Sample records for acoustic vibration analysis

  1. Acoustic vibration analysis for utilization of woody plant in space environment

    NASA Astrophysics Data System (ADS)

    Chida, Yukari; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Motohashi, Kyohei; Sakurai, Naoki; Nakagawa-izumi, Akiko

    2012-07-01

    We are proposing to raise woody plants for space agriculture in Mars. Space agriculture has the utilization of wood in their ecosystem. Nobody knows the real tree shape grown under space environment under the low or micro gravitational conditions such as outer environment. Angiosperm tree forms tension wood for keeping their shape. Tension wood formation is deeply related to gravity, but the details of the mechanism of its formation has not yet been clarified. For clarifying the mechanism, the space experiment in international space station, ISS is the best way to investigate about them as the first step. It is necessary to establish the easy method for crews who examine the experiments at ISS. Here, we are proposing to investigate the possibility of the acoustic vibration analysis for the experiment at ISS. Two types of Japanese cherry tree, weeping and upright types in Prunus sp., were analyzed by the acoustic vibration method. Coefficient-of-variation (CV) of sound speed was calculated by the acoustic vibration analysis. The amount of lignin and decomposed lignin were estimated by both Klason and Py-GC/MS method, respectively. The relationships of the results of acoustic vibration analysis and the inner components in tested woody materials were investigated. After the experiments, we confirm the correlation about them. Our results indicated that the acoustic vibration analysis would be useful for determining the inside composition as a nondestructive method in outer space environment.

  2. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  3. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    NASA Astrophysics Data System (ADS)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs

  4. Compendium of methods for applying measured data to vibration and acoustic problems

    NASA Astrophysics Data System (ADS)

    Dejong, R. G.

    1985-10-01

    The scope of this report includes the measurement, analysis and use of vibration and acoustic data. The purpose of this report is then two-fold. First, it provides introductory material in an easily understood manner to engineers, technicians, and their managers in areas other than their specialties relating to the measurement, analysis and use of vibration and acoustic data. Second, it provides a quick reference source for engineers, technicians and their managers in the areas of their specialties relating to the measurement, analysis and use of vibration and acoustic data.

  5. Vibration and acoustic testing of TOPEX/Poseidon satellite

    NASA Technical Reports Server (NTRS)

    Boatman, Dave; Scharton, Terry; Hershfeld, Donald; Larkin, Paul

    1992-01-01

    The satellite was subjected to a 1.5G swept sine vibration test and a 146 dB overall level acoustic test, in accordance with Ariane launch vehicle requirements, at the NASA Goddard Space Flight Center. Extensive pretest analysis of the sine test was conducted to plan the input notching and to justify vibration testing the satellite only in the longitudinal axis. A unique measurement system was utilized to determine the six components of interface force between the shaker and the satellite in the sine vibration test. The satellite was heavily instrumented in both the sine vibration and acoustic test in order to insure that the launch loads were enveloped with appropriate margin and that satellite responses did not exceed the compatibilities of the structure and equipment. The test specification, objectives, instrumentation, and test results are described herein.

  6. Acoustic vibration effects in classical nucleation theory

    NASA Astrophysics Data System (ADS)

    Baird, James K.; Su, C.-H.

    2018-04-01

    Acoustic vibration is often used to improve the yield of crystals and nanoparticles growing from solutions and melts. As there is still a debate on how acoustic vibration actually works, we have examined the possibility that acoustic pressure can affect the rate of nucleation. Our method is based on an expansion of the free energy of the nucleus in powers of the acoustic pressure. With the assumption that the period of the sound wave is short as compared to the time scale for nucleation, we replace the powers of the acoustic pressure by their time averages, retaining the average of the square of the acoustic pressure as the leading term. By assuming a nucleus having spherical shape, we use the Young-Laplace equation to relate the pressure inside the nucleus to the ambient pressure. Without making further approximations not already standard in classical nucleation theory, we find that the proximate effect of acoustic pressure is to reduce both the size of the critical nucleus as well as the work required to form it from monomers. As the work serves as the activation energy, the ultimate effect of acoustic pressure is to increase the rate of nucleation. If we assume that the atomic structure of the nucleus is the same as that of an ordinary solid, however, we find the compressibility is too small for acoustic vibration effects to be noticeable. If on the other hand, we assume that the structure is similar to that of a loosely bound colloidal particle, then the effects of acoustic vibration become potentially observable.

  7. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  8. Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report.

    PubMed

    Larsson, H; Hertegård, S; Lindestad, P A; Hammarberg, B

    2000-12-01

    To evaluate a new analysis system, High-Speed Tool Box (H. Larsson, custom-made program for image analysis, version 1.1, Department of Logopedics and Phoniatrics, Huddinge University Hospital, Huddinge, Sweden, 1998) for studying vocal fold vibrations using a high-speed camera and to relate findings from these analyses to sound characteristics. A Weinberger Speedcam + 500 system (Weinberger AG, Dietikon, Switzerland) was used with a frame rate of 1,904 frames per second. Images were stored and analyzed digitally. Analysis included automatic glottal edge detection and calculation of glottal area variations, as well as kymography. These signals were compared with acoustic waveforms using the Soundswell program (Hitech Development AB, Stockholm, Sweden). The High-Speed Tool Box was applied on two types of high-speed recordings: a diplophonic phonation and a tremor voice. Relations between glottal vibratory patterns and the sound waveform were analyzed. In the diplophonic phonation, the glottal area waveform, as well as the kymogram, showed a specific pattern of repetitive glottal closures, which was also seen in the acoustic waveform. In the tremor voice, fundamental frequency (F0) fluctuations in the acoustic waveform were reflected in slow variations in amplitude in the glottal area waveform. For studying details of mucosal movements during these kinds of abnormal vibrations, the glottal area waveform was particularly useful. Our results suggest that this combined high-speed acoustic-kymographic analysis package is a promising aid for separating and specifying different voice qualities such as diplophonia and voice tremor. Apart from clinical use, this finding should be of help for specification of the terminology of different voice qualities.

  9. Acoustic vibrations of single suspended gold nanostructures

    NASA Astrophysics Data System (ADS)

    Major, Todd A.

    The acoustic vibrations for single gold nanowires and gold plates were studied using time-resolved ultrafast transient absorption. The objective of this work was to remove the contribution of the supporting substrate from the damping of the acoustic vibrations of the metal nano-objects. This was achieved by suspending the nano-objects across trenches created by photolithography and reactive ion etching. Transient absorption measurements for single suspended gold nanowires were initially completed in air and water environments. The acoustic vibrations for gold nanowires over the trench in air last typically for several nanoseconds, whereas gold nanowires in water are damped more quickly. Continuum mechanics models suggest that the acoustic impedance mismatch between air and water dominates the damping rate. Later transient absorption studies on single suspended gold nanowires were completed in glycerol and ethylene glycol environments. However, our continuum mechanical model suggests nearly complete damping in glycerol due to its high viscosity, but similar damping rates are seen between the two liquids. The continuum mechanics model thus incorrectly addresses high viscosity effects on the lifetimes of the acoustic vibrations, and more complicated viscoelastic interactions occur for the higher viscosity liquids. (Abstract shortened by UMI.).

  10. Acoustic Levitation Transportation of Small Objects Using a Ring-type Vibrator

    NASA Astrophysics Data System (ADS)

    Thomas, Gilles P. L.; Andrade, Marco A. B.; Adamowski, Julio C.; Silva, Eḿílio C. N.

    A new device for noncontact transportation of small solid objects is presented here. Ultrasonic flexural vibrations are generated along the ring shaped vibrator using two Langevin transducers and by using a reflector parallel to the vibrator, small particles are trapped at the nodal points of the resulting acoustic standing wave. The particles are then moved by generating a traveling wave along the vibrator, which can be done by modulating the vibration amplitude of the transducers. The working principle of the traveling wave along the vibrator has been modeled by the superposition of two orthogonal standing waves, and the position of the particles can be predicted by using finite element analysis of the vibrator and the resulting acoustic field. A prototype consisting of a 3 mm thick, 220 mm long, 50 mm wide and 52 mm radius aluminum ring-type vibrator and a reflector of the same length and width was built and small polystyrene spheres have been successfully transported along the straight parts of the vibrator.

  11. Acoustic vibration can enhance bacterial biofilm formation.

    PubMed

    Murphy, Mark F; Edwards, Thomas; Hobbs, Glyn; Shepherd, Joanna; Bezombes, Frederic

    2016-12-01

    This paper explores the use of low-frequency-low-amplitude acoustic vibration on biofilm formation. Biofilm development is thought to be governed by a diverse range of environmental signals and much effort has gone into researching the effects of environmental factors including; nutrient availability, pH and temperature on the growth of biofilms. Many biofilm-forming organisms have evolved to thrive in mechanically challenging environments, for example soil yet, the effects of the physical environment on biofilm formation has been largely ignored. Exposure of Pseudomonas aeruginosa to vibration at 100, 800 and 1600 Hz for 48 h, resulted in a significant increase in biofilm formation compared with the control, with the greatest growth seen at 800 Hz vibration. The results also show that this increase in biofilm formation is accompanied with an increase in P. aeruginosa cell number. Acoustic vibration was also found to regulate the spatial distribution of biofilm formation in a frequency-dependent manner. Exposure of Staphylococcus aureus to acoustic vibration also resulted in enhanced biofilm formation with the greatest level of biofilm being formed following 48 h exposure at 1600 Hz. These results show that acoustic vibration can be used to control biofilm formation and therefore presents a novel and potentially cost effective means to manipulate the development and yield of biofilms in a range of important industrial and medical processes. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Failure Progress of 3D Reinforced GFRP Laminate during Static Bending, Evaluated by Means of Acoustic Emission and Vibrations Analysis.

    PubMed

    Koziol, Mateusz; Figlus, Tomasz

    2015-12-14

    The work aimed to assess the failure progress in a glass fiber-reinforced polymer laminate with a 3D-woven and (as a comparison) plain-woven reinforcement, during static bending, using acoustic emission signals. The innovative method of the separation of the signal coming from the fiber fracture and the one coming from the matrix fracture with the use of the acoustic event's energy as a criterion was applied. The failure progress during static bending was alternatively analyzed by evaluation of the vibration signal. It gave a possibility to validate the results of the acoustic emission. Acoustic emission, as well as vibration signal analysis proved to be good and effective tools for the registration of failure effects in composite laminates. Vibration analysis is more complicated methodologically, yet it is more precise. The failure progress of the 3D laminate is "safer" and more beneficial than that of the plain-woven laminate. It exhibits less rapid load capacity drops and a higher fiber effort contribution at the moment of the main laminate failure.

  13. Panel acoustic contribution analysis.

    PubMed

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  14. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  15. Acoustic and vibrational damping in porous solids.

