can be carried out using new passive audio recording technology, coupled with methods of vast data processing and storage. PMID:27262416

  1. Signatures of nonthermal melting.

    PubMed

    Zier, Tobias; Zijlstra, Eeuwe S; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E

    2015-09-01

    Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822

  2. Signature CERN-URSS

    ScienceCinema

    None

    2011-04-25

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  3. Signatures of nonthermal melting

    PubMed Central

    Zier, Tobias; Zijlstra, Eeuwe S.; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E.

    2015-01-01

    Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822

  4. Proud elastic target discrimination using low-frequency sonar signatures

    NASA Astrophysics Data System (ADS)

    Mallen, Brenton

    This thesis presents a comparative analysis of various low-frequency sonar signature representations and their ability to discriminate between proud targets of varying physical parameters. The signature representations used include: synthetic aperture sonar (SAS) beamformed images, acoustic color plot images, and bispectral images. A relative Mean-Square Error (rMSE) performance metric and an effective Signal-to-Noise Ratio (SNReff) performance metric have been developed and implemented to quantify the target differentiation. The analysis is performed on a subset of the synthetic sonar stave data provided by the Naval Surface Warfare Center -- Panama City Division (NSWC-PCD). The subset is limited to aluminum and stainless steel, thin-shell, spherical targets in contact with the seafloor (proud). It is determined that the SAS signature representation provides the best, least ambiguous, target differentiation with a minimum mismatch difference of 14.5802 dB. The acoustic color plot and bispectrum representations resulted in a minimum difference of 9.1139 dB and 1.8829 dB, respectively.

  5. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  6. Design of a broadband ultra-large area acoustic cloak based on a fluid medium

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Jiang, Ping

    2014-10-01

    A broadband ultra-large area acoustic cloak based on fluid medium was designed and numerically implemented with homogeneous metamaterials according to the transformation acoustics. In the present work, fluid medium as the body of the inclusion could be tuned by changing the fluid to satisfy the variant acoustic parameters instead of redesign the whole cloak. The effective density and bulk modulus of the composite materials were designed to agree with the parameters calculated from the coordinate transformation methodology by using the effective medium theory. Numerical simulation results showed that the sound propagation and scattering signature could be controlled in the broadband ultra-large area acoustic invisibility cloak, and good cloaking performance has been achieved and physically realized with homogeneous materials. The broadband ultra-large area acoustic cloaking properties have demonstrated great potentials in the promotion of the practical applications of acoustic cloak.

  7. Automatic Speech Recognition Based on Electromyographic Biosignals

    NASA Astrophysics Data System (ADS)

    Jou, Szu-Chen Stan; Schultz, Tanja

    This paper presents our studies of automatic speech recognition based on electromyographic biosignals captured from the articulatory muscles in the face using surface electrodes. We develop a phone-based speech recognizer and describe how the performance of this recognizer improves by carefully designing and tailoring the extraction of relevant speech feature toward electromyographic signals. Our experimental design includes the collection of audibly spoken speech simultaneously recorded as acoustic data using a close-speaking microphone and as electromyographic signals using electrodes. Our experiments indicate that electromyographic signals precede the acoustic signal by about 0.05-0.06 seconds. Furthermore, we introduce articulatory feature classifiers, which had recently shown to improved classical speech recognition significantly. We describe that the classification accuracy of articulatory features clearly benefits from the tailored feature extraction. Finally, these classifiers are integrated into the overall decoding framework applying a stream architecture. Our final system achieves a word error rate of 29.9% on a 100-word recognition task.

  8. Helicopter acoustic alerting system for high-security facilities

    NASA Astrophysics Data System (ADS)

    Steadman, Robert L.; Hansen, Scott; Park, Chris; Power, Dennis

    2009-05-01

    Helicopters present a serious threat to high security facilities such as prisons, nuclear sites, armories, and VIP compounds. They have the ability to instantly bypass conventional security measures focused on ground threats such as fences, check-points, and intrusion sensors. Leveraging the strong acoustic signature inherent in all helicopters, this system would automatically detect, classify, and accurately track helicopters using multi-node acoustic sensor fusion. An alert would be generated once the threat entered a predefined 3-dimension security zone in time for security personnel to repel the assault. In addition the system can precisely identify the landing point on the facility grounds.

  9. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  10. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  11. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  12. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  13. Acoustic dispersive prism

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  14. Speech recognition and understanding

    SciTech Connect

    Vintsyuk, T.K.

    1983-05-01

    This article discusses the automatic processing of speech signals with the aim of finding a sequence of works (speech recognition) or a concept (speech understanding) being transmitted by the speech signal. The goal of the research is to develop an automatic typewriter that will automatically edit and type text under voice control. A dynamic programming method is proposed in which all possible class signals are stored, after which the presented signal is compared to all the stored signals during the recognition phase. Topics considered include element-by-element recognition of words of speech, learning speech recognition, phoneme-by-phoneme speech recognition, the recognition of connected speech, understanding connected speech, and prospects for designing speech recognition and understanding systems. An application of the composition dynamic programming method for the solution of basic problems in the recognition and understanding of speech is presented.

  15. Clustering signatures classify directed networks

    NASA Astrophysics Data System (ADS)

    Ahnert, S. E.; Fink, T. M. A.

    2008-09-01

    We use a clustering signature, based on a recently introduced generalization of the clustering coefficient to directed networks, to analyze 16 directed real-world networks of five different types: social networks, genetic transcription networks, word adjacency networks, food webs, and electric circuits. We show that these five classes of networks are cleanly separated in the space of clustering signatures due to the statistical properties of their local neighborhoods, demonstrating the usefulness of clustering signatures as a classifier of directed networks.

  16. Advanced spectral signature discrimination algorithm

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Cao, Wenjie; Samat, Alim

    2013-05-01

    This paper presents a novel approach to the task of hyperspectral signature analysis. Hyperspectral signature analysis has been studied a lot in literature and there has been a lot of different algorithms developed which endeavors to discriminate between hyperspectral signatures. There are many approaches for performing the task of hyperspectral signature analysis. Binary coding approaches like SPAM and SFBC use basic statistical thresholding operations to binarize a signature which are then compared using Hamming distance. This framework has been extended to techniques like SDFC wherein a set of primate structures are used to characterize local variations in a signature together with the overall statistical measures like mean. As we see such structures harness only local variations and do not exploit any covariation of spectrally distinct parts of the signature. The approach of this research is to harvest such information by the use of a technique similar to circular convolution. In the approach we consider the signature as cyclic by appending the two ends of it. We then create two copies of the spectral signature. These three signatures can be placed next to each other like the rotating discs of a combination lock. We then find local structures at different circular shifts between the three cyclic spectral signatures. Texture features like in SDFC can be used to study the local structural variation for each circular shift. We can then create different measure by creating histogram from the shifts and thereafter using different techniques for information extraction from the histograms. Depending on the technique used different variant of the proposed algorithm are obtained. Experiments using the proposed technique show the viability of the proposed methods and their performances as compared to current binary signature coding techniques.

  17. Multimodal signature modeling of humans

    NASA Astrophysics Data System (ADS)

    Cathcart, J. Michael; Kocher, Brian; Prussing, Keith; Lane, Sarah; Thomas, Alan

    2010-04-01

    Georgia Tech been investigating method for the detection of covert personnel in traditionally difficult environments (e.g., urban, caves). This program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. The difficult nature of these personnel-related problems dictates a multimodal sensing approach. Human signature data of sufficient and accurate quality and quantity do not exist, thus the development of an accurate signature model for a human is needed. This model should also simulate various human activities to allow motion-based observables to be exploited. This paper will describe a multimodal signature modeling approach that incorporates human physiological aspects, thermoregulation, and dynamics into the signature calculation. This approach permits both passive and active signatures to be modeled. The focus of the current effort involved the computation of signatures in urban environments. This paper will discuss the development of a human motion model for use in simulating both electro-optical signatures and radar-based signatures. Video sequences of humans in a simulated urban environment will also be presented; results using these sequences for personnel tracking will be presented.

  18. Neurofunctional Signature of Hyperfamiliarity for Unknown Faces

    PubMed Central

    Negro, Elisa; D’Agata, Federico; Caroppo, Paola; Coriasco, Mario; Ferrio, Federica; Celeghin, Alessia; Diano, Matteo; Rubino, Elisa; de Gelder, Beatrice; Rainero, Innocenzo; Pinessi, Lorenzo; Tamietto, Marco

    2015-01-01

    Hyperfamiliarity for unknown faces is a rare selective disorder that consists of the disturbing and abnormal feeling of familiarity for unknown faces, while recognition of known faces is normal. In one such patient we investigated with a multimodal neuroimaging design the hitherto undescribed neural signature associated with hyperfamiliarity feelings. Behaviorally, signal detection methods revealed that the patient’s discrimination sensitivity between familiar and unfamiliar faces was significantly lower than that of matched controls, and her response criterion for familiarity decisions was significantly more liberal. At the neural level, while morphometric analysis and single-photon emission CT (SPECT) showed the atrophy and hypofunctioning of the left temporal regions, functional magnetic resonance imaging (fMRI) revealed that hyperfamiliarity feelings were selectively associated to enhanced activity in the right medial and inferior temporal cortices. We therefore characterize the neurofunctional signature of hyperfamiliarity for unknown faces as related to the loss of coordinated activity between the complementary face processing functions of the left and right temporal lobes. PMID:26154253

  19. Survey of Gait Recognition

    NASA Astrophysics Data System (ADS)

    Liu, Ling-Feng; Jia, Wei; Zhu, Yi-Hai

    Gait recognition, the process of identifying an individual by his /her walking style, is a relatively new research area. It has been receiving wide attention in the computer vision community. In this paper, a comprehensive survey of video based gait recognition approaches is presented. And the research challenges and future directions of the gait recognition are also discussed.

  20. Acoustic Properties of Return Strokes and M-components From Rocket-Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Fuselier, S. A.; Dwyer, J. R.; Uman, M. A.; Jordan, D.; Carvalho, F. L.; Rassoul, H.

    2015-12-01

    Using a linear, one-dimensional array of 15 microphones situated 95 meters from the lightning channel; we measure the acoustic signatures from 11 triggered-lightning events comprising 41 return strokes and 28 M-components. Measurements were taken at the International Center for Lightning Research and Testing (ICLRT) in Camp Blanding, FL during the summer of 2014. Recently, we reported that beamforming signal processing enables acoustic imaging of the lightning channel at high frequencies (Dayeh et al. 2015). Following up on the work, we report on the characteristics of the acoustic measurements in terms of sound pressure amplitude, peak currents, power spectral density (PSD) properties, and the inferred energy input. In addition, we find that M-component do not create acoustic signatures in most occasions; we discuss these cases in context of the associated current amplitude, rise time, and background continuing current.

  1. Ultrasonic acoustic health monitoring of ball bearings using neural network pattern classification of power spectral density

    NASA Astrophysics Data System (ADS)

    Kirchner, William; Southward, Steve; Ahmadian, Mehdi

    2010-03-01

    This paper presents a generic passive non-contact based approach using ultrasonic acoustic emissions (UAE) to facilitate the neural network classification of bearing health, and more specifically the bearing operating condition. The acoustic emission signals used in this study are in the ultrasonic range (20-120 kHz). A direct benefit of microphones capable of measurements in this frequency range is their inherent directionality. Using selected bands from the UAE power spectrum signature, it is possible to pose the health monitoring problem as a multi-class classification problem, and make use of a single neural network to classify the ultrasonic acoustic emission signatures. Artificial training data, based on statistical properties of a significantly smaller experimental data set is used to train the neural network. This specific approach is generic enough to suggest that it is applicable to a variety of systems and components where periodic acoustic emissions exist.

