Science.gov

Sample records for acoustic tumour detection

  1. Acoustic detection of pneumothorax

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (<2000 Hz) acoustic methods for medical diagnosis. Several candidate methods of pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (p<0.0001). The ratio of acoustic energy between low (<220 Hz) and mid (550-770 Hz) frequency bands was significantly different in the control (healthy) and pneumothorax states (p<0.0001). The second approach measured breath sounds in the absence of an external acoustic input. Pneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (p<0.01 for each). Finally, chest percussion was implemented. Pneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  2. Antenatally detected solid tumour of kidney

    PubMed Central

    Panda, Shasanka Shekhar; Mandelia, Ankur; Gupta, Devendra Kumar; Singh, Amit

    2014-01-01

    Congenital renal tumours are rare and usually benign. Polyhydramnios is the most common mode of presentation. Although most cases have been diagnosed postnatally, with advances in imaging technology, an increasing number of cases are being detected on antenatal scans. We describe a case of solid tumour of kidney detected in the second trimester of pregnancy and managed by surgery in the postnatal period. PMID:24526198

  3. DETECTING BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Labatie, A.; Starck, J. L.

    2012-02-20

    Baryon acoustic oscillations (BAOs) are a feature imprinted in the galaxy distribution by acoustic waves traveling in the plasma of the early universe. Their detection at the expected scale in large-scale structures strongly supports current cosmological models with a nearly linear evolution from redshift z Almost-Equal-To 1000 and the existence of dark energy. In addition, BAOs provide a standard ruler for studying cosmic expansion. In this paper, we focus on methods for BAO detection using the correlation function measurement {xi}-hat. For each method, we want to understand the tested hypothesis (the hypothesis H{sub 0} to be rejected) and the underlying assumptions. We first present wavelet methods which are mildly model-dependent and mostly sensitive to the BAO feature. Then we turn to fully model-dependent methods. We present the method used most often based on the {chi}{sup 2} statistic, but we find that it has limitations. In general the assumptions of the {chi}{sup 2} method are not verified, and it only gives a rough estimate of the significance. The estimate can become very wrong when considering more realistic hypotheses, where the covariance matrix of {xi}-hat depends on cosmological parameters. Instead, we propose to use the {Delta}l method based on two modifications: we modify the procedure for computing the significance and make it rigorous, and we modify the statistic to obtain better results in the case of varying covariance matrix. We verify with simulations that correct significances are different from the ones obtained using the classical {chi}{sup 2} procedure. We also test a simple example of varying covariance matrix. In this case we find that our modified statistic outperforms the classical {chi}{sup 2} statistic when both significances are correctly computed. Finally, we find that taking into account variations of the covariance matrix can change both BAO detection levels and cosmological parameter constraints.

  4. Acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-09-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disk. The detection method that provides the best overall performance is able to correctly identify ~96% of the manatee vocalizations. However, the system also results in a false alarm rate of ~16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  5. Acoustic detection of manatee vocalizations.

    PubMed

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O

    2003-09-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disk. The detection method that provides the best overall performance is able to correctly identify approximately 96% of the manatee vocalizations. However, the system also results in a false alarm rate of approximately 16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees. PMID:14514217

  6. Acoustic detection of electron spin resonance

    NASA Astrophysics Data System (ADS)

    Coufal, H.

    1981-07-01

    The ESR-signal of DPPH was recorded by detecting the modulation of the absorbed microwave power with a gas-coupled microphone. This photo-acoustic detection scheme is compared with conventional ESR-detection. Applications of the acoustical detection method to other modulation spectroscopic techniques, particularly NMR, are discussed.

  7. Acoustic resonance for nonmetallic mine detection

    SciTech Connect

    Kercel, S.W.

    1998-04-01

    The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

  8. Acoustic leak detection and ultrasonic crack detection

    SciTech Connect

    Kupperman, D.S.; Claytor, T.N.; Groenwald, R.

    1983-10-01

    A program is under way to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. An ALD facility has been constructed and tests have begun on five laboratory-grown cracks (three fatigue and two thermal-fatigue and two field-induced IGSCC specimens. After ultrasonic testing revealed cracks in the Georgia Power Co. HATCH-1 BWR recirculation header, the utility installed an ALD system. Data from HATCH-1 have given an indication of the background noise level at a BWR recirculation header sweepolet weld. The HATCH leak detection system was tested to determine the sensitivity and dynamic range. Other background data have been acquired at the Watts Bar Nuclear Reactor in Tennessee. An ANL waveguide system, including transducer and electronics, was installed and tested on an accumulator safety injection pipe. The possibility of using ultrasonic wave scattering patterns to discriminate between IGSCCs and geometric reflectors has been explored. Thirteen reflectors (field IGSCCs, graphite wool IGSCCs, weld roots, and slits) were examined. Work with cast stainless steel (SS) included sound velocity and attenuation in isotropic and anisotropic cast SS. Reducing anisotropy does not help reduce attenuation in large-grained material. Large artificial flaws (e.g., a 1-cm-deep notch with a 4-cm path) could not be detected in isotropic centrifugally cast SS (1 to 2-mm grains) by longitudinal or shear waves at frequencies of 1 MHz or greater, but could be detected with 0.5-MHz shear waves. 13 figures.

  9. Software for neutrino acoustic detection and localization

    NASA Astrophysics Data System (ADS)

    Bouhadef, B.

    2009-06-01

    The evidence of the existing of UHE (E>10eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  10. Humanitarian mine detection by acoustic resonance

    SciTech Connect

    Kercel, S.W.

    1998-03-01

    The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL additional insight into the problems of developing practical

  11. Improving Accuracy in Detecting Acoustic Onsets

    ERIC Educational Resources Information Center

    Duyck, Wouter; Anseel, Frederik; Szmalec, Arnaud; Mestdagh, Pascal; Tavernier, Antoine; Hartsuiker, Robert J.

    2008-01-01

    In current cognitive psychology, naming latencies are commonly measured by electronic voice keys that detect when sound exceeds a certain amplitude threshold. However, recent research (e.g., K. Rastle & M. H. Davis, 2002) has shown that these devices are particularly inaccurate in precisely detecting acoustic onsets. In this article, the authors…

  12. Acoustic enhancement for photo detecting devices

    DOEpatents

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  13. Acoustic emission beamforming for enhanced damage detection

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.

    2008-03-01

    As civil infrastructure ages, the early detection of damage in a structure becomes increasingly important for both life safety and economic reasons. This paper describes the analysis procedures used for beamforming acoustic emission techniques as well as the promising results of preliminary experimental tests on a concrete bridge deck. The method of acoustic emission offers a tool for detecting damage, such as cracking, as it occurs on or in a structure. In order to gain meaningful information from acoustic emission analyses, the damage must be localized. Current acoustic emission systems with localization capabilities are very costly and difficult to install. Sensors must be placed throughout the structure to ensure that the damage is encompassed by the array. Beamforming offers a promising solution to these problems and permits the use of wireless sensor networks for acoustic emission analyses. Using the beamforming technique, the azmuthal direction of the location of the damage may be estimated by the stress waves impinging upon a small diameter array (e.g. 30mm) of acoustic emission sensors. Additional signal discrimination may be gained via array processing techniques such as the VESPA process. The beamforming approach requires no arrival time information and is based on very simple delay and sum beamforming algorithms which can be easily implemented on a wireless sensor or mote.

  14. Nonlinear holography for acoustic wave detection

    NASA Astrophysics Data System (ADS)

    Bortolozzo, U.; Dolfi, D.; Huignard, J. P.; Molin, S.; Peigné, A.; Residori, S.

    2015-03-01

    A liquid crystal medium is used to perform nonlinear dynamic holography and is coupled with multimode optical fibers for optical sensing applications. Thanks to the adaptive character of the nonlinear holography, and to the sensitivity of the multimode fibers, we demonstrate that the system is able to perform efficient acoustic wave detection even with noisy signals. The detection limit is estimated and multimode versus monomode optical fiber are compared. Finally, a wavelength multiplexing protocol is implemented for the spatial localization of the acoustic disturbances.

  15. Biosensors for the Detection of Circulating Tumour Cells

    PubMed Central

    Costa, Clotilde; Abal, Miguel; López-López, Rafael; Muinelo-Romay, Laura

    2014-01-01

    Metastasis is the cause of most cancer deaths. Circulating tumour cells (CTCs) are cells released from the primary tumour into the bloodstream that are considered the main promoters of metastasis. Therefore, these cells are targets for understanding tumour biology and improving clinical management of the disease. Several techniques have emerged in recent years to isolate, detect, and characterise CTCs. As CTCs are a rare event, their study requires multidisciplinary considerations of both biological and physical properties. In addition, as isolation of viable cells may give further insights into metastatic development, cell recovery must be done with minimal cell damage. The ideal system for CTCs analysis must include maximum efficiency of detection in real time. In this sense, new approaches used to enrich CTCs from clinical samples have provided an important improvement in cell recovery. However, this progress should be accompanied by more efficient strategies of cell quantification. A range of biosensor platforms are being introduced into the technology for CTCs quantification with promising results. This review provides an update on recent progress in CTCs identification using different approaches based on sensor signaling. PMID:24618729

  16. Acoustic detectability of Rhynchophorus cruentatus (Coleoptera: Dryophthoridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The palmetto weevil, Rhynchophorus cruentatus Fabricius, native to Florida, attacks palm trees. Like its economically destructive relatives, R. ferrugineus (Olivier) and R. palmarum L., it feeds internally and often is not detected until irreparable damage occurs. Acoustic methods previously used su...

  17. Indocyanine green delivery systems for tumour detection and treatments.

    PubMed

    Porcu, Elena P; Salis, Andrea; Gavini, Elisabetta; Rassu, Giovanna; Maestri, Marcello; Giunchedi, Paolo

    2016-01-01

    Indocyanine green (ICG) is a cyanine compound that displays fluorescent properties in the near infrared region. This dye is employed for numerous indications but nowadays its major application field regards tumour diagnosis and treatments. Optical imaging by near infrared fluorescence provides news opportunities for oncologic surgery. The imaging of ICG can be useful for intraoperative identification of several solid tumours and metastases, and sentinel lymph node detection. In addition, ICG can be used as an agent for the destruction of malignant tissue, by virtue of the production of reactive oxygen species and/or induction of a hyperthermia effect under irradiation. Nevertheless, ICG shows several drawbacks, which limit its clinical application. Several formulative strategies have been studied to overcome these problems. The rationale of the development of ICG containing drug delivery systems is to enhance the in vivo stability and biodistribution profile of this dye, allowing tumour accumulation and resulting in better efficacy. In this review, ICG containing nano-sized carriers are classified based on their chemical composition and structure. In addition to nanosystems, different formulations including hydrogel, microsystems and others loaded with ICG will be illustrated. In particular, this report describes the preparation, in vitro characterization and in vivo application of ICG platforms for cancer imaging and treatment. The promising results of all systems confirm their clinical utility but further studies are required prior to evaluating the formulations in human trials. PMID:27090752

  18. Dynamic Acoustic Detection of Boundary Layer transition

    NASA Technical Reports Server (NTRS)

    Grohs, Jonathan R.

    1995-01-01

    The wind tunnel investigation into the acoustic nature of boundary layer transition using miniature microphones. This research is the groundwork for entry into the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). Due to the extreme environmental conditions of NTF testing, low temperatures and high pressures, traditional boundary layer detection methods are not available. The emphasis of this project and further studies is acoustical sampling of a typical boundary layer and environmental durability of the miniature microphones. The research was conducted with the 14 by 22 Foot Subsonic Tunnel, concurrent with another wind tunnel test. Using the resources of LaRC, a full inquiry into the feasibility of using Knowles Electronics, Inc. EM-3086 microphones to detect the surface boundary layer, under differing conditions, was completed. This report shall discuss the difficulties encountered, product performance and observations, and future research adaptability of this method.

  19. Bayesian detection of acoustic muzzle blasts

    NASA Astrophysics Data System (ADS)

    Morton, Kenneth D., Jr.; Collins, Leslie

    2009-05-01

    Acoustic detection of gunshots has many security and military applications. Most gunfire produces both an acoustic muzzle-blast signal as well as a high-frequency shockwave. However some guns do not propel bullets with the speed required to cause shockwaves, and the use of a silencer can significantly reduce the energy of muzzle blasts; thus, although most existing commercial and military gunshot detection systems are based on shockwave detection, reliable detection across a wide range of applications requires the development of techniques which incorporate both muzzle-blast and shockwave phenomenologies. The detection of muzzle blasts is often difficult due to the presence of non-stationary background signals. Previous approaches to muzzle blast detection have applied pattern recognition techniques without specifically considering the non-stationary nature of the background signals and thus these techniques may perform poorly under realistic operating conditions. This research focuses on time domain modeling of the non-stationary background using Bayesian auto-regressive models. Bayesian parameter estimation can provide a principled approach to non-stationary modeling while also eliminating the stability concerns associated with standard adaptive procedures. Our proposed approach is tested on a synthetic dataset derived from recordings of actual background signals and a database of isolated gunfire. Detection results are compared to a standard adaptive approach, the least-mean squares (LMS) algorithm, across several signal to background ratios in both indoor and outdoor conditions.

  20. Passive acoustic threat detection in estuarine environments

    NASA Astrophysics Data System (ADS)

    Borowski, Brian; Sutin, Alexander; Roh, Heui-Seol; Bunin, Barry

    2008-04-01

    The Maritime Security Laboratory (MSL) at Stevens Institute of Technology supports research in a range of areas relevant to harbor security, including passive acoustic detection of underwater threats. The difficulties in using passive detection in an urban estuarine environment include intensive and highly irregular ambient noise and the complexity of sound propagation in shallow water. MSL conducted a set of tests in the Hudson River near Manhattan in order to measure the main parameters defining the detection distance of a threat: source level of a scuba diver, transmission loss of acoustic signals, and ambient noise. The source level of the diver was measured by comparing the diver's sound with a reference signal from a calibrated emitter placed on his path. Transmission loss was measured by comparing noise levels of passing ships at various points along their routes, where their distance from the hydrophone was calculated with the help of cameras and custom software. The ambient noise in the Hudson River was recorded under varying environmental conditions and amounts of water traffic. The passive sonar equation was then applied to estimate the range of detection. Estimations were done for a subset of the recorded noise levels, and we demonstrated how variations in the noise level, attenuation, and the diver's source level influence the effective range of detection. Finally, we provided analytic estimates of how an array improves upon the detection distance calculated by a single hydrophone.

  1. Acoustic detection and ranging using solvable chaos

    NASA Astrophysics Data System (ADS)

    Corron, Ned J.; Stahl, Mark T.; Chase Harrison, R.; Blakely, Jonathan N.

    2013-06-01

    Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements in the presence of noise and interference from a second chaotic emitter are presented to demonstrate the viability of the approach.

  2. Acoustic detection and ranging using solvable chaos.

    PubMed

    Corron, Ned J; Stahl, Mark T; Harrison, R Chase; Blakely, Jonathan N

    2013-06-01

    Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements in the presence of noise and interference from a second chaotic emitter are presented to demonstrate the viability of the approach. PMID:23822484

  3. Detection and Classification of Whale Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  4. Fiber optic hydrophones for acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Buis, E. J.; Doppenberg, E. J. J.; Lahmann, R.; Toet, P. M.; de Vreugd, J.

    2016-04-01

    Cosmic neutrinos with ultra high energies can be detected acoustically using hydrophones. The detection of these neutrinos may provide crucial information about then GZK mechanism. The flux of these neutrinos, however, is expected to be low, so that a detection volume is required more than a order of magnitude larger than what has presently been realized. With a large detection volume and a large number of hydrophones, there is a need for technology that is cheap and easy to deploy. Fiber optics provide a natural way for distributed sensing. In addition, a sensor has been designed and manufactured that can be produced cost-effectively on an industrial scale. Sensitivity measurements show that the sensor is able to reach the required sea-state zero level. For a proper interpretation of the expected bipolar signals, filtering techniques should be applied to remove the effects of the unwanted resonance peaks.

  5. Acoustic signal detection of manatee calls

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-04-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disc. The detection method that provides the best overall performance is able to correctly identify ~=96% of the manatee vocalizations. However the system also results in a false positive rate of ~=16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  6. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen

    NASA Astrophysics Data System (ADS)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2012-12-01

    High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach

  7. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen.

    PubMed

    Gélat, P; Ter Haar, G; Saffari, N

    2012-12-21

    High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach

  8. Multiple RT-PCR markers for the detection of circulating tumour cells of metastatic canine mammary tumours.

    PubMed

    da Costa, A; Kohn, B; Gruber, A D; Klopfleisch, R

    2013-04-01

    In humans, detection of circulating tumour cells (CTCs) using nucleic acid-based methods such as reverse transcription polymerase chain reaction (RT-PCR) has proven to be of prognostic relevance. However, similar procedures are still lacking in veterinary oncology. To assess the correlation of CTC markers with the metastatic potential of canine mammary tumours, 120 peripheral blood samples from bitches with mammary carcinomas with (group 1) and without (group 2) histological evidence of vascular invasion and/or presence of lymph node metastases and mammary adenomas (group 3) were analyzed. Blood samples were collected in EDTA tubes and RNA was extracted within 48 h. Subsequently, the samples were tested by RT-PCR for a panel of seven CTC mRNA markers. CRYAB was the most sensitive single marker with a sensitivity of 35% and also the most specific marker with a specificity of 100% to detect group 1 blood samples. A multimarker assay combining four genes enhanced the sensitivity up to 77.5%, but decreased the specificity to 80%. CRYAB appeared to be highly specific but only moderately sensitive at detecting blood samples from dogs with metastatic tumours and detection significantly correlated with vascular invasion of primary mammary tumours. However, a multimarker assay of four genes significantly enhanced the sensitivity of the assay and is therefore preferable for CTC detection. PMID:23036177

  9. Towards acoustic UHE neutrino detection in the Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.

    2012-11-01

    Acoustic detection is proposed as a promising detection technique for Extreme High energy neutrinos. This technique is based on the detection of the acoustic signature of neutrino-induced showers in water: a bipolar signal, having a bandwidth of few 10 kHz, with cylindrical wave front. During the last decade, the possibility of access to deep-sea infrastructures developed for Cherenkov telescopes, allowed start-up of intense R&D activities on acoustic detection. In the framework of the activities of ANTARES, NEMO and KM3NeT, several small size experiments were run in order to measure acoustic noise in deep sea and test “neutrino-like” acoustic event detection. These activities have set milestones both for future HE neutrino detectors, for innovative deep-sea technology and for Earth-Sea science. A review on acoustic neutrino detection and projects running in the Mediterranean Sea is presented.

  10. Nonlinear acoustic techniques for landmine detection.

    PubMed

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum. PMID:15658688

  11. Soldier/robot team acoustic detection

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated, autonomous, and semi-autonomous ground, air, and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  12. Towards the optimisation of acoustic fields for ablative therapies of tumours in the upper abdomen

    NASA Astrophysics Data System (ADS)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2013-08-01

    The efficacy of high intensity focused ultrasound (HIFU) for the non-invasive treatment of cancer has been demonstrated for a range of different cancers including those of the liver, kidney, prostate and breast. As a non-invasive focused therapy, HIFU offers considerable advantages over other techniques such as chemotherapy and surgical resection, in terms of its non-invasiveness and low risk of harmful side effects. There is, however, a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to induce tissue necrosis at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. As such, a common side effect of focusing ultrasound in regions located behind the rib cage is the overheating of bone and surrounding tissue, which can lead to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy are deposited. This is likely to rely on a treatment planning procedure in which optimal source velocity distributions are obtained so as to maximise a dose quantity at the treatment sites, whilst ensuring that this quantity does not exceed a specified threshold at other field locations, particularly on the surface of the ribs. Previously, a boundary element approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. This work describes the reformulation of the boundary element equations as a least-squares minimisation problem with non-linear constraints. The methodology was subsequently tested at an excitation frequency of 100 kHz on a spherical multi-element array in the presence

  13. Numerical modelling of biopotential field for detection of breast tumour.

    PubMed

    Ng, E Y K; Ng, W K; Sim, L S J; Rajendra Acharya, U

    2007-08-01

    Breast cancer is a disease characterised by the uncontrolled growth of abnormal cells. These cancer cells can travel through the body by way of blood or lymph nodes. Previous studies have indicated that, changes in the electrical properties of abnormal breast are more significant compared to the breast normal tissues. In the present study, a simple 2D models of breast (close to realistic), with and without artificially inserted malignant cancer were simulated, based upon electrical activity within the breast. We developed an inhomogeneous female breast model, closer to the actual, by considering a breast as a hemisphere with various layers of unequal thickness in supine condition. In order to determine the potential distribution developed due to a dipole source, isotropic homogeneous conductivity was assigned to each of these compartments and the volume conductor problem was solved using finite element method. Significant changes in the potential distribution were recoded in the malignant and normal breast regions. The surface potential decreases about 0.5%, for the small malignant region of surface area 13 mm(2) (spherical diameter=2mm). And it (surface potential) decreases about 16.4% for large malignant surface area of 615 mm(2) (spherical diameter=14 mm). Hence, the results show that, the sizes of tumours result in the reduction of surface potential and follows a fourth order polynomial equation. Thus, biofield analysis yields promising results in the detection of the breast cancer of various sizes. PMID:17145053

  14. Tumour imaging by the detection of fibrin clots in tumour stroma using an anti-fibrin Fab fragment

    PubMed Central

    Obonai, Toshifumi; Fuchigami, Hirobumi; Furuya, Fumiaki; Kozuka, Naoyuki; Yasunaga, Masahiro; Matsumura, Yasuhiro

    2016-01-01

    The diagnosis of early and aggressive types of cancer is important for providing effective cancer therapy. Cancer-induced fibrin clots exist only within lesions. Previously, we developed a monoclonal antibody (clone 102-10) that recognizes insoluble fibrin but not fibrinogen or soluble fibrin and confirmed that fibrin clots form continuously in various cancers. Here, we describe the development of a Fab fragment probe of clone 102-10 for tumour imaging. The distribution of 102-10 Fab was investigated in genetically engineered mice bearing pancreatic ductal adenocarcinoma (PDAC), and its effect on blood coagulation was examined. Immunohistochemical and ex vivo imaging revealed that 102-10 Fab was distributed selectively in fibrin clots in PDAC tumours 3 h after injection and that it disappeared from the body after 24 h. 102-10 Fab had no influence on blood coagulation or fibrinolysis. Tumour imaging using anti-fibrin Fab may provide a safe and effective method for the diagnosis of invasive cancers by detecting fibrin clots in tumour stroma. PMID:27009516

  15. Nuclear medicine in the detection, staging and treatment of gastrointestinal carcinoid tumours.

    PubMed

    Oberg, Kjell; Eriksson, Barbro

    2005-06-01

    Carcinoid tumours belong to the family of neuroendocrine tumours with a capacity to take up and concentrate amines and precursors as well as peptides, and can thereby be detected by nuclear medicine techniques. These rare tumours are difficult to diagnose at earlier stages because of small size and multiplicity. Computed tomography (CT) and magnetic resonance imaging (MRI) are mostly of benefit for detection of larger primary tumours (1-3 cm) and liver and lymph-node metastases. A majority of carcinoid tumours express somatostatin receptors, particularly receptor type 2, and thus somatostatin receptor scintigraphy (SRS) can be used for detection and staging of carcinoid tumours. The detection rate of carcinoid tumours has been reported to be somewhere between 80 and 100% in different studies. The scintigraphy gives a good staging of the disease and detection of unexpected tumour sites, which were not determined by conventional imaging. This method also indicates content of somatostatin receptors, which might indicate efficacy of treatment with octreotide or other somatostatin analogues. Another new non-invasive technique for detection of carcinoid tumours is positron emission tomography (PET). The biological substance for study can be labelled for radioactive imaging with radionuclears, such as (11)C, (15)O and (18)F, with emission of positrons. More than 95% of patients studied displayed high tracer uptake from PET with (11)C-5HTP (5-hydroxytryptophan), which is significantly higher compared to both computer tomography and somatostatin receptor scintigraphy. MIBG has been used for decades to visualize carcinoid tumours, because MIBG is concentrated in the endocrine cells. It was initially developed to detect phaeochromocytomas of the adrenal with reported high sensitivity (87%) and specificity as high as 99%. The method can be used when other methods fail to localize carcinoid tumours and particularly when treatment with (131)I-MIBG is being considered. Tumour

  16. The RAP experiment: Acoustic Detection of Particles

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Buonomo, B.; Cavallari, G.; Coccia, E.; D'Antonio, S.; Delle Monache, G.; Di Gioacchino, D.; Fafone, V.; Ligi, C.; Marini, A.; Mazzitelli, G.; Modestino, G.; Pizzella, G.; Quintieri, L.; Roccella, S.; Rocchi, A.; Ronga, F.; Tripodi, P.; Valente, P.

    2007-10-01

    The RAP experiment is based on the acoustic detection of high energy particles by cylindrical bars. In fact, the interacting particles warm up the material around their track causing a local thermal expansion that, being prevented by the rest of the material, causes a local impulse of pressure. Consequently the bar starts to vibrate and the amplitude of the oscillation is proportional to the energy released. The RAP experiment has the aim to investigate the mechanical excitation of cylindrical bars caused by impinging particles depending on the conducting status of the material of which the detector is made. In particular physical phenomena related to the superconductivity state could be involved in such a way to enhance the conversion efficiency of the particle energy into mechanical vibrations. Essentially, two materials have been tested: aluminum alloy (Al5056) and niobium. In this report we report the measurements obtained for a niobium bar from room temperature down to 4K, below the transition temperature, and those obtained for an Al5056 bar above the transition (from 4 to 293 K).

  17. Thermal Acoustic Oscillation: Causes, Detection, Analysis and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Hartwig, Jason W.

    2014-01-01

    The presentation discusses the causes of Thermal Acoustic Oscillations, how it can be detected, analyzed and prevented. It also discusses where it can occur, where it doesn't occur and practical mitigation techniques.

  18. Acoustic detection of air shower cores

    NASA Technical Reports Server (NTRS)

    Gao, X.; Liu, Y.; Du, S.

    1985-01-01

    At an altitude of 1890m, a pre-test with an Air shower (AS) core selector and a small acoustic array set up in an anechoic pool with a volume of 20x7x7 cu m was performed, beginning in Aug. 1984. In analyzing the waveforms recorded during the effective working time of 186 hrs, three acoustic signals which cannot be explained as from any source other than AS cores were obtained, and an estimation of related parameters was made.

  19. Acoustic detection probability of bottlenose dolphins, Tursiops truncatus, with static acoustic dataloggers in Cardigan Bay, Wales.

    PubMed

    Nuuttila, Hanna K; Thomas, Len; Hiddink, Jan G; Meier, Rhiannon; Turner, John R; Bennell, James D; Tregenza, Nick J C; Evans, Peter G H

    2013-09-01

    Acoustic dataloggers are used for monitoring the occurrence of cetaceans and can aid in fulfilling statutory monitoring requirements of protected species. Although useful for long-term monitoring, their spatial coverage is restricted, and for many devices the effective detection distance is not specified. A generalized additive mixed model (GAMM) was used to investigate the effects of (1) distance from datalogger, (2) animal behavior (feeding and traveling), and (3) group size on the detection probability of bottlenose dolphins (Tursiops truncatus) with autonomous dataloggers (C-PODs) validated with visual observations. The average probability of acoustic detection for minutes with a sighting was 0.59 and the maximum detection distance ranged from 1343-1779 m. Minutes with feeding activity had higher acoustic detection rates and longer average effective detection radius (EDR) than traveling ones. The detection probability for single dolphins was significantly higher than for groups, indicating that their acoustic behavior may differ from those of larger groups in the area, making them more detectable. The C-POD is effective at detecting dolphin presence but the effects of behavior and group size on detectability create challenges for estimating density from detections as higher detection rate of feeding dolphins could yield erroneously high density estimates in feeding areas. PMID:23968057

  20. Nonlinear acoustic detection of weathered, low compliance landmines

    NASA Astrophysics Data System (ADS)

    Sabatier, James M.; Alberts, W. C. Kirkpatrick; Korman, Murray S.

    2005-09-01

    Two potential impediments to acoustic landmine detection are soil weathering processes and low compliance landmines. To bury landmines, the soil within a mine diameter is removed and replaced such that bulk density, compression, and shear strength all decrease, leaving an acoustic scar detectable with the linear acoustic measurement technique. After a few soil wetting and drying cycles, this contrast is reduced. Linear acoustic mine detection measurements were made on a low impedance contrast landmine before the first rainfall on several occasions over the subsequent 5 years. During this period of time, both the spatial and frequency resolution had to be increased to maintain an on/off target velocity ratio that allowed detection. In some cases, the landmine remains undetectable. To address this, two-tone nonlinear acoustic measurements have been made on these landmines. When the landmine is detectable with linear acoustics, two tones are broadcast at the frequency where the on/off target velocity ratio is the largest. For the cases when the landmine is undetectable, a two-tone sweep is performed and the operator observes the real-time velocity FFT, noting nonlinear sidebands. Next, two-tone tests are conducted at these sidebands to determine nonlinear velocity profiles. [Work supported by U.S. Army RDECOM, NVESD.

  1. Acoustic mirror effect increases prey detection distance in trawling bats

    NASA Astrophysics Data System (ADS)

    Siemers, Björn M.; Baur, Eric; Schnitzler, Hans-Ulrich

    2005-06-01

    Many different and phylogenetically distant species of bats forage for insects above water bodies and take insects from and close to the surface; the so-called ‘trawling behaviour’. Detection of surface-based prey by echolocation is facilitated by acoustically smooth backgrounds such as water surfaces that reflect sound impinging at an acute angle away from the bat and thereby render a prey object acoustically conspicuous. Previous measurements had shown that the echo amplitude of a target on a smooth surface is higher than that of the same target in mid-air, due to an acoustic mirror effect. In behavioural experiments with three pond bats (Myotis dasycneme), we tested the hypothesis that the maximum distances at which bats can detect prey are larger for prey on smooth surfaces than for the same prey in an airborne situation. We determined the moment of prey detection from a change in echolocation behaviour and measured the detection distance in 3D space from IR-video recordings using stereo-photogrammetry. The bats showed the predicted increase in detection distance for prey on smooth surfaces. The acoustic mirror effect therefore increases search efficiency and contributes to the acoustic advantages encountered by echolocating bats when foraging at low heights above smooth water surfaces. These acoustic advantages may have favoured the repeated evolution of trawling behaviour.

  2. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOEpatents

    Vo-Dinh, Tuan; Norton, Stephen J.

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  3. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  4. Materials characterization and flaw detection by acoustic NDE

    NASA Astrophysics Data System (ADS)

    Buck, Otto

    1992-10-01

    This overview lists the potential applications of acoustic NDE for characterizing and assessing structural inhomogeneities in varied materials. Acoustic NDE is discussed in terms of its application to inhomogeneities such as: interstitials, precipitates, dislocations, phase transformations, porosity, cracks, and dislocation-point defect interactions. Acoustic velocity measurements provide data on interstitial concentrations, and nonlinear acoustics can describe the volume fraction of second-phase precipitates. Ultrasonic NDE can be used to determine the oxygen present in Ti-6211, binary alloys, and other alloys, and theoretical progress is noted in the characterization of porosity and cracks by means of sound velocity and attenuation as well as backscattering. Quantitative acoustic NDE can be used to detect flaws and characterize materials both during processing and by means of periodic inspections.

  5. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells.

    PubMed

    Galanzha, Ekaterina I; Shashkov, Evgeny V; Kelly, Thomas; Kim, Jin-Woo; Yang, Lily; Zharov, Vladimir P

    2009-12-01

    The spread of cancer cells between organs, a process known as metastasis, is the cause of most cancer deaths. Detecting circulating tumour cells -- a common marker for the development of metastasis -- is difficult because ex vivo methods are not sensitive enough owing to limited blood sample volume and in vivo diagnosis is time-consuming as large volumes of blood must be analysed. Here, we show a way to magnetically capture circulating tumour cells in the bloodstream of mice followed by rapid photoacoustic detection. Magnetic nanoparticles, which were functionalized to target a receptor commonly found in breast cancer cells, bound and captured circulating tumour cells under a magnet. To improve detection sensitivity and specificity, gold-plated carbon nanotubes conjugated with folic acid were used as a second contrast agent for photoacoustic imaging. By integrating in vivo multiplex targeting, magnetic enrichment, signal amplification and multicolour recognition, our approach allows circulating tumour cells to be concentrated from a large volume of blood in the vessels of tumour-bearing mice, and this could have potential for the early diagnosis of cancer and the prevention of metastasis in humans. PMID:19915570

  6. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells

    PubMed Central

    Galanzha, Ekaterina I.; Shashkov, Evgeny V.; Kelly, Thomas; Kim, Jin-Woo; Yang, Lily; Zharov, Vladimir P.

    2012-01-01

    The spread of cancer cells between organs, a process known as metastasis, is the cause of most cancer deaths1,2. Detecting circulating tumour cells—a common marker for the development of metastasis3,4—is difficult because ex vivo methods are not sensitive enough owing to limited blood sample volume and in vivo diagnosis is time-consuming as large volumes of blood must be analysed5–7. Here, we show a way to magnetically capture circulating tumour cells in the bloodstream of mice followed by rapid photoacoustic detection. Magnetic nanoparticles, which were functionalized to target a receptor commonly found in breast cancer cells, bound and captured circulating tumour cells under a magnet. To improve detection sensitivity and specificity, gold-plated carbon nanotubes conjugated with folic acid were used as a second contrast agent for photoacoustic imaging. By integrating in vivo multiplex targeting, magnetic enrichment, signal amplification and multicolour recognition, our approach allows circulating tumour cells to be concentrated from a large volume of blood in the vessels of tumour-bearing mice, and this could have potential for the early diagnosis of cancer and the prevention of metastasis in humans. PMID:19915570

  7. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Shashkov, Evgeny V.; Kelly, Thomas; Kim, Jin-Woo; Yang, Lily; Zharov, Vladimir P.

    2009-12-01

    The spread of cancer cells between organs, a process known as metastasis, is the cause of most cancer deaths. Detecting circulating tumour cells-a common marker for the development of metastasis-is difficult because ex vivo methods are not sensitive enough owing to limited blood sample volume and in vivo diagnosis is time-consuming as large volumes of blood must be analysed. Here, we show a way to magnetically capture circulating tumour cells in the bloodstream of mice followed by rapid photoacoustic detection. Magnetic nanoparticles, which were functionalized to target a receptor commonly found in breast cancer cells, bound and captured circulating tumour cells under a magnet. To improve detection sensitivity and specificity, gold-plated carbon nanotubes conjugated with folic acid were used as a second contrast agent for photoacoustic imaging. By integrating in vivo multiplex targeting, magnetic enrichment, signal amplification and multicolour recognition, our approach allows circulating tumour cells to be concentrated from a large volume of blood in the vessels of tumour-bearing mice, and this could have potential for the early diagnosis of cancer and the prevention of metastasis in humans.

  8. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE PAGESBeta

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; Zhang, Shujun; Tselev, Alexander; Carmichael, Ben D.; Okatan, Mahmut Baris; Jesse, Stephen; Chen, Long-Qing; Alpay, S. Pamir; et al

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  9. Leak detection by acoustic emission monitoring. Phase 1: Feasibility study

    NASA Astrophysics Data System (ADS)

    Lichtenstein, Bernard; Winder, A. A.

    1994-05-01

    This investigation was conducted to determine the feasibility of detecting leaks from underground storage tanks or pipelines using acoustic emissions. An extensive technical literature review established that distinguishable acoustic emission signals will be generated when a storage tank is subjected to deformation stresses. A parametric analysis was performed which indicated that leak rates less than 0.1 gallons per hour can be detected for leak sizes less than 1/32 inch with 99% probability if the transient signals were sensed with an array of accelerometers (cemented to the tank or via acoustic waveguides), each having a sensitivity greater than 250 mv/g over a frequency range of 0.1 to 4000 Hz, and processed in a multi-channel Fourier spectrum analyzer with automatic threshold detection. An acoustic transient or energy release processor could conceivably detect the onset of the leak at the moment of fracture of the tank wall. The primary limitations to realizing reliable and robust acoustic emission monitoring of underground fluid leaks are the various masking noise sources prevalent at Air Force bases, which are attributed to aircraft, motor traffic, pump station operation, and ground tremors.

  10. Automatic detection of unattended changes in room acoustics.

    PubMed

    Frey, Johannes Daniel; Wendt, Mike; Jacobsen, Thomas

    2015-01-01

    Previous research has shown that the human auditory system continuously monitors its acoustic environment, detecting a variety of irregularities (e.g., deviance from prior stimulation regularity in pitch, loudness, duration, and (perceived) sound source location). Detection of irregularities can be inferred from a component of the event-related brain potential (ERP), referred to as the mismatch negativity (MMN), even in conditions in which participants are instructed to ignore the auditory stimulation. The current study extends previous findings by demonstrating that auditory irregularities brought about by a change in room acoustics elicit a MMN in a passive oddball protocol (acoustic stimuli with differing room acoustics, that were otherwise identical, were employed as standard and deviant stimuli), in which participants watched a fiction movie (silent with subtitles). While the majority of participants reported no awareness for any changes in the auditory stimulation, only one out of 14 participants reported to have become aware of changing room acoustics or sound source location. Together, these findings suggest automatic monitoring of room acoustics. PMID:25301567

  11. Acoustic Aspects of Photoacoustic Signal Generation and Detection in Gases

    NASA Astrophysics Data System (ADS)

    Miklós, A.

    2015-09-01

    In this paper photoacoustic signal generation and detection in gases is investigated and discussed from the standpoint of acoustics. Four topics are considered: the effect of the absorption-desorption process of modulated and pulsed light on the heat power density released in the gas; the generation of the primary sound by the released heat in an unbounded medium; the excitation of an acoustic resonator by the primary sound; and finally, the generation of the measurable PA signal by a microphone. When light is absorbed by a molecule and the excess energy is relaxed by collisions with the surrounding molecules, the average kinetic energy, thus also the temperature of an ensemble of molecules (called "particle" in acoustics) will increase. In other words heat energy is added to the energy of the particle. The rate of the energy transfer is characterized by the heat power density. A simple two-level model of absorption-desorption is applied for describing the heat power generation process for modulated and pulsed illumination. Sound generation by a laser beam in an unbounded medium is discussed by means of the Green's function technique. It is shown that the duration of the generated sound pulse depends mostly on beam geometry. A photoacoustic signal is mostly detected in a photoacoustic cell composed of acoustic resonators, buffers, filters, etc. It is not easy to interpret the measured PA signal in such a complicated acoustic system. The acoustic response of a PA detector to different kinds of excitations (modulated cw, pulsed, periodic pulse train) is discussed. It is shown that acoustic resonators respond very differently to modulated cw excitation and to excitation by a pulse train. The microphone for detecting the PA signal is also a part of the acoustic system; its properties have to be taken into account by the design of a PA detector. The moving membrane of the microphone absorbs acoustic energy; thus, it may influence the resonance frequency and

  12. Aerostat acoustic payload for transient and helicopter detection

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael; Reiff, Christian; Solomon, Latasha

    2007-04-01

    The Army Research Laboratory (ARL) has conducted experiments using acoustic sensor arrays suspended below tethered aerostats to detect and localize transient signals from mortars, artillery, and small arms fire. The airborne acoustic sensor array calculates an azimuth and elevation to the originating transient, and immediately cues a collocated imager to capture the remaining activity at the site of the acoustic transient. This single array's vector solution defines a ground-intersect region or grid coordinate for threat reporting. Unattended ground sensor (UGS) systems can augment aerostat arrays by providing additional solution vectors from several ground-based acoustic arrays to perform a 3D triangulation on a source location. The aerostat array's advantage over ground systems is that it is not as affected by diffraction and reflection from man-made structures, trees, or terrain, and has direct line-of-sight to most events.

  13. Soldier detection using unattended acoustic and seismic sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Hengy, S.; Hamery, P.

    2012-06-01

    During recent military conflicts, as well as for security interventions, the urban zone has taken a preponderant place. Studies have been initiated in national and in international programs to stimulate the technical innovations for these specific scenarios. For example joint field experiments have been organized by the NATO group SET-142 to evaluate the capability for the detection and localization of snipers, mortars or artillery guns using acoustic devices. Another important operational need corresponds to the protection of military sites or buildings. In this context, unattended acoustic and seismic sensors are envisaged to contribute to the survey of specific points by the detection of approaching enemy soldiers. This paper describes some measurements done in an anechoic chamber and in free field to characterize typical sounds generated by the soldier activities (walking, crawling, weapon handling, radio communication, clothing noises...). Footstep, speech and some specific impulsive sounds are detectable at various distances from the source. Such detection algorithms may be easily merged with the existing weapon firing detection algorithms to provide a more generic "battlefield acoustic" early warning system. Results obtained in various conditions (grassy terrain, gravel path, road, forest) will be presented. A method to extrapolate the distances of detection has been developed, based on an acoustic propagation model and applied to the laboratory measurements.

  14. Matrix metalloproteinase-1 is induced by epidermal growth factor in human bladder tumour cell lines and is detectable in urine of patients with bladder tumours.

    PubMed Central

    Nutt, J. E.; Mellon, J. K.; Qureshi, K.; Lunec, J.

    1998-01-01

    The matrix metalloproteinases are a family of enzymes that degrade the extracellular matrix and are considered to be important in tumour invasion and metastasis. The effect of epidermal growth factor (EGF) on matrix metalloproteinase-1 (MMP1) production in two human bladder tumour cell lines, RT112 and RT4, has been investigated. In the RT112 cell line, an increase in MMP1 mRNA levels was found after a 6-h incubation with EGF, and this further increased to 20-fold that of control levels at 24- and 48-h treatment with 50 ng ml(-1) of EGF. MMP2 mRNA levels remained constant over this time period, whereas in the RT4 cells no MMP2 transcripts were detectable, but MMP1 transcripts again increased with 24- and 48-h treatment with 50 ng ml(-1) of EGF. MMP1 protein concentration in the conditioned medium from both cell lines increased with 24- and 48-h treatment of the cells and the total MMP1 was higher in the medium than the cells, demonstrating that the bladder tumour cell lines synthesize and secrete MMP1 protein after continuous stimulation with EGF. MMP1 protein was detected in urine from patients with bladder tumours, with a significant increase in concentration with increased stage and grade of tumour. MMP1 urine concentrations may therefore be a useful prognostic indicator for bladder tumour progression. Images Figure 1 Figure 2 PMID:9683296

  15. Helicopter detection using harmonics and seismic-acoustic coupling

    NASA Astrophysics Data System (ADS)

    Damarla, T. Raju; Ufford, David

    2008-04-01

    Unattended ground sensors (UGS) are routinely used to collect intelligence, surveillance, and reconnaissance (ISR) information. Unattended ground sensors consisting of microphone array and geophone are employed to detect rotary wing aircraft. This paper presents an algorithm for the detection of helicopters based on a fusion of rotor harmonics and acoustic-seismic coupling. The main rotor blades of helicopters operate at a fixed RPM to prevent stalling or mechanical damage. In addition, the seismic spectrum is dominated by the acoustic-seismic coupling generated by these rotors; much more so than ground vehicles and other targets where mechanical coupling and a more broadband acoustic source are strong factors. First, an autocorrelation detection method identifies the constant fundamental generated by the helicopter main rotor. Second, key matching frequencies between the acoustic and seismic spectrum are used to locate possible coupled components. Detection can then be based on the ratio of the coupled seismic energy to total seismic energy. The results of the two methods are fused over a few seconds time to provide an initial and continued detection of a helicopter within the sensor range. Performance is measured on data as a function of range and sound pressure level (SPL).

  16. Profiling of molecular interactions in real time using acoustic detection.

    PubMed

    Godber, Benjamin; Frogley, Mark; Rehak, Marian; Sleptsov, Alexander; Thompson, Kevin S J; Uludag, Yildiz; Cooper, Matthew A

    2007-04-15

    Acoustic sensors that exploit resonating quartz crystals to directly detect the binding of an analyte to a receptor are finding increasing utility in the quantification of clinically relevant analytes. We have developed a novel acoustic detection technology, which we term resonant acoustic profiling (RAP). This technology builds on the fundamental basics of the "quartz crystal microbalance" or "QCM" with several key additional features including two- or four-channel automated sample delivery, in-line referencing and microfluidic sensor 'cassettes' that are pre-coated with easy-to-use surface chemistries. Example applications are described for the quantification of myoglobin concentration and its interaction kinetics, and for the ranking of enzyme-cofactor specificities. PMID:17129723

  17. Automatic brain tumour detection and neovasculature assessment with multiseries MRI analysis.

    PubMed

    Szwarc, Pawel; Kawa, Jacek; Rudzki, Marcin; Pietka, Ewa

    2015-12-01

    In this paper a novel multi-stage automatic method for brain tumour detection and neovasculature assessment is presented. First, the brain symmetry is exploited to register the magnetic resonance (MR) series analysed. Then, the intracranial structures are found and the region of interest (ROI) is constrained within them to tumour and peritumoural areas using the Fluid Light Attenuation Inversion Recovery (FLAIR) series. Next, the contrast-enhanced lesions are detected on the basis of T1-weighted (T1W) differential images before and after contrast medium administration. Finally, their vascularisation is assessed based on the Regional Cerebral Blood Volume (RCBV) perfusion maps. The relative RCBV (rRCBV) map is calculated in relation to a healthy white matter, also found automatically, and visualised on the analysed series. Three main types of brain tumours, i.e. HG gliomas, metastases and meningiomas have been subjected to the analysis. The results of contrast enhanced lesions detection have been compared with manual delineations performed independently by two experts, yielding 64.84% sensitivity, 99.89% specificity and 71.83% Dice Similarity Coefficient (DSC) for twenty analysed studies of subjects with brain tumours diagnosed. PMID:26183648

  18. Theoretical detection ranges for acoustic based manatee avoidance technology.

    PubMed

    Phillips, Richard; Niezrecki, Christopher; Beusse, Diedrich O

    2006-07-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. To reduce the number of collisions, warning systems based upon detecting manatee vocalizations have been proposed. One aspect of the feasibility of an acoustically based warning system relies upon the distance at which a manatee vocalization is detectable. Assuming a mixed spreading model, this paper presents a theoretical analysis of the system detection capabilities operating within various background and watercraft noise conditions. This study combines measured source levels of manatee vocalizations with the modeled acoustic properties of manatee habitats to develop a method for determining the detection range and hydrophone spacing requirements for acoustic based manatee avoidance technologies. In quiet environments (background noise approximately 70 dB) it was estimated that manatee vocalizations are detectable at approximately 250 m, with a 6 dB detection threshold, In louder environments (background noise approximately 100dB) the detection range drops to 2.5 m. In a habitat with 90 dB of background noise, a passing boat with a maximum noise floor of 120 dB would be the limiting factor when it is within approximately 100 m of a hydrophone. The detection range was also found to be strongly dependent on the manatee vocalization source level. PMID:16875213

  19. Bayesian probability analysis for acoustic-seismic landmine detection

    NASA Astrophysics Data System (ADS)

    Xiang, Ning; Sabatier, James M.; Goggans, Paul M.

    2002-11-01

    Landmines buried in the subsurface induce distinct changes in the seismic vibration of the ground surface when an acoustic source insonifies the ground. A scanning laser Doppler vibrometer (SLDV) senses the acoustically-induced seismic vibration of the ground surface in a noncontact, remote manner. The SLDV-based acoustic-to-seismic coupling technology exhibits significant advantages over conventional sensors due to its capability for detecting both metal and nonmetal mines and its stand-off distance. The seismic vibration data scanned from the SLDV are preprocessed to form images. The detection of landmines relies primarily on an analysis of the target amplitude, size, shape, and frequency range. A parametric model has been established [Xiang and Sabatier, J. Acoust. Soc. Am. 110, 2740 (2001)] to describe the amplified surface vibration velocity induced by buried landmines within an appropriate frequency range. This model incorporates vibrational amplitude, size, position of landmines, and the background amplitude into a model-based analysis process in which Bayesian target detection and parameter estimation have been applied. Based on recent field measurement results, the landmine detection procedure within a Bayesian framework will be discussed. [Work supported by the United States Army Communications-Electronics Command, Night Vision and Electronic Sensors Directorate.

  20. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study.

    PubMed

    Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James

    2016-01-01

    Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period. PMID:26522612

  1. Acoustic firearm discharge detection and classification in an enclosed environment.

    PubMed

    Luzi, Lorenzo; Gonzalez, Eric; Bruillard, Paul; Prowant, Matthew; Skorpik, James; Hughes, Michael; Child, Scott; Kist, Duane; McCarthy, John E

    2016-05-01

    Two different signal processing algorithms are described for detection and classification of acoustic signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm of the signal energy. The second is a joint entropy. The current study indicates that a system using both signal energy and joint entropy would be able to both detect weapon discharges and classify weapon type, in small spaces, with high statistical certainty. PMID:27250165

  2. NOTE: Image analysis can be used to detect spatial changes in the histopathology of pancreatic tumours

    NASA Astrophysics Data System (ADS)

    Sims, A. J.; Bennett, M. K.; Murray, A.

    2003-07-01

    Pancreatic cancer is frequently associated with intense growth of fibrous tissue at the periphery of tumours, but the histopathological quantification of this stromal reaction has not yet been used as a prognostic factor because of the difficulty of obtaining quantitative measures using manual methods. Manual histological grading is a poor indicator of outcome in this type of cancer and there is a clinical need to establish a more sensitive indicator. Recent pancreatic tumour biology research has focused upon the stromal reaction and there is an indication that its histopathological quantification may lead to a new prognostic indicator. Histological samples from 21 cases of pancreatic carcinoma were stained using the sirius red, light-green method. Multiple images from the centre and periphery of each tumour were automatically segmented using colour cluster analysis to subdivide each image into representative colours. These were classified manually as stroma, cell cytoplasm or lumen in order to measure the area of each component in each image. Measured areas were analysed to determine whether the technique could detect spatial differences in the area of each tissue component over all samples, and within individual samples. Over all 21 cases, the area of stromal tissue at the periphery of the tumours exceeded that at the centre by an average of 10.0 percentage points (P < 0.001). Within individual tumours, the algorithm was able to detect significantly more stroma (P < 0.05) at the periphery than the centre in 11 cases, whilst none of the remaining cases had significantly more stromal tissue at the centre than the periphery. The results demonstrate that semi-automated analysis can be used to detect spatial differences in the area of fibrous tissue in routinely stained sections of pancreatic cancer.

  3. Wavelet-based acoustic emission detection method with adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Menon, Sunil; Schoess, Jeffrey N.; Hamza, Rida; Busch, Darryl

    2000-06-01

    Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. One such technology, the use of acoustic emission for the early detection of helicopter rotor head dynamic component faults, has been investigated by Honeywell Technology Center for its rotor acoustic monitoring system (RAMS). This ambitious, 38-month, proof-of-concept effort, which was a part of the Naval Surface Warfare Center Air Vehicle Diagnostics System program, culminated in a successful three-week flight test of the RAMS system at Patuxent River Flight Test Center in September 1997. The flight test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. This paper presents the results of stress wave data analysis of the flight-test dataset using wavelet-based techniques to assess background operational noise vs. machinery failure detection results.

  4. Passive acoustic detection of deep-diving beaked whales.

    PubMed

    Zimmer, Walter M X; Harwood, John; Tyack, Peter L; Johnson, Mark P; Madsen, Peter T

    2008-11-01

    Beaked whales can remain submerged for an hour or more and are difficult to sight when they come to the surface to breathe. Passive acoustic detection (PAD) not only complements traditional visual-based methods for detecting these species but also can be more effective because beaked whales produce clicks regularly to echolocate on prey during deep foraging dives. The effectiveness of PAD for beaked whales depends not only on the acoustic behavior and output of the animals but also on environmental conditions and the quality of the passive sonar implemented. A primary constraint on the range at which beaked whale clicks can be detected involves their high frequencies, which attenuate rapidly, resulting in limited ranges of detection, especially in adverse environmental conditions. Given current knowledge of source parameters and in good conditions, for example, with a wind speed of 2 ms, a receiver close to the surface should be able to detect acoustically Cuvier's beaked whales with a high probability at distances up to 0.7 km, provided the listening duration exceeds the deep dive interval, about 2.5 h on average. Detection ranges beyond 4 km are unlikely and would require low ambient noise or special sound propagation conditions. PMID:19045770

  5. Early forest fire detection using radio-acoustic sounding system.

    PubMed

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  6. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  7. Acoustic detection of melolonthine larvae in Australian sugarcane.

    PubMed

    Mankin, R W; Samson, P R; Chandler, K J

    2009-08-01

    Decision support systems have been developed for risk analysis and management of root-feeding white grubs (Coleoptera: Scarabaeidae: Melolonthinae) in Queensland, Australia, sugarcane (Saccharum spp.), based partly on manual inspection of soil samples. Acoustic technology was considered as a potential alternative to this laborious procedure. Field surveys were conducted to detect the major pests Dermolepida albohirtum (Waterhouse) near Mackay, and Antitrogus parvulus Britton near Bundaberg. Computer analyses were developed to identify distinctive scrapes and other sounds produced by D. albohirtum and Antitrogus species and to distinguish them from sounds of nondamaging white grubs (Rutelinae, Dynastinae), as well as from extraneous, wind-induced tapping signals. Procedures were considered for incorporating acoustic methods into surveys and sequential sampling plans. Digging up and inspecting sugarcane root systems requires 10-12 min per sample, but acoustic assessments can be obtained in 3-5 min, so labor and time could be reduced by beginning the surveys with acoustic sampling. In a typical survey conducted in a field with low population densities, sampling might terminate quickly after five negative acoustic samples, establishing a desired precision level of 0.25 but avoiding the effort of excavating and inspecting empty samples. With a high population density, sampling might terminate also if signals were detected in five samples, in which case it would be beneficial to excavate the samples and count the white grubs. In intermediate populations, it might be necessary to collect up to 20 samples to achieve desired precision, and acoustic methods could help determine which samples would be best to excavate. PMID:19736765

  8. Neural dynamics of change detection in crowded acoustic scenes.

    PubMed

    Sohoglu, Ediz; Chait, Maria

    2016-02-01

    Two key questions concerning change detection in crowded acoustic environments are the extent to which cortical processing is specialized for different forms of acoustic change and when in the time-course of cortical processing neural activity becomes predictive of behavioral outcomes. Here, we address these issues by using magnetoencephalography (MEG) to probe the cortical dynamics of change detection in ongoing acoustic scenes containing as many as ten concurrent sources. Each source was formed of a sequence of tone pips with a unique carrier frequency and temporal modulation pattern, designed to mimic the spectrotemporal structure of natural sounds. Our results show that listeners are more accurate and quicker to detect the appearance (than disappearance) of an auditory source in the ongoing scene. Underpinning this behavioral asymmetry are change-evoked responses differing not only in magnitude and latency, but also in their spatial patterns. We find that even the earliest (~50 ms) cortical response to change is predictive of behavioral outcomes (detection times), consistent with the hypothesized role of local neural transients in supporting change detection. PMID:26631816

  9. Neural dynamics of change detection in crowded acoustic scenes

    PubMed Central

    Sohoglu, Ediz; Chait, Maria

    2016-01-01

    Two key questions concerning change detection in crowded acoustic environments are the extent to which cortical processing is specialized for different forms of acoustic change and when in the time-course of cortical processing neural activity becomes predictive of behavioral outcomes. Here, we address these issues by using magnetoencephalography (MEG) to probe the cortical dynamics of change detection in ongoing acoustic scenes containing as many as ten concurrent sources. Each source was formed of a sequence of tone pips with a unique carrier frequency and temporal modulation pattern, designed to mimic the spectrotemporal structure of natural sounds. Our results show that listeners are more accurate and quicker to detect the appearance (than disappearance) of an auditory source in the ongoing scene. Underpinning this behavioral asymmetry are change-evoked responses differing not only in magnitude and latency, but also in their spatial patterns. We find that even the earliest (~ 50 ms) cortical response to change is predictive of behavioral outcomes (detection times), consistent with the hypothesized role of local neural transients in supporting change detection. PMID:26631816

  10. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  11. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  12. Evaluation of lactate detection using selective multiple quantum coherence in phantoms and brain tumours

    PubMed Central

    Harris, L M; Tunariu, N; Messiou, C; Hughes, J; Wallace, T; DeSouza, N M; Leach, M O; Payne, G S

    2015-01-01

    Lactate is a product of glucose metabolism. In tumour tissues, which exhibit enhanced glycolytic metabolism, lactate signals may be elevated, making lactate a potential useful tumour biomarker. Methods of lactate quantitation are complicated because of overlap between the lactate methyl doublet CH3 resonance and a lipid resonance at 1.3 ppm. This study presents the use of a selective homonuclear multiple quantum coherence transfer sequence (SelMQC-CSI), at 1.5 T, to better quantify lactate in the presence of lipids. Work performed on phantoms showed good lactate detection (49%) and lipid suppression (98%) efficiencies. To evaluate the method in the brain, the sequence was tested on a group of 23 patients with treated brain tumours, either glioma (N = 20) or secondary metastases in the brain (N = 3). Here it was proved to be of use in determining lactate concentrations in vivo. Lactate was clearly seen in SelMQC spectra of glioma, even in the presence of lipids, with high grade glioma (7.3 ± 1.9 mM, mean ± standard deviation) having higher concentrations than low grade glioma (1.9 ± 1.5 mM, p = 0.048). Lactate was not seen in secondary metastases in the brain. SelMQC-CSI is shown to be a useful technique for measuring lactate in tumours whose signals are otherwise contaminated by lipid. © 2015 The Authors NMR in Biomedicine Published by John Wiley & Sons Ltd. PMID:25586623

  13. Robotic vehicle uses acoustic sensors for voice detection and diagnostics

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2000-07-01

    An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.