    PubMed

    Göransson, Peter

    2006-01-15

    A porous solid may be characterized as an elastic-viscoelastic and acoustic-viscoacoustic medium. For a flexible, open cell porous foam, the transport of energy is carried both through the sound pressure waves propagating through the fluid in the pores, and through the elastic stress waves carried through the solid frame of the material. For a given situation, the balance between energy dissipated through vibration of the solid frame, changes in the acoustic pressure and the coupling between the waves varies with the topological arrangement, choice of material properties, interfacial conditions, etc. Engineering of foams, i.e. designs built on systematic and continuous relationships between polymer chemistry, processing, micro-structure, is still a vision for the future. However, using state-of-the-art simulation techniques, multiple layer arrangements of foams may be tuned to provide acoustic and vibrational damping at a low-weight penalty. In this paper, Biot's modelling of porous foams is briefly reviewed from an acoustics and vibrations perspective with a focus on the energy dissipation mechanisms. Engineered foams will be discussed in terms of results from simulations performed using finite element solutions. A layered vehicle-type structure is used as an example.

  16. Acoustic and Vibration Environment for Crew Launch Vehicle Mobile Launcher

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.

    2007-01-01

    A launch-induced acoustic environment represents a dynamic load on the exposed facilities and ground support equipment (GSE) in the form of random pressures fluctuating around the ambient atmospheric pressure. In response to these fluctuating pressures, structural vibrations are generated and transmitted throughout the structure and to the equipment items supported by the structure. Certain equipment items are also excited by the direct acoustic input as well as by the vibration transmitted through the supporting structure. This paper presents the predicted acoustic and vibration environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. The predicted acoustic environment depicted in this paper was calculated by scaling the statistically processed measured data available from Saturn V launches to the anticipated environment of the CLV launch. The scaling was accomplished by using the 5-segment Solid Rocket Booster (SRB) engine parameters. Derivation of vibration environment for various Mobile Launcher (ML) structures throughout the base and tower was accomplished by scaling the Saturn V vibration environment.

  17. Acoustic buffeting by infrasound in a low vibration facility.

    PubMed

    MacLeod, B P; Hoffman, J E; Burke, S A; Bonn, D A

    2016-09-01

    Measurement instruments and fabrication tools with spatial resolution on the atomic scale require facilities that mitigate the impact of vibration sources in the environment. One approach to protection from vibration in a building's foundation is to place the instrument on a massive inertia block, supported on pneumatic isolators. This opens the questions of whether or not a massive floating block is susceptible to acoustic forces, and how to mitigate the effects of any such acoustic buffeting. Here this is investigated with quantitative measurements of vibrations and sound pressure, together with finite element modeling. It is shown that a particular concern, even in a facility with multiple acoustic enclosures, is the excitation of the lowest fundamental acoustic modes of the room by infrasound in the low tens of Hz range, and the efficient coupling of the fundamental room modes to a large inertia block centered in the room.

  18. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  19. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  20. Free-vibration acoustic resonance of a nonlinear elastic bar

    NASA Astrophysics Data System (ADS)

    Tarumi, Ryuichi; Oshita, Yoshihito

    2011-02-01

    Free-vibration acoustic resonance of a one-dimensional nonlinear elastic bar was investigated by direct analysis in the calculus of variations. The Lagrangian density of the bar includes a cubic term of the deformation gradient, which is responsible for both geometric and constitutive nonlinearities. By expanding the deformation function into a complex Fourier series, we derived the action integral in an analytic form and evaluated its stationary conditions numerically with the Ritz method for the first three resonant vibration modes. This revealed that the bar shows the following prominent nonlinear features: (i) amplitude dependence of the resonance frequency; (ii) symmetry breaking in the vibration pattern; and (iii) excitation of the high-frequency mode around nodal-like points. Stability of the resonant vibrations was also addressed in terms of a convex condition on the strain energy density.

  1. Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping.

    PubMed

    Yi, Chongyue; Su, Man-Nung; Dongare, Pratiksha D; Chakraborty, Debadi; Cai, Yi-Yu; Marolf, David M; Kress, Rachael N; Ostovar, Behnaz; Tauzin, Lawrence J; Wen, Fangfang; Chang, Wei-Shun; Jones, Matthew R; Sader, John E; Halas, Naomi J; Link, Stephan

    2018-06-13

    The study of acoustic vibrations in nanoparticles provides unique and unparalleled insight into their mechanical properties. Electron-beam lithography of nanostructures allows precise manipulation of their acoustic vibration frequencies through control of nanoscale morphology. However, the dissipation of acoustic vibrations in this important class of nanostructures has not yet been examined. Here we report, using single-particle ultrafast transient extinction spectroscopy, the intrinsic damping dynamics in lithographically fabricated plasmonic nanostructures. We find that in stark contrast to chemically synthesized, monocrystalline nanoparticles, acoustic energy dissipation in lithographically fabricated nanostructures is solely dominated by intrinsic damping. A quality factor of Q = 11.3 ± 2.5 is observed for all 147 nanostructures, regardless of size, geometry, frequency, surface adhesion, and mode. This result indicates that the complex Young's modulus of this material is independent of frequency with its imaginary component being approximately 11 times smaller than its real part. Substrate-mediated acoustic vibration damping is strongly suppressed, despite strong binding between the glass substrate and Au nanostructures. We anticipate that these results, characterizing the optomechanical properties of lithographically fabricated metal nanostructures, will help inform their design for applications such as photoacoustic imaging agents, high-frequency resonators, and ultrafast optical switches.

  2. Prediction and Measurement of the Vibration and Acoustic Radiation of Panels Subjected to Acoustic Loading

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Rizzi, Stephen A.

    1995-01-01

    Interior noise and sonic fatigue are important issues in the development and design of advanced subsonic and supersonic aircraft. Conventional aircraft typically employ passive treatments, such as constrained layer damping and acoustic absorption materials, to reduce the structural response and resulting acoustic levels in the aircraft interior. These techniques require significant addition of mass and only attenuate relatively high frequency noise transmitted through the fuselage. Although structural acoustic coupling is in general very important in the study of aircraft fuselage interior noise, analysis of noise transmission through a panel supported in an infinite rigid baffle (separating two semi-infinite acoustic domains) can be useful in evaluating the effects of active/adaptive materials, complex loading, etc. Recent work has been aimed at developing adaptive and/or active methods of controlling the structural acoustic response of panels to reduce the transmitted noise1. A finite element formulation was recently developed to study the dynamic response of shape memory alloy (SMA) hybrid composite panels (conventional composite panel with embedded SMA fibers) subject to combined acoustic and thermal loads2. Further analysis has been performed to predict the far-field acoustic radiation using the finite element dynamic panel response prediction3. The purpose of the present work is to validate the panel vibration and acoustic radiation prediction methods with baseline experimental results obtained from an isotropic panel, without the effect of SMA.

  3. Towards identifying the dynamics of sliding by acoustic emission and vibration

    NASA Astrophysics Data System (ADS)

    Korchuganov, M. A.; Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2016-11-01

    The results of experiments with high load and sliding speed sliding conditions on tribologically mated pairs such as steel 1045/steel 1045 (test 1), steel 1045/basalt (test 2) and Hadfield steel/basalt (test 3) have been carried out in order to identify their response in terms of the acoustic emission and vibration signals. The steel to rock and rock to steel transfer has been revealed by examining the worn surfaces of both steel and rock samples with the use of laser scanning microscopy. The AE signal characteristics have been determined for the tribological pairs studied. The dynamics of sliding has been evaluated by measuring the vibration accelerations. Relationship between wear mode and either acoustic emission signal or vibration signal has been established. The minimal vibration oscillations amplitude and acoustic emission signal energy have been found out in sliding Hadfield steel/basalt pair.

  4. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    PubMed Central

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  5. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  6. Nonlinear Acoustic Landmine Detection: Profiling Soil Surface Vibrations and Modeling Mesoscopic Elastic Behavior

    DTIC Science & Technology

    2007-05-04

    TITLE AND SUBTITLE Nonlinear Acoustic Landmine Detection: Profiling Soil Surface Vibrations and Modeling Mesoscopic Elastic Behavior 6. AUTHOR(S...project report; no. 352 (2007) NONLINEAR ACOUSTIC LANDMINE DETECTION: PROFILING SOIL SURFACE VIBRATIONS AND MODELING MESOSCOPIC ELASTIC... model (Caughey 1966). Nonlinear acoustic landmine detection experiments are performed in the anechoic chamber facility using both a buried acrylic

  7. Customized shaping of vibration modes by acoustic metamaterial synthesis

    NASA Astrophysics Data System (ADS)

    Xu, Jiawen; Li, Shilong; Tang, J.

    2018-04-01

    Acoustic metamaterials have attractive potential in elastic wave guiding and attenuation over specific frequency ranges. The vast majority of related investigations are on transient waves. In this research we focus on stationary wave manipulation, i.e., shaping of vibration modes. Periodically arranged piezoelectric transducers shunted with inductive circuits are integrated to a beam structure to form a finite-length metamaterial beam. We demonstrate for the first time that, under a given operating frequency of interest, we can facilitate a metamaterial design such that this frequency becomes a natural frequency of the integrated system. Moreover, the vibration mode corresponding to this natural frequency can be customized and shaped to realize tailored/localized response distribution. This is fundamentally different from previous practices of utilizing geometry modification and/or feedback control to achieve mode tailoring. The metamaterial design is built upon the combinatorial effects of the bandgap feature and the effective resonant cavity feature, both attributed to the dynamic characteristics of the metamaterial beam. Analytical investigations based on unit-cell dynamics and modal analysis of the metamaterial beam are presented to reveal the underlying mechanism. Case illustrations are validated by finite element analyses. Owing to the online tunability of circuitry integrated, the proposed mode shaping technique can be online adjusted to fit specific requirements. The customized shaping of vibration modes by acoustic metamaterial synthesis has potential applications in vibration suppression, sensing enhancement and energy harvesting.

  8. Asymptotic modal analysis of a rectangular acoustic cavity excited by wall vibration

    NASA Technical Reports Server (NTRS)

    Peretti, Linda F.; Dowell, Earl H.

    1992-01-01

    Asymptotic modal analysis, a method that has recently been developed for structural dynamical systems, has been applied to a rectangular acoustic cavity. The cavity had a flexible vibrating portion on one wall, and the other five walls were rigid. Banded white noise was transmitted through the flexible portion (plate) only. Both the location along the wall and the size of the plate were varied. The mean square pressure levels of the cavity interior were computed as a ratio of the result obtained from classical modal analysis to that obtained from asymptotic modal analysis for the various plate configurations. In general, this ratio converged to 1.0 as the number of responding modes increased. Intensification effects were found due to both the excitation location and the response location. The asymptotic modal analysis method was both efficient and accurate in solving the given problem. The method has advantages over the traditional methods that are used for solving dynamics problems with a large number of responding modes.