  2. Reverberant speech recognition exploiting clarity index estimation

    NASA Astrophysics Data System (ADS)

    Parada, Pablo Peso; Sharma, Dushyant; Naylor, Patrick A.; Waterschoot, Toon van

    2015-12-01

    We present single-channel approaches to robust automatic speech recognition (ASR) in reverberant environments based on non-intrusive estimation of the clarity index ( C 50). Our best performing method includes the estimated value of C 50 in the ASR feature vector and also uses C 50 to select the most suitable ASR acoustic model according to the reverberation level. We evaluate our method on the REVERB Challenge database employing two different C 50 estimators and show that our method outperforms the best baseline of the challenge achieved without unsupervised acoustic model adaptation, i.e. using multi-condition hidden Markov models (HMMs). Our approach achieves a 22.4 % relative word error rate reduction in comparison to the best baseline of the challenge.

  3. Maternal signature whistle use aids mother-calf reunions in a bottlenose dolphin, Tursiops truncatus.

    PubMed

    King, Stephanie L; Guarino, Emily; Keaton, Loriel; Erb, Linda; Jaakkola, Kelly

    2016-05-01

    Individual vocal signatures play an important role in parent-offspring recognition in many animals. One species that uses signature calls to accurately facilitate individual recognition is the bottlenose dolphin. Female dolphins and their calves will use their highly individualised signature whistles to identify and maintain contact with one another. Previous studies have shown high signature whistle rates of both mothers and calves during forced separations. In more natural settings, it appears that the calf vocalises more frequently to initiate reunions with its mother. However, little is known about the mechanisms a female dolphin may employ when there is strong motivation for her to reunite with her calf. In this study, we conducted a series of experimental trials in which we asked a female dolphin to retrieve either her wandering calf or a series of inanimate objects (control). Our results show that she used her vocal signature to actively recruit her calf, and produced no such signal when asked to retrieve the objects. This is the first study to clearly manipulate a dolphin's motivation to retrieve her calf with experimental controls. The results highlight that signature whistles are not only used in broadcasting individual identity, but that maternal signature whistle use is important in facilitating mother-calf reunions. PMID:26992371

  4. Neural signatures of autism

    PubMed Central

    Kaiser, Martha D.; Hudac, Caitlin M.; Shultz, Sarah; Lee, Su Mei; Cheung, Celeste; Berken, Allison M.; Deen, Ben; Pitskel, Naomi B.; Sugrue, Daniel R.; Voos, Avery C.; Saulnier, Celine A.; Ventola, Pamela; Wolf, Julie M.; Klin, Ami; Vander Wyk, Brent C.; Pelphrey, Kevin A.

    2010-01-01

    Functional magnetic resonance imaging of brain responses to biological motion in children with autism spectrum disorder (ASD), unaffected siblings (US) of children with ASD, and typically developing (TD) children has revealed three types of neural signatures: (i) state activity, related to the state of having ASD that characterizes the nature of disruption in brain circuitry; (ii) trait activity, reflecting shared areas of dysfunction in US and children with ASD, thereby providing a promising neuroendophenotype to facilitate efforts to bridge genomic complexity and disorder heterogeneity; and (iii) compensatory activity, unique to US, suggesting a neural system–level mechanism by which US might compensate for an increased genetic risk for developing ASD. The distinct brain responses to biological motion exhibited by TD children and US are striking given the identical behavioral profile of these two groups. These findings offer far-reaching implications for our understanding of the neural systems underlying autism. PMID:21078973

  5. Signatures of Reputation

    NASA Astrophysics Data System (ADS)

    Bethencourt, John; Shi, Elaine; Song, Dawn

    Reputation systems have become an increasingly important tool for highlighting quality information and filtering spam within online forums. However, the dependence of a user's reputation on their history of activities seems to preclude any possibility of anonymity. We show that useful reputation information can, in fact, coexist with strong privacy guarantees. We introduce and formalize a novel cryptographic primitive we call signatures of reputation which supports monotonic measures of reputation in a completely anonymous setting. In our system, a user can express trust in others by voting for them, collect votes to build up her own reputation, and attach a proof of her reputation to any data she publishes, all while maintaining the unlinkability of her actions.

  6. Signatures of aging revisited

    SciTech Connect

    Drell, S.; Jeanloz, R.; Cornwall, J.; Dyson, F.; Eardley, D.

    1998-03-18

    This study is a follow-on to the review made by JASON during its 1997 Summer Study of what is known about the aging of critical constituents, particularly the high explosives, metals (Pu, U), and polymers in the enduring stockpile. The JASON report (JSR-97-320) that summarized the findings was based on briefings by the three weapons labs (LANL, LLNL, SNL). They presented excellent technical analyses covering a broad range of scientific and engineering problems pertaining to determining signatures of aging. But the report also noted: `Missing, however, from the briefings and the written documents made available to us by the labs and DOE, was evidence of an adequately sharp focus and high priorities on a number of essential near-term needs of maintaining weapons in the stockpile.

  7. Acoustics Critical Readiness Review

    NASA Technical Reports Server (NTRS)

    Ballard, Kenny

    2010-01-01

    This presentation reviews the status of the acoustic equipment from the medical operations perspective. Included is information about the acoustic dosimeters, sound level meter, and headphones that are planned for use while on orbit. Finally there is information about on-orbit hearing assessments.

  8. The challenge of acoustics

    NASA Astrophysics Data System (ADS)

    Lord, P.

    1981-01-01

    The various applications of acoustics, including sonar, ultrasonic examination of unborn foetuses and architectural applications, are briefly reviewed. Problems in traffic and industrial noise, auditorium design and explosive noise are considered in more detail. The educational aspects of acoustical science and technology are briefly considered.

  9. Multisensors signature prediction workbench

    NASA Astrophysics Data System (ADS)

    Latger, Jean; Cathala, Thierry

    2015-10-01

    Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. The sensors performance is very dependent on conditions e.g. time of day, atmospheric propagation, background ... Visible camera are very efficient for diurnal fine weather conditions, long wave infrared sensors for night vision, radar systems very efficient for seeing through atmosphere and/or foliage ... Besides, multi sensors systems, combining several collocated sensors with associated algorithms of fusion, provide better efficiency (typically for Enhanced Vision Systems). But these sophisticated systems are all the more difficult to conceive, assess and qualify. In that frame, multi sensors simulation is highly required. This paper focuses on multi sensors simulation tools. A first part makes a state of the Art of such simulation workbenches with a special focus on SE-Workbench. SEWorkbench is described with regards to infrared/EO sensors, millimeter waves sensors, active EO sensors and GNSS sensors. Then a general overview of simulation of targets and backgrounds signature objectives is presented, depending on the type of simulation required (parametric studies, open loop simulation, closed loop simulation, hybridization of SW simulation and HW ...). After the objective review, the paper presents some basic requirements for simulation implementation such as the deterministic behavior of simulation, mandatory to repeat it many times for parametric studies... Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench are showed and commented.

  10. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  11. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  12. Dust-acoustic supersolitons in a three-species dusty plasma with kappa distributions†

    NASA Astrophysics Data System (ADS)

    Hellberg, M. A.; Baluku, T. K.; Verheest, F.; Kourakis, I.; Kourakis

    2013-12-01

    Supersolitons are a form of soliton characterised, inter alia, by additional local extrema superimposed on the usual bipolar electric field signature. Previous studies of supersolitons supported by three-component plasmas have dealt with ion-acoustic structures. An analogous problem is now considered, namely, dust-acoustic supersolitons in a plasma composed of fluid negative dust grains and two kappa-distributed positive ion species. Calculations illustrating some supersoliton characteristics are presented.

  13. XV-15 Tiltrotor Aircraft: 1997 Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.

    2003-01-01

    XV-15 acoustic test is discussed, and measured results are presented. The test was conducted by NASA Langley and Bell Helicopter Textron, Inc., during June - July 1997, at the BHTI test site near Waxahachie, Texas. This was the second in a series of three XV-15 tests to document the acoustic signature of the XV-15 tiltrotor aircraft for a variety of flight conditions and minimize the noise signature during approach. Tradeoffs between flight procedures and the measured noise are presented to illustrate the noise abatement flight procedures. The test objectives were to: (1) support operation of future tiltrotors by further developing and demonstrating low-noise flight profiles, while maintaining acceptable handling and ride qualities, and (2) refine approach profiles, selected from previous (1995) tiltrotor testing, to incorporate Instrument Flight Rules (IFR), handling qualities constraints, operations and tradeoffs with sound. Primary emphasis was given to the approach flight conditions where blade-vortex interaction (BVI) noise dominates, because this condition influences community noise impact more than any other. An understanding of this part of the noise generating process could guide the development of low noise flight operations and increase the tiltrotor's acceptance in the community.

  14. Highly directional acoustic receivers.

    PubMed

    Cray, Benjamin A; Evora, Victor M; Nuttall, Albert H

    2003-03-01

    The theoretical directivity of a single combined acoustic receiver, a device that can measure many quantities of an acoustic field at a collocated point, is presented here. The formulation is developed using a Taylor series expansion of acoustic pressure about the origin of a Cartesian coordinate system. For example, the quantities measured by a second-order combined receiver, denoted a dyadic sensor, are acoustic pressure, the three orthogonal components of acoustic particle velocity, and the nine spatial gradients of the velocity vector. The power series expansion, which can be of any order, is cast into an expression that defines the directivity of a single receiving element. It is shown that a single highly directional dyadic sensor can have a directivity index of up to 9.5 dB. However, there is a price to pay with highly directive sensors; these sensors can be significantly more sensitive to nonacoustic noise sources. PMID:12656387

  15. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  16. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  17. Acoustic integrated extinction

    PubMed Central

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100

  18. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  19. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  20. New online signature acquisition system

    NASA Astrophysics Data System (ADS)

    Oulefki, Adel; Mostefai, Messaoud; Abbadi, Belkacem; Djebrani, Samira; Bouziane, Abderraouf; Chahir, Youssef

    2013-01-01

    We present a nonconstraining and low-cost online signature acquisition system that has been developed to enhance the performances of an existing multimodal biometric authentication system (based initially on both voice and image modalities). A laboratory prototype has been developed and validated for an online signature acquisition.

  1. Quantum Signature of Analog Hawking Radiation in Momentum Space.

    PubMed

    Boiron, D; Fabbri, A; Larré, P-É; Pavloff, N; Westbrook, C I; Ziń, P

    2015-07-10

    We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential. PMID:26207475

  2. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  3. Optimizing the Combination of Acoustic and Electric Hearing in the Implanted Ear

    PubMed Central

    Karsten, Sue A.; Turner, Christopher W.; Brown, Carolyn J.; Jeon, Eun Kyung; Abbas, Paul J.; Gantz, Bruce J.