  14. Detection of comorbidities and synchronous primary tumours via thoracic radiography and abdominal ultrasonography and their influence on treatment outcome in dogs with soft tissue sarcomas, primary brain tumours and intranasal tumours.

    PubMed

    Bigio Marcello, A; Gieger, T L; Jiménez, D A; Granger, L Abbigail

    2015-12-01

    Canine soft tissue sarcomas (STS), primary brain tumours and intranasal tumours are commonly treated with radiotherapy (RT). Given the low metastatic potential of these tumours, recommendations regarding imaging tests as staging are variable among institutions. The purpose of our study was to describe thoracic radiographic and abdominal ultrasonographic findings in dogs with these neoplasms and to investigate association of abnormal findings with alterations in recommended treatment. Medical records from 101 dogs, each having thoracic radiographs and abdominal ultrasound performed as part of their staging, were reviewed. In 98 of 101 (97%), imaging abnormalities were detected, 27% of which were further investigated with fine needle aspiration cytology or biopsy. Nine percent of the detected abnormalities were considered serious comorbidities that altered treatment recommendations, including 3 (3%) which were confirmed as synchronous primary neoplasms. These findings may influence recommendations regarding the decision to perform thoracic radiographs and abdominal ultrasound prior to initiation of RT. PMID:23968175

  15. A hydrophone prototype for ultra high energy neutrino acoustic detection

    NASA Astrophysics Data System (ADS)

    Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.

    2009-06-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  16. Optimizing surface acoustic wave sensors for trace chemical detection

    SciTech Connect

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J.

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  17. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    PubMed

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  18. Widespread passive acoustic detection of Yangtze finless porpoise using miniature stereo acoustic data-loggers: a review.

    PubMed

    Li, Songhai; Akamatsu, Tomonari; Dong, Lijun; Wang, Kexiong; Wang, Ding; Kimura, Satoko

    2010-09-01

    Data on distribution, abundance, ecology, and behavior are essential for conservation and management of endangered animals in the wild. Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) is an endangered small odontocete species, living exclusively in the Yangtze River and its connecting Poyang and Dongting Lakes. Frequent production of high-frequency bio-sonar signals allows the animal to be detectable using passive acoustic methods. Recently, a stereo acoustic event data-logger (A-tag) has been used extensively to detect the animal by using both fixed and mobile platforms. The passive acoustic monitoring methods were not only successful in detecting the presence of animals, but also in counting, localizing, and tracking phonating individuals. Underwater behavior observed acoustically helped to assess possible effects of vessels on the animals during acoustic surveys. PMID:20815482

  19. Acoustic Emission Beamforming for Detection and Localization of Damage

    NASA Astrophysics Data System (ADS)

    Rivey, Joshua Callen

    The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over

  20. Laser-induced thermal-acoustic velocimetry with heterodyne detection

    SciTech Connect

    Schlamp, Stefan; Cummings, Eric B.; Sobota, Thomas H.

    2000-02-15

    Laser-induced thermal acoustics (LITA) was used with heterodyne detection to measure simultaneously and in a single laser pulse the sound speed and flow velocity of NO{sub 2} -seeded air in a low-speed wind tunnel up to Mach number M=0.1 . The uncertainties of the velocity and the sound speed measurements were {approx}0.2 m/s and 0.5%, respectively. Measurements were obtained through a nonlinear least-squares fit to a general, analytic closed-form solution for heterodyne-detected LITA signals from thermal gratings. Agreement between theory and experiment is exceptionally good. (c) 2000 Optical Society of America.

  1. High-performance air acoustic detection and classification sensor

    NASA Astrophysics Data System (ADS)

    Porter, Richard; Raines, Robert; Jones, Barry

    2009-05-01

    Acoustic signals are a principal detection modality for unattended sensor systems. However, the performance of these systems is frequently suboptimal due to insufficient dynamic range in small systems or excess power consumption in larger systems. This paper discusses an approach to developing an unattended ground sensor (UGS) system that has the best features of both worlds. This system, developed by McQ Inc., has exceptional dynamic range (> 100 dB) while operating at power levels of 1.5-5 watts. The system also has a user definable signal parameter library and automated detection methodology that will be described.

  2. Fuel Line Based Acoustic Flame-Out Detection System

    NASA Technical Reports Server (NTRS)

    Puster, Richard L. (Inventor); Franke, John M. (Inventor)

    1997-01-01

    An acoustic flame-out detection system that renders a large high pressure combustor safe in the event of a flame-out and possible explosive reignition. A dynamic pressure transducer is placed in the fuel and detects the stabilizing fuel pressure oscillations, caused by the combustion process. An electric circuit converts the signal from the combustion vortices, and transmitted to the fuel flow to a series of pulses. A missing pulse detector counts the pulses and continuously resets itself. If three consecutive pulses are missing, the circuit closes the fuel valve. With fuel denied the combustor is shut down or restarted under controlled conditions.

  3. Acoustic sensors in the helmet detect voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-09-01

    The Army Research Laboratory has developed body-contacting acoustic sensors that detect diverse physiological sounds such as heartbeats and breaths, high quality speech, and activity. These sensors use an acoustic impedance-matching gel contained in a soft, compliant pad to enhance the body borne sounds, yet significantly repel airborne noises due to an acoustic impedance mismatch. The signals from such a sensor can be used as a microphone with embedded physiology, or a dedicated digital signal processor can process packetized data to separate physiological parameters from voice, and log parameter trends for performance surveillance. Acoustic sensors were placed inside soldier helmets to monitor voice, physiology, activity, and situational awareness clues such as bullet shockwaves from sniper activity and explosions. The sensors were also incorporated into firefighter breathing masks, neck and wrist straps, and other protective equipment. Heart rate, breath rate, blood pressure, voice and activity can be derived from these sensors (reports at www.arl.army.mil/acoustics). Having numerous sensors at various locations provides a means for array processing to reduce motion artifacts, calculate pulse transit time for passive blood pressure measurement, and the origin of blunt/penetrating traumas such as ballistic wounding. These types of sensors give us the ability to monitor soldiers and civilian emergency first-responders in demanding environments, and provide vital signs information to assess their health status and how that person is interacting with the environment and mission at hand. The Objective Force Warrior, Scorpion, Land Warrior, Warrior Medic, and other military and civilian programs can potentially benefit from these sensors.

  4. Acoustic Emission Detection of Impact Damage on Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.

    2004-01-01

    The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.

  5. Acoustic leak-detection system for railroad transportation security

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.

    2007-04-01

    Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.

  6. Adaptive laser array-receivers for acoustic waves detection

    NASA Astrophysics Data System (ADS)

    Tuovinen, Hemmo; Murray, Todd W.; Krishnaswamy, Sridhar

    2000-05-01

    Interferometric detection systems typically use a single focused laser point receiver for the detection of acoustic waves. In some cases, where optical damage of the structure is of concern, it may be advantageous to distribute the detection laser energy over an area. This can be done, for example, by using a point-array or a line-array probe. Other advantages of an array receiver include directional sensitivity and frequency selectivity. It is important to notice that laser-array reception is possible only with self-referential interferometers. In this paper adaptive array interferometric detection schemes, which are based on wave mixing in photorefractive bismuth silicate crystal, are described. An adaptive narrow-band laser array receiver of surface acoustic waves is demonstrated. The interferometer is also configured as a linearly frequency modulated (chirped) array receiver. The chirped receiver, when excited with a similarly chirped ultrasonic source, allows pulse compression of the ultrasonic signal thus maintaining high temporal resolution. The signal-to-noise ratio for the different array detection schemes are determined and compared. Several applications of laser-array reception are presented.

  7. Nonlinear seismo-acoustic land mine detection and discrimination.

    PubMed

    Donskoy, Dimitri; Ekimov, Alexander; Sedunov, Nikolay; Tsionskiy, Mikhail

    2002-06-01

    A novel technique for detection and discrimination of artificial objects, such as land mines, pipes, containers, etc., buried in the ground, has been developed and tested. The developed approach utilizes vibration (using seismic or airborne acoustic waves) of buried objects, remote measurements of soil surface vibration (using laser or microwave vibrometers), and processing of the measured vibration to extract mine's "vibration signatures." The technique does not depend upon the material from which the mine is fabricated whether it be metal, plastic, wood, or any other material. It depends upon the fact that a mine is a "container" whose purpose is to contain explosive materials and associated detonation apparatus. The mine container is in contact with the soil in which it is buried. The container is an acoustically compliant article, whose compliance is notably different from the compliance of the surrounding soil. Dynamic interaction of the compliant container and soil on top of it leads to specific linear and nonlinear effects used for mine detection and discrimination. The mass of the soil on top of a compliant container creates a classical mass-spring system with a well-defined resonance response. Besides, the connection between mass (soil) and spring (mine) is not elastic (linear) but rather nonlinear, due to the separation of the soil/mine interface in the tensile phase of applied dynamic stress. These two effects, constituting the mine's vibration signature have been measured in numerous laboratory and field tests, which proved that the resonance and nonlinear responses of a mine/soil system can be used for detection and discrimination of buried mines. Thus, the fact that the mine is buried is turned into a detection advantage. Because the seismo-acoustic technique intrinsically detects buried containers, it can discriminate mines from noncompliant false targets such as rocks, tree roots, chunks of metal, bricks, etc. This was also confirmed experimentally

  8. Detection and tracking of drones using advanced acoustic cameras

    NASA Astrophysics Data System (ADS)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  9. Intraoperative detection of somatostatin-receptor-positive neuroendocrine tumours using indium-111-labelled DTPA-D-Phe1-octreotide.

    PubMed Central

    Wangberg, B.; Forssell-Aronsson, E.; Tisell, L. E.; Nilsson, O.; Fjalling, M.; Ahlman, H.

    1996-01-01

    After injection of 111In-labelled DTPA-D-Phe1-octreotide, intraoperative tumour localisation was performed using a scintillation detector in 23 patients with neuroendocrine tumours. Count rates from suspect tumour lesions and adjacent normal tissue were expressed as a ratio before (Rin situ) and after (Rex vivo) excision. 111In activity concentration ratios of tumour tissue to blood (T/B) were determined in a gamma counter. In patients with midgut carcinoids, (all scintigraphy positive), false Rin situ recordings were found in 4/29 macroscopically identified tumours. T/B ratios were all high (27-650). In patients with medullary thyroid carcinomas (eight out of ten scintigraphy positive), misleading Rin situ results were found in 4/37 macroscopically identified tumours. T/B ratios were lower (3-39) than those seen in midgut carcinoids. Two out of four patients with endocrine pancreatic tumours had positive scintigraphy, reliable intraoperative measurements and very high T/B ratios (910-1500). One patient with a gastric carcinoid had correct measurements in situ and ex vivo with high T/B ratios (71-210). In situ measurements added little information to preoperative scintigraphy and surgical findings using the present detection system. Rex vivo measurements were more reliable. The very high T/B ratios seen in midgut carcinoids and some endocrine pancreatic tumours would be favourable for future radiation therapy via somatostatin receptors. Images Figure 1 Figure 2 Figure 3 PMID:8611378

  10. Target detection and identification using synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Knox, Mary; Tantum, Stacy; Collins, Leslie

    2014-05-01

    Recent research has shown that synthetic aperture acoustic (SAA) imaging may be useful for object identification. The goal of this work is to use SAA information to detect and identify four types of objects: jagged rocks, river rocks, small concave capped cylinders, and large concave capped cylinders. More specifically, we examine the use of frequency domain features extracted from the SAA images. We utilize Support Vector Machines (SVMs) for target detection, where an SVM is trained on target and non-target (background) examples for each target type. Assuming perfect target detection, we then compare multivariate Gaussian models for target identification. Experimental results show that SAA-based frequency domain features are able to detect and identify the four types of objects.

  11. Object detection and imaging with acoustic time reversal mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    1993-11-01

    Focusing an acoustic wave on an object of unknown shape through an inhomogeneous medium of any geometrical shape is a challenge in underground detection. Optimal detection and imaging of objects needs the development of such focusing techniques. The use of a time reversal mirror (TRM) represents an original solution to this problem. It realizes in real time a focusing process matched to the object shape, to the geometries of the acoustic interfaces and to the geometries of the mirror. It is a self adaptative technique which compensates for any geometrical distortions of the mirror structure as well as for diffraction and refraction effects through the interfaces. Two real time 64 and 128 channel prototypes have been built in our laboratory and TRM experiments demonstrating the TRM performance through inhomogeneous solid and liquid media are presented. Applications to medical therapy (kidney stone detection and destruction) and to nondestructive testing of metallurgical samples of different geometries are described. Extension of this study to underground detection and imaging will be discussed.

  12. RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK

    SciTech Connect

    MartInez, Vicent J.; Arnalte-Mur, Pablo; De la Cruz, Pablo; Saar, Enn; Tempel, Elmo; Pons-BorderIa, MarIa Jesus

    2009-05-01

    The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies of the Sloan Digital Sky Survey (SDSS). Recently, the final release (DR7) of the SDSS has been made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift-space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn from the Two-Degree Field Redshift Survey. We test the reliability of the detection of the acoustic peak at about 100 h {sup -1} Mpc and the behavior of the correlation function at larger scales by means of careful estimation of errors. We confirm the presence of the peak in the latest data although broader than in previous detections.

  13. Simulation of detection and beamforming with acoustical ground sensors

    NASA Astrophysics Data System (ADS)

    Wilson, D. Keith; Sadler, Brian M.; Pham, Tien

    2002-08-01

    An interactive platform has been developed for simulating the detection and direction-finding performance of battlefield acoustic ground sensors. The simulations use the Acoustic Battlefield Aid (ABFA) as a computational engine to determine the signal propagation and resulting frequency-domain signal characteristics at the receiving sensor array. There are three components to the propagation predictions: the transmission loss (signal attenuation from target to sensor), signal saturation (degree of signal randomization), and signal coherence across the beamforming array. The transmission loss is predicted with a parabolic solution to the wave equation that accounts for sound refraction and ground interactions; signal saturation and coherence are predicted from the theory for line-of-sight wave propagation through turbulence. Based on these calculations, random frequency-domain signal samples are generated. The signal samples are then mixed with noise and fed to the selected detection or beamforming algorithm. After averaging over a number of trials, results are overlaid on a terrain map to show the sensor coverage. Currently available algorithms include the Neyman-Pearson criterion and Bayes risk minimization for detection, and the conventional, MVDR, and MUSIC beamformers. Users can readily add their own algorithms through a 'plug-in' interface. The interface requires only a text file listing the algorithm parameters and defaults, and a Matlab routine or Windows dynamic link library that implements the algorithm.

  14. Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, R. J.; Hartwig, J. W.

    2014-01-01

    Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.

  15. Permeability determination through NMR detection of acoustically induced fluid oscillation.

    PubMed

    Looyestijn, Wim J; Smits, Robert M M; Abu-Shiekah, Issa; Kuvshinov, Boris; Hofman, Jan P; Schwing, Alex

    2006-11-01

    We present a novel approach for directly measuring the permeability of reservoir rocks by an instrument lowered in a well bore. The measurement is made by creating an oscillatory motion of fluids in the pores by acoustic stimulation and by detecting the amplitude response as a phase shift on a nuclear magnetic resonance relaxation signal. A full theoretical description is given. The feasibility of the method has been verified in the laboratory on a set of sandstone and carbonate samples spanning the entire range of practical interest. PMID:17071341

  16. Value of tissue harmonic imaging (THI) and contrast harmonic imaging (CHI) in detection and characterisation of breast tumours

    PubMed Central

    Jung, E. M.; Jungius, K.-P.; Ertan, K.

    2006-01-01

    The purpose of this study was to investigate the extent to which tissue harmonic imaging (THI), speckle reduction imaging (SRI), spatial compounding (SC) and contrast can improve detection and differentiation of breast tumours. We examined 38 patients (14 benign, 24 malignant tumours) with different combinations of THI, SRI and SC. The effect on delineation, margin, tissue differentiation and posttumoral phenomena was evaluated with a three-point score. Additionally, 1oo not palpable tumours (diameters: 4–15 mm) were examined by contrast harmonic imaging (CHI) with power Doppler. After bolus injection (0.5 ml Optison), vascularisation and enhancement were observed for 20 min. The best combination for detection of margin, infiltration, echo pattern and posterior lesion boundary was the combination of SRI level 2 with SC low. THI was helpful for lesions OF more than 1 cm depth. In native Power Doppler, vessels were found in 54 of 100 lesions. Within 5 min after contrast medium (CM) injection, marginal and penetrating vessels increased in benign and malignant tumours and central vessels mostly in carcinomas (p<0.05). A diffuse CM accumulation was observed up to 20 min after injection in malignant tumours only (p<0.05). THI, SRI and SC improved delineation and tissue differentiation. Second-generation contrast agent allowed detection of tumour vascularisation with prolonged enhancement. PMID:16823568

  17. A micromachined surface acoustic wave sensor for detecting inert gases

    SciTech Connect

    Ahuja, S.; Hersam, M.; Ross, C.; Chien, H.T.; Raptis, A.C.

    1996-12-31

    Surface acoustic wave (SAW) sensors must be specifically designed for each application because many variables directly affect the acoustic wave velocity. In the present work, the authors have designed, fabricated, and tested an SAW sensor for detection of metastable states of He. The sensor consists of two sets of micromachined interdigitated transducers (IDTs) and delay lines fabricated by photolithography on a single Y-cut LiNbO{sub 3} substrate oriented for Z-propagation of the SAWs. One set is used as a reference and the other set employs a delay line coated with a titanium-based thin film sensitive to electrical conductivity changes when exposed to metastable states of He. The reference sensor is used to obtain a true frequency translation in relation to a voltage controlled oscillator. An operating frequency of 109 MHz has been used, and the IDT finger width is 8 {micro}m. Variation in electrical conductivity of the thin film at the delay line due to exposure to He is detected as a frequency shift in the assembly, which is then used as a measure of the amount of metastable He exposed to the sensing film on the SAW delay line. A variation in the He pressure versus frequency shifts indicates the extent of the metastable He interaction.

  18. Acoustic apparatus and method for detecting borhole wall discontinuities such as vertical fractures

    SciTech Connect

    Havira, R.M.; Seeman, B.

    1989-12-05

    This patent describes an acoustic investigation method for detecting discontinuities in a wall of a borehold penetrating an earth formation. It comprises: directing from inside the borehole pulses of acoustic energy each at beam forming frequencies towards the borehold wall with orientations of the beams selected to preferentially enhance the excitation of transverse acoustic waves traveling away from the borehole wall segments in directions determined by the angle of incidence of the acoustic beams upon the borehole wall segment, while substantially maintaining the beam orientations, varying the direction which the acoustic beams are incident upon the borehole wall segments to correspondingly vary the directions which the transverse waves travel from the borehole wall segments; detecting acoustic reflections produced by the transverse waves when these are incident upon a discontinuity in the borehole wall; deriving fracture signals representative of the presence of a the discontinuity from the detected acoustic reflections; and recording the derived signals.

  19. Field installation of an acoustic slug-detection system

    SciTech Connect

    Dhulesia, H.; Bernicot, M.; Romanet, T.

    1997-02-01

    A pipeline operating in the slug flow regime creates high fluctuations in gas and liquid flow rates at the outlet. The detection of slugs and the estimation of their length and velocity are necessary to minimize the upsets in the operation of downstream process facilities. A new method based on the acoustic principle has been developed by Total and Syminex with two variants--passive and active. The passive method gives the slug length and velocity, whereas the active method also gives the fluid density. The prototype of this system has been installed permanently on a 20-in. multiphase pipeline in Argentina. As this system detects the slugs and determines their characteristics approximately 2 minutes before they arrive at the first-stage separator, the operators take appropriate action in the case of arrival of an excessively long slug and, thus, avoid possible shutdowns. At a later stage, an automatic adjustment of the process control valves will be realized.

  20. Atypical Applications for Gas-coupled Laser Acoustic Detection

    NASA Astrophysics Data System (ADS)

    Caron, J. N.; Kunapareddy, P.

    2014-06-01

    Gas-coupled laser acoustic detection (GCLAD) was primarily developed to sense laser-generated ultrasound in composite materials. In a typical setup, a laser beam is directed parallel to the material surface. Radiated ultrasound waves deflect or displace the probe beam resulting from changes in the air's index of refraction. A position-sensitive photodetector senses the beam movement, and produces a signal proportional to the ultrasound wave. In this paper, we discuss three applications of GCLAD that take advantage of the unique detection characteristics. Directivity patterns of ultrasound amplitude in water demonstrate the use of GCLAD as a directional hydrophone. We also demonstrate the sensing of waveforms from a gelatin. The gelatin mimics ultrasound propagation through skin tissues. Lastly, we show how GCLAD can be used as a line receiver for continuous laser generation of ultrasound. CLGU may enable ultrasound scanning at rates that are orders of magnitude faster than current methods.

  1. Gravitational wave detection with high frequency phonon trapping acoustic cavities

    NASA Astrophysics Data System (ADS)

    Goryachev, Maxim; Tobar, Michael E.

    2014-11-01

    There are a number of theoretical predictions for astrophysical and cosmological objects, which emit high frequency (1 06-1 09 Hz ) gravitation waves (GW) or contribute somehow to the stochastic high frequency GW background. Here we propose a new sensitive detector in this frequency band, which is based on existing cryogenic ultrahigh quality factor quartz bulk acoustic wave cavity technology, coupled to near-quantum-limited SQUID amplifiers at 20 mK. We show that spectral strain sensitivities reaching 1 0-22 per √{Hz } per mode is possible, which in principle can cover the frequency range with multiple (>100 ) modes with quality factors varying between 1 06 and 1 010 allowing wide bandwidth detection. Due to its compactness and well-established manufacturing process, the system is easily scalable into arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence analysis to ensure no false detections.

  2. DETECTION OF DRUGSTORE BEETLES IN 9975 PACKAGES USING ACOUSTIC EMISSIONS

    SciTech Connect

    Shull, D.

    2013-03-04

    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  3. Characterization of space dust using acoustic impact detection.

    PubMed

    Corsaro, Robert D; Giovane, Frank; Liou, Jer-Chyi; Burchell, Mark J; Cole, Michael J; Williams, Earl G; Lagakos, Nicholas; Sadilek, Albert; Anderson, Christopher R

    2016-08-01

    This paper describes studies leading to the development of an acoustic instrument for measuring properties of micrometeoroids and other dust particles in space. The instrument uses a pair of easily penetrated membranes separated by a known distance. Sensors located on these films detect the transient acoustic signals produced by particle impacts. The arrival times of these signals at the sensor locations are used in a simple multilateration calculation to measure the impact coordinates on each film. Particle direction and speed are found using these impact coordinates and the known membrane separations. This ability to determine particle speed, direction, and time of impact provides the information needed to assign the particle's orbit and identify its likely origin. In many cases additional particle properties can be estimated from the signal amplitudes, including approximate diameter and (for small particles) some indication of composition/morphology. Two versions of this instrument were evaluated in this study. Fiber optic displacement sensors are found advantageous when very thin membranes can be maintained in tension (solar sails, lunar surface). Piezoelectric strain sensors are preferred for thicker films without tension (long duration free flyers). The latter was selected for an upcoming installation on the International Space Station. PMID:27586768

  4. Fracture identification based on remote detection acoustic reflection logging

    NASA Astrophysics Data System (ADS)

    Zhang, Gong; Li, Ning; Guo, Hong-Wei; Wu, Hong-Liang; Luo, Chao

    2015-12-01

    Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.

  5. Detection of Sentinel Lymph Nodes in Gynecologic Tumours by Planar Scintigraphy and SPECT/CT

    PubMed Central

    Kraft, Otakar; Havel, Martin

    2012-01-01

    Objective: Assess the role of planar lymphoscintigraphy and fusion imaging of SPECT/CT in sentinel lymph node (SLN) detection in patients with gynecologic tumours. Material and Methods: Planar scintigraphy and hybrid modality SPECT/CT were performed in 64 consecutive women with gynecologic tumours (mean age 53.6 with range 30-77 years): 36 pts with cervical cancer (Group A), 21 pts with endometrial cancer (Group B), 7 pts with vulvar carcinoma (Group C). Planar and SPECT/CT images were interpreted separately by two nuclear medicine physicians. Efficacy of these two techniques to image SLN were compared. Results: Planar scintigraphy did not image SLN in 7 patients (10.9%), SPECT/CT was negative in 4 patients (6.3%). In 35 (54.7%) patients the number of SLNs captured on SPECT/CT was higher than on planar imaging. Differences in detection of SLN between planar and SPECT/CT imaging in the group of all 64 patients are statistically significant (p<0.05). Three foci of uptake (1.7% from totally visible 177 foci on planar images) in 2 patients interpreted on planar images as hot LNs were found to be false positive non-nodal sites of uptake when further assessed on SPECT/CT. SPECT/CT showed the exact anatomical location of all visualised sentinel nodes. Conclusion: In some patients with gynecologic cancers SPECT/CT improves detection of sentinel lymph nodes. It can image nodes not visible on planar scintigrams, exclude false positive uptake and exactly localise pelvic and paraaortal SLNs. It improves anatomic localization of SLNs. Conflict of interest:None declared. PMID:23486989

  6. Oceanic ambient noise as a background to acoustic neutrino detection

    SciTech Connect

    Kurahashi, Naoko; Gratta, Giorgio

    2008-11-01

    Ambient noise measured in the deep ocean is studied in the context of a search for signals from ultrahigh-energy cosmic ray neutrinos. The spectral shape of the noise at the relevant high frequencies is found to be very stable for an extensive data set collected over several months from 49 hydrophones mounted near the bottom of the ocean at {approx}1600 m depth. The slopes of the ambient noise spectra above 15 kHz are found to roll off faster than the -6 dB/octave seen in Knudsen spectra. A model attributing the source to a uniform distribution of surface noise that includes frequency-dependent absorption at large depth is found to fit the data well up to 25 kHz. This depth-dependent model should therefore be used in analysis methods of acoustic neutrino pulse detection that require the expected noise spectra.

  7. Determination of acoustic speed for improving leak detection and location in gas pipelines

    NASA Astrophysics Data System (ADS)

    Li, Shuaiyong; Wen, Yumei; Li, Ping; Yang, Jin; Yang, Lili

    2014-02-01

    The commonly used cross-correlation technique for leak location requires that the acoustic speed is known and invariable. In practice, the gas leakage-induced acoustic waves propagate along multiple paths including in-pipe gas and pipe wall, and the acoustic waves in different transmission paths exhibit different acoustic speeds and different dispersive behaviors, which bring a great challenge for leak detection and location in the gas pipelines. In this study, based on the vibration theory of cylindrical elastic thin shell, the wavenumber formulae in different transmission paths are derived to predict the acoustic speeds and the acoustical coupling between the in-pipe gas and the pipe wall is analyzed to determine the dominant transmission path. In addition, the velocity dispersions in the dominant transmission path are suppressed by selection of a characteristic frequency band of the gas leakage-induced acoustic waves. The theoretical predictions are verified in the experiment and the results show that the theoretical acoustic speed is slightly larger than the measured acoustic speed. Thus, the theoretical acoustic speed formula is modified considering the effect of the structural loss factor and consequently the location error using the modified acoustic speed is reduced by two times compared to that using the theoretical acoustic speed.

  8. Determination of acoustic speed for improving leak detection and location in gas pipelines.

    PubMed

    Li, Shuaiyong; Wen, Yumei; Li, Ping; Yang, Jin; Yang, Lili

    2014-02-01

    The commonly used cross-correlation technique for leak location requires that the acoustic speed is known and invariable. In practice, the gas leakage-induced acoustic waves propagate along multiple paths including in-pipe gas and pipe wall, and the acoustic waves in different transmission paths exhibit different acoustic speeds and different dispersive behaviors, which bring a great challenge for leak detection and location in the gas pipelines. In this study, based on the vibration theory of cylindrical elastic thin shell, the wavenumber formulae in different transmission paths are derived to predict the acoustic speeds and the acoustical coupling between the in-pipe gas and the pipe wall is analyzed to determine the dominant transmission path. In addition, the velocity dispersions in the dominant transmission path are suppressed by selection of a characteristic frequency band of the gas leakage-induced acoustic waves. The theoretical predictions are verified in the experiment and the results show that the theoretical acoustic speed is slightly larger than the measured acoustic speed. Thus, the theoretical acoustic speed formula is modified considering the effect of the structural loss factor and consequently the location error using the modified acoustic speed is reduced by two times compared to that using the theoretical acoustic speed. PMID:24593385

  9. Towards an Automated Acoustic Detection System for Free Ranging Elephants

    PubMed Central

    Zeppelzauer, Matthias; Hensman, Sean; Stoeger, Angela S.

    2015-01-01

    The human-elephant conflict is one of the most serious conservation problems in Asia and Africa today. The involuntary confrontation of humans and elephants claims the lives of many animals and humans every year. A promising approach to alleviate this conflict is the development of an acoustic early warning system. Such a system requires the robust automated detection of elephant vocalizations under unconstrained field conditions. Today, no system exists that fulfills these requirements. In this paper, we present a method for the automated detection of elephant vocalizations that is robust to the diverse noise sources present in the field. We evaluate the method on a dataset recorded under natural field conditions to simulate a real-world scenario. The proposed method outperformed existing approaches and robustly and accurately detected elephants. It thus can form the basis for a future automated early warning system for elephants. Furthermore, the method may be a useful tool for scientists in bioacoustics for the study of wildlife recordings. PMID:25983398

  10. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-04-01

    The West Virginia University natural gas transmission line leak detection research is only considering using readily available 1/2 inch pipeline access ports for the detection of leak generated signals. The main problem with leak signals is the low signal to noise ratio. One of the acoustic signals associated with gas escaping through a leak is only temporary and is in the form of a rarefaction wave originating when the leak is formed. Due to pipeline friction, over distance such a step function transitions to a ramp function. The ability to identify a leak by pipeline monitoring and signal processing depends a great deal on the quality and signal to noise ratio of the characteristics of the detectors used. Combinations of sensing devices are being used for the WVU sensor package and are contained in a removable sensor housing. The four sensors currently installed are a 1/2 inch 3 Hz-40 Khz microphone, an audible range moving coil sensor, a piezo-electric pressure transducer, and the WVU designed floating 3 inch diameter diaphragm to detect flow transient induced pressure ramp type signals. The WVU diaphragm sensor, which is currently under development, uses the same diaphragm principle as a high quality capacitance type microphone, but utilizes aerodynamic signal amplification. This type of amplification only amplifies the ramp-signal itself, not the random pipeline noise.

  11. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    NASA Astrophysics Data System (ADS)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time

  12. Explosive hazard detection using synthetic aperture acoustic sensing

    NASA Astrophysics Data System (ADS)

    Brewster, E.; Keller, J. M.; Stone, K.; Popescu, M.

    2016-05-01

    In this paper, we develop an approach to detect explosive hazards designed to attack vehicles from the side of a road, using a side looking synthetic aperture acoustic (SAA) sensor. This is done by first processing the raw data using a back-projection algorithm to form images. Next, an RX prescreener creates a list of possible targets, each with a designated confidence. Initial experiments are performed on libraries of the highest confidence hits for both target and false alarm classes generated by the prescreener. Image chips are extracted using pixel locations derived from the target's easting and northing. Several feature types are calculated from each image chip, including: histogram of oriented gradients (HOG), and generalized column projection features where the column aggregator takes the form of the minimum, maximum, mean, median, mode, standard deviation, variance, and the one-dimensional fast Fourier transform (FFT). A support vector machine (SVM) classifier is then utilized to evaluate feature type performance during training and testing in order to determine whether the two classes are separable. This will be used to build an online detection system for road-side explosive hazards.

  13. Multiuser sonar watermarking and detection in an underwater acoustic channel

    NASA Astrophysics Data System (ADS)

    Mobasseri, Bijan G.; Lynch, Robert S.; Andiario, David

    2013-06-01

    Sonar watermarking is the practice of embedding low-power, secure digital signatures in the time frequency space of a waveform. The algorithm is designed for a single source/receiver configuration. However, in a multiuser environment, multiple sources broadcast sonar waveforms that overlap in both time and frequency. The receiver can be configured as a filter bank where each bank is dedicated to detecting a specific watermark. However, a filter bank is prone to mutual interference as multiple sonar waveforms are simultaneously present at the detector input. To mitigate mutual interference, a multiuser watermark detector is formulated as a decorrelating detector that decouples detection amongst the watermark signatures. The acoustic channel is simulated in software and modeled by an FIR filter. This model is used to compensate for the degradation of spreading sequences used for watermark embedding. The test statistic generated at the output of the decorrelating detector is used in a joint maximum likelihood ratio detector to establish the presence or absence of the watermark in each sonar waveform. ROC curves are produced for multiple sources positioned at varying ranges subject to ambient ocean noise controlled by varying sea states.

  14. Early detection of metastatic disease in asymptomatic breast cancer patients with whole-body imaging and defined tumour marker increase

    PubMed Central

    Di Gioia, D; Stieber, P; Schmidt, G P; Nagel, D; Heinemann, V; Baur-Melnyk, A

    2015-01-01

    Background: Follow-up care in breast cancer is still an issue of debate. Diagnostic methods are more sensitive, and more effective therapeutic options are now available. The risk of recurrence is not only influenced by tumour stage but also by the different molecular subtypes. This study was performed to evaluate the use of whole-body imaging combined with tumour marker monitoring for the early detection of asymptomatic metastatic breast cancer (MBC). Methods: This analysis was performed as part of a follow-up study evaluating 813 patients with a median follow-up of 63 months. After primary therapy, all patients underwent tumour marker monitoring for CEA, CA 15-3 and CA 125 at 6-week intervals within an intensified diagnostic aftercare algorithm. A reproducible previously defined increase was considered as a strong indicator of MBC. From 2007 to 2010, 44 patients with tumour marker increase underwent whole-body magnetic resonance imaging and/or an FDG-PET/CT scan. Histological clarification and/or imaging follow-up were done. Results: Metastases were detected in 65.9% (29/44) of patients, 13.6% (6/44) had secondary malignancies besides breast cancer and 20.5% (9/44) had no detectable malignancy. Limited disease was found in 24.1% (7/29) of patients. Median progression-free survival of MBC was 9.2 months and median overall survival was 41.1 months. The 3- and 5-year survival rates were 64.2% and 40.0%, respectively. Conclusions: A reproducible tumour marker increase followed by whole-body imaging is highly effective for early detection. By consequence, patients might benefit from earlier detection and improved therapeutic options with a prolonged survival. PMID:25647014

  15. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  16. Aircraft IR/acoustic detection evaluation. Volume 2: Development of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.

    1992-01-01

    The design and performance of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft is described and specified. The acoustic detection system performance criteria will subsequently be used to determine target detection ranges for the subject contract. Although the defined system has never been built and demonstrated in the field, the design parameters were chosen on the basis of achievable technology and overall system practicality. Areas where additional information is needed to substantiate the design are identified.

  17. Method of detection, classification, and identification of objects employing acoustic signal analysis

    NASA Astrophysics Data System (ADS)

    Orzanowski, Tomasz; Madura, Henryk; Sosnowski, Tomasz; Chmielewski, Krzysztof

    2008-10-01

    The methods of detection and identification of objects based on acoustic signal analysis are used in many applications, e.g., alarm systems, military battlefield reconnaissance systems, intelligent ammunition, and others. The construction of technical objects such as vehicle or helicopter gives some possibilities to identify them on the basis of acoustic signals generated by those objects. In this paper a method of automatic detection, classification and identification of military vehicles and helicopters using a digital analysis of acoustic signals is presented. The method offers a relatively high probability of object detection in attendance of other disturbing acoustic signals. Moreover, it provides low probability of false classification and identification of object. The application of this method to acoustic sensor for the anti-helicopter mine is also presented.

  18. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    SciTech Connect

    Ziminsky, Willy Steve; Krull, Anthony Wayne; Healy, Timothy Andrew , Yilmaz, Ertan

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  19. Investigation of acoustic sensors to detect coconut rhinoceros beetle in Guam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The coconut rhinoceros beetle, Oryctes rhinoceros, was accidentally introduced into Guam last year and now threatens the Island’s forests and tourist industry. These large insects can be detected easily with acoustic sensors, and procedures are being developed to incorporate acoustic technology int...

  20. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  1. Acoustic detection, tracking, and characterization of three tornadoes.

    PubMed

    Frazier, William Garth; Talmadge, Carrick; Park, Joseph; Waxler, Roger; Assink, Jelle

    2014-04-01

    Acoustic data recorded at 1000 samples per second by two sensor arrays located at ranges of 1-113 km from three tornadoes that occurred on 24 May 2011 in Oklahoma are analyzed. Accurate bearings to the tornadoes have been obtained using beamforming methods applied to the data at infrasonic frequencies. Beamforming was not viable at audio frequencies, but the data demonstrate the ability to detect significant changes in the shape of the estimated power spectral density in the band encompassing 10 Hz to approximately 100 Hz at distances of practical value from the sensors. This suggests that arrays of more closely spaced sensors might provide better bearing accuracy at practically useful distances from a tornado. Additionally, a mathematical model, based on established relationships of aeroacoustic turbulence, is demonstrated to provide good agreement to the estimated power spectra produced by the tornadoes at different times and distances from the sensors. The results of this analysis indicate that, qualitatively, an inverse relationship appears to exist between the frequency of an observed peak of the power spectral density and the reported tornado intensity. PMID:25234974

  2. Acoustic damage detection in laser-cut CFRP composite materials

    NASA Astrophysics Data System (ADS)

    Nishino, Michiteru; Harada, Yoshihisa; Suzuki, Takayuki; Niino, Hiroyuki

    2012-03-01

    Carbon fiber reinforced plastics (CFRP) composite material, which is expected to reduce the weight of automotive, airplane and etc., was cut by laser irradiation with a pulsed-CO2 laser (TRUMPF TFL5000; P=800W, 20kHz, τ=8μs, λ=10.6μm, V=1m/min) and single-mode fiber lasers (IPG YLR-300-SM; P=300W, λ=1.07μm, V=1m/min)(IPG YLR- 2000-SM; P=2kW, λ=1.07μm, V=7m/min). To detect thermal damage at the laser cutting of CFRP materials consisting of thermoset resin matrix and PAN or PITCH-based carbon fiber, the cut quality was observed by X-ray CT. The effect of laser cutting process on the mechanical strength for CFRP tested at the tensile test. Acoustic emission (AE) monitoring, high-speed camera and scanning electron microscopy were used for the failure process analysis. AE signals and fractographic features characteristic of each laser-cut CFRP were identified.

  3. [INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids

    NASA Astrophysics Data System (ADS)

    Pezeril, Thomas

    2016-09-01

    The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.

  4. The role of gravity in ocean acoustics propagation and its implication to early tsunami detection

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago; Lin, Ying-Tsong; Kadri, Usama

    2016-04-01

    Oceanic low frequency sound generated by submarine earthquake travels much faster than tsunamis and leaves pressure signatures that can act as tsunami precursors. In this regard, it is anticipated that the correct measurement and analysis of low frequency acoustics would enhance current early tsunami detection systems. In this work we model the low frequency acoustics generated by the 2004 Indian Ocean earthquake using the "Method of Normal Modes" and the "Acoustics-Gravity Wave" theory. Ocean acoustic theories usually neglect the effect of gravity. However, we show for rigid and elastic bottom conditions how gravity influences the acoustic normal mode propagation speed. Practically, our results can help in the real time characterization of low frequency sources in the ocean. This will enhance the robustness of early tsunami detection systems.

  5. Detection of respiratory compromise by acoustic monitoring, capnography, and brain function monitoring during monitored anesthesia care.

    PubMed

    Tanaka, Pedro P; Tanaka, Maria; Drover, David R

    2014-12-01

    Episodes of apnea in sedated patients represent a risk of respiratory compromise. We hypothesized that acoustic monitoring would be equivalent to capnography for detection of respiratory pauses, with fewer false alarms. In addition, we hypothesized that the patient state index (PSI) would be correlated with the frequency of respiratory pauses and therefore could provide information about the risk of apnea during sedation. Patients undergoing sedation for surgical procedures were monitored for respiration rate using acoustic monitoring and capnography and for depth of sedation using the PSI. A clinician blinded to the acoustic and sedation monitor observed the capnograph and patient to assess sedation and episodes of apnea. Another clinician retrospectively reviewed the capnography and acoustic waveform and sound files to identify true positive and false positive respiratory pauses by each method (reference method). Sensitivity, specificity, and likelihood ratio for detection of respiratory pause was calculated for acoustic monitoring and capnography. The correlation of PSI with respiratory pause events was determined. For the 51 respiratory pauses validated by retrospective analysis, the sensitivity, specificity, and likelihood ratio positive for detection were 16, 96 %, and 3.5 for clinician observation; 88, 7 %, and 1.0 for capnography; and 55, 87 %, and 4.1 for acoustic monitoring. There was no correlation between PSI and respiratory pause events. Acoustic monitoring had the highest likelihood ratio positive for detection of respiratory pause events compared with capnography and clinician observation and, therefore, may provide the best method for respiration rate monitoring during these procedures. PMID:24420342

  6. Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones.

    PubMed

    Helble, Tyler A; D'Spain, Gerald L; Hildebrand, John A; Campbell, Gregory S; Campbell, Richard L; Heaney, Kevin D

    2013-09-01

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. A common mistake in the analysis of marine mammal acoustic data is formulating conclusions about these animals without first understanding how environmental properties such as bathymetry, sediment properties, water column sound speed, and ocean acoustic noise influence the detection and character of vocalizations in the acoustic data. The approach in this paper is to use Monte Carlo simulations with a full wave field acoustic propagation model to characterize the site specific probability of detection of six types of humpback whale calls at three passive acoustic monitoring locations off the California coast. Results show that the probability of detection can vary by factors greater than ten when comparing detections across locations, or comparing detections at the same location over time, due to environmental effects. Effects of uncertainties in the inputs to the propagation model are also quantified, and the model accuracy is assessed by comparing calling statistics amassed from 24,690 humpback units recorded in the month of October 2008. Under certain conditions, the probability of detection can be estimated with uncertainties sufficiently small to allow for accurate density estimates. PMID:23968053

  7. Acoustic emission signal classification for gearbox failure detection

    NASA Astrophysics Data System (ADS)

    Shishino, Jun

    The purpose of this research is to develop a methodology and technique to determine the optimal number of clusters in acoustic emission (AE) data obtained from a ground test stand of a rotating H-60 helicopter tail gearbox by using mathematical algorithms and visual inspection. Signs of fatigue crack growth were observed from the AE signals acquired from the result of the optimal number of clusters in a data set. Previous researches have determined the number of clusters by visually inspecting the AE plots from number of iterations. This research is focused on finding the optimal number of clusters in the data set by using mathematical algorithms then using visual verification to confirm it. The AE data were acquired from the ground test stand that simulates the tail end of an H-60 Seahawk at Naval Air Station in Patuxant River, Maryland. The data acquired were filtered to eliminate durations that were greater than 100,000 is and 0 energy hit data to investigate the failure mechanisms occurring on the output bevel gear. From the filtered data, different AE signal parameters were chosen to perform iterations to see which clustering algorithms and number of outputs is the best. The clustering algorithms utilized are the Kohonen Self-organizing Map (SOM), k-mean and Gaussian Mixture Model (GMM). From the clustering iterations, the three cluster criterion algorithms were performed to observe the suggested optimal number of cluster by the criterions. The three criterion algorithms utilized are the Davies-Bouldin, Silhouette and Tou Criterions. After the criterions had suggested the optimal number of cluster for each data set, visual verification by observing the AE plots and statistical analysis of each cluster were performed. By observing the AE plots and the statistical analysis, the optimal number of cluster in the data set and effective clustering algorithms were determined. Along with the optimal number of clusters and effective clustering algorithm, the mechanisms

  8. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  9. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    DOEpatents

    Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  10. Artillery/mortar type classification based on detected acoustic transients

    NASA Astrophysics Data System (ADS)

    Morcos, Amir; Grasing, David; Desai, Sachi

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  11. Beaked whale (Mesoplodon densirostris) passive acoustic detection in increasing ambient noise.

    PubMed

    Ward, Jessica; Jarvis, Susan; Moretti, David; Morrissey, Ronald; Dimarzio, Nancy; Johnson, Mark; Tyack, Peter; Thomas, Len; Marques, Tiago

    2011-02-01

    Passive acoustic detection is being increasingly used to monitor visually cryptic cetaceans such as Blainville's beaked whales (Mesoplodon densirostris) that may be especially sensitive to underwater sound. The efficacy of passive acoustic detection is traditionally characterized by the probability of detecting the animal's sound emissions as a function of signal-to-noise ratio. The probability of detection can be predicted using accepted, but not necessarily accurate, models of the underwater acoustic environment. Recent field studies combining far-field hydrophone arrays with on-animal acoustic recording tags have yielded the location and time of each sound emission from tagged animals, enabling in-situ measurements of the probability of detection. However, tagging studies can only take place in calm seas and so do not reflect the full range of ambient noise conditions under which passive acoustic detection may be used. Increased surface-generated noise from wind and wave interaction degrades the signal-to-noise ratio of animal sound receptions at a given distance leading to a reduction in probability of detection. This paper presents a case study simulating the effect of increasing ambient noise on detection of M. densirostris foraging clicks recorded from a tagged whale swimming in the vicinity of a deep-water, bottom-mounted hydrophone array. PMID:21361425

  12. In vivo detection of small tumour lesions by multi-pinhole SPECT applying a 99mTc-labelled nanobody targeting the Epidermal Growth Factor Receptor

    PubMed Central

    Krüwel, Thomas; Nevoltris, Damien; Bode, Julia; Dullin, Christian; Baty, Daniel; Chames, Patrick; Alves, Frauke

    2016-01-01

    The detection of tumours in an early phase of tumour development in combination with the knowledge of expression of tumour markers such as epidermal growth factor receptor (EGFR) is an important prerequisite for clinical decisions. In this study we applied the anti-EGFR nanobody 99mTc-D10 for visualizing small tumour lesions with volumes below 100 mm3 by targeting EGFR in orthotopic human mammary MDA-MB-468 and MDA-MB-231 and subcutaneous human epidermoid A431 carcinoma mouse models. Use of nanobody 99mTc-D10 of a size as small as 15.5 kDa enables detection of tumours by single photon emission computed tomography (SPECT) imaging already 45 min post intravenous administration with high tumour uptake (>3% ID/g) in small MDA-MB-468 and A431 tumours, with tumour volumes of 52.5 mm3 ± 21.2 and 26.6 mm3 ± 16.7, respectively. Fast blood clearance with a serum half-life of 4.9 min resulted in high in vivo contrast and ex vivo tumour to blood and tissue ratios. In contrast, no accumulation of 99mTc-D10 in MDA-MB-231 tumours characterized by a very low expression of EGFR was observed. Here we present specific and high contrast in vivo visualization of small human tumours overexpressing EGFR by preclinical multi-pinhole SPECT shortly after administration of anti-EGFR nanobody 99mTc-D10. PMID:26912069

  13. In vivo detection of small tumour lesions by multi-pinhole SPECT applying a (99m)Tc-labelled nanobody targeting the Epidermal Growth Factor Receptor.

    PubMed

    Krüwel, Thomas; Nevoltris, Damien; Bode, Julia; Dullin, Christian; Baty, Daniel; Chames, Patrick; Alves, Frauke

    2016-01-01

    The detection of tumours in an early phase of tumour development in combination with the knowledge of expression of tumour markers such as epidermal growth factor receptor (EGFR) is an important prerequisite for clinical decisions. In this study we applied the anti-EGFR nanobody (99m)Tc-D10 for visualizing small tumour lesions with volumes below 100 mm(3) by targeting EGFR in orthotopic human mammary MDA-MB-468 and MDA-MB-231 and subcutaneous human epidermoid A431 carcinoma mouse models. Use of nanobody (99m)Tc-D10 of a size as small as 15.5 kDa enables detection of tumours by single photon emission computed tomography (SPECT) imaging already 45 min post intravenous administration with high tumour uptake (>3% ID/g) in small MDA-MB-468 and A431 tumours, with tumour volumes of 52.5 mm(3) ± 21.2 and 26.6 mm(3) ± 16.7, respectively. Fast blood clearance with a serum half-life of 4.9 min resulted in high in vivo contrast and ex vivo tumour to blood and tissue ratios. In contrast, no accumulation of (99m)Tc-D10 in MDA-MB-231 tumours characterized by a very low expression of EGFR was observed. Here we present specific and high contrast in vivo visualization of small human tumours overexpressing EGFR by preclinical multi-pinhole SPECT shortly after administration of anti-EGFR nanobody (99m)Tc-D10. PMID:26912069

  14. Detection of Large Acoustic Energy Flux in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Franz, M.; Martínez Pillet, V.; Bonet, J. A.; Solanki, S. K.; del Toro Iniesta, J. C.; Schmidt, W.; Gandorfer, A.; Domingo, V.; Barthol, P.; Berkefeld, T.; Knölker, M.

    2010-11-01

    We study the energy flux carried by acoustic waves excited by convective motions at sub-photospheric levels. The analysis of high-resolution spectropolarimetric data taken with IMaX/SUNRISE provides a total energy flux of ~6400-7700 W m-2 at a height of ~250 km in the 5.2-10 mHz range, i.e., at least twice the largest energy flux found in previous works. Our estimate lies within a factor of two of the energy flux needed to balance radiative losses from the chromosphere according to the estimates of Anderson & Athay and revives interest in acoustic waves for transporting energy to the chromosphere. The acoustic flux is mainly found in the intergranular lanes but also in small rapidly evolving granules and at the bright borders, forming dark dots and lanes of splitting granules.

  15. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study

    PubMed Central

    Board, R E; Ellison, G; Orr, M C M; Kemsley, K R; McWalter, G; Blockley, L Y; Dearden, S P; Morris, C; Ranson, M; Cantarini, M V; Dive, C; Hughes, A

    2009-01-01

    Background: This study investigated the potential clinical utility of circulating free DNA (cfDNA) as a source of BRAF mutation detection in patients enrolled into a phase II study of AZD6244, a specific MEK1/2 inhibitor, in patients with advanced melanoma. Methods: BRAF mutations were detected using Amplification Refractory Mutation System allele-specific PCR. BRAF mutation status was assessed in serum-derived cfDNA from 126 patients enrolled into the study and from 94 matched tumour samples. Results: Of 94 tumour samples, 45 (47.9%) were found to be BRAF mutation positive (BRAF+). Serum-derived cfDNA was BRAF+ in 33 of 126 (26.2%) samples, including in five samples for which tumour data were unavailable. Of BRAF+ tumours, 25 of 45 (55.6%) were BRAF+ in cfDNA. In three cases in which the tumour was negative, cfDNA was BRAF+. Progression-free survival (PFS) of patients with BRAF+ tumour and cfDNA was not significantly different compared with tumour BRAF+ but cfDNA BRAF-negative patients, indicating that cfDNA BRAF detection is not associated with poorer prognosis on PFS in stage III/IV advanced melanoma. Conclusions: These data demonstrate the feasibility of BRAF mutation detection in cfDNA of patients with advanced melanoma. Future studies should aim to incorporate BRAF mutation testing in cfDNA to further validate this biomarker for patient selection. PMID:19861964

  16. Acoustic target detection and classification using neural networks

    NASA Technical Reports Server (NTRS)

    Robertson, James A.; Conlon, Mark

    1993-01-01

    A neural network approach to the classification of acoustic emissions of ground vehicles and helicopters is demonstrated. Data collected during the Joint Acoustic Propagation Experiment conducted in July of l991 at White Sands Missile Range, New Mexico was used to train a classifier to distinguish between the spectrums of a UH-1, M60, M1 and M114. An output node was also included that would recognize background (i.e. no target) data. Analysis revealed specific hidden nodes responding to the features input into the classifier. Initial results using the neural network were encouraging with high correct identification rates accompanied by high levels of confidence.

  17. Beam distortion detection and deflectometry measurements of gigahertz surface acoustic waves.

    PubMed

    Higuet, Julien; Valier-Brasier, Tony; Dehoux, Thomas; Audoin, Bertrand

    2011-11-01

    Gigahertz acoustic waves propagating on the surface of a metal halfspace are detected using different all-optical detection schemes, namely, deflectometry and beam distortion detection techniques. Both techniques are implemented by slightly modifying a conventional reflectometric setup. They are then based on the measurement of the reflectivity change but unlike reflectometric measurements, they give access to the sample surface displacement. A semi-analytical model, taking into account optical, thermal, and mechanical processes responsible for acoustic waves generation, allows analyzing the physical content of the detected waveforms. PMID:22129002

  18. Acoustic wave detection of chemical species electrokinetically transported within a capillary tube.

    PubMed

    Li, Paul C H; Prasad, Ronald

    2003-06-01

    For the first time, we report the acoustic wave detection of chemical species being transported in a capillary tube to a region where acoustic coupling occurs. The measured parameter was a change in phase, which was originally only attributed to a change in solution density as the analyte passed by the detection region. Accordingly, we report the detection of change in phase as various chemical species (e.g. Cy5 dye, Cy5-derivatized glycine and underivatized glycine) were introduced into and migrated along a capillary tube through electrokinetic processes. To improve detection sensitivity, we modified various experimental parameters, such as run buffer concentration, capillary wall thickness and transducer frequency. Although acoustic wave detection was feasible, the peak width and detection limit were inadequate as compared to conventional detection methods for HPLC or CE. Nevertheless, the effects of various physical and chemical relaxation processes on acoustic wave absorption were discussed, and this has shed some light on explaining some observations, which cannot be explained by density differences alone. Accordingly, the acoustic wave method is suggested to investigate these processes, as studied in ultrasonic relaxation spectroscopy, in a flow system. PMID:12866892

  19. A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas

    PubMed Central

    Farace, F; Massard, C; Vimond, N; Drusch, F; Jacques, N; Billiot, F; Laplanche, A; Chauchereau, A; Lacroix, L; Planchard, D; Le Moulec, S; André, F; Fizazi, K; Soria, J C; Vielh, P

    2011-01-01

    Background: Circulating tumour cells (CTCs) can provide information on patient prognosis and treatment efficacy. However, there is no universal method to detect CTC currently available. Here, we compared the performance of two CTC detection systems based on the expression of the EpCAM antigen (CellSearch assay) or on cell size (ISET assay). Methods: Circulating tumour cells were enumerated in 60 patients with metastatic carcinomas of breast, prostate and lung origins using CellSearch according to the manufacturer's protocol and ISET by studying cytomorphology and immunolabelling with anti-cytokeratin or lineage-specific antibodies. Results: Concordant results were obtained in 55% (11 out of 20) of the patients with breast cancer, in 60% (12 out of 20) of the patients with prostate cancer and in only 20% (4 out of 20) of lung cancer patients. Conclusion: Our results highlight important discrepancies between the numbers of CTC enumerated by both techniques. These differences depend mostly on the tumour type. These results suggest that technologies limiting CTC capture to EpCAM-positive cells, may present important limitations, especially in patients with metastatic lung carcinoma. PMID:21829190

  20. Forward model of thermally-induced acoustic signal specific to intralumenal detection geometry

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sovanlal; Bunting, Charles F.; Piao, Daqing

    2011-03-01

    This work investigates a forward model associated with intra-lumenal detection of acoustic signal originated from transient thermal-expansion of the tissue. The work is specific to intra-lumenal thermo-acoustic tomography (TAT) which detects the contrast of tissue dielectric properties with ultrasonic resolution, but it is also extendable to intralumenal photo-acoustic tomography (PAT) which detects the contrast of light absorption properties of tissue with ultrasound resolution. Exact closed-form frequency-domain or time-domain forward model of thermally-induced acoustic signal have been studied rigorously for planar geometry and two other geometries, including cylindrical and spherical geometries both of which is specific to external-imaging, i.e. breast or brain imaging using an externally-deployed applicator. This work extends the existing studies to the specific geometry of internal or intra-lumenal imaging, i.e., prostate imaging by an endo-rectally deployed applicator. In this intra-lumenal imaging geometry, both the source that excites the transient thermal-expansion of the tissue and the acoustic transducer that acquires the thermally-induced acoustic signal are assumed enclosed by the tissue and on the surface of a long cylindrical applicator. The Green's function of the frequency-domain thermo-acoustic equation in spherical coordinates is expanded to cylindrical coordinates associated with intra-lumenal geometry. Inverse Fourier transform is then applied to obtain a time-domain solution of the thermo-acoustic pressure wave for intra-lumenal geometry. Further employment of the boundary condition to the "convex" applicator-tissue interface would render an exact forward solution toward accurate reconstruction for intra-lumenal thermally-induced acoustic imaging.