  9. Acoustic vibrations of metal nano-objects: Time-domain investigations

    NASA Astrophysics Data System (ADS)

    Crut, Aurélien; Maioli, Paolo; Del Fatti, Natalia; Vallée, Fabrice

    2015-01-01

    Theoretical and time-domain experimental investigations of the vibrational acoustic response of nano-objects are described focusing on metallic ones. Acoustic vibrations are modeled using a macroscopic-like approach based on continuum mechanics with the proper boundary conditions, a model which yields results in excellent agreement with the experimental ones and those of atomistic calculations, down to the nanometric scale. Vibrational mode excitation and detection mechanisms and the associated mode selection in ultrafast pump-probe spectroscopy are discussed, and the measured time-dependent signals in single and ensemble of nanoparticles modeled. The launched modes, their period and their damping rate are compared to experimental results obtained on ensembles of nano-objects with different composition, morphology and environment, and with size ranging from one to hundreds of nanometers. Recent extension of time-domain spectroscopy to individual nano-objects has shed new light on the vibrational responses of isolated nanoparticles, in particular on their damping, but also raises questions on the origin of its large particle to particle dispersion.

  10. Voyager: Vibration Acoustics and Pyro Shock Testing

    NASA Image and Video Library

    2017-07-05

    An engineer works on vibration acoustics and pyro shock testing for one of NASA's Voyager spacecraft on November 18, 1976. Several of the spacecraft's science instruments are visible at left. https://photojournal.jpl.nasa.gov/catalog/PIA21733

  11. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  12. Imaging acoustic vibrations in an ear model using spectrally encoded interferometry

    NASA Astrophysics Data System (ADS)

    Grechin, Sveta; Yelin, Dvir

    2018-01-01

    Imaging vibrational patterns of the tympanic membrane would allow an accurate measurement of its mechanical properties and provide early diagnosis of various hearing disorders. Various optical technologies have been suggested to address this challenge and demonstrated in vitro using point scanning and full-field interferometry. Spectrally encoded imaging has been previously demonstrated capable of imaging tissue acoustic vibrations with high spatial resolution, including two-dimensional phase and amplitude mapping. In this work, we demonstrate a compact optical apparatus for imaging acoustic vibrations that could be incorporated into a commercially available digital otoscope. By transmitting harmonic sound waves through the otoscope insufflation port and analyzing the spectral interferograms using custom-built software, we demonstrate high-resolution vibration imaging of a circular rubber membrane within an ear model.

  13. The effects of acoustic vibration on fibroblast cell migration.

    PubMed

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Vertical vibration and shape oscillation of acoustically levitated water drops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, D. L.; Xie, W. J.; Yan, N.

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  15. Coupling of Excitons and Discrete Acoustic Phonons in Vibrationally Isolated Quantum Emitters.

    PubMed

    Werschler, Florian; Hinz, Christopher; Froning, Florian; Gumbsheimer, Pascal; Haase, Johannes; Negele, Carla; de Roo, Tjaard; Mecking, Stefan; Leitenstorfer, Alfred; Seletskiy, Denis V

    2016-09-14

    The photoluminescence emission by mesoscopic condensed matter is ultimately dictated by the fine-structure splitting of the fundamental exciton into optically allowed and dipole-forbidden states. In epitaxially grown semiconductor quantum dots, nonradiative equilibration between the fine-structure levels is mediated by bulk acoustic phonons, resulting in asymmetric spectral broadening of the excitonic luminescence. In isolated colloidal quantum dots, spatial confinement of the vibrational motion is expected to give rise to an interplay between the quantized electronic and phononic degrees of freedom. In most cases, however, zero-dimensional colloidal nanocrystals are strongly coupled to the substrate such that the charge relaxation processes are still effectively governed by the bulk properties. Here we show that encapsulation of single colloidal CdSe/CdS nanocrystals into individual organic polymer shells allows for systematic vibrational decoupling of the semiconductor nanospheres from the surroundings. In contrast to epitaxially grown quantum dots, simultaneous quantization of both electronic and vibrational degrees of freedom results in a series of strong and narrow acoustic phonon sidebands observed in the photoluminescence. Furthermore, an individual analysis of more than 200 compound particles reveals that enhancement or suppression of the radiative properties of the fundamental exciton is controlled by the interaction between fine-structure states via the discrete vibrational modes. For the first time, pronounced resonances in the scattering rate between the fine-structure states are directly observed, in good agreement with a quantum mechanical model. The unambiguous assignment of mediating acoustic modes to the observed scattering resonances complements the experimental findings. Thus, our results form an attractive basis for future studies on subterahertz quantum opto-mechanics and efficient laser cooling at the nanoscale.

  16. Gigahertz acoustic vibrations of elastically anisotropic Indium–tin-oxide nanorod arrays [Gigahertz modulation of the full visible spectrum via acoustic vibrations of elastically anisotropic Indium-tin-oxide nanorod arrays

    DOE PAGES

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; ...

    2016-08-15

    Active control of light is important for photonic integrated circuits, optical switches,. and telecommunications. Coupling light with acoustic vibrations in nanoscale optical resonators offers optical modulation capabilities with high bandwidth and Small footprint Instead of using noble metals, here we introduce indium tin-oxide nanorod arrays (ITO-NRAs) as the operating media;and demonstrate optical modulation covering the visible spectral range (from 360 to 700 nm), with similar to 20 GHz bandwidth through the excitation of coherent acoustic vibrations in ITO-NRAs. This broadband modulation results from the collective optical diffraction by the dielectric ITO-NRAs, and a high differential transmission modulation up to 10%more » is achieved through efficient near-infrared, on-plasmon-resonance pumping. By combining the frequency signatures Of the vibrational modes with finite-element simulations, we,further determine the anisotropic elastic constants for single-crystalline ITO, which are not known-for the bulk phase. Furthermore, this technique to determine elastic constants using Coherent acoustic vibrations of uniform nanostructures can be generalized to the study of other inorganic materials.« less

  17. Gigahertz acoustic vibrations of elastically anisotropic Indium–tin-oxide nanorod arrays [Gigahertz modulation of the full visible spectrum via acoustic vibrations of elastically anisotropic Indium-tin-oxide nanorod arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.

    Active control of light is important for photonic integrated circuits, optical switches,. and telecommunications. Coupling light with acoustic vibrations in nanoscale optical resonators offers optical modulation capabilities with high bandwidth and Small footprint Instead of using noble metals, here we introduce indium tin-oxide nanorod arrays (ITO-NRAs) as the operating media;and demonstrate optical modulation covering the visible spectral range (from 360 to 700 nm), with similar to 20 GHz bandwidth through the excitation of coherent acoustic vibrations in ITO-NRAs. This broadband modulation results from the collective optical diffraction by the dielectric ITO-NRAs, and a high differential transmission modulation up to 10%more » is achieved through efficient near-infrared, on-plasmon-resonance pumping. By combining the frequency signatures Of the vibrational modes with finite-element simulations, we,further determine the anisotropic elastic constants for single-crystalline ITO, which are not known-for the bulk phase. Furthermore, this technique to determine elastic constants using Coherent acoustic vibrations of uniform nanostructures can be generalized to the study of other inorganic materials.« less

  18. Measurement of food texture by an acoustic vibration method

    NASA Astrophysics Data System (ADS)

    Sakurai, Naoki; Taniwaki, Mitsuru; Iwatani, Shin-ichiro; Akimoto, Hidemi

    2011-09-01

    Food texture was measured by a new acoustic vibration method. A piezoelectric sensor sandwiched between a probe and piston was inserted into a food sample by delivery of silicon oil to a cylinder by a pump. Vibration emitted from the food sample on insertion of the probe was monitored by voltage outputs of the sensor. The voltage signals were passed through 19 half octave bands to calculate texture index for each band. The texture index was defined as vibration energy of the probe caused by the food rupture and/or breakage per unit time.

  19. A New Acoustic Portal into the Odontocete Ear and Vibrational Analysis of the Tympanoperiotic Complex

    PubMed Central

    Cranford, Ted W.; Krysl, Petr; Amundin, Mats

    2010-01-01

    Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC) and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish. PMID:20694149

  20. A new acoustic portal into the odontocete ear and vibrational analysis of the tympanoperiotic complex.

    PubMed

    Cranford, Ted W; Krysl, Petr; Amundin, Mats

    2010-08-04

    Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC) and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish.

  1. High frequency vibration analysis by the complex envelope vectorization.

    PubMed

    Giannini, O; Carcaterra, A; Sestieri, A

    2007-06-01

    The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.

  2. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    PubMed

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.

    PubMed

    Koyama, Daisuke; Kotera, Hironori; Kitazawa, Natsuko; Yoshida, Kenji; Nakamura, Kentaro; Watanabe, Yoshiaki

    2011-04-01

    Observation techniques for measuring the small vibration of a single microcapsule of tens of nanometers in an acoustic standing wave field are discussed. First, simultaneous optical observation of a microbubble vibration by two methods is investigated, using a high-speed video camera, which permits two-dimensional observation of the bubble vibration, and a laser Doppler vibrometer (LDV), which can observe small bubble vibration amplitudes at high frequency. Bubbles of tens of micrometers size were trapped at the antinode of an acoustic standing wave generated in an observational cell. Bubble vibration at 27 kHz could be observed and the experimental results for the two methods showed good agreement. The radial vibration of microcapsules with a hard plastic shell was observed using the LDV and the measurement of the capsule vibration with radial oscillation amplitude of tens of nanometers was successful. The acoustic radiation force acting on microcapsules in the acoustic standing wave was measured from the trapped position of the standing wave and the radial oscillation amplitude of the capsules was estimated from the theoretical equation of the acoustic radiation force, giving results in good agreement with the LDV measurements. The radial oscillation amplitude of a capsule was found to be proportional to the amplitude of the driving sound pressure. A larger expansion ratio was observed for capsules closer to the resonance condition under the same driving sound pressure and frequency. © 2011 IEEE

  4. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    PubMed Central

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  5. The Shock and Vibration Bulletin. Part 2. Measurement Techniques and Data Analysis, Dynamic Measurements, Vibration and Acoustics

    DTIC Science & Technology

    1980-09-01

    angular dis- meters ( 3.3 inches). The user supplies t 15 volt regulated turbance when multiplied by a long line-of-sight distance power , and the...chosing these numbers o the vibration power will mostly f+l be allocated to the main resonan - > = f . f ces of the test item in a correct 1 (fV+l-f ) .. I...Generators Data Noraircoustic Mark V Lng EPT 1094B Output Acoustic Power 50 kW 10 KW Air Supply Pressure 827.36 N/m 2 X 103 (120 psig) 275.78 N/m 2 X 103

  6. Acoustic analysis of trill sounds.

    PubMed

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.

  7. Axial vibrations of brass wind instrument bells and their acoustical influence: Theory and simulations.

    PubMed

    Kausel, Wilfried; Chatziioannou, Vasileios; Moore, Thomas R; Gorman, Britta R; Rokni, Michelle

    2015-06-01

    Previous work has demonstrated that structural vibrations of brass wind instruments can audibly affect the radiated sound. Furthermore, these broadband effects are not explainable by assuming perfect coincidence of the frequency of elliptical structural modes with air column resonances. In this work a mechanism is proposed that has the potential to explain the broadband influences of structural vibrations on acoustical characteristics such as input impedance, transfer function, and radiated sound. The proposed mechanism involves the coupling of axial bell vibrations to the internal air column. The acoustical effects of such axial bell vibrations have been studied by extending an existing transmission line model to include the effects of a parasitic flow into vibrating walls, as well as distributed sound pressure sources due to periodic volume fluctuations in a duct with oscillating boundaries. The magnitude of these influences in typical trumpet bells, as well as in a complete instrument with an unbraced loop, has been studied theoretically. The model results in predictions of input impedance and acoustical transfer function differences that are approximately 1 dB for straight instruments and significantly higher when coiled tubes are involved or when very thin brass is used.