    2016-01-01

    Objectives The aim of this study was to determine an optimal approach to program combined acoustic plus electric (A+E) hearing devices in the same ear to maximize speech-recognition performance. Design Ten participants with at least 1 year of experience using Nucleus Hybrid (short electrode) A+E devices were evaluated across three different fitting conditions that varied in the frequency ranges assigned to the acoustically and electrically presented portions of the spectrum. Real-ear measurements were used to optimize the acoustic component for each participant, and the acoustic stimulation was then held constant across conditions. The lower boundary of the electric frequency range was systematically varied to create three conditions with respect to the upper boundary of the acoustic spectrum: Meet, Overlap, and Gap programming. Consonant recognition in quiet and speech recognition in competing-talker babble were evaluated after participants were given the opportunity to adapt by using the experimental programs in their typical everyday listening situations. Participants provided subjective ratings and evaluations for each fitting condition. Results There were no significant differences in performance between conditions (Meet, Overlap, Gap) for consonant recognition in quiet. A significant decrement in performance was measured for the Overlap fitting condition for speech recognition in babble. Subjective ratings indicated a significant preference for the Meet fitting regimen. Conclusions Participants using the Hybrid ipsilateral A+E device generally performed better when the acoustic and electric spectra were programmed to meet at a single frequency region, as opposed to a gap or overlap. Although there is no particular advantage for the Meet fitting strategy for recognition of consonants in quiet, the advantage becomes evident for speech recognition in competing-talker babble and in patient preferences. PMID:23059851

  4. Acoustic Communication at the Water's Edge: Evolutionary Insights from a Mudskipper

    PubMed Central

    Polgar, Gianluca; Malavasi, Stefano; Cipolato, Giacomo; Georgalas, Vyron; Clack, Jennifer A.; Torricelli, Patrizia

    2011-01-01

    Coupled behavioural observations and acoustical recordings of aggressive dyadic contests showed that the mudskipper Periophthalmodon septemradiatus communicates acoustically while out of water. An analysis of intraspecific variability showed that specific acoustic components may act as tags for individual recognition, further supporting the sounds' communicative value. A correlative analysis amongst acoustical properties and video-acoustical recordings in slow-motion supported first hypotheses on the emission mechanism. Acoustic transmission through the wet exposed substrate was also discussed. These observations were used to support an “exaptation hypothesis”, i.e. the maintenance of key adaptations during the first stages of water-to-land vertebrate eco-evolutionary transitions (based on eco-evolutionary and palaeontological considerations), through a comparative bioacoustic analysis of aquatic and semiterrestrial gobiid taxa. In fact, a remarkable similarity was found between mudskipper vocalisations and those emitted by gobioids and other soniferous benthonic fishes. PMID:21738663

  5. R&D 100 Winner 2010: Acoustic Wave Biosensors

    ScienceCinema

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2016-06-29

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures ? viruses, bacteria, proteins, and DNA ? at clinically relevant levels. This detection occurs within minutes ? not hours ? at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  6. Static hand gesture recognition from a video

    NASA Astrophysics Data System (ADS)

    Rokade, Rajeshree S.; Doye, Dharmpal

    2011-10-01

    A sign language (also signed language) is a language which, instead of acoustically conveyed sound patterns, uses visually transmitted sign patterns to convey meaning- "simultaneously combining hand shapes, orientation and movement of the hands". Sign languages commonly develop in deaf communities, which can include interpreters, friends and families of deaf people as well as people who are deaf or hard of hearing themselves. In this paper, we proposed a novel system for recognition of static hand gestures from a video, based on Kohonen neural network. We proposed algorithm to separate out key frames, which include correct gestures from a video sequence. We segment, hand images from complex and non uniform background. Features are extracted by applying Kohonen on key frames and recognition is done.

  7. Ocean seismo-acoustics. Low-frequency underwater acoustics

    SciTech Connect

    Akal, T.; berkson, J.M.

    1986-01-01

    This book presents information on seismo-acoustic propagation in seawater and sea beds that includes theoretical developments, modelling and experiments, and fluctuations. Boundary scatteiring, seismo-acoustic waves and seismo-acoustic noise are discussed. Technology and new approaches in seismo-acoustic measurements are presented.

  8. Deep sea AUV navigation using multiple acoustic beacons

    NASA Astrophysics Data System (ADS)

    Ji, Da-xiong; Song, Wei; Zhao, Hong-yu; Liu, Jian

    2016-04-01

    Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments. Our results show the improved performance over prior techniques based on position computation.

  9. Interpretation techniques. [image enhancement and pattern recognition

    NASA Technical Reports Server (NTRS)

    Dragg, J. L.

    1974-01-01

    The image enhancement and geometric correction and registration techniques developed and/or demonstrated on ERTS data are relatively mature and greatly enhance the utility of the data for a large variety of users. Pattern recognition was improved by the use of signature extension, feature extension, and other classification techniques. Many of these techniques need to be developed and generalized to become operationally useful. Advancements in the mass precision processing of ERTS were demonstrated, providing the hope for future earth resources data to be provided in a more readily usable state. Also in evidence is an increasing and healthy interaction between the techniques developers and the user/applications investigators.

  10. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, M.A.

    1999-08-31

    The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.

  11. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, Mark Alexander

    1999-01-01

    The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.

  12. A methodology for analyzing an acoustic scene in sensor arrays

    NASA Astrophysics Data System (ADS)

    Man, Hong; Hohil, Myron E.; Desai, Sachi

    2007-10-01

    Presented here is a novel clustering method for Hidden Markov Models (HMMs) and its application in acoustic scene analysis. In this method, HMMs are clustered based on a similarity measure for stochastic models defined as the generalized probability product kernel (GPPK), which can be efficiently evaluated according to a fast algorithm introduced by Chen and Man (2005) [1]. Acoustic signals from various sources are partitioned into small frames. Frequency features are extracted from each of the frames to form observation vectors. These frames are further grouped into segments, and an HMM is trained from each of such segments. An unknown segment is categorized with a known event if its HMM has the closest similarity with the HMM from the corresponding labeled segment. Experiments are conducted on an underwater acoustic dataset from Steven Maritime Security Laboratory, Data set contains a swimmer signature, a noise signature from the Hudson River, and a test sequence with a swimmer in the Hudson River. Experimental results show that the proposed method can successfully associate the test sequence with the swimmer signature at very high confidence, despite their different time behaviors.

  13. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  14. Time-expanded speech and speech recognition in older adults.

    PubMed

    Vaughan, Nancy E; Furukawa, Izumi; Balasingam, Nirmala; Mortz, Margaret; Fausti, Stephen A

    2002-01-01

    Speech understanding deficits are common in older adults. In addition to hearing sensitivity, changes in certain cognitive functions may affect speech recognition. One such change that may impact the ability to follow a rapidly changing speech signal is processing speed. When speakers slow the rate of their speech naturally in order to speak clearly, speech recognition is improved. The acoustic characteristics of naturally slowed speech are of interest in developing time-expansion algorithms to improve speech recognition for older listeners. In this study, we tested younger normally hearing, older normally hearing, and older hearing-impaired listeners on time-expanded speech using increased duration and increased intensity of unvoiced consonants. Although all groups performed best on unprocessed speech, performance with processed speech was better with the consonant gain feature without time expansion in the noise condition and better at the slowest time-expanded rate in the quiet condition. The effects of signal processing on speech recognition are discussed. PMID:17642020

  15. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  16. Acoustic mapping velocimetry

    NASA Astrophysics Data System (ADS)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  17. Some Problems of modern acoustics

    NASA Technical Reports Server (NTRS)

    Stan, A.

    1974-01-01

    The multidisciplinary and interdisciplinary character of acoustics is considered and its scientific, technological, economical and social implications, as well as the role of acoustics in creating new machines and equipment and improving the quality of products are outlined. Research beyond audible frequencies, as well as to extremely high acoustic intensities, which requires the development of a nonlinear acoustics is elaborated.

  18. On the signature of LINCOS

    NASA Astrophysics Data System (ADS)

    Ollongren, Alexander

    2010-12-01

    Suppose the international SETI effort yields the discovery of some signal of evidently non-natural origin. Could it contain linguistic information formulated in some kind of Lingua Cosmica? One way to get insight into this matter is to consider what specific (bio) linguistic signature( s) could be attached to a cosmic language for interstellar communication—designed by humans or an alien society having reached a level of intelligence (and technology) comparable to or surpassing ours. For this purpose, we consider in the present paper the logico-linguistic system LINCOS for ( A)CETI, developed during a number of years by the author in several papers and a monograph [1]. The system has a two-fold signature, which distinguishes it significantly from natural languages. In fact abstract and concrete signatures can be distinguished. That an abstract kind occurs is due to the manner in which abstractions of reality are represented in LINCOS-texts. They can take compound forms because the system is multi-expressive—partly due to the availability of inductive (recursive) entities. On the other hand, the concrete signature of LINCOS is related to the distribution of delimiters and predefined tokens in texts. Assigning measures to concrete signatures will be discussed elsewhere. The present contribution concentrates on the abstract signature of the language. At the same time, it is realized that an alien Lingua Cosmica might, but not necessarily needs to have this kind of signatures.

  19. Locating groundwater flow in karst by acoustic emission surveys

    SciTech Connect

    Stokowski, S.J. Jr.; Clark, D.A.

    1985-01-01

    An acoustic emission survey of Newala Fm. (primarily dolomite) karst has helped to locate subsurface water flow. This survey was performed on the Rock Quarry Dome, Sevier County, Tennessee. A Dresser RS-4 recording seismograph, adjusted to provide a gain of 1000, collected acoustic emission data using Mark Products CN368 vertical geophones with 3-inch spikes. Data was collected for 5-15 second intervals. The geophones were laid out along traverses with 10, 20, or 30-ft spacing and covered with sand bags in locations of high ambient noise. Traverses were laid out: along and across lineaments known to correspond with groundwater flow in natural subsurface channels; across and along a joint-controlled sink suspected of directing groundwater flow; and across a shallow sinkhole located tangentially to the Little Pigeon River and suspected of capturing river water for the groundwater system. Acoustic emissions of channelized flowing groundwater have a characteristic erratic spiked spectral signature. These acoustic emission signatures increase in amplitude and number in the immediate vicinity of the vertical projection of channelized groundwater flow if it occurs within approximately 30 feet of the surface. If the groundwater flow occurs at greater depths the emissions may be offset from the projection of the actual flow, due to propagation of the signal along rock pinnacles or attenuation by residual soils.

  20. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  1. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  2. PRSEUS Acoustic Panel Fabrication

    NASA Technical Reports Server (NTRS)

    Nicolette, Velicki; Yovanof, Nicolette P.; Baraja, Jaime; Mathur, Gopal; Thrash, Patrick; Pickell, Robert

    2011-01-01

    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration with regards to acoustic response. A PRSEUS panel was designed and fabricated and provided to NASA-LaRC for acoustic response testing in the Structural Acoustics Loads and Transmission (SALT) facility). Preliminary assessments of the sound transmission characteristics of a PRSEUS panel subjected to a representative Hybrid Wing Body (HWB) operating environment were completed for the NASA Environmentally Responsible Aviation (ERA) Program.

  3. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  4. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  5. UHECR: Signatures and models

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.

    2013-06-01

    The signatures of Ultra High Energy (E ≳ 1 EeV) proton propagation through CMB radiation are pair-production dip and GZK cutoff. The visible characteristics of these two spectral features are ankle, which is intrinsic part of the dip, beginning of GZK cutoff in the differential spectrum and E1/2 in integral spectrum. Measured by HiRes and Telescope Array (TA) these characteristics agree with theoretical predictions. However, directly measured mass composition remains a puzzle. While HiRes and TA detectors observe the proton-dominated mass composition, the data of Auger detector strongly evidence for nuclei mass composition becoming progressively heavier at energy higher than 4 EeV and reaching Iron at energy about 35 EeV. The models based on the Auger and HiRes/TA data are considered independently and classified using the transition from galactic to extragalactic cosmic rays. The ankle cannot provide this transition. since data of all three detector at energy (1-3) EeV agree with pure proton composition (or at least not heavier than Helium). If produced in Galaxy these particles result in too high anisotropy. This argument excludes or strongly disfavours all ankle models with ankle energy Ea > 3 EeV. The calculation of elongation curves, Xmax(E), for different ankle models strengthens further this conclusion. Status of other models, the dip, mixed composition and Auger based models are discussed.

  6. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  7. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  8. Recognition of Social Identity in Ants

    PubMed Central

    Bos, Nick; d’Ettorre, Patrizia

    2012-01-01

    Recognizing the identity of others, from the individual to the group level, is a hallmark of society. Ants, and other social insects, have evolved advanced societies characterized by efficient social recognition systems. Colony identity is mediated by colony specific signature mixtures, a blend of hydrocarbons present on the cuticle of every individual (the “label”). Recognition occurs when an ant encounters another individual, and compares the label it perceives to an internal representation of its own colony odor (the “template”). A mismatch between label and template leads to rejection of the encountered individual. Although advances have been made in our understanding of how the label is produced and acquired, contradictory evidence exists about information processing of recognition cues. Here, we review the literature on template acquisition in ants and address how and when the template is formed, where in the nervous system it is localized, and the possible role of learning. We combine seemingly contradictory evidence in to a novel, parsimonious theory for the information processing of nestmate recognition cues. PMID:22461777

  9. Studies of recognition with multitemporal remote sensor data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Hieber, R. H.; Cicone, R. C.