  1. Acoustic detection of Melolonthine larvae in Australian sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decision support systems have been developed for risk analysis and control of root-feeding white grub pests in Queensland sugarcane, based partly on manual inspection of cane soil samples. Acoustic technology was considered as a potential alternative to this laborious procedure. Field surveys were...

  2. Feasibility of acoustic neutrino detection in ice: Design and performance of the South Pole Acoustic Test Setup (SPATS)

    NASA Astrophysics Data System (ADS)

    Böser, S.; Bohm, C.; Descamps, F.; Fischer, J.; Hallgren, A.; Heller, R.; Hundertmark, S.; Krieger, K.; Nahnhauer, R.; Pohl, M.; Price, P.B.; Sulanke, K.-H.; Tosi, D.; Vandenbroucke, J.

    The South Pole Acoustic Test Setup (SPATS) has been built to evaluate the acoustic characteristics of the Antarctic ice in the 10 to 100 kHz frequency range so that the feasibility and specific design of an acoustic neutrino detection array at South Pole can be evaluated. SPATS consists of three vertical strings that have been deployed in the upper 400 meter of the Antarctic ice cap in January 2007, using the upper part of IceCube holes. The strings form a triangular array with a longest baseline of 422 meters. Each of them has 7 stages with one transmitter and one sensor module. Both are equipped with piezoelectric ceramic elements in order to produce or detect sound. Analog signals are brought to the surface on electric cables where they are digitized by a PCbased data acquisition system. Connected through dedicated wire pairs in the IceCube surface cables, the data from all three strings is then collected on a MasterPC in a central facility, from which they are sent to the northern hemisphere via a satellite link or locally stored on tape. A full technical overview of the SPATS detector and its performance will be presented.

  3. Maritime acoustic detection of aircraft to increase flight safety and homeland security: an experimental study

    NASA Astrophysics Data System (ADS)

    Solomon, Latasha; Sim, Leng; Tenney, Stephen

    2008-04-01

    For several years ARL has studied acoustics to track vehicles, helicopters, Unmanned Aerial Vehicles (UAV) and others targets of interest. More recently these same acoustic sensors were placed on a "simulated" buoy in an attempt to detect and track aircraft over a large body of water. This report will investigate the advantages of using acoustic arrays to track air and water craft from a fixed floating platform as well as potential concerns associated with this technology. Continuous monitoring of aircraft overflight will increase situational awareness while persistent monitoring of commercial and military flight paths increases overall homeland security.

  4. NATO TG-53: acoustic detection of weapon firing joint field experiment

    NASA Astrophysics Data System (ADS)

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  5. A potential means of using acoustic emission for crack detection under cyclic-load conditions.

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1973-01-01

    A preliminary investigation was conducted to assess the feasibility of monitoring acoustic emission signals from fatigue cracks during cyclic bend tests. Plate specimens of 6Al-4V titanium, 2219-T87 aluminum, and 18-Ni maraging steel were tested with and without crack starter notches. It was found that significant acoustic emission signals could be detected in the frequency range from 100 to 400 kHz. Cracks emanating from starter notches were monitored by the ultrasonic pulse-echo technique and periodically measured by micro-optical examination. The investigation indicated that it was possible to extract meaningful acoustic emission signals in a cyclic bend machine environment.

  6. Experiment Observation on Acoustic Forward Scattering for Underwater Moving Object Detection

    NASA Astrophysics Data System (ADS)

    Lei, Bo; Ma, Yuan-Liang; Yang, Kun-De

    2011-03-01

    The problem of detecting an object in shallow water by observing changes in the acoustic field as the object passes between an acoustic source and receiver is addressed. A signal processing scheme based on forward scattering is proposed to detect the perturbed field in the presence of the moving object. The periodic LFM wideband signal is transmitted and a sudden change of field is acquired using a normalized median filter. The experimental results on the lake show that the proposed scheme is successful for the detection of a slowly moving object in the bistatic blind zone.

  7. A matched filter algorithm for acoustic signal detection

    NASA Astrophysics Data System (ADS)

    Jordan, D. W.

    1985-06-01

    This thesis is a presentation of several alternative acoustic filter designs which allow Space Shuttle payload experiment initiation prior to launch. This initiation is accomplished independently of any spacecraft services by means of a matched band-pass filter tuned to the acoustic signal characteristic of the Auxiliary Power Unit (APU) which is brought up to operating RPM's approximately five minutes prior to launch. These alternative designs include an analog filter built around operational amplifiers, a digital IIR design implemented with an INTEL 2920 Signal Processor, and an Adaptive FIR Weiner design. Working prototypes of the first two filters are developed and a discussion of the advantage of the 2920 digital design is presented.

  8. Application of guided acoustic waves to delamination detection

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.

    1992-01-01

    Guided plate waves are able to interact with structural flaws such as delaminations and cracks due to their propagation properties highly sensitive to the thickness change in materials. A technique which employs an acoustic damper to probe the results of this interaction and then to locate flaws in a relatively short period of time is developed. With its technical advantages, this technique shows its potential application to large area structural integrity assessment.

  9. Sequential Model-Based Detection in a Shallow Ocean Acoustic Environment

    SciTech Connect

    Candy, J V

    2002-03-26

    A model-based detection scheme is developed to passively monitor an ocean acoustic environment along with its associated variations. The technique employs an embedded model-based processor and a reference model in a sequential likelihood detection scheme. The monitor is therefore called a sequential reference detector. The underlying theory for the design is developed and discussed in detail.

  10. Detection of chemical or biological artillery attacks using a seismic/acoustic sensor: preliminary results

    NASA Astrophysics Data System (ADS)

    Baker, Vincent J.; Walter, Paul A.

    2004-04-01

    Chemical and biological weapons pose a serious threat to the United States armed forces. Early detection of a chemical or biological attack is critical to the safety of soldiers in the field. The Edgewood Chemical and Biological Center (ECBC) is conducting a study using currently fielded seismic and acoustic sensors to detect chemical and biological attacks. This paper presents some preliminary results.

  11. Program plan: acoustic leak detection/location development at GE-ARSD

    SciTech Connect

    1980-02-01

    Provide the development and subsequent specification, design and testing of an acoustic leak protection system which will detect a leak within a LMFBR steam generator. The goal for this system is to be at least as rapid and no more expensive than the chemical leak detection system under development for the Clinch River Breeder Reactor Plant (CRBRP).

  12. Damage Detection and Analysis in CFRPs Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis Laron

    Real time monitoring of damage is an important aspect of life management of critical structures. Acoustic emission (AE) techniques allow for measurement and assessment of damage in real time. Acoustic emission parameters such as signal amplitude and duration were monitored during the loading sequences. Criteria that can indicate the onset of critical damage to the structure were developed. Tracking the damage as it happens gives a better analysis of the failure evolution that will allow for a more accurate determination of structural life. The main challenge is distinguishing between legitimate damage signals and "false positives" which are unrelated to damage growth. Such false positives can be related to electrical noise, friction, or mechanical vibrations. This research focuses on monitoring signals of damage growth in carbon fiber reinforced polymers (CFRPs) and separating the relevant signals from the false ones. In this Dissertation, acoustic emission signals from CFRP specimens were experimentally recorded and analyzed. The objectives of this work are: (1) perform static and fatigue loading of CFRP composite specimens and measure the associated AE signals, (2) accurately determine the AE parameters (energy, frequency, duration, etc.) of signals generated during failure of such specimens, (3) use fiber optic sensors to monitor the strain distribution of the damage zone and relate these changes in strain measurements to AE data.

  13. Detection of human papillomavirus infection in squamous tumours of the conjunctiva and lacrimal sac by immunohistochemistry, in situ hybridisation, and polymerase chain reaction

    PubMed Central

    Nakamura, Y.; Mashima, Y.; Kameyama, K.; Mukai, M.; Oguchi, Y.

    1997-01-01

    BACKGROUND—Squamous tumours of the ocular surface, including the lacrimal pathway, range from benign lesions to invasive carcinomas. Some of these tumours are associated with human papillomavirus (HPV) infection, with the types of HPV differing among papillomas and dysplastic or malignant lesions.
METHODS—The relation between squamous tumours of the conjunctiva and lacrimal sac and HPV infection was investigated in 17 individuals with such tumours. Nine of the 17 tumours were benign, four were dysplastic lesions, and four were carcinomas.
RESULTS—Eight specimens showed positive immunohistochemical staining with antibodies to HPV; four of these eight were papillomas, three were dysplastic lesions, and one was a carcinoma. Koilocytosis was detected in seven of these eight tumours. Five of the eight specimens positive for immunohistochemical staining were also positive for HPV DNA by in situ hybridisation, and all eight were positive for HPV DNA by the polymerase chain reaction (PCR) method.
CONCLUSION—Approximately 50% of squamous tumours of the ocular surface and lacrimal sac were associated with HPV infection. This is the first report, to our knowledge, of the detection of HPV in the field of ophthalmology by a combination of immunohistochemistry, in situ hybridisation, and PCR.

 PMID:9215061

  14. A Summary Comparison of Active Acoustic Detections and Visual Observations of Marine Mammals in the Canadian Beaufort Sea.

    PubMed

    Pyć, Cynthia D; Geoffroy, Maxime; Knudsen, Frank R

    2016-01-01

    Fisheries sonar was used to determine the applicability of active acoustic monitoring (AAM) for marine mammal detection in the Canadian Beaufort Sea. During 170 h of simultaneous observation by marine mammal observers and active acoustic observation, 119 Balaena mysticetus (bowheads) and 4 Delphinapterus leucas (belugas) were visually sighted, while 59 acoustic signals of bowheads were detected by AAM operators. Observations and detection of seals were also recorded. Comparative results indicate that commercially available active acoustic systems can detect seals at distances up to 500 m and large baleen whales at distances up to 2 km. PMID:26611045

  15. Application of acoustic feedback to target detection in a waveguide: experimental demonstration at the ultrasonic scale.

    PubMed

    Roux, Philippe; Marandet, Christian; La Rizza, Patrick; Kuperman, W A

    2011-07-01

    People are familiar with the acoustic feedback phenomenon, which results in a loud sound that is heard when a musician plays an electric instrument directly into a speaker. Acoustic feedback occurs when a source and a receiver are connected both acoustically through the propagation medium and electrically through an amplifier, such that the amplified received signal is continuously re-emitted by the source. The acoustic feedback can be initiated from a continuous sine wave. When the emitter and the receiver are in phase, resonance is obtained, which appears to be highly sensitive to any fluctuation of the propagation medium. Another procedure consists in initiating the acoustic feedback from a continuous loop of ambient noise. It then generates an unstable self-sustained feedback oscillator (SFO) that is tested here as a method for monitoring temperature fluctuations of a shallow-water oceanic environment. The goal of the present study is to reproduce and study the SFO at the laboratory scale in an ultrasonic waveguide. The experimental results demonstrate the potential applications of the SFO for the detection of a target in the framework of the acoustic-barrier problem in shallow-water acoustics. PMID:21786873

  16. An active acoustic tripwire for simultaneous detection and localization of multiple underwater intruders.

    PubMed

    Folegot, Thomas; Martinelli, Giovanna; Guerrini, Piero; Stevenson, J Mark

    2008-11-01

    An algorithm allowing simultaneous detection and localization of multiple submerged targets crossing an acoustic tripwire based on forward scattering is described and then evaluated based upon data collected at sea. This paper quantifies the agreement between the theoretical performance and the results obtained from processing data gathered at sea for crossings at several depths and ranges. Targets crossing the acoustic field produce shadows on each side of the barrier, for specific sensors and for specific acoustic paths. In post-processing, a model is invoked to associate expected paths with the observed shadows. This process allows triangulation of the target's position inside the acoustic field. Precise localization is achieved by taking advantage of the multipath propagation structure of the received signal, together with the diversity of the source and receiver locations. Environmental robustness is demonstrated using simulations and can be explained by the use of an array of sources spatially distributed through the water column. PMID:19045773

  17. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  18. Tumour procurement, DNA extraction, coverage analysis and optimisation of mutation-detection algorithms for human melanoma genomes.

    PubMed

    Wilmott, James S; Field, Matthew A; Johansson, Peter A; Kakavand, Hojabr; Shang, Ping; De Paoli-Iseppi, Ricardo; Vilain, Ricardo E; Pupo, Gulietta M; Tembe, Varsha; Jakrot, Valerie; Shang, Catherine A; Cebon, Jonathan; Shackleton, Mark; Fitzgerald, Anna; Thompson, John F; Hayward, Nicholas K; Mann, Graham J; Scolyer, Richard A

    2015-12-01

    Whole genome sequencing (WGS) of cancer patients' tumours offers the most comprehensive method of identifying both novel and known clinically-actionable genomic targets. However, the practicalities of performing WGS on clinical samples are poorly defined.This study was designed to test sample preparation, sequencing specifications and bioinformatic algorithms for their effect on accuracy and cost-efficiency in a large WGS analysis of human melanoma samples.WGS was performed on melanoma cell lines (n = 15) and melanoma fresh frozen tumours (n = 222). The appropriate level of coverage and the optimal mutation detection algorithm for the project pipeline were determined.An incremental increase in sequencing coverage from 36X to 132X in melanoma tissue samples and 30X to 103X for cell lines only resulted in a small increase (1-2%) in the number of mutations detected, and the quality scores of the additional mutations indicated a low probability that the mutations were real. The results suggest that 60X coverage for melanoma tissue and 40X for melanoma cell lines empower the detection of 98-99% of informative single nucleotide variants (SNVs), a sensitivity level at which clinical decision making or landscape research projects can be carried out with a high degree of confidence in the results. Likewise the bioinformatic mutation analysis methodology strongly influenced the number and quality of SNVs detected. Detecting mutations in the blood genomes separate to the tumour genomes generated 41% more SNVs than if the blood and melanoma tissue genomes were analysed simultaneously. Therefore, simultaneous analysis should be employed on matched melanoma tissue and blood genomes to reduce errors in mutation detection.This study provided valuable insights into the accuracy of SNV with WGS at various coverage levels in human clinical cancer specimens. Additionally, we investigated the accuracy of the publicly available mutation detection algorithms to detect cancer

  19. High incidence of SV40-like sequences detection in tumour and peripheral blood cells of Japanese osteosarcoma patients

    PubMed Central

    Yamamoto, H; Nakayama, T; Murakami, H; Hosaka, T; Nakamata, T; Tsuboyama, T; Oka, M; Nakamura, T; Toguchida, J

    2000-01-01

    Recent studies have revealed the evidence for the significance of SV40 genome in human malignancies. In this paper, the presence of SV40-like sequences was investigated in 54 Japanese osteosarcomas in which mutations of the retinoblastoma (Rb), p53, MDM2, and CDK4 genes had been already analysed. Using polymerase chain reaction and Southern hybridization, SV40-like sequences were detected in 25 cases (46.3%). In most cases, only a part of SV40 genome was detected, and the regulatory region containing enhancer sequences was most frequently found (21/54, 38.9%). There was no apparent relationship between the presence of SV40-like sequences and tumour suppressor genes mutations in each tumour. The SV40-like sequences were also detected in peripheral blood cells of substantial proportion of the patients (43.3%), whereas the incidence was much lower (4.7%) in normal healthy controls. This difference is statistically highly significant (P< 0.0001), suggesting that the presence of SV40-like sequences, even if only a part, may play some roles to predispose individuals to osteosarcoma. © 2000 Cancer Research Campaign PMID:10817503

  20. Acoustic and optical multi-sensor threat detection system for border patrol against aerial threats

    NASA Astrophysics Data System (ADS)

    Alsawadi, Motasem S.; Ismail, Ahmad; Al-Azem, Badeea F.; El-Desouki, Munir M.; Alghamdi, Sultan; Alghamdi, Mansour

    2012-10-01

    Saudi Arabia has borders covering over 4,300 km that are shared with seven countries. Such large borders pose many challenges for security and patrol. Thermal imagers are considered the most reliable means of threat detection, however, they are quite costly, which can prevent using them over large areas. This work discusses a multi-sensor acoustic and optical implementation for threat detection as an effort to reduce system cost. The acoustic sensor provides position and direction recognition by using a four microphone setup. The data analysis of field tests will be discussed in this work.

  1. Distributed fiber optic acoustic sensor for leak detection

    NASA Astrophysics Data System (ADS)

    Kurmer, John P.; Kingsley, Stuart A.; Laudo, John S.; Krak, Stephen J.

    1992-01-01

    Leaks in dielectric fluid-filled, high-voltage distribution lines can cause significant problems for the electric power industry. Often, these lines run over long distance and are difficult to access. Operators may know that a leak exists because additional fluid is required to maintain pipe pressure; however, locating the leak is often a significant challenge. A system that could monitor and locate leaks within the electrical distribution pipe lines would be highly desirable. We present a distributed fiber optic acoustic sensor technology that could be used to measure and locate leaks within fluid-filled, high-voltage distribution lines. In this application, the optical fiber sensor is placed inside the fluid-filled pipe and can potentially locate leaks to within several meters. The fiber optic acoustic sensor is designed such that it can listen to the sound produced by the fluid as it escapes from the pipe into the surrounding soil. The fluid inside the pipe is typically maintained at a pressure of 200 psi and escapes at high velocity when a leak occurs. The distributed fiber optic sensing system being developed is based upon the Sagnac interferometer and is unusual in that range information is not obtained by the more common method of optical time domain reflectometry or optical frequency domain reflectometry, but by essentially a CW technique which works in the frequency domain. It is also unusual in that the signal processing technique actually looks for the absence of a signal.

  2. A Generalized Planetary Acoustic, Ray-tracing Model with Example Application to Bolide Detection on Mars

    NASA Astrophysics Data System (ADS)

    Williams, J.; McEwan, I. J.

    2002-12-01

    Planetary acoustics has been relatively unexplored on planets other than Earth yet has the potential to provide equally convenient remote measurement techniques and to yield equally rich scientific data sets. We present the first generalized planetary acoustic, ray-tracing model which takes into account environmental conditions and viscous, thermal, and molecular relaxation of multi-gas atmospheres. We show a specific Martian application to making use of terrestrial techniques for bolide detection and influx estimates, and introduce concepts for identifying and tracking general sound sources such as dust devils. Meteors penetrating deep into the terrestrial atmosphere are known to generate large well-characterized acoustics signals. Similar explosive events provide acoustic sources in the Martian atmosphere that should be detectable by sensors on the surface. We present an end-to-end comparison between Earth and Mars of a meteor event from the bolide's entry, through detonation and acoustic transmission of the shockwave, to what is heard by ground detectors (this includes intensity, frequency response, and region of detectability). With the use of an array of detectors detonation events can be spatially localized. We place constraints on the practicality of an instrument and compare with equivalent seismic meteor detection. This analysis leads to a measurement method for estimating bolide influx rates in the Martian atmosphere. This rate is currently highly uncertain and significantly affects results of modeled absolute crater retention ages. Pending work includes the application of similar acoustic localization techniques to develop an instruments concept for the detection and tracking of dust devils such as those observed in both Pathfinder and Mars Global Surveyor images. Further, with minimal reconfiguration, our model and the above analysis can also be applied to Venus and Titan.

  3. Effect of passive acoustic sampling methodology on detecting bats after declines from white nose syndrome

    USGS Publications Warehouse

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    Concomitant with the emergence and spread of white-nose syndrome (WNS) and precipitous decline of many bat species in North America, natural resource managers need modified and/or new techniques for bat inventory and monitoring that provide robust occupancy estimates. We used Anabat acoustic detectors to determine the most efficient passive acoustic sampling design for optimizing detection probabilities of multiple bat species in a WNS-impacted environment in New York, USA. Our sampling protocol included: six acoustic stations deployed for the entire duration of monitoring as well as a 4 x 4 grid and five transects of 5-10 acoustic units that were deployed for 6-8 night sample durations surveyed during the summers of 2011-2012. We used Program PRESENCE to determine detection probability and site occupancy estimates. Overall, the grid produced the highest detection probabilities for most species because it contained the most detectors and intercepted the greatest spatial area. However, big brown bats (Eptesicus fuscus) and species not impacted by WNS were detected easily regardless of sampling array. Endangered Indiana (Myotis sodalis) and little brown (Myotis lucifugus) and tri-colored bats (Perimyotis subflavus) showed declines in detection probabilities over our study, potentially indicative of continued WNS-associated declines. Identification of species presence through efficient methodologies is vital for future conservation efforts as bat populations decline further due to WNS and other factors.   

  4. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  5. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  6. Robotic vehicle uses acoustic array for detection and localization in urban environments

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2001-09-01

    Sophisticated robotic platforms with diverse sensor suites are quickly replacing the eyes and ears of soldiers on the complex battlefield. The Army Research Laboratory (ARL) in Adelphi, Maryland has developed a robot-based acoustic detection system that will detect an impulsive noise event, such as a sniper's weapon firing or door slam, and activate a pan-tilt to orient a visible and infrared camera toward the detected sound. Once the cameras are cued to the target, onboard image processing can then track the target and/or transmit the imagery to a remote operator for navigation, situational awareness, and target detection. Such a vehicle can provide reconnaissance, surveillance, and target acquisition for soldiers, law enforcement, and rescue personnel, and remove these people from hazardous environments. ARL's primary robotic platforms contain 16-in. diameter, eight-element acoustic arrays. Additionally, a 9- in. array is being developed in support of DARPA's Tactical Mobile Robot program. The robots have been tested in both urban and open terrain. The current acoustic processing algorithm has been optimized to detect the muzzle blast from a sniper's weapon, and reject many interfering noise sources such as wind gusts, generators, and self-noise. However, other detection algorithms for speech and vehicle detection/tracking are being developed for implementation on this and smaller robotic platforms. The collaboration between two robots, both with known positions and orientations, can provide useful triangulation information for more precise localization of the acoustic events. These robots can be mobile sensor nodes in a larger, more expansive, sensor network that may include stationary ground sensors, UAVs, and other command and control assets. This report will document the performance of the robot's acoustic localization, describe the algorithm, and outline future work.

  7. Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering

    SciTech Connect

    Gusev, Vitalyi E.

    2014-08-14

    In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range.

  8. Surface acoustic wave generation and detection using graphene interdigitated transducers on lithium niobate

    SciTech Connect

    Mayorov, A. S.; Hunter, N.; Muchenje, W.; Wood, C. D.; Rosamond, M.; Linfield, E. H.; Davies, A. G.; Cunningham, J. E.

    2014-02-24

    We demonstrate the feasibility of using graphene as a conductive electrode for the generation and detection of surface acoustic waves at 100 s of MHz on a lithium niobate substrate. The graphene interdigitated transducers (IDTs) show sensitivity to doping and temperature, and the characteristics of the IDTs are discussed in the context of a lossy transmission line model.

  9. A novel algorithm for buried target detection evaluated on a collection of seismo-acoustic data

    NASA Astrophysics Data System (ADS)

    Malof, Jordan M.; Knox, Mary; Torrione, Peter A.; Collins, Leslie M.; Morton, Kenneth D.

    2014-06-01

    A recently validated technique for buried target detection relies on applying an acoustic stimulus signal to a patch of earth and then measuring its seismic (vibrational) response using a laser Doppler vibrometer (LDV). Target detection in this modality often relies on estimating the acoustic-to-seismic coupling ratio (A/S ratio) of the ground, which is altered by the presence of a buried target. For this study, LDV measurements were collected over patches of earth under varying environmental conditions using a known stimulus. These observations are then used to estimate the performance of several methods to discriminate between target and non-target patches. The first part of the study compares the performance of human observers against a set of established seismo-acoustic features from the literature. The simple features are based on previous studies where statistics on the Fourier transform of the acoustic-to-seismic transfer function estimate are measured. The human observers generally offered much better detection performance than any established feature. One weakness of the Fourier features is their inability to utilize local spatiotemporal target cues. To address these weaknesses, a novel automatic detection algorithm is proposed which uses a multi-scale blob detector to identify suspicious regions in time and space. These suspicious spatiotemporal locations are then clustered and assigned a decision statistic based on the confidence and number of cluster members. This method is shown to improve performance over the established Fourier statistics, resulting in performance much closer to the human observers.

  10. Adaptations of Acoustic Technology for Detection of Hidden Insect Infestations in Trees and Their Root Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects that attack the trunks and roots of trees are difficult to detect and control because the tree structures hide and protect them. The vibrations caused by insects moving and feeding within the root systems can travel over long distances; consequently, acoustic technology is a likely candidat...

  11. Real-time RT-PCR systems for CTC detection from blood samples of breast cancer and gynaecological tumour patients (Review).

    PubMed

    Andergassen, Ulrich; Kölbl, Alexandra C; Mahner, Sven; Jeschke, Udo

    2016-04-01

    Cells, which detach from a primary epithelial tumour and migrate through lymphatic vessels and blood stream are called 'circulating tumour cells'. These cells are considered to be the main root of remote metastasis and are correlated to a worse prognosis concerning progression-free and overall survival of the patients. Therefore, the detection of the minimal residual disease is of great importance regarding therapeutic decisions. Many different detection strategies are already available, but only one method, the CellSearch® system, reached FDA approval. The present review focusses on the detection of circulating tumour cells by means of real-time PCR, a highly sensitive method based on differences in gene expression between normal and malignant cells. Strategies for an enrichment of tumour cells are mentioned, as well as a large panel of potential marker genes. Drawbacks and advantages of the technique are elucidated, whereas, the greatest advantage might be, that by selection of appropriate marker genes, also tumour cells, which have already undergone epithelial to mesenchymal transition can be detected. Finally, the application of real-time PCR in different gynaecological malignancies is described, with breast cancer being the most studied cancer entity. PMID:26848098

  12. Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles

    PubMed Central

    2014-01-01

    Background Immuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed. The use of ultrasound in conjunction with targeted ultrasound contrast agents (UCAs) may provide detection of early stage biofilm matrix formation and facilitate optimal treatment. Results Ligand-targeted UCAs were investigated as a novel method for pre-clinical non-invasive molecular imaging of early and late stage biofilms. These agents were used to target, image and detect Staphylococcus aureus biofilm matrix in vitro. Binding efficacy was assessed on biofilm matrices with respect to their increasing biomass ranging from 3.126 × 103 ± 427 UCAs per mm2 of biofilm surface area within 12 h to 21.985 × 103 ± 855 per mm2 of biofilm matrix surface area at 96 h. High-frequency acoustic microscopy was used to ultrasonically detect targeted UCAs bound to a biofilm matrix and to assess biofilm matrix mechanoelastic physical properties. Acoustic impedance data demonstrated that biofilm matrices exhibit impedance values (1.9 MRayl) close to human tissue (1.35 - 1.85 MRayl for soft tissues). Moreover, the acoustic signature of mature biofilm matrices were evaluated in terms of integrated backscatter (0.0278 - 0.0848 mm-1 × sr-1) and acoustic attenuation (3.9 Np/mm for bound UCAs; 6.58 Np/mm for biofilm alone). Conclusions Early diagnosis of biofilm matrix formation is a challenge in treating cancer patients with infection-associated biofilms. We report for the first time a combined optical and acoustic evaluation of infectious biofilm matrices. We demonstrate that acoustic impedance of biofilms is similar to the impedance of human tissues, making in vivo imaging and detection of biofilm

  13. Comparison of active millimeter-wave and acoustic imaging for weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Collins, H. D.; Gribble, R. Parks; McMakin, Douglas L.

    1997-02-01

    Millimeter-wave holographic imaging techniques have recently been developed for personnel surveillance applications at airports and other high-security checkpoints. Millimeter- wave imaging is useful for this application since millimeter-waves easily pass through common clothing materials yet are reflected from the human body and any items concealed by clothing. This allows a high-resolution imaging system to form an image revealing items concealed on the person imaged. A prototype imaging system developed at Pacific Northwest National Laboratory uses a scanned linear array of millimeter-wave antennas to capture wideband millimeter-wave data in approximately one second. This data is then mathematically reconstructed to form a high- resolution 3D image of the person being scanned. Millimeter- wave imaging has been demonstrated to be effective for detecting concealed weapons on personnel. Another imaging technique which could be applied to the weapon detection problem is acoustic imaging. Like millimeter-waves, ultrasonic acoustic waves can also penetrate clothing, and can be used to form relatively high-resolution images which can reveal concealed weapons on personnel. Acoustic imaging results have been obtained using wideband holographic imaging techniques nearly identical to the imaging techniques used for millimeter-wave imaging. Preliminary imaging results at 50 kHz indicate that acoustic imaging can be used to penetrate some types of common clothing materials. Hard clothing materials, such as leather on vinyl, are essentially opaque to acoustic waves at 50 kHz. In this paper, millimeter-wave and acoustic wave imaging techniques are compared for their effectiveness and suitability in weapon detection imaging systems. Experimental results from both imaging modalities are shown.

  14. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection

    PubMed Central

    Dimopoulou, Anastasia; Glynos, Paraskevas; Gizeli, Electra

    2015-01-01

    A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics. PMID:26177507

  15. Passive acoustic monitoring to detect spawning in large-bodied catostomids

    USGS Publications Warehouse

    Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.

    2014-01-01

    Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.

  16. Leak detection by acoustic emissions monitoring: An experimental investigation of the acoustic properties of leaks and the attenuation characteristics of soil

    NASA Astrophysics Data System (ADS)

    Kilpatrick, James F.; March, Patrick A.

    1994-05-01

    This study experimentally explored the conditions, equipment, and methodology necessary for the acoustic detection of small leaks of jet fuel (JP4) from underground storage tank (UST) systems. The study indicates that acoustic leak detection of very small leaks is feasible. In general, significant JP4 fuel leaks which occur across a 5 PSI (pounds per square inch) or greater pressure drop are acoustically active and can be detected with proper sensors and proper placement of sensors. The primary source of leak noise is turbulent flow through the leak orifice. At lower pressures, the leak flow becomes laminar, and the leak becomes virtually silent. With direct transducer contact on the pipe or tank wall and sufficient system pressure, leaks smaller than 0.1 GPH (gallons per hour) can be detected. Larger leaks can be detected through short distances in soil. However, sand, which is the most commonly used fill material for UST systems, provides significant acoustic attenuation. Consequently, waveguides must be used when monitoring distances exceeding about 1 foot of travel through sand. Sand acts to reduce background noise levels, providing an ideal environment for acoustic leak detection using sensors mounted directly on the pipe or tank wall.

  17. Theoretical detection threshold of the proton-acoustic range verification technique

    SciTech Connect

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei; Xiang, Liangzhong

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic

  18. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, S.; Adams, D. E.; Sohn, H.

    2013-01-01

    As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.

  19. A potential means of using acoustic emission for crack detection under cyclic-load conditions

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1973-01-01

    A preliminary investigation was conducted to assess the feasibility of monitoring acoustic emission signals from fatigue cracks during cyclic bend tests. Plate specimens of 6A1-4V titanium, 2219-T87 aluminum, and 18-Ni maraging steel were tested with and without crack starter notches. It was found that significant acoustic emission signals could be detected in the frequency range from 100 kHz to 400 kHz. Cracks emanating from starter notches were monitored by the ultrasonic pulse-echo technique and periodically measured by micro-optical examination. Methods used to reduce the effects of extraneous noises (i.e., machine noises, fretting) are described. A frequency spectrum analyzer was used to characterize the emissions and to evaluate methods used to acquire the signals (i.e., transducer location, bandwidth selection). The investigation indicated that it was possible to extract meaningful acoustic emission signals in a cyclic bend machine environment.

  20. Dual-frequency acoustic droplet vaporization detection for medical imaging.

    PubMed

    Arena, Christopher B; Novell, Anthony; Sheeran, Paul S; Puett, Connor; Moyer, Linsey C; Dayton, Paul A

    2015-09-01

    Liquid-filled perfluorocarbon droplets emit a unique acoustic signature when vaporized into gas-filled microbubbles using ultrasound. Here, we conducted a pilot study in a tissue-mimicking flow phantom to explore the spatial aspects of droplet vaporization and investigate the effects of applied pressure and droplet concentration on image contrast and axial and lateral resolution. Control microbubble contrast agents were used for comparison. A confocal dual-frequency transducer was used to transmit at 8 MHz and passively receive at 1 MHz. Droplet signals were of significantly higher energy than microbubble signals. This resulted in improved signal separation and high contrast-to-tissue ratios (CTR). Specifically, with a peak negative pressure (PNP) of 450 kPa applied at the focus, the CTR of B-mode images was 18.3 dB for droplets and -0.4 for microbubbles. The lateral resolution was dictated by the size of the droplet activation area, with lower pressures resulting in smaller activation areas and improved lateral resolution (0.67 mm at 450 kPa). The axial resolution in droplet images was dictated by the size of the initial droplet and was independent of the properties of the transmit pulse (3.86 mm at 450 kPa). In post-processing, time-domain averaging (TDA) improved droplet and microbubble signal separation at high pressures (640 kPa and 700 kPa). Taken together, these results indicate that it is possible to generate high-sensitivity, high-contrast images of vaporization events. In the future, this has the potential to be applied in combination with droplet-mediated therapy to track treatment outcomes or as a standalone diagnostic system to monitor the physical properties of the surrounding environment. PMID:26415125

  1. Tumour xenograft detection through quantitative analysis of the metabolic profile of urine in mice

    NASA Astrophysics Data System (ADS)

    Moroz, Jennifer; Turner, Joan; Slupsky, Carolyn; Fallone, Gino; Syme, Alasdair

    2011-02-01

    The metabolic content of urine from NIH III nude mice (n = 22) was analysed before and after inoculation with human glioblastoma multiforme (GBM) cancer cells. An age- and gender-matched control population (n = 14) was also studied to identify non-tumour-related changes. Urine samples were collected daily for 6 weeks, beginning 1 week before cell injection. Metabolite concentrations were obtained via targeted profiling with Chenomx Suite 5.1, based on nuclear magnetic resonance (NMR) spectra acquired on an Oxford 800 MHz cold probe NMR spectrometer. The Wilcoxon rank sum test was used to evaluate the significance of the change in metabolite concentration between the two time points. Both the metabolite concentrations and the ratios of pairs of metabolites were studied. The complicated inter-relationships between metabolites were assessed through partial least-squares discriminant analysis (PLS-DA). Receiver operating characteristic (ROC) curves were generated for all variables and the area under the curve (AUC) calculated. The data indicate that the number of statistically significant changes in metabolite concentrations was more pronounced in the tumour-bearing population than in the control animals. This was also true of the ratios of pairs of metabolites. ROC analysis suggests that the ratios were better able to differentiate between the pre- and post-injection samples compared to the metabolite concentrations. PLS-DA models produced good separation between the populations and had the best AUC results (all models exceeded 0.937). These results demonstrate that metabolomics may be used as a screening tool for GBM cells grown in xenograft models in mice.

  2. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  3. Background noise cancellation for improved acoustic detection of manatee vocalizations.

    PubMed

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O

    2005-06-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. PMID:16018460

  4. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. Practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrowband signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat.

  5. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-06-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. .

  6. Research on power-law acoustic transient signal detection based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Han, Jian-hui; Yang, Ri-jie; Wang, Wei

    2007-11-01

    Aiming at the characteristics of acoustic transient signal emitted from antisubmarine weapon which is being dropped into water (torpedo, aerial sonobuoy and rocket assisted depth charge etc.), such as short duration, low SNR, abruptness and instability, based on traditional power-law detector, a new method to detect acoustic transient signal is proposed. Firstly wavelet transform is used to de-noise signal, removes random spectrum components and improves SNR. Then Power- Law detector is adopted to detect transient signal. The simulation results show the method can effectively extract envelop characteristic of transient signal on the condition of low SNR. The performance of WT-Power-Law markedly outgoes that of traditional Power-Law detection method.

  7. Acoustic emission detection of microcrack formation and development in cementitious wasteforms with immobilised Al.

    PubMed

    Spasova, L M; Ojovan, M I

    2006-12-01

    An acoustic emission (AE) technique was applied for early detection, characterisation and time progress description of cracking phenomenon caused by the corrosion of Al encapsulated in cement matrix. The study was conducted on an ordinary Portland cement (OPC) system encapsulating high purity Al bar. Acoustic signals were generated and released during immersing of the sample in deionised water. A computer controlled PCI-2 based AE system processed the signals detected by piezoelectric transducers. A subsequent comparative study of the AE data collected with those obtained from a reference OPC sample has been applied. Recorded AE activity confirmed that the process of initiation and development of Al corrosion causes significant mechanical stresses within the cement matrix. Our analysis demonstrated possibility to differentiate AE signals based on their characteristics, and potentially correlate detected AE with the fracture processes in the cement system encapsulating Al. PMID:16828968

  8. Estimation of the detection range of a hydroacoustic system based on the acoustic power flux receiver

    NASA Astrophysics Data System (ADS)

    Gordienko, V. A.; Krasnopistsev, N. V.; Nasedkin, A. V.; Nekrasov, V. N.

    2007-11-01

    Approaches to estimating the detection range of systems based on vector receivers are considered. The approaches rely on a detailed analysis of the process of signal’s acoustic power flux formation in the presence of ambient sea noise and uncover the signal information parameters at the receiver output that provide the required statistically confident range of weak signal detection under these conditions. Based on the sonar equations and the known fundamental relationships between the outputs of a pressure receiver and a vector receiver for signal and noise, estimates of the maximum possible gain in the detection range of an acoustic power flux receiver are considered as a function of anisotropy of the ambient noise field in the area.

  9. Acoustic detection of DNA conformation in genetic assays combined with PCR.

    PubMed

    Papadakis, G; Tsortos, A; Kordas, A; Tiniakou, I; Morou, E; Vontas, J; Kardassis, D; Gizeli, E

    2013-01-01

    Application of PCR to multiplexing assays is not trivial; it requires multiple fluorescent labels for amplicon detection and sophisticated software for data interpretation. Alternative PCR-free methods exploiting new concepts in nanotechnology exhibit high sensitivities but require multiple labeling and/or amplification steps. Here, we propose to simplify the problem of simultaneous analysis of multiple targets in genetic assays by detecting directly the conformation, rather than mass, of target amplicons produced in the same PCR reaction. The new methodology exploits acoustic wave devices which are shown to be able to characterize in a fully quantitative manner multiple double stranded DNAs of various lengths. The generic nature of the combined acoustic/PCR platform is shown using real samples and, specifically, during the detection of SNP genotyping in Anopheles gambiae and gene expression quantification in treated mice. The method possesses significant advantages to TaqMan assay and real-time PCR regarding multiplexing capability, speed, simplicity and cost. PMID:23778520

  10. Acoustic detection of DNA conformation in genetic assays combined with PCR

    PubMed Central

    Papadakis, G.; Tsortos, A.; Kordas, A.; Tiniakou, I.; Morou, E.; Vontas, J.; Kardassis, D.; Gizeli, E.

    2013-01-01

    Application of PCR to multiplexing assays is not trivial; it requires multiple fluorescent labels for amplicon detection and sophisticated software for data interpretation. Alternative PCR-free methods exploiting new concepts in nanotechnology exhibit high sensitivities but require multiple labeling and/or amplification steps. Here, we propose to simplify the problem of simultaneous analysis of multiple targets in genetic assays by detecting directly the conformation, rather than mass, of target amplicons produced in the same PCR reaction. The new methodology exploits acoustic wave devices which are shown to be able to characterize in a fully quantitative manner multiple double stranded DNAs of various lengths. The generic nature of the combined acoustic/PCR platform is shown using real samples and, specifically, during the detection of SNP genotyping in Anopheles gambiae and gene expression quantification in treated mice. The method possesses significant advantages to TaqMan assay and real-time PCR regarding multiplexing capability, speed, simplicity and cost. PMID:23778520

  11. High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq

    PubMed Central

    Kondrashova, Olga; Love, Clare J.; Lunke, Sebastian; Hsu, Arthur L.; Waring, Paul M.; Taylor, Graham R.

    2015-01-01

    Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from a size-resolved format, to a sequence-resolved format we developed a scalable, high-throughput, quantitative assay. MLPA-seq is capable of detecting deletions, duplications, and amplifications in as little as 5ng of genomic DNA, including from formalin-fixed paraffin-embedded (FFPE) tumour samples. We show that this method can detect BRCA1, BRCA2, ERBB2 and CCNE1 copy number changes in DNA extracted from snap-frozen and FFPE tumour tissue, with 100% sensitivity and >99.5% specificity. PMID:26569395

  12. High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq.

    PubMed

    Kondrashova, Olga; Love, Clare J; Lunke, Sebastian; Hsu, Arthur L; Waring, Paul M; Taylor, Graham R

    2015-01-01

    Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from a size-resolved format, to a sequence-resolved format we developed a scalable, high-throughput, quantitative assay. MLPA-seq is capable of detecting deletions, duplications, and amplifications in as little as 5ng of genomic DNA, including from formalin-fixed paraffin-embedded (FFPE) tumour samples. We show that this method can detect BRCA1, BRCA2, ERBB2 and CCNE1 copy number changes in DNA extracted from snap-frozen and FFPE tumour tissue, with 100% sensitivity and >99.5% specificity. PMID:26569395

  13. Utility of acoustical detection of Coptotermes Formosanus (Isoptera: Rhinotermitidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AED 2000 and 2010 are extremely sensitive listening devices which can effectively detect and monitor termite activity through a wave guide (e.g. bolt) both qualitatively and quantitatively. Experiments conducted with one to ten thousand termites from differing colonies infesting wood in buckets...

  14. Using autoregressive and random walk models to detect trends and shifts in unequally spaced tumour biomarker data.

    PubMed

    Schlain, B R; Lavin, P T; Hayden, C L

    1993-02-01

    Continuous time autoregressive (CAR(1)) and random walk models of time series data are provided for detecting non-random shifts and trends of tumour markers in breast cancer patients following resection for cure. The continuous time random walk model with observation error is extended to the case of multiple patient time series. These models can be used to monitor large numbers of patients with time series with few sampling events that are serially correlated and unequally spaced. Further, the methodologies can be used to recommend appropriate testing intervals. A Kalman filter recursive algorithm is used to calculate the likelihood functions arising from the CAR(1) and random walk models and to calculate recursive residuals, which are monitored by Shewhart-cusum schemes. PMID:8456211

  15. Estimation of the detection probability for Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) with a passive acoustic method.

    PubMed

    Akamatsu, T; Wang, D; Wang, K; Li, S; Dong, S; Zhao, X; Barlow, J; Stewart, B S; Richlen, M

    2008-06-01

    Yangtze finless porpoises were surveyed by using simultaneous visual and acoustical methods from 6 November to 13 December 2006. Two research vessels towed stereo acoustic data loggers, which were used to store the intensity and sound source direction of the high frequency sonar signals produced by finless porpoises at detection ranges up to 300 m on each side of the vessel. Simple stereo beam forming allowed the separation of distinct biosonar sound source, which enabled us to count the number of vocalizing porpoises. Acoustically, 204 porpoises were detected from one vessel and 199 from the other vessel in the same section of the Yangtze River. Visually, 163 and 162 porpoises were detected from two vessels within 300 m of the vessel track. The calculated detection probability using acoustic method was approximately twice that for visual detection for each vessel. The difference in detection probabilities between the two methods was caused by the large number of single individuals that were missed by visual observers. However, the sizes of large groups were underestimated by using the acoustic methods. Acoustic and visual observations complemented each other in the accurate detection of porpoises. The use of simple, relatively inexpensive acoustic monitoring systems should enhance population surveys of free-ranging, echolocating odontocetes. PMID:18537391

  16. Leak detection in gas pipeline by acoustic and signal processing - A review

    NASA Astrophysics Data System (ADS)

    Adnan, N. F.; Ghazali, M. F.; Amin, M. M.; Hamat, A. M. A.

    2015-12-01

    The pipeline system is the most important part in media transport in order to deliver fluid to another station. The weak maintenance and poor safety will contribute to financial losses in term of fluid waste and environmental impacts. There are many classifications of techniques to make it easier to show their specific method and application. This paper's discussion about gas leak detection in pipeline system using acoustic method will be presented in this paper. The wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs and the pressure balance of the pipe will generated by the friction between wall in the pipe. The signal processing is used to decompose the raw signal and show in time- frequency. Findings based on the acoustic method can be used for comparative study in the future. Acoustic signal and HHT is the best method to detect leak in gas pipelines. More experiments and simulation need to be carried out to get the fast result of leaking and estimation of their location.

  17. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    PubMed Central

    Rocha-Gaso, María-Isabel; March-Iborra, Carmen; Montoya-Baides, Ángel; Arnau-Vives, Antonio

    2009-01-01

    This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW) technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW), Surface Transverse Wave (STW), Love Wave (LW), Flexural Plate Wave (FPW), Shear Horizontal Acoustic Plate Mode (SH-APM) and Layered Guided Acoustic Plate Mode (LG-APM) - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications. PMID:22346725

  18. Development of novel optical fiber interferometric sensors with high sensitivity for acoustic emission detection

    NASA Astrophysics Data System (ADS)

    Deng, Jiangdong

    For the purpose of developing a new highly-sensitive and reliable fiber optical acoustic sensor capable of real-time on-line detection of acoustic emissions in power transformers, this dissertation presents the comprehensive research work on the theory, modeling, design, instrumentation, noise analysis, and performance evaluation of a diaphragm-based optical fiber acoustic (DOFIA) sensor system. The optical interference theory and the diaphragm dynamic vibration analysis form the two foundation stones of the diaphragm-based optical fiber interferometric acoustic (DOFIA) sensor. Combining these two principles, the pressure sensitivity and frequency response of the acoustic sensor system is analyzed quantitatively, which provides guidance for the practical design for the DOFIA sensor probe and system. To meet all the technical requirements for partial discharge detection, semiconductor process technologies are applied, for the first time to our knowledge, in fabricating the micro-caved diaphragm (MCD) used for the DOFIA sensor probe. The novel controlled thermal bonding method was proposed, designed, and developed to fabricate high performance DOFIA sensor probes with excellent mechanical strength and temperature stability. In addition, the signal processing unit is designed and implemented with high gain, wide band response, and ultra low noise. A systematic noise analysis is also presented to provide a better understanding of the performance limitations of the DOFIA sensor system. Based on the system noise analysis results, optimization measures are proposed to improve the system performance. Extensive experiments, including the field testing in a power transformer, have also been conducted to systematically evaluate the performance of the instrumentation systems and the sensor probes. These results clearly demonstrated the feasibility of the developed DOFIA sensor for the detection of partial discharges inside electrical power transformers, with unique advantages

  19. Acoustic detection of laser induced melting of metals

    SciTech Connect

    Mesaros, M.; Martinez, O.E.; Bilmes, G.M.; Tocho, J.O.

    1997-01-01

    Real time detection of pulsed laser surface melting was performed by analyzing the photoacoustic signals produced on the samples. Comparison between the amplitudes of the transversal and longitudinal waves allowed us to identify the fluence thresholds for surface melting. The method was tested with AISI 304 stainless steel samples and the results obtained were checked against direct metallographic analysis. {copyright} {ital 1997 American Institute of Physics.}

  20. Trackline and point detection probabilities for acoustic surveys of Cuvier's and Blainville's beaked whales.

    PubMed

    Barlow, Jay; Tyack, Peter L; Johnson, Mark P; Baird, Robin W; Schorr, Gregory S; Andrews, Russel D; Aguilar de Soto, Natacha

    2013-09-01

    Acoustic survey methods can be used to estimate density and abundance using sounds produced by cetaceans and detected using hydrophones if the probability of detection can be estimated. For passive acoustic surveys, probability of detection at zero horizontal distance from a sensor, commonly called g(0), depends on the temporal patterns of vocalizations. Methods to estimate g(0) are developed based on the assumption that a beaked whale will be detected if it is producing regular echolocation clicks directly under or above a hydrophone. Data from acoustic recording tags placed on two species of beaked whales (Cuvier's beaked whale-Ziphius cavirostris and Blainville's beaked whale-Mesoplodon densirostris) are used to directly estimate the percentage of time they produce echolocation clicks. A model of vocal behavior for these species as a function of their diving behavior is applied to other types of dive data (from time-depth recorders and time-depth-transmitting satellite tags) to indirectly determine g(0) in other locations for low ambient noise conditions. Estimates of g(0) for a single instant in time are 0.28 [standard deviation (s.d.) = 0.05] for Cuvier's beaked whale and 0.19 (s.d. = 0.01) for Blainville's beaked whale. PMID:23968046

  1. Acoustic-sensor-based detection of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Foote, Peter; Martin, Tony; Read, Ian

    2004-03-01

    Acoustic emission detection is a well-established method of locating and monitoring crack development in metal structures. The technique has been adapted to test facilities for non-destructive testing applications. Deployment as an operational or on-line automated damage detection technology in vehicles is posing greater challenges. A clear requirement of potential end-users of such systems is a level of automation capable of delivering low-level diagnosis information. The output from the system is in the form of "go", "no-go" indications of structural integrity or immediate maintenance actions. This level of automation requires significant data reduction and processing. This paper describes recent trials of acoustic emission detection technology for the diagnosis of damage in composite aerospace structures. The technology comprises low profile detection sensors using piezo electric wafers encapsulated in polymer film ad optical sensors. Sensors are bonded to the structure"s surface and enable acoustic events from the loaded structure to be located by triangulation. Instrumentation has been enveloped to capture and parameterise the sensor data in a form suitable for low-bandwidth storage and transmission.

  2. Reliability of scanning laser acoustic microscopy for detecting internal voids in structural ceramics

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Baaklini, G. Y.

    1986-01-01

    The reliability of 100 MHz scanning laser acoustic microscopy (SLAM) for detecting internal voids in sintered specimens of silicon nitride and silicon carbide was evaluated. The specimens contained artificially implanted voids and were positioned at depths ranging up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics.

  3. Acoustic Detection Of Loose Particles In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Kwok, Lloyd C.

    1995-01-01

    Particle-impact-noise-detector (PIND) apparatus used in conjunction with computer program analyzing output of apparatus to detect extraneous particles trapped in pressure sensors. PIND tester essentially shaker equipped with microphone measuring noise in pressure sensor or other object being shaken. Shaker applies controlled vibration. Output of microphone recorded and expressed in terms of voltage, yielding history of noise subsequently processed by computer program. Data taken at sampling rate sufficiently high to enable identification of all impacts of particles on sensor diaphragm and on inner surfaces of sensor cavities.

  4. Immunohistochemical Detection of Urokinase Plasminogen Activator and Urokinase Plasminogen Activator Receptor in Canine Vascular Endothelial Tumours.

    PubMed

    Anwar, Sh; Yanai, T; Sakai, H

    2015-11-01

    Immunohistochemistry was used to assess the expression of urokinase plasminogen activator (uPA) and uPA receptor (uPAR) in 57 canine primary haemangiosarcomas (HSAs), 26 canine cutaneous haemangiomas (HAs) and in control sections of canine cutaneous granulation tissue. The correlation between uPA/uPAR expression and the Ki67 labelling index (LI) was estimated in the HSA and HA tissues. uPA was expressed by 73.2% and 75.0% of splenic HSAs and non-splenic HSAs, respectively. All HSA tissues tested expressed uPAR. Expression of both molecules was significantly higher in HSAs than in cutaneous HAs (3.8% for uPA and 30.7% for uPAR). The average Ki67 LI of the uPA(+)/uPAR(+) HSAs was significantly higher than that of uPA(-)/uPAR(+) HSAs and HA tissues (mean ± SDs 32.8 ± 15.3, 15.2 ± 7.2 and 2.1 ± 0.7, respectively; P <0.05). These results suggest that uPA and uPAR play a significant role in the malignant proliferation of canine HSA, regardless of the primary origin of the tumour. PMID:26286429

  5. Detection of acoustic repetition for very long stochastic patterns.

    PubMed

    Warren, R M; Bashford, J A; Cooley, J M; Brubaker, B S

    2001-01-01

    Guttman and Julesz (1963) employed recycling frozen noise segments (RFNs) as model stimuli in their classic study of the lower limits for periodicity detection and short-term auditory memory. They reported that listeners can hear iteration of these stochastic signals effortlessly as "motorboating" for repetition periods ranging from 50 to 250 msec and as "whooshing" from 250 msec to 1 sec. Both motorboating and whooshing RFNs are global percepts encompassing the entire period, as are RFNs in the pitch range (repetition periods shorter than 50 msec). However, with continued listening to whooshing (but not motorboating) RFNs, individuals hear recurrent brief components such as clanks and thumps that are characteristic of the particular waveform. Experiment 1 of the present study describes a cross-modal cuing procedure that enables listeners to store and then recognize the recurrence of portions of frozen noise waveforms that are repeated after intervals of 10 sec or more. Experiment 2 compares the relative saliencies of different spectral regions in enabling listeners to detect repetition of these long-period patterns. Special difficulty was encountered with the 6-kHz band of RFNs, possibly due to the lack of fine-structure phase locking at this frequency range. In addition, a similarity is noted between the organizational principles operating over particular durational ranges of stochastic patterns and the characteristics of traditional hierarchical units of speech having corresponding durations. PMID:11304013

  6. High‐resolution imaging for the detection and characterisation of circulating tumour cells from patients with oesophageal, hepatocellular, thyroid and ovarian cancers

    PubMed Central

    Dent, Barry M.; Ogle, Laura F.; O'Donnell, Rachel L.; Hayes, Nicholas; Malik, Ujjal; Curtin, Nicola J.; Boddy, Alan V.; Plummer, E. Ruth; Edmondson, Richard J.; Reeves, Helen L.; Jamieson, David

    2015-01-01

    Interest has increased in the potential role of circulating tumour cells in cancer management. Most cell‐based studies have been designed to determine the number of circulating tumour cells in a given volume of blood. Ability to understand the biology of the cancer cells would increase the clinical potential. The purpose of this study was to develop and validate a novel, widely applicable method for detection and characterisation of circulating tumour cells. Cells were imaged with an ImageStreamX imaging flow cytometer which allows detection of expression of multiple biomarkers on each cell and produces high‐resolution images. Depletion of haematopoietic cells was by red cell lysis, leukocyte common antigen CD45 depletion and differential centrifugation. Expression of epithelial cell adhesion molecule, cytokeratins, tumour‐type‐specific biomarkers and CD45 was detected by immunofluorescence. Nuclei were identified with DAPI or DRAQ5 and brightfield images of cells were collected. The method is notable for the dearth of cell damage, recoveries greater than 50%, speed and absence of reliance on the expression of a single biomarker by the tumour cells. The high‐quality images obtained ensure confidence in the specificity of the method. Validation of the methodology on samples from patients with oesophageal, hepatocellular, thyroid and ovarian cancers confirms its utility and specificity. Importantly, this adaptable method is applicable to all tumour types including those of nonepithelial origin. The ability to measure simultaneously the expression of multiple biomarkers will facilitate analysis of the cancer cell biology of individual circulating tumour cells. PMID:26178530

  7. Marine mammal acoustic detections in the northeastern Chukchi Sea, September 2007-July 2011

    NASA Astrophysics Data System (ADS)

    Hannay, David E.; Delarue, Julien; Mouy, Xavier; Martin, Bruce S.; Leary, Del; Oswald, Julie N.; Vallarta, Jonathan

    2013-09-01

    Several cetacean and pinniped species use the northeastern Chukchi Sea as seasonal or year-round habitat. This area has experienced pronounced reduction in the extent of summer sea ice over the last decade, as well as increased anthropogenic activity, particularly in the form of oil and gas exploration. The effects of these changes on marine mammal species are presently unknown. Autonomous passive acoustic recorders were deployed over a wide area of the northeastern Chukchi Sea off the coast of Alaska from Cape Lisburne to Barrow, at distances from 8 km to 200 km from shore: up to 44 each summer and up to 8 each winter. Acoustic data were acquired at 16 kHz continuously during summer and on a duty cycle of 40 or 48 min within each 4-h period during winter. Recordings were analyzed manually and using automated detection and classification systems to identify calls. Bowhead (Balaena mysticetus) and beluga (Delphinapterus leucas) whale calls were detected primarily from April through June and from September to December during their migrations between the Bering and Beaufort seas. Summer detections were rare and usually concentrated off Wainwright and Barrow, Alaska. Gray (Eschrichtius robustus) whale calls were detected between July and October, their occurrence decreasing with increasing distance from shore. Fin (Balaenoptera physalus), killer (Orcinus orca), minke (Balaenoptera acutorostrata), and humpback (Megaptera novaeangliae) whales were detected sporadically in summer and early fall. Walrus (Odobenus rosmarus) was the most commonly detected species between June and October, primarily occupying the southern edge of Hanna Shoal and haul-outs near coastal recording stations off Wainwright and Point Lay. Ringed (Pusa hispida) and bearded (Erignathus barbatus) seals occur year-round in the Chukchi Sea. Ringed seal acoustic detections occurred throughout the year but detection numbers were low, likely due to low vocalization rates. Bearded seal acoustic detections

  8. Acoustic detection and localization from a tethered aerostat during the NATO TG-53 test

    NASA Astrophysics Data System (ADS)

    Reiff, C.; Scanlon, M.; Noble, J.