  8. An efficient model for coupling structural vibrations with acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Ting, LU

    1993-01-01

    The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.

  9. Three-dimensional finite element analysis of acoustic instability of solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Hackett, R. M.; Juruf, R. S.

    1976-01-01

    A three dimensional finite element solution of the acoustic vibration problem in a solid propellant rocket motor is presented. The solution yields the natural circular frequencies of vibration and the corresponding acoustic pressure mode shapes, considering the coupled response of the propellant grain to the acoustic oscillations occurring in the motor cavity. The near incompressibility of the solid propellant is taken into account in the formulation. A relatively simple example problem is solved in order to illustrate the applicability of the analysis and the developed computer code.

  10. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  11. Acoustically Evoked Different Vibration Pattern Across the Width of the Cochlea Partition

    NASA Astrophysics Data System (ADS)

    Zha, Dingjun; Chen, Fangyi; Friderberg, Anders; Choudhury, Niloy; Nuttall, Alfred

    2011-11-01

    Using optical low coherence interferometry, the acoustically evoked vibration patterns of the basilar membrane (BM) and reticular lamina (RL) in the first turn of living guinea pigs were measured as function of the radial location. It was demonstrated that the vibration of the BM varied widely in amplitude, but little in phase across the width of the partition, while the RL had a different vibration pattern compared with the BM.

  12. The effects of bell vibrations on the acoustic spectrum of the trumpet

    NASA Astrophysics Data System (ADS)

    Moore, Thomas R.

    2003-04-01

    The acoustic spectrum of a modern trumpet with the bell section heavily damped has been compared to the spectrum of the same instrument with the bell section left free to vibrate. The amplitude of vibration of the metal was measured in both cases and was shown to be significantly different between the two sets of measurements. Artificial lips were used to ensure consistency between trials. A significant change in the acoustic spectrum between the two cases is found, with the variation being largest in the lower harmonics where the relative power may change by as much as a factor of 2. It is shown that the changes can be explained by a variation in the viscous boundary layer that is attributable to the vibrating walls of the bell. [Work supported by a grant from the Jessie Ball duPont Fund.

  13. Piezoelectric Shunt Vibration Damping of F-15 Panel under High Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Yau; Turner, Travis L.; Rizzi, Stephen A.

    2000-01-01

    At last year's SPIE symposium, we reported results of an experiment on structural vibration damping of an F-15 underbelly panel using piezoelectric shunting with five bonded PZT transducers. The panel vibration was induced with an acoustic speaker at an overall sound pressure level (OASPL) of about 90 dB. Amplitude reductions of 13.45 and 10.72 dB were achieved for the first and second modes, respectively, using single- and multiple-mode shunting. It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to control structural vibration induced at higher acoustic excitation levels, and to examine the controllability and survivability of the bonded PZT transducers at these high levels. The shunting experiment was performed with the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley Research Center using the same F-15 underbelly panel. The TAFA is a progressive wave tube facility. The panel was mounted in one wall of the TAFA test section using a specially designed mounting fixture such that the panel was subjected to grazing-incidence acoustic excitation. Five PZT transducers were used with two shunt circuits designed to control the first and second modes of the structure between 200 and 400 Hz. We first determined the values of the shunt inductance and resistance at an OASPL of 130 dB. These values were maintained while we gradually increased the OASPL from 130 to 154 dB in 6-dB steps. During each increment, the frequency response function between accelerometers on the panel and the acoustic excitation measured by microphones, before and after shunting, were recorded. Good response reduction was observed up to the 148dB level. The experiment was stopped at 154 dB due to wire breakage from vibration at a transducer wire joint. The PZT transducers, however, were still bonded well on the panel and survived at this high dB level. We also observed shifting of the frequency peaks toward lower frequency when the OASPL

  14. Coherent Acoustic Vibration of Metal Nanoshells

    NASA Astrophysics Data System (ADS)

    Guillon, C.; Langot, P.; Del Fatti, N.; Vallée, F.; Kirakosyan, A. S.; Shahbazyan, T. V.; Cardinal, T.; Treguer, M.

    2007-01-01

    Using time-resolved pump-probe spectroscopy we have performed the first investigation of the vibrational modes of gold nanoshells. The fundamental isotropic mode launched by a femtosecond pump pulse manifests itself in a pronounced time-domain modulation of the differential transmission probed at the frequency of nanoshell surface plasmon resonance. The modulation amplitude is significantly stronger and the period is longer than in a gold nanoparticle of the same overall size, in agreement with theoretical calculations. This distinct acoustical signature of nanoshells provides a new and efficient method for identifying these versatile nanostructures and for studying their mechanical and structural properties.

  15. Vibration and acoustic noise emitted by dry-type air-core reactors under PWM voltage excitation

    NASA Astrophysics Data System (ADS)

    Li, Jingsong; Wang, Shanming; Hong, Jianfeng; Yang, Zhanlu; Jiang, Shengqian; Xia, Shichong

    2018-05-01

    According to coupling way between the magnetic field and the structural order, structure mode is discussed by engaging finite element (FE) method and both natural frequency and modal shape for a dry-type air-core reactor (DAR) are obtained in this paper. On the basis of harmonic response analysis, electromagnetic force under PWM (Pulse Width Modulation) voltage excitation is mapped with the structure mesh, the vibration spectrum is gained and the consequences represents that the whole structure vibration predominates in the radial direction, with less axial vibration. Referring to the test standard of reactor noise, the rules of emitted noise of the DAR are measured and analyzed at chosen switching frequency matches the sample resonant frequency and the methods of active vibration and noise reduction are put forward. Finally, the low acoustic noise emission of a prototype DAR is verified by measurement.

  16. Vibration detection of component health and operability

    NASA Technical Reports Server (NTRS)

    Baird, B. C.

    1975-01-01

    In order to prevent catastrophic failure and eliminate unnecessary periodic maintenance in the shuttle orbiter program environmental control system components, some means of detecting incipient failure in these components is required. The utilization was investigated of vibrational/acoustic phenomena as one of the principal physical parameters on which to base the design of this instrumentation. Baseline vibration/acoustic data was collected from three aircraft type fans and two aircraft type pumps over a frequency range from a few hertz to greater than 3000 kHz. The baseline data included spectrum analysis of the baseband vibration signal, spectrum analysis of the detected high frequency bandpass acoustic signal, and amplitude distribution of the high frequency bandpass acoustic signal. A total of eight bearing defects and two unbalancings was introduced into the five test items. All defects were detected by at least one of a set of vibration/acoustic parameters with a margin of at least 2:1 over the worst case baseline. The design of a portable instrument using this set of vibration/acoustic parameters for detecting incipient failures in environmental control system components is described.

  17. Substrate vibrations during acoustic signalling in the cicada Okanagana rimosa

    PubMed Central

    Stölting, Heiko; Moore, Thomas E.; Lakes-Harlan, Reinhard

    2002-01-01

    Males of the North American cicada Okanagana rimosa (Homoptera: Cicadidae, Tibicininae) emit loud airborne acoustic signals for intraspecific communication. Specialised vibratory signals could not be detected; however, the airborne signal induced substrate vibrations. Both auditory and vibratory spectra peak in the range from 7–10 kHz. Thus, the vibrations show similar frequency components to the sound spectrum within biologically relevant distances. These vibratory signals could be important as signals involved in mate localization and perhaps even as the context for the evolution of the ear in a group of parasitoid flies. PMID:15455036

  18. Wake Shield Facility Modal Survey Test in Vibration Acoustic Test Facility

    NASA Image and Video Library

    1991-10-09

    Astronaut Ronald M. Sega stands beside the University of Houston's Wake Shield Facility before it undergoes a Modal Survey Test in the Vibration and Acoustic Test Facility Building 49, prior to being flown on space shuttle mission STS-60.

  19. Feasibility of using piezoelectric actuators to control launch vehicle acoustics and structural vibrations

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Cudney, Harley H.

    2000-06-01

    Future launch vehicle payload fairings will be manufactured form advanced lightweight composite materials. The loss of distributed mass causes a significant increase in the internal acoustic environment, causing a severe threat to the payload. Using piezoelectric actuators to control the fairing vibration and the internal acoustic environment has been proposed. To help determine the acoustic control authority of piezoelectric actuators mounted on a rocket fairing, the internal acoustic response created by the actuators needs to be determined. In this work, the internal acoustic response of a closed simply-supported (SS) cylinder actuated by piezoelectric (PZT) actuators is determined using a n impedance model for the actuator and boundary element analysis. The experimentally validated model is used to extrapolate results for a SS cylinder that emulates a Minotaur payload fairing. The internal cylinder acoustic levels are investigated for PZT actuation between 35 and 400 Hz. Significant reductions in the structural response due to increased damping do not equate to similar reductions in the acoustic SPLs for the cylinder. The sound levels at the acoustic resonant frequencies are essentially unaffected by the significant increase in structural damping while the acoustic level sat the structural resonant frequencies are mildly reduced. The interior acoustic response of the cylinder is dominated by the acoustic modes and therefore significant reductions in the overall interior acoustic levels will not be achieved if only the structural resonances are controlled. As the actuation frequency is reduced, the number of actuators required to generate acoustic levels commensurate to that found in the fairing increases to impractical values. Below approximately 100 Hz, the current demands reach levels that are extremely difficult to achieve with a practical system. The results of this work imply that PZT actuators do not have the authority to control the payload fairing

  20. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  1. Vibration analysis of printed circuit boards: Effect of boundary condition

    NASA Astrophysics Data System (ADS)

    Prashanth, M. D.

    2018-04-01

    A spacecraft consists of a number of electronic packages to meet the functional requirements. An electronic package is generally an assembly of printed circuit boards placed in a mechanical housing. A number of electronic components are mounted on the printed circuit board (PCB). A spacecraft experiences various types of loads during its launch such as vibration, acoustic and shock loads. Prediction of response for printed circuit boards due to vibration loads is important for mechanical design and reliability of electronic packages. The modeling and analysis of printed circuit boards is required for accurate prediction of response due to vibration loads. The response of PCB is highly dependent on the mounting configuration of PCB. In addition, anti-vibration mounts or stiffeners are used to reduce the PCB response. Vibration analysis of printed circuit boards is carried out using finite element method. The objective of this paper is to determine the dynamic characteristics of a printed circuit board. Modeling and analysis of PCB shall be carried out to study the effect of boundary conditions on the vibration response. The modeling of stiffeners or ribs shall also be considered in detail. The analysis results shall be validated using vibration tests of PCB.