    1975-01-01

    Characteristics of multitemporal data and their use in recognition processing were investigated. Principal emphasis was on satellite data collected by the LANDSAT multispectral scanner and on temporal changes throughout a growing season. The effects of spatial misregistration on recognition performance with multitemporal data were examined. A capability to compute probabilities of detection and false alarm was developed and used with simulated distributions for misregistered pixels. Wheat detection was found to be degraded and false alarms increased by misregistration effects. Multitemporal signature characteristics and multitemporal recognition processing were studied to gain insights into problems associated with this approach and possible improvements. Recognition performance with one multitemporal data set displayed marked improvements over results from single-time data.

  10. A proposed neutral line signature

    NASA Technical Reports Server (NTRS)

    Doxas, I.; Speiser, T. W.; Dusenbery, P. B.; Horton, W.

    1992-01-01

    An identifying signature is proposed for the existence and location of the neutral line in the magnetotail. The signature, abrupt density, and temperature changes in the Earthtail direction, was first discovered in test particle simulations. Such temperature variations have been observed in ISEE data (Huang et. al. 1992), but their connection to the possible existence of a neutral line in the tail has not yet been established. The proposed signature develops earlier than the ion velocity space ridge of Martin and Speiser (1988), but can only be seen by spacecraft in the vicinity of the neutral line, while the latter can locate a neutral line remotely.

  11. Signature surveillance of nuclear fuel

    SciTech Connect

    Bernatowicz, H.; Schoenig, F.C.

    1982-08-31

    Typical nuclear fuel material contains tramp ferromagnetic particles of random size and distribution. Also, selected amounts of paramagnetic or ferromagnetic material can be added at random or at known positions in the fuel material. The fuel material in its nonmagnetic container can be scanned by magnetic susceptibility change detecting apparatus to provide a unique signal waveform of the container of fuel material as a signature thereof. At subsequent times in its life, the container similarly can be scanned to provide subsequent signatures. Comparison of the signatures reveals any alteration or tampering with the fuel material.

  12. Diagnostic odor recognition

    PubMed

    Rosenblatt; Phan; Desandre; Lobon; Hsu

    2000-10-01

    Many diseases, toxic ingestions, and intoxications have characteristic odors. These odors may provide diagnostic clues that affect rapid treatment long before laboratory confirmation or clinical deterioration. Odor recognition skills, similar to auscultation and palpation skills, require teaching and practical exposure. Dr. Goldfrank and colleagues recognized the importance of teaching odor recognition to emergency service providers. They proposed the "sniffing bar" method for odor recognition training. OBJECTIVES: (1) To identify the recognition rates of medically important odors among emergency care providers. (2) To investigate the effectiveness of teaching odor recognition. Hypothesis: The recognition rates of medically important odors will increase after teaching exposure. METHODS: The study exposed emergency care providers to 11 tubes of odors. Identifications of each substance were recorded. After corrective feedback, subjects were re-tested on their ability to identify the odors. Analysis of odor recognition improvement after teaching was done via chi-square test. RESULTS: Improvement in identification after teaching was seen in all odors. However, the improvement was significant only in the lesscommon substances because their initial recognition was especially low. Significant changes may improve with a larger sample size. Subjects often confuse the odors of alcohol with acetone, and wintergreen with camphor. CONCLUSIONS: The recognition rates are higher for the more-common odors, and lower for the less-common odors. Teaching exposures to the less well-known odors are effective and can significantly improve the recognition rate of these substances. Because odor recognition may affect rapid diagnosis and treatment of certain medical emergencies such as toxic ingestion, future studies should investigate the correlation between odor recognition and the ability to identify corresponding medical emergencies. PMID:11015270

  13. Pattern recognition descriptor using the Z-Fisher transform

    NASA Astrophysics Data System (ADS)

    Barajas-García, Carolina; Solorza-Calderón, Selene; Álvarez-Borrego, Josué

    2015-09-01

    In this work is presented a pattern recognition image descriptor invariant to rotation, scale and translation (RST), which classify images using the Z-Fisher transform. A binary rings mask is generated using the Fourier transform. The normalized analytic Fourier-Mellin amplitude spectrum is filtered with that mask to build 1D signature. The signatures comparison of the problem image and the target are done by the Pearson correlation coefficient (PCC). In general, those PCC values do not satisfy a normal distribution, hence the Fisher's Z distribution is employed to determine the confidence level of the RST invariant descriptor. The descriptor presents a confidence level of 95%.

  14. Songbirds use spectral shape, not pitch, for sound pattern recognition

    PubMed Central

    Bregman, Micah R.; Patel, Aniruddh D.; Gentner, Timothy Q.

    2016-01-01

    Humans easily recognize “transposed” musical melodies shifted up or down in log frequency. Surprisingly, songbirds seem to lack this capacity, although they can learn to recognize human melodies and use complex acoustic sequences for communication. Decades of research have led to the widespread belief that songbirds, unlike humans, are strongly biased to use absolute pitch (AP) in melody recognition. This work relies almost exclusively on acoustically simple stimuli that may belie sensitivities to more complex spectral features. Here, we investigate melody recognition in a species of songbird, the European Starling (Sturnus vulgaris), using tone sequences that vary in both pitch and timbre. We find that small manipulations altering either pitch or timbre independently can drive melody recognition to chance, suggesting that both percepts are poor descriptors of the perceptual cues used by birds for this task. Instead we show that melody recognition can generalize even in the absence of pitch, as long as the spectral shapes of the constituent tones are preserved. These results challenge conventional views regarding the use of pitch cues in nonhuman auditory sequence recognition. PMID:26811447

  15. Songbirds use spectral shape, not pitch, for sound pattern recognition.

    PubMed

    Bregman, Micah R; Patel, Aniruddh D; Gentner, Timothy Q

    2016-02-01

    Humans easily recognize "transposed" musical melodies shifted up or down in log frequency. Surprisingly, songbirds seem to lack this capacity, although they can learn to recognize human melodies and use complex acoustic sequences for communication. Decades of research have led to the widespread belief that songbirds, unlike humans, are strongly biased to use absolute pitch (AP) in melody recognition. This work relies almost exclusively on acoustically simple stimuli that may belie sensitivities to more complex spectral features. Here, we investigate melody recognition in a species of songbird, the European Starling (Sturnus vulgaris), using tone sequences that vary in both pitch and timbre. We find that small manipulations altering either pitch or timbre independently can drive melody recognition to chance, suggesting that both percepts are poor descriptors of the perceptual cues used by birds for this task. Instead we show that melody recognition can generalize even in the absence of pitch, as long as the spectral shapes of the constituent tones are preserved. These results challenge conventional views regarding the use of pitch cues in nonhuman auditory sequence recognition. PMID:26811447

  16. Acoustic Neuroma Association

    MedlinePlus

    ... Platinum Sponsors More from this sponsor... Platinum Sponsor Gold Sponsor University of Colorado Acoustic Neuroma Program Rocky Mountain Gamma Knife Center Gold Sponsor NYU Langone Medical Center Departments of Neurosurgery ...

  17. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  18. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  19. Acoustics lecturing in Mexico

    NASA Astrophysics Data System (ADS)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  20. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  1. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  2. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect

    Thurman E. Scott, Jr.; Younane Abousleiman

    2004-04-01

    The research during this project has concentrated on developing a correlation between rock deformation mechanisms and their acoustic velocity signature. This has included investigating: (1) the acoustic signature of drained and undrained unconsolidated sands, (2) the acoustic emission signature of deforming high porosity rocks (in comparison to their low porosity high strength counterparts), (3) the effects of deformation on anisotropic elastic and poroelastic moduli, and (4) the acoustic tomographic imaging of damage development in rocks. Each of these four areas involve triaxial experimental testing of weak porous rocks or unconsolidated sand and involves measuring acoustic properties. The research is directed at determining the seismic velocity signature of damaged rocks so that 3-D or 4-D seismic imaging can be utilized to image rock damage. These four areas of study are described in the report: (1) Triaxial compression experiments have been conducted on unconsolidated Oil Creek sand at high confining pressures. (2) Initial experiments on measuring the acoustic emission activity from deforming high porosity Danian chalk were accomplished and these indicate that the AE activity was of a very low amplitude. (3) A series of triaxial compression experiments were conducted to investigate the effects of induced stress on the anisotropy developed in dynamic elastic and poroelastic parameters in rocks. (4) Tomographic acoustic imaging was utilized to image the internal damage in a deforming porous limestone sample. Results indicate that the deformation damage in rocks induced during laboratory experimentation can be imaged tomographically in the laboratory. By extension the results also indicate that 4-D seismic imaging of a reservoir may become a powerful tool for imaging reservoir deformation (including imaging compaction and subsidence) and for imaging zones where drilling operation may encounter hazardous shallow water flows.

  3. History of structural acoustics and vibrations in the Acoustical Society of America

    NASA Astrophysics Data System (ADS)

    Feit, David; Strasberg, Murray; Ungar, Eric E.

    2002-05-01

    Structural acoustics refers to the interaction of sound and structures-the response of structures to sound, the radiation of sound from vibrating structures, and the effect of the acoustic medium on the structural vibrations. Interest in these subjects increased greatly during the 1930s and 40s because of practical applications in the design of microphones and loud speakers used in telephones, radios, and electronic phonographs. The combination of electrical and mechanical systems lead to the use of electrical engineering concepts such as impedance, circuits, and electrical analogies, in the analysis of mechanical systems. In later years, much of the work dealt with various aspects of underwater structures, prompted by U.S. Navy interests. The field, which began with classical analytical mechanics applications, has progressed to new approaches, including statistical energy analysis, near-field acoustical holography, fuzzy structures, active control of vibrations, and smart materials. In recognition of these new developments, the name of the technical committee was changed in 1987 from ``Shock and Vibration'' to ``Structural Acoustics and Vibration.''

  4. Thermal imaging as a biometrics approach to facial signature authentication.

    PubMed

    Guzman, A M; Goryawala, M; Wang, Jin; Barreto, A; Andrian, J; Rishe, N; Adjouadi, M

    2013-01-01

    A new thermal imaging framework with unique feature extraction and similarity measurements for face recognition is presented. The research premise is to design specialized algorithms that would extract vasculature information, create a thermal facial signature and identify the individual. The proposed algorithm is fully integrated and consolidates the critical steps of feature extraction through the use of morphological operators, registration using the Linear Image Registration Tool and matching through unique similarity measures designed for this task. The novel approach at developing a thermal signature template using four images taken at various instants of time ensured that unforeseen changes in the vasculature over time did not affect the biometric matching process as the authentication process relied only on consistent thermal features. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using the similarity measures showed an average accuracy of 88.46% for skeletonized signatures and 90.39% for anisotropically diffused signatures. The highly accurate results obtained in the matching process clearly demonstrate the ability of the thermal infrared system to extend in application to other thermal imaging based systems. Empirical results applying this approach to an existing database of thermal images proves this assertion. PMID:22801524

  5. The role of gravity in ocean acoustics propagation and its implication to early tsunami detection

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago; Lin, Ying-Tsong; Kadri, Usama

    2016-04-01

    Oceanic low frequency sound generated by submarine earthquake travels much faster than tsunamis and leaves pressure signatures that can act as tsunami precursors. In this regard, it is anticipated that the correct measurement and analysis of low frequency acoustics would enhance current early tsunami detection systems. In this work we model the low frequency acoustics generated by the 2004 Indian Ocean earthquake using the "Method of Normal Modes" and the "Acoustics-Gravity Wave" theory. Ocean acoustic theories usually neglect the effect of gravity. However, we show for rigid and elastic bottom conditions how gravity influences the acoustic normal mode propagation speed. Practically, our results can help in the real time characterization of low frequency sources in the ocean. This will enhance the robustness of early tsunami detection systems.