    2006-05-01

    Acoustic sensors mounted to a tethered aerostat detect and localize transient signals from mortars, artillery, C-4, propane cannon, and small arms fire. Significant enhancements to soldier lethality and survivability can be gained when using the aerostat array to detect, localize, and cue an aerial imager to a weapon's launch site, or use the aerostat's instantaneous position and orientation to calculate a vector solution to the ground coordinates of the launch site for threat neutralization. The prototype aerostat-mounted array was tested at Yuma Proving Grounds (YPG) as part of the NATO TG-53 signature collection exercise. Acoustic wave form data was collected simultaneously with aerostat and ground-based sensor arrays for comparing wind noise, signal to noise related parameters, and atmospheric effects on propagation to an elevated array. A test description and summary of localization accuracy will be presented for various altitudes, ranges to target, and under differing meteorological conditions.

  9. Laser generation and detection of surface acoustic waves - Elastic properties of surface layers

    NASA Astrophysics Data System (ADS)

    Neubrand, A.; Hess, P.

    1992-01-01

    A noncontact all-optical method for surface photoacoustics is described. The surface acoustic waves (SAWs) were excited employing a KrF laser and detected with a Michelson interferometer using a 633-nm HeNe laser. Due to an active stabilization scheme developed for the interferometer a surface displacement of 0.2 A could be detected. The materials investigated included pure materials such as polycrystalline aluminum, and crystalline silicon; films of gold, silver, aluminum, iron, and nickel on fused silica; and a Si:H on Si(100). In the case of pure materials the shape of the acoustic pulse and the phase velocity were determined. The dispersion of the SAW phase velocity observed for the film systems was used to extract information on the film thickness, density, and transverse and longitudinal sound velocity. Models for the theoretical treatment of film systems and the calculation of dispersion curves are presented.

  10. Particle acoustic detection in gravitational wave aluminum resonant antennas

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Coccia, E.; D'Antonio, S.; Monache, G. Delle; Gioacchino, D. Di; Fafone, V.; Ligi, C.; Marini, A.; Mazzitelli, G.; Modestino, G.; Panella, S.; Pizzella, G.; Quintieri, L.; Roccella, S.; Ronga, F.; Tripodi, P.; Valente, P.

    2005-09-01

    The results on cosmic rays detected by the gravitational antenna NAUTILUS have motivated an experiment (RAP) based on a suspended cylindrical bar, which is made of the same aluminum alloy as NAUTILUS and is exposed to a high energy electron beam. Mechanical vibrations originate from the local thermal expansion caused by warming up due to the energy lost by particles crossing the material. The aim of the experiment is to measure the amplitude of the fundamental longitudinal vibration at different temperatures. We report on the results obtained down to a temperature of about 4 K, which agree at the level of ˜10% with the predictions of the model describing the underlying physical process.

  11. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  12. High performance distributed acoustic sensor using cyclic pulse coding in a direct detection coherent-OTDR

    NASA Astrophysics Data System (ADS)

    Muanenda, Yonas; Oton, Claudio J.; Faralli, Stefano; Di Pasquale, Fabrizio

    2015-07-01

    We propose and experimentally demonstrate a Distributed Acoustic Sensor exploiting cyclic Simplex coding in a phase-sensitive OTDR on standard single mode fibers based on direct detection. Suitable design of the source and use of cyclic coding is shown to improve the SNR of the coherent back-scattered signal by up to 9 dB, reducing fading due to modulation instability and enabling accurate long-distance measurement of vibrations with minimal post-processing.

  13. Monitoring the Ocean Acoustic Environment: A Model-Based Detection Approach

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    2000-03-13

    A model-based approach is applied in the development of a processor designed to passively monitor an ocean acoustic environment along with its associated variations. The technique employs an adaptive, model-based processor embedded in a sequential likelihood detection scheme. The trade-off between state-based and innovations-based monitor designs is discussed, conceptually. The underlying theory for the innovations-based design is briefly developed and applied to a simulated data set.

  14. First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background.

    PubMed

    Follin, Brent; Knox, Lloyd; Millea, Marius; Pan, Zhen

    2015-08-28

    The unimpeded relativistic propagation of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the cosmic microwave background temperature power spectrum. PMID:26371637

  15. Detection of Delamination in Concrete Bridge Decks Using Mfcc of Acoustic Impact Signals

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Harichandran, R. S.; Ramuhalli, P.

    2010-02-01

    Delamination of the concrete cover is a commonly observed damage in concrete bridge decks. The delamination is typically initiated by corrosion of the upper reinforcing bars and promoted by freeze-thaw cycling and traffic loading. The detection of delamination is important for bridge maintenance and acoustic non-destructive evaluation (NDE) is widely used due to its low cost, speed, and easy implementation. In traditional acoustic approaches, the inspector sounds the surface of the deck by impacting it with a hammer or bar, or by dragging a chain, and assesses delamination by the "hollowness" of the sound. The detection of the delamination is subjective and requires extensive training. To improve performance, this paper proposes an objective method for delamination detection. In this method, mel-frequency cepstral coefficients (MFCC) of the signal are extracted. Some MFCC are then selected as features for detection purposes using a mutual information criterion. Finally, the selected features are used to train a classifier which is subsequently used for detection. In this work, a simple quadratic Bayesian classifier is used. Different numbers of features are used to compare the performance of the detection method. The results show that the performance first increases with the number of features, but then decreases after an optimal value. The optimal number of features based on the recorded signals is four, and the mean error rate is only 3.3% when four features are used. Therefore, the proposed algorithm has sufficient accuracy to be used in field detection.

  16. Improving the sensitivity of an interferometric fiber optic sensor for acoustic detection in rockfalls

    NASA Astrophysics Data System (ADS)

    Schenato, L.; Palmieri, L.; Autizi, E.; Galtarossa, A.; Pasuto, A.

    2013-12-01

    Being intrinsically EMI free and offering superior hostile environment operation, fiber optic sensor technology represents a valuable alternative to standard sensors technology in landslides monitoring. Here an improved design for a fiber optic sensor to be used for ultrasonic acoustic detection in rockfall monitoring is proposed. Basically, the original sensor consists of a fiber coil tightly wound on an aluminum flanged hollow mandrel that acts as the sensing arm of a Mach-Zehnder interferometer [1]. To further improve sensor sensitivity, the use of a special fiber, with polyimide coating and very large numerical aperture, has been proposed and tested. The polyimide coating, harder and thinner than standard coating, makes the fiber more sensitive to acoustic waves and increase the coupling efficiency between fiber and mandrel. At the same time, a fiber with very large numerical aperture allows for a much smaller bending radius and thus enables the design of a sensor with reduced size, or with the same external size but housing a longer fiber. Part of the research activity has been then focused toward the optimization of the shape and dimensions of the mandrel: to this aim, a large set of numerical simulations has been performed and they are here presented and discussed. The performance assessment gained with new sensors has been carried in a controlled scenario by using a block of trachyte in which the sensors have been screwed in internally threaded chemical anchors housed in holes drilled on one face of the block. Ultrasonic signals have been generated in a repeatable way by dropping a 5-mm-diameter steel ball along a steep slide. Experimental tests, carried out by firstly comparing the performance of a sensor made with special fiber with respect to the original one, have shown an increased sensitivity of almost 35 % in the detected acoustic energy. Further tests, carried out on a sensor with optimized dimensions and made with special fiber, have shown an

  17. Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Feng, Naizhang; Wang, Yan; Shen, Yi

    2015-03-01

    In order to detect cracks in railroad tracks, various experiments have been examined by Acoustic Emission (AE) method. However, little work has been done on studying rail defect detection at high speed. This paper presents a study on AE detection of rail defect at high speed based on rail-wheel test rig. Meanwhile, Wavelet Transform and Shannon entropy are employed to detect defects. Signals with and without defects are acquired, and characteristic frequencies from them at different speeds are analyzed. Based on appropriate decomposition level and Energy-to-Shannon entropy ratio, the optimal wavelet is selected. In order to suppress noise effects and ensure appropriate time resolution, the length of time window is investigated. Further, the characteristic frequency of time window is employed to detect defect. The results clearly illustrate that the proposed method can detect rail defect at high speed effectively.

  18. Acoustic and electromagnetic wave interaction in the detection and identification of buried objects

    NASA Astrophysics Data System (ADS)

    Lawrence, Daniel Edward

    2002-09-01

    In order to facilitate the development of a hybrid acoustic and electromagnetic (EM) system for buried object detection, a number of analytical solutions and a novel numerical technique are developed to analyze the complex interaction between acoustic and EM scattering. The essence of the interaction lies in the fact that identifiable acoustic properties of an object, such as acoustic resonances, can be observed in the scattered EM Doppler spectrum. Using a perturbation approach, analytical solutions are derived for the EM scattering from infinitely long circular cylinders, both metallic and dielectric, under acoustic vibration in a homogeneous background medium. Results indicate that both the shape variation and dielectric constant contribute to the scattered EM Doppler spectrum. To model the effect of a cylinder beneath an acoustically excited half-space, a new analytical solution is presented for EM scattering from a cylinder beneath a slightly rough surface. The solution is achieved by using plane-wave expansion of the fields and an iterative technique to account for the multiple interactions between the cylinder and rough surface. Following a similar procedure, a novel solution for elastic-wave scattering from a solid cylinder embedded in a solid half-space is developed and used to calculate the surface displacement. Simulations indicate that only a finite range of spatial surface frequencies, corresponding to surface roughness on the order of the EM wavelength; affect the EM scattering from buried objects and suggest that object detection can be improved if the acoustic excitation induces surface roughness outside this range. To extend the study to non-canonical scenarios, a novel numerical approach is introduced in which time-varying impedance boundary conditions (IBCs) are used in conjunction with the method of moments (MoM) to model the EM scattering from vibrating metallic objects of arbitrary shape. It is shown that the standard IBC provides a first

  19. Automated detection framework of the calcified plaque with acoustic shadowing in IVUS images.

    PubMed

    Gao, Zhifan; Guo, Wei; Liu, Xin; Huang, Wenhua; Zhang, Heye; Tan, Ning; Hau, William Kongto; Zhang, Yuan-Ting; Liu, Huafeng

    2014-01-01

    Intravascular Ultrasound (IVUS) is one ultrasonic imaging technology to acquire vascular cross-sectional images for the visualization of the inner vessel structure. This technique has been widely used for the diagnosis and treatment of coronary artery diseases. The detection of the calcified plaque with acoustic shadowing in IVUS images plays a vital role in the quantitative analysis of atheromatous plaques. The conventional method of the calcium detection is manual drawing by the doctors. However, it is very time-consuming, and with high inter-observer and intra-observer variability between different doctors. Therefore, the computer-aided detection of the calcified plaque is highly desired. In this paper, an automated method is proposed to detect the calcified plaque with acoustic shadowing in IVUS images by the Rayleigh mixture model, the Markov random field, the graph searching method and the prior knowledge about the calcified plaque. The performance of our method was evaluated over 996 in-vivo IVUS images acquired from eight patients, and the detected calcified plaques are compared with manually detected calcified plaques by one cardiology doctor. The experimental results are quantitatively analyzed separately by three evaluation methods, the test of the sensitivity and specificity, the linear regression and the Bland-Altman analysis. The first method is used to evaluate the ability to distinguish between IVUS images with and without the calcified plaque, and the latter two methods can respectively measure the correlation and the agreement between our results and manual drawing results for locating the calcified plaque in the IVUS image. High sensitivity (94.68%) and specificity (95.82%), good correlation and agreement (>96.82% results fall within the 95% confidence interval in the Student t-test) demonstrate the effectiveness of the proposed method in the detection of the calcified plaque with acoustic shadowing in IVUS images. PMID:25372784

  20. Acoustic Detection of Sediment-Laden Ice in the Bay of Fundy

    NASA Astrophysics Data System (ADS)

    Dourado, N. P.

    2013-12-01

    In the winter, the tidal flats in the Bay of Fundy are littered with large muddy icebergs, supplied by remnants of ice shelves that form on the banks of tidal rivers. The encased sediment can render the blocks heavy enough to sink, where they can persist for many tidal cycles due to their size. There is a potential for this sediment-laden ice to pose a risk to tidal power infrastructure. Since the ice blocks cannot be seen once submerged, the risk of collision will be difficult to predict and manage. A sonar system, which transmits a sound pulse and records the subsequent echoes in the water column, can be used to detect submerged hazards. If echoes from different components of the ice, such as sediment or air inclusions, can be isolated, remote measurements of ice properties may be possible. A combination of acoustic models, parameterized using natural sediment laden ice, and acoustic backscatter measurements from idealized ice blocks will be used to assess the feasibility of acoustic monitoring of submerged ice hazards. Large muddy iceberg on Debert Beach,NS Idealized experiment; where acoustic backscatter from calibration targets encased in ice is measured.

  1. An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling.

    PubMed

    Xiang, Ning; Sabatier, James M

    2003-03-01

    An acoustic-to-seismic system to detect buried antipersonnel mines exploits airborne acoustic waves penetrating the surface of the ground. Acoustic waves radiating from a sound source above the ground excite Biot type I and II compressional waves in the porous soil. The type I wave and type II waves refract toward the normal and cause air and soil particle motion. If a landmine is buried below the surface of the insonified area, these waves are scattered or reflected by the target, resulting in distinct changes to the acoustically coupled ground motion. A scanning laser Doppler vibrometer measures the motion of the ground surface. In the past, this technique has been employed with remarkable success in locating antitank mines during blind field tests [Sabatier and Xiang, IEEE Trans. Geosci. Remote Sens. 39, 1146-1154 (2001)]. The humanitarian demining mission requires an ability to locate antipersonnel mines, requiring a surmounting of additional challenges due to a plethora of shapes and smaller sizes. This paper describes an experimental study on the methods used to locate antipersonnel landmines in recent field measurements. PMID:12656368

  2. A compact array calibrator to study the feasibility of acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Ardid, M.; Camarena, F.; Felis, I.; Herrero, A.; Llorens, C. D.; Martínez-Mora, J.; Saldaña, M.

    2016-04-01

    Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino "signature" that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  3. Application of Guided Acoustic Waves to Delamination Detection

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.

    1991-01-01

    The occurrence of delamination in laminate structures is one of the major reliability concerns for using these materials. There are continuing needs for developing delamination inspection techniques to measure specimens of various material structure as well as to accommodate different test environments. In the case of disbond-detection in the skin of an aircraft, for some practical reasons, an efficient technique should be capable of inspecting a large surface area in a reasonably short amount of time and with a high degree of accuracy. While most existing measurements can provide satisfactory accuracy, the required high inspection rate may not be met. Thus, for assessment of large surface area with an ultrasonic technique, our approach is to generate sound waves of particular modes, which are capable of propagating in a relatively extended area on the surface of a plate and at meantime interrogating the structural integrity of the plate. It is well known in waveguide theory [1-3] that certain modes of sound waves are capable of propagating a relatively long distance in a material of plate configuration, and that their propagation properties are determined in part by the product of sound frequency and plate thickness. Recently, it was found experimentally that, with this thickness dependence, certain modes of these plate waves provided a different approach to probe the flaws in a laminate structure, and with potential application to the large area disbond and crack inspection.

  4. High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Measuring the high frequency acoustic vibrations represents the fundamental interest in revealing the intrinsic dynamic characteristic of board range of systems, such as the growth of the fetus, blood flow in human palms, and vibrations of carbon nanotube. However, the acoustic wave detection capability is limited by the detection bandwidth and sensitivity of the commonly used piezoelectric based ultrasound detectors. To overcome these limitations, this thesis focuses on exploring the optical demodulation method for highly sensitive detection of broadband acoustic vibration. First, a transparent optical ultrasonic detector has been developed using micro-ring resonator (MRR) made of soft polymeric materials. It outperforms the traditional piezoelectric detectors with broader detection bandwidth, miniaturized size and wide angular sensitivity. Its ease of integration into photoacoustic microscopy system has resulted in the great improvement of the imaging resolution. A theoretic framework has been developed to establish the quantitative understanding of its unique distance and angular dependent detection characteristics and was subsequently validated experimentally. The developed theoretic framework provides a guideline to fully accounts for the trade-offs between axial and lateral resolution, working distance, and the field of view in developing optimal imaging performance for a wide range of biological and clinical applications. MRR-based ultrasonic detector is further integrated into confocal fluorescence microscopy to realize the simultaneous imaging of fluorescence and optical absorption of retinal pigment epithelium, achieving multi-contrast imaging at sub-cellular level. The needs to resolve the fine details of the biological specimen with the resolution beyond the diffraction limit further motivate the development of optical demodulated ultrasonic detection method based on near-field scanning optical microscopy (NSOM). The nano-focusing probe was developed

  5. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1986-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  6. Reliability of void detection in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1985-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  7. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    SciTech Connect

    Roth, D.J.; Klima, S.J.; Kiser, J.D.; Baaklini, G.Y.

    1986-05-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics. 20 references.

  8. Detection and characterization of stainless steel SCC by the analysis of crack related acoustic emission.

    PubMed

    Kovač, Jaka; Legat, Andraž; Zajec, Bojan; Kosec, Tadeja; Govekar, Edvard

    2015-09-01

    In the paper the results of the acoustic emission (AE) based detection and characterization of stress-corrosion cracking (SCC) in stainless steel are presented. As supportive methods for AE interpretation, electrochemical noise, specimen elongation measurements, and digital imaging of the specimen surface were used. Based on the defined qualitative and quantitative time and power spectra characteristics of the AE bursts, a manual and an automatic procedure for the detection of crack related AE bursts were introduced. The results of the analysis of the crack related AE bursts indicate that the AE method is capable of detecting large scale cracks, where, apart from intergranular crack propagation, also some small ductile fractures occur. The sizes of the corresponding ductile fracture areas can be estimated based on a relative comparison of the energies of the detected AE bursts. It has also been shown that AE burst time and power spectra features can be successfully used for the automatic detection of SCC. PMID:26112425

  9. Impact damage detection in composite chiral sandwich panels using nonlinear vibro-acoustic modulations

    NASA Astrophysics Data System (ADS)

    Klepka, Andrzej; Staszewski, Wieslaw J.; di Maio, Dario; Scarpa, Fabrizio

    2013-08-01

    This paper reports an application of nonlinear acoustics to impact damage detection in a composite chiral sandwich panel. The panel is built from a chiral honeycomb and two composite skins. High-frequency ultrasonic excitation and low-frequency modal excitation were used to observe nonlinear modulations in ultrasonic waves due to structural damage. Low-profile, surface-bonded piezoceramic transducers were used for ultrasonic excitation. Non-contact laser vibrometry was applied for ultrasonic sensing. The work presented focuses on the analysis of the modulation intensities and damage-related nonlinearities. The paper demonstrates that the method can be used for impact damage detection in composite chiral sandwich panels.

  10. Signal processing for passive detection and classification of underwater acoustic signals

    NASA Astrophysics Data System (ADS)

    Chung, Kil Woo

    2011-12-01

    This dissertation examines signal processing for passive detection, classification and tracking of underwater acoustic signals for improving port security and the security of coastal and offshore operations. First, we consider the problem of passive acoustic detection of a diver in a shallow water environment. A frequency-domain multi-band matched-filter approach to swimmer detection is presented. The idea is to break the frequency contents of the hydrophone signals into multiple narrow frequency bands, followed by time averaged (about half of a second) energy calculation over each band. Then, spectra composed of such energy samples over the chosen frequency bands are correlated to form a decision variable. The frequency bands with highest Signal/Noise ratio are used for detection. The performance of the proposed approach is demonstrated for experimental data collected for a diver in the Hudson River. We also propose a new referenceless frequency-domain multi-band detector which, unlike other reference-based detectors, does not require a diver specific signature. Instead, our detector matches to a general feature of the diver spectrum in the high frequency range: the spectrum is roughly periodic in time and approximately flat when the diver exhales. The performance of the proposed approach is demonstrated by using experimental data collected from the Hudson River. Moreover, we present detection, classification and tracking of small vessel signals. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification and tracking. This dissertation presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise) acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship

  11. Using multiple gears to assess acoustic detectability and biomass of fish species in lake superior

    USGS Publications Warehouse

    Yule, D.L.; Adams, J.V.; Stockwell, J.D.; Gorman, O.T.

    2007-01-01

    Recent predator demand and prey supply studies suggest that an annual daytime bottom trawl survey of Lake Superior underestimates prey fish biomass. A multiple-gear (acoustics, bottom trawl, and midwater trawl) nighttime survey has been recommended, but before abandoning a long-term daytime survey the effectiveness of night sampling of important prey species must be verified. We sampled three bottom depths (30, 60, and 120 m) at a Lake Superior site where the fish community included all commercially and ecologically important species. Day and night samples were collected within 48 h at all depths during eight different periods (one new and one full moon period during both early summer and late summer to early fall over 2 years). Biomass of demersal and benthic species was higher in night bottom trawl samples than in day bottom trawl samples. Night acoustic collections showed that pelagic fish typically occupied water cooler than 15°C and light levels less than 0.001 lx. Using biomass in night bottom trawls and acoustic biomass above the bottom trawl path, we calculated an index of acoustic detectability for each species. Ciscoes Coregonus artedi, kiyis C. kiyi, and rainbow smeltOsmerus mordax left the bottom at night, whereas bloaters C. hoyi stayed nearer the bottom. We compared the biomass of important prey species estimated with two survey types: day bottom trawls and night estimates of the entire water column (bottom trawl biomass plus acoustic biomass). The biomass of large ciscoes (>200 mm) was significantly greater when measured at night than when measured during daylight, but the differences for other sizes of important species did not vary significantly by survey type. Nighttime of late summer is a period when conditions for biomass estimation are largely invariant, and all important prey species can be sampled using a multiple-gear approach.

  12. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  13. Linear and Nonlinear Acoustic Measurements of Buried Landmines: Detection Schemes Near Resonance

    NASA Astrophysics Data System (ADS)

    Sabatier, James M.

    2003-03-01

    Measurements of the acoustic impedance of an anti-personnel and anti-tank plastic, blast-hardened landmines reveal resonances in the frequency range between 100 and 1000 Hz. The top surface resonances are due to its complicated mechanical structure vibrating in air. The lowest mode results from the blast hardened design of the landmine. Typically, a portion or cavity of the landmine is designed to absorb the shock from an explosion that is intended to detonate the landmine but still allow the landmine to trigger its explosive device when a slow steady pressure is applied. The mechanical design of the blast hardened aspects results in a high Q simple harmonic oscillator resonance of the top surface. At higher frequencies the top surface behaves like thin circular plate acoustic modes. When these landmines are buried in soils, the modes are mass loaded. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity are used for detection schemes. Since the interface between the top plate and the soil responds to pressure fluctuations nonlinearly, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for new methods of landmine detection not previously exploited.

  14. Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection.

    PubMed

    Guo, Bin; Li, Jian; Zmuda, Henry; Sheplak, Mark

    2007-11-01

    Microwave-induced thermal acoustic imaging (TAI) is a promising early breast cancer detection technique, which combines the advantages of microwave stimulation and ultrasound imaging and offers a high imaging contrast, as well as high spatial resolution at the same time. A new multifrequency microwave-induced thermal acoustic imaging scheme for early breast cancer detection is proposed in this paper. Significantly more information about the human breast can be gathered using multiple frequency microwave stimulation. A multifrequency adaptive and robust technique (MART) is presented for image formation. Due to its data-adaptive nature, MART can achieve better resolution and better interference rejection capability than its data-independent counterparts, such as the delay-and-sum method. The effectiveness of this procedure is shown by several numerical examples based on 2-D breast models. The finite-difference time-domain method is used to simulate the electromagnetic field distribution, the absorbed microwave energy density, and the thermal acoustic field in the breast model. PMID:18018695

  15. Acoustical analysis of mechanical heart valve sounds for early detection of malfunction.

    PubMed

    Famaey, Nele; Defever, Korijn; Bielen, Paul; Flameng, Willem; Vander Sloten, Jos; Sas, Paul; Meuris, Bart

    2010-10-01

    Mechanical heart valves carry the disadvantage of lifelong antithrombotic therapy, due to the high risk of thrombus formation on the valve surface. Current diagnostic methods are incapable of detecting thrombus formation in an early stage. This article investigates a new diagnostic method, based on the analysis of the acoustic signal produced by the valve. This method should be capable of early detection of malfunction, thus permitting targeted medication and reducing valve-related complications and mortality. A measurement setup assuring optimal signal quality was developed, and a signal analysis program was implemented and validated on an in vitro mock circulatory loop. Next, four sheep were implanted with a bileaflet mechanical valve. The signals of their valves developing thrombosis were assessed on a weekly basis before explantation. Three sheep were sacrificed shortly after detection of malfunction according to the newly developed method. In each case, thrombus or membrane formation was detected on the leaflets upon explantation. In one sheep, no malfunction was found in the analysis, which was also confirmed by the condition of the valve upon explantation. These preliminary results indicate that acoustical analysis of mechanical heart valves permits early detection of valvular malfunction. Further research with more in vitro and animal testing is required to statistically validate these findings. PMID:20573536

  16. Small-area geographic and socioeconomic inequalities in colorectal tumour detection in France.

    PubMed

    Fournel, Isabelle; Bourredjem, Abderrahmane; Sauleau, Erik-André; Cottet, Vanessa; Dejardin, Olivier; Bouvier, Anne-Marie; Launoy, Guy; Bonithon-Kopp, Claire

    2016-07-01

    The aim of this study was to assess the impact of area deprivation and primary care facilities on colorectal adenoma detection and on colorectal cancer (CRC) incidence in a French well-defined population before mass screening implementation. The study population included all patients aged 20 years or more living in Côte d'Or (France) with either colorectal adenoma or invasive CRC first diagnosed between 1995 and 2002 and who were identified from the Burgundy Digestive Cancer Registry and the Côte d'Or Polyp Registry. Area deprivation was assessed using the European deprivation index on the basis of the smallest French area available (Ilots Regroupés pour l'Information Statistique). Healthcare access was assessed using medical density of general practitioners (GPs) and road distance to the nearest GP and gastroenterologist. Bayesian regression analyses were used to estimate influential covariates on adenoma detection and CRC incidence rates. The results were expressed as relative risks (RRs) with their 95% credibility interval. In total, 5399 patients were diagnosed with at least one colorectal adenoma and 2125 with invasive incident CRC during the study period. Remoteness from GP [RR=0.71 (0.61-0.83)] and area deprivation [RR=0.98 (0.96-1.00)] independently reduced the probability of adenoma detection. CRC incidence was only slightly affected by GP medical density [RR=1.05 (1.01-1.08)] without any area deprivation effect [RR=0.99 (0.96-1.02)]. Distance to gastroenterologist had no impact on the rates of adenoma detection or CRC incidence. This study highlighted the prominent role of access to GPs in the detection of both colorectal adenomas and overall cancers. Deprivation had an impact only on adenoma detection. PMID:26067032

  17. Coherent Control of Optically Generated and Detected Picosecond Surface Acoustic Phonons

    SciTech Connect

    David H. Hurley

    2006-11-01

    Coherent control of elementary optical excitations is a key issue in ultrafast materials science. Manipulation of electronic and vibronic excitations in solids as well as chemical and biological systems on ultrafast time scales has attracted a great deal of attention recently. In semiconductors, coherent control of vibronic excitations has been demonstrated for bulk acoustic and optical phonons generated in superlattice structures. The bandwidth of these approaches is typically fully utilized by employing a 1-D geometry where the laser spot size is much larger than the superlattice repeat length. In this presentation we demonstrate coherent control of optically generated picosecond surface acoustic waves using sub-optical wavelength absorption gratings. The generation and detection characteristics of two material systems are investigated (aluminum absorption gratings on Si and GaAs substrates).

  18. Streptavidin Modified ZnO Film Bulk Acoustic Resonator for Detection of Tumor Marker Mucin 1.

    PubMed

    Zheng, Dan; Guo, Peng; Xiong, Juan; Wang, Shengfu

    2016-12-01

    A ZnO-based film bulk acoustic resonator has been fabricated using a magnetron sputtering technology, which was employed as a biosensor for detection of mucin 1. The resonant frequency of the thin-film bulk acoustic resonator was located near at 1503.3 MHz. The average electromechanical coupling factor [Formula: see text] and quality factor Q were 2.39 % and 224, respectively. Using the specific binding system of avidin-biotin, the streptavidin was self-assembled on the top gold electrode as the sensitive layer to indirectly test the MUC1 molecules. The resonant frequency of the biosensor decreases in response to the mass loading in range of 20-500 nM. The sensor modified with the streptavidin exhibits a high sensitivity of 4642.6 Hz/nM and a good selectivity. PMID:27624339

  19. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    NASA Astrophysics Data System (ADS)

    Pawar, Dnyandeo; Rao, Ch. N.; Choubey, Ravi Kant; Kale, S. N.

    2016-01-01

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  20. Preliminary Study on Acoustic Detection of Faults Experienced by a High-Bypass Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Boyle, Devin K.

    2014-01-01

    The vehicle integrated propulsion research (VIPR) effort conducted by NASA and several partners provided an unparalleled opportunity to test a relatively low TRL concept regarding the use of far field acoustics to identify faults occurring in a high bypass turbofan engine. Though VIPR Phase II ground based aircraft installed engine testing wherein a multitude of research sensors and methods were evaluated, an array of acoustic microphones was used to determine the viability of such an array to detect failures occurring in a commercially representative high bypass turbofan engine. The failures introduced during VIPR testing included commanding the engine's low pressure compressor (LPC) exit and high pressure compressor (HPC) 14th stage bleed values abruptly to their failsafe positions during steady state

  1. Optimised Pre-Analytical Methods Improve KRAS Mutation Detection in Circulating Tumour DNA (ctDNA) from Patients with Non-Small Cell Lung Cancer (NSCLC)

    PubMed Central

    Sherwood, James L.; Corcoran, Claire; Brown, Helen; Sharpe, Alan D.; Musilova, Milena; Kohlmann, Alexander

    2016-01-01

    Introduction Non-invasive mutation testing using circulating tumour DNA (ctDNA) is an attractive premise. This could enable patients without available tumour sample to access more treatment options. Materials & Methods Peripheral blood and matched tumours were analysed from 45 NSCLC patients. We investigated the impact of pre-analytical variables on DNA yield and/or KRAS mutation detection: sample collection tube type, incubation time, centrifugation steps, plasma input volume and DNA extraction kits. Results 2 hr incubation time and double plasma centrifugation (2000 x g) reduced overall DNA yield resulting in lowered levels of contaminating genomic DNA (gDNA). Reduced “contamination” and increased KRAS mutation detection was observed using cell-free DNA Blood Collection Tubes (cfDNA BCT) (Streck), after 72 hrs following blood draw compared to EDTA tubes. Plasma input volume and use of different DNA extraction kits impacted DNA yield. Conclusion This study demonstrated that successful ctDNA recovery for mutation detection in NSCLC is dependent on pre-analytical steps. Development of standardised methods for the detection of KRAS mutations from ctDNA specimens is recommended to minimise the impact of pre-analytical steps on mutation detection rates. Where rapid sample processing is not possible the use of cfDNA BCT tubes would be advantageous. PMID:26918901

  2. Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean.

    PubMed

    Stafford, K M; Fox, C G; Clark, D S

    1998-12-01

    Analysis of acoustic signals recorded from the U.S. Navy's SOund SUrveillance System (SOSUS) was used to detect and locate blue whale (Balaenoptera musculus) calls offshore in the northeast Pacific. The long, low-frequency components of these calls are characteristic of calls recorded in the presence of blue whales elsewhere in the world. Mean values for frequency and time characteristics from field-recorded blue whale calls were used to develop a simple matched filter for detecting such calls in noisy time series. The matched filter was applied to signals from three different SOSUS arrays off the coast of the Pacific Northwest to detect and associate individual calls from the same animal on the different arrays. A U.S. Navy maritime patrol aircraft was directed to an area where blue whale calls had been detected on SOSUS using these methods, and the presence of vocalizing blue whale was confirmed at the site with field recordings from sonobuoys. PMID:9857519

  3. A framework of concurrent navigation and seabottom targets detection using acoustic sensors on AUVs

    NASA Astrophysics Data System (ADS)

    Liu, Te-Chih; Schmidt, Henrik

    2001-05-01

    The use of Autonomous Underwater Vehicles (AUVs) for Mine Counter Measures (MCMs) is an area of active recent research. The excellent mobility of AUVs allows for multi-aspect sonar view of the targets for improved detection, tracking, and classification. However, the uncertainty of the platforms and associated target localization degrade the detection ability by AUVs. Furthermore, the weak signals from buried targets is another severe problem making detection by a single measurement impossible. A new acoustic sensing framework is proposed for detection and tracking seabottom targets based on the track-before-detect (TBD) technique. In contrast to the traditional methods, TBD tracks possible targets before the detection is declared. There are several advantages by using this framework: (1) Compared to the traditional method of detection followed by tracking, higher detection probability is achieved for dim target detection due to the integrated detection metric of TBD. (2) Compared to the multiple hypothesis tracker (MHT) method, instead of searching a diverge hypotheses tree, TBD speeds up the searching and decreases the computational load, which makes onboard implementation feasible. (3) The stochastic models of uncertainties of targets and AUVs are based on the Bayesian framework, and thus, it is easy to apply various recursive estimators such as the Kalman filter or particle filter for tracking individual targets as well as the AUV platforms. Results of a successful application of this method in the GOATS2002 experiment are demonstrated. [Work supported by ONR and NATO Undersea Research Centre.

  4. Uncertainty quantification of relative acoustic nonlinearity parameter of guided waves for damage detection in composite structures

    NASA Astrophysics Data System (ADS)

    Hong, Ming; Mao, Zhu; Todd, Michael D.; Su, Zhongqing; Qing, Xinlin

    2015-03-01

    Nonlinear guided waves have been studied extensively for the characterization of micro-damage in plate-like structures, such as early-stage fatigue and thermal degradation in metals. Meanwhile, an increasing number of studies have reported the use of nonlinear acoustic techniques for detection of impact damage, fatigue, and thermal fatigue in composite structures. Among these techniques, the (relative) acoustic nonlinearity parameter, extracted from acousto-ultrasonic waves based on second-harmonic generation, has been considered one of the most popular tools for quantifying the detection of nonlinearity in inspected structures. Considering the complex nature of nonlinearities involved in composite materials (even under healthy conditions), and operational/environmental variability and measurement noise, the calculation of the relative acoustic nonlinearity parameter (RANP) from experimental data may suffer from considerable uncertainties, which may impair the quality of damage detection. In this study, we aim to quantify the uncertainty of the magnitude of the RANP estimator in the context of impact damage identification in unidirectional carbon fiber laminates. First, the principles of nonlinear ultrasonics are revisited briefly. A general probability density function of the RANP is then obtained through numerical evaluation in a theoretical setting. Using piezoelectric wavers, continuous sine waves are generated in the sample. Steady-state responses are acquired and processed to produce histograms of the RANP estimates before and after the impact damage. These observed histograms are consistent with the predicted distributions, and examination of the distributions demonstrates the significance of uncertainty quantification when using the RANP for damage detection in composite structures.

  5. Polarization sensitive excitation-emission matrices for detection of colorectal tumours - initial investigations

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Genova, Ts; Zhelyazkova, Al; Angelova, L.; Keremedchiev, M.; Penkov, N.; Vladimirov, B.; Semyachkina-Glushkovskaya, O.; Avramov, L.

    2015-03-01

    Excitation-emission matrices were used for detection of the autofluorescence properties of surgically excised normal and cancerous mucosa of lower gastrointestinal tract tissues (colon and rectum carcinoma). Linear polarization of the excitation and emission fluorescence light was additionally applied to evaluate the influence of anisotropic fluorophores presented in the tissues investigated. Excitation applied was in the region of 280-440 nm, using step of 10 nm for the scanning, fluorescence emission was detected in the region of 300-800 nm, with scanning step of 1 nm. Excitation and emission light were investigated in parallel and perpendicular linear polarization modes respectively. These investigations are part of the concept to proof the feasibility of autofluorescence system for a real clinical application. Autofluorescence detection could make the entire diagnostics procedure more personal, patient friendly and effective and will help for further understanding of tumors nature and to improve patients' lives. In the current investigation major spectral features without and with linear polarization applied are addressed and lower GIT lesions' emission properties are evaluated.

  6. Integrated acoustic emission/vibration sensor for detecting damage in aircraft drive train components

    NASA Astrophysics Data System (ADS)

    Godínez-Azcuaga, Valery F.; Ozevin, Didem; Finlayson, Richard D.; Anastasopoulos, Athanasios; Tsimogiannis, Apostolos

    2007-04-01

    Diaphragm-type couplings are high misalignment torque and speed transfer components used in aircrafts. Crack development in such couplings, or in the drive train in general, can lead to component failure that can bring down an aircraft. Real time detection of crack formation and growth is important to prevent such catastrophic failures. However, there is no single Nondestructive Monitoring method available that is capable of assessing the early stages of crack growth in such components. While vibration based damage identification techniques are used, they cannot detect cracks until they reach a considerable size, which makes detection of the onset of cracking extremely difficult. Acoustic Emission (AE) can detect and monitor early stage crack growth, however excessive background noise can mask acoustic emissions produced by crack initiation. Fusion of the two mentioned techniques can increase the accuracy of measurement and minimize false alarms. However, a monitoring system combining both techniques could prove too large and heavy for the already restricted space available in aircrafts. In the present work, we will present a newly developed integrated Acoustic Emission/Vibration (AE/VIB) combined sensor which can operate in the temperature range of -55°F to 257°F and in high EMI environment. This robust AE/VIB sensor has a frequency range of 5 Hz-2 kHz for the vibration component and a range of 200-400 kHz for the acoustic emission component. The sensor weight is comparable to accelerometers currently used in flying aircraft. Traditional signal processing approaches are not effective due to high signal attenuation and strong background noise conditions, commonly found in aircraft drive train systems. As an alternative, we will introduce a new Supervised Pattern Recognition (SPR) methodology that allows for simultaneous processing of the signals detected by the AE/VIB sensor and their classification in near-real time, even in these adverse conditions. Finally, we

  7. Measurement of bioelectric and acoustic profile of breast tissue using hybrid magnetoacoustic method for cancer detection.

    PubMed

    Salim, M I Mohamad; Supriyanto, E; Haueisen, J; Ariffin, I; Ahmad, A H; Rosidi, B

    2013-04-01

    This paper proposes a novel hybrid magnetoacoustic measurement (HMM) system aiming at breast cancer detection. HMM combines ultrasound and magnetism for the simultaneous assessment of bioelectric and acoustic profiles of breast tissue. HMM is demonstrated on breast tissue samples, which are exposed to 9.8 MHz ultrasound wave with the presence of a 0.25 Tesla static magnetic field. The interaction between the ultrasound wave and the magnetic field in the breast tissue results in Lorentz Force that produces a magnetoacoustic voltage output, proportional to breast tissue conductivity. Simultaneously, the ultrasound wave is sensed back by the ultrasound receiver for tissue acoustic evaluation. Experiments are performed on gel phantoms and real breast tissue samples harvested from laboratory mice. Ultrasound wave characterization results show that normal breast tissue experiences higher attenuation compared with cancerous tissue. The mean magnetoacoustic voltage results for normal tissue are lower than that for the cancerous tissue group. In conclusion, the combination of acoustic and bioelectric measurements is a promising approach for breast cancer diagnosis. PMID:23238828

  8. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    SciTech Connect

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  9. Online acoustic emission monitoring of combustion turbines for compressor stator vane crack detection

    NASA Astrophysics Data System (ADS)

    Momeni, Sepandarmaz; Koduru, Jaya P.; Gonzalez, Miguel; Zarate, Boris; Godinez, Valery

    2013-03-01

    Combustion turbine components operate under extreme environmental conditions and are susceptible to failure. Turbine blades are the most susceptible components and need to be regularly inspected to assure their integrity. Undetected cracks on these blades may grow quickly due to the high fatigue loading to which they are subjected and eventually fail causing extensive damage to the turbine. Cracks in turbine blades can originate from manufacturing errors, impact damages or the due to corrosion from the aggressive environment in which they operate. The component most susceptible to failure in a combustion turbine is the mid-compressor blades. In this region, the blades experience the highest gradients in temperature and pressure. Cracks in the rotator blades can be detected by vibration monitoring; while, the stator vanes or blades cracking can only be monitored by Acoustic Emission (AE) method. The stator vanes are in contact with the external casing of the turbine and therefore, any acoustic emission activity from the blades can be captured non-intrusively by placing sensors on the turbine casing. The acoustic emission activity from cracks that are under fatigue loading is significantly higher than the background noise and hence can be captured and located accurately by a group of AE sensors. Using a total of twelve AE sensors per turbine, the crack generation and propagation in the stator vanes of the mid-compressor section is monitored continuously. The cracks appearing in the stator vanes is clearly identified and located by the AE sensors.

  10. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    SciTech Connect

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.

    2008-10-01

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.

  11. Dual fiber Bragg gratings configuration-based fiber acoustic sensor for low-frequency signal detection

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Wang, Shun; Lu, Ping; Liu, Deming

    2014-11-01

    We propose and fabricate a new type fiber acoustic sensor based on dual fiber Bragg gratings (FBGs) configuration. The acoustic sensor head is constructed by putting the sensing cells enclosed in an aluminum cylinder space built by two Cband FBGs and a titanium diaphragm of 50 um thickness. One end of each FBG is longitudinally adhered to the diaphragm by UV glue. Both of the two FBGs are employed for reflecting light. The dual FBGs play roles not only as signal transmission system but also as sensing component, and they demodulate each other's optical signal mutually during the measurement. Both of the two FBGs are pre-strained and the output optical power experiences fluctuation in a linear relationship along with a variation of axial strain and surrounding acoustic interference. So a precise approach to measure the frequency and sound pressure of the acoustic disturbance is achieved. Experiments are performed and results show that a relatively flat frequency response in a range from 200 Hz to 1 kHz with the average signal-to-noise ratio (SNR) above 21 dB is obtained. The maximum sound pressure sensitivity of 11.35mV/Pa is achieved with the Rsquared value of 0.99131 when the sound pressure in the range of 87.7-106.6dB. It has potential applications in low frequency signal detection. Owing to its direct self-demodulation method, the sensing system reveals the advantages of easy to demodulate, good temperature stability and measurement reliability. Besides, performance of the proposed sensor could be improved by optimizing the parameters of the sensor, especially the diaphragm.

  12. An electro-acoustical technique for the detection of knee joint noise.

    PubMed

    Chu, M L; Gradisar, I A; Railey, M R; Bowling, G F

    1976-01-01

    Distinguishing acoustical signatures of sound emitted by normal and pathological knee joints are picked up using a double microphone-differential amplifier setup. Extraneous background noise is minimized using the principle of "noise cancellation". Two identical sensitive condenser microphones and an F.M. recorder with flat responses in the audio range were used. Preliminary studies covering normal and diseased knee joints showed that their respective waveforms and spectral patterns are unique and proved to be a promising nondestructive diagnostic tool for early detection of knee joint cartilage damage. PMID:957922

  13. Detection scheme for acoustic quantum radiation in Bose-Einstein condensates.

    PubMed

    Schützhold, Ralf

    2006-11-10

    Based on doubly detuned Raman transitions between (meta)stable atomic or molecular states and recently developed atom counting techniques, a detection scheme for sound waves in dilute Bose-Einstein condensates is proposed whose accuracy might reach down to the level of a few or even single phonons. This scheme could open up a new range of applications including the experimental observation of quantum radiation phenomena such as the Hawking effect in sonic black-hole analogues or the acoustic analogue of cosmological particle creation. PMID:17155600

  14. Experimental Study of Highly Sensitive Sensor Using a Surface Acoustic Wave Resonator for Wireless Strain Detection

    NASA Astrophysics Data System (ADS)

    Bao; Zhongqing; Hara, Motoaki; Mitsui, Misato; Sano, Koji; Nagasawa, Sumito; Kuwano, Hiroki

    2012-07-01

    We developed a highly sensitive strain sensor employing a surface acoustic wave (SAW) resonator for a wireless sensing system. The aim of this study is to monitor the distribution of the strain in the earth crust or giant infrastructures, such as bridges, skyscrapers and power plants, for disaster prevention. A SAW strain sensor was fabricated using LiNbO3 and a quartz substrate, and applied in a tensile test by attaching the steel specimen based on Japanese Industrial Standards (JIS Z2441-1). The results confirmed that the developed sensor could detect a strain of 10-6 order with linearity.

  15. ADRPM-VII applied to the long-range acoustic detection problem

    NASA Technical Reports Server (NTRS)

    Shalis, Edward; Koenig, Gerald

    1990-01-01

    An acoustic detection range prediction model (ADRPM-VII) has been written for IBM PC/AT machines running on the MS-DOS operating system. The software allows the user to predict detection distances of ground combat vehicles and their associated targets when they are involved in quasi-military settings. The program can also calculate individual attenuation losses due to spherical spreading, atmospheric absorption, ground reflection and atmospheric refraction due to temperature and wind gradients while varying parameters effecting the source-receiver problem. The purpose here is to examine the strengths and limitations of ADRPM-VII by modeling the losses due to atmospheric refraction and ground absorption, commonly known as excess attenuation, when applied to the long range detection problem for distances greater than 3 kilometers.

  16. Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback

    PubMed Central

    Rodríguez, Alberto; Yebes, J. Javier; Alcantarilla, Pablo F.; Bergasa, Luis M.; Almazán, Javier; Cela, Andrés

    2012-01-01

    The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system. PMID:23247413

  17. Resonant photo-acoustic detection of carbon monoxide with UV Laser at 213 nm

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.; Gondal, M. A.; Al-Suliman, N.

    2011-05-01

    A trace-gas sensor for carbon monoxide based on Pulsed Laser-Induced Photo-Acoustic Spectroscopy (PLIPAS) in conjunction with laser excitation wavelength of 213 nm was designed, fabricated and tested for the first time. PLIPAS-based sensor with different cell geometry was employed to enhance the sensitivity down to 58 ppbV level. The parametric dependence of the PLIPAS signals on CO gas concentration, buffer gas (Ar, O2 and He) concentration, laser pulse energy was studied and Ar proved to be better than O2 and He in terms of enhancing the sensitivity of the system. The signal-to-noise ratio and limit of detection have been quantified for different experimental conditions. This study proves that PLIPAS-based CO gas sensor is a reliable gas-leak detection system with high sensitivity and selectivity. Hence this sensor can be employed for pollution monitoring and detection of CO in a noisy environment.

  18. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase.

    PubMed

    Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M; Soares, Alexei S

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals. PMID:26574563

  19. Low power underwater acoustic DPSK detection: Theoretical prediction and experimental results

    NASA Astrophysics Data System (ADS)

    Dunne, Andrew

    This thesis presents two methods of analyzing the effectiveness of a prototype differential phase-shift keying (DPSK) detection circuit. The first method is to make modifications to the existing hardware to reliably output and record the cross-correlation values of the DPSK detection process. The second method is to write a MATLAB detection algorithm which accurately simulates the detection results of the hardware system without the need of any electronics. These two systems were tested and verified with a bench test using computer generated DPSK signals. The hardware system was tested using real acoustic data from shallow and deep water at-sea tests to determine the effectiveness of the DPSK detection circuit in different ocean environments. The hydrophone signals from the tests were recorded so that the cross-correlation values could be verified using the MATLAB detector. As a result of this study, these two systems provided more insight into how well the DPSK detection prototype works and helped to identify ways of improving the detection reliability and overall performance of the prototype DPSK detection circuit.

  20. Clinical features of gastroenteropancreatic tumours

    PubMed Central

    Czarnywojtek, Agata; Bączyk, Maciej; Ziemnicka, Katarzyna; Fischbach, Jakub; Wrotkowska, Elżbieta; Ruchała, Marek

    2015-01-01

    Gastroenteropancreatic (GEP) endocrine tumours (carcinoids and pancreatic islet cell tumours) are composed of multipotent neuroendocrine cells that exhibit a unique ability to produce, store, and secrete biologically active substances and cause distinct clinical syndromes. The classification of GEP tumours as functioning or non-functioning is based on the presence of symptoms that accompany these syndromes secondary to the secretion of hormones, neuropeptides and/or neurotransmitters (functioning tumours). Non-functioning tumours are considered to be neoplasms of neuroendocrine differentiation that are not associated with obvious symptoms attributed to the hypersecretion of metabolically active substances. However, a number of these tumours are either capable of producing low levels of such substances, which can be detected by immunohistochemistry but are insufficient to cause symptoms related to a clinical syndrome, or alternatively, they may secrete substances that are either metabolically inactive or inappropriately processed. In some cases, GEP tumours are not associated with the production of any hormone or neurotransmitter. Both functioning and non-functioning tumours can also produce symptoms due to mass effects compressing vital surrounding structures. Gastroenteropancreatic tumours are usually classified further according to the anatomic site of origin: foregut (including respiratory tract, thymus, stomach, duodenum, and pancreas), midgut (including small intestine, appendix, and right colon), and hindgut (including transverse colon, sigmoid, and rectum). Within these subgroups the biological and clinical characteristics of the tumours vary considerably, but this classification is still in use because a significant number of previous studies, mainly observational, have used it extensively. PMID:26516377

  1. To See or Not to See: Investigating Detectability of Ganges River Dolphins Using a Combined Visual-Acoustic Survey

    PubMed Central

    Richman, Nadia I.; Gibbons, James M.; Turvey, Samuel T.; Akamatsu, Tomonari; Ahmed, Benazir; Mahabub, Emile; Smith, Brian D.; Jones, Julia P. G.

    2014-01-01

    Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring. PMID:24805782

  2. To see or not to see: investigating detectability of Ganges River dolphins using a combined visual-acoustic survey.

    PubMed

    Richman, Nadia I; Gibbons, James M; Turvey, Samuel T; Akamatsu, Tomonari; Ahmed, Benazir; Mahabub, Emile; Smith, Brian D; Jones, Julia P G

    2014-01-01

    Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring. PMID:24805782

  3. Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations

    SciTech Connect

    Lewis, J P; Rock, D R; Shaeffer, D L; Warshaw, S I

    1999-10-07

    The Black Thunder Coal Mine (BTCM) near Gillette, Wyoming was used as a test bed to determine the feasibility of detecting explosion-induced geomagnetic disturbances with ground-based induction magnetometers. Two magnetic observatories were fielded at distances of 50 km and 64 km geomagnetically north from the northernmost edge of BTCM. Each observatory consisted of three separate but mutually orthogonal magnetometers, Global Positioning System (GPS) timing, battery and solar power, a data acquisition and storage system, and a three-axis seismometer. Explosions with yields of 1 to 3 kT of TNT equivalent occur approximately every three weeks at BTCM. We hypothesize that explosion-induced acoustic waves propagate upward and interact collisionally with the ionosphere to produce ionospheric electron density (and concomitant current density) perturbations which act as sources for geomagnetic disturbances. These disturbances propagate through an ionospheric Alfven waveguide that we postulate to be leaky (due to the imperfectly conducting lower ionospheric boundary). Consequently, wave energy may be observed on the ground. We observed transient pulses, known as Q-bursts, with pulse widths about 0.5 s and with spectral energy dominated by the Schumann resonances. These resonances appear to be excited in the earth-ionosphere cavity by Alfven solitons that may have been generated by the explosion-induced acoustic waves reaching the ionospheric E and F regions and that subsequently propagate down through the ionosphere to the atmosphere. In addition, we observe late time (> 800 s) ultra low frequency (ULF) geomagnetic perturbations that appear to originate in the upper F region ({approximately}300 km) and appear to be caused by the explosion-induced acoustic wave interacting with that part of the ionosphere. We suggest that explosion-induced Q-bursts may be discriminated from naturally occurring Q-bursts by association of the former with the late time explosion-induced ULF

  4. Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California

    SciTech Connect

    Merewether, R.; Olsson, M.S.; Lonsdale, P.

    1985-03-10

    Plumes extending nearly 1000 m from the 1500--2000 m deep seafloor of Guaymas Basin were detected from below the 23.5-kHz inverted echo-sounder of the Scripps Deep Two vehicle. Individual sound reflectors (bubbles or drops) rise at approximately 17 cm/s in one plume. The Deep Tow side scan records provide more information on the plumes' structure at the altitude of the vehicle (75 m), where some form multiple side scan targets, one 20 m across. Near-bottom 4-kHz profiles show that plumes overlie young fault traces associated with extensional faulting at the basin's spreading centers of outcrops of tilted beds beside strike-slip faults. We infer from analysis of the Deep Tow observations, field relationships, and knowledge of the geology of this basin that the plumes are made of light hydrocarbons, perhaps mainly methane, that emanate from seabed seeps. One of the acoustically detected plumes was at a spreading-axis hydrothermal field, which has many buoyant, acoustically transparent thermal plumes, some of which are rich in dissolved hydrocarbons.

  5. Acoustic emission detection in carbon composite materials using Fiber Bragg Grating optical sensors

    NASA Astrophysics Data System (ADS)

    Mabry, Nehemiah J.

    In light of ongoing efforts to reduce weight but maintain durability, designers have examined the use of carbon fiber reinforced polymer (CFRP) composite materials for a number of aerospace and civil structures. Along with this research has been the study of determining reliable sensing and monitoring capabilities to avoid catastrophic failure. Fiber Bragg Grating (FBG) sensors are known to carry several advantages in this area, one of which is their proven ability to detect acoustic emission (AE) Lamb waves in composite structures. AE is produced in these materials by failure mechanisms such as resin cracking, fiber debonding, fiber pullout and fiber breakage. In this study FBG sensors were attached to CFRP laminates to detect acoustic emission events. Also Felicity Ratio (FR) measurements were made as they accumulated damage. FR is obtained directly from the ratio of the stress level at the onset of significant emission versus the maximum prior stress at the same AE level. The main objective of this paper is to describe the results of acousto-optic experiments using FBG sensors and present it as a way of determining accumulated damage in a carbon composite structure.

  6. Surface crack detection for Al plate using the surface acoustic waves and neural network identification

    NASA Astrophysics Data System (ADS)

    Guan, Jianfei; Shen, Zhonghua; Xu, Baiqiang; Lu, Jian; Ni, Xiaowu

    2005-01-01

    This paper utilized the Finite Element Method to investigate the transient scattering of Rayleigh wave by a surface crack in a plate. The incident wave models the guided waves generated by a pulsed line source laser irradiation on the top surface of the plate. The pulsed laser is assumed to be transient heat source, and the surface acoustic wave is calculated based on the thermoelastic theory. We have computed the different results of the Al plates with the varied depth surface-breaking crack, then attained the temporal characteristics of reflected waves and transmitted waves which are generated by the initial surface acoustic waves interacted with the surface breaking cracks with different depth. The artificial neural networks (ANN) are applied to establish the mapping relationship between the characteristic of the reflected waveform and the crack depth. The results of crack damage detection for Al plates show that the method developed in this paper can be applied to online structural damage detection and health monitoring for various industrial structures.