  2. Magnetorheological elastomer vibration isolation of tunable three-dimensional locally resonant acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-03-01

    Magnetorheological elastomers (MREs) are used as cladding in three-dimensional locally resonant acoustic metamaterial (LRAM) cores. The metamaterial units are combined into a vibration isolator. Two types of LRAMs, namely, cubic and spherical kernels, are constructed. The finite element method is used to analyze the elastic band structures, transmittances, and vibration modes of the incident elastic waves. Results show that the central position and width of the LRAM elastic bandgap can be controlled by the application of an external magnetic field; furthermore, they can be adjusted by changing the MRE cladding thickness. These methods contribute to the design of metamaterial MRE vibration isolators.

  3. Coherent acoustic vibrations of metal nanoshells

    NASA Astrophysics Data System (ADS)

    Kirakosyan, A. S.; Shahbazyan, T. V.; Guillon, C.; Langot, P.; Del Fatti, N.; Vallee, F.; Cardinal, T.; Treguer, M.

    2007-03-01

    We study vibrational modes of gold nanoshells grown on dielectric core by means of time-resolved pump-probe spectroscopy. The fundamental breathing mode launched by a femtosecond pump pulse manifests itself in a pronounced time-domain modulation of the differential transmission probed at the frequency of the nanoshell surface plasmon resonance. The modulation amplitude is significantly stronger while the period is longer than in a gold nanoparticle of the same overall size. A theoretical model describing breathing mode frequency and damping for a nanoshell in a medium is developed. A distinct acoustical signature of nanoshells provides a new and efficient method for identifying these versatile nanostructures and for studying their mechanical and structural properties.

  4. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    NASA Technical Reports Server (NTRS)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  5. Pressure potential and stability analysis in an acoustical noncontact transportation

    NASA Astrophysics Data System (ADS)

    Li, J.; Liu, C. J.; Zhang, W. J.

    2017-01-01

    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  6. Stick-slip instabilities in sheared granular flow: The role of friction and acoustic vibrations.

    PubMed

    Lieou, Charles K C; Elbanna, Ahmed E; Langer, J S; Carlson, J M

    2015-08-01

    We propose a theory of shear flow in dense granular materials. A key ingredient of the theory is an effective temperature that determines how the material responds to external driving forces such as shear stresses and vibrations. We show that, within our model, friction between grains produces stick-slip behavior at intermediate shear rates, even if the material is rate strengthening at larger rates. In addition, externally generated acoustic vibrations alter the stick-slip amplitude, or suppress stick-slip altogether, depending on the pressure and shear rate. We construct a phase diagram that indicates the parameter regimes for which stick-slip occurs in the presence and absence of acoustic vibrations of a fixed amplitude and frequency. These results connect the microscopic physics to macroscopic dynamics and thus produce useful information about a variety of granular phenomena, including rupture and slip along earthquake faults, the remote triggering of instabilities, and the control of friction in material processing.

  7. Coherent control of acoustic vibrations in metal nanoparticles and thin films with sequences of femtosecond pulses: Harmonic-oscillator model

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.

    2002-08-01

    A harmonic oscillator model is used to demonstrate the possibility of coherent control of acoustic vibrations of metal nanoparticles and thin films with sequences of femtosecond laser pulses. When the interval between the pulses in such a sequence is chosen equal to the oscillation period of the expansion mode of a nanoscale system, the relevant acoustic vibrations can be excited in a resonant and selective way. Sequences of femtosecond pulses with picosecond time intervals between the pulses are shown to be ideally suited for a resonant excitation and coherent control of acoustic modes of silver nanoparticles.

  8. Preliminary vibration, acoustic, and shock design and test criteria for components on the Lightweight External Tank (LWT)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Space Shuttle LWT is divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (general Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available. Along with the specifications are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. A method of selecting applicable vibration, acoustic, and shock specifications is presented.

  9. A Spectral Analysis Approach for Acoustic Radiation from Composite Panels

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Singh, Mahendra P.; Mei, Chuh

    2004-01-01

    A method is developed to predict the vibration response of a composite panel and the resulting far-field acoustic radiation due to acoustic excitation. The acoustic excitation is assumed to consist of obliquely incident plane waves. The panel is modeled by a finite element analysis and the radiated field is predicted using Rayleigh's integral. The approach can easily include other effects such as shape memory alloy (SMA) ber reinforcement, large detection thermal postbuckling, and non-symmetric SMA distribution or lamination. Transmission loss predictions for the case of an aluminum panel excited by a harmonic acoustic pressure are shown to compare very well with a classical analysis. Results for a composite panel with and without shape memory alloy reinforcement are also presented. The preliminary results demonstrate that the transmission loss can be significantly increased with shape memory alloy reinforcement. The mechanisms for further transmission loss improvement are identified and discussed.

  10. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

    PubMed Central

    Hui, Jie; Li, Rui; Phillips, Evan H.; Goergen, Craig J.; Sturek, Michael; Cheng, Ji-Xin

    2016-01-01

    The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology. PMID:27069873

  11. The use of a digital computer for calculation of acoustic fields of complex vibrating structures by the reciprocity principle

    NASA Technical Reports Server (NTRS)

    Rimskiy-Korsakov, A. V.; Belousov, Y. I.

    1973-01-01

    A program was compiled for calculating acoustical pressure levels, which might be created by vibrations of complex structures (an assembly of shells and rods), under the influence of a given force, for cases when these fields cannot be measured directly. The acoustical field is determined according to transition frequency and pulse characteristics of the structure in the projection mode. Projection characteristics are equal to the reception characteristics, for vibrating systems in which the reciprocity principle holds true. Characteristics in the receiving mode are calculated on the basis of experimental data on a point pulse space velocity source (input signal) and vibration response of the structure (output signal). The space velocity of a pulse source, set at a point in space r, where it is necessary to calculate the sound field of the structure p(r,t), is determined by measurements of acoustic pressure, created by a point source at a distance R. The vibration response is measured at the point where the forces F and f exciting the system should act.

  12. Structural-acoustic coupling in aircraft fuselage structures

    NASA Technical Reports Server (NTRS)

    Mathur, Gopal P.; Simpson, Myles A.

    1992-01-01

    Results of analytical and experimental investigations of structural-acoustic coupling phenomenon in an aircraft fuselage are described. The structural and acoustic cavity modes of DC-9 fuselage were determined using a finite element approach to vibration analysis. Predicted structural and acoustic dispersion curves were used to determine possible occurrences of structural-acoustic coupling for the fuselage. An aft section of DC-9 aircraft fuselage, housed in an anechoic chamber, was used for experimental investigations. The test fuselage was excited by a shaker and vibration response and interior sound field were measured using accelerometer and microphone arrays. The wavenumber-frequency structural and cavity response maps were generated from the measured data. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, fuselage response and structural-acoustic coupling.

  13. Linear stiff string vibrations in musical acoustics: Assessment and comparison of models.

    PubMed

    Ducceschi, Michele; Bilbao, Stefan

    2016-10-01

    Strings are amongst the most common elements found in musical instruments and an appropriate physical description of string dynamics is essential to modelling, analysis, and simulation. For linear vibration in a single polarisation, the most common model is based on the Euler-Bernoulli beam equation under tension. In spite of its simple form, such a model gives unbounded phase and group velocities at large wavenumbers, and such behaviour may be interpreted as unphysical. The Timoshenko model has, therefore, been employed in more recent works to overcome such shortcoming. This paper presents a third model based on the shear beam equations. The three models are here assessed and compared with regard to the perceptual considerations in musical acoustics.

  14. Attenuation Compensation of Ultrasonic Wave in Soft Tissue for Acoustic Impedance Measurement of In vivo Bone by Transducer Vibration Method

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Masasumi; Nakamura, Yuuta; Ishiguro, Masataka; Moriya, Tadashi

    2007-07-01

    In this paper, we describe a method of compensating the attenuation of the ultrasound caused by soft tissue in the transducer vibration method for the measurement of the acoustic impedance of in vivo bone. In the in vivo measurement, the acoustic impedance of bone is measured through soft tissue; therefore, the amplitude of the ultrasound reflected from the bone is attenuated. This attenuation causes an error of the order of -20 to -30% when the acoustic impedance is determined from the measured signals. To compensate the attenuation, the attenuation coefficient and length of the soft tissue are measured by the transducer vibration method. In the experiment using a phantom, this method allows the measurement of the acoustic impedance typically with an error as small as -8 to 10%.

  15. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  16. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen

    2018-01-01

    Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.

  17. On the interaction of a vibrating plate with an acoustic medium

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Koval, L. R.

    1974-01-01

    The interaction of a vibrating plate with an adjacent acoustic medium is important in problems involving the radiation of sound from panels, in problems involving the transmission of sound through walls of buildings, aircraft, or launch vehicles; and in problems involving the estimation of damping and the stress amplitude of vibration for panel-fatigue predictions. There appear to have been no systematic studies of the effects on the plate of fluid coupling for an arbitrary fluid-mass/plate-mass loading ratio. An attempt is made to determine this effect for a wide range of fluid-plate mass ratios without resorting to the usual simplifications of light or heavy fluid loading. Emphasis is with the plate motion rather than the radiation of sound.

  18. Preliminary vibration, acoustic, and shock design and test criteria for components on the SRB, ET, and SSME

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Specifications for vibration, acoustic and shock design for components and subassemblies on the External Tank (ET), Solid Rocket Booster (SRB), and Space Shuttle Main Engine (SSME). Included are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. The space shuttle ET, SRB, and SSME have been divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (General Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available. Criteria for some specific components are also presented.

  19. High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Measuring the high frequency acoustic vibrations represents the fundamental interest in revealing the intrinsic dynamic characteristic of board range of systems, such as the growth of the fetus, blood flow in human palms, and vibrations of carbon nanotube. However, the acoustic wave detection capability is limited by the detection bandwidth and sensitivity of the commonly used piezoelectric based ultrasound detectors. To overcome these limitations, this thesis focuses on exploring the optical demodulation method for highly sensitive detection of broadband acoustic vibration. First, a transparent optical ultrasonic detector has been developed using micro-ring resonator (MRR) made of soft polymeric materials. It outperforms the traditional piezoelectric detectors with broader detection bandwidth, miniaturized size and wide angular sensitivity. Its ease of integration into photoacoustic microscopy system has resulted in the great improvement of the imaging resolution. A theoretic framework has been developed to establish the quantitative understanding of its unique distance and angular dependent detection characteristics and was subsequently validated experimentally. The developed theoretic framework provides a guideline to fully accounts for the trade-offs between axial and lateral resolution, working distance, and the field of view in developing optimal imaging performance for a wide range of biological and clinical applications. MRR-based ultrasonic detector is further integrated into confocal fluorescence microscopy to realize the simultaneous imaging of fluorescence and optical absorption of retinal pigment epithelium, achieving multi-contrast imaging at sub-cellular level. The needs to resolve the fine details of the biological specimen with the resolution beyond the diffraction limit further motivate the development of optical demodulated ultrasonic detection method based on near-field scanning optical microscopy (NSOM). The nano-focusing probe was developed

  20. Spectral analysis methods for vehicle interior vibro-acoustics identification

    NASA Astrophysics Data System (ADS)

    Hosseini Fouladi, Mohammad; Nor, Mohd. Jailani Mohd.; Ariffin, Ahmad Kamal

    2009-02-01

    Noise has various effects on comfort, performance and health of human. Sound are analysed by human brain based on the frequencies and amplitudes. In a dynamic system, transmission of sound and vibrations depend on frequency and direction of the input motion and characteristics of the output. It is imperative that automotive manufacturers invest a lot of effort and money to improve and enhance the vibro-acoustics performance of their products. The enhancement effort may be very difficult and time-consuming if one relies only on 'trial and error' method without prior knowledge about the sources itself. Complex noise inside a vehicle cabin originated from various sources and travel through many pathways. First stage of sound quality refinement is to find the source. It is vital for automotive engineers to identify the dominant noise sources such as engine noise, exhaust noise and noise due to vibration transmission inside of vehicle. The purpose of this paper is to find the vibro-acoustical sources of noise in a passenger vehicle compartment. The implementation of spectral analysis method is much faster than the 'trial and error' methods in which, parts should be separated to measure the transfer functions. Also by using spectral analysis method, signals can be recorded in real operational conditions which conduce to more consistent results. A multi-channel analyser is utilised to measure and record the vibro-acoustical signals. Computational algorithms are also employed to identify contribution of various sources towards the measured interior signal. These achievements can be utilised to detect, control and optimise interior noise performance of road transport vehicles.