  6. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  7. Landscape cultivation alters δ30Si signature in terrestrial ecosystems

    PubMed Central

    Vandevenne, Floor I.; Delvaux, Claire; Hughes, Harold J.; André, Luc; Ronchi, Benedicta; Clymans, Wim; Barão, Lúcia; Govers, Gerard; Meire, Patrick; Struyf, Eric

    2015-01-01

    Despite increasing recognition of the relevance of biological cycling for Si cycling in ecosystems and for Si export from soils to fluvial systems, effects of human cultivation on the Si cycle are still relatively understudied. Here we examined stable Si isotope (δ30Si) signatures in soil water samples across a temperate land use gradient. We show that – independent of geological and climatological variation – there is a depletion in light isotopes in soil water of intensive croplands and managed grasslands relative to native forests. Furthermore, our data suggest a divergence in δ30Si signatures along the land use change gradient, highlighting the imprint of vegetation cover, human cultivation and intensity of disturbance on δ30Si patterns, on top of more conventionally acknowledged drivers (i.e. mineralogy and climate). PMID:25583031

  8. Landscape cultivation alters δ30Si signature in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Vandevenne, Floor I.; Delvaux, Claire; Hughes, Harold J.; André, Luc; Ronchi, Benedicta; Clymans, Wim; Barão, Lúcia; Cornelis, Jean-Thomas; Govers, Gerard; Meire, Patrick; Struyf, Eric

    2015-01-01

    Despite increasing recognition of the relevance of biological cycling for Si cycling in ecosystems and for Si export from soils to fluvial systems, effects of human cultivation on the Si cycle are still relatively understudied. Here we examined stable Si isotope (δ30Si) signatures in soil water samples across a temperate land use gradient. We show that - independent of geological and climatological variation - there is a depletion in light isotopes in soil water of intensive croplands and managed grasslands relative to native forests. Furthermore, our data suggest a divergence in δ30Si signatures along the land use change gradient, highlighting the imprint of vegetation cover, human cultivation and intensity of disturbance on δ30Si patterns, on top of more conventionally acknowledged drivers (i.e. mineralogy and climate).

  9. Intrusion detection using secure signatures

    DOEpatents

    Nelson, Trent Darnel; Haile, Jedediah

    2014-09-30

    A method and device for intrusion detection using secure signatures comprising capturing network data. A search hash value, value employing at least one one-way function, is generated from the captured network data using a first hash function. The presence of a search hash value match in a secure signature table comprising search hash values and an encrypted rule is determined. After determining a search hash value match, a decryption key is generated from the captured network data using a second hash function, a hash function different form the first hash function. One or more of the encrypted rules of the secure signatures table having a hash value equal to the generated search hash value are then decrypted using the generated decryption key. The one or more decrypted secure signature rules are then processed for a match and one or more user notifications are deployed if a match is identified.

  10. Signature-based image identification

    NASA Astrophysics Data System (ADS)

    Abdel-Mottaleb, Mohamed; Vaithilingam, Gandhimathi; Krishnamachari, Santhana

    1999-11-01

    The use of digital images and video is growing on the Internet and on consumer devices. Digital images and video are easy to manipulate, but this ease of manipulation makes tampering with digital content possible. Examples of the misuse of digital content include violating copyrights of the content and tampering with important material such as contents of video surveillance. In this paper we present an algorithm that extracts a binary signature from an image. This approach can be used to search for possible copyright violations by finding images with signatures close to that of a given image. The experimental results show that the algorithm can be very effective in helping users to retrieve sets of almost identical images from large collections of images. The signature can also be used for tamper detection. We will show that the signatures we extract are immune to quantization errors that result from compression and decompression.

  11. Retail applications of signature verification

    NASA Astrophysics Data System (ADS)

    Zimmerman, Thomas G.; Russell, Gregory F.; Heilper, Andre; Smith, Barton A.; Hu, Jianying; Markman, Dmitry; Graham, Jon E.; Drews, Clemens

    2004-08-01

    The dramatic rise in identity theft, the ever pressing need to provide convenience in checkout services to attract and retain loyal customers, and the growing use of multi-function signature captures devices in the retail sector provides favorable conditions for the deployment of dynamic signature verification (DSV) in retail settings. We report on the development of a DSV system to meet the needs of the retail sector. We currently have a database of approximately 10,000 signatures collected from 600 subjects and forgers. Previous work at IBM on DSV has been merged and extended to achieve robust performance on pen position data available from commercial point of sale hardware, achieving equal error rates on skilled forgeries and authentic signatures of 1.5% to 4%.

  12. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  13. Improving Speaker Recognition by Biometric Voice Deconstruction

    PubMed Central

    Mazaira-Fernandez, Luis Miguel; Álvarez-Marquina, Agustín; Gómez-Vilda, Pedro

    2015-01-01

    Person identification, especially in critical environments, has always been a subject of great interest. However, it has gained a new dimension in a world threatened by a new kind of terrorism that uses social networks (e.g., YouTube) to broadcast its message. In this new scenario, classical identification methods (such as fingerprints or face recognition) have been forcedly replaced by alternative biometric characteristics such as voice, as sometimes this is the only feature available. The present study benefits from the advances achieved during last years in understanding and modeling voice production. The paper hypothesizes that a gender-dependent characterization of speakers combined with the use of a set of features derived from the components, resulting from the deconstruction of the voice into its glottal source and vocal tract estimates, will enhance recognition rates when compared to classical approaches. A general description about the main hypothesis and the methodology followed to extract the gender-dependent extended biometric parameters is given. Experimental validation is carried out both on a highly controlled acoustic condition database, and on a mobile phone network recorded under non-controlled acoustic conditions. PMID:26442245

  14. Vocally mediated social recognition in anurans

    NASA Astrophysics Data System (ADS)

    Bee, Mark A.

    2005-09-01

    Anuran amphibians (frogs and toads) are among the most vocal of vertebrates and have long served as model systems for investigating the mechanisms and evolution of acoustic communication. Compared to higher vertebrates, however, the role of cognition in anuran communication has received less attention, at least in part due to the lack of evidence that juvenile anurans learn to produce signals or associate them with particular social contexts. Recent studies of social recognition in two anuran families indicate that territorial male frogs in some species are able to learn about and recognize the individually distinctive properties of the calls of nearby neighbors. For example, male bullfrogs (ranidae) learn about the pitch of a neighbor's vocalizations (an individually distinct voice property) and associate a familiar pitch with the location of the neighbor's territory. As in songbirds, this form of vocally mediated social recognition allows territory holders to direct low levels of aggression toward well-established neighbors, while maintaining a readiness to respond aggressively to more threatening strangers that may attempt a territory takeover. A brief review of currently available data will be used to illustrate how anurans can serve as model systems for investigating the role of cognition in acoustic communication.

  15. Molecular Recognition in the Digital Radio Domain

    NASA Astrophysics Data System (ADS)

    Hunt, William D.; Edmonson, Peter J.; Stubbs, Desmond D.; Lee, Sang-Hun

    2010-07-01

    In this paper we discuss the theoretical and experimental constructs which together point the way towards the transduction of biomolecular recognition events into a palpable set of electrical signals. This combines the applied physics of surface perturbations on acoustic wave device surfaces and the biochemistry of the interactions between an immobilized biomolecule (e.g., an antibody) and a target molecule which is flowing past the sensor surface (e.g., an antigen). We will first provide the theoretical basis for our contention that we can extract information about both molecular recognition and conformational change from the electrical signal and will then confirm this assertion with experimental results relating to induced conformational changes in DNA on a quartz crystal microbalance (QCM) surface. Next we will discuss our digital radio technique whereby the real time measurements using antibody coated surface acoustic wave (SAW) devices in the vapor phase allow us to differentiate between close chemical analogs of nitro-based molecules (e.g., tri-nitro toluene vs musk oil) by virtue of the cross-reactivity of the antibody-antigen interaction. In immunochemistry this is referred to as antibody promiscuity. Finally, we present two- and three-dimensional plots illustrating our technique which derives much from in-phase and quadrature phase (IQ) mapping. The end result is a powerful technique which allows one to differentiate between target molecules and chemically similar interferrents.

  16. Improving Speaker Recognition by Biometric Voice Deconstruction.

    PubMed

    Mazaira-Fernandez, Luis Miguel; Álvarez-Marquina, Agustín; Gómez-Vilda, Pedro

    2015-01-01

    Person identification, especially in critical environments, has always been a subject of great interest. However, it has gained a new dimension in a world threatened by a new kind of terrorism that uses social networks (e.g., YouTube) to broadcast its message. In this new scenario, classical identification methods (such as fingerprints or face recognition) have been forcedly replaced by alternative biometric characteristics such as voice, as sometimes this is the only feature available. The present study benefits from the advances achieved during last years in understanding and modeling voice production. The paper hypothesizes that a gender-dependent characterization of speakers combined with the use of a set of features derived from the components, resulting from the deconstruction of the voice into its glottal source and vocal tract estimates, will enhance recognition rates when compared to classical approaches. A general description about the main hypothesis and the methodology followed to extract the gender-dependent extended biometric parameters is given. Experimental validation is carried out both on a highly controlled acoustic condition database, and on a mobile phone network recorded under non-controlled acoustic conditions. PMID:26442245

  17. Single-sensor multispeaker listening with acoustic metamaterials.

    PubMed

    Xie, Yangbo; Tsai, Tsung-Han; Konneker, Adam; Popa, Bogdan-Ioan; Brady, David J; Cummer, Steven A

    2015-08-25

    Designing a "cocktail party listener" that functionally mimics the selective perception of a human auditory system has been pursued over the past decades. By exploiting acoustic metamaterials and compressive sensing, we present here a single-sensor listening device that separates simultaneous overlapping sounds from different sources. The device with a compact array of resonant metamaterials is demonstrated to distinguish three overlapping and independent sources with 96.67% correct audio recognition. Segregation of the audio signals is achieved using physical layer encoding without relying on source characteristics. This hardware approach to multichannel source separation can be applied to robust speech recognition and hearing aids and may be extended to other acoustic imaging and sensing applications. PMID:26261314

  18. Single-sensor multispeaker listening with acoustic metamaterials

    PubMed Central

    Xie, Yangbo; Tsai, Tsung-Han; Konneker, Adam; Popa, Bogdan-Ioan; Brady, David J.; Cummer, Steven A.

    2015-01-01

    Designing a “cocktail party listener” that functionally mimics the selective perception of a human auditory system has been pursued over the past decades. By exploiting acoustic metamaterials and compressive sensing, we present here a single-sensor listening device that separates simultaneous overlapping sounds from different sources. The device with a compact array of resonant metamaterials is demonstrated to distinguish three overlapping and independent sources with 96.67% correct audio recognition. Segregation of the audio signals is achieved using physical layer encoding without relying on source characteristics. This hardware approach to multichannel source separation can be applied to robust speech recognition and hearing aids and may be extended to other acoustic imaging and sensing applications. PMID:26261314

  19. Acoustic communication by ants

    NASA Astrophysics Data System (ADS)

    Hickling, Robert

    2002-05-01

    Many ant species communicate acoustically by stridulating, i.e., running a scraper over a washboard-like set of ridges. Ants appear to be insensitive to airborne sound. Consequently, myrmecologists have concluded that the stridulatory signals are transmitted through the substrate. This has tended to diminish the importance of acoustic communication, and it is currently believed that ant communication is based almost exclusively on pheromones, with acoustic communication assigned an almost nonexistent role. However, it can be shown that acoustic communication between ants is effective only if the medium is air and not the substrate. How, then, is it possible for ants to appear deaf to airborne sound and yet communicate through the air? An explanation is provided in a paper [R. Hickling and R. L. Brown, ``Analysis of acoustic communication by ants,'' J. Acoust. Soc. Am. 108, 1920-1929 (2000)]. Ants are small relative to the wavelengths they generate. Hence, they create a near field, which is characterized by a major increase in sound velocity (particle velocity of sound) in the vicinity of the source. Hair sensilla on the ants' antennae respond to sound velocity. Thus, ants are able to detect near-field sound from other ants and to exclude extraneous airborne sound.