  7. Detection of in vitro interferon-γ and serum tumour necrosis factor-α in multidrug-resistant tuberculosis patients

    PubMed Central

    Fortes, A; Pereira, K; Antas, P R Z; Franken, C L M C; Dalcolmo, M; Ribeiro-Carvalho, M M; Cunha, K S; Geluk, A; Kritski, A; Kolk, A; Klatser, P; Sarno, E N; Ottenhoff, T H M; Sampaio, E P

    2005-01-01

    Multidrug-resistant tuberculosis (MDR-TB) is known as having a poor prognosis with a weak response to therapy and very high death rates. The aim of this work was to assess the immune response to the RD1-encoded antigen ESAT-6 of Mycobacterium tuberculosis in MDR-TB patients and compare to non-resistant (NR) TB patients and healthy controls (HC). Evaluation of interferon (IFN)-γ production showed that, although 55% of the MDR patients were responsive to ESAT-6, they produced lower IFN-γ levels (553 ± 11 pg/ml) when compared to NR-TB (1179 ± 163 pg/ml; P < 0·05) but not to controls (412 ± 65·7 pg/ml). Differences in the response to ESAT-6 and to its overlapping peptides mixture were also significant between MDR versus treated pulmonary NR-TB. Furthermore, a very low rate of response to PPD (23·5%) and to Ag85B (33·3%) was noted in MDR-TB patients as compared to the other groups. To determine the inflammatory response in patients’ groups, detection of tumour necrosis factor (TNF)-α was assessed in their sera before and during chemotherapy. Mean TNF-α levels in MDR-TB (43·8 ± 9 pg/ml) paralleled those found in treated pulmonary, and it was significantly different (P < 0·05) from the values found in untreated NR and HC. Interestingly, secretion of IFN-γ and TNF-α were predominant in MDR patients who presented with bilateral pulmonary lesions and lung cavitation. The present data indicate that the overall immune response to mycobacterial antigens is decreased in resistant TB and the major role inflammatory cytokines may play in perpetuating pulmonary tissue damage. PMID:16045745

  8. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S

    2005-10-04

    This report reviews progress made on NA22 project LL251DP to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. We have met all milestones and deliverables for FY05, as shown in Table 1. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begin to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. The results obtained in FY05 further support the feasibility of successful demonstration of an NAR experiment for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs.

  9. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    SciTech Connect

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  10. Generation and detection of gigahertz surface acoustic waves using an elastomeric phase-shift mask

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Zhao, Peng; Zhao, Ji-Cheng; Cahill, David G.

    2013-10-01

    We describe a convenient approach for measuring the velocity vSAW of surface acoustic waves (SAWs) of the near-surface layer of a material through optical pump-probe measurements. The method has a lateral spatial resolution of <10 μm and is sensitive to the elastic constants of the material within ≈300 nm of the surface. SAWs with a wavelength of 700 nm and 500 nm are generated and detected using an elastomeric polydimethylsiloxane phase-shift mask which is fabricated using a commercially available Si grating as a mold. Time-domain electromagnetics calculations show, in agreement with experiment, that the efficiency of the phase-shift mask for generating and detecting SAWs decreases rapidly as the periodicity of the mask decreases below the optical wavelength. We validate the experimental approach using bulk and thin film samples with known elastic constants.

  11. Acoustic detection and localization of small arms, influence of urban conditions

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Hamery, P.

    2008-04-01

    The detection and localization of small fire arms is envisaged by use of acoustic devices. This paper describes the capability to detect and localize snipers in open field and in urban conditions. This work was performed by ISL and DGA during various national and NATO trials. During recent military conflicts, as well as for security interventions, the urban zone has taken a prominent place. Experimental results measured in free-field conditions, compared with those measured in a village used for military training, show that the streets and houses can generate many reflections of the original gunshot, requiring new signal processing techniques to separate each contribution. For this purpose a specific numerical model has been developed. A few examples of experimental and numerical results obtained for the validation of this methodology will be presented.

  12. Applications of swept-frequency acoustic interferometer for nonintrusive detection and identification of chemical warfare compounds

    SciTech Connect

    Sinha, D.N.; Springer, K.; Han, W.; Lizon, D.; Kogan, S.

    1997-12-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a nonintrusive liquid characterization technique developed specifically for detecting and identifying chemical warfare (CW) compounds inside sealed munitions. The SFAI technique can rapidly (less than 20 seconds) and accurately determine sound speed and sound attenuation of a liquid inside a container over a wide frequency range (1 kHz-15 MHz). From the frequency-dependent sound attenuation measurement, liquid density is determined. These three physical properties are used to uniquely identify the CW compounds. In addition, various chemical relaxation processes in liquids and particle size distribution in emulsions can also be determined from the frequency-dependent attenuation measurement. The SFAI instrument is battery-operated and highly portable (< 6 lb.). The instrument has many potential application in industry ranging from sensitive detection (ppm level) of contamination to process control. The theory of the technique will be described and examples of several chemical industry applications will be presented.

  13. Detection of Delamination in Composite Beams Using Broadband Acoustic Emission Signatures

    NASA Technical Reports Server (NTRS)

    Okafor, A. C.; Chandrashekhara, K.; Jiang, Y. P.

    1996-01-01

    Delamination in composite structure may be caused by imperfections introduced during the manufacturing process or by impact loads by foreign objects during the operational life. There are some nondestructive evaluation methods to detect delamination in composite structures such as x-radiography, ultrasonic testing, and thermal/infrared inspection. These methods are expensive and hard to use for on line detection. Acoustic emission testing can monitor the material under test even under the presence of noise generated under load. It has been used extensively in proof-testing of fiberglass pressure vessels and beams. In the present work, experimental studies are conducted to investigate the use of broadband acoustic emission signatures to detect delaminations in composite beams. Glass/epoxy beam specimens with full width, prescribed delamination sizes of 2 inches and 4 inches are investigated. The prescribed delamination is produced by inserting Teflon film between laminae during the fabrication of composite laminate. The objectives of this research is to develop a method for predicting delamination size and location in laminated composite beams by combining smart materials concept and broadband AE analysis techniques. More specifically, a piezoceramic (PZT) patch is bonded on the surface of composite beams and used as a pulser. The piezoceramic patch simulates the AE wave source as a 3 cycles, 50KHz, burst sine wave. One broadband AE sensor is fixed near the PZT patch to measure the AE wave near the AE source. A second broadband AE sensor, which is used as a receiver, is scanned along the composite beams at 0.25 inch step to measure propagation of AE wave along the composite beams. The acquired AE waveform is digitized and processed. Signal strength, signal energy, cross-correlation of AE waveforms, and tracking of specific cycle of AE waveforms are used to detect delamination size and location.

  14. Detection and localization using an acoustic array on a small robotic platform

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated autonomous and semi-autonomous ground, air and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  15. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  16. Network of acoustic sensors for the detection of weapons firing: tests for the choice of individual sensing elements

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Hamery, P.

    2010-04-01

    The detection and localization of weapon firing on the battlefield is envisaged by means of acoustic waves. The main objective of this work is to compare various sensing elements that can be integrated in acoustic arrays. Experimental measurements of sound waves obtained by using some of these elements in Unattended Ground Sensors are presented for snipers, mortars or artillery guns. The emphasis will be put on the characteristics of the sensing elements needed to detect and classify the Mach wave generated by a supersonic projectile and the muzzle wave generated by the combustion of the propulsion powder. Examples of preliminary prototypes are presented to illustrate our topic. We will concentrate on a wearable system considered to improve the soldier's awareness of the surrounding threats: this realization consists of a network of three helmets integrating an acoustic array for the detection and localization of snipers.

  17. Tissue differentiation using laser-induced shock waves by detection of acoustic transients through an optical wave-guide

    NASA Astrophysics Data System (ADS)

    Tschepe, Johannes; Ahrens, Thomas; Helfmann, Juergen; Mueller, Gerhard J.; Gapontsev, Valentin P.

    1993-05-01

    Some physical phenomena which occur during the fragmentation of calculi by laser induced optical break down are presented. With in vitro experiments it could be shown that the energy of the laser induced plasma and of the cavitation bubble (induced by the plasma) depends by the nature of the tissue. The laser induced plasma and the cavitation bubble generate shock waves. These sound waves are transferred via the laser fiber and detected with a piezo- electrical sensor at the proximal end. The acoustic signal contains information on the potential energy of the bubble, which depends on the energy of the plasma. The possibility of measuring the energy dependent acoustic transients allows to distinguish between hard and soft tissue and by this it is suitable for controlling the laser lithotripsy process. The transmission of acoustic transients through silica glass fibers is investigated by theoretical calculations. It shows the feasibility of silica glass fibers as an acoustic wave guide.

  18. Shifting Gravel and the Acoustic Detection Range of Killer Whale Calls

    NASA Astrophysics Data System (ADS)

    Bassett, C.; Thomson, J. M.; Polagye, B. L.; Wood, J.

    2012-12-01

    In environments suitable for tidal energy development, strong currents result in large bed stresses that mobilize sediments, producing sediment-generated noise. Sediment-generated noise caused by mobilization events can exceed noise levels attributed to other ambient noise sources at frequencies related to the diameters of the mobilized grains. At a site in Admiralty Inlet, Puget Sound, Washington, one year of ambient noise data (0.02 - 30 kHz) and current velocity data are combined. Peak currents at the site exceed 3.5 m/s. During slack currents, vessel traffic is the dominant noise source. When currents exceed 0.85 m/s noise level increases between 2 kHz and 30 kHz are correlated with near-bed currents and bed stress estimates. Acoustic spectrum levels during strong currents exceed quiescent slack tide conditions by 20 dB or more between 2 and 30 kHz. These frequencies are consistent with sound generated by the mobilization of gravel and pebbles. To investigate the implications of sediment-generated noise for post-installation passive acoustic monitoring of a planned tidal energy project, ambient noise conditions during slack currents and strong currents are combined with the characteristics of Southern Resident killer whale (Orcinus orca) vocalizations and sound propagation modeling. The reduction in detection range is estimated for common vocalizations under different ambient noise conditions. The importance of sediment-generated noise for passive acoustic monitoring at tidal energy sites for different marine mammal functional hearing groups and other sediment compositions are considered.

  19. Ambient pressure laser desorption and laser-induced acoustic desorption ion mobility spectrometry detection of explosives.

    PubMed

    Ehlert, Sven; Walte, Andreas; Zimmermann, Ralf

    2013-11-19

    The development of fast, mobile, and sensitive detection systems for security-relevant substances is of enormous importance. Because of the low vapor pressures of explosives and improvised explosive devices, adequate sampling procedures are crucial. Ion mobility spectrometers (IMSs) are fast and sensitive instruments that are used as detection systems for explosives. Ambient pressure laser desorption (APLD) and ambient pressure laser-induced acoustic desorption (AP-LIAD) are new tools suitable to evaporate explosives in order to detect them in the vapor phase. Indeed, the most important advantage of APLD or AP-LIAD is the capability to sample directly from the surface of interest without any transfer of the analyte to other surfaces such as wipe pads. A much more gentle desorption, compared to classical thermal-based desorption, is possible with laser-based desorption using very short laser pulses. With this approach the analyte molecules are evaporated in a very fast process, comparable to a shock wave. The thermal intake is reduced considerably. The functionality of APLD and AP-LIAD techniques combined with a hand-held IMS system is shown for a wide range of common explosives such as EGDN (ethylene glycol dinitrate), urea nitrate, PETN (pentaerythritol tetranitrate), HMTD (hexamethylene triperoxide diamine), RDX (hexogen), tetryl (2,4,6-trinitrophenylmethylnitramine), and TNT (trinitrotoluene). Detection limits down to the low nanogram range are obtained. The successful combination of IMS detection and APLD/AP-LIAD sampling is shown. PMID:24116702

  20. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    PubMed

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features. PMID:24181982

  1. Comparison of spatial frequency domain features for the detection of side attack explosive ballistics in synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Dowdy, Josh; Anderson, Derek T.; Luke, Robert H.; Ball, John E.; Keller, James M.; Havens, Timothy C.

    2016-05-01

    Explosive hazards in current and former conflict zones are a threat to both military and civilian personnel. As a result, much effort has been dedicated to identifying automated algorithms and systems to detect these threats. However, robust detection is complicated due to factors like the varied composition and anatomy of such hazards. In order to solve this challenge, a number of platforms (vehicle-based, handheld, etc.) and sensors (infrared, ground penetrating radar, acoustics, etc.) are being explored. In this article, we investigate the detection of side attack explosive ballistics via a vehicle-mounted acoustic sensor. In particular, we explore three acoustic features, one in the time domain and two on synthetic aperture acoustic (SAA) beamformed imagery. The idea is to exploit the varying acoustic frequency profile of a target due to its unique geometry and material composition with respect to different viewing angles. The first two features build their angle specific frequency information using a highly constrained subset of the signal data and the last feature builds its frequency profile using all available signal data for a given region of interest (centered on the candidate target location). Performance is assessed in the context of receiver operating characteristic (ROC) curves on cross-validation experiments for data collected at a U.S. Army test site on different days with multiple target types and clutter. Our preliminary results are encouraging and indicate that the top performing feature is the unrolled two dimensional discrete Fourier transform (DFT) of SAA beamformed imagery.

  2. Optimization of an acoustic telemetry array for detecting transmitter-implanted fish

    USGS Publications Warehouse

    Clements, S.; Jepsen, D.; Karnowski, M.; Schreck, C.B.

    2005-01-01

    The development of miniature acoustic transmitters and economical, robust automated receivers has enabled researchers to study the movement patterns and survival of teleosts in estuarine and ocean environments, including many species and age-classes that were previously considered too small for implantation. During 2001-2003, we optimized a receiver mooring system to minimize gear and data loss in areas where current action or wave action and acoustic noise are high. In addition, we conducted extensive tests to determine (1) the performance of a transmitter and receiver (Vemco, Ltd.) that are widely used, particularly in North America and Europe and (2) the optimal placement of receivers for recording the passage of fish past a point in a linear-flow environment. Our results suggest that in most locations the mooring system performs well with little loss of data; however, boat traffic remains a concern due to entanglement with the mooring system. We also found that the reception efficiency of the receivers depends largely on the method and location of deployment. In many cases, we observed a range of 0-100% reception efficiency (the percentage of known transmissions that are detected while the receiver is within range of the transmitter) when using a conventional method of mooring. The efficiency was improved by removal of the mounting bar and obstructions from the mooring line. ?? Copyright by the American Fisheries Society 2005.

  3. Wideband excitation in nonlinear vibro-acoustic modulation for damage detection

    NASA Astrophysics Data System (ADS)

    Klepka, A.; Adamczyk, M.; Pieczonka, L.; Staszewski, W. J.

    2016-04-01

    The paper discusses the use of wideband excitation in nonlinear vibro-acoustic modulation technique (VAM) used for damage detection. In its original form, two mono-harmonic signals (low and high frequency) are used for excitation. The low frequency excitation is typically selected based on a modal analysis test and high frequency excitation is selected arbitrarily in the ultrasonic frequency range. This paper presents a different approach with use of wideband excitation signals. The proposed approach gives the possibility to simplify the testing procedure by omitting the modal test used to determine the value of low frequency excitation. Simultaneous use of wideband excitation for high frequency solves the ambiguity related to the selection of the frequency of acoustic wave. Broadband excitation signals require, however, more elaborate signal processing methods to determine the intensity of modulation for a given bandwidth. The paper discusses the proposed approach and the related signal processing procedure. Experimental validation of the proposed technique is performed on a laminated composite plate with a barely visible impact damage that was generated in an impact test. Piezoceramic actuators are used for vibration excitation and a scanning laser vibrometer is used for noncontact data acquisition.

  4. Perceptual thresholds for detecting modifications applied to the acoustical properties of a violin.

    PubMed

    Fritz, Claudia; Cross, Ian; Moore, Brian C J; Woodhouse, Jim

    2007-12-01

    This study is the first step in the psychoacoustic exploration of perceptual differences between the sounds of different violins. A method was used which enabled the same performance to be replayed on different "virtual violins," so that the relationships between acoustical characteristics of violins and perceived qualities could be explored. Recordings of real performances were made using a bridge-mounted force transducer, giving an accurate representation of the signal from the violin string. These were then played through filters corresponding to the admittance curves of different violins. Initially, limits of listener performance in detecting changes in acoustical characteristics were characterized. These consisted of shifts in frequency or increases in amplitude of single modes or frequency bands that have been proposed previously to be significant in the perception of violin sound quality. Thresholds were significantly lower for musically trained than for nontrained subjects but were not significantly affected by the violin used as a baseline. Thresholds for the musicians typically ranged from 3 to 6 dB for amplitude changes and 1.5%-20% for frequency changes. Interpretation of the results using excitation patterns showed that thresholds for the best subjects were quite well predicted by a multichannel model based on optimal processing. PMID:18247771

  5. Detection of Acoustic Temporal Fine Structure by Cochlear Implant Listeners: Behavioral Results and Computational Modeling

    PubMed Central

    Imennov, Nikita S.; Won, Jong Ho; Drennan, Ward R.; Jameyson, Elyse; Rubinstein, Jay T.

    2013-01-01

    A test of within-channel detection of acoustic temporal fine structure (aTFS) cues is presented. Eight cochlear implant listeners (CI) were asked to discriminate between two Schroeder-phase (SP) complexes using a two-alternative, forced-choice task. Because differences between the acoustic stimuli are primarily constrained to their aTFS, successful discrimination reflects a combination of the subjects’ perception of and the strategy’s ability to deliver aTFS cues. Subjects were mapped with single-channel Continuous Interleaved Sampling (CIS) and Simultaneous Analog Stimulation (SAS) strategies. To compare within- and across- channel delivery of aTFS cues, a 16-channel clinical HiRes strategy was also fitted. Throughout testing, SAS consistently outperformed the CIS strategy (p ≤ 0.002). For SP stimuli with F0 =50 Hz, the highest discrimination scores were achieved with the HiRes encoding, followed by scores with the SAS and the CIS strategies, respectively. At 200 Hz, single-channel SAS performed better than HiRes (p = 0.022), demonstrating that under a more challenging testing condition, discrimination performance with a single-channel analog encoding can exceed that of a 16-channel pulsatile strategy. To better understand the intermediate steps of discrimination, a biophysical model was used to examine the neural discharges evoked by the SP stimuli. Discrimination estimates calculated from simulated neural responses successfully tracked the behavioral performance trends of single-channel CI listeners. PMID:23333260

  6. Parallel direct numerical simulation of wake vortex detection using monostatic and bistatic radio acoustic sounding systems

    NASA Astrophysics Data System (ADS)

    Boluriaan Esfahaani, Said

    A parallel two-dimensional code is developed in this thesis to numerically simulate wake vortex detection using a Radio Acoustic Sounding System (RASS). The Maxwell equations for media with non-uniform permittivity and the linearized Euler equations for media with non-uniform mean flow are the main framework for the simulations. The code is written in Fortran 90 with the Message Passing Interface (MPI) for parallel implementation. The main difficulty encountered with a time accurate simulation of a RASS is the number of samples required to resolve the Doppler shift in the scattered electromagnetic signal. Even for a 1D simulation with a typical scatterer size, the CPU time required to run the code is far beyond currently available computer resources. Two solutions that overcome this problem are described. In the first the actual electromagnetic wave propagation speed is replaced with a much lower value. This allows an explicit, time accurate numerical scheme to be used. In the second the governing differential equations are recast in order to remove the carrier frequency and solve only for the frequency shift using an implicit scheme with large time steps. The numerical stability characteristics of the resulting discretized equation with complex coefficients are examined. A number of cases for both the monostatic and bistatic configurations are considered. First, a uniform mean flow is considered and the RASS simulation is performed for two different types of incident acoustic field, namely a short single frequency acoustic pulse and a continuous broadband acoustic source. Both the explicit and implicit schemes are examined and the mean flow velocity is determined from the spectrum of the backscattered electromagnetic signal with very good accuracy. Second, the Taylor and Oseen vortex models are considered and their velocity field along the incident electromagnetic beam is retrieved. The Abel transform is then applied to the velocity profiles determined by both

  7. Site-targeted acoustic contrast agent detects molecular expression of tissue factor after balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Hall, Christopher S.; Abendschein, Dana R.; Scherrer, David E.; Scott, Michael J.; Marsh, Jon N.; Wickline, Samuel A.; Lanza, Gregory M.

    2000-04-01

    Complex molecular signaling heralds the early stages of pathologies such as angiogenesis, inflammation, and cellular responses to mechanically damaged coronary arteries after balloon angioplasty. In previous studies, we have demonstrated acoustic enhancement of blood clot morphology with the use of a nongaseous, ligand-targeted acoustic nanoparticle emulsion delivered to areas of thrombosis both in vitro and in vivo. In this paper, we characterize the early expression of tissue factor which contributes to subsequent arterial restenosis. Tissue factor is a 42kd glycoprotein responsible for blood coagulation but also plays a well-described role in cancer metastasis, angiogenesis, and vascular restenosis. This study was designed to determine whether the targeted contrast agent could localize tissue factor expressed within the wall of balloon-injured arteries. Both carotid arteries of five pigs (20 kg) were injured using an 8 X 20 mm angioplasty balloon. The carotids were treated in situ with a perfluorocarbon nanoparticle emulsion covalently complexed to either specific anti-tissue factor polyclonal F(ab) fragments (treatment) or non-specific IgG F(ab) fragments (control). Intravascular ultrasound (30 MHz) images of the arteries were obtained before and after exposure to the emulsions. Tissue- factor targeted ultrasonic contrast agent acoustically enhanced the subintima and media at the site of balloon- induced injury compared with control contrast arteries (p less than 0.05). Immunohistochemical staining confirmed the presence of increased tissue factor at the sites of acoustic enhancement. Binding of the targeted agents was demonstrated in vitro by scanning electron microscope images of cultured smooth muscle cells that constitutively express tissue factor. This study demonstrates the concept of molecular imaging and localization of carotid arteries' tissue factor in vivo using a new, nanoparticulate emulsion. Enhancement of the visualization of the molecular

  8. Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity.

    PubMed Central

    McIntyre, J Oliver; Fingleton, Barbara; Wells, K Sam; Piston, David W; Lynch, Conor C; Gautam, Shiva; Matrisian, Lynn M

    2004-01-01

    The present study describes the in vivo detection and imaging of tumour-associated MMP-7 (matrix metalloproteinase-7 or matrilysin) activity using a novel polymer-based fluorogenic substrate PB-M7VIS, which serves as a selective 'proteolytic beacon' (PB) for this metalloproteinase. PB-M7VIS is built on a PAMAM (polyamido amino) dendrimer core of 14.2 kDa, covalently coupled with an Fl (fluorescein)-labelled peptide Fl(AHX)RPLALWRS(AHX)C (where AHX stands for aminohexanoic acid) and with TMR (tetramethylrhodamine). PB-M7VIS is efficiently and selectively cleaved by MMP-7 with a k (cat)/ K (m) value of 1.9x10(5) M(-1).s(-1) as measured by the rate of increase in Fl fluorescence (up to 17-fold for the cleavage of an optimized PB-M7VIS) with minimal change in the TMR fluorescence. The K (m) value for PB-M7VIS is approx. 0.5 microM, which is approx. two orders of magnitude lower when compared with that for an analogous soluble peptide, indicating efficient interaction of MMP-7 with the synthetic polymeric substrate. With MMP-2 or -3, the k (cat)/ K (m) value for PB-M7VIS is approx. 56- or 13-fold lower respectively, when compared with MMP-7. In PB-M7VIS, Fl(AHX)RPLALWRS(AHX)C is a selective optical sensor of MMP-7 activity and TMR serves to detect both the uncleaved and cleaved reagents. Each of these can be visualized as subcutaneous fluorescent phantoms in a mouse and optically discriminated based on the ratio of green/red (Fl/TMR) fluorescence. The in vivo specificity of PB-M7VIS was tested in a mouse xenograft model. Intravenous administration of PB-M7VIS gave significantly enhanced Fl fluorescence from MMP-7-positive tumours, but not from control tumours ( P <0.0001), both originally derived from SW480 human colon cancer cells. Prior systemic treatment of the tumour-bearing mice with an MMP inhibitor BB-94 ([4-( N -hydroxyamino)-2 R -isobutyl-3 S -(thienylthiomethyl)-succinyl]-L-phenylalanine- N -methylamide), markedly decreased the Fl fluorescence over the MMP-7

  9. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect.

    PubMed

    Kostarakos, Konstantinos; Römer, Heiner

    2015-07-22

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of -21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and "novelty detection" to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. Significance statement: Animal and human acoustic communication may suffer from the same "cocktail party problem," when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one species

  10. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    DOE PAGESBeta

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; Gallis, Dorina F. S.

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs,more » we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.« less

  11. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves.

    PubMed

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-01-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin. PMID:25057963

  12. A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules.

    PubMed

    Di Pietrantonio, F; Benetti, M; Cannatà, D; Verona, E; Palla-Papavlu, A; Fernández-Pradas, J M; Serra, P; Staiano, M; Varriale, A; D'Auria, S

    2015-05-15

    In this work, a "bio-electronic nose" for vapour phase detection of odorant molecules based on surface acoustic wave (SAW) resonators is presented. The biosensor system is composed of an array of five SAW resonators coated with three types of odorant-binding proteins (OBPs): the wild-type OBP from bovine (wtbOBP), a double-mutant of the OBP from bovine (dmbOBP), and the wild-type OBP from pig (wtpOBP). High resolution deposition of OBPs onto the active area of SAW resonators was implemented through laser-induced forward transfer (LIFT). The resonant frequency shifts of the SAW resonators after the deposition of the biomolecules confirmed the immobilisation of the proteins onto the Al/Au inter-digital transducers (IDTs). In addition, a low increase of insertion losses with a limited degradation of Q-factors is reported. The "bio-electronic nose" fabricated by LIFT is tested in nitrogen upon exposure to separated concentrations of R-(-)-1-octen-3-ol (octenol) and R-(-)-carvone (carvone) vapours. The "bio-electronic nose" showed low detection limits for the tested compounds (i.e. 0.48 ppm for the detection of octenol, and 0.74 ppm for the detection of carvone). In addition, the bio-sensing system was able to discriminate the octenol molecules from the carvone molecules, making it pertinent for the assessment of food contamination by moulds, or for the evaluation of indoor air quality in buildings. PMID:25256781

  13. Detection of Adult Beetles Inside the Stored Wheat Mass Based on Their Acoustic Emissions.

    PubMed

    Eliopoulos, P A; Potamitis, I; Kontodimas, D Ch; Givropoulou, E G

    2015-12-01

    The efficacy of bioacoustics in detecting the presence of adult beetles inside the grain mass was evaluated in the laboratory. A piezoelectric sensor and a portable acoustic emission amplifier connected with a computer were used. Adults of the most common beetle pests of stored wheat have been detected in varying population densities (0.1, 0.5, 1, and 2 adults per kilogram of wheat). The verification of the presence of the insect individuals was achieved through automated signal parameterization and classification. We tried out two different ways to detect impulses: 1) by applying a Hilbert transform on the audio recording and 2) by subtracting a noise estimation of the recording from the spectral content of the recording, thus allowing the frequency content of possible impulses to emerge. Prediction for infestation was rated falsely negative in 60-74%, 48-60%, 0-28%, and 0-4% of the cases when actual population density was 0.1, 0.5, 1, and 2 adults per kilogram, respectively, irrespective of pest species. No significant differences were recorded in positive predictions among different species in almost all cases. The system was very accurate (72-100%) in detecting 1 or 2 insects per kilogram of hard wheat grain, which is the standard threshold for classifying a grain mass "clean" or "infested." Our findings are discussed on the basis of enhancing the use of bioacoustics in stored-product IPM framework. PMID:26470377

  14. Spatial scanning for anomaly detection in acoustic emission testing of an aerospace structure

    NASA Astrophysics Data System (ADS)

    Hensman, James; Worden, Keith; Eaton, Mark; Pullin, Rhys; Holford, Karen; Evans, Sam

    2011-10-01

    Acoustic emission (AE) monitoring of engineering structures potentially provides a convenient, cost-effective means of performing structural health monitoring. Networks of AE sensors can be easily and unobtrusively installed upon structures, giving the ability to detect and locate damage-related strain releases ('events') in the structure. Use of the technique is not widespread due to the lack of a simple and effective method for detecting abnormal activity levels: the sensitivity of AE sensor networks is such that events unrelated to damage are prevalent in most applications. In this publication, we propose to monitor AE activity in a structure using a spatial scanning statistic, developed and used effectively in the field of epidemiology. The technique is demonstrated on an aerospace structure - an Airbus A320 main landing gear fitting - undergoing fatigue loading, and the method is compared to existing techniques. Despite its simplicity, the scanning statistic proves to be an extremely effective tool in detecting the onset of damage in the structure: it requires little to no user intervention or expertise, is inexpensive to compute and has an easily interpretable output. Furthermore, the generic nature of the method allows the technique to be used in a variety of monitoring scenarios, to detect damage in a wide range of structures.

  15. Acoustical detection of Aedes taeniorhynchus swarms and emergence exoduses in remote salt marshes.

    PubMed

    Mankin, R W

    1994-06-01

    Swarms and emergency exoduses of Aedes taeniorhynchus mosquitoes produce sounds detectable from 10 to 50 m in a quiet environment. Background noise levels as low as 21 dB (decibels referenced to 20 microPa) are present at dusk between frequencies of 0.3 and 3.4 kHz. A mosquito swarm with a sound pressure level of 25-35 dB is detectable over tens of meters in the marsh, if not in the 40-60-dB background noise of a typical urban environment. Individually caged Ae. taeniorhynchus also are detectable, but only with 2-5-cm distances where the sound pressure level rises to 22-25 dB. These differences between signal and noise levels indicate that it is technologically feasible to construct an acoustical device for remote surveillance of large swarms or emergence exoduses of Ae. taeniorhynchus. This device could also detect nearby individuals attracted to a bait. Such a device can distinguish males from females by their wingbeat frequencies (700-800 Hz vs. 400-500 Hz). PMID:8965083

  16. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  17. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    SciTech Connect

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; Gallis, Dorina F. S.

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs, we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.

  18. Signal-to-noise ratio for acoustic detection in the deep ocean

    NASA Technical Reports Server (NTRS)

    Bowen, T.

    1979-01-01

    A simple method is presented for studying the thermoacoustic wave generated by a heat pulse. The signal-to-noise ratio (S/N) is then calculated for a typical hadronic-electromagnetic cascade in the deep ocean where low frequencies are masked by surface noise. It is found that a maximum useful range of about 16 km is found for typical conditions at 5 km depth. It is shown that in order to obtain useful signals with S/N greater than 100 at distances of 1 to 16 km, the cascade energy must be 10 to the 16th to 10 to the 18th eV. Finally, attention is given to further refinements of the theory of acoustic detection which remain to be investigated.

  19. Damage Detection in Plate Structures Using Sparse Ultrasonic Transducer Arrays and Acoustic Wavefield Imaging

    SciTech Connect

    Michaels, T.E.; Michaels, J.E.; Mi, B.; Ruzzene, M.

    2005-04-09

    A methodology is presented for health monitoring and subsequent inspection of critical structures. Algorithms have been developed to detect and approximately locate damaged regions by analyzing signals recorded from a permanently mounted, sparse array of transducers. Followup inspections of suspected flaw locations are performed using a dual transducer ultrasonic approach where a permanently mounted transducer is the source and an externally scanned transducer is the receiver. Scan results are presented as snapshots of the propagating ultrasonic wavefield radiating out from the attached transducers. This method, referred to here as Acoustic Wavefield Imaging (AWI), provides an excellent visual representation of the interaction of propagating ultrasonic waves with the structure. Pre-flaw and post-flaw ultrasonic waveforms are analyzed from an aluminum plate specimen with artificially induced damage, and the AWI results show the location and spatial extent of all of the defects.

  20. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures: Final Report

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S B

    2006-11-02

    This is final report on NA-22 project LL251DP, where the goal was to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begun to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. Since our funding was cut in FY06, I will discuss where this project can go in the future with this technology.

  1. Precursory Acoustic Signals Detection in Rockfall Events by Means of Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Schenato, L.; Marcato, G.; Gruca, G.; Iannuzzi, D.; Palmieri, L.; Galtarossa, A.; Pasuto, A.

    2012-12-01

    Rockfalls represent a major source of hazard in mountain areas: they occur at the apex of a process of stress accumulation in the unstable slope, during which part of the accumulated energy is released in small internal cracks. These cracks and the related acoustic emissions (AE) can, therefore, be used as precursory signals, through which the unstable rock could be monitored. In particular, according to previous scientific literature AE can be monitored in the range 20÷100 kHz. With respect to traditional AE sensors, such as accelerometers and piezoelectric transducers, fiber optic sensors (FOSs) may provide a reliable solution, potentially offering more robustness to electromagnetic interference, smaller form factor, multiplexing ability and increased distance range and higher sensitivity. To explore this possibility, in this work we have experimentally analyzed two interferometric fiber optical sensors for AE detection in rock masses. In particular, the first sensor is made of 100 m of G.657 optical fiber, tightly wound on an aluminum flanged hollow mandrel (inner diameter 30 mm, height 42 mm) that is isolated from the environment with acoustic absorbing material. A 4-cm-long M10 screw, which acts also as the main mean of acoustic coupling between the rock and the sensor, is used to fasten the sensor to the rock. This fiber coil sensor (FCS) is inserted in the sensing arm of a fiber Mach-Zehnder interferometer. The second sensor consists in a micro cantilever carved on the top of a cylindrical silica ferrule, with a marked mechanical resonance at about 12.5 kHz (Q-factor of about 400). A standard single mode fiber is housed in the same ferrule and the gap between the cantilever and the fiber end face acts as a vibration-sensitive Fabry-Perot cavity, interrogated with a low-coherence laser, tuned at the quadrature point of the cavity. The sensor is housed in a 2-cm-long M10 bored bolt. Performance have been compared with those from a standard piezo

  2. Acoustic detections of singing humpback whales (Megaptera novaeangliae) in the eastern North Pacific during their northbound migration.

    PubMed

    Norris, T F; McDonald, M; Barlow, J

    1999-07-01

    Numerous (84) acoustic detections of singing humpback whales were made during a spring (08 March-09 June 1997) research cruise to study sperm whales in the central and eastern North Pacific. Over 15,000 km of track-line was surveyed acoustically using a towed hydrophone array. Additionally, 83 sonobuoys were deployed throughout the study area. Detection rates were greatest in late March, near the Hawaiian Islands, and in early April, northeast of the islands. Only one detection was made after April. Detection rates for sonobuoys were unequal in three equally divided longitudinal regions of the study area. Two high density clusters of detections occurred approximately 1200-2000 km northeast of the Hawaiian Islands and were attributed to a large aggregation of migrating animals. The distribution of these detections corroborates findings of previous studies. It is possible that these animals were maintaining acoustic contact during migration. Two unexpected clusters of singing whales were detected approximately 900 to 1000 km west of central and southern California. The location of these detections may indicate a previously undocumented migration route between an offshore breeding area, such as the Revillagigedo Islands, Mexico, and possible feeding areas in the western North Pacific or Bering Sea. PMID:10420640

  3. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect

    PubMed Central

    Römer, Heiner

    2015-01-01

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of −21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and “novelty detection” to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. SIGNIFICANCE STATEMENT Animal and human acoustic communication may suffer from the same “cocktail party problem,” when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one

  4. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California

    NASA Astrophysics Data System (ADS)

    Helble, Tyler Adam

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. Automated methods are needed to aid in the analyses of the recorded data. When a mammal vocalizes in the marine environment, the received signal is a filtered version of the original waveform emitted by the marine mammal. The waveform is reduced in amplitude and distorted due to propagation effects that are influenced by the bathymetry and environment. It is important to account for these effects to determine a site-specific probability of detection for marine mammal calls in a given study area. A knowledge of that probability function over a range of environmental and ocean noise conditions allows vocalization statistics from recordings of single, fixed, omnidirectional sensors to be compared across sensors and at the same sensor over time with less bias and uncertainty in the results than direct comparison of the raw statistics. This dissertation focuses on both the development of new tools needed to automatically detect humpback whale vocalizations from single-fixed omnidirectional sensors as well as the determination of the site-specific probability of detection for monitoring sites off the coast of California. Using these tools, detected humpback calls are "calibrated" for environmental properties using the site-specific probability of detection values, and presented as call densities (calls per square kilometer per time). A two-year monitoring effort using these calibrated call densities reveals important biological and ecological information on migrating humpback whales off the coast of California. Call density trends are compared between the monitoring sites and at the same monitoring site over time. Call densities also are compared to several natural and human-influenced variables including season, time of day, lunar illumination, and ocean noise. The results reveal substantial differences in call densities

  5. AE (Acoustic Emission) for Flip-Chip CGA/FCBGA Defect Detection

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    C-mode scanning acoustic microscopy (C-SAM) is a nondestructive inspection technique that uses ultrasound to show the internal feature of a specimen. A very high or ultra-high-frequency ultrasound passes through a specimen to produce a visible acoustic microimage (AMI) of its inner features. As ultrasound travels into a specimen, the wave is absorbed, scattered or reflected. The response is highly sensitive to the elastic properties of the materials and is especially sensitive to air gaps. This specific characteristic makes AMI the preferred method for finding "air gaps" such as delamination, cracks, voids, and porosity. C-SAM analysis, which is a type of AMI, was widely used in the past for evaluation of plastic microelectronic circuits, especially for detecting delamination of direct die bonding. With the introduction of the flip-chip die attachment in a package; its use has been expanded to nondestructive characterization of the flip-chip solder bumps and underfill. Figure 1.1 compares visual and C-SAM inspection approaches for defect detection, especially for solder joint interconnections and hidden defects. C-SAM is specifically useful for package features like internal cracks and delamination. C-SAM not only allows for the visualization of the interior features, it has the ability to produce images on layer-by-layer basis. Visual inspection; however, is only superior to C-SAM for the exposed features including solder dewetting, microcracks, and contamination. Ideally, a combination of various inspection techniques - visual, optical and SEM microscopy, C-SAM, and X-ray - need to be performed in order to assure quality at part, package, and system levels. This reports presents evaluations performed on various advanced packages/assemblies, especially the flip-chip die version of ball grid array/column grid array (BGA/CGA) using C-SAM equipment. Both external and internal equipment was used for evaluation. The outside facility provided images of the key features

  6. The detection of multiple DNA targets with a single probe using a conformation-sensitive acoustic sensor.

    PubMed

    Tsortos, Achilleas; Grammoustianou, Aristea; Lymbouridou, Rena; Papadakis, George; Gizeli, Electra

    2015-07-21

    By using an acoustic wave methodology that allows direct sensing of biomolecular conformations, we achieved the detection of multiple target DNAs using a single probe, exploiting the fact that each bound target results in a hybridized product of a different shape. PMID:26097916

  7. Acoustic detection of Oryctes rhinoceros (Coleoptera: Scarabaeidae: Dynastinae) and Nasutitermes luzonicus (Isoptera: Termitidae) in palm trees of urban Guam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult and larval Oryctes rhinoceros (L) (Coleoptera: Scarabaeidae: Dynastinae) were acoustically detected in live and dead palm trees and logs in recently invaded areas of Guam, along with Nasutitermes (Isoptera: Termitidae), and other small, sound-producing invertebrates and invertebrates. The sou...

  8. Application of gas-coupled laser acoustic detection to gelatins and underwater sensing

    SciTech Connect

    Caron, James N.; Kunapareddy, Pratima

    2014-02-18

    Gas-coupled Laser Acoustic Detection (GCLAD) has been used as a method to sense ultrasound waves in materials without contact of the material surface. To sense the waveform, a laser beam is directed parallel to the material surface and displaced or deflected when the radiated waveform traverses the beam. We present recent tests that demonstrate the potential of using this technique for detecting ultrasound in gelatin phantoms and in water. As opposed to interferometric detection, GCLAD operates independently of the optical surface properties of the material. This allows the technique to be used in cases where the material is transparent or semi-transparent. We present results on sensing ultrasound in gelatin phantoms that are used to mimic biological materials. As with air-coupled transducers, the frequency response of GCLAD at high frequencies is limited by the high attenuation of ultrasound in air. In contrast, water has a much lower attenuation. Here we demonstrate the use of a GCLAD-like system in water, measuring the directivity response at 1 MHz and sensing waveforms with higher frequency content.

  9. Detection of atmospheric acoustic-gravity waves through ionospheric measurements using dense GPS arrays

    NASA Astrophysics Data System (ADS)

    Calais, E.; Haase, J. S.; Minster, B.

    2003-12-01

    The Global Positioning System (GPS) is now widely used to measure ionospheric electron content at both global and regional scales. It is also capable of detecting small-scale high-frequency ionospheric disturbances caused by atmospheric acoustic-gravity waves. We show examples of ionospheric perturbations caused by earthquakes, rocket launches, and large surface explosions. The neutral atmospheric waves triggered by these events couple with the motion of free electrons and ionized plasma at ionospheric heights and induce coherent fluctuations of electron densities and ionization layer boundaries that are detectable with GPS. In all cases, the ionospheric perturbations match fairly well observations made through other techniques as well as numerical models. The development of permanent networks of densely spaced and continuously recording GPS stations open up new opportunities for the study of infrasonic waves in the atmosphere and their coupling with small scale processes in the ionosphere. We show examples of infrasonic waves detected using the 250-station GPS network that covers the Los Angeles area (SCIGN). Although the signal-to-noise ratio of these perturbations is relatively small, we show that it can be considerably improved by multi-station array processing techniques derived from seismic array analysis. These techniques can also be used to determine the perturbation propagation azimuth and velocity and, eventually, to recover information about the sources of these perturbations.

  10. Automatic Detection of Swallowing Events by Acoustical Means for Applications of Monitoring of Ingestive Behavior

    PubMed Central

    Sazonov, Edward S.; Makeyev, Oleksandr; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Edward L.; Neuman, Michael R.

    2010-01-01

    Our understanding of etiology of obesity and overweight is incomplete due to lack of objective and accurate methods for Monitoring of Ingestive Behavior (MIB) in the free living population. Our research has shown that frequency of swallowing may serve as a predictor for detecting food intake, differentiating liquids and solids, and estimating ingested mass. This paper proposes and compares two methods of acoustical swallowing detection from sounds contaminated by motion artifacts, speech and external noise. Methods based on mel-scale Fourier spectrum, wavelet packets, and support vector machines are studied considering the effects of epoch size, level of decomposition and lagging on classification accuracy. The methodology was tested on a large dataset (64.5 hours with a total of 9,966 swallows) collected from 20 human subjects with various degrees of adiposity. Average weighted epoch recognition accuracy for intra-visit individual models was 96.8% which resulted in 84.7% average weighted accuracy in detection of swallowing events. These results suggest high efficiency of the proposed methodology in separation of swallowing sounds from artifacts that originate from respiration, intrinsic speech, head movements, food ingestion, and ambient noise. The recognition accuracy was not related to body mass index, suggesting that the methodology is suitable for obese individuals. PMID:19789095

  11. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    NASA Astrophysics Data System (ADS)

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  12. Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy

    NASA Astrophysics Data System (ADS)

    Sugimoto, Kazuko; Akamatsu, Ryo; Sugimoto, Tsuneyoshi; Utagawa, Noriyuki; Kuroda, Chitose; Katakura, Kageyoshi

    2015-07-01

    In recent years, the detachment of concrete from bridges or tunnels and the degradation of concrete structures have become serious social problems. The importance of inspection, repair, and updating is recognized in measures against degradation. We have so far studied the noncontact acoustic inspection method using airborne sound and the laser Doppler vibrometer. In this method, depending on the surface state (reflectance, dirt, etc.), the quantity of the light of the returning laser decreases and optical noise resulting from the leakage of light reception arises. Some influencing factors are the stability of the output of the laser Doppler vibrometer, the low reflective characteristic of the measurement surface, the diffused reflection characteristic, measurement distance, and laser irradiation angle. If defect detection depends only on the vibration energy ratio since the frequency characteristic of the optical noise resembles white noise, the detection of optical noise resulting from the leakage of light reception may indicate a defective part. Therefore, in this work, the combination of the vibrational energy ratio and spectrum entropy is used to judge whether a measured point is healthy or defective or an abnormal measurement point. An algorithm that enables more vivid detection of a defective part is proposed. When our technique was applied in an experiment with real concrete structures, the defective part could be extracted more vividly and the validity of our proposed algorithm was confirmed.

  13. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor.

    PubMed

    Cheng, Chi-Yung; Huang, Shih-Shen; Yang, Chia-Min; Tang, Kea-Tiong; Yao, Da-Jeng

    2016-01-01

    Third-hand smoke (THS) is a new cigarette-related issue defined as the residual contamination from cigarette smoke after a cigarette is extinguished. To detect THS on three commonly used clothing fibers-wool, cotton, and polyester, we applied two methods to measure the adsorption of THS: one was the gain of mass with an analytical balance after exposure to cigarette smoke; and the other was to detect the THS chemical compounds such as nicotine and 3-ethenylpyridine with a surface acoustic wave (SAW) sensor composed of coated oxidized hollow mesoporous carbon nanospheres. In the mass measurement, the gain of mass decreased in the order wool, cotton, and polyester; the latter gain was about one tenth that of wool. In the SAW detection, the frequency shift decreased in the same order-wool, cotton, and polyester. The residence period of THS on natural fiber (wool and cotton) is greater than on synthetic polyester fiber. These two tests provide quantitative results of THS on varied clothing fibers, to assess their risk after exposure to cigarette smoke. PMID:26909119

  14. Acoustic emission detection for mass fractions of materials based on wavelet packet technology.

    PubMed

    Wang, Xianghong; Xiang, Jianjun; Hu, Hongwei; Xie, Wei; Li, Xiongbing

    2015-07-01

    Materials are often damaged during the process of detecting mass fractions by traditional methods. Acoustic emission (AE) technology combined with wavelet packet analysis is used to evaluate the mass fractions of microcrystalline graphite/polyvinyl alcohol (PVA) composites in this study. Attenuation characteristics of AE signals across the composites with different mass fractions are investigated. The AE signals are decomposed by wavelet packet technology to obtain the relationships between the energy and amplitude attenuation coefficients of feature wavelet packets and mass fractions as well. Furthermore, the relationship is validated by a sample. The larger proportion of microcrystalline graphite will correspond to the higher attenuation of energy and amplitude. The attenuation characteristics of feature wavelet packets with the frequency range from 125 kHz to 171.85 kHz are more suitable for the detection of mass fractions than those of the original AE signals. The error of the mass fraction of microcrystalline graphite calculated by the feature wavelet packet (1.8%) is lower than that of the original signal (3.9%). Therefore, AE detection base on wavelet packet analysis is an ideal NDT method for evaluate mass fractions of composite materials. PMID:25737229

  15. Standoff photoacoustic detections with high-sensitivity microphones and acoustic arrays

    NASA Astrophysics Data System (ADS)

    Choa, Fow-Sen; Wang, Chen-Chia; Khurgin, Jacob; Samuels, Alan; Trivedi, Sudhir; Gupta, Deepa

    2016-05-01

    Standoff detection of dangerous chemicals like explosives, nerve gases, and harmful aerosols has continuously been an important subject due to the serious concern about terrorist threats to both overseas and homeland lives and facility. Compared with other currently available standoff optical detection techniques, like Raman, photo-thermal, laser induced breakdown spectroscopy,...etc., photoacoustic (PA) sensing has the advantages of background free and very high detection sensitivity, no need of back reflection surfaces, and 1/R instead of 1/R2 signal decay distance dependence. Furthermore, there is still a great room for PA sensitivity improvement by using different PA techniques, including lockin amplifier, employing new microphones, and microphone array techniques. Recently, we have demonstrated standoff PA detection of isopropanol vapor, solid phase TNT and RDX at a standoff distance. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated signal enhancement and noise reduction using an array of 4 microphone/4 reflector system as well as an array of 16-microphone/1 reflector. In this work we will review and compare different standoff techniques and discuss the advantages of using different photoacoustic techniques. We will also discuss new advancement of using new types of microphone and the performance comparison of using different structure of microphone arrays and combining lock-in amplifier with acoustic arrays. Demonstration of out-door real-time operations with high power mid-IR laser and microphone array will be presented.

  16. Sci—Fri AM: Mountain — 04: Label-free Raman spectroscopy of single tumour cells detects early radiation-induced glycogen synthesis associated with increased radiation resistance

    SciTech Connect

    Matthews, Q; Lum, JJ; Isabelle, M; Harder, S; Jirasek, A; Brolo, AG

    2014-08-15

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, and experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.

  17. PREFACE: ARENA 2006—Acoustic and Radio EeV Neutrino detection Activities

    NASA Astrophysics Data System (ADS)

    Thompson, Lee

    2007-06-01

    The International Conference on Acoustic and Radio EeV Neutrino Activities, ARENA 2006 was jointly hosted by the Universities of Northumbria and Sheffield at the City of Newcastle Campus of the University of Northumbria in June 2006. ARENA 2006 was the latest in a series of meetings which have addressed, either separately or jointly, the use of radio and acoustic sensors for the detection of highly relativistic particles. Previous successful meetings have taken place in Los Angeles (RADHEP, 2000), Stanford (2003) and DESY Zeuthen (ARENA 2005). A total of 50 scientists from across Europe, the US and Japan attended the conference presenting status reports and results from a number of projects and initiatives spread as far afield as the Sweden and the South Pole. The talks presented at the meeting and the proceedings contained herein represent a `snapshot' of the status of the fields of acoustic and radio detection at the time of the conference. The three day meeting also included two invited talks by Dr Paula Chadwick and Dr Johannes Knapp who gave excellent summaries of the related astroparticle physics fields of high energy gamma ray detection and high energy cosmic ray detection respectively. As well as a full academic agenda there were social events including a Medieval themed conference banquet at Lumley Castle and a civic reception kindly provided by the Lord Mayor of Newcastle and hosted at the Mansion House. Thanks must go to the International Advisory Board members for their input and guidance, the Local Organising Committee for their hard work in bringing everything together and finally the delegates for the stimulating, enthusiastic and enjoyable spirit in which ARENA 2006 took place. Lee Thompson

    International Advisory Board

    G. Anton, ErlangenD. Besson, Kansas
    J. Blümer, KarlsruheA. Capone, Rome
    H. Falcke, BonnP. Gorham, Hawaii
    G. Gratta

  18. Photo-acoustic excitation and optical detection of fundamental flexural guided wave in coated bone phantoms.

    PubMed

    Moilanen, Petro; Zhao, Zuomin; Karppinen, Pasi; Karppinen, Timo; Kilappa, Vantte; Pirhonen, Jalmari; Myllylä, Risto; Haeggström, Edward; Timonen, Jussi

    2014-03-01

    Photo-acoustic (PA) imaging was combined with skeletal quantitative ultrasound (QUS) for assessment of human long bones. This approach permitted low-frequency excitation and detection of ultrasound so as to efficiently receive the thickness-sensitive fundamental flexural guided wave (FFGW) through a coating of soft tissue. The method was tested on seven axisymmetric bone phantoms, whose 1- to 5-mm wall thickness and 16-mm diameter mimicked those of the human radius. Phantoms were made of a composite material and coated with a 2.5- to 7.5-mm layer of soft material that mimicked soft tissue. Ultrasound was excited with a pulsed Nd:YAG laser at 1064-nm wavelength and received on the same side of the coated phantom with a heterodyne interferometer. The FFGW was detected at 30-kHz frequency. Fitting the FFGW phase velocity by the FLC(1,1) tube mode provided an accurate (9.5 ± 4.0%) wall thickness estimate. Ultrasonic in vivo characterization of cortical bone thickness may thus become possible. PMID:24361218

  19. Detecting leaks in gas-filled pressure vessels using acoustic resonances

    NASA Astrophysics Data System (ADS)

    Gillis, K. A.; Moldover, M. R.; Mehl, J. B.

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f2 than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f2, we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10-5 h-1 = - 0.11 yr-1 from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10-2 h-1 using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.)

  20. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

    1. Low probability of detection underwater acoustic communications using direct-sequence spread spectrum.

      PubMed

      Yang, T C; Yang, Wen-Bin

      2008-12-01

      Direct-sequence spread spectrum is used for underwater acoustic communications between nodes, at least one of which is moving. At-sea data show that the phase change due to source motion is significant: The differential phase between two adjacent symbols is often larger than the phase difference between symbols. This poses a challenge to phase-detection based receiver algorithms when the source or receiver is moving. A pair of energy detectors that are insensitive to the phase fluctuations is proposed, whose outputs are used to determine the relationship between adjacent symbols. Good performance is achieved for a signal-to-noise ratio (SNR) as low as -10 dB based on at-sea data. While the method can be applied to signaling using short code sequences, the focus in this paper is on long code sequences for the purpose of achieving a high processing gain (at the expense of a low data rate), so that communications can be carried out at a low input SNR to minimize the probability of detection (P(D)) by an interceptor. P(D) is calculated for a typical shallow water environment as a function of range for several source levels assuming a broadband energy detector with a known signal bandwidth. PMID:19206792

    2. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

      NASA Astrophysics Data System (ADS)

      Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

      2016-03-01

      Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

    3. Detection of nonlinear distortions in the vibration of acoustically driven mechanical systems using heterodyne vibrometry

      NASA Astrophysics Data System (ADS)

      Aerts, J. R. M.; Dirckx, J. J. J.; Pintelon, R.

      2008-06-01

      Recently, a measurement set-up was presented to detect small nonlinear distortions in the vibration of acoustically driven mechanical systems. A speaker generates a specially designed multisine excitation signal that drives the vibration of a test object. The generated sound pressure is measured with a probe microphone in front of the test object, and an heterodyne vibrometer measures the corresponding vibration. Due to the high degree of linearity of the heterodyne technique, very small nonlinear distortions can be detected. In this paper the set-up is used to verify whether small nonlinear distortions are present in the vibration of the middle ear system, which is classically considered to be a completely linear system. In vitro measurements on the right ear of an adult male gerbil proved that nonlinear distortions are present in the vibration of the tympanic membrane. Similar results were seen in measurements on the left ear. The influence of post-mortem changes on the nonlinear behaviour of the middle ear was verified in a number of successive measurements. These indicated that the nonlinear behaviour of the middle ear decreases in time.

    4. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

      PubMed

      Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

      2015-11-01

      A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. PMID:26095144

    5. Implementing wavelet packet transform for valve failure detection using vibration and acoustic emission signals

      NASA Astrophysics Data System (ADS)

      Sim, H. Y.; Ramli, R.; Abdullah, M. A. K.

      2012-05-01

      The efficiency of reciprocating compressors relies heavily on the health condition of its moving components, most importantly its valves. Previous studies showed good correlation between the dynamic response and the physical condition of the valves. These can be achieved by employing vibration technique which is capable of monitoring the response of the valve, and acoustic emission technique which is capable of detecting the valves' material deformation. However, the relationship/comparison between the two techniques is rarely investigated. In this paper, the two techniques were examined using time-frequency analysis. Wavelet packet transform (WPT) was chosen as the multi-resolution analysis technique over continuous wavelet transform (CWT), and discrete wavelet transform (DWT). This is because WPT could overcome the high computational time and high redundancy problem in CWT and could provide detailed analysis of the high frequency components compared to DWT. The features of both signals can be extracted by evaluating the normalised WPT coefficients for different time window under different valve conditions. By comparing the normalised coefficients over a certain time frame and frequency range, the feature vectors revealing the condition of valves can be constructed. One way analysis of variance was employed on these feature vectors to test the significance of data under different valve conditions. It is believed that AE signals can give a better representation of the valve condition as it can detect both the fluid motion and material deformation of valves as compared to the vibration signals.

    6. Detecting leaks in gas-filled pressure vessels using acoustic resonances.

      PubMed

      Gillis, K A; Moldover, M R; Mehl, J B

      2016-05-01

      We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f(2) than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f(2), we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10(-5) h(-1) = - 0.11 yr(-1) from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10(-2) h(-1) using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.). PMID:27250456

    7. Wear detection by means of wavelet-based acoustic emission analysis

      NASA Astrophysics Data System (ADS)

      Baccar, D.; Söffker, D.