  1. Digital Data Acquisition for Laser Radar for Vibration Analysis

    DTIC Science & Technology

    1998-06-01

    and the resulting signal is a function of the relative phase of the two waves , which changes as the target vibrates. The relative phase is inversely...light crosses the medium in a direction perpendicular to the acoustic waves , a modulated optical wave front will result. A standing acoustic wave in the...mean that the frequency can be up or down-shifted, depending on the orientation of the AOM, or the direction of the traveling acoustic waves . An

  2. Simultaneous Vibration Suppression and Energy Harvesting

    DTIC Science & Technology

    2013-08-15

    D.J., 2011. “Modeling and Analysis of Piezoelectric Energy Harvesting from Aeroelastic Vibrations Using the Doublet-Lattice Method,” ASME Journal...Friswell, M. I., and Inman, D. J., 2009, “ Piezoelectric Energy Harvesting from Broadband Random Vibrations ,” Smart Materials and Structures, Vol. 18...and Electrode Configuration on Piezoelectric Energy Harvesting from Cantilevered Beams,” ASME Journal of Vibration and Acoustics, Vol. 131, No. 1, pp

  3. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  4. Shear-horizontal vibration modes of an oblate elliptical cylinder and energy trapping in contoured acoustic wave resonators.

    PubMed

    He, Huijing; Yang, Jiashi; Kosinski, John A

    2012-08-01

    We study shear-horizontal free vibrations of an elastic cylinder with an oblate elliptical cross section and a traction-free surface. Exact vibration modes and frequencies are obtained. The results show the existence of thickness-shear and thickness-twist modes. The energy-trapping behavior of these modes is examined. Trapped modes are found wherein the vibration energy is largely confined to the central portion of the cross section and little vibration energy is found at the edges. It is also shown that face-shear modes are not allowed in such a cylinder. The results are useful for the understanding of the energy trapping phenomenon in contoured acoustic wave resonators.

  5. Seminar on Understanding Digital Control and Analysis in Vibration Test Systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The advantages of the digital methods over the analog vibration methods are demonstrated. The following topics are covered: (1) methods of computer-controlled random vibration and reverberation acoustic testing, (2) methods of computer-controlled sinewave vibration testing, and (3) methods of computer-controlled shock testing. General algorithms are described in the form of block diagrams and flow diagrams.

  6. Effects of Asymmetric Superior Laryngeal Nerve Stimulation on Glottic Posture, Acoustics, Vibration

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Bergeron, Jennifer L.; Sofer, Elazar; Peng, Kevin A.; Jamal, Nausheen

    2013-01-01

    Objectives Evaluate the effects of asymmetric superior laryngeal nerve stimulation on the vibratory phase, laryngeal posture, and acoustics. Study Design Basic science study using an in vivo canine model. Methods The superior laryngeal nerves were symmetrically and asymmetrically stimulated over eight activation levels to mimic laryngeal asymmetries representing various levels of superior laryngeal nerve paresis and paralysis conditions. Glottal posture change, vocal fold speed, and vibration of these 64 distinct laryngeal activation conditions were evaluated by high speed video and concurrent acoustic and aerodynamic recordings. Assessments were made at phonation onset. Results Vibratory phase was symmetric in all symmetric activation conditions but consistent phase asymmetry towards the vocal fold with higher superior laryngeal nerve activation was observed. Superior laryngeal nerve paresis and paralysis conditions had reduced vocal fold strain and fundamental frequency. Superior laryngeal nerve activation increased vocal fold closure speed, but this effect was more pronounced for the ipsilateral vocal fold. Increasing asymmetry led to aperiodic and chaotic vibration. Conclusions This study directly links vocal fold tension asymmetry with vibratory phase asymmetry; in particular the side with greater tension leads in the opening phase. The clinical observations of vocal fold lag, reduced vocal range, and aperiodic voice in superior laryngeal paresis and paralysis is also supported. PMID:23712542

  7. Department of Cybernetic Acoustics

    NASA Astrophysics Data System (ADS)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  8. Scientific basis for modelling and calculation of acoustic vibrations in the nuclear power plant coolant

    NASA Astrophysics Data System (ADS)

    Proskuryakov, K. N.

    2017-11-01

    Created new scientific direction: “Diagnosis, prognosis and prevention of vibration - acoustic resonances in the nuclear power plant (NPP) equipment. The possibility of using methods for calculating and analyzing electric oscillation systems in the study of the properties of acoustic systems with a two-phase medium is proved, based on the similarity of the differential equations describing the state of these systems. Is shown that the developed methods can be used to predict and prevent the occurrence of vibration - acoustic resonances in the NPP equipment. Is shown that the volume of pressurizer at NPPs with VVER and PWR as well as boiling water reactor that exploded at Japan’s NPP Fukushima Daiichi is a Helmholtz resonator, which contain water and steam volumes and able many times increases the impact on them of outside periodic oscillations. Paper presents most important results published long before the severe accidents at NPPs Three Mile Island (TMI), Chernobyl and Fukushima Daiichi that could be used for the prediction of a severe accident scenario, identification of measuring data and process control in order to minimize the damage. Worked out results also could be useful in another industrial technologies based on applications of single and two-phase flows.

  9. Design and Operation of a Vibration-Acoustic-Thermal Apparatus for Identifying Variations in Free and Forced Response of Sandwich Panels Due to Combined Loading

    NASA Astrophysics Data System (ADS)

    Ellmer, Claudia; Adams, Douglas E.; White, Jonathan R.; Jata, Kumar

    2008-02-01

    Combined vibration, thermal, and acoustic environments cause significant changes in the free and forced response characteristics of spacecraft metallic, ceramic, and carbon thermal protection systems, exhaust wash structures in fixed wing aircraft, and ground vehicle components exposed to blast loading. When structural components become damaged, the effects of combined loads are even more apparent on the structural response. A new combined vibration-acoustic-thermal apparatus designed to simultaneously expose specimens up to 4' by 4' with 10 g vibration up to either 100 Hz or 1 inch displacement vibrations, 140 dB acoustic pressures, and >400 °F temperatures will first be described in this paper. Then observations from experiments conducted on a sandwich metallic panel exposed to thermal loads will be described. Modal impact and active sensor data will be utilized to extract frequency response function models that change as a function of the loading. These frequency response models indicate significant changes in the free response properties of the panel. For example, it will be shown that temperature changes cause the resonant frequencies of the panel to decrease resulting in higher response amplitudes. Likewise, acoustic pressure loads distributed across the panel will be shown to change as a function of temperature.

  10. Acoustical contribution calculation and analysis of compressor shell based on acoustic transfer vector method

    NASA Astrophysics Data System (ADS)

    Chen, Xiaol; Guo, Bei; Tuo, Jinliang; Zhou, Ruixin; Lu, Yang

    2017-08-01

    Nowadays, people are paying more and more attention to the noise reduction of household refrigerator compressor. This paper established a sound field bounded by compressor shell and ISO3744 standard field points. The Acoustic Transfer Vector (ATV) in the sound field radiated by a refrigerator compressor shell were calculated which fits the test result preferably. Then the compressor shell surface is divided into several parts. Based on Acoustic Transfer Vector approach, the sound pressure contribution to the field points and the sound power contribution to the sound field of each part were calculated. To obtain the noise radiation in the sound field, the sound pressure cloud charts were analyzed, and the contribution curves in different frequency of each part were acquired. Meanwhile, the sound power contribution of each part in different frequency was analyzed, to ensure those parts where contributes larger sound power. Through the analysis of acoustic contribution, those parts where radiate larger noise on the compressor shell were determined. This paper provides a credible and effective approach on the structure optimal design of refrigerator compressor shell, which is meaningful in the noise and vibration reduction.

  11. Dependencies and Ill-designed Parameters Within High-speed Videoendoscopy and Acoustic Signal Analysis.

    PubMed

    Schlegel, Patrick; Stingl, Michael; Kunduk, Melda; Kniesburges, Stefan; Bohr, Christopher; Döllinger, Michael

    2018-05-31

    The phonatory process is often judged during sustained phonation by analyzing the acoustic voice signal and the vocal fold vibrations. Many formulas and parameters have been suggested for qualifying the characteristics of the acoustic signal and the vocal fold vibrations during sustained phonation. These parameters are directly computed from the acoustic signal and the endoscopic glottal area waveform (GAW). The GAW is calculated from laryngeal high-speed videoendoscopy (HSV) recordings and describes the increase and decrease of the glottal area during the phonation process, that is, the opening and closing of the two oscillating vocal folds over time. However, some of the parameters have strong mathematical dependencies with one another and some are ill-defined. The purpose of this study is to identify mathematical dependencies between parameters with the aim of reducing their numbers and suggesting which parameters may best describe the properties of the GAW and the acoustical signal. In this preliminary investigation, 20 frequently used parameters are examined: 10 GAW only and 10 both GAW and acoustic parameters. In total 13 parameters can be neglected because of mathematical dependencies. In addition, nine of these parameters show problematic features that range from unexpected behavior to ill definition. Reducing the number of parameters appears to be necessary to standardize vocal fold function analysis. This may lead to better comparability of research results from different studies. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  12. Study on the radial vibration and acoustic field of an isotropic circular ring radiator.