  20. Acoustic detection of pneumothorax

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (<2000 Hz) acoustic methods for medical diagnosis. Several candidate methods of pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (p<0.0001). The ratio of acoustic energy between low (<220 Hz) and mid (550-770 Hz) frequency bands was significantly different in the control (healthy) and pneumothorax states (p<0.0001). The second approach measured breath sounds in the absence of an external acoustic input. Pneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (p<0.01 for each). Finally, chest percussion was implemented. Pneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  1. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  2. Ballastic signature identification systems study

    NASA Technical Reports Server (NTRS)

    Reich, A.; Hine, T. L.

    1976-01-01

    The results are described of an attempt to establish a uniform procedure for documenting (recording) expended bullet signatures as effortlessly as possible and to build a comprehensive library of these signatures in a form that will permit the automated comparison of a new suspect bullet with the prestored library. The ultimate objective is to achieve a standardized format that will permit nationwide interaction between police departments, crime laboratories, and other interested law enforcement agencies.

  3. Bearing defect signature analysis using advanced nonlinear signal analysis in a controlled environment

    NASA Technical Reports Server (NTRS)

    Zoladz, T.; Earhart, E.; Fiorucci, T.

    1995-01-01

    Utilizing high-frequency data from a highly instrumented rotor assembly, seeded bearing defect signatures are characterized using both conventional linear approaches, such as power spectral density analysis, and recently developed nonlinear techniques such as bicoherence analysis. Traditional low-frequency (less than 20 kHz) analysis and high-frequency envelope analysis of both accelerometer and acoustic emission data are used to recover characteristic bearing distress information buried deeply in acquired data. The successful coupling of newly developed nonlinear signal analysis with recovered wideband envelope data from accelerometers and acoustic emission sensors is the innovative focus of this research.

  4. A Markov Random Field Groupwise Registration Framework for Face Recognition

    PubMed Central

    Liao, Shu; Shen, Dinggang; Chung, Albert C.S.

    2014-01-01

    In this paper, we propose a new framework for tackling face recognition problem. The face recognition problem is formulated as groupwise deformable image registration and feature matching problem. The main contributions of the proposed method lie in the following aspects: (1) Each pixel in a facial image is represented by an anatomical signature obtained from its corresponding most salient scale local region determined by the survival exponential entropy (SEE) information theoretic measure. (2) Based on the anatomical signature calculated from each pixel, a novel Markov random field based groupwise registration framework is proposed to formulate the face recognition problem as a feature guided deformable image registration problem. The similarity between different facial images are measured on the nonlinear Riemannian manifold based on the deformable transformations. (3) The proposed method does not suffer from the generalizability problem which exists commonly in learning based algorithms. The proposed method has been extensively evaluated on four publicly available databases: FERET, CAS-PEAL-R1, FRGC ver 2.0, and the LFW. It is also compared with several state-of-the-art face recognition approaches, and experimental results demonstrate that the proposed method consistently achieves the highest recognition rates among all the methods under comparison. PMID:25506109

  5. Detection and recognition of analytes based on their crystallization patterns

    DOEpatents

    Morozov, Victor; Bailey, Charles L.; Vsevolodov, Nikolai N.; Elliott, Adam

    2008-05-06

    The invention contemplates a method for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization pattern") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. It has been shown that changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. It was also found that both the character of changer in the crystallization patter and the fact of such changes can be used as recognition elements in analysis of protein molecules.

  6. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  7. Moreland Recognition Program.

    ERIC Educational Resources Information Center

    Moreland Elementary School District, San Jose, CA.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: Recognition for special effort and achievement has been noted as a component of effective schools. Schools in the Moreland School District have effectively improved standards of discipline and achievement by providing forty-six different ways for children to receive positive recognition. Good…

  8. Extracting and analyzing micro-Doppler from ladar signatures

    NASA Astrophysics Data System (ADS)

    Tahmoush, Dave

    2015-05-01

    Ladar and other 3D imaging modalities have the capability of creating 3D micro-Doppler to analyze the micro-motions of human subjects. An additional capability to the recognition of micro-motion is the recognition of the moving part, such as the hand or arm. Combined with measured RCS values of the body, ladar imaging can be used to ground-truth the more sensitive radar micro-Doppler measurements and associate the moving part of the subject with the measured Doppler and RCS from the radar system. The 3D ladar signatures can also be used to classify activities and actions on their own, achieving an 86% accuracy using a micro-Doppler based classification strategy.

  9. Improvement of Arab Digits Recognition Rate Based in the Parameters Choice

    NASA Astrophysics Data System (ADS)

    Hadri, C.; Boughazi, M.; Fezari, M.

    2008-06-01

    Automatic speech recognition (ASR) is the process of automatically recognizing the speech on the basis of information obtained by acoustic features extracted from the speech signal. Because features extraction is the first component in ASR systems, the quality of the later component depends from the quality of feature extractor. The goal of this work is to study and implement features (representations) extraction, which are robust to the differences between the acoustic conditions of training and evolution. These features will be evaluated in an Automatic Arab digits recognition system. A particular attention will be taken to the robust features extraction methods (CMS, CGN, RASTAPLP, MBLPCC, and LPC MFCC).

  10. Parametric Quantitative Acoustic Analysis of Conversation Produced by Speakers with Dysarthria and Healthy Speakers

    ERIC Educational Resources Information Center

    Rosen, Kristin M.; Kent, Raymond D.; Delaney, Amy L.; Duffy, Joseph R.

    2006-01-01

    Purpose: This study's main purpose was to (a) identify acoustic signatures of hypokinetic dysarthria (HKD) that are robust to phonetic variation in conversational speech and (b) determine specific characteristics of the variability associated with HKD. Method: Twenty healthy control (HC) participants and 20 participants with HKD associated with…

  11. 1 CFR 18.7 - Signature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Signature. 18.7 Section 18.7 General Provisions... PREPARATION AND TRANSMITTAL OF DOCUMENTS GENERALLY § 18.7 Signature. The original and each duplicate original... stamped beneath the signature. Initialed or impressed signatures will not be accepted. Documents...

  12. 1 CFR 18.7 - Signature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Signature. 18.7 Section 18.7 General Provisions... PREPARATION AND TRANSMITTAL OF DOCUMENTS GENERALLY § 18.7 Signature. The original and each duplicate original... stamped beneath the signature. Initialed or impressed signatures will not be accepted. Documents...

  13. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  14. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  15. Quantum messages with signatures forgeable in arbitrated quantum signature schemes

    NASA Astrophysics Data System (ADS)

    Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon

    2015-02-01

    Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme.

  16. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  17. Dynamic Hand Gesture Recognition Using the Skeleton of the Hand

    NASA Astrophysics Data System (ADS)

    Ionescu, Bogdan; Coquin, Didier; Lambert, Patrick; Buzuloiu, Vasile

    2005-12-01

    This paper discusses the use of the computer vision in the interpretation of human gestures. Hand gestures would be an intuitive and ideal way of exchanging information with other people in a virtual space, guiding some robots to perform certain tasks in a hostile environment, or interacting with computers. Hand gestures can be divided into two main categories: static gestures and dynamic gestures. In this paper, a novel dynamic hand gesture recognition technique is proposed. It is based on the 2D skeleton representation of the hand. For each gesture, the hand skeletons of each posture are superposed providing a single image which is the dynamic signature of the gesture. The recognition is performed by comparing this signature with the ones from a gesture alphabet, using Baddeley's distance as a measure of dissimilarities between model parameters.

  18. A theoretical study of acoustic glitches in low-mass main-sequence stars

    SciTech Connect

    Verma, Kuldeep; Antia, H. M.; Basu, Sarbani; Mazumdar, Anwesh E-mail: antia@tifr.res.in E-mail: anwesh@tifr.res.in

    2014-10-20

    There are regions in stars, such as ionization zones and the interface between radiative and convective regions, that cause a localized sharp variation in the sound speed. These are known as 'acoustic glitches'. Acoustic glitches leave their signatures on the oscillation frequencies of stars, and hence these signatures can be used as diagnostics of these regions. In particular, the signatures of these glitches can be used as diagnostics for the position of the second helium ionization zone and that of the base of the envelope convection zone. With the help of stellar models, we study the properties of these acoustic glitches in main-sequence stars. We find that the acoustic glitch due to the helium ionization zone does not correspond to the dip in the adiabatic index Γ{sub 1} caused by the ionization of He II, but to the peak in Γ{sub 1} between the He I and He II ionization zones. We find that it is easiest to study the acoustic glitch that is due to the helium ionization zone in stars with masses in the range 0.9-1.2 M {sub ☉}.

  19. Artillery/mortar type classification based on detected acoustic transients

    NASA Astrophysics Data System (ADS)

    Morcos, Amir; Grasing, David; Desai, Sachi

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  20. Detection and Classification of Whale Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Xian, Yin

    vocalization data set. The word error rate of the DCTNet feature is similar to the MFSC in speech recognition tasks, suggesting that the convolutional network is able to reveal acoustic content of speech signals.

  1. Development of the hidden Markov models based Lithuanian speech recognition system

    NASA Astrophysics Data System (ADS)

    Ringeliene, Z.; Lipeika, A.

    2010-09-01

    The paper presents a prototype of the speaker-independent Lithuanian isolated word recognition system. The system is based on the hidden Markov models, a powerful statistical method for modeling speech signals. The prototype system can be used for Lithuanian words recognition investigations and is a good starting point for the development of a more sophisticated recognition system. The system graphical user interface is easy to control. Visualization of the entire recognition process is useful for analyzing of the recognition results. Based on this recognizer, a system for Web browser control by voice was developed. The program, which implements control by voice commands, was integrated in the speech recognition system. The system performance was evaluated by using different sets of acoustic models and vocabularies.

  2. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  3. Scanning Tomographic Acoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Wade, G.; Meyyappan, A.

    1988-07-01

    The technology for "seeing" with sound has an important and interesting history. Some of nature's creatures have been using sound waves for many millenia to image otherwise unobservable objects. The human species, lacking this natural ability, have overcome this deficiency by developing several different ultrasonic imaging techniques. acoustic microscopy is one such technique, which produces high resolution images of detailed structure of small objects in a non-destructive fashion. Two types of acoustic microscopes have evolved for industrial exploitation. They are the scanning laser acoustic microscope (SLAM) and the scanning acoustic microscope (SAM). In this paper, we review the principles of SLAM and describe how we use elements of SLAM to realize the scanning tomographic acoustic microscope (STAM). We describe the data acquisition process and the image reconstruction procedure. We also describe techniques to obtain projection data from different angles of wave incidence enabling us to reconstruct different planes of a complex specimen tomo-graphically. Our experimental results show that STAM is capable of producing high-quality high-resolution subsurface images.

  4. Sound Exposure Calculations for Transient Events and Other Improvements to an Acoustical Tactical Decision Aid

    NASA Astrophysics Data System (ADS)

    Wilson, D. K.; Nguyen, V. A.; Srour, Nassy; Noble, John

    2002-08-01

    Recent enhancements to an acoustical tactical decision aid, called the Acoustic Battlefield Aid (ABFA), are described. ABFA predicts the effects of the atmosphere and local terrain on the performance of acoustical sensors, using advanced sound propagation models. Among the enhancements are: (1) sound-exposure and detection calculations for moving and transient sources, (2) new display capabilities including loading of vector-map features from CDs, (3) an interactive menu for entering and managing acoustical and meteorological ground properties, (4) initialization of runs from field trials stored in the U.S. Army Research Laboratory's Automatic Target Recognition Acoustic Database, (5) a Java-based interface to numerical weather forecast data over the Internet, and (6) creation of a Windows executable version using the MATLAB compiler.

  5. Signature molecular descriptor : advanced applications.

    SciTech Connect

    Visco, Donald Patrick, Jr.

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  6. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  7. Active-SWIR signatures for long-range night/day human detection and identification

    NASA Astrophysics Data System (ADS)

    Martin, Robert B.; Sluch, Mikhail; Kafka, Kristopher M.; Ice, Robert; Lemoff, Brian E.