      2015-08-01

      Wear detection and monitoring during operation are complex and difficult tasks especially for materials under sliding conditions. Due to the permanent contact and repetitive motion, the material surface remains during tests non-accessible for optical inspection so that attrition of the contact partners cannot be easily detected. This paper introduces the relevant scientific components of reliable and efficient condition monitoring system for online detection and automated classification of wear phenomena by means of acoustic emission (AE) and advanced signal processing approaches. The related experiments were performed using a tribological system consisting of two martensitic plates, sliding against each other. High sensitive piezoelectric transducer was used to provide the continuous measurement of AE signals. The recorded AE signals were analyzed mainly by time-frequency analysis. A feature extraction module using a novel combination of Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were used for the first time. A detailed correlation analysis between complex signal characteristics and the surface damage resulting from contact fatigue was investigated. Three wear process stages were detected and could be distinguished. To obtain quantitative and detailed information about different wear phases, the AE energy was calculated using STFT and decomposed into a suitable number of frequency levels. The individual energy distribution and the cumulative AE energy of each frequency components were analyzed using CWT. Results show that the behavior of individual frequency component changes when the wear state changes. Here, specific frequency ranges are attributed to the different wear states. The study reveals that the application of the STFT-/CWT-based AE analysis is an appropriate approach to distinguish and to interpret the different damage states occurred during sliding contact. Based on this results a new generation of condition monitoring

    8. Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer

      PubMed Central

      Lecharpentier, A; Vielh, P; Perez-Moreno, P; Planchard, D; Soria, J C; Farace, F

      2011-01-01

      Background: Circulating tumour cells (CTC) have a crucial role in metastasis formation and can consistently provide information on patient prognosis. Epithelial-mesenchymal transition (EMT) is considered as an essential process in the metastatic cascade, but there is currently very few data demonstrating directly the existence of the EMT process in CTCs. Methods: CTCs were enriched by blood filtration using ISET (isolation by size of epithelial tumour cells), triply labelled with fluorescent anti-vimentin, anti-pan-keratin antibodies and SYTOX orange nuclear dye, and examined by confocal microscopy in six patients with metastatic non-small cell lung cancer (NSCLC). In parallel, CTCs were morphocytologically identified by an experienced cytopathologist. Results: Isolated or clusters of dual CTCs strongly co-expressing vimentin and keratin were evidenced in all patients (range 5–88/5 ml). CTCs expressing only vimentin were detected in three patients, but were less frequent (range 3–15/5 ml). No CTC expressing only keratin was detected. Conclusion: We showed for the first time the existence of hybrid CTCs with an epithelial/mesenchymal phenotype in patients with NSCLC. Their characterisation should provide further insight on the significance of EMT in CTCs and on the mechanism of metastasis in patients with NSCLC. PMID:21970878

    9. Design, fabrication, and optimization of photo acoustic gas sensor for the trace level detection of NO2 in the atmosphere.

      PubMed

      Gondal, Mohammed A; Dastageer, Mohamed A

      2010-09-01

      Photoacoustic (PA) gas sensor for the detection of hazardous NO(2) with detection limit as low as few part per billion by volume (ppbV) has been designed and tested with pulsed UV laser. Some design optimization factors such as the optimum cell geometry, buffer gas etc has been proposed. It was found that a cylindrical cell with many acoustic filters considerably dampens the noise level and also argon as a buffer gas improves the photoacoustic signal level and this combination substantially improved the signal to noise ratio and the limit of detection. Ambiguous decline of photo acoustic signal at higher NO(2) concentration due to the adsorption of NO(2) on the walls of the photoacoustic cells and the dependence of this effect on the buffer gases are also discussed. The PA signal dependence on incident laser energy for three cells was also investigated. PMID:20665325

    10. Detections of Acoustic-Tagged Green Sturgeon in Baker Bay on the Lower Columbia River during September - November 2008

      USGS Publications Warehouse

      Parsley, Michael J.

      2009-01-01

      Acoustic transmitters implanted in green sturgeon (Acipenser medirostris) captured in rivers in California were detected by acoustic receivers deployed within and around Baker Bay. The receivers were deployed at eight locations in the Bay and adjacent navigation channels of the Lower Columbia River during a period of anticipated channel dredging. Three of the transmitters detected were confirmed to have been implanted into green sturgeon in previous years; two were from the Sacramento River and one was from the Klamath River. The transmitters (fish) were within detection range of the receivers for only a short period, which is consistent with findings of earlier studies that green sturgeon make rapid and extensive intra-estuary movements.

    11. Acoustically detected year-round presence of right whales in an urbanized migration corridor.

      PubMed

      Morano, Janelle L; Rice, Aaron N; Tielens, Jamey T; Estabrook, Bobbi J; Murray, Anita; Roberts, Bethany L; Clark, Christopher W

      2012-08-01

      Species' conservation relies on understanding their seasonal habitats and migration routes. North Atlantic right whales (Eubalaena glacialis), listed as endangered under the U.S. Endangered Species Act, migrate from the southeastern U.S. coast to Cape Cod Bay, Massachusetts, a federally designated critical habitat, from February through May to feed. The whales then continue north across the Gulf of Maine to northern waters (e.g., Bay of Fundy). To enter Cape Cod Bay, right whales must traverse an area of dense shipping and fishing activity in Massachusetts Bay, where there are no mandatory regulations for the protection of right whales or management of their habitat. We used passive acoustic recordings of right whales collected in Massachusetts Bay from May 2007 through October 2010 to determine the annual spatial and temporal distribution of the whales and their calling activity. We detected right whales in the bay throughout the year, in contrast to results from visual surveys. Right whales were detected on at least 24% of days in each month, with the exception of June 2007, in which there were no detections. Averaged over all years, right whale calls were most abundant from February through May. During this period, calls were most frequent between 17:00 and 20:00 local time; no diel pattern was apparent in other months. The spatial distribution of the approximate locations of calling whales suggests they may use Massachusetts Bay as a conduit to Cape Cod Bay in the spring and as they move between the Gulf of Maine and waters to the south in September through December. Although it is unclear how dependent right whales are on the bay, the discovery of their widespread presence in Massachusetts Bay throughout the year suggests this region may need to be managed to reduce the probability of collisions with ships and entanglement in fishing gear. PMID:22620490

    12. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

      NASA Astrophysics Data System (ADS)

      Xie, Qing; Cheng, Shuyi; Lü, Fangcheng; Li, Yanqing

      2014-03-01

      The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application.

    13. Photo-acoustic excitation and detection of guided ultrasonic waves in bone samples covered by a soft coating layer

      NASA Astrophysics Data System (ADS)

      Zhao, Zuomin; Moilanen, Petro; Karppinen, Pasi; Määttä, Mikko; Karppinen, Timo; Hæggström, Edward; Timonen, Jussi; Myllylä, Risto

      2012-12-01

      Photo-acoustic (PA) excitation was combined with skeletal quantitative ultrasound (QUS) for multi-mode ultrasonic assessment of human long bones. This approach permits tailoring of the ultrasonic excitation and detection so as to efficiently detect the fundamental flexural guided wave (FFGW) through a coating of soft tissue. FFGW is a clinically relevant indicator of cortical thickness. An OPO laser with tunable optical wavelength, was used to excite a photo-acoustic source in the shaft of a porcine femur. Ultrasonic signals were detected by a piezoelectric transducer, scanning along the long axis of the bone, 20-50 mm away from the source. Five femurs were measured without and with a soft coating. The coating was made of an aqueous gelatin-intralipid suspension that optically and acoustically mimicked real soft tissue. An even coating thickness was ensured by using a specific mold. The optical wave length of the source (1250 nm) was tuned to maximize the amplitude of FFGW excitation at 50 kHz frequency. The experimentally determined FFGW phase velocity in the uncoated samples was consistent with that of the fundamental antisymmetric Lamb mode (A0). Using appropriate signal processing, FFGW was also identified in the coated bone samples, this time with a phase velocity consistent with that theoretically predicted for the first mode of a fluid-solid bilayer waveguide (BL1). Our results suggest that photo-acoustic quantitative ultrasound enables assessment of the thickness-sensitive FFGW in bone through a layer of soft tissue. Photo-acoustic characterization of the cortical bone thickness may thus become possible.

    14. Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors

      NASA Technical Reports Server (NTRS)

      Dhawan, R.; Gunther, M. F.; Claus, R. O.

      1991-01-01

      Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.

    15. Surface acoustic wave sensor array system for trace organic vapor detection using pattern recognition analysis

      NASA Astrophysics Data System (ADS)

      Rose-Pehrsson, Susan L.; Grate, Jay W.; Klusty, Mark

      1993-03-01

      A sensor system using surface acoustic wave (SAW) vapor sensors has been fabricated and tested against hazardous organic vapors, simulants of these vapors, and potential background vapors. The vapor tests included two- and three-component mixtures, and covered a wide relative humidity range. The sensor system was compared of four SAW devices coated with different sorbent materials with different vapor selectivities. Preconcentrators were included to improve sensitivity. The vapor experiments were organized into a large data set analyzed using pattern recognition techniques. Pattern recognition algorithms were developed to identify two different classes of hazards. The algorithms were verified against a second data set not included in the training. Excellent sensitivity was achieved by the sensor coatings, and the pattern recognition analysis, and was also examined by the preconcentrators. The system can detect hazardous vapors of interest in the ppb range even in varying relative humidity and in the presence of background vapors. The system does not false alarm to a variety of other vapors including gasoline, jet fuel, diesel fuel and cigarette smoke.

    16. Acoustic Emission Detection and Prediction of Fatigue Crack Propagation in Composite Patch Repairs Using Neural Networks

      SciTech Connect

      Okafor, A. Chukwujekwu; Singh, Navdeep; Singh, Navrag

      2007-03-21

      An aircraft is subjected to severe structural and aerodynamic loads during its service life. These loads can cause damage or weakening of the structure especially for aging military and civilian aircraft, thereby affecting its load carrying capabilities. Hence composite patch repairs are increasingly used to repair damaged aircraft metallic structures to restore its structural efficiency. This paper presents the results of Acoustic Emission (AE) monitoring of crack propagation in 2024-T3 Clad aluminum panels repaired with adhesively bonded octagonal, single sided boron/epoxy composite patch under tension-tension fatigue loading. Crack propagation gages were used to monitor crack initiation. The identified AE sensor features were used to train neural networks for predicting crack length. The results show that AE events are correlated with crack propagation. AE system was able to detect crack propagation even at high noise condition of 10 Hz loading; that crack propagation signals can be differentiated from matrix cracking signals that take place due to fiber breakage in the composite patch. Three back-propagation cascade feed forward networks were trained to predict crack length based on the number of fatigue cycles, AE event number, and both the Fatigue Cycles and AE events, as inputs respectively. Network using both fatigue cycles and AE event number as inputs to predict crack length gave the best results, followed by Network with fatigue cycles as input, while network with just AE events as input had a greater error.

    17. A Detection of Baryon Acoustic Oscillations from the Distribution of Galaxy Clusters

      NASA Astrophysics Data System (ADS)

      Hong, Tao; Han, J. L.; Wen, Z. L.

      2016-08-01

      We calculate the correlation function of 79,091 galaxy clusters in the redshift region of z≤slant 0.5, selected from the WH15 cluster catalog. With a weight of cluster mass, a significant baryon acoustic oscillation (BAO) peak is detected on the correlation function with a significance of 3.7σ . By fitting the correlation function with a ΛCDM model curve, we find {D}v(z=0.331){r}d{fid}/{r}d=1261.5+/- 48 Mpc, which is consistent with the Planck 2015 cosmology. We find that the correlation function of the higher mass sub-sample shows a higher amplitude at small scales of r\\lt 80 {h}-1 {{Mpc}}, which is consistent with our previous result. The two-dimensional correlation function of this large sample of galaxy clusters shows a faint BAO ring with a significance of 1.8σ , from which we find that the distance scale parameters on directions across and along the line of sight are {α }σ =1.02+/- 0.06 and {α }π =0.94+/- 0.10, respectively.

    18. Nonlinear acoustic experiments involving landmine detection: Connections with mesoscopic elasticity and slow dynamics in geomaterials

      NASA Astrophysics Data System (ADS)

      Korman, Murray S.; Fenneman, Douglas J.; Sabatier, James M.

      2004-10-01

      The vibration interaction between the top-plate of a buried VS 1.6 plastic, anti-tank landmine and the soil above it appears to exhibit similar characteristics to the nonlinear mesoscopic/nanoscale effects that are observed in geomaterials like rocks or granular materials. In nonlinear detection schemes, airborne sound at two primary frequencies f1 and f2 (chosen several Hz apart on either side of resonance) undergo acoustic-to-seismic coupling. Interactions with the compliant mine and soil generate combination frequencies that, through scattering, can effect the vibration velocity at the surface. Profiles at f1, f2, f1-(f2-f1) and f2+(f2-f1) exhibit a single peak while profiles at 2f1-(f2-f1), f1+f2 and 2f2+(f2-f1) are attributed to higher order mode shapes. Near resonance (~125 Hz for a mine buried 3.6 cm deep), the bending (softening) of a family of increasing amplitude tuning curves (involving the surface vibration over the landmine) exhibits a linear relationship between the peak particle velocity and corresponding frequency. Subsequent decreasing amplitude tuning curves exhibit hysteresis effects. Slow dynamics explains the amplitude difference in tuning curves for first sweeping upward and then downward through resonance, provided the soil modulus drops after periods of high strain. [Work supported by U.S. Army RDECOM, CERDEC, NVESD, Fort Belvoir, VA.

    19. Acoustic characteristics of voluntary expiratory sounds after swallow for detecting dysphagia.

      PubMed

      Yamashita, M; Yokoyama, K; Takei, Y; Furuya, N; Nakamichi, Y; Ihara, Y; Takahashi, K; Groher, M E

      2014-09-01

      This research was designed to investigate the acoustic characteristics of voluntary expiratory sounds after swallow for detecting dysphagia. Forty-nine patients with complaints of swallow difficulty received a videofluorographic (VF) examination. They were divided into three groups: nine who did not have any apparent disease (Group N), 22 patients with head and neck cancer (Group H&N) and 18 patients with other diseases including cerebrovascular disease (Group OD). After liquid barium swallows, they exhaled voluntarily without voicing. Videofluorographic findings were classified into four groups: normal (Normal), acceptable swallow (Acceptable), swallow with residue (Resid) and swallows with penetration or aspiration (Pen/Asp). The duration of expiratory sounds was measured on the time waveform. Frequency characteristics of expiratory sounds were obtained using one-third octave band analysis ranging from 62·5 to 2000·0 Hz of central frequency. The averaged level of the 1000·0-Hz band was chosen as the reference band level (RB level). The revised averaged level of each band was obtained by subtracting the RB level from the averaged level of each band. Zero decibel of the revised magnitude of the 125·0-Hz band was set as the critical value to differentiate dysphagia (Resid or Pen/Asp) from no dysphagia (Normal or Acceptable). Comparison of this assessment with VF findings showed a significant percentage agreement (85·4%). These results suggest that frequency characteristics of post-swallow expiratory sounds can differentiate dysphagia from no dysphagia among multiple dysphagic patient groups. PMID:24841831

    20. Online Damage Detection on Metal and Composite Space Structures by Active and Passive Acoustic Methods

      NASA Astrophysics Data System (ADS)

      Scheerer, M.; Cardone, T.; Rapisarda, A.; Ottaviano, S.; Ftancesconi, D.

      2012-07-01

      In the frame of ESA funded programme Future Launcher Preparatory Programme Period 1 “Preparatory Activities on M&S”, Aerospace & Advanced Composites and Thales Alenia Space-Italia, have conceived and tested a structural health monitoring approach based on integrated Acoustic Emission - Active Ultrasound Damage Identification. The monitoring methods implemented in the study are both passive and active methods and the purpose is to cover large areas with a sufficient damage size detection capability. Two representative space sub-structures have been built and tested: a composite overwrapped pressure vessel (COPV) and a curved, stiffened Al-Li panel. In each structure, typical critical damages have been introduced: delaminations caused by impacts in the COPV and a crack in the stiffener of the Al-Li panel which was grown during a fatigue test campaign. The location and severity of both types of damages have been successfully assessed online using two commercially available systems: one 6 channel AE system from Vallen and one 64 channel AU system from Acellent.

    1. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

      NASA Astrophysics Data System (ADS)

      Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

      2016-04-01

      The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

    2. Acoustic signal characteristic detection by neurons in ventral nucleus of the lateral lemniscus in mice

      PubMed Central

      LIU, Hui-Hua; HUANG, Cai-Fei; WANG, Xin

      2014-01-01

      Under free field conditions, we used single unit extracellular recording to study the detection of acoustic signals by neurons in the ventral nucleus of the lateral lemniscus (VNLL) in Kunming mouse (Mus musculus). The results indicate two types of firing patterns in VNLL neurons: onset and sustained. The first spike latency (FSL) of onset neurons was shorter than that of sustained neurons. With increasing sound intensity, the FSL of onset neurons remained stable and that of sustained neurons was shortened, indicating that onset neurons are characterized by precise timing. By comparing the values of Q10 and Q30 of the frequency tuning curve, no differences between onset and sustained neurons were found, suggesting that firing pattern and frequency tuning are not correlated. Among the three types of rate-intensity function (RIF) found in VNLL neurons, the proportion of monotonic RIF is the largest, followed by saturated RIF, and non-monotonic RIF. The dynamic range (DR) in onset neurons was shorter than in sustained neurons, indicating different capabilities in intensity tuning of different firing patterns and that these differences are correlated with the type of RIF. Our results also show that the best frequency of VNLL neurons was negatively correlated with depth, supporting the view point that the VNLL has frequency topologic organization. PMID:25465088

    3. Detection and Prediction of Creep-Damage of Copper Using Nonlinear Acoustic Techniques

      NASA Astrophysics Data System (ADS)

      Narayana, V. J. S.; Balasubramaniam, K.; Prakash, R. V.

      2010-02-01

      This paper describes the use of nonlinear acoustic techniques for the characterization of material damage gradient in 99.98% pure copper due to high temperature creep. Creep damage progression was monitored by conducting continuous and interrupted modes of creep tests. In case of continuous loading, nonlinear ultrasonic (NLU) measurements were conducted, after fracture at different locations along the gage length of the sample. For interrupted tests, the NLU measurements were conducted at different creep life fractions, through periodic interruption of creep test. The third harmonic was more sensitive to creep damage compared to second and static component nonlinearity. All samples show one peak in the nonlinear response at 25-45% of creep life. Finally, we presented the results of nonlinear response working at low power levels, since the interesting effect of accumulated dislocations. Using that effect we applied to creep damage detection. In this the NLU amplitude vs. input amplitude was observed to correlate well with the micro-void concentrations caused by creep conditions.

    4. The design and calibration of particular geometry piezoelectric acoustic emission transducer for leak detection and localization

      NASA Astrophysics Data System (ADS)

      Yalcinkaya, Hazim; Ozevin, Didem

      2013-09-01

      Pipeline leak detection using an acoustic emission (AE) method requires highly sensitive transducers responding to less attenuative and dispersive wave motion in order to place the discrete transducer spacing in an acceptable approach. In this paper, a new piezoelectric transducer geometry made of PZT-5A is introduced to increase the transducer sensitivity to the tangential direction. The finite element analysis of the transducer geometry is modeled in the frequency domain to identify the resonant frequency, targeting 60 kHz, and the loss factor. The numerical results are compared with the electromechanical characterization tests. The transducer response to wave motion generated in different directions is studied using a multiphysics model that couples mechanical and electrical responses of structural and piezoelectric properties. The directional dependence and the sensitivity of the transducer response are identified using the laser-induced load function. The transducer response is compared with a conventional thickness mode AE transducer under simulations and leak localization in a laboratory scale steel pipe.

    5. Finite element method analysis of surface acoustic wave devices with microcavities for detection of liquids

      NASA Astrophysics Data System (ADS)

      Senveli, Sukru U.; Tigli, Onur

      2013-12-01

      This paper introduces the use of finite element method analysis tools to investigate the use of a Rayleigh type surface acoustic wave (SAW) sensor to interrogate minute amounts of liquids trapped in microcavities placed on the delay line. Launched surface waves in the ST-X quartz substrate couple to the liquid and emit compressional waves. These waves form a resonant cavity condition and interfere with the surface waves in the substrate. Simulations show that the platform operates in a different mechanism than the conventional mass loading of SAW devices. Based on the proposed detection mechanism, it is able to distinguish between variations of 40% and 90% glycerin based on phase relations while using liquid volumes smaller than 10 pl. Results from shallow microcavities show high correlation with sound velocity parameter of the liquid whereas deeper microcavities display high sensitivities with respect to glycerin concentration. Simulated devices yield a maximum sensitivity of -0.77°/(% glycerin) for 16 μm wavelength operation with 8 μm deep, 24 μm wide, and 24 μm long microcavities.

    6. Remote ballistic emplacement of an electro-optical and acoustic target detection and localization system

      NASA Astrophysics Data System (ADS)

      West, Aaron; Mellini, Mark

      2015-05-01

      Near real time situational awareness in uncontrolled non line of sight (NLOS) and beyond line of sight (BLOS) environments is critical in the asymmetric battlefield of future conflicts. The ability to detect and accurately locate hostile forces in difficult terrain or urban environments can dramatically increase the survivability and effectiveness of dismounted soldiers, especially when they are limited to the resources available only to the small unit. The Sensor Mortar Network (SMortarNet) is a 60mm Intelligence, Surveillance, and Reconnaissance (ISR) mortar designed to give the Squad near real time situational awareness in uncontrolled NLOS environments. SMortarNet is designed to track targets both acoustically and electro optically and can fuse tracks between, the acoustic, EO, and magnetic modalities on board. The system is linked to other mortar nodes and the user via a masterless frequency hopping spread spectrum ad-hoc mesh radio network. This paper will discuss SMortarNet in the context of a squad level dismounted soldier, its technical capabilities, and its benefit to the small unit Warfighter. The challenges with ballistic remote emplacement of sensitive components and the on board signal processing capabilities of the system will also be covered. The paper will also address how the sensor network can be integrated with existing soldier infrastructure, such as the NettWarrior platform, for rapid transition to soldier systems. Networks of low power sensors can have many forms, but the more practical networks for warfighters are ad hoc radio-based systems that can be rapidly deployed and can leverage a range of assets available at a given time. The low power long life networks typically have limited bandwidth and may have unreliable communication depending on the network health, which makes autonomous sensors a critical component of the network. SMortarNet reduces data to key information features at the sensor itself. The smart sensing approach enables

    7. Detection of bond failure in the anchorage zone of reinforced concrete beams via acoustic emission monitoring

      NASA Astrophysics Data System (ADS)

      Abouhussien, Ahmed A.; Hassan, Assem A. A.

      2016-07-01

      In this study, acoustic emission (AE) monitoring was utilised to identify the onset of bond failure in reinforced concrete beams. Beam anchorage specimens were designed and tested to fail in bond in the anchorage zone. The specimens included four 250 × 250 × 1500 mm beams with four variable bonded lengths (100, 200, 300, and 400 mm). Meanwhile, an additional 250 × 250 × 2440 mm beam, with 200 mm bonded length, was tested to investigate the influence of sensor location on the identification of bond damage. All beams were tested under four-point loading setup and continuously monitored using three distributed AE sensors. These attached sensors were exploited to record AE signals resulting from both cracking and bond deterioration until failure. The variations in the number of AE hits and cumulative signal strength (CSS) versus test time were evaluated to achieve early detection of crack growth and bar slippage. In addition, AE intensity analysis was performed on signal strength of collected AE signals to develop two additional parameters: historic index (H (t)) and severity (S r). The analysis of these AE parameters enabled an early detection of both first cracks (at almost the mid-span of the beam) and bar slip in either of the anchorage zones at the beams’ end before their visual observation, regardless of sensor location. The results also demonstrated a clear correlation between the damage level in terms of crack development/measured free end bar slip and AE parameters (number of hits, CSS, H(t), and S r).

    8. The Correlation Function of Galaxy Clusters and Detection of Baryon Acoustic Oscillations

      NASA Astrophysics Data System (ADS)

      Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

      2012-04-01

      We calculate the correlation function of 13,904 galaxy clusters of z <= 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model ξ(r) = (r/R 0)-γ on the scales of 10 h -1 Mpc <= r <= 50 h -1 Mpc, with a larger correlation length of R 0 = 18.84 ± 0.27 h -1 Mpc for clusters with a richness of R >= 15 and a smaller length of R 0 = 16.15 ± 0.13 h -1 Mpc for clusters with a richness of R >= 5. The power-law index of γ = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r ~ 110 h -1 Mpc with a significance of ~1.9σ. By analyzing the correlation function in the range of 20 h -1 Mpc <= r <= 200 h -1 Mpc, we find that the constraints on distance parameters are Dv (zm = 0.276) = 1077 ± 55(1σ) Mpc and h = 0.73 ± 0.039(1σ), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density Ω m h 2 = 0.093 ± 0.0077(1σ), which deviates from the WMAP7 result by more than 3σ. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

    9. THE CORRELATION FUNCTION OF GALAXY CLUSTERS AND DETECTION OF BARYON ACOUSTIC OSCILLATIONS

      SciTech Connect

      Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

      2012-04-10

      We calculate the correlation function of 13,904 galaxy clusters of z {<=} 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model {xi}(r) = (r/R{sub 0}){sup -{gamma}} on the scales of 10 h{sup -1} Mpc {<=} r {<=} 50 h{sup -1} Mpc, with a larger correlation length of R{sub 0} = 18.84 {+-} 0.27 h{sup -1} Mpc for clusters with a richness of R {>=} 15 and a smaller length of R{sub 0} = 16.15 {+-} 0.13 h{sup -1} Mpc for clusters with a richness of R {>=} 5. The power-law index of {gamma} = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r {approx} 110 h{sup -1} Mpc with a significance of {approx}1.9{sigma}. By analyzing the correlation function in the range of 20 h{sup -1} Mpc {<=} r {<=} 200 h{sup -1} Mpc, we find that the constraints on distance parameters are D{sub v} (z{sub m} = 0.276) = 1077 {+-} 55(1{sigma}) Mpc and h = 0.73 {+-} 0.039(1{sigma}), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density {Omega}{sub m} h{sup 2} = 0.093 {+-} 0.0077(1{sigma}), which deviates from the WMAP7 result by more than 3{sigma}. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

    10. Acoustic emission detection of macro-cracks on engraving tool steel inserts during the injection molding cycle using PZT sensors.

      PubMed

      Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

      2013-01-01

      This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process. PMID:23673677

    11. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

      PubMed Central

      Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

      2013-01-01

      This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process. PMID:23673677

    12. Acoustic sensors using microstructures tunable with energy other than acoustic energy

      DOEpatents

      Datskos, Panagiotis G.

      2005-06-07

      A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

    13. Acoustic sensors using microstructures tunable with energy other than acoustic energy

      DOEpatents

      Datskos, Panagiotis G.

      2003-11-25

      A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

    14. Outdoor sound propagation effects on aircraft detection through passive phased-array acoustic antennas: 3D numerical simulations

      NASA Astrophysics Data System (ADS)

      Roselli, Ivan; Testa, Pierluigi; Caronna, Gaetano; Barbagelata, Andrea; Ferrando, Alessandro

      2005-09-01

      The present paper describes some of the main acoustic issues connected with the SAFE-AIRPORT European Project for the development of an innovative acoustic system for the improvement of air traffic management. The system sensors are two rotating passive phased-array antennas with 512 microphones each. In particular, this study focused on the propagation of sound waves in the atmosphere and its influence on the system detection efficiency. The effects of air temperature and wind gradients on aircraft tracking were analyzed. Algorithms were implemented to correct output data errors on aircraft location due to acoustic ray deviation in 3D environment. Numerical simulations were performed using several temperature and wind profiles according to common and critical meteorological conditions. Aircraft location was predicted through 3D acoustic ray triangulation methods, taking into account variation in speed of sound waves along rays path toward each antenna. The system range was also assessed considering aircraft noise spectral emission. Since the speed of common airplanes is not negligible with respect to sound speed during typical airport operations such as takeoff and approach, the influence of the Doppler effect on range calculation was also considered and most critical scenarios were simulated.

    15. The utility of a long-term acoustic recording system for detecting white seabass Atractoscion nobilis spawning sounds.

      PubMed

      Aalbers, S A; Sepulveda, C A

      2012-11-01

      This study reports the use of a long-term acoustic recording system (LARS) to remotely monitor white seabass Atractoscion nobilis spawning sounds at three sites along the southern California coastline, adjacent to Camp Pendleton. On the basis of previous studies of A. nobilis sound production relative to periods of known spawning activity, LARS were set to continuously record ambient sounds for a 2 h period around sunset from April to June 2009. Acoustic analyses identified A. nobilis courtship sounds on 89, 28 and 45% of the days at the three locations, respectively. From 474 h of acoustic data, spawning-related sounds (chants) were detected on 19 occasions in 2009 with an additional 11 spawning chants recorded during a 2007 validation period. Most spawning chants occurred within 30 min of sunset during the months of May and June at a mean ±S.D. surface temperature of 18.2 ± 1.2° C. Consecutive daily spawning activity was not apparent at any sites in 2009. Atractoscion nobilis spawning chants were recorded at all three sites, suggesting that shallow rocky reefs which support kelp forests provide suitable A. nobilis spawning habitat. Results confirm the utility of passive acoustic recorders for identifying A. nobilis spawning periods and locations. PMID:23130687

    16. Multi-bearing defect detection with trackside acoustic signal based on a pseudo time-frequency analysis and Dopplerlet filter

      NASA Astrophysics Data System (ADS)

      Zhang, Haibin; Lu, Siliang; He, Qingbo; Kong, Fanrang

      2016-03-01

      The diagnosis of train bearing defects based on the acoustic signal acquired by a trackside microphone plays a significant role in the transport system. However, the wayside acoustic signal suffers from the Doppler distortion due to the high moving speed and also contains the multi-source signals from different train bearings. This paper proposes a novel solution to overcome the two difficulties in trackside acoustic diagnosis. In the method a pseudo time-frequency analysis (PTFA) based on an improved Dopplerlet transform (IDT) is presented to acquire the time centers for different bearings. With the time centers, we design a series of Dopplerlet filters (DF) in time-frequency domain to work on the signal's time-frequency distribution (TFD) gained by the short time Fourier transform (STFT). Then an inverse STFT (ISTFT) is utilized to get the separated signals for each sound source which means bearing here. Later the resampling method based on certain motion parameters eliminates the Doppler Effect and finally the diagnosis can be made effectively according to the envelope spectrum of each separated signal. With the effectiveness of the technique validated by both simulated and experimental cases, the proposed wayside acoustic diagnostic scheme is expected to be available in wayside defective bearing detection.

    17. PREFACE: ARENA 2006—Acoustic and Radio EeV Neutrino detection Activities

      NASA Astrophysics Data System (ADS)

      Thompson, Lee

      2007-06-01

      The International Conference on Acoustic and Radio EeV Neutrino Activities, ARENA 2006 was jointly hosted by the Universities of Northumbria and Sheffield at the City of Newcastle Campus of the University of Northumbria in June 2006. ARENA 2006 was the latest in a series of meetings which have addressed, either separately or jointly, the use of radio and acoustic sensors for the detection of highly relativistic particles. Previous successful meetings have taken place in Los Angeles (RADHEP, 2000), Stanford (2003) and DESY Zeuthen (ARENA 2005). A total of 50 scientists from across Europe, the US and Japan attended the conference presenting status reports and results from a number of projects and initiatives spread as far afield as the Sweden and the South Pole. The talks presented at the meeting and the proceedings contained herein represent a `snapshot' of the status of the fields of acoustic and radio detection at the time of the conference. The three day meeting also included two invited talks by Dr Paula Chadwick and Dr Johannes Knapp who gave excellent summaries of the related astroparticle physics fields of high energy gamma ray detection and high energy cosmic ray detection respectively. As well as a full academic agenda there were social events including a Medieval themed conference banquet at Lumley Castle and a civic reception kindly provided by the Lord Mayor of Newcastle and hosted at the Mansion House. Thanks must go to the International Advisory Board members for their input and guidance, the Local Organising Committee for their hard work in bringing everything together and finally the delegates for the stimulating, enthusiastic and enjoyable spirit in which ARENA 2006 took place. Lee Thompson

      International Advisory Board

      G. Anton, ErlangenD. Besson, Kansas
      J. Blümer, KarlsruheA. Capone, Rome
      H. Falcke, BonnP. Gorham, Hawaii
      G. Gratta

    18. Acoustic detection of biosonar activity of deep diving odontocetes at Josephine Seamount High Seas Marine Protected Area.

      PubMed

      Giorli, Giacomo; Au, Whitlow W L; Ou, Hui; Jarvis, Susan; Morrissey, Ronald; Moretti, David

      2015-05-01

      The temporal occurrence of deep diving cetaceans in the Josephine Seamount High Seas Marine Protected Area (JSHSMPA), south-west Portugal, was monitored using a passive acoustic recorder. The recorder was deployed on 13 May 2010 at a depth of 814 m during the North Atlantic Treaty Organization Centre for Maritime Research and Experimentation cruise "Sirena10" and recovered on 6 June 2010. The recorder was programmed to record 40 s of data every 2 min. Acoustic data analysis, for the detection and classification of echolocation clicks, was performed using automatic detector/classification systems: M3R (Marine Mammal Monitoring on Navy Ranges), a custom matlab program, and an operator-supervised custom matlab program to assess the classification performance of the detector/classification systems. M3R CS-SVM algorithm contains templates to detect beaked whales, sperm whales, blackfish (pilot and false killer whales), and Risso's dolphins. The detections of each group of odontocetes was monitored as a function of time. Blackfish and Risso's dolphins were detected every day, while beaked whales and sperm whales were detected almost every day. The hourly distribution of detections reveals that blackfish and Risso's dolphins were more active at night, while beaked whales and sperm whales were more active during daylight hours. PMID:25994682

    19. Comparison between color Doppler twinkling artifact and acoustic shadowing for renal calculus detection: an in vitro study.

      PubMed

      Shabana, Wael; Bude, Ronald O; Rubin, Jonathan M

      2009-02-01

      To assess the ability of the color Doppler twinkling artifact to detect renal stones relative to acoustic shadowing, we scanned seven uric acid calculi embedded in a tissue mimicking phantom and in sheep kidneys using a high frequency linear array and a standard curved linear array ultrasound scanheads (L12-5 and C5-2; Philips Ultrasound, Bothel, WA, USA). The stones were scanned in and out of focus. The scans were optimized for shadow formation in gray-scale imaging and for color twinkling in color Doppler imaging. The images were analyzed using Image J (http://rsb.info.nih.gov/ij/). We calculated the contrast to noise ratios (C/N) for the acoustic shadows and the color twinkling artifact compared with background. These measurements were then evaluated using a single factor analysis of variance (ANOVA) and paired two-tailed t tests. With these comparisons, the C/Ns for twinkling were significantly higher than for acoustic shadowing. On average, twinkling produced 19.2 dB greater C/Ns for stones in the phantom and 17.6 dB more for the stones in the kidneys. In addition, ANOVA showed that twinkling is resistant to focusing and scanning frequency differences. The results suggest that the twinkling artifact is a robust method for detecting the presence of renal calculi. The color signature is easier to detect than is acoustic shadowing. Twinkling may be relatively resistant to many of the problems that plague ultrasound examinations for renal stones, i.e., out-of-focus scans that might be caused by beam aberration effects due to patient body habitus. PMID:19041171

    20. Nonlinear acoustic experiments for landmine detection: the significance of the top-plate normal modes

      NASA Astrophysics Data System (ADS)

      Korman, Murray S.; Alberts, W. C. K., II; Sabatier, James M.

      2004-09-01

      In nonlinear acoustic detection experiments involving a buried inert VS 2.2 anti-tank landmine, airborne sound at two closely spaced primary frequencies f1 and f2 couple into the ground and interact nonlinearly with the soil-top pressure plate interface. Scattering generates soil vibration at the surface at the combination frequencies | m f1 +- n f2 | , where m and n are integers. The normal component of the particle velocity at the soil surface has been measured with a laser Doppler velocimeter (LDV) and with a geophone by Sabatier et. al. [SPIE Proceedings Vol. 4742, (695-700), 2002; Vol. 5089, (476-486), 2003] at the gravel lane test site. Spatial profiles of the particle velocity measured for both primary components and for various combination frequencies indicate that the modal structure of the mine is playing an important role. Here, an experimental modal analysis is performed on a VS 1.6 inert anti-tank mine that is resting on sand but is not buried. Five top-plate mode shapes are described. The mine is then buried in dry finely sifted natural loess soil and excited at f1 = 120 Hz and f2 = 130 Hz. Spatial profiles at the primary components and the nonlinearly generated f1 - (f2 - f1) component are characterized by a single peak. For the 2f1+f2 and 2f2 + f1 components, the doubly peaked profiles can be attributed to the familiar mode shape of a timpani drum (that is shifted lower in frequency due to soil mass loading). Other nonlinear profiles appear to be due to a mixture of modes. This material is based upon work supported by the U. S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate under Contract DAAB15-02-C-0024.

      1. Molecularly Imprinted Polymer Integrated with a Surface Acoustic Wave Technique for Detection of Sulfamethizole.

        PubMed

        Ayankojo, Akinrinade George; Tretjakov, Aleksei; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres; Rappich, Jörg; Furchner, Andreas; Hinrichs, Karsten; Syritski, Vitali

        2016-01-19

        The synergistic effect of combining molecular imprinting and surface acoustic wave (SAW) technologies for the selective and label-free detection of sulfamethizole as a model antibiotic in aqueous environment was demonstrated. A molecularly imprinted polymer (MIP) for sulfamethizole (SMZ) selective recognition was prepared in the form of a homogeneous thin film on the sensing surfaces of SAW chip by oxidative electropolymerization of m-phenylenediamine (mPD) in the presence of SMZ, acting as a template. Special attention was paid to the rational selection of the functional monomer using computational and spectroscopic approaches. SMZ template incorporation and its subsequent release from the polymer was supported by IR microscopic measurements. Precise control of the thicknesses of the SMZ-MIP and respective nonimprinted reference films (NIP) was achieved by correlating the electrical charge dosage during electrodeposition with spectroscopic ellipsometry measurements in order to ensure accurate interpretation of label-free responses originating from the MIP modified sensor. The fabricated SMZ-MIP films were characterized in terms of their binding affinity and selectivity toward the target by analyzing the binding kinetics recorded using the SAW system. The SMZ-MIPs had SMZ binding capacity approximately more than eight times higher than the respective NIP and were able to discriminate among structurally similar molecules, i.e., sulfanilamide and sulfadimethoxine. The presented approach for the facile integration of a sulfonamide antibiotic-sensing layer with SAW technology allowed observing the real-time binding events of the target molecule at nanomolar concentration levels and could be potentially suitable for cost-effective fabrication of a multianalyte chemosensor for analysis of hazardous pollutants in an aqueous environment. PMID:26704414

      2. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: part 1. Engineering design and instrumentation.

        PubMed

        Weiland, Mark A; Deng, Z Daniel; Seim, Tom A; LaMarche, Brian L; Choi, Eric Y; Fu, Tao; Carlson, Thomas J; Thronas, Aaron I; Eppard, M Brad

        2011-01-01

        In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS. PMID:22163918

      3. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: Part 1. Engineering design and instrumentation

        SciTech Connect

        Weiland, Mark A.; Deng, Zhiqun; Seim, Thomas A.; Lamarche, Brian L.; Choi, Eric Y.; Fu, Tao; Carlson, Thomas J.; Thronas, Aaron I.; Eppard, Matthew B.

        2011-05-26

        The U.S. Army Corps of Engineers-Portland District started development of the Juvenile Salmon Acoustic Telemetry System (JSATS), a nonproprietary technology, in 2001 to meet the needs for monitoring the survival of juvenile salmonids through the 31 federal dams in the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters, and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006 the Pacific Northwest National Laboratory (PNNL) was tasked with development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in 2 or 3-dimensions as the fish passed at the facility for determining route of passage. The additional route of passage information, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities and through the FCRPS.

      4. Detecting Acoustic Emissions With/Without Dehydration of Serpentine Outside P-T Field of Conventional Brittle Failure

        NASA Astrophysics Data System (ADS)

        Jung, H.; Fei, Y.; Silver, P. G.; Green, H. W.

        2005-12-01

        It is currently thought that earthquakes cannot be triggered at depths greater than ~60 km by unassisted brittle failure or frictional sliding, but could be triggered by dehydration embrittlement of hydrous minerals (Raleigh and Paterson, 1965; Green and Houston, 1995; Kirby, 1995; Jung et al., 2004). Using a new multianvil-based system for detecting acoustic emissions with four channels at high pressure and high temperature that was recently developed (Jung et al., 2005), we tested this hypothesis by deforming samples of serpentine. We found that acoustic emissions were detected not only during/after the dehydration of serpentine, but even in the absence of dehydration. These emissions occurred at high pressure and high temperature, and thus outside pressure-temperature field of conventional brittle failure. Backscattered-electron images of microstructures of the post-run specimen revealed fault slip at elevated pressure, with offsets of up to ~500 μm, even without dehydration. Analysis of P-wave travel times from the four sensors confirmed that the acoustic emissions originated from within the specimen during fault slip. These observations suggest that earthquakes can be triggered by slip along a fault containing serpentine at significantly higher pressure and temperature conditions than that previously thought, even without dehydration. They are thus consistent with faulting mechanisms that appeal to dehydration embrittlement, as well as those that rely solely on the rheology of non-dehydrated serpentine.

      5. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 1. Engineering Design and Instrumentation

        PubMed Central

        Weiland, Mark A.; Deng, Z. Daniel; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Fu, Tao; Carlson, Thomas J.; Thronas, Aaron I.; Eppard, M. Brad

        2011-01-01

        In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS. PMID:22163918

      6. Plate acoustic wave sensor for detection of small amounts of bacterial cells in micro-litre liquid samples.

        PubMed

        Anisimkin, V I; Kuznetsova, I Е; Kolesov, V V; Pyataikin, I I; Sorokin, V V; Skladnev, D A

        2015-09-01

        Ultrasonic acoustic waves propagating in thin piezoelectric plates with free faces are used for bacteria detection in micro-litre liquid samples deposited on one of the plate surface. The limits of the detection at normal conditions are as low as 0.04% for highly diluted rich cultural Luria-Bertani broth (LB-media) in distillate water, 0.07% for bacterial cells in distillate water, and 0.6% for bacterial cells in LB-media. For all analytes the most probable detection mechanism is the change in liquid conductivity. Because of no using any sorbent film the long-term stability of the detection is expected as very high. PMID:26049732

      7. Targeted Next Generation Sequencing as a Reliable Diagnostic Assay for the Detection of Somatic Mutations in Tumours Using Minimal DNA Amounts from Formalin Fixed Paraffin Embedded Material

        PubMed Central

        Koudijs, Marco J.; Nijman, Ies; Hinrichs, John W. J.; Cuppen, Edwin; van Lieshout, Stef; Loberg, Robert D.; de Jonge, Maja; Voest, Emile E.; de Weger, Roel A.; Steeghs, Neeltje; Langenberg, Marlies H. G.; Sleijfer, Stefan; Willems, Stefan M.; Lolkema, Martijn P.

        2016-01-01

        Background Targeted Next Generation Sequencing (NGS) offers a way to implement testing of multiple genetic aberrations in diagnostic pathology practice, which is necessary for personalized cancer treatment. However, no standards regarding input material have been defined. This study therefore aimed to determine the effect of the type of input material (e.g. formalin fixed paraffin embedded (FFPE) versus fresh frozen (FF) tissue) on NGS derived results. Moreover, this study aimed to explore a standardized analysis pipeline to support consistent clinical decision-making. Method We used the Ion Torrent PGM sequencing platform in combination with the Ion AmpliSeq Cancer Hotspot Panel v2 to sequence frequently mutated regions in 50 cancer related genes, and validated the NGS detected variants in 250 FFPE samples using standard diagnostic assays. Next, 386 tumour samples were sequenced to explore the effect of input material on variant detection variables. For variant calling, Ion Torrent analysis software was supplemented with additional variant annotation and filtering. Results Both FFPE and FF tissue could be sequenced reliably with a sensitivity of 99.1%. Validation showed a 98.5% concordance between NGS and conventional sequencing techniques, where NGS provided both the advantage of low input DNA concentration and the detection of low-frequency variants. The reliability of mutation analysis could be further improved with manual inspection of sequence data. Conclusion Targeted NGS can be reliably implemented in cancer diagnostics using both FFPE and FF tissue when using appropriate analysis settings, even with low input DNA. PMID:26919633

      8. Variabilities detected by acoustic emission from filament-wound Aramid fiber/epoxy composite pressure vessels

        NASA Technical Reports Server (NTRS)

        Hamstad, M. A.

        1978-01-01

        Two hundred and fifty Aramid fiber/epoxy pressure vessels were filament-wound over spherical aluminum mandrels under controlled conditions typical for advanced filament-winding. A random set of 30 vessels was proof-tested to 74% of the expected burst pressure; acoustic emission data were obtained during the proof test. A specially designed fixture was used to permit in situ calibration of the acoustic emission system for each vessel by the fracture of a 4-mm length of pencil lead (0.3 mm in diameter) which was in contact with the vessel. Acoustic emission signatures obtained during testing showed larger than expected variabilities in the mechanical damage done during the proof tests. To date, identification of the cause of these variabilities has not been determined.

      9. Wavelet packet transform for detection of single events in acoustic emission signals

        NASA Astrophysics Data System (ADS)

        Bianchi, Davide; Mayrhofer, Erwin; Gröschl, Martin; Betz, Gerhard; Vernes, András

        2015-12-01

        Acoustic emission signals in tribology can be used for monitoring the state of bodies in contact and relative motion. The recorded signal includes information which can be associated with different events, such as the formation and propagation of cracks, appearance of scratches and so on. One of the major challenges in analyzing these acoustic emission signals is to identify parts of the signal which belong to such an event and discern it from noise. In this contribution, a wavelet packet decomposition within the framework of multiresolution analysis theory is considered to analyze acoustic emission signals to investigate the failure of tribological systems. By applying the wavelet packet transform a method for the extraction of single events in rail contact fatigue test is proposed. The extraction of such events at several stages of the test permits a classification and the analysis of the evolution of cracks in the rail.

      10. Fiber Optic Sensor for Acoustic Detection of Partial Discharges in Oil-Paper Insulated Electrical Systems

        PubMed Central

        Posada-Roman, Julio; Garcia-Souto, Jose A.; Rubio-Serrano, Jesus

        2012-01-01

        A fiber optic interferometric sensor with an intrinsic transducer along a length of the fiber is presented for ultrasound measurements of the acoustic emission from partial discharges inside oil-filled power apparatus. The sensor is designed for high sensitivity measurements in a harsh electromagnetic field environment, with wide temperature changes and immersion in oil. It allows enough sensitivity for the application, for which the acoustic pressure is in the range of units of Pa at a frequency of 150 kHz. In addition, the accessibility to the sensing region is guaranteed by immune fiber-optic cables and the optical phase sensor output. The sensor design is a compact and rugged coil of fiber. In addition to a complete calibration, the in-situ results show that two types of partial discharges are measured through their acoustic emissions with the sensor immersed in oil. PMID:22666058

      11. Wideband acoustic activation and detection of droplet vaporization events using a capacitive micromachined ultrasonic transducer.

        PubMed

        Novell, Anthony; Arena, Christopher B; Oralkan, Omer; Dayton, Paul A

        2016-06-01

        An ongoing challenge exists in understanding and optimizing the acoustic droplet vaporization (ADV) process to enhance contrast agent effectiveness for biomedical applications. Acoustic signatures from vaporization events can be identified and differentiated from microbubble or tissue signals based on their frequency content. The present study exploited the wide bandwidth of a 128-element capacitive micromachined ultrasonic transducer (CMUT) array for activation (8 MHz) and real-time imaging (1 MHz) of ADV events from droplets circulating in a tube. Compared to a commercial piezoelectric probe, the CMUT array provides a substantial increase of the contrast-to-noise ratio. PMID:27369143

      12. Detection of transverse cracking in a hybrid composite laminate using acoustic emission

        NASA Astrophysics Data System (ADS)

        Jong, Hwai-Jiang

        Transverse cracking detection in a uniaxially-loaded symmetric cross-ply hybrid laminate containing 0° IM7/8552 carbon/epoxy and a very thin 90° 52/8552 glass/epoxy layer is studied using the acoustic emission (AE) technique. By conducting modal-based AE experiments and analysis, we investigate some parameters that can be used as the waveform signatures to identify transverse crack growth in the hybrid laminate. Wave dispersion relations of the hybrid laminate are established, and a comparison with those from a material homogenization model based on the equivalent stiffness is made. It is found that material homogenization is not accurate for predicting wave dispersion in the hybrid laminate. Wave dispersion for a homogeneous IM7/8552 unidirectional plate is also constructed. Cut-off frequencies belonging to various wave modes are discussed concerning their significance in interpreting AE signals. The wave attenuation behaviors that exist in the hybrid laminate and in the homogeneous IM7/8552 plate are compared and discussed using the finite element method (FEM). The use of singular elements dealing with the high strain gradient near the crack tip is addressed for convergence purposes. It is shown by the FEM results and demonstrated in the AE experiments that wave attenuation in the cross-ply hybrid laminate is much stronger than in the plain IM7/8552 plate. A simple calibration method for the AE sensors is discussed. Some important aspects in conducting an AE experiment, such as the sensor averaging effect and sensor frequency response range, are addressed. A new source location method based on the waveform's first peak search and the associated primary frequency content is proposed. The accuracy of the source location method is verified by pencil-lead break experiments. The so-called symmetric energy fraction (SEF) of the AE signals in conjunction with the finite element analysis result in identification of the transverse cracking event. Lastly, a material

      13. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

        NASA Astrophysics Data System (ADS)

        Torres-Arredondo, M.-A.; Tibaduiza, D.-A.; McGugan, M.; Toftegaard, H.; Borum, K.-K.; Mujica, L. E.; Rodellar, J.; Fritzen, C.-P.

        2013-10-01

        Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures.

      14. Shear acoustic wave biosensor for detecting DNA intrinsic viscosity and conformation: a study with QCM-D.

        PubMed

        Tsortos, Achilleas; Papadakis, George; Gizeli, Electra

        2008-12-01

        Direct biosensors are devices operating by monitoring the amount of surface-bound analyte. In this work a new approach is presented where a label-free acoustic biosensor, based on a QCM-D device, and solution viscosity theory, are used to study DNA intrinsic viscosity. The latter is quantitatively related to the DNA conformation and specifically the molecule's shape and size, in a manner that is independent of the amount of bound DNA mass. It is shown that acoustic measurements can clearly distinguish between ds-DNA of same shape (straight rod) but various sizes (from 20 to 198bp (base pairs)) and same mass and size (90bp) but various shapes ("straight", "bent", "triangle"). These results are discussed in the broader context of "coil" and sphere-like molecules detected on surfaces. A mathematical formula is presented relating the length of straight, surface-protruding DNA to the acoustic ratio DeltaD/Deltaf. The development of real-time rapid techniques for the characterization of DNA intrinsic curvature as well as DNA conformational changes upon interaction with proteins is of significance to analytical biotechnology due to the large number of DNA sequences and potential DNA bending proteins involved in genome analysis and drug screening. PMID:18723337

      15. Automated pattern analysis: A newsilent partner in insect acoustic detection studies

        Technology Transfer Automated Retrieval System (TEKTRAN)

        This seminar reviews methods that have been developed for automated analysis of field-collected sounds used to estimate pest populations and guide insect pest management decisions. Several examples are presented of successful usage of acoustic technology to map insect distributions in field environ...

      16. Feasibility of grape root borer, Vitacea polistiformis Harris, larval acoustic detection in Florida vineyards

        Technology Transfer Automated Retrieval System (TEKTRAN)

        Grape root borer (GRB) is an important pest of grapes in the Eastern U.S. The larvae feed on grape roots, reducing vine vigor and increasing susceptibility to pathogens and drought. A study was conducted in 3 vineyards to test whether infestations could be identified using acoustic methods. Sound...

      17. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 2. Three-Dimensional Tracking and Passage Outcomes

        PubMed Central

        Deng, Z. Daniel; Weiland, Mark A.; Fu, Tao; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Carlson, Thomas J.; Eppard, M. Brad

        2011-01-01

        In Part 1 of this paper, we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary sensing technology developed by the U.S. Army Corps of Engineers, Portland District (Oregon, USA) to meet the needs for monitoring the survival of juvenile salmonids through the hydroelectric facilities within the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m upstream from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.02 to 0.22 m, and root mean square errors ranged from 0.07 to 0.56 m at distances up to 100 m. For the 2008 case study at John Day Dam, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more “fish-friendly” hydroelectric facilities. PMID:22163919

      18. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 2. Three-Dimensional Tracking and Passage Outcomes

        SciTech Connect

        Deng, Zhiqun; Weiland, Mark A.; Fu, Tao; Seim, Thomas A.; Lamarche, Brian L.; Choi, Eric Y.; Carlson, Thomas J.; Eppard, Matthew B.

        2011-05-26

        In Part 1 of this paper [1], we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary technology developed by the U.S. Army Corps of Engineers, Portland District, to meet the needs for monitoring the survival of juvenile salmonids through the 31 dams in the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.06 to 0.22 m, and root mean square errors ranged from 0.05 to 0.56 m at distances up to 100 m. For the case study at John Day Dam during 2008, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more “fish-friendly” hydroelectric facilities.

      19. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: part 2. Three-dimensional tracking and passage outcomes.

        PubMed

        Deng, Z Daniel; Weiland, Mark A; Fu, Tao; Seim, Tom A; LaMarche, Brian L; Choi, Eric Y; Carlson, Thomas J; Eppard, M Brad

        2011-01-01

        In Part 1 of this paper, we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary sensing technology developed by the U.S. Army Corps of Engineers, Portland District (Oregon, USA) to meet the needs for monitoring the survival of juvenile salmonids through the hydroelectric facilities within the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m upstream from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.02 to 0.22 m, and root mean square errors ranged from 0.07 to 0.56 m at distances up to 100 m. For the 2008 case study at John Day Dam, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more "fish-friendly" hydroelectric facilities. PMID:22163919

      20. The use of COLD-PCR, DHPLC and GeneScanning for the highly sensitive detection of c-KIT somatic mutations in canine mast cell tumours.

        PubMed

        Gentilini, F; Mantovani, V; Turba, M E

        2015-09-01

        The conventional polymerase chain reaction (PCR)/sequencing methods may be poorly suited for the detection of somatic mutations in canine mast cell tumour (MCT) samples owing to limited sensitivity. This study was aimed at establishing novel and more sensitive methods, assessing their limit of detection and comparing their sensitivity with conventional methods.Two different 'driver' somatic mutations of c-KIT, together with the wild-type counterparts, were cloned in plasmids to prepare standard samples with known concentrations of mutated alleles in a background of wild-type alleles; the plasmids standards were assayed using either conventional or novel, highly sensitive technique. Conventional PCR/sequencing showed a sensitivity of 50-20%. Conversely, all the novel methods obtained higher sensitivities allowed reaching as low as 2.5-1.2% of the mutated DNA.The study demonstrates that early conventional methods could likely have underestimated the prevalence of KIT mutations of MCTs, therefore affecting the assessment of their relevance in prognosis and tyrosine kinase inhibitor (TKI) treatment effectiveness. PMID:23654224

      1. Acoustic Emission and Guided Ultrasonic Waves for Detection and Continuous Monitoring of Cracks in Light Water Reactor Components

        SciTech Connect

        Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep; Watson, Bruce E.; Cumblidge, Stephen E.; Doctor, Steven R.; Bond, Leonard J.

        2012-06-28

        Acoustic emission (AE) and guided ultrasonic waves (GUW) are considered for continuous monitoring and detection of cracks in Light Water Reactor (LWR) components. In this effort, both techniques are applied to the detection and monitoring of fatigue crack growth in a full scale pipe component. AE results indicated crack initiation and rapid growth in the pipe, and significant GUW responses were observed in response to the growth of the fatigue crack. After initiation, the crack growth was detectable with AE for approximately 20,000 cycles. Signals associated with initiation and rapid growth where distinguished based on total rate of activity and differences observed in the centroid frequency of hits. An intermediate stage between initiation and rapid growth was associated with significant energy emissions, though few hits. GUW exhibit a nearly monotonic trend with crack length with an exception of measurements obtained at 41 mm and 46 mm.

      2. Systematic pan-cancer analysis of tumour purity

        PubMed Central

        Aran, Dvir; Sirota, Marina; Butte, Atul J.

        2015-01-01

        The tumour microenvironment is the non-cancerous cells present in and around a tumour, including mainly immune cells, but also fibroblasts and cells that comprise supporting blood vessels. These non-cancerous components of the tumour may play an important role in cancer biology. They also have a strong influence on the genomic analysis of tumour samples, and may alter the biological interpretation of results. Here we present a systematic analysis using different measurement modalities of tumour purity in >10,000 samples across 21 cancer types from the Cancer Genome Atlas. Patients are stratified according to clinical features in an attempt to detect clinical differences driven by purity levels. We demonstrate the confounding effect of tumour purity on correlating and clustering tumours with transcriptomics data. Finally, using a differential expression method that accounts for tumour purity, we find an immunotherapy gene signature in several cancer types that is not detected by traditional differential expression analyses. PMID:26634437

      3. On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system

        NASA Astrophysics Data System (ADS)

        Huang, Yinn-Nien; Cheng, Kang; Chen, Sen-Wen

        1985-07-01

        A development of a direct vision type high-frequency Doppler frequency sounder and a setup of HF Doppler frequency sounding array at the northern part of Taiwan Island were presented. By use of all typhoons that occurred in 1982 and 1983, the detectability of the typhoon-generated acoustic-gravity waves by use of this HF Doppler frequency sounding array was presented. The results show that the acoustic-gravity waves generated by a typhoon can be detected by this sounding array; however, the detectability is only 2 out of 12.