    PubMed

    Lin, Shuyu; Xu, Long

    2012-01-01

    Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Vibro-acoustic modeling and analysis of a coupled acoustic system comprising a partially opened cavity coupled with a flexible plate

    NASA Astrophysics Data System (ADS)

    Shi, Shuangxia; Su, Zhu; Jin, Guoyong; Liu, Zhigang

    2018-01-01

    This paper is concerned with the modeling and solution method of a three-dimensional (3D) coupled acoustic system comprising a partially opened cavity coupled with a flexible plate and an exterior field of semi-infinite size, which is ubiquitously encountered in architectural acoustics and is a reasonable representation of many engineering occasions. A general solution method is presented to predict the dynamic behaviors of the three-dimensional (3D) acoustic coupled system, in which the displacement of the plate and the sound pressure in the cavity are respectively constructed in the form of the two-dimensional and three-dimensional modified Fourier series with several auxiliary functions introduced to ensure the uniform convergence of the solution over the entire solution domain. The effect of the opening is taken into account via the work done by the sound pressure acting at the coupling aperture that is contributed from the vibration of particles on the acoustic coupling interface and on the structural-acoustic coupling interface. Both the acoustic coupling between finite cavity and exterior field and the structural-acoustic coupling between flexible plate and interior acoustic field are considered in the vibro-acoustic modeling of the three-dimensional acoustic coupled acoustic system. The dynamic responses of the coupled structural-acoustic system are obtained using the Rayleigh-Ritz procedure based on the energy expressions for the coupled system. The accuracy and effectiveness of the proposed method are validated through numerical examples and comparison with results obtained by the boundary element analysis. Furthermore, the influence of the opening and the cavity volume on the acoustic behaviors of opened cavity system is studied.

  14. Non-contact modal testing by the electromagnetic acoustic principle: Applications to bending and torsional vibrations of metallic pipes

    NASA Astrophysics Data System (ADS)

    Kim, Hongjin; Park, Chan Il; Lee, Sun Ho; Kim, Yoon Young

    2013-02-01

    This work aims to investigate a possibility of non-contact vibration modal testing for bending and torsional motions of cylindrical bodies such as pipes. Here, a transducer operated by the electromagnetic acoustic coupling principle is newly devised. Depending on vibration modes, bending or torsional, different magnetic circuit configurations are employed to fabricate the transducer. The main characteristic of the proposed transducer is non-contact vibration generation in a test specimen without any mechanical movement of the actuating unit. It can be also used as a non-contact sensing unit if necessary. The validity and the performance of the proposed non-contact modal testing method are checked with several experiments.

  15. Low-amplitude non-linear volume vibrations of single microbubbles measured with an "acoustical camera".

    PubMed

    Renaud, Guillaume; Bosch, Johan G; Van Der Steen, Antonius F W; De Jong, Nico

    2014-06-01

    Contrast-enhanced ultrasound imaging is based on the detection of non-linear vibrational responses of a contrast agent after its intravenous administration. Improving contrast-enhanced images requires an accurate understanding of the vibrational response to ultrasound of the lipid-coated gas microbubbles that constitute most ultrasound contrast agents. Variations in the volume of microbubbles provide the most efficient radiation of ultrasound and, therefore, are the most important bubble vibrations for medical diagnostic ultrasound imaging. We developed an "acoustical camera" that measures the dynamic volume change of individual microbubbles when excited by a pressure wave. In the work described here, the technique was applied to the characterization of low-amplitude non-linear behaviors of BR14 microbubbles (Bracco Research, Geneva, Switzerland). The amplitude dependence of the resonance frequency and the damping, the prevalence of efficient subharmonic and ultraharmonic vibrations and the amplitude dependence of the response at the fundamental frequency and at the second harmonic frequency were investigated. Because of the large number of measurements, we provide a statistical characterization of the low-amplitude non-linear properties of the contrast agent. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    NASA Astrophysics Data System (ADS)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  17. On the effect of acoustic coupling on random and harmonic plate vibrations

    NASA Technical Reports Server (NTRS)

    Frendi, A.; Robinson, J. H.

    1993-01-01

    The effect of acoustic coupling on random and harmonic plate vibrations is studied using two numerical models. In the coupled model, the plate response is obtained by integration of the nonlinear plate equation coupled with the nonlinear Euler equations for the surrounding acoustic fluid. In the uncoupled model, the nonlinear plate equation with an equivalent linear viscous damping term is integrated to obtain the response of the plate subject to the same excitation field. For a low-level, narrow-band excitation, the two models predict the same plate response spectra. As the excitation level is increased, the response power spectrum predicted by the uncoupled model becomes broader and more shifted towards the high frequencies than that obtained by the coupled model. In addition, the difference in response between the coupled and uncoupled models at high frequencies becomes larger. When a high intensity harmonic excitation is used, causing a nonlinear plate response, both models predict the same frequency content of the response. However, the level of the harmonics and subharmonics are higher for the uncoupled model. Comparisons to earlier experimental and numerical results show that acoustic coupling has a significant effect on the plate response at high excitation levels. Its absence in previous models may explain the discrepancy between predicted and measured responses.

  18. Structural vibration and acoustic radiation of coupled propeller-shafting and submarine hull system due to propeller forces

    NASA Astrophysics Data System (ADS)

    Qu, Yegao; Su, Jinpeng; Hua, Hongxing; Meng, Guang

    2017-08-01

    This paper investigates the structural and acoustic responses of a coupled propeller-shafting and submarine pressure hull system under different propeller force excitations. The entire system, which consists of a rigid propeller, a main shaft, two bearings and an orthogonally stiffened pressure hull, is submerged in a heavy fluid. The shaft is elastically connected to the pressure hull by a radial bearing and a thrust bearing. The theoretical model of the structural system is formulated based on a modified variational method, in which the propeller, the main shaft and the bearings are treated as a lumped mass, an elastic beam and spatially distributed spring-damper systems, respectively. The rings and stringers in the pressure hull are modeled as discrete structural elements. The acoustic field generated by the hull is calculated using a spectral Kirchhoff-Helmholtz integral formulation. A strongly coupled structure-acoustic interaction analysis is employed to achieve reasonable solutions for the coupled system. The displacement of the pressure hull and the sound pressure of the fluid are expanded in the form of a double mixed series using Fourier series and Chebyshev orthogonal polynomials, providing a flexible way for the present method to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of the pressure hull in an analytical manner. The contributions of different circumferential wave modes of the pressure hull to the structural and acoustic responses of the coupled system under axial, transversal and vertical propeller forces are investigated. Computed results are compared with those solutions obtained from the coupled finite element/boundary element method. Effects of the ring and the bearing stiffness on the acoustic responses of the coupled system are discussed.

  19. Study on model design and dynamic similitude relations of vibro-acoustic experiment for elastic cavity

    NASA Astrophysics Data System (ADS)

    Shi, Ao; Lu, Bo; Yang, Dangguo; Wang, Xiansheng; Wu, Junqiang; Zhou, Fangqi

    2018-05-01

    Coupling between aero-acoustic noise and structural vibration under high-speed open cavity flow-induced oscillation may bring about severe random vibration of the structure, and even cause structure to fatigue destruction, which threatens the flight safety. Carrying out the research on vibro-acoustic experiments of scaled down model is an effective means to clarify the effects of high-intensity noise of cavity on structural vibration. Therefore, in allusion to the vibro-acoustic experiments of cavity in wind tunnel, taking typical elastic cavity as the research object, dimensional analysis and finite element method were adopted to establish the similitude relations of structural inherent characteristics and dynamics for distorted model, and verifying the proposed similitude relations by means of experiments and numerical simulation. Research shows that, according to the analysis of scale-down model, the established similitude relations can accurately simulate the structural dynamic characteristics of actual model, which provides theoretic guidance for structural design and vibro-acoustic experiments of scaled down elastic cavity model.

  20. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  1. Analysis of coiled stator ultrasound motor: Fundamental study on analysis of wave propagation on acoustic waveguide for coiled stator

    NASA Astrophysics Data System (ADS)

    Ozeki, Seiya; Kurita, Keisuke; Uehara, Choyu; Nakane, Noriaki; Sato, Toshio; Takeuchi, Shinichi

    2018-07-01

    In our research group, we previously developed a coiled stator ultrasound motor (CS-USM) for medical applications such as intravascular ultrasound (IVUS) devices. However, wave propagation on acoustic waveguides has not been investigated sufficiently in previous studies. In this study, we analyze the propagation velocity of elastic waves from the simulated the vibration displacement mode profile along a straight line acoustic waveguide via three-dimensional finite element method (FEM). Concerning results, elastic waves with vibration displacement along the thickness direction show dispersion characteristics corresponding to the a0 and a1 mode plate waves (Lamb waves) in the acoustic waveguide. Our theoretical hypotheses of the propagation velocities were closely borne out by experimental results. We further find that the dispersion characteristic is affected by the width of the acoustic waveguide. We believe that our findings can contribute to improved CS-USM designs for practical application.

  2. Simulation using computer-piloted point excitations of vibrations induced on a structure by an acoustic environment

    NASA Astrophysics Data System (ADS)

    Monteil, P.

    1981-11-01

    Computation of the overall levels and spectral densities of the responses measured on a launcher skin, the fairing for instance, merged into a random acoustic environment during take off, was studied. The analysis of transmission of these vibrations to the payload required the simulation of these responses by a shaker control system, using a small number of distributed shakers. Results show that this closed loop computerized digital system allows the acquisition of auto and cross spectral densities equal to those of the responses previously computed. However, wider application is sought, e.g., road and runway profiles. The problems of multiple input-output system identification, multiple true random signal generation, and real time programming are evoked. The system should allow for the control of four shakers.

  3. Sensors of vibration and acoustic emission for monitoring of boring with skiving cutters

    NASA Astrophysics Data System (ADS)

    Shamarin, N. N.; Filippov, A. V.; Podgornyh, O. A.; Filippova, E. O.

    2017-01-01

    Diagnosing processing system conditions is a key area in automation of modern machinery production. The article presents the results of a preliminary experimental research of the boring process using conventional and skiving cutters under the conditions of the low stiffness processing system. Acoustic emission and vibration sensors are used for cutting process diagnosis. Surface roughness after machining is determined using a laser scanning microscope. As a result, it is found that the use of skiving cutters provides greater stability of the cutting process and lower surface roughness as compared with conventional cutters.

  4. Full skin quantitative optical coherence elastography achieved by combining vibration and surface acoustic wave methods

    NASA Astrophysics Data System (ADS)

    Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam

    2015-03-01

    By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.

  5. Sound radiation from randomly vibrating beams of finite circular cross section

    NASA Technical Reports Server (NTRS)

    Sutterlin, M. W.; Pierce, A. D.

    1976-01-01

    The radiation of sound from vibrating cylindrical beams is analyzed based on the frequency of the beam vibrations and the physical characteristics of the beam and its surroundings. A statistical analysis of random beam vibrations allows this result to be independent of the boundary conditions at the ends of the beam. The acoustic power radiated by the beam can be determined from a knowledge of the frequency band vibration data without a knowledge of the individual modal vibration amplitudes. A practical example of the usefulness of this technique is provided by the application of the theoretical calculations to the prediction of the octave band acoustic power output of the picking sticks of an automatic textile loom. Calculations are made of the expected octave band sound pressure levels based on measured acceleration data. These theoretical levels are subsequently compared with actual sound pressure level measurements of loom noise.

  6. Multivariate Analysis of Ladle Vibration

    NASA Astrophysics Data System (ADS)

    Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle

    2016-08-01

    The homogeneity of composition and uniformity of temperature of the steel melt before it is transferred to the tundish are crucial in making high-quality steel product. The homogenization process is performed by stirring the melt using inert gas in ladles. Continuous monitoring of this process is important to make sure the action of stirring is constant throughout the ladle. Currently, the stirring process is monitored by process operators who largely rely on visual and acoustic phenomena from the ladle. However, due to lack of measurable signals, the accuracy and suitability of this manual monitoring are problematic. The actual flow of argon gas to the ladle may not be same as the flow gage reading due to leakage along the gas line components. As a result, the actual degree of stirring may not be correctly known. Various researchers have used one-dimensional vibration, and sound and image signals measured from the ladle to predict the degree of stirring inside. They developed online sensors which are indeed to monitor the online stirring phenomena. In this investigation, triaxial vibration signals have been measured from a cold water model which is a model of an industrial ladle. Three flow rate ranges and varying bath heights were used to collect vibration signals. The Fast Fourier Transform was applied to the dataset before it has been analyzed using principal component analysis (PCA) and partial least squares (PLS). PCA was used to unveil the structure in the experimental data. PLS was mainly applied to predict the stirring from the vibration response. It was found that for each flow rate range considered in this study, the informative signals reside in different frequency ranges. The first latent variables in these frequency ranges explain more than 95 pct of the variation in the stirring process for the entire single layer and the double layer data collected from the cold model. PLS analysis in these identified frequency ranges demonstrated that the latent

  7. Synchronized imaging and acoustic analysis of the upper airway in patients with sleep-disordered breathing.

    PubMed

    Chang, Yi-Chung; Huon, Leh-Kiong; Pham, Van-Truong; Chen, Yunn-Jy; Jiang, Sun-Fen; Shih, Tiffany Ting-Fang; Tran, Thi-Thao; Wang, Yung-Hung; Lin, Chen; Tsao, Jenho; Lo, Men-Tzung; Wang, Pa-Chun

    2014-12-01

    Progressive narrowing of the upper airway increases airflow resistance and can produce snoring sounds and apnea/hypopnea events associated with sleep-disordered breathing due to airway collapse. Recent studies have shown that acoustic properties during snoring can be altered with anatomic changes at the site of obstruction. To evaluate the instantaneous association between acoustic features of snoring and the anatomic sites of obstruction, a novel method was developed and applied in nine patients to extract the snoring sounds during sleep while performing dynamic magnetic resonance imaging (MRI). The degree of airway narrowing during the snoring events was then quantified by the collapse index (ratio of airway diameter preceding and during the events) and correlated with the synchronized acoustic features. A total of 201 snoring events (102 pure retropalatal and 99 combined retropalatal and retroglossal events) were recorded, and the collapse index as well as the soft tissue vibration time were significantly different between pure retropalatal (collapse index, 2 ± 11%; vibration time, 0.2 ± 0.3 s) and combined (retropalatal and retroglossal) snores (collapse index, 13 ± 7% [P ≤ 0.0001]; vibration time, 1.2 ± 0.7 s [P ≤ 0.0001]). The synchronized dynamic MRI and acoustic recordings successfully characterized the sites of obstruction and established the dynamic relationship between the anatomic site of obstruction and snoring acoustics.

  8. Coupled rotor/airframe vibration analysis

    NASA Technical Reports Server (NTRS)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  9. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for

  10. Experimental and theoretical identification of a four- acoustic-inputs/two-vibration-outputs hearing system

    NASA Astrophysics Data System (ADS)

    Balaji, P. A.

    1999-07-01

    A cricket's ear is a directional acoustic sensor. It has a remarkable level of sensitivity to the direction of sound propagation in a narrow frequency bandwidth of 4-5 KHz. Because of its complexity, the directional sensitivity has long intrigued researchers. The cricket's ear is a four-acoustic-inputs/two-vibration-outputs system. In this dissertation, this system is examined in depth, both experimentally and theoretically, with a primary goal to understand the mechanics involved in directional hearing. Experimental identification of the system is done by using random signal processing techniques. Theoretical identification of the system is accomplished by analyzing sound transmission through complex trachea of the ear. Finally, a description of how the cricket achieves directional hearing sensitivity is proposed. The fundamental principle involved in directional heating of the cricket has been utilized to design a device to obtain a directional signal from non- directional inputs.

  11. An application review of dielectric electroactive polymer actuators in acoustics and vibration control

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenghong; Shuai, Changgeng; Gao, Yan; Rustighi, Emiliano; Xuan, Yuan

    2016-09-01

    Recent years have seen an increasing interest in the dielectric electroactive polymers (DEAPs) and their potential in actuator applications due to the large strain capabilities. This paper starts with an overview of some configurations of the DEAP actuators and follows with an in-depth literature and technical review of recent advances in the field with special considerations given to aspects pertaining to acoustics and vibration control. Significant research has shown that these smart actuators are promising replacement for many conventional actuators. The paper has been written with reference to a large number of published papers listed in the reference section.

  12. Sounds of Failure: Passive Acoustic Measurements of Excited Vibrational Modes

    NASA Astrophysics Data System (ADS)

    Brzinski, Theodore A.; Daniels, Karen E.

    2018-05-01

    Granular materials can fail through spontaneous events like earthquakes or brittle fracture. However, measurements and analytic models which forecast failure in this class of materials, while of both fundamental and practical interest, remain elusive. Materials including numerical packings of spheres, colloidal glasses, and granular materials have been known to develop an excess of low-frequency vibrational modes as the confining pressure is reduced. Here, we report experiments on sheared granular materials in which we monitor the evolving density of excited modes via passive monitoring of acoustic emissions. We observe a broadening of the distribution of excited modes coincident with both bulk and local plasticity, and evolution in the shape of the distribution before and after bulk failure. These results provide a new interpretation of the changing state of the material on its approach to stick-slip failure.

  13. Sounds of Failure: Passive Acoustic Measurements of Excited Vibrational Modes.

    PubMed

    Brzinski, Theodore A; Daniels, Karen E

    2018-05-25

    Granular materials can fail through spontaneous events like earthquakes or brittle fracture. However, measurements and analytic models which forecast failure in this class of materials, while of both fundamental and practical interest, remain elusive. Materials including numerical packings of spheres, colloidal glasses, and granular materials have been known to develop an excess of low-frequency vibrational modes as the confining pressure is reduced. Here, we report experiments on sheared granular materials in which we monitor the evolving density of excited modes via passive monitoring of acoustic emissions. We observe a broadening of the distribution of excited modes coincident with both bulk and local plasticity, and evolution in the shape of the distribution before and after bulk failure. These results provide a new interpretation of the changing state of the material on its approach to stick-slip failure.

  14. Accurate acoustic power measurement for low-intensity focused ultrasound using focal axial vibration velocity

    NASA Astrophysics Data System (ADS)

    Tao, Chenyang; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong; Hu, Jimin

    2017-07-01

    Low-intensity focused ultrasound is a form of therapy that can have reversible acoustothermal effects on biological tissue, depending on the exposure parameters. The acoustic power (AP) should be chosen with caution for the sake of safety. To recover the energy of counteracted radial vibrations at the focal point, an accurate AP measurement method using the focal axial vibration velocity (FAVV) is proposed in explicit formulae and is demonstrated experimentally using a laser vibrometer. The experimental APs for two transducers agree well with theoretical calculations and numerical simulations, showing that AP is proportional to the square of the FAVV, with a fixed power gain determined by the physical parameters of the transducers. The favorable results suggest that the FAVV can be used as a valuable parameter for non-contact AP measurement, providing a new strategy for accurate power control for low-intensity focused ultrasound in biomedical engineering.

  15. Reducing Thermal Conduction In Acoustic Levitators

    NASA Technical Reports Server (NTRS)

    Lierke, Ernst G.; Leung, Emily W.; Bhat, Balakrishna T.

    1991-01-01

    Acoustic transducers containing piezoelectric driving elements made more resistant to heat by reduction of effective thermal-conductance cross sections of metal vibration-transmitting rods in them, according to proposal. Used to levitate small objects acoustically for noncontact processing in furnaces. Reductions in cross sections increase amplitudes of transmitted vibrations and reduce loss of heat from furnaces.

  16. Prediction of response of aircraft panels subjected to acoustic and thermal loads

    NASA Technical Reports Server (NTRS)

    Mei, Chuh

    1992-01-01

    The primary effort of this research project has been focused on the development of analytical methods for the prediction of random response of structural panels subjected to combined and intense acoustic and thermal loads. The accomplishments on various acoustic fatigue research activities are described first, then followed by publications and theses. Topics covered include: transverse shear deformation; finite element models of vibrating composite laminates; large deflection vibration modeling; finite element analysis of thermal buckling; and prediction of three dimensional duct using boundary element method.

  17. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    PubMed

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  18. Nonlinear resonance ultrasonic vibrations in Czochralski-silicon wafers

    NASA Astrophysics Data System (ADS)

    Ostapenko, S.; Tarasov, I.

    2000-04-01

    A resonance effect of generation of subharmonic acoustic vibrations is observed in as-grown, oxidized, and epitaxial silicon wafers. Ultrasonic vibrations were generated into a standard 200 mm Czochralski-silicon (Cz-Si) wafer using a circular ultrasound transducer with major frequency of the radial vibrations at about 26 kHz. By tuning frequency (f) of the transducer within a resonance curve, we observed a generation of intense f/2 subharmonic acoustic mode assigned as a "whistle." The whistle mode has a threshold amplitude behavior and narrow frequency band. The whistle is attributed to a nonlinear acoustic vibration of a silicon plate. It is demonstrated that characteristics of the whistle mode are sensitive to internal stress and can be used for quality control and in-line diagnostics of oxidized and epitaxial Cz-Si wafers.

  19. Computer analysis of railcar vibrations

    NASA Technical Reports Server (NTRS)

    Vlaminck, R. R.

    1975-01-01

    Computer models and techniques for calculating railcar vibrations are discussed along with criteria for vehicle ride optimization. The effect on vibration of car body structural dynamics, suspension system parameters, vehicle geometry, and wheel and rail excitation are presented. Ride quality vibration data collected on the state-of-the-art car and standard light rail vehicle is compared to computer predictions. The results show that computer analysis of the vehicle can be performed for relatively low cost in short periods of time. The analysis permits optimization of the design as it progresses and minimizes the possibility of excessive vibration on production vehicles.

  20. Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels

    NASA Astrophysics Data System (ADS)

    Mathias, Adam Dustin

    The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.

  1. Evaluation of Aero Commander sidewall vibration and interior acoustic data: Static operations

    NASA Technical Reports Server (NTRS)

    Piersol, A. G.; Wilby, E. G.; Wilby, J. F.

    1980-01-01

    Results for the vibration measured at five locations on the fuselage structure during static operations are presented. The analysis was concerned with the magnitude of the vibration and the relative phase between different locations, the frequency response (inertance) functions between the exterior pressure field and the vibration, and the coherent output power functions at interior microphone locations based on sidewall vibration. Fuselage skin panels near the plane of rotation of the propeller accept propeller noise excitation more efficiently than they do exhaust noise.

  2. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.

    1987-01-01

    Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.

  3. Comparative evaluation of Space Transportation System (STS)-3 flight and acoustic test