    2013-05-01

    The capability to detect, observe, and positively identify people at a distance is important to numerous security and defense applications. Traditional solutions for human detection and observation include long-range visible imagers for daytime and thermal infrared imagers for night-time use. Positive identification, through computer face recognition, requires facial imagery that can be repeatably matched to a database of visible facial signatures (i.e. mug shots). Nighttime identification at large distance is not possible with visible imagers, due to lack of light, or with thermal infrared imagers, due to poor correlation with visible facial imagery. An active-SWIR imaging system was developed that is both eye-safe and invisible, capable of producing close-up facial imagery at distances of several hundred meters, even in total darkness. The SWIR facial signatures correlate well to visible signatures, allowing for biometric face recognition night or day. Night-time face recognition results for several distances will be presented. Human detection and observation results at larger distances will also be presented. Example signatures will be presented and discussed.

  8. Acoustic energy shaping

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D. (Inventor)

    1977-01-01

    A suspended mass is shaped by melting all or a selected portion of the mass and applying acoustic energy in varying amounts to different portions of the mass. In one technique for forming an optical waveguide slug, a mass of oval section is suspended and only a portion along the middle of the cross-section is heated to a largely fluid consistency. Acoustic energy is applied to opposite edges of the oval mass to press the unheated opposite edge portions together so as to form bulges at the middle of the mass. In another technique for forming a ribbon of silicon for constructing solar cells, a cylindrical thread of silicon is drawn from a molten mass of silicon, and acoustic energy is applied to opposite sides of the molten thread to flatten it into a ribbon.

  9. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  10. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  11. Latticed pentamode acoustic cloak

    PubMed Central

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  12. Seamount acoustic scattering

    NASA Astrophysics Data System (ADS)

    Boehlert, George W.

    The cover of the March 1 issue of Eos showed a time series of acoustic scattering above Southeast Hancock Seamount (29°48‧N, 178°05‧E) on July 17-18, 1984. In a comment on that cover Martin Hovland (Eos, August 2, p. 760) argued that gas or “other far reaching causes” may be involved in the observed acoustic signals. He favors a hypothesis that acoustic scattering observed above a seeping pockmark in the North Sea is a combination of bubbles, stable microbubbles, and pelagic organisms and infers that this may be a more general phenomenon and indeed plays a role in the attraction of organisms to seamounts

  13. A signature correlation study of ground target VHF/UHF ISAR imagery

    NASA Astrophysics Data System (ADS)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Kersey, William T.; Waldman, Jerry; Carter, Steve; Nixon, William E.

    2003-09-01

    VV and HH-polarized radar signatures of several ground targets were acquired in the VHF/UHF band (171-342 MHz) by using 1/35th scale models and an indoor radar range operating from 6 to 12 GHz. Data were processed into medianized radar cross sections as well as focused, ISAR imagery. Measurement validation was confirmed by comparing the radar cross section of a test object with a method of moments radar cross section prediction code. The signatures of several vehicles from three vehicle classes (tanks, trunks, and TELs) were measured and a signature cross-correlation study was performed. The VHF/UHF band is currently being exploited for its foliage penetration ability, however, the coarse image resolution which results from the relatively long radar wavelengths suggests a more challenging target recognition problem. One of the study's goals was to determine the amount of unique signature content in VHF/UHF ISAR imagery of military ground vehicles. Open-field signatures are compared with each other as well as with simplified shapes of similar size. Signatures were also acquired on one vehicle in a variety of configurations to determine the impact of monitor target variations on the signature content at these frequencies.

  14. Reactive oxygen species–associated molecular signature predicts survival in patients with sepsis

    PubMed Central

    Zhou, Tong; Wang, Ting; Slepian, Marvin J.; Garcia, Joe G. N.; Hecker, Louise

    2016-01-01

    Abstract Sepsis-related multiple organ dysfunction syndrome is a leading cause of death in intensive care units. There is overwhelming evidence that oxidative stress plays a significant role in the pathogenesis of sepsis-associated multiple organ failure; however, reactive oxygen species (ROS)–associated biomarkers and/or diagnostics that define mortality or predict survival in sepsis are lacking. Lung or peripheral blood gene expression analysis has gained increasing recognition as a potential prognostic and/or diagnostic tool. The objective of this study was to identify ROS-associated biomarkers predictive of survival in patients with sepsis. In-silico analyses of expression profiles allowed the identification of a 21-gene ROS-associated molecular signature that predicts survival in sepsis patients. Importantly, this signature performed well in a validation cohort consisting of sepsis patients aggregated from distinct patient populations recruited from different sites. Our signature outperforms randomly generated signatures of the same signature gene size. Our findings further validate the critical role of ROSs in the pathogenesis of sepsis and provide a novel gene signature that predicts survival in sepsis patients. These results also highlight the utility of peripheral blood molecular signatures as biomarkers for predicting mortality risk in patients with sepsis, which could facilitate the development of personalized therapies. PMID:27252846

  15. A New Wave of Acoustics.

    ERIC Educational Resources Information Center

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  16. Multidimensional signatures in antimicrobial peptides

    PubMed Central

    Yount, Nannette Y.; Yeaman, Michael R.

    2004-01-01

    Conventional analyses distinguish between antimicrobial peptides by differences in amino acid sequence. Yet structural paradigms common to broader classes of these molecules have not been established. The current analyses examined the potential conservation of structural themes in antimicrobial peptides from evolutionarily diverse organisms. Using proteomics, an antimicrobial peptide signature was discovered to integrate stereospecific sequence patterns and a hallmark three-dimensional motif. This striking multidimensional signature is conserved among disulfide-containing antimicrobial peptides spanning biological kingdoms, and it transcends motifs previously limited to defined peptide subclasses. Experimental data validating this model enabled the identification of previously unrecognized antimicrobial activity in peptides of known identity. The multidimensional signature model provides a unifying structural theme in broad classes of antimicrobial peptides, will facilitate discovery of antimicrobial peptides as yet unknown, and offers insights into the evolution of molecular determinants in these and related host defense effector molecules. PMID:15118082

  17. Graph Analytics for Signature Discovery

    SciTech Connect

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei

    2013-06-01

    Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.

  18. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  19. Photon signature analysis using template matching

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Hashim, S.; Saripan, M. I.; Wells, K.; Dunn, W. L.

    2011-10-01

    We describe an approach to detect improvised explosive devices (IEDs) by using a template matching procedure. This approach relies on the signature due to backstreaming γ photons from various targets. In this work we have simulated cylindrical targets of aluminum, iron, copper, water and ammonium nitrate (nitrogen-rich fertilizer). We simulate 3.5 MeV source photons distributed on a plane inside a shielded area using Monte Carlo N-Particle (MCNP TM) code version 5 (V5). The 3.5 MeV source gamma rays yield 511 keV peaks due to pair production and scattered gamma rays. In this work, we simulate capture of those photons that backstream, after impinging on the target element, toward a NaI detector. The captured backstreamed photons are expected to produce a unique spectrum that will become part of a simple signal processing recognition system based on the template matching method. Different elements were simulated using different sets of random numbers in the Monte Carlo simulation. To date, the sum of absolute differences (SAD) method has been used to match the template. In the examples investigated, template matching was found to detect all elements correctly.

  20. Recognition of Single and Overlay of Objects on a Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Savicheva, S. V.

    2015-05-01

    Proposed a method for detection of flat objects when they overlap condition. The method is based on two separate recognition algorithms flat objects. The first algorithm is based on a binary image of the signature of the object plane. The second algorithm is based on the values of the discrete points in the curvature contour of a binary image. The results of experimental studies of algorithms and a method of recognition of individual superimposed flat objects.

  1. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  2. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  3. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  4. Strong acoustic wave action

    NASA Astrophysics Data System (ADS)

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  5. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  6. Acoustic and electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Jones, Douglas Samuel

    Theoretical models of EM and acoustic wave propagation are presented in an introductory text intended for intermediate-level science and engineering students. Chapters are devoted to the mathematical representation of acoustic and EM fields, the special theory of relativity, radiation, resonators, waveguide theory, refraction, surface waves, scattering by smooth objects, diffraction by edges, and transient waves. The mathematical tools required for the analysis (Bessel, Legendre, Mathieu, parabolic-cylinder, and spheroidal functions; tensor calculus; and the asymptotic evaluation of integrals) are covered in appendices.

  7. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  8. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  9. Acoustic loading in straight pipes

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.

    1980-01-01

    Based on linear one-dimensional acoustics, a geometrically perfect elastic waveguide would respond to an oscillatory internal pressure only in the presence of path deflectors (elbows and branches). In practice, a significant elasto-acoustic interaction results even in straight conduits as a result of manufacturing tolerances. A theoretical model of the linear acoustic loading in straight pipes is developed that considers the acoustic wave distortion due to perimeter, axial, and wall thickness nonuniformities.

  10. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Allen, Christopher; Chu, S. Reynold

    2008-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles to ensure compliance with acoustic requirements and thus provide a safe and habitable acoustic environment for the crews, and to validate developed models via building physical mockups and conducting acoustic measurements.

  11. Soldier/robot team acoustic detection

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated, autonomous, and semi-autonomous ground, air, and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  12. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  13. Ballistic Signature Identification System Study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The first phase of a research project directed toward development of a high speed automatic process to be used to match gun barrel signatures imparted to fired bullets was documented. An optical projection technique has been devised to produce and photograph a planar image of the entire signature, and the phototransparency produced is subjected to analysis using digital Fourier transform techniques. The success of this approach appears to be limited primarily by the accuracy of the photographic step since no significant processing limitations have been encountered.

  14. CASE Recognition Awards.

    ERIC Educational Resources Information Center

    Currents, 1985

    1985-01-01

    A total of 294 schools, colleges, and universities received prizes in this year's CASE Recognition program. Awards were given in: public relations programs, student recruitment, marketing, program pulications, news writing, fund raising, radio programming, school periodicals, etc. (MLW)

  15. Planfulness and Recognition Memory

    ERIC Educational Resources Information Center

    Rogoff, Barbara; And Others

    1974-01-01

    A study of recorded and analyzed inspection times in a picture recognition memory task involving three different delays between inspection and test. Subjects were 108 4-, 6-, and 8-year-old children. (Author/SDH)

  16. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  17. Context based gait recognition

    NASA Astrophysics Data System (ADS)

    Bazazian, Shermin; Gavrilova, Marina

    2012-06-01

    Gait recognition has recently become a popular topic in the field of biometrics. However, the main hurdle is the insufficient recognition rate in the presence of low quality samples. The main focus of this paper is to investigate how the performance of a gait recognition system can be improved using additional information about behavioral patterns of users and the context in which samples have been taken. The obtained results show combining the context information with biometric data improves the performance of the system at a very low cost. The amount of improvement depends on the distinctiveness of the behavioral patterns and the quality of the gait samples. Using the appropriate distinctive behavioral models it is possible to achieve a 100% recognition rate.

  18. Manifold learning for compression and generalization of Euclidean invariant signatures of surface shapes

    NASA Astrophysics Data System (ADS)

    Pipitone, Frank

    2010-04-01

    We introduce an approach to the efficient recognition of families of surface shapes in range images. This builds upon earlier work on Tripod Operators (TOs), a method for extracting small sets of N points from 3D surface data in a canonical way such that coordinate independent shape descriptions can be efficiently generated and compared. Using TOs, a specific surface shape generates a signature which is a manifold of dimension <= 3 in a feature space of dimension d = N - 3. A runtime application of a TO on surface data generates a d-vector whose distance from the signature manifold is closely related to the likelihood of a match. Ordnance identification is a motivating application. In order to use TOs for recognizing objects from large sets of known shapes, and families of shapes, we introduce the use of manifold learning to represent the signature manifolds with piecewise analytic descriptions instead of discrete point sets. We consider the example of generalizing the signatures of several artillery shells which are qualitatively the same in shape, but metrically different. This can yield a signature that is only slightly more complex than the originals, but enables efficient recognition of a continuous family of shapes.

  19. Variable-Position Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  20. Acoustical Environment of School Buildings.

    ERIC Educational Resources Information Center

    Fitzroy, Dariel; Reid, John L.

    A field study was made of the acoustical environment of schools designed for increased flexibility to meet the spatial requirements of new teaching methods. The object of the study was to define all the criteria for the acoustical design of this type of classroom including the determination of--(1) minimum acoustical separation required for…

  1. ACOUSTICAL ENVIRONMENT OF SCHOOL BUILDINGS.

    ERIC Educational Resources Information Center

    FITZROY, DARIEL; REID, JOHN L.

    A FIELD STUDY WAS MADE OF THE ACOUSTICAL ENVIRONMENT OF SCHOOLS DESIGNED FOR INCREASED FLEXIBILITY TO MEET THE SPATIAL REQUIREMENTS OF NEW TEACHING METHODS. THE OBJECT OF THE STUDY WAS TO DEFINE ALL THE CRITERIA FOR THE ACOUSTICAL DESIGN OF THIS TYPE OF CLASSROOM INCLUDING THE DETERMINATION OF--(1) MINIMUM ACOUSTICAL SEPARATION REQUIRED FOR…

  2. Post Treatment of Acoustic Neuroma

    MedlinePlus

    Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video Pre-Treatment Treatment Options Summary Treatment Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions ...

  3. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  4. XV-15 Tiltrotor Aircraft: 1999 Acoustic Testing - Test Report

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.

    2003-01-01

    An XV-15 acoustic test is discussed, and measured results are presented. The test was conducted by NASA Langley and Bell Helicopter Textron, Inc., during October 1999, at the BHTI test site near Waxahachie, Texas. As part of the NASA-sponsored Short Haul Civil Tiltrotor noise reduction initiative, this was the third in a series of three major XV-15 acoustic tests. Their purpose was to document the acoustic signature of the XV-15 tiltrotor aircraft for a variety of flight conditions and to minimize the noise signature during approach. Tradeoffs between flight procedures and the measured noise are presented to illustrate the noise abatement flight procedures. The test objectives were to support operation of future tiltrotors by further developing and demonstrating low-noise flight profiles, while maintaining acceptable handling and ride qualities, and refine approach profiles, selected from previous (1995 & 1997) tiltrotor testing, to incorporate Instrument Flight Rules (IFR), handling qualities constraints, operations and tradeoffs with sound. Primary emphasis was given to the approach flight conditions where blade-vortex interaction (BVI) noise dominates, because this condition influences community noise impact more than any other. An understanding of this part of the noise generating process could guide the development of low noise flight operations and increase the tiltrotor's acceptance in the community.

  5. Study of acoustic correlates associate with emotional speech

    NASA Astrophysics Data System (ADS)

    Yildirim, Serdar; Lee, Sungbok; Lee, Chul Min; Bulut, Murtaza; Busso, Carlos; Kazemzadeh, Ebrahim; Narayanan, Shrikanth

    2004-10-01

    This study investigates the acoustic characteristics of four different emotions expressed in speech. The aim is to obtain detailed acoustic knowledge on how a speech signal is modulated by changes from neutral to a certain emotional state. Such knowledge is necessary for automatic emotion recognition and classification and emotional speech synthesis. Speech data obtained from two semi-professional actresses are analyzed and compared. Each subject produces 211 sentences with four different emotions; neutral, sad, angry, happy. We analyze changes in temporal and acoustic parameters such as magnitude and variability of segmental duration, fundamental frequency and the first three formant frequencies as a function of emotion. Acoustic differences among the emotions are also explored with mutual information computation, multidimensional scaling and acoustic likelihood comparison with normal speech. Results indicate that speech associated with anger and happiness is characterized by longer duration, shorter interword silence, higher pitch and rms energy with wider ranges. Sadness is distinguished from other emotions by lower rms energy and longer interword silence. Interestingly, the difference in formant pattern between [happiness/anger] and [neutral/sadness] are better reflected in back vowels such as /a/(/father/) than in front vowels. Detailed results on intra- and interspeaker variability will be reported.

  6. Cartographic Character Recognition

    NASA Astrophysics Data System (ADS)

    Rafal, Howard B.; Ward, Matthew O.

    1989-11-01

    This work details a methodology for recognizing text elements on cartographic documents. Cartographic Character Recognition differs from traditional OCR in that many fonts may occur on the same page, text may have any orientation, text may follow a curved path, and text may be interfered with by graphics. The technique presented reduces the process to three steps: blobbing, stringing, and recognition. Blobbing uses image processing techniques to turn the gray level image into a binary image and then separates the image into probable graphic elements and probable text elements. Stringing relates the text elements into words. This is done by using proximity information of the letters to create string contours. These contours also help to retrieve orientation information of the text element. Recognition takes the strings and associates a letter with each blob. The letters are first approximated using feature descriptions, resulting in a set of possible letters. Orientation information is then used to refine the guesses. Final recognition is performed using elastic matching Feedback is employed at all phases of execution to refine the processing. Stringing and recognition give information that is useful in finding hidden blobs. Recognition helps make decisions about string paths. Results of this work are shown.

  7. Acoustic-gravity waves, theory and application

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  8. Microfiber interferometric acoustic transducers.

    PubMed

    Wang, Xiuxin; Jin, Long; Li, Jie; Ran, Yang; Guan, Bai-Ou

    2014-04-01

    Acoustic and ultrasonic transducers are key components in biomedical information technology, which has been applied in medical diagnosis, photoacoustic endoscopy and photoacoustic imaging. In this paper, an acoustic transducer based on Fabry-Perot interferometer (FPI) fabricated in a microscaled optical fiber is demonstrated. The transducer is fabricated by forming two wavelength-matched Bragg gratings into the microfiber by means of side illumination with a 193nm excimer laser. When placing the transducer in water, the applied acoustic signal periodically changes the refractive index (RI) of the surrounding liquid and modulates the transmission of the FPI based on the evanescent-field interaction between the liquid and the transmitting light. As a result, the acoustic signal can be constructed with a tunable laser whose output wavelength is located at the slope of the inteferometric fringes. The transducer presents a sensitivity of 10 times higher than the counterparts fabricated in conventional singlemode fibers and has great potential to achieve higher resolution for photoacoustic imaging due to its reduced diameter. PMID:24718189

  9. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  10. Acoustics in Schools.

    ERIC Educational Resources Information Center

    Singer, Miriam J.

    This paper explores the issues associated with poor acoustics within schools. Additionally, it suggests remedies for existing buildings and those under renovation, as well as concerns for new construction. The paper discusses the effects of unwanted noise on students in terms of physiological, motivational, and cognitive influences. Issues are…

  11. Teaching acoustics online

    NASA Astrophysics Data System (ADS)

    Morrison, Andrew; Rossing, Thomas D.

    2003-10-01

    We teach an introductory course in musical acoustics using a Blackboard. Students in this course can access audio and video materials as well as printed materials on our course website. All homework is submitted online, as are tests and examinations. The students also have the opportunity to use synchronous and asynchronous chat rooms to discuss the course with each other or with the instructors.

  12. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  13. COMBUSTION ACOUSTICS DIAGNOSTICS

    EPA Science Inventory

    This is an Exploratory Research Project that was awarded by APPCD for research on developing an acoustic flame condition monitor. It will involve a bench scale experiment of 4-6 weeks duration to record adjacent audible energy of a Bunsen burner. The experiment will require a d...

  14. Artificial neural networks for document analysis and recognition.

    PubMed

    Marinai, Simone; Gori, Marco; Soda, Giovanni; Society, Computer

    2005-01-01

    Artificial neural networks have been extensively applied to document analysis and recognition. Most efforts have been devoted to the recognition of isolated handwritten and printed characters with widely recognized successful results. However, many other document processing tasks, like preprocessing, layout analysis, character segmentation, word recognition, and signature verification, have been effectively faced with very promising results. This paper surveys the most significant problems in the area of offline document image processing, where connectionist-based approaches have been applied. Similarities and differences between approaches belonging to different categories are discussed. A particular emphasis is given on the crucial role of prior knowledge for the conception of both appropriate architectures and learning algorithms. Finally, the paper provides a critical analysis on the reviewed approaches and depicts the most promising research guidelines in the field. In particular, a second generation of connectionist-based models are foreseen which are based on appropriate graphical representations of the learning environment. PMID:15628266

  15. Deconvolving the recognition of DNA shape from sequence.

    PubMed

    Abe, Namiko; Dror, Iris; Yang, Lin; Slattery, Matthew; Zhou, Tianyin; Bussemaker, Harmen J; Rohs, Remo; Mann, Richard S

    2015-04-01

    Protein-DNA binding is mediated by the recognition of the chemical signatures of the DNA bases and the 3D shape of the DNA molecule. Because DNA shape is a consequence of sequence, it is difficult to dissociate these modes of recognition. Here, we tease them apart in the context of Hox-DNA binding by mutating residues that, in a co-crystal structure, only recognize DNA shape. Complexes made with these mutants lose the preference to bind sequences with specific DNA shape features. Introducing shape-recognizing residues from one Hox protein to another swapped binding specificities in vitro and gene regulation in vivo. Statistical machine learning revealed that the accuracy of binding specificity predictions improves by adding shape features to a model that only depends on sequence, and feature selection identified shape features important for recognition. Thus, shape readout is a direct and independent component of binding site selection by Hox proteins. PMID:25843630

  16. Gesture recognition for smart home applications using portable radar sensors.

    PubMed

    Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip

    2014-01-01

    In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes. PMID:25571464

  17. Topological Signatures for Population Admixture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Topological Signatures for Population AdmixtureDeniz Yorukoglu1, Filippo Utro1, David Kuhn2, Saugata Basu3 and Laxmi Parida1* Abstract Background: As populations with multi-linear transmission (i.e., mixing of genetic material from two parents, say) evolve over generations, the genetic transmission...

  18. Invisibly Sanitizable Digital Signature Scheme

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kunihiko; Hanaoka, Goichiro; Imai, Hideki

    A digital signature does not allow any alteration of the document to which it is attached. Appropriate alteration of some signed documents, however, should be allowed because there are security requirements other than the integrity of the document. In the disclosure of official information, for example, sensitive information such as personal information or national secrets is masked when an official document is sanitized so that its nonsensitive information can be disclosed when it is requested by a citizen. If this disclosure is done digitally by using the current digital signature schemes, the citizen cannot verify the disclosed information because it has been altered to prevent the leakage of sensitive information. The confidentiality of official information is thus incompatible with the integrity of that information, and this is called the digital document sanitizing problem. Conventional solutions such as content extraction signatures and digitally signed document sanitizing schemes with disclosure condition control can either let the sanitizer assign disclosure conditions or hide the number of sanitized portions. The digitally signed document sanitizing scheme we propose here is based on the aggregate signature derived from bilinear maps and can do both. Moreover, the proposed scheme can sanitize a signed document invisibly, that is, no one can distinguish whether the signed document has been sanitized or not.

  19. Disaster relief through composite signatures

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.; Hyde, Brian; Carpenter, Tom; Nichols, Steve

    2012-06-01

    A composite signature is a group of signatures that are related in such a way to more completely or further define a target or operational endeavor at a higher fidelity. This paper builds on previous work developing innovative composite signatures associated with civil disasters, including physical, chemical and pattern/behavioral. For the composite signature approach to be successful it requires effective data fusion and visualization. This plays a key role in both preparedness and the response and recovery which are critical to saving lives. Visualization tools enhance the overall understanding of the crisis by pulling together and analyzing the data, and providing a clear and complete analysis of the information to the organizations/agencies dependant on it for a successful operation. An example of this, Freedom Web, is an easy-to-use data visualization and collaboration solution for use in homeland security, emergency preparedness, situational awareness, and event management. The solution provides a nationwide common operating picture for all levels of government through a web based, map interface. The tool was designed to be utilized by non-geospatial experts and is easily tailored to the specific needs of the users. Consisting of standard COTS and open source databases and a web server, users can view, edit, share, and highlight information easily and quickly through a standard internet browser.

  20. Acoustics- Version 1.0

    SciTech Connect

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, the sounds are removed, as a character forgets what it has heard.