      4. Acoustic detection and long-term monitoring of pygmy blue whales over the continental slope in southwest Australia.

        PubMed

        Gavrilova, Alexander N; McCauley, Robert D

        2013-09-01

        A 9-yr dataset of continuous sea noise recording made at the Cape Leeuwin station of the Comprehensive Nuclear-Test-Ban Treaty hydroacoustic network in 2002-2010 was processed to detect calls from pygmy blue whales and to analyze diurnal, seasonal, and interannual variations in their vocal activity. Because the conventional spectrogram correlation method for recognizing whale calls in sea noise resulted in a too high false detection rate, alternative algorithms were tested and the most robust one applied to the multi-year dataset. The detection method was based on multivariate classification using two spectrogram features of transients in sea noise and Fisher's linear discriminant, which provided a misclassification rate of approximately 1% for missed and false detections at moderate sensitivity settings. An analysis of the detection results revealed a consistent seasonal pattern in the whale presence and considerable interannual changes with a steady increase in the number of calls detected in 2002-2006. An apparent diurnal pattern of whales' vocal activity was also observed. The acoustic detection range for pygmy blue whales was estimated to vary from about 50 km to nearly 200 km from the Cape Leeuwin station, depending on the ambient noise level, source level, and azimuth to a vocalizing whale. PMID:23968048

      5. Results from long-term detection of mixing layer height: ceilometer and comparison with Radio-Acoustic Sounding System

        NASA Astrophysics Data System (ADS)

        Schäfer, Klaus; Emeis, Stefan; Jahn, Carsten; Tuma, Michael; Münkel, Christoph; Suppan, Peter

        2012-11-01

        The mixing layer height (MLH) is an important factor which influences exchange processes of ground level emissions. The continuous knowledge of MLH is supporting the understanding of processes directing air quality. If the MLH is located near to the ground, which occurs mainly during winter and night-time, air pollution can be high due to a strongly limited air mass dilution. Since 2006 different methods for long-term continuous remote sensing of mixing layer height (MLH) are operated in Augsburg. The Vaisala ceilometers LD40 and CL31 are used which are eye-safe commercial mini-lidar systems. The ceilometer measurements provide information about the range-dependent aerosol concentration; gradient minima within this profile mark the borders of mixed layers. Special software for these ceilometers provides routine retrievals of lower atmosphere layering from vertical profiles of laser backscatter data. The radiosonde data from the station Oberschleissheim near Munich (about 50 km away from Augsburg city) are also used for MLH determination. The profile behavior of relative humidity (strong decrease) and virtual potential temperature (inversion) of the radiosonde agree mostly well with the MLH indication from ceilometer laser backscatter density gradients. A RASS (Radio-Acoustic Sounding System) from Metek is applied which detects the height of a turbulent layer characterized by high acoustic backscatter intensities due to thermal fluctuations and a high variance of the vertical velocity component as well as the vertical temperature profile from the detection of acoustic signal propagation and thus temperature inversions which mark atmospheric layers. These data of RASS measurements are the input for a software-based determination of MLH. A comparison of the results of the remote sensing methods during simultaneous measurements was performed. The information content of the different remote sensing instruments for MLH in dependence from different weather classes was

      6. Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection

        NASA Astrophysics Data System (ADS)

        Schneider von Deimling, Jens; Held, Philipp; Feldens, Peter; Wilken, Dennis

        2016-04-01

        This study reports an adaptation of a parametric echosounder system using 15 kHz as secondary frequency to investigate the angular response of sub-bottom backscatter strength of layered mud, providing a new method for enhanced acoustic detection of buried targets. Adaptions to achieve both vertical (0°) and non-vertical inclination (1-15°, 30°, 45° and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. Data were acquired at 18 m water depth at a study site characterized by a flat, muddy seafloor where a 0.1 m diameter power cable lies 1-2 m below the seafloor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud decreases strongly at >3±0.5° incidence and the layered mud echo pattern vanishes beyond 5°. As a consequence, the backscatter pattern of the buried cable is very pronounced in acoustic images gathered at 15°, 30°, 45° and 60° incidence. The size of the cable echo pattern increases linearly with incidence. These effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Data analyses support the visual impression of superior detection of the cable with an up to 2.6-fold increase of the signal-to-noise ratio at 40° incidence compared to the vertical incidence case.

      7. Accounting for false-positive acoustic detections of bats using occupancy models

        USGS Publications Warehouse

        Clement, Matthew J.; Rodhouse, Thomas J.; Ormsbee, Patricia C.; Szewczak, Joseph M.; Nichols, James D.

        2014-01-01

        4. Synthesis and applications. Our results suggest that false positives sufficient to affect inferences may be common in acoustic surveys for bats. We demonstrate an approach that can estimate occupancy, regardless of the false-positive rate, when acoustic surveys are paired with capture surveys. Applications of this approach include monitoring the spread of White-Nose Syndrome, estimating the impact of climate change and informing conservation listing decisions. We calculate a site-specific probability of occupancy, conditional on survey results, which could inform local permitting decisions, such as for wind energy projects. More generally, the magnitude of false positives suggests that false-positive occupancy models can improve accuracy in research and monitoring of bats and provide wildlife managers with more reliable information.

      8. Visualizing detecting low-frequency underwater acoustic signals by means of optical diffraction.

        PubMed

        Ren, Yao; Miao, Runcai; Su, Xiaoming; Chen, Hua

        2016-03-10

        A novel and simple technique based on the light diffraction effect for visualization of low-frequency underwater acoustic waves (LFUAWs) in real time has been developed in this paper. A cylindrical object has been put on the surface of the water. A low-frequency underwater longitudinal wave can be generated into a water surface transversal capillary wave around the cylinder by our technique. Modulating the phase of a laser beam reflected from a water surface by surface acoustic waves (SAWs) realizes the acousto-optic effect. Then, a steady and visible diffraction pattern is experimentally observed. A physical model of the SAW is established to verify the feasibility of our technique. An analytical expression of wavelength, wave amplitude, and excitation frequency has been derived to study the physical properties of LFUAWs, and it explains the experimental phenomenon very well. As a result, the technique is effective, easy, and practical for visualizing LFUAWs and has significance for applications. PMID:26974797

      9. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

        NASA Astrophysics Data System (ADS)

        Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

        2015-12-01

        Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

      10. Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging

        NASA Astrophysics Data System (ADS)

        Johnson, Jami L.; van Wijk, Kasper; Caron, James N.; Timmerman, Miriam

        2016-02-01

        Conventional contacting transducers for ultrasonic wave detection are highly sensitive and tuned for real-time imaging with fixed array geometries. However, optical detection provides an alternative to contacting transducers when a small sensor footprint, a large frequency bandwidth, or non-contacting detection is required. Typical optical detection relies on a Doppler-shifted reflection of light from the target, but gas coupled-laser acoustic detection (GCLAD) provides an alternative optical detection method for photoacoustic (PA) and ultrasound imaging that does not involve surface reflectivity. Instead, GCLAD is a line-detector that measures the deflection of an optical beam propagating parallel to the sample, as the refractive index of the air near the sample is affected by particle displacement on the sample surface. We describe the underlying principles of GCLAD and derive a formula for quantifying the surface displacement from a remote GCLAD measurement. We discuss a design for removing the location-dependent displacement bias along the probe beam and a method for measuring the attenuation coefficient of the surrounding air. GCLAD results are used to quantify the surface displacement in a laser-ultrasound experiment, which shows 94% agreement to line-integrated data from a commercial laser vibrometer point detector. Finally, we demonstrate the feasibility of PA imaging of an artery-sized absorber using a detector 5.8 cm from a phantom surface.

      11. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

        PubMed

        Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

        2015-06-01

        The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. PMID:25624226

      12. Reduced uncertainty as a diagnostic benefit: an initial assessment of somatostatic receptor scintigraphy's value in detecting distant metastases of carcinoid liver tumours.

        PubMed

        Woodward, R S; Schnitzler, M A; Kvols, L K

        1998-03-01

        This paper employs classical concepts of diminishing marginal utility to demonstrate that risk-aversion can increase the perceived value of diagnostic procedures and thus raise optimum diagnostic expenditures. The theory is applied to a model in the spirit of Phelps and Mushlin's initial technology assessments. The specific evaluation is the cost-effectiveness of somatostatin receptor scintigraphy used to detect distant metastases of carcinoid liver tumours in a patient otherwise eligible for surgical resection of the liver. Data for the model are taken from published sources and financial databases, when available, and otherwise from a senior clinician's experience (LKK). The quantitative results indicate that receptor scintigraphy may have two beneficial impacts to risk-neutral individuals. First, it may reduce the combined costs of therapy and treatment because the diagnostic procedure costs less than the expected savings generated by avoiding inappropriate surgeries. Second, it may improve the patient's expected health-status-adjusted life years (HSALY) because the information allows physicians to better match treatment to the cancer's stage. Finally the paper demonstrates that risk aversion, as embodied in classical diminishing marginal utility applied to health status, can increase the value of the diagnostic tests and can lead the patient to choose a less beneficial treatment. An illustrative risk-averse utility function changed the optimum treatment from surgery to chemotherapy and increased scintigraphy's benefit by 500%. PMID:9565171

      13. Acoustic biosensors

        PubMed Central

        Fogel, Ronen; Seshia, Ashwin A.

        2016-01-01

        Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

      14. Acoustic biosensors.

        PubMed

        Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

        2016-06-30

        Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

      15. Acoustic neuroma

        MedlinePlus

        Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

      16. Intraoperative intravital microscopy permits the study of human tumour vessels

        PubMed Central

        Fisher, Daniel T.; Muhitch, Jason B.; Kim, Minhyung; Doyen, Kurt C.; Bogner, Paul N.; Evans, Sharon S.; Skitzki, Joseph J.

        2016-01-01

        Tumour vessels have been studied extensively as they are critical sites for drug delivery, anti-angiogenic therapies and immunotherapy. As a preclinical tool, intravital microscopy (IVM) allows for in vivo real-time direct observation of vessels at the cellular level. However, to date there are no reports of intravital high-resolution imaging of human tumours in the clinical setting. Here we report the feasibility of IVM examinations of human malignant disease with an emphasis on tumour vasculature as the major site of tumour-host interactions. Consistent with preclinical observations, we show that patient tumour vessels are disorganized, tortuous and ∼50% do not support blood flow. Human tumour vessel diameters are larger than predicted from immunohistochemistry or preclinical IVM, and thereby have lower wall shear stress, which influences delivery of drugs and cellular immunotherapies. Thus, real-time clinical imaging of living human tumours is feasible and allows for detection of characteristics within the tumour microenvironment. PMID:26883450

      17. Intraoperative intravital microscopy permits the study of human tumour vessels.

        PubMed

        Fisher, Daniel T; Muhitch, Jason B; Kim, Minhyung; Doyen, Kurt C; Bogner, Paul N; Evans, Sharon S; Skitzki, Joseph J

        2016-01-01

        Tumour vessels have been studied extensively as they are critical sites for drug delivery, anti-angiogenic therapies and immunotherapy. As a preclinical tool, intravital microscopy (IVM) allows for in vivo real-time direct observation of vessels at the cellular level. However, to date there are no reports of intravital high-resolution imaging of human tumours in the clinical setting. Here we report the feasibility of IVM examinations of human malignant disease with an emphasis on tumour vasculature as the major site of tumour-host interactions. Consistent with preclinical observations, we show that patient tumour vessels are disorganized, tortuous and ∼50% do not support blood flow. Human tumour vessel diameters are larger than predicted from immunohistochemistry or preclinical IVM, and thereby have lower wall shear stress, which influences delivery of drugs and cellular immunotherapies. Thus, real-time clinical imaging of living human tumours is feasible and allows for detection of characteristics within the tumour microenvironment. PMID:26883450

      18. Detection of acoustic emission from composite laminates using PVF2 transducers

        NASA Technical Reports Server (NTRS)

        Stiffler, R.; Henneke, E. G., II; Herakovich, C. T.

        1983-01-01

        Polyvinylidene fluoride (PVF2), a semicrystalline polymer exhibiting piezoelectricity, is presently used as a sensing transducer in acoustic emission (AE) monitoring of several different composite laminate materials in order to obtain both quasi-static and fatigue loading results. AE signals obtained from PVF2 transducers are compared with those obtained by standard AE sensors. It is noted that PVF2 transducers may, through the application of spectral signal analysis, be able to distinguish between two distinct failure modes which have been observed in two composite laminates of the same material, but employing different lamina stacking sequences.

      19. Hydrophone calibration based on microcontrollers for acoustic detection of UHE neutrinos

        NASA Astrophysics Data System (ADS)

        Ooppakaew, W.; Danaher, S.

        2012-01-01

        This paper discusses hydrophone calibration for generation of artificial Ultra High Energy (UHE) neutrino-induced pulses. Signal processing techniques are applied to hydrophone modelling. A bipolar acoustic generation module is built using PIC microcontrollers for processing and control. The NI-USB6211 commercial module is used for comparison. The modelling is compared to experimental data generated in a laboratory water tank. The result from simulation and experiment are compared, showing excellent agreement. This opens the way to excite steerable hydrophone arrays, which was not possible with previous hardware.

      20. The prognostic value of the tumour marker Cyfra 21-1 in carcinoma of head and neck and its role in early detection of recurrent disease

        PubMed Central

        Doweck, I; Barak, M; Uri, N; Greenberg, E

        2000-01-01

        This study examines a new tumour marker, Cyfra 21-1, as a prognostic marker in predicting the survival of H&N cancer patients, and its correlation with clinical outcome during prolonged follow up of these patients. The study included 67 patients with primary detection of carcinoma of H&N. The survival of these patients was evaluated in correlation with the disease stage and Cyfra 21-1 levels at initial diagnosis. 38 patients were followed clinically and with serial assays for at least 12 months, or until recurrence was diagnosed. Cyfra 21-1 levels were determined periodically, using an Elisa kit. Patients with Cyfra 21-1 < 1.5 ng ml–1had a higher survival rate compared to patients with Cyfra 21-1 ≥ 1.5 ng ml–1(63% vs. 20%, respectively). The risk ratio of Ln(Cyfra 21-1) is 1.62 (P = 0.028). In a Cox regression model that included the disease stage and Ln(Cyfra 21-1), Ln(Cyfra 21-1) was preferred as the main parameter for predicting patients survival. In 83% of the 12 patients with recurrent or residual disease, Cyfra 21-1 was elevated before or during clinical detection of the recurrence. Cyfra 21-1 was found to be a prognostic marker for carcinoma of H&N, unrelated to the stage of the disease. Elevated levels of Cyfra 21-1 without clinical evidence of disease can be attributed to the marker's mean lead-time as compared to the clinical appearance of the disease. © 2000 Cancer Research Campaign http://www.bjcancer.com PMID:11104568

      1. Viral involvement in Hodgkin's disease: detection of clonal type A Epstein-Barr virus genomes in tumour samples.

        PubMed Central

        Gledhill, S.; Gallagher, A.; Jones, D. B.; Krajewski, A. S.; Alexander, F. E.; Klee, E.; Wright, D. H.; O'Brien, C.; Onions, D. E.; Jarrett, R. F.

        1991-01-01

        Thirty-five cases of Hodgkin's disease (HD) were analysed for the presence of Epstein-Barr virus (EBV) and human herpesvirus-6 (HHV-6) DNA. EBV genomes were detected in 11/35 cases while none of the cases was positive for HHV-6. Ten of the EBV-positive cases were subsequently analysed using a probe for the terminal region of the virus; the results suggested that the EBV-infected cells were clonally expanded. EBV subtypes specific DNA amplification was used to demonstrate that EBV subtype A, and not subtype B was present in the EBV-positive cases. The age distribution of the EBV-positive cases indicated a statistically significant trend for an increase in positivity with increasing age. This is the first indication that EBV is significantly associated with any subset of HD patients. Images Figure 1 Figure 2 Figure 5 PMID:1654072

      2. Passive acoustic detection and localization of whales: effects of shipping noise in Saguenay-St. Lawrence Marine Park.

        PubMed

        Simard, Yvan; Roy, Nathalie; Gervaise, Cédric

        2008-06-01

        The performance of large-aperture hydrophone arrays to detect and localize blue and fin whales' 15-85 Hz signature vocalizations under ocean noise conditions was assessed through simulations from a normal mode propagation model combined to noise statistics from 15 960 h of recordings in Saguenay-St. Lawrence Marine Park. The probability density functions of 2482 summer noise level estimates in the call bands were used to attach a probability of detection/masking to the simulated call levels as a function of whale depth and range for typical environmental conditions. Results indicate that call detection was modulated by the calling depth relative to the sound channel axis and by modal constructive and destructive interferences with range. Masking of loud infrasounds could reach 40% at 30 km for a receiver at the optimal depth. The 30 dB weaker blue whale D-call were subject to severe masking. Mapping the percentages of detection and localization allowed assessing the performance of a six-hydrophone array under mean- and low-noise conditions. This approach is helpful for optimizing hydrophone configuration in implementing passive acoustic monitoring arrays and building their detection function for whale density assessment, as an alternative to or in combination with the traditional undersampling visual methods. PMID:18537362

      3. Acoustic wave biosensor for the detection of the breast and prostate cancer metastasis biomarker protein PTHrP.

        PubMed

        Crivianu-Gaita, Victor; Aamer, Mohamed; Posaratnanathan, Roy T; Romaschin, Alexander; Thompson, Michael

        2016-04-15

        There are currently no biosensors that are able to reliably detect the process of cancer metastasis. We describe the first label-free real-time ultra-high frequency acoustic wave biosensor prototype capable of detecting the breast and prostate cancer metastasis biomarker, parathyroid hormone-related peptide (PTHrP). Two different linkers - 11-trichlorosilyl-undecanoic acid pentafluorophenyl ester (PFP) and S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) - were used to immobilize whole anti-PTHrP antibodies and Fab' fragments to surfaces as biorecognition elements. The biosensor surfaces were optimized using X-ray photoelectron spectroscopy (XPS) and the ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS). One optimized whole antibody-based surface (PFP/protein G'/whole antibodies/ethanolamine) and one optimized Fab' fragment-based surface (TUBTS/Fab' fragments) were tested as biosensors. It was determined that an in-line injection of bovine serum albumin prior to analyte injection yielded the most minimally fouling surfaces. Each surface was tested with no mass amplification and with sandwich-type secondary antibody mass amplification. The whole antibody-based mass-amplified biosensor yielded the lowest limit of detection (61 ng/mL), highest sensitivity, and a linear range from 61 ng/mL to 100 μg/mL. However, the Fab' fragment-based biosensor displayed better regenerability as a loss of ~20% of the initial analyte signal intensity was observed with each subsequent injection. The whole antibody-based biosensor was only capable of producing an analyte signal in the first injection. PMID:26594891

      4. Nonlinear Acoustic Experiments Involving Landmine Detection: Connections with Mesoscopic Elasticity and Slow Dynamics in Geomaterials

        NASA Astrophysics Data System (ADS)

        Korman, Murray S.; Sabatier, James M.

        2006-05-01

        The vibration interaction between the top-plate of a buried VS 2.2 plastic, anti-tank landmine and the soil above it appears to exhibit similar characteristics to the nonlinear mesoscopic/nanoscale effects that are observed in geomaterials like rocks or granular materials. [J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. When airborne sound at two primary frequencies f1 and f2 (closely spaced near resonance) undergo acoustic-to-seismic coupling, (A/S), interactions with the mine and soil generate combination frequencies | n f1 ± m f2 | which affect the surface vibration velocity. Profiles at f1, f2, f1 -(f2 - f1) and f2 +(f2 - f1) exhibit single peaks whereas other combination frequencies may involve higher order modes. A family of increasing amplitude tuning curves, involving the surface vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding resonant frequency. Subsequent decreasing amplitude tuning curves exhibit hysteresis effects. New experiments for a buried VS 1.6 anti-tank landmine and a "plastic drum head" mine simulant behave similarly. Slow dynamics explains the amplitude difference in tuning curves for first sweeping upward and then downward through resonance, provided the soil modulus drops after periods of high strain. [Support by U.S. Army RDECOM CERDEC, NVESD, Fort Belvoir, VA.

      5. Detection and processing of electromagnetic and near-field acoustic signals in elasmobranch fishes.

        PubMed Central

        Kalmijn, A D

        2000-01-01

        The acoustic near field of quietly moving underwater objects and the bio-electric field of aquatic animals exhibit great similarity, as both are predominantly governed by Laplace's equation. The acoustic and electrical sensory modalities thus may, in directing fishes to their prey, employ analogous processing algorithms, suggesting a common evolutionary design, founded on the salient physical features shared by the respective stimulus fields. Sharks and rays are capable of orientating to the earth's magnetic field and, hence, have a magnetic sense. The electromagnetic theory of orientation offers strong arguments for the animals using the electric fields induced by ocean currents and by their own motions in the earth's magnetic field. In the animal's frame of reference, in which the sense organs are at rest, the classical concept of motional electricity must be interpreted in relativistic terms. In the ampullae of Lorenzini, weak electric fields cause the ciliated apical receptor-cell membranes to produce graded, negative receptor currents opposite in direction to the fields applied. The observed currents form part of a positive-feedback mechanism, supporting the generation of receptor potentials much larger than the input signal. Acting across the basal cell membranes, the receptor potentials control the process of synaptic transmission. PMID:11079385

      6. Excitation and detection of shear horizontal waves with electromagnetic acoustic transducers for nondestructive testing of plates

        NASA Astrophysics Data System (ADS)

        Ma, Qingzeng; Jiao, Jingpin; Hu, Ping; Zhong, Xi; Wu, Bin; He, Cunfu

        2014-03-01

        The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SH0-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern of PPM EMATs, and can be used for their parameter optimization.

      7. Brain and spinal tumour.

        PubMed

        Goh, C H; Lu, Y Y; Lau, B L; Oy, J; Lee, H K; Liew, D; Wong, A

        2014-12-01

        This study reviewed the epidemiology of brain and spinal tumours in Sarawak from January 2009 till December 2012. The crude incidence of brain tumour in Sarawak was 4.6 per 100,000 population/year with cumulative rate 0.5%. Meningioma was the most common brain tumour (32.3%) and followed by astrocytoma (19.4%). Only brain metastases showed a rising trend and cases were doubled in 4 years. This accounted for 15.4% and lung carcinoma was the commonest primary. Others tumour load were consistent. Primitive neuroectodermal tumour (PNET) and astrocytoma were common in paediatrics (60%). We encountered more primary spinal tumour rather than spinal metastases. Intradural schwannoma was the commonest and frequently located at thoracic level. The current healthcare system in Sarawak enables a more consolidate data collection to reflect accurate brain tumours incidence. This advantage allows subsequent future survival outcome research and benchmarking for healthcare resource planning. PMID:25934956

      8. Numerical and experimental analysis of high frequency acoustic microscopy and infrared reflectance system for early detection of melanoma

        NASA Astrophysics Data System (ADS)

        Karagiannis, Georgios; Apostolidis, Georgios; Georgoulias, Panagiotis

        2016-03-01

        Melanoma is a very malicious type of cancer as it metastasizes early and hence its late diagnosis leads to death. Consequently, early diagnosis of melanoma and its removal is considered the most effective way of treatment. We present a design of a high frequency acoustic microscopy and infrared reflectance system for the early detection of melanoma. Specifically, the identification of morphological changes related to carcinogenesis is required. In this work, we simulate of the propagation of the ultrasonic waves of the order of 100 MHz as well as of electromagnetic waves of the order of 100 THz in melanoma structures targeting to the estimation and optimization of the basic characteristics of the systems. The simulation results of the acoustic microscopy subsystem aim to provide information such as the geometry of the transducer, the center frequency of operation, the focal length where the power transmittance is optimum and the spot size in focal length. As far as the infrared is concerned the optimal frequency range and the spot illumination size of the external probe is provided. This information is next used to assemble a properly designed system which is applied to melanoma phantoms as well as real skin lesions. Finally, the measurement data are visualized to reveal the information of the experimented structures, proving noteworthy accuracy.

      9. Nonlinear acoustic experiments involving landmine detection: Connections with mesoscopic elasticity and slow dynamics in geomaterials, Part III

        NASA Astrophysics Data System (ADS)

        Korman, Murray S.; Sabatier, James M.

        2005-09-01

        In nonlinear acoustic detection schemes, airborne sound at two primary tones, f1, f2 (closely spaced near an 80-Hz resonance) excites the soil surface over a buried landmine. Due to soil wave interactions with the landmine, a scattered surface profile can be measured by a geophone. Profiles at f1, f2, f1-(f2-f1) and f2+(f2-f1) exhibit single peaks; those at 2f1-(f2-f1), f1+f2 and 2f2+(f2-f1) involve higher order mode shapes for a VS 2.2 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil [J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Results are similar to nonlinear mesoscopic/nanoscale effects that are observed in granular solids like Berea sandstone. New experiments show that first sweeping up through resonance and then immediately sweeping back down result in different tuning curve behavior that might be explained by ``slow dynamics'' where an effective modulus reduction persists following periods of high strain. Results are similar to those described by TenCate et al. [Phys. Rev. Lett. 85, 1020-1023 (2000)]. [Work supported by U.S. Army RDECOM CERDEC, NVESD.

      10. Modal Acoustic Emission Used at Elevated Temperatures to Detect Damage and Failure Location in Ceramic Matrix Composites

        NASA Technical Reports Server (NTRS)

        Morscher, Gregory N.

        1999-01-01

        Ceramic matrix composites are being developed for elevated-temperature engine applications. A leading material system in this class of materials is silicon carbide (SiC) fiber-reinforced SiC matrix composites. Unfortunately, the nonoxide fibers, matrix, and interphase (boron nitride in this system) can react with oxygen or water vapor in the atmosphere, leading to strength degradation of the composite at elevated temperatures. For this study, constant-load stress-rupture tests were performed in air at temperatures ranging from 815 to 960 C until failure. From these data, predictions can be made for the useful life of such composites under similar stressed-oxidation conditions. During these experiments, the sounds of failure events (matrix cracking and fiber breaking) were monitored with a modal acoustic emission (AE) analyzer through transducers that were attached at the ends of the tensile bars. Such failure events, which are caused by applied stress and oxidation reactions, cause these composites to fail prematurely. Because of the nature of acoustic waveform propagation in thin tensile bars, the location of individual source events and the eventual failure event could be detected accurately.

      11. Abnormal cortical sensorimotor activity during "Target" sound detection in subjects with acute acoustic trauma sequelae: an fMRI study.

        PubMed

        Job, Agnès; Pons, Yoann; Lamalle, Laurent; Jaillard, Assia; Buck, Karl; Segebarth, Christoph; Delon-Martin, Chantal

        2012-03-01

        The most common consequences of acute acoustic trauma (AAT) are hearing loss at frequencies above 3 kHz and tinnitus. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to visualize neuronal activation patterns in military adults with AAT and various tinnitus sequelae during an auditory "oddball" attention task. AAT subjects displayed overactivities principally during reflex of target sound detection, in sensorimotor areas and in emotion-related areas such as the insula, anterior cingulate and prefrontal cortex, in premotor area, in cross-modal sensory associative areas, and, interestingly, in a region of the Rolandic operculum that has recently been shown to be involved in tympanic movements due to air pressure. We propose further investigations of this brain area and fine middle ear investigations, because our results might suggest a model in which AAT tinnitus may arise as a proprioceptive illusion caused by abnormal excitability of middle-ear muscle spindles possibly link with the acoustic reflex and associated with emotional and sensorimotor disturbances. PMID:22574285

      12. Predicting the characteristics of thunder on Titan: A framework to assess the detectability of lightning by acoustic sensing

        NASA Astrophysics Data System (ADS)

        Petculescu, Andi; Kruse, Roland

        2014-10-01

        The search for lightning is an important item on the agenda for the future exploration of Titan. Thunder, as a direct lightning signature, can be used, together with electromagnetic signals, to corroborate and quantify lightning. Using Cassini-Huygens data and model predictions, the main characteristics of thunder produced by a potential 20 km cloud-to-ground tortuous discharge are obtained and discussed. The acoustic power released right after the discharge decreases with increasing altitude, owing to the ambient pressure and temperature gradients. Ray tracing is used to propagate sound waves to the far field. Simulated thunder waveforms are characterized by fairly long codas—on the order of tens of seconds—arising from the small acoustic absorption (˜10-4dB/km). In the low-loss environment, the principal thunder arrival will likely have a large signal-to-noise ratio ensuring a high detection selectivity. The spectral content depends on the amount of energy released during the discharge. For an energy density of 5 kJ/m, the dominant contribution lies between 50 and 80 Hz; for 500 kJ/m, it shifts to lower frequencies between 10 and 30 Hz.

      13. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System

        PubMed Central

        Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

        2015-01-01

        The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy. PMID:26343657

      14. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System.

        PubMed

        Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

        2015-01-01

        The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy. PMID:26343657

      15. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

        NASA Astrophysics Data System (ADS)

        Yack, Tina M.

        The objectives of this research were to test available automated detection methods for passive acoustic monitoring and integrate the best available method into standard marine mammal monitoring protocols for ship based surveys. The goal of the first chapter was to evaluate the performance and utility of PAMGUARD 1.0 Core software for use in automated detection of marine mammal acoustic signals during towed array surveys. Three different detector configurations of PAMGUARD were compared. These automated detection algorithms were evaluated by comparing them to the results of manual detections made by an experienced bio-acoustician (author TMY). This study provides the first detailed comparisons of PAMGUARD automated detection algorithms to manual detection methods. The results of these comparisons clearly illustrate the utility of automated detection methods for odontocete species. Results of this work showed that the majority of whistles and click events can be reliably detected using PAMGUARD software. The second chapter moves beyond automated detection to examine and test automated classification algorithms for beaked whale species. Beaked whales are notoriously elusive and difficult to study, especially using visual survey methods. The purpose of the second chapter was to test, validate, and compare algorithms for detection of beaked whales in acoustic line-transect survey data. Using data collected at sea from the PAMGUARD classifier developed in Chapter 2 it was possible to measure the clicks from visually verified Baird's beaked whale encounters and use this data to develop classifiers that could discriminate Baird's beaked whales from other beaked whale species in future work. Echolocation clicks from Baird's beaked whales, Berardius bairdii, were recorded during combined visual and acoustic shipboard surveys of cetacean populations in the California Current Ecosystem (CCE) and with autonomous, long-term recorders at four different sites in the Southern

      16. Recurrent hyperphosphatemic tumoural calcinosis

        PubMed Central

        Amit, Sonal; Agarwal, Asha; Nigam, Anand; Rao, Yashwant Kumar

        2012-01-01

        Tumoural calcinosis (TC) is a benign gradually developing disorder that can occur in a variety of clinical settings, characterised by subcutaneous deposition of calcium phosphate with or without giant cell reaction. We describe a case of 11-year-old girl presenting with recurrent hard swellings in the vicinity of shoulder and hip joints associated with elevated serum phosphate and normal serum calcium levels. TC has been mainly reported from Africa, with very few cases reported from India. After the diagnosis of hyperphosphatemic TC was established, the patient was treated with oral sevelamer and is under constant follow-up to detect recurrence, if any. The present case highlights the fact that although an uncommon lesion, TC must be considered in the differential diagnosis of subcutaneous hard lump in the vicinity of a joint. PMID:23010461

      17. Acoustic emission and guided ultrasonic waves for detection and continuous monitoring of cracks in light water reactor components

        SciTech Connect

        Meyer, R. M.; Coble, J.; Ramuhalli, P.; Watson, B.; Cumblidge, S. E.; Doctor, S. R.; Bond, L. J.

        2012-07-01

        Acoustic emission (AE) and guided ultrasonic waves (GUW) are considered for continuous monitoring and detection of cracks in Light Water Reactor (LWR) components. In this effort, both techniques are applied to the detection and monitoring of fatigue crack growth in a full scale pipe component. AE results indicated crack initiation and rapid growth in the pipe, and significant GUW responses were observed in response to the growth of the fatigue crack. After initiation, the crack growth was detectable with AE for approximately 20,000 cycles. Signals associated with initiation and rapid growth were distinguished based on total rate of activity and differences observed in the centroid frequency of hits. An intermediate stage between initiation and rapid growth was associated with significant energy emissions, though few hits. GUW exhibit a nearly monotonic trend with crack length with an exception of measurements obtained at crack lengths of 41 mm and 46 mm. Coupling variability and shadowing by the electro-discharge machining (EDM) starter notch set the lower limit of detectability. (authors)

      18. Wideband nonlinear time reversal seismo-acoustic method for landmine detection.

        PubMed

        Sutin, Alexander; Libbey, Brad; Fillinger, Laurent; Sarvazyan, Armen

        2009-04-01

        Acoustic and seismic waves provide a method to localize compliant mines by vibrating the top plate and a thin soil layer above the mine. This vibration is mostly linear, but also includes a small nonlinear deviation. The main goal of this paper is to introduce a method of processing that uses phase-inversion to observe nonlinear effects in a wide frequency band. The method extracts a nonlinear part of surface velocity from two similar broadcast signals of opposite sign by summing and cancelling the linear components and leaving the nonlinear components. This phase-inversion method is combined with time reversal focusing to provide increased seismic vibration and enhance the nonlinear effect. The experiments used six loudspeakers in a wood box placed over sand in which inert landmines were buried. The nonlinear surface velocity of the sand with a mine compared to the sand without a mine was greater as compared to a linear technique. PMID:19354365

      19. Passive acoustic detection of closed-circuit underwater breathing apparatus in an operational port environment.

        PubMed

        Fillinger, L; Hunter, A J; Zampolli, M; Clarijs, M C

        2012-10-01

        Divers constitute a potential threat to waterside infrastructures. Active diver detection sonars are available commercially but present some shortcomings, particularly in highly reverberant environments. This has led to research on passive sonar for diver detection. Passive detection of open-circuit UBA (underwater breathing apparatus) has been demonstrated. This letter reports on the detection of a diver wearing closed-circuit UBA (rebreather) in an operational harbor. Beamforming is applied to a passive array of 10 hydrophones in a pseudo-random linear arrangement. Experimental results are presented demonstrating detection of the rebreather at ranges up to 120 m and are validated by GPS ground truth. PMID:23039570

      20. Parameters effects study on pulse laser for the generation of surface acoustic waves in human skin detection applications

        NASA Astrophysics Data System (ADS)

        Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen

        2015-10-01

        Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.

      1. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

        NASA Astrophysics Data System (ADS)

        Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

        2009-07-01

        We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

      2. Acoustic bottom detection and seabed classification in the German Bight, southern North Sea

        NASA Astrophysics Data System (ADS)

        Bartholomä, Alexander

        2006-09-01

        To investigate the hydrodynamic activity of the seabed in the German Bight, underwater remote sensing was carried out over an area of 32 km2 located 20 km northeast of Helgoland island in the southern North Sea in January, May and August 2001. On the basis of acoustic seabed classification, six seabed types have been identified by the combined evaluation of side-scan sonar records, wave-shape analysis of echo-sounder data, and 100 grab samples. In five seabed types, the acoustic classes can be distinguished on the basis of sediment characteristics, comprising size components ranging from coarse pebbles to fine sand. The sixth seabed type corresponds to large pebbles and cobbles which are completely overgrown with brown algae. Statistically, the complex spatial patchiness of the six classes varied significantly in the course of the study period. During the winter period (January 2001), the study site was dominated by coarse material, except for a small area of finer sediment in the centre. With the onset of more moderate weather conditions in spring (May 2001), a general fining trend in sediment composition was observed, especially in the deeper western parts of the study area. In summer (August 2001), finer sediments still dominated but a slight increase in signal roughness suggests an overprint by coarser lag deposits and/or denser coverage by benthic organisms (e.g. Lanice conchilega) which then were found more frequently in grab samples, in association with finer sand. These findings demonstrate that the distribution of seafloor sediments and their benthic fauna in the deeper part of the German Bight region are controlled largely by seasonal changes in hydrodynamic conditions. These changes are reflected in correspondingly high variability in the complex patchiness of sediment distribution patterns, which would not have been adequately resolved by any standard sampling procedure.

      3. Tumour progression and metastasis.

        PubMed

        Arvelo, Francisco; Sojo, Felipe; Cotte, Carlos

        2016-01-01

        The two biological mechanisms that determine types of malignancy are infiltration and metastasis, for which tumour microenvironment plays a key role in developing and establishing the morphology, growth and invasiveness of a malignancy. The microenvironment is formed by complex tissue containing the extracellular matrix, tumour and non-tumour cells, a signalling network of cytokines, chemokines, growth factors, and proteases that control autocrine and paracrine communication among individual cells, facilitating tumour progression. During the development of the primary tumour, the tumour stroma and continuous genetic changes within the cells makes it possible for them to migrate, having to count on a pre-metastatic niche receptor that allows the tumour's survival and distant growth. These niches are induced by factors produced by the primary tumour; if it is eradicated, the active niches become responsible for activating the latent disseminated cells. Due to the importance of these mechanisms, the strategies that develop tumour cells during tumour progression and the way in which the microenvironment influences the formation of metastasis are reviewed. It also suggests that the metastatic niche can be an ideal target for new treatments that make controlling metastasis possible. PMID:26913068

      4. Low frequency acoustic microscope

        DOEpatents

        Khuri-Yakub, Butrus T.

        1986-11-04

        A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

      5. Imaging tumour hypoxia with positron emission tomography

        PubMed Central

        Fleming, I N; Manavaki, R; Blower, P J; West, C; Williams, K J; Harris, A L; Domarkas, J; Lord, S; Baldry, C; Gilbert, F J

        2015-01-01

        Hypoxia, a hallmark of most solid tumours, is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. Given its prominent role in oncology, accurate detection of hypoxia is important, as it impacts on prognosis and could influence treatment planning. A variety of approaches have been explored over the years for detecting and monitoring changes in hypoxia in tumours, including biological markers and noninvasive imaging techniques. Positron emission tomography (PET) is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. This review provides an overview of imaging hypoxia with PET, with an emphasis on the advantages and limitations of the currently available hypoxia radiotracers. PMID:25514380

      6. Fissile and Non-Fissile Material Detection Using Nuclear Acoustic Resonance Signatures

        SciTech Connect

        Bernhard R. Tittmann; P.M. Lenahan; David Spears; Rhys Williams

        2008-11-25

        The objective of this project is to develop anovel technique for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs. We propse the development of a detection system based on magnetic resonance principles (NAR), which would work where radiation detection is not possible. The approach would be non-intrusive, penetrating, applicable to many materials of interest for Nonproliferation, and be able to identify the nuclear samples under investigation.

      7. Developments in Analytical Chemistry: Acoustically Levitated Drop Reactors for Enzyme Reaction Kinetics and Single-Walled Carbon Nanotube-Based Sensors for Detection of Toxic Organic Phosphonates

        ERIC Educational Resources Information Center

        Field, Christopher Ryan

        2009-01-01

        Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…

      8. Enhanced channel estimation and symbol detection for high speed multi-input multi-output underwater acoustic communications.

        PubMed

        Ling, Jun; Yardibi, Tarik; Su, Xiang; He, Hao; Li, Jian

        2009-05-01

        The need for achieving higher data rates in underwater acoustic communications leverages the use of multi-input multi-output (MIMO) schemes. In this paper two key issues regarding the design of a MIMO communications system, namely, channel estimation and symbol detection, are addressed. To enhance channel estimation performance, a cyclic approach for designing training sequences and a channel estimation algorithm called the iterative adaptive approach (IAA) are presented. Sparse channel estimates can be obtained by combining IAA with the Bayesian information criterion (BIC). Moreover, the RELAX algorithm can be used to improve the IAA with BIC estimates further. Regarding symbol detection, a minimum mean-squared error based detection scheme, called RELAX-BLAST, which is a combination of vertical Bell Labs layered space-time (V-BLAST) algorithm and the cyclic principle of the RELAX algorithm, is presented and it is shown that RELAX-BLAST outperforms V-BLAST. Both simulated and experimental results are provided to validate the proposed MIMO scheme. RACE'08 experimental results employing a 4 x 24 MIMO system show that the proposed scheme enjoys an average uncoded bit error rate of 0.38% at a payload data rate of 31.25 kbps and an average coded bit error rate of 0% at a payload data rate of 15.63 kbps. PMID:19425650

      9. Influence of roughness on the detection of mechanical characteristics of low-k film by the surface acoustic waves

        NASA Astrophysics Data System (ADS)

        Xiao, Xia; Tao, Ye; Sun, Yuan

        2014-10-01

        The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical characteristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is investigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black Diamond™ samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films.

      10. Acoustic Radiation Force Beam Sequence Performance for Detection and Material Characterization of Atherosclerotic Plaques: Preclinical, Ex Vivo Results

        PubMed Central

        Behler, Russell H.; Czernuszewicz, Tomasz J.; Wu, Chih-Da; Nichols, Timothy C.; Zhu, Hongtu; Homeister, Jonathon W.; Merricks, Elizabeth P.; Caughey, Melissa C.; Gallippi, Caterina M.

        2014-01-01

        This work presents preclinical data demonstrating performance of acoustic radiation force (ARF) based elasticity imaging with five different beam sequences for atherosclerotic plaque detection and material characterization. Twelve trained, blinded readers evaluated parametric images taken ex vivo under simulated in vivo conditions of 22 porcine femoral arterial segments. Receiver operating characteristic (ROC) curve analysis was carried out to quantify reader performance using spatially-matched immunohistochemistry for validation. The beam sequences employed had high sensitivity and specificity for detecting Type III+ plaques (Sens: 85%, Spec: 79%), lipid pools (Sens: 80%, Spec: 86%), fibrous caps (Sens: 86%, spec: 82%), calcium (Sens: 96%, Spec: 85%), collagen (Sens: 78%, Spec: 77%), and disrupted internal elastic lamina (Sens: 92%, Spec: 75%). 1:1 single-receive tracking yielded the highest median areas under the ROC curve (AUC), but was not statistically significantly higher than 4:1 parallel-receive tracking. Excitation focal configuration did not result in statistically different AUCs. Overall, these results suggest ARF-based imaging is relevant to detecting and characterizing plaques and support its use for diagnosing and monitoring atherosclerosis. PMID:24297014

      11. Magnetic resonance imaging findings in 40 dogs with histologically confirmed intracranial tumours.

        PubMed

        Ródenas, Sergio; Pumarola, Marti; Gaitero, Lluís; Zamora, Angels; Añor, Sònia

        2011-01-01

        Magnetic resonance (MR) images of 40 dogs with histologically confirmed primary and secondary intracranial tumours were reviewed. Forty-one tumours were diagnosed by means of MR imaging (MRI). MRI findings allowed diagnosis of a neoplastic lesion in 37/41 cases. Based on MRI features, differentiation between neoplastic and non-neoplastic lesions was possible in 24/27 (89%) primary brain tumours and in 13/14 (92%) secondary brain tumours. Diagnosis of tumour type based on MRI features was correct in 19/27 (70%) primary tumours and in 13/14 secondary tumours. The results of this study show that MRI is a good diagnostic imaging modality to detect neoplastic lesions and to diagnose tumour type in dogs. However, as some neoplasms show equivocal MRI features the technique has limitations in the detection of some intracranial tumours and in predicting tumour type. PMID:19914851

      12. Tumours of the lung

        PubMed Central

        Stünzi, H.; Head, K. W.; Nielsen, S. W.

        1974-01-01

        Lung tumours are not common in domestic animals; there has not been the increase in epidermoid carcinomas and anaplastic small-cell carcinomas that has occurred in man this century. Adenocarcinoma is the most common type in animals. The biological behaviour of each type of tumour in animals seems to be much the same as in man. The tumours are described histologically, the main categories being: epidermoid carcinoma, anaplastic carcinoma, adenocarcinoma, combined epidermoid and adenocarcinoma, carcinoid tumours, bronchial gland tumours, benign tumours, and sarcomas. ImagesFig. 13Fig. 14Fig. 15Fig. 16Fig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12 PMID:4371738

      13. Tumour progression and metastasis

        PubMed Central

        Arvelo, Francisco; Sojo, Felipe; Cotte, Carlos

        2016-01-01

        The two biological mechanisms that determine types of malignancy are infiltration and metastasis, for which tumour microenvironment plays a key role in developing and establishing the morphology, growth and invasiveness of a malignancy. The microenvironment is formed by complex tissue containing the extracellular matrix, tumour and non-tumour cells, a signalling network of cytokines, chemokines, growth factors, and proteases that control autocrine and paracrine communication among individual cells, facilitating tumour progression. During the development of the primary tumour, the tumour stroma and continuous genetic changes within the cells makes it possible for them to migrate, having to count on a pre-metastatic niche receptor that allows the tumour’s survival and distant growth. These niches are induced by factors produced by the primary tumour; if it is eradicated, the active niches become responsible for activating the latent disseminated cells. Due to the importance of these mechanisms, the strategies that develop tumour cells during tumour progression and the way in which the microenvironment influences the formation of metastasis are reviewed. It also suggests that the metastatic niche can be an ideal target for new treatments that make controlling metastasis possible. PMID:26913068

      14. Rapid detection of sewer defects and blockages using acoustic-based instrumentation.

        PubMed

        Ali, M T Bin; Horoshenkov, K V; Tait, S J

        2011-01-01

        Sewer flooding incidents in the UK are being increasingly associated with the presence of blockages. Blockages are difficult to deal with as although there are locations where they are more likely to occur, they do occur intermittently. In order to manage sewer blockage pro-actively sewer managers need to be able to identify the location of blockages promptly. Traditional closed-circuit television (CCTV) inspection technologies are slow and relatively expensive so are not well suited to the rapid inspection of a network. This is needed if managers are to be able to address sewer blockages proactively. This paper reports on the development of an acoustic-based sensor. The sensor was tested in a full scale sewer pipe in the laboratory and it was shown that it is able to find blockages and identify structural aspects of a sewer pipe such as a manhole and lateral connection. Analysis of the received signal will locate a blockage and also provide information on its character. The measurement is very rapid and objective and so inspections can be carried out at much faster rates than using existing CCTV technologies. PMID:22335114

      15. Detection of internal cracks in rubber composite structures using an impact acoustic modality

        NASA Astrophysics Data System (ADS)

        Shen, Q.; Kurfess, T. R.; Omar, M.; Gramling, F.

        2014-01-01

        The objective of this study is to investigate the use of impact acoustic signals to non-intrusively inspect rubber composite structures for the presence of internal cracks, such as those found in an automobile tyre. Theoretical contact dynamic models for both integral and defective rubber structures are developed based on Hertz's impact model, further modified for rubber composite materials. The model generates the prediction of major impact dynamic quantities, namely the maximum impact force, impact duration and contact deformation; such parameters are also theoretically proven to be correlated with the presence of internal cracks. The tyre structures are simplified into cubic rubber blocks, to mitigate complexity for analytical modelling. Both impact force and impact sound signals are measured experimentally, and extraction of useful features from both signals for defect identification is achieved. The impact force produces two direct measurements of theoretical impact dynamic quantities. A good correlation between these experimental discriminators and the theoretical dynamic quantities provide validation for the contact dynamics models. Defect discriminators extracted from the impact sound are dependent on both time- and frequency-domain analyses. All the discriminators are closely connected with the theoretical dynamic quantities and experimentally verified as good indicators of internal cracks in rubber composite structures.

      16. Phase congruency map driven brain tumour segmentation

        NASA Astrophysics Data System (ADS)

        Szilágyi, Tünde; Brady, Michael; Berényi, Ervin

        2015-03-01

        Computer Aided Diagnostic (CAD) systems are already of proven value in healthcare, especially for surgical planning, nevertheless much remains to be done. Gliomas are the most common brain tumours (70%) in adults, with a survival time of just 2-3 months if detected at WHO grades III or higher. Such tumours are extremely variable, necessitating multi-modal Magnetic Resonance Images (MRI). The use of Gadolinium-based contrast agents is only relevant at later stages of the disease where it highlights the enhancing rim of the tumour. Currently, there is no single accepted method that can be used as a reference. There are three main challenges with such images: to decide whether there is tumour present and is so localize it; to construct a mask that separates healthy and diseased tissue; and to differentiate between the tumour core and the surrounding oedema. This paper presents two contributions. First, we develop tumour seed selection based on multiscale multi-modal texture feature vectors. Second, we develop a method based on a local phase congruency based feature map to drive level-set segmentation. The segmentations achieved with our method are more accurate than previously presented methods, particularly for challenging low grade tumours.

      17. Detection of Skin Disbond in Honeycombs and Coating Detachment by a Laser Acoustic Technique

        NASA Astrophysics Data System (ADS)

        Blouin, A.; Campagne, B.; Néron, C.; Monchalin, J.-P.

        2007-03-01

        Many engineering structures are composite and include for example a protective coating or a bonded layer. A novel technique, close to laser-ultrasonics but significantly different, has been developed for the detection of disbonds between the coating or the bonded layer and the substrate. It is also applicable to the detection of core unbonds in honeycomb structures. The technique is based on the thermoelastic excitation by a pulsed laser of the top layer or top skin which is driven into vibration if it is detached from the substrate underneath. This vibration is then detected by a second laser coupled to a photorefractive interferometer. The technique can be made very flexible by using optical fiber coupling. One foresees its application to the in-service inspection of aerospace structures for the detection of core unbonds in honeycombs or near surface delaminations. Examples of application to honeycombs and to various coatings are presented.

      18. A novel data adaptive detection scheme for distributed fiber optic acoustic sensing

        NASA Astrophysics Data System (ADS)

        Ölçer, Íbrahim; Öncü, Ahmet

        2016-05-01

        We introduce a new approach for distributed fiber optic sensing based on adaptive processing of phase sensitive optical time domain reflectometry (Φ-OTDR) signals. Instead of conventional methods which utilizes frame averaging of detected signal traces, our adaptive algorithm senses a set of noise parameters to enhance the signal-to-noise ratio (SNR) for improved detection performance. This data set is called the secondary data set from which a weight vector for the detection of a signal is computed. The signal presence is sought in the primary data set. This adaptive technique can be used for vibration detection of health monitoring of various civil structures as well as any other dynamic monitoring requirements such as pipeline and perimeter security applications.

      19. Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation

        PubMed Central

        Siegert, M. E.; Römer, H.; Hartbauer, M.

        2014-01-01

        SUMMARY We examined acoustic masking in a chirping katydid species of the Mecopoda elongata complex due to interference with a sympatric Mecopoda species where males produce continuous trills at high amplitudes. Frequency spectra of both calling songs range from 1 to 80 kHz; the chirper species has more energy in a narrow frequency band at 2 kHz and above 40 kHz. Behaviourally, chirper males successfully phase-locked their chirps to playbacks of conspecific chirps under masking conditions at signal-to-noise ratios (SNRs) of −8 dB. After the 2 kHz band in the chirp had been equalised to the level in the masking trill, the breakdown of phase-locked synchrony occurred at a SNR of +7 dB. The remarkable receiver performance is partially mirrored in the selective response of a first-order auditory interneuron (TN1) to conspecific chirps under these masking conditions. However, the selective response is only maintained for a stimulus including the 2 kHz component, although this frequency band has no influence on the unmasked TN1 response. Remarkably, the addition of masking noise at 65 dB sound pressure level (SPL) to threshold response levels of TN1 for pure tones of 2 kHz enhanced the sensitivity of the response by 10 dB. Thus, the spectral dissimilarity between masker and signal at a rather low frequency appears to be of crucial importance for the ability of the chirping species to communicate under strong masking by the trilling species. We discuss the possible properties underlying the cellular/synaptic mechanisms of the ‘novelty detector’. PMID:24307713

      20. Detection of dead regions in the cochlea: relevance for combined electric and acoustic stimulation.

        PubMed

        Moore, Brian C J; Glasberg, Brian; Schlueter, Anne

        2010-01-01

        A dead region is a region in the cochlea where the inner hair cells and/or the auditory neurones are functioning very poorly, if at all. People who are being considered for a combination of a cochlear implant and a hearing aid typically have a dead region in the parts of the cochlea that normally respond to medium and high frequencies, but have some functional hearing at lower frequencies. For such people, it may be useful to determine the edge frequency, f(e), of any dead region. This may be relevant to choosing the most appropriate insertion depth of the electrode array, and to the way that frequencies in the input signal are mapped to acoustic and electric stimulation. It may also be helpful in interpreting the results of research studies. This paper reviews methods for diagnosing dead regions and defining the value of f(e). It is argued that the value of f(e) cannot be determined reliably from the audiogram, although a dead region is likely to be present at a given frequency when the hearing loss at that frequency is 70 dB or more. When a sinusoidal signal is reported as sounding highly distorted or noise-like, a dead region may be present at the signal frequency, but again this is not a reliable indicator. The TEN test is a simple clinical method for diagnosis of dead regions. Where this test gives a positive diagnosis, it is recommended that psychophysical tuning curves be measured to define the value of f(e) more precisely. PMID:19955720

      1. Heterogeneous interplate coupling along the Nankai Trough, Japan, detected by GPS-acoustic seafloor geodetic observation

        NASA Astrophysics Data System (ADS)

        Yokota, Yusuke; Ishikawa, Tadashi; Sato, Mariko; Watanabe, Shun-ichi; Saito, Hiroaki; Ujihara, Naoto; Matsumoto, Yoshihiro; Toyama, Shin-ichi; Fujita, Masayuki; Yabuki, Tetsuichiro; Mochizuki, Masashi; Asada, Akira

        2015-12-01

        The recurring devastating earthquake that occurs in the Nankai Trough subduction zone between the Philippine Sea plate and the Eurasian plate has the potential to cause an extremely dangerous natural disaster in the foreseeable future. Many previous studies have assumed interplate-coupling ratios for this region along the trench axis using onshore geodetic data in order to understand this recursive event. However, the offshore region that has the potential to drive a devastating tsunami cannot be resolved sufficiently because the observation network is biased to the land area. Therefore, the Hydrographic and Oceanographic Department of Japan constructed a geodetic observation network on the seafloor along the Nankai Trough using a GPS-acoustic combination technique and has used it to observe seafloor crustal movements directly above the Nankai Trough subduction zone. We have set six seafloor sites and cumulated enough data to determine the displacement rate from 2006 to January 2011. Our seafloor geodetic observations at these sites revealed a heterogeneous interplate coupling that has three particular features. The fast displacement rates observed in the easternmost area indicate strong interplate coupling (>75%) around not only the future Tokai earthquake source region but also the Paleo-Zenisu ridge. The slow displacement rates near the trench axis in the Kumano-nada Sea, a shallow part of the 1944 Tonankai earthquake source region, show a lower coupling ratio (50% to 75%). The slow displacement rate observed in the area shallower than the 1946 Nankaido earthquake source region off Cape Muroto-zaki reflects weakening interplate coupling (about 50%) probably due to a subducting seamount. Our observations above the subducting ridge and seamount indicate that the effect of a subducting seamount on an interplate-coupling region depends on various conditions such as the geometry of the seamount and the friction parameters on the plate boundary.

      2. Non-volcanic crustal movements of the northernmost Philippine Sea plate detected by the GPS-acoustic seafloor positioning

        NASA Astrophysics Data System (ADS)

        Watanabe, Shun-ichi; Ishikawa, Tadashi; Yokota, Yusuke

        2015-11-01

        Repeatedly performing the GPS-acoustic seafloor positioning, we first succeeded in detecting non-volcanic seafloor movements on the Philippine Sea plate (PHS) subducting along the Sagami Trough. At a seafloor geodetic site on the northernmost part of the PHS off the Boso Peninsula, we detected significant eastward motion with respect to the central part of the PHS. This is unaccountable by the coupling between the Pacific plate and the PHS along the Izu-Bonin (Ogasawara) Trench because it would cause the westward elastic deformation at BOSS. It is rather consistent with the rigid motion of the tectonic block in the fore-arc along the Izu-Bonin Trench, associated with the back-arc rift. The other site on the western side of the Sagami Bay had moved toward the north relative to the Izu Peninsula. It suggests that the Izu microplate obviously moves relative to the northern PHS. The difference between the velocities of the Sagami Bay and the Izu Peninsula indicates the coupling on the boundary fault as well.

      3. Detection and modeling of the acoustic perturbation produced by the launch of the Space Shuttle using the Global Positioning System

        NASA Astrophysics Data System (ADS)

        Bowling, T. J.; Calais, E.; Dautermann, T.

        2010-12-01

        Rocket launches are known to produce infrasonic pressure waves that propagate into the ionosphere where coupling between electrons and neutral particles induces fluctuations in ionospheric electron density observable in GPS measurements. We have detected ionospheric perturbations following the launch of space shuttle Atlantis on 11 May 2009 using an array of continually operating GPS stations across the Southeastern coast of the United States and in the Caribbean. Detections are prominent to the south of the westward shuttle trajectory in the area of maximum coupling between the acoustic wave and Earth’s magnetic field, move at speeds consistent with the speed of sound, and show coherency between stations covering a large geographic range. We model the perturbation as an explosive source located at the point of closest approach between the shuttle path and each sub-ionospheric point. The neutral pressure wave is propagated using ray tracing, resultant changes in electron density are calculated at points of intersection between rays and satellite-to-reciever line-of-sight, and synthetic integrated electron content values are derived. Arrival times of the observed and synthesized waveforms match closely, with discrepancies related to errors in the apriori sound speed model used for ray tracing. Current work includes the estimation of source location and energy.

      4. Detection of defect parameters using nonlinear air-coupled emission by ultrasonic guided waves at contact acoustic nonlinearities.

        PubMed

        Delrue, Steven; Van Den Abeele, Koen

        2015-12-01

        Interaction of ultrasonic guided waves with kissing bonds (closed delaminations and incipient surface breaking cracks) gives rise to nonlinear features at the defect location. This causes higher harmonic frequency ultrasonic radiation into the ambient air, often referred to as Nonlinear Air-Coupled Emission (NACE), which may serve as a nonlinear tag to detect the defects. This paper summarizes the results of a numerical implementation and simulation study of NACE. The developed model combines a 3D time domain model for the nonlinear Lamb wave propagation in delaminated samples with a spectral solution for the nonlinear air-coupled emission. A parametric study is conducted to illustrate the potential of detecting defect location, size and shape by studying the NACE acoustic radiation patterns in different orientation planes. The simulation results prove that there is a good determination potential for the defect parameters, especially when the radiated frequency matches one of the resonance frequencies of the delaminated layer, leading to a Local Defect Resonance (LDR). PMID:26208725

      5. Acoustics- Version 1.0

        SciTech Connect

        2012-09-13

        This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, the sounds are removed, as a character forgets what it has heard.

      6. Acoustics- Version 1.0

        Energy Science and Technology Software Center (ESTSC)

        2012-09-13

        This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, themore » sounds are removed, as a character forgets what it has heard.« less

      7. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

        NASA Astrophysics Data System (ADS)

        Stubbs, Desmond

        For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

      8. Tumour ablation: technical aspects

        PubMed Central

        Bodner, Gerd; Bale, Reto

        2009-01-01

        Abstract Image-guided percutaneous radiofrequency ablation (RFA) is a minimally invasive, relatively low-risk procedure for tumour treatment. Local recurrence and survival rates depend on the rate of complete ablation of the entire tumour including a sufficient margin of surrounding healthy tissue. Currently a variety of different RFA devices are available. The interventionalist must be able to predict the configuration and extent of the resulting ablation necrosis. Accurate planning and execution of RFA according to the size and geometry of the tumour is essential. In order to minimize complications, individualized treatment strategies may be necessary for tumours close to vital structures. This review examines the state-of-the art of different device technologies, approaches, and treatment strategies for percutaneous RFA of liver tumours. PMID:19965296

      9. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

        SciTech Connect

        Murray, Nathan E.

        2012-03-12

        Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

      10. One-class acoustic characterization applied to blood detection in IVUS.

        PubMed

        O'Malley, Sean M; Naghavi, Morteza; Kakadiaris, Ioannis A

        2007-01-01

        Intravascular ultrasound (IVUS) is an invasive imaging modality capable of providing cross-sectional images of the interior of a blood vessel in real time and at normal video framerates (10-30 frames/s). Low contrast between the features of interest in the IVUS imagery remains a confounding factor in IVUS analysis; it would be beneficial therefore to have a method capable of detecting certain physical features imaged under IVUS in an automated manner. We present such a method and apply it to the detection of blood. While blood detection algorithms are not new in this field, we deviate from traditional approaches to IVUS signal characterization in our use of 1-class learning. This eliminates certain problems surrounding the need to provide "foreground" and "background" (or, more generally, n-class) samples to a learner. Applied to the blood-detection problem on 40 MHz recordings made in vivo in swine, we are able to achieve approximately 95% sensitivity with approximately 90% specificity at a radial resolution of approximately 600 microm. PMID:18051060

      11. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus

        NASA Astrophysics Data System (ADS)

        Yan, Zhaoli; Chen, Bin; Tian, Hao; Cheng, Xiaobin; Yang, Jun

        2015-12-01

        A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10-4 during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.

      12. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus.

        PubMed

        Yan, Zhaoli; Chen, Bin; Tian, Hao; Cheng, Xiaobin; Yang, Jun

        2015-12-01

        A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10(-4) during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred. PMID:26724059

      13. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus

        SciTech Connect

        Yan, Zhaoli Tian, Hao; Cheng, Xiaobin; Yang, Jun; Chen, Bin

        2015-12-15

        A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10{sup −4} during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.

      14. Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC

        SciTech Connect

        Lehman, S K

        2006-02-09

        We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated data with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.

      15. Semen quality detection using time of flight and acoustic wave sensors

        NASA Astrophysics Data System (ADS)

        Newton, M. I.; Evans, C. R.; Simons, J. J.; Hughes, D. C.

        2007-04-01

        The authors report a real-time technique for assessing the number of motile sperm in a semen sample. The time of flight technique uses a flow channel with detection at the end of the channel using quartz crystal microbalances. Data presented suggest that a simple rigid mass model may be used in interpreting the change in resonant frequency using an effective mass for the sperm.

      16. Acoustical Detection of High-Density Krill Demersal Layers in the Submarine Canyons off Georges Bank.

        PubMed

        Greene, C H; Wiebe, P H; Burczynski, J; Youngbluth, M J

        1988-07-15

        High-density demersal layers of krill have been detected in the submarine canyons off Georges Bank by means of a high-frequency, dual-beam bioacoustical technique. Krill densities in these demersal layers were observed to be two to three orders of magnitude greater than the highest densities observed in water-column scattering layers. Such abundances may help explain the unusually high squid and demersal fish production estimates attributed to the Georges Bank ecosystem. PMID:17734865

      17. Semen quality detection using time of flight and acoustic wave sensors

        SciTech Connect

        Newton, M. I.; Evans, C. R.; Simons, J. J.; Hughes, D. C.

        2007-04-09

        The authors report a real-time technique for assessing the number of motile sperm in a semen sample. The time of flight technique uses a flow channel with detection at the end of the channel using quartz crystal microbalances. Data presented suggest that a simple rigid mass model may be used in interpreting the change in resonant frequency using an effective mass for the sperm.

      18. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

        NASA Astrophysics Data System (ADS)

        Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

        2016-05-01

        During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

      19. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves

        SciTech Connect

        ReVelle, D.O.

        1995-05-01

        During the period from about 1960 to the early 1980`s a number of large bolides (meteor-fireballs) entered the atmosphere which were sufficiently large to generate blast waves during their drag interaction with the air. For example, the remnant of the blast wave from a single kiloton class event was subsequently detected by up to six ground arrays of microbarographs which were operated by the U.S. Air Force during this pre-satellite period. Data have also been obtained from other sources during this period as well and are also discussed in this summary of the historical data. The Air Force data have been analyzed in terms of their observable properties in order to infer the influx rate of NEO`s (near-Earth objects) in the energy range from 0.2 to 1100 kt. The determined influx is in reasonable agreement with that determined by other methods currently available such as Rabinowitz (1992), Ceplecha, (1992; 1994b) and by Chapman and Morrison (1994) despite the fact that due to sampling deficiencies only a portion of the {open_quotes}true{close_quotes} flux of large bodies has been obtained by this method, i.e., only sources at relatively low elevations have been detected. Thus the weak, fragile cometary bodies which do not penetrate the atmosphere as deeply are less likely to have been sampled by this type of detection system. Future work using the proposed C.T.B.T. (Comprehensive Test Ban Treaty) global scale infrasonic network will be likely to improve upon this early estimate of the global influx of NEO`s considerably.

      20. Molecularly imprinted polymer film interfaced with Surface Acoustic Wave technology as a sensing platform for label-free protein detection.

        PubMed

        Tretjakov, Aleksei; Syritski, Vitali; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres

        2016-01-01

        Molecularly imprinted polymer (MIP)-based synthetic receptors integrated with Surface Acoustic Wave (SAW) sensing platform were applied for the first time for label-free protein detection. The ultrathin polymeric films with surface imprints of immunoglobulin G (IgG-MIP) were fabricated onto the multiplexed SAW chips using an electrosynthesis approach. The films were characterized by analyzing the binding kinetics recorded by SAW system. It was revealed that the capability of IgG-MIP to specifically recognize the target protein was greatly influenced by the polymer film thickness that could be easily optimized by the amount of the electrical charge consumed during the electrodeposition. The thickness-optimized IgG-MIPs demonstrated imprinting factors towards IgG in the range of 2.8-4, while their recognition efficiencies were about 4 and 10 times lower toward the interfering proteins, IgA and HSA, respectively. Additionally, IgG-MIP preserved its capability to recognize selectively the template after up to four regeneration cycles. The presented approach of the facile integration of the protein-MIP sensing layer with SAW technology allowed observing the real-time binding events of the target protein at relevant sensitivity levels and can be potentially suitable for cost effective fabrication of a biosensor for analysis of biological samples in multiplexed manner. PMID:26703269

      1. Experiments on nonlinear acoustic landmine detection: Tuning curve studies of soil-mine and soil-mass oscillators

        NASA Astrophysics Data System (ADS)

        Korman, Murray S.; Witten, Thomas R.; Fenneman, Douglas J.

        2004-10-01

        Donskoy [SPIE Proc. 3392, 211-217 (1998); 3710, 239-246 (1999)] has suggested a nonlinear technique that is insensitive to relatively noncompliant targets that can detect an acoustically compliant buried mine. Airborne sound at two primary frequencies eventually causes interactions with the soil and mine generating combination frequencies that can affect the vibration velocity at the surface. In current experiments, f1 and f2 are closely spaced near a mine resonance and a laser Doppler vibrometer profiles the surface. In profiling, certain combination frequencies have a much greater contrast ratio than the linear profiles at f1 and f2-but off the mine some nonlinearity exists. Near resonance, the bending (a softening) of a family of tuning curves (over the mine) exhibits a linear relationship between peak velocity and corresponding frequency, which is characteristic of nonlinear mesoscopic elasticity effects that are observed in geomaterials like rocks or granular media. Results are presented for inert plastic VS 1.6, VS 2.2 and M14 mines buried 3.6 cm in loose soil. Tuning curves for a rigid mass plate resting on a soil layer exhibit similar results, suggesting that nonresonant conditions off the mine are desirable. [Work supported by U.S. Army RDECOM, CERDEC, NVESD, Fort Belvoir, VA.

      2. Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography

        NASA Astrophysics Data System (ADS)

        Li, Chunhui; Guan, Guangying; Li, Sinan; Huang, Zhihong; Wang, Ruikang K.

        2012-05-01

        The combined use of surface acoustic wave (SAW) and phase-sensitive optical coherence tomography (PhS-OCT) is useful to evaluate the elasticity of layered biological tissues, such as normal skin. However, the pathological tissue is often originated locally, leading to the alternation of mechanical properties along both axial and lateral directions. We present a feasibility study on whether the SAW technique is sensitive to detect the alternation of mechanical property along the lateral direction within tissue, which is important for clinical utility of this technique to localize diseased tissue. Experiments are carried out on purposely designed tissue phantoms and ex vivo chicken breast samples, simulating the localized change of elasticity. A PhS-OCT system is employed not only to provide the ultra-high sensitive measurement of the generated surface waves on the tissue surface, but also to provide the real time imaging of the tissue to assist the elasticity evaluation of the heterogeneous tissue. The experimental results demonstrate that with PhS-OCT used as a pressure sensor, the SAW is highly sensitive to the elasticity change of the specimen in both vertical and lateral directions with a sensing depth of ˜5 mm with our current system setup, thus promising its useful clinical applications where the quantitative elasticity of localized skin diseases is needed to aid in diagnosis and treatment.

      3. Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines

        NASA Astrophysics Data System (ADS)

        Wu, Weiliang; Lin, Tian Ran; Tan, Andy C. C.

        2015-12-01

        A signal processing technique is presented in this paper to normalize and separate the source of non-linear acoustic emission (AE) signals of a multi-cylinder diesel engine for condition monitoring applications and fault detection. The normalization technique presented in the paper overcomes the long-existing non-linearity problem of AE sensors so that responses measured by different AE sensors can be quantitatively analysed and compared. A source separation algorithm is also developed in the paper to separate the mixture of the normalized AE signals produced by a multi-cylinder diesel engine by utilising the system parameters (i.e., wave attenuation constant and the arrival time delay) of AE wave propagation determined by a standard pencil lead break test on the engine cylinder head. It is shown that the source separation algorithm is able to separate the signal interference of adjacent cylinders from the monitored cylinder once the wave attenuation constant and the arrival time delay along the propagation path are known. The algorithm is particularly useful in the application of AE technique for condition monitoring of small-size diesel engines where signal interference from the neighbouring cylinders is strong.

      4. Acoustic emission source location and damage detection in a metallic structure using a graph-theory-based geodesic approach

        NASA Astrophysics Data System (ADS)

        Gangadharan, R.; Prasanna, G.; Bhat, M. R.; Murthy, C. R. L.; Gopalakrishnan, S.

        2009-11-01

        A geodesic-based approach using Lamb waves is proposed to locate the acoustic emission (AE) source and damage in an isotropic metallic structure. In the case of the AE (passive) technique, the elastic waves take the shortest path from the source to the sensor array distributed in the structure. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. The same approach is extended for detection of damage in a structure. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrix is compared and their difference gives the information about the reflection of waves from the damage. These waves are backpropagated from the sensors and the above method is used to locate the damage by finding the point where intersection of geodesics occurs. In this work, the geodesic approach is shown to be suitable to obtain a practicable source location solution in a more general set-up on any arbitrary surface containing finite discontinuities. Experiments were conducted on aluminum specimens of simple and complex geometry to validate this new method.

      5. Acoustic and Doppler radar detection of buried land mines using high-pressure water jets

        NASA Astrophysics Data System (ADS)

        Denier, Robert; Herrick, Thomas J.; Mitchell, O. Robert; Summers, David A.; Saylor, Daniel R.

        1999-08-01

        The goal of the waterjet-based mine location and identification project is to find a way to use waterjets to locate and differentiate buried objects. When a buried object is struck with a high-pressure waterjets, the impact will cause characteristic vibrations in the object depending on the object's shape and composition. These vibrations will be transferred to the ground and then to the water stream that is hitting the object. Some of these vibrations will also be transferred to the air via the narrow channel the waterjet cuts in the ground. Currently the ground vibrations are detected with Doppler radar and video camera sensing, while the air vibrations are detected with a directional microphone. Data is collected via a Labview based data acquisition system. This data is then manipulated in Labview to produce the associated power spectrums. These power spectra are fed through various signal processing and recognition routines to determine the probability of there being an object present under the current test location and what that object is likely to be. Our current test area consists of a large X-Y positioning system placed over approximately a five-foot circular test area. The positioning system moves both the waterjet and the sensor package to the test location specified by the Labview control software. Currently we are able to locate buried land mine models at a distance of approximately three inches with a high degree of accuracy.

      6. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems.

        PubMed

        Huh, Dongeun; Fujioka, Hideki; Tung, Yi-Chung; Futai, Nobuyuki; Paine, Robert; Grotberg, James B; Takayama, Shuichi

        2007-11-27

        We describe a microfabricated airway system integrated with computerized air-liquid two-phase microfluidics that enables on-chip engineering of human airway epithelia and precise reproduction of physiologic or pathologic liquid plug flows found in the respiratory system. Using this device, we demonstrate cellular-level lung injury under flow conditions that cause symptoms characteristic of a wide range of pulmonary diseases. Specifically, propagation and rupture of liquid plugs that simulate surfactant-deficient reopening of closed airways lead to significant injury of small airway epithelial cells by generating deleterious fluid mechanical stresses. We also show that the explosive pressure waves produced by plug rupture enable detection of the mechanical cellular injury as crackling sounds. PMID:18006663

      7. Consensus on biomarkers for neuroendocrine tumour disease

        PubMed Central

        Oberg, Kjell; Modlin, Irvin M; De Herder, Wouter; Pavel, Marianne; Klimstra, David; Frilling, Andrea; Metz, David C; Heaney, Anthony; Kwekkeboom, Dik; Strosberg, Jonathan; Meyer, Timothy; Moss, Steven F; Washington, Kay; Wolin, Edward; Liu, Eric; Goldenring, James

        2016-01-01

        Management of neuroendocrine neoplasia represents a clinical challenge because of its late presentation, lack of treatment options, and limitations in present imaging modalities and biomarkers to guide management. Monoanalyte biomarkers have poor sensitivity, specificity, and predictive ability. A National Cancer Institute summit, held in 2007, on neuroendocrine tumours noted biomarker limitations to be a crucial unmet need in the management of neuroendocrine tumours. A multinational consensus meeting of multidisciplinary experts in neuroendocrine tumours assessed the use of current biomarkers and defined the perquisites for novel biomarkers via the Delphi method. Consensus (at >75%) was achieved for 88 (82%) of 107 assessment questions. The panel concluded that circulating multianalyte biomarkers provide the highest sensitivity and specificity necessary for minimum disease detection and that this type of biomarker had sufficient information to predict treatment effectiveness and prognosis. The panel also concluded that no monoanalyte biomarker of neuroendocrine tumours has yet fulfilled these criteria and there is insufficient information to support the clinical use of miRNA or circulating tumour cells as useful prognostic markers for this disease. The panel considered that trials measuring multianalytes (eg, neuroendocrine gene transcripts) should also identify how such information can optimise the management of patients with neuroendocrine tumours. PMID:26370353

      8. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

        SciTech Connect

        Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

        1993-05-01

        A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

      9. Tripling the detection view of high-frequency linear-array-based photoacoustic computed tomography by using two planar acoustic reflectors

        PubMed Central

        Li, Guo; Xia, Jun; Wang, Kun; Maslov, Konstantin; Anastasio, Mark A.

        2015-01-01

        Background Linear-array-based photoacoustic computed tomography (PACT) suffers from a limited view. Circular scanning does increase the detection view angle but is time-consuming. Therefore, it is desirable to increase the detection view angle of linear-array-based PACT without sacrificing imaging speed. Methods Two planar acoustic reflectors placed at 120 degrees to each other were added to a linear-array-based PACT system. Each reflector redirects originally undetectable photoacoustic waves back to the transducer array elements, and together they triple the original detection view angle of the PACT system. Results Adding two reflectors increased the detection view angle from 80 to 240 degrees. As a comparison, a single-reflector PACT has a detection view angle of only 160 degrees. A leaf skeleton phantom with a rich vascular network was imaged with the double-reflector PACT, and most of its features were recovered. Conclusions The two acoustic reflectors triple the detection view angle of a linear-array-based PACT without compromising the original imaging speed. This nearly full-view detection capability produces higher-quality images than single-reflector PACT or conventional PACT without reflectors. PMID:25694954

      10. Gastrointestinal stromal tumour.

        PubMed

        Joensuu, Heikki; Hohenberger, Peter; Corless, Christopher L

        2013-09-14

        Gastrointestinal stromal tumours (GISTs) are mesenchymal neoplasms that arise in the gastrointestinal tract, usually in the stomach or the small intestine and rarely elsewhere in the abdomen. They can occur at any age, the median age being 60-65 years, and typically cause bleeding, anaemia, and pain. GISTs have variable malignant potential, ranging from small lesions with a benign behaviour to fatal sarcomas. Most tumours stain positively for the mast/stem cell growth factor receptor KIT and anoctamin 1 and harbour a kinase-activating mutation in either KIT or PDGFRA. Tumours without such mutations could have alterations in genes of the succinate dehydrogenase complex or in BRAF, or rarely RAS family genes. About 60% of patients are cured by surgery. Adjuvant treatment with imatinib is recommended for patients with a substantial risk of recurrence, if the tumour has an imatinib-sensitive mutation. Tyrosine kinase inhibitors substantially improve survival in advanced disease, but secondary drug resistance is common. PMID:23623056

      11. Transport processes in tumours.

        PubMed

        Quastel, J H

        1965-12-01

        The characteristic features of transport systems controlling influx into tumour cells of nutrients and other chemicals are briefly described. Two notable features of transport of amino acids into tumour cells have been observed: extensive accumulation against a concentration gradient and equal accumulations, whether conditions are aerobic or anaerobic, provided glucose is present. This combination of features has not been observed in the majority of normal mammalian tissues so far examined. Important for considerations of chemotherapy is the ability of tumour transport carriers to transfer substances related in structure to amino acids and other nutrients. Amino acid analogues, for example, can either block transport of natural amino acids or can be transported into the cell where they may interfere with various aspects of amino acid metabolism. The study of transport carriers is essential for an understanding of tumour-host relationships and for considerations of chemotherapy. PMID:5842595

      12. Breast tumour angiogenesis

        PubMed Central

        Fox, Stephen B; Generali, Daniele G; Harris, Adrian L

        2007-01-01

        The central importance of tumour neovascularization has been emphasized by clinical trials using antiangiogenic therapy in breast cancer. This review gives a background to breast tumour neovascularization in in situ and invasive breast cancer, outlines the mechanisms by which this is achieved and discusses the influence of the microenvironment, focusing on hypoxia. The regulation of angiogenesis and the antivascular agents that are used in an antiangiogenic dosing schedule, both novel and conventional, are also summarized. PMID:18190723

      13. [Tumours and liver transplants].

        PubMed

        Mejzlík, Vladimír; Husová, Libuše; Kuman, Milan; Štěpánková, Soňa; Ondrášek, Jiří; Němec, Petr

        2015-01-01

        Liver transplantation as a curative treatment method can be used for selected primary liver tumours, in particular for hepatocellular carcinoma and rather rare semi-malignant tumours such as epithelioid hemangioendothelioma, further for infiltration of liver by metastatic neuroendocrine tumours (provided that metastases are only located in the liver and the primary tumour was removed) and for benign tumours (hemangiomas and adenomas) with oppression symptoms and size progression. Cholangiocarcinoma is not indicated for liver transplantation at the CKTCH Brno. In recent years liver transplants for hepatocellular carcinoma have increased and hepatocellular carcinoma has also been more frequently found ex post, in the explanted livers. Liver transplantation is indicated in selected patients with a good chance of long-term survival after liver transplantation (a generally accepted limit is 5 year survival of 50 % after transplantation). By 20 March 2015 there were liver transplants carried out on 38 patients - in 25 of them was hepatocellular carcinoma diagnosed before transplantation and in 13 it was found in the liver explants. 5 year survival following transplantation is reached by 53 % of this cohort. 32 % patients suffered from chronic hepatitis C. The longest surviving (32 years) patient at CKTCH Brno had liver transplanted for a big fibrolamellar hepatocellular carcinoma, which points to the prognostic significance of tumour histology: the criterion only considered in some indication schemes for practical reasons. Benign liver tumours (adenomatosis, cystadenoma, hemangioma with oppression symptoms) are rather rare indications and the transplantation results are favourable. 4 patients underwent transplantation for infiltration of liver by carcinoid, tumour recurrence occurred in one. PMID:26375706

      14. Suitability of a tumour-mimicking material for the evaluation of high-intensity focused ultrasound ablation under magnetic resonance guidance

        NASA Astrophysics Data System (ADS)

        Pichardo, S.; Kivinen, J.; Melodelima, D.; Curiel, L.

        2013-04-01

        This study tests the suitability of a tumour-mimic for targeting magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU). An agarose-based tumour-mimic was injected as a warm solution that polymerized in tissue. Thermal characteristics and acoustic absorption of the mimic were observed within the values reported for tissues. The relaxation times at 3T were 1679 ± 15 ms for T1 and 41 ± 1 ms for T2. The mimic was clearly visible on in vivo images. With lower contrast the tumour-mimic was visible on T2-weighted images, where it was possible to detect the ablated tissue surrounding the mimic after sonications. HIFU sonications were performed to induce thermal ablation on and around the mimic using a Sonalleve system (Philips). MR thermometry maps were performed during HIFU. The average temperature when the sonication was done at the tumour-mimic was 67.6 ± 8.0 °C in vitro and 67.6 ± 5.0 °C in vivo. The average temperature for sonications at tissues was 68.4 ± 8.7 °C in vitro (liver) and 66.0 ± 2.6 °C in vivo (muscle), with no significant difference between tissue and tumour-mimic (p > 0.05). The tumour-mimic behaviour when using MR-guided HIFU was similar to tissues, showing that this mimic can be used as an alternative to tumour models for validating MR-guided HIFU devices targeting.

      15. Clonality analysis of combined Brenner and mucinous tumours of the ovary reveals their monoclonal origin.

        PubMed

        Wang, Yihong; Wu, Ren-chin; Shwartz, Lauren Ende; Haley, Lisa; Lin, Ming-tse; Shih, Ie-ming; Kurman, Robert J

        2015-10-01

        The derivation of ovarian intestinal-type mucinous tumours is not well established. Some are derived from teratomas but the origin of the majority is not clear. It has been recently proposed that the non-germ cell group may be derived from Brenner tumours, as the association of a mucinous tumour with a Brenner tumour is frequently observed. In order to explore the histogenesis of these neoplasms, we undertook a clonality analysis of the two components of ten combined Brenner and mucinous tumours using a human androgen receptor gene (HUMARA) assay. All eight informative cases of ten showed a concordant X-chromosome inactivation pattern between the two tumour components, indicative of a shared clonal origin (p = 0.0039). Microsatellite genotyping in five of the combined tumours displayed an identical heterozygous pattern with paired Fallopian tube tissue, indicative of a somatic cell origin. In addition, paired box protein 8, a highly sensitive Müllerian epithelial marker, was not detected by immunohistochemistry in either tumour component in any of the ten tumours, suggesting that this subset of mucinous tumours does not originate from Müllerian-derived epithelium. In conclusion, this study demonstrates that in combined mucinous and Brenner tumours, there is a shared clonal relationship between the two different tumour components and suggests that some pure mucinous tumours may develop from a Brenner tumour in which the Brenner tumour component becomes compressed and obliterated by an expanding mucinous neoplasm. PMID:26095692

      16. Imaging of rare medullary adrenal tumours in adults.

        PubMed

        Maciel, C A; Tang, Y Z; Coniglio, G; Sahdev, A

        2016-05-01

        Although adrenal medullary tumours are rare, they have important clinical implications. They form a heterogeneous group of tumours, ranging from benign, non-secretory, incidental masses to hormonally active tumours presenting acutely, or malignant tumours with disseminated disease and a poor prognosis. Increasingly, benign masses are incidentally detected due to the widespread use of imaging and routine medical check-ups. This review aims to illustrate the multimodality imaging appearances of rare adrenal medullary tumours, excluding the more common phaeochromocytomas, with clues to the diagnosis and to summarise relevant epidemiological and clinical data. Careful correlation of clinical presentation, hormone profile, and various imaging techniques narrow the differential diagnosis. Image-guided percutaneous adrenal biopsy can provide a definitive diagnosis, allowing for conservative management in selected cases. A close collaboration between the radiologist, endocrinologist, and surgeon is of the utmost importance in the management of these tumours. PMID:26944698

      17. Testicular germ cell tumours.

        PubMed

        Rajpert-De Meyts, Ewa; McGlynn, Katherine A; Okamoto, Keisei; Jewett, Michael A S; Bokemeyer, Carsten

        2016-04-23

        Testicular germ cell tumours are at the crossroads of developmental and neoplastic processes. Their cause has not been fully elucidated but differences in incidences suggest that a combination of genetic and environment factors are involved, with environmental factors predominating early in life. Substantial progress has been made in understanding genetic susceptibility in the past 5 years on the basis of the results of large genome-wide association studies. Testicular germ cell tumours are highly sensitive to radiotherapy and chemotherapy and hence have among the best outcomes of all tumours. Because the tumours occur mainly in young men, preservation of reproductive function, quality of life after treatment, and late effects are crucial concerns. In this Seminar, we provide an overview of advances in the understanding of the epidemiology, genetics, and biology of testicular germ cell tumours. We also summarise the consensus on how to treat testicular germ cell tumours and focus on a few controversies and improvements in the understanding of late effects of treatment and quality of life for survivors. PMID:26651223

      18. System for Multiplexing Acoustic Emission (AE) Instrumentation

        NASA Technical Reports Server (NTRS)

        Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)

        2003-01-01

        An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.

      19. Canine cutaneous spindle cell tumours with features of peripheral nerve sheath tumours: a histopathological and immunohistochemical study.

        PubMed

        Gaitero, L; Añor, S; Fondevila, D; Pumarola, M

        2008-07-01

        In veterinary medicine, the term peripheral nerve sheath tumour is usually restricted to neoplasms that are closely associated with an identified nerve. Thirty-three cases of canine cutaneous tumours previously classified as spindle cell tumours with features resembling peripheral nerve sheath tumours were examined. Two histological patterns were identified: dense areas of spindle shaped cells resembling the Antoni A pattern and less cellular areas with more pleomorphic cells resembling the Antoni B pattern. Immunohistochemically, all tumours uniformly expressed vimentin and 15/33 (45.4%) had scattered and patchy expression of S-100. Laminin expression was found in 25/33 (75.7%) tumours and collagen IV labelling occurred in 14/33 (42.4%). Expression of protein gene product 9.5 was detected in 31/33 (93.9%) of tumours and neuron specific enolase labelling was present in 27/33 (81.8%). Glial fibrillary acidic protein was only expressed within the cytoplasm of some large multinucleated cells in one tumour. These findings suggest that any cutaneous tumour with one of the two histopathological patterns described above should be described as a cutaneous peripheral nerve sheath tumour and that expression of S-100, laminin and collagen IV may be used to define a schwannoma. PMID:18514218

      20. Intestine-associated antigens in ovarian tumours: an immunohistological study.

        PubMed

        De Boer, W G; Ma, J; Nayman, J

        1981-07-01

        The presence of 3 intestine-associated antigens, small intestine mucin antigen (SIMA), large intestine mucin antigen (LIMA) and carcinoembryonic antigen (CEA) was studied in the female genital tract and ovarian tumours by immunofluorescence. These antigens could not be detected in normal ovary, benign cysts of ovary, fallopian tube or endometrium, but both LIMA and CEA were present in endocervical glandular tissue. The antigenic cross-reactivity of endocervical and large bowel mucin may indicate a close embryological relationship between these organs during the cloacogenic stage. The 3 antigens could be demonstrated in mucinous tumours of the ovary but were absent in serous or mesonephroid tumours. In one of the 2 endometroid tumours CEA was the only detectable antigen. These observations confirm the presence of intestinal type of epithelium in cystic mucinous tumours of the ovary and explain the cross-reactivity of mucin of benign tumours of the ovary and mucin from colonic cancer, normal colonic mucosa and gastric mucosa as reported by earlier workers. In the process of malignant transformation the columnar epithelium of ovarian cystadenoma seems to behave in the same way as superficial gastric and gall bladder epithelium by forming inappropriate intestine-associated mucin substances. Our technique may provide a specific means for studies on the histogenesis of female genital tract tumours, particularly ovarian tumours. It can also be used in differentiating between benign and malignant variants of these tumours. PMID:7029434

      1. Design and first tests of an acoustic positioning and detection system for KM3NeT

        NASA Astrophysics Data System (ADS)

        Simeone, F.; Ameli, F.; Ardid, M.; Bertin, V.; Bonori, M.; Bou-Cabo, M.; Calì, C.; D'Amico, A.; Giovanetti, G.; Imbesi, M.; Keller, P.; Larosa, G.; Llorens, C. D.; Masullo, R.; Randazzo, N.; Riccobene, G.; Speziale, F.; Viola, S.; KM3NeT Consortium

        2012-01-01

        In a deep-sea neutrino telescope it is mandatory to locate the position of the optical sensors with a precision of about 10 cm. To achieve this requirement, an innovative Acoustic Positioning System (APS) has been designed in the frame work of the KM3NeT neutrino telescope. The system will also be able to provide an acoustic guide during the deployment of the telescope’s components and seafloor infrastructures (junction boxes, cables, etc.). A prototype of the system based on the successful acoustic systems of ANTARES and NEMO is being developed. It will consist of an array of hydrophones and a network of acoustic transceivers forming the Long Baseline. All sensors are connected to the telescope data acquisition system and are in phase and synchronised with the telescope master clock. Data from the acoustic sensors, continuously sampled at 192 kHz, will be sent to shore where signal recognition and analysis will be carried out. The design and first tests of the system elements will be presented. This new APS is expected to have better precision compared to the systems used in ANTARES and NEMO, and can also be used as a real-time monitor of acoustic sources and environmental noise in deep sea.

      2. Nested PCR-SSCP assay for the detection of p53 mutations in paraffin wax embedded bone tumours: improvement of sensitivity and fidelity.

        PubMed

        Wang, L T; Smith, A; Iacopetta, B; Wood, D J; Papadimitriou, J M; Zheng, M H

        1996-06-01

        DNA extraction and PCR amplification from paraffin wax embedded bone tumour specimens present several difficulties, firstly, because of the abundant matrix they contain and, secondly, because decalcification often causes degradation of DNA. In this report, comparative studies were carried out to determine the most efficient method for DNA extraction and PCR amplification from such specimens. The results indicated that nested PCR produced appropriate strong reaction products with minimal background contamination. A method for DNA extraction from paraffin wax embedded bone tissue and a nested PCR-SSCP technique have been developed for use in such diagnostic specimens. PMID:16696068

      3. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells.

        PubMed

        Li, Li; Grausam, Katie B; Wang, Jun; Lun, Melody P; Ohli, Jasmin; Lidov, Hart G W; Calicchio, Monica L; Zeng, Erliang; Salisbury, Jeffrey L; Wechsler-Reya, Robert J; Lehtinen, Maria K; Schüller, Ulrich; Zhao, Haotian

        2016-04-01

        Aberrant Notch signalling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly paediatric brain neoplasms. We developed animal models of CP tumours, by inducing sustained expression of Notch1, that recapitulate properties of human CP tumours with aberrant NOTCH signalling. Whole-transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate differentiation. A Shh-driven signalling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from monociliated progenitors in the roof plate characterized by elevated Notch signalling. Abnormal SHH signalling and distinct ciliogenesis are detected in human CP tumours, suggesting the SHH pathway and cilia differentiation as potential therapeutic avenues. PMID:26999738

      4. Guided acoustic wave inspection system

        DOEpatents

        Chinn, Diane J.

        2004-10-05

        A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

      5. Surgical implications of tumour immunology.

        PubMed Central

        Somers, S. S.

        1996-01-01

        The presence of immune infiltration of tumour deposits and the existence of effective in vitro anti-tumour immune responses would suggest the possibility of therapeutic manipulation against tumour cells. However, clinical immunotherapy has shown little promise as a cancer treatment. Numerous explanations for this inefficacy have been proposed, one of which involves the elaboration of immunosuppressive moieties from tumour cells. The results of studies presented below show that serum from patients with gastrointestinal and other tumours have immunosuppressive influences on normal lymphocytes. The degree of this in vitro inhibition is related to tumour 'bulk' and may reflect a systemic immunosuppressive influence of the tumour. Isolation and culture of lymphocytes from gastrointestinal tumour deposits demonstrated that these immune cells are functionally inert, suggesting the existence of an immunosuppressive tumour microenvironment. The isolation and partial purification of an immunosuppressive moiety from conditioned culture medium of a variety of human tumour cell lines further supports the hypothesis of tumour-mediated immunosuppression. A number of protein tumour cell products have been described with potent immunosuppressive properties. These include transforming growth factor-beta, interleukin-10, and the retroviral envelope protein p15E. The surgical implications of the proposed tumour-host immune relationship includes the hypothesis that clinically apparent disease may not be amenable to immune attack owing to tumour-mediated immune suppression. The use of immunostimulatory strategies as adjuvant perioperative therapy would seem a more effective environment for the activation of antitumour immune responses in the surgical patient. PMID:8678441

      6. High frequency of tumours in Mulibrey nanism.

        PubMed

        Karlberg, Niklas; Karlberg, Susann; Karikoski, Riitta; Mikkola, Sakari; Lipsanen-Nyman, Marita; Jalanko, Hannu

        2009-06-01

        Mulibrey nanism (MUL) is a monogenic disorder with prenatal-onset growth failure, typical clinical characteristics, cardiopathy and tendency for a metabolic syndrome. It is caused by recessive mutations in the TRIM37 gene encoding for the peroxisomal TRIM37 protein with ubiquitin-ligase activity. In this work, the frequency and pathology of malignant and benign tumours were analysed in a national cohort of 89 Finnish MUL patients aged 0.7-76 years. The subjects had a clinical and radiological evaluation, and histological and immunohistocemical analyses on specimens obtained from biopsy, surgery or autopsy, were performed. The results show that the MUL patients have disturbed architecture with ectopic tissues and a high frequency of both benign and malignant tumours detectable in several internal organs. A total of 210 tumorous lesions were detected in 66/89 patients (74%). Fifteen malignancies occurred in 13 patients (15%), seven of them in the kidney (five Wilms' tumours), three in the thyroid gland, two gynaecological cancers, one gastrointestinal carcinoid tumour, one neuropituitary Langerhans cell histiocytosis and one case of acute lymphoblastic leukaemia (ALL). Tumours detected by radiology in the liver and other organs mainly comprised strongly dilated blood vessels (peliosis), vascularized cysts and nodular lesions. The lesions showed strong expression of the endothelial cell markers CD34 and CD31 as well as the myocyte marker alpha-smooth muscle actin (alpha-SMA). Our findings show that MUL is associated with frequent malignant tumours and benign adenomatous and vascular lesions, as well as disturbed organ development. PMID:19334051

      7. Tumours of the thymus

        PubMed Central

        Sellors, T. Holmes; Thackray, A. C.; Thomson, A. D.

        1967-01-01

        Eighty-eight cases of thymoma are discussed with the object of trying to co-ordinate the histological and clinical features. The pathological specimens were in all cases obtained at operation. The pathology classification introduced by Thomson and Thackray in 1957 has been found to correspond adequately with the clinical pattern. The most common groups of tumours are basically epithelial and can be separated into five or six subdivisions, each of which has a separate pattern of behaviour. Lymphoid and teratomatous tumours also occur, but there were only two examples in this series. Clinically, separation of patients who suffered from myasthenia (38) and those who did not (50) affords the first main grouping. The majority of patients who had myasthenia gravis had tumours classified as epidermoid (19) and lymphoepithelial (14), the former with a more malignant appearance and behaviour than the latter. Removal of the tumour with or without radiation gave considerable and sometimes complete relief from myasthenic symptoms. Non-myasthenic thymoma (50) was usually discovered as a result of pressure signs or in the course of routine radiography. Spindle or oval celled tumours followed a benign pattern whereas undifferentiated thymoma was in every sense malignant, as also were teratomatous growths. Granulomatous or Hodgkin-like thymomas were of special interest and had an unpredictable course, some patients surviving many years after what was regarded as inadequate treatment. The place of radiotherapy as a pre- or post-operative agent complementary to surgery is discussed. Images PMID:6033387

      8. Tumours of the ovary

        PubMed Central

        Nielsen, Svend W.; Misdorp, W.; McEntee, Kenneth

        1976-01-01

        Ovarian tumours are common in animals, the majority occurring in bitches and cows. The two most important germ cell tumours were dysgerminoma and teratoma; these morphologically resemble their counterparts in women, with the exception that teratomas in animals tend less to malignancy. The granulosa cell tumour is the most frequent sex cord-stromal tumour in all six species and it may contain luteinized areas or show differentiation towards a Sertoli cell pattern. The canine papillary adenoma and papillary adenocarcinoma, which are as common as granulosa tumours, have several features in common with their counterparts in women: they are of similar histological appearance, are frequently bilateral, and the adenocarcinomas have a great propensity for peritoneal implantation metastasis. Ovarian cysts are frequent in the bitch, sow, and cow and may originate from five different anatomical structures in the ovary. ImagesFig. 1Fig. 2 and 3Fig. 20-22Fig. 8-10Fig. 15 and 16Fig. 23Fig. 24Fig. 25Fig. 26Fig. 17-19Fig. 4 and 5Fig. 6 and 7Fig. 11Fig. 12Fig. 13 and 14 PMID:1086151

      9. ACOUSTIC COMPACTION LAYER DETECTION

        Technology Transfer Automated Retrieval System (TEKTRAN)

        The depth and strength of compacted layers in fields have been determined traditionally using the ASAE standardized cone penetrometer method. However, an on-the-go method would be much faster and much less labor intensive. The soil measurement system described here attempts to locate the compacted...

      10. Subtypes of familial breast tumours revealed by expression and copy number profiling.

        PubMed

        Waddell, Nic; Arnold, Jeremy; Cocciardi, Sibylle; da Silva, Leonard; Marsh, Anna; Riley, Joan; Johnstone, Cameron N; Orloff, Mohammed; Assie, Guillaume; Eng, Charis; Reid, Lynne; Keith, Patricia; Yan, Max; Fox, Stephen; Devilee, Peter; Godwin, Andrew K; Hogervorst, Frans B L; Couch, Fergus; Grimmond, Sean; Flanagan, James M; Khanna, Kumkum; Simpson, Peter T; Lakhani, Sunil R; Chenevix-Trench, Georgia

        2010-10-01

        Extensive expression profiling studies have shown that sporadic breast cancer is composed of five clinically relevant molecular subtypes. However, although BRCA1-related tumours are known to be predominantly basal-like, there are few published data on other classes of familial breast tumours. We analysed a cohort of 75 BRCA1, BRCA2 and non-BRCA1/2 breast tumours by gene expression profiling and found that 74% BRCA1 tumours were basal-like, 73% of BRCA2 tumours were luminal A or B, and 52% non-BRCA1/2 tumours were luminal A. Thirty-four tumours were also analysed by single nucleotide polymorphism-comparative genomic hybridization (SNP-CGH) arrays. Copy number data could predict whether a tumour was basal-like or luminal with high accuracy, but could not predict its mutation class. Basal-like BRCA1 and basal-like non-BRCA1 tumours were very similar, and contained the highest number of chromosome aberrations. We identified regions of frequent gain containing potential driver genes in the basal (8q and 12p) and luminal A tumours (1q and 17q). Regions of homozygous loss associated with decreased expression of potential tumour suppressor genes were also detected, including in basal tumours (5q and 9p), and basal and luminal tumours (10q). This study highlights the heterogeneity of familial tumours and the clinical consequences for treatment and prognosis. PMID:19960244

      11. Decomposition of spontaneous fluctuations in tumour oxygenation using BOLD MRI and independent component analysis

        PubMed Central

        Gonçalves, Miguel R; Johnson, S Peter; Ramasawmy, Rajiv; Pedley, R Barbara; Lythgoe, Mark F; Walker-Samuel, Simon

        2015-01-01

        Background: Solid tumours can undergo cycles of hypoxia, followed by reoxygenation, which can have significant implications for the success of anticancer therapies. A need therefore exists to develop methods to aid its detection and to further characterise its biological basis. We present here a novel method for decomposing systemic and tumour-specific contributions to fluctuations in tumour deoxyhaemoglobin concentration, based on magnetic resonance imaging measurements. Methods: Fluctuations in deoxyhaemoglobin concentration in two tumour xenograft models of colorectal carcinoma were decomposed into distinct contributions using independent component analysis. These components were then correlated with systemic pulse oximetry measurements to assess the influence of systemic variations in blood oxygenation in tumours, compared with those that arise within the tumour itself (tumour-specific). Immunohistochemical staining was used to assess the physiological basis of each source of fluctuation. Results: Systemic fluctuations in blood oxygenation were found to contribute to cycling hypoxia in tumours, but tumour-specific fluctuations were also evident. Moreover, the size of the tumours was found to influence the degree of systemic, but not tumour-specific, oscillations. The degree of vessel maturation was related to the amplitude of tumour-specific, but not systemic, oscillations. Conclusions: Our results provide further insights into the complexity of spontaneous fluctuations in tumour oxygenation and its relationship with tumour pathophysiology. These observations could be used to develop improved drug delivery strategies. PMID:26484634

      12. Flow Visualization and Acoustic Signal Detection in the Process of Drop Impact on the Surface of a Liquid

        NASA Astrophysics Data System (ADS)

        Prohorov, V. E.

        2012-04-01

        An experimental study of hydrophysical and acoustic phenomena produced by drop falling on the free water surface is of great practical importance with regard to rain intensity measurement and preparation of oceanic acoustic noises model. Key features of underwater flow associated with an acoustic emission can be revealed in the laboratory experiments under controllable reproducible conditions. The current paper describes the experiments in which the drops detach from a nozzle of 0.4 cm in diameter. The flows impact area is visualized by high speed video camera CR3000×2 whose frame rate varies from 4000 to 20000 fps. Acoustic signals are measured by calibrated hydrophone (bandpass from 2 Hz to 125 kHz) which is synchronized with the video camera by means of special PC interface supplied with multichannel 12-bit AD-convertor. The accuracy of synchronization is supported on the levels 1 µS. The total acoustic signal produced by drop consists of the initial (impact) pulse followed by one or more resonant sound packets emitted by air bubbles separating from the underwater cavity. Maximal number of packets fixed in the experiments is 4. Comparison of the video- and acoustic data show that resonant packets radiation is strongly timed to the moments of detachment of the air cavity from the underwater cavern formed in the process of absorption of the drop by intaking liquid. The detachment is followed by extremely high accelerations of the underwater cavity tip when it tears off the basic cavern. Acceleration is estimated at level 1000 m/S that matches pressure gradient jump initiated by accelerations is of an order of 10 Pa/m. Detached cavity is initially of irregular form but then turns to regular (elliptic or spherical) shape within some period during which the sound packet is emitted. The work is supported by Ministry of Education and Science RF (Goscontract No. 16.518.11.7059).

      13. Acoustic Detection of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) and Oryctes elegans (Coleoptera: Scarabaeidae) in Phoenix dactylifera (Arecales: Arecacae) Trees and Offshoots in Saudi Arabian Orchards.

        PubMed

        Mankin, R W; Al-Ayedh, H Y; Aldryhim, Y; Rohde, B

        2016-04-01

        Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) larvae are cryptic, internal tissue-feeding pests of palm trees that are difficult to detect; consequently, infestations may remain hidden until they are widespread in an orchard. Infested trees and propagable offshoots that develop from axillary buds on the trunk frequently are transported inadvertently to previously uninfested areas. Acoustic methods can be used for scouting and early detection of R. ferrugineus, but until now have not been tested on multiple trees and offshoots in commercial date palm orchard environments. For this report, the acoustic detectability of R. ferrugineus was assessed in Saudi Arabian date palm orchards in the presence of commonly occurring wind, bird noise, machinery noise, and nontarget insects. Signal analyses were developed to detect R. ferrugineus and another insect pest, Oryctes elegans Prell (Coleoptera: Scarabaeidae), frequently co-occurring in the orchards, and discriminate both from background noise. In addition, it was possible to distinguish R. ferrugineus from O. elegans in offshoots by differences in the temporal patterns of their sound impulses. As has been observed often with other insect pests, populations of the two species appeared clumped rather than uniform or random. The results are discussed in relation to development of automated methods that could assist orchard managers in quickly identifying infested trees and offshoots so that R. ferrugineus infestations can be targeted and the likelihood of transferring infested offshoots to uninfested areas can be reduced. PMID:26743218

      14. Radiotherapy for ocular tumours.

        PubMed

        Stannard, C; Sauerwein, W; Maree, G; Lecuona, K

        2013-02-01

        Ocular tumours present a therapeutic challenge because of the sensitive tissues involved and the necessity to destroy the tumour while minimising visual loss. Radiotherapy (RT) is one of several modalites used apart from surgery, laser, cryotherapy, and chemotherapy. Both external beam RT (EBRT) and brachytherapy are used. Tumours of the bulbar conjunctiva, squamous carcinoma and malignant melanoma, can be treated with a radioactive plaque: strontium-90, ruthenium-106 (Ru-106), or iodine-125 (I-125), after excision. If the tumour involves the fornix or tarsal conjunctiva, proton therapy can treat the conjunctiva and spare most of the eye. Alternatively, an I-125 interstitial implant can be used with shielding of the cornea and lens. Conjunctival mucosal-associated lymphoid tissue lymphoma can be treated with an anterior electron field with lens shielding and 25-30 Gray (Gy) in 2 Gy fractions. Discrete retinoblastoma (RB), too large for cryotherapy or thermolaser, or recurrent after these modalities, can be treated with plaque therapy, I-125, or Ru-106. For large RB, multiple tumours, or vitreous seeds the whole eye can be treated with an I-125 applicator, sparing the bony orbit, or with EBRT, under anaesthetic, using X-rays or proton therapy with vacuum contact lenses to fix the eyes in the required position. Post-enucleated orbits at risk for recurrent RB can be treated with an I-125 implant with shielding to reduce the dose to the bony orbit. Uveal malignant melanomas can be treated with plaque or proton therapy with excellent local control. Preservation of vision will depend on the initial size and location of the tumour. PMID:23174750

      15. Radiotherapy for ocular tumours

        PubMed Central

        Stannard, C; Sauerwein, W; Maree, G; Lecuona, K

        2013-01-01

        Ocular tumours present a therapeutic challenge because of the sensitive tissues involved and the necessity to destroy the tumour while minimising visual loss. Radiotherapy (RT) is one of several modalites used apart from surgery, laser, cryotherapy, and chemotherapy. Both external beam RT (EBRT) and brachytherapy are used. Tumours of the bulbar conjunctiva, squamous carcinoma and malignant melanoma, can be treated with a radioactive plaque: strontium-90, ruthenium-106 (Ru-106), or iodine-125 (I-125), after excision. If the tumour involves the fornix or tarsal conjunctiva, proton therapy can treat the conjunctiva and spare most of the eye. Alternatively, an I-125 interstitial implant can be used with shielding of the cornea and lens. Conjunctival mucosal-associated lymphoid tissue lymphoma can be treated with an anterior electron field with lens shielding and 25–30 Gray (Gy) in 2 Gy fractions. Discrete retinoblastoma (RB), too large for cryotherapy or thermolaser, or recurrent after these modalities, can be treated with plaque therapy, I-125, or Ru-106. For large RB, multiple tumours, or vitreous seeds the whole eye can be treated with an I-125 applicator, sparing the bony orbit, or with EBRT, under anaesthetic, using X-rays or proton therapy with vacuum contact lenses to fix the eyes in the required position. Post-enucleated orbits at risk for recurrent RB can be treated with an I-125 implant with shielding to reduce the dose to the bony orbit. Uveal malignant melanomas can be treated with plaque or proton therapy with excellent local control. Preservation of vision will depend on the initial size and location of the tumour. PMID:23174750

      16. Effects of duty-cycled passive acoustic recordings on detecting the presence of beaked whales in the northwest Atlantic.

        PubMed

        Stanistreet, Joy E; Nowacek, Douglas P; Read, Andrew J; Baumann-Pickering, Simone; Moors-Murphy, Hilary B; Van Parijs, Sofie M

        2016-07-01

        This study investigated the effects of using duty-cycled passive acoustic recordings to monitor the daily presence of beaked whale species at three locations in the northwest Atlantic. Continuous acoustic records were subsampled to simulate duty cycles of 50%, 25%, and 10% and cycle period durations from 10 to 60 min. Short, frequent listening periods were most effective for assessing the daily presence of beaked whales. Furthermore, subsampling at low duty cycles led to consistently greater underestimation of Mesoplodon species than either Cuvier's beaked whales or northern bottlenose whales, leading to a potential bias in estimation of relative species occurrence. PMID:27475208

      17. Immunology of naturally transmissible tumours.

        PubMed

        Siddle, Hannah V; Kaufman, Jim

        2015-01-01

        Naturally transmissible tumours can emerge when a tumour cell gains the ability to pass as an infectious allograft between individuals. The ability of these tumours to colonize a new host and to cross histocompatibility barriers contradicts our understanding of the vertebrate immune response to allografts. Two naturally occurring contagious cancers are currently active in the animal kingdom, canine transmissible venereal tumour (CTVT), which spreads among dogs, and devil facial tumour disease (DFTD), among Tasmanian devils. CTVT are generally not fatal as a tumour-specific host immune response controls or clears the tumours after transmission and a period of growth. In contrast, the growth of DFTD tumours is not controlled by the Tasmanian devil's immune system and the disease causes close to 100% mortality, severely impacting the devil population. To avoid the immune response of the host both DFTD and CTVT use a variety of immune escape strategies that have similarities to many single organism tumours, including MHC loss and the expression of immunosuppressive cytokines. However, both tumours appear to have a complex interaction with the immune system of their respective host, which has evolved over the relatively long life of these tumours. The Tasmanian devil is struggling to survive with the burden of this disease and it is only with an understanding of how DFTD passes between individuals that a vaccine might be developed. Further, an understanding of how these tumours achieve natural transmissibility should provide insights into general mechanisms of immune escape that emerge during tumour evolution. PMID:25187312

      18. Immunology of naturally transmissible tumours

        PubMed Central

        Siddle, Hannah V; Kaufman, Jim

        2015-01-01

        Naturally transmissible tumours can emerge when a tumour cell gains the ability to pass as an infectious allograft between individuals. The ability of these tumours to colonize a new host and to cross histocompatibility barriers contradicts our understanding of the vertebrate immune response to allografts. Two naturally occurring contagious cancers are currently active in the animal kingdom, canine transmissible venereal tumour (CTVT), which spreads among dogs, and devil facial tumour disease (DFTD), among Tasmanian devils. CTVT are generally not fatal as a tumour-specific host immune response controls or clears the tumours after transmission and a period of growth. In contrast, the growth of DFTD tumours is not controlled by the Tasmanian devil's immune system and the disease causes close to 100% mortality, severely impacting the devil population. To avoid the immune response of the host both DFTD and CTVT use a variety of immune escape strategies that have similarities to many single organism tumours, including MHC loss and the expression of immunosuppressive cytokines. However, both tumours appear to have a complex interaction with the immune system of their respective host, which has evolved over the relatively long life of these tumours. The Tasmanian devil is struggling to survive with the burden of this disease and it is only with an understanding of how DFTD passes between individuals that a vaccine might be developed. Further, an understanding of how these tumours achieve natural transmissibility should provide insights into general mechanisms of immune escape that emerge during tumour evolution. PMID:25187312

      19. Ga-68 DOTANOC PET/CT imaging in detection of primary site in patients with metastatic neuroendocrine tumours of unknown origin and its impact on clinical decision making: experience from a tertiary care centre in India

        PubMed Central

        Pankaj, Promila; Verma, Ritu; Jain, Anjali; Belho, Ethel S.; Mahajan, Harsh

        2016-01-01

        Background Neuroendocrine tumours (NETs) are rare, heterogeneous group of tumours which usually originate from small, occult primary sites and are characterized by over-expression of somatostatin receptors (SSTRs). Positron emission tomography/computed tomography (PET/CT) using Ga-68-labeled-somatostatin-analogues have shown superiority over other modalities for imaging of NETs. The objective of the study was to retrospectively evaluate the efficacy of Ga-68 DOTANOC PET/CT imaging in detecting the primary site in patients with metastatic NETs of unknown origin and its impact on clinical decision making in such patients. Methods Between December 2011 and September 2014, a total of 263 patients underwent Ga-68 DOTANOC PET/CT study in our department for various indications. Out of them, 68 patients (45 males, 23 females; mean age, 54.9±10.7 years; range, 31–78 years) with histopathologically proven metastatic NETs and unknown primary site (CUP-NET) on conventional imaging, who underwent Ga-68 DOTANOC PET/CT scan as part of their clinical work-up were included for analyses. Histopathology (wherever available) and/or follow-up imaging were taken as reference standard. Quantitative estimation of SSTR expression in the form of maximal standardized uptake value (SUVmax) of detected primary and metastatic sites was calculated. Follow-up data of individual patients was collected through careful survey of hospital medical records and telephonic interviews. Results Maximum patients presented to our department with hepatic metastasis (50 out of 68 patients) and grade I NETs (>50%). Ga-68 DOTANOC PET/CT scan identified primary sites in 40 out of these 68 patients i.e., in approximately 59% patients. Identified primary sites were: small intestine [19], rectum [8], pancreas [7], stomach [4], lung [1] and one each in rare sites in kidney and prostate. In one patient, 2 primary sites were identified (one each in stomach and duodenum). Mean SUVmax of the detected primary sites was

      20. Acoustic Neuroma

        MedlinePlus

        An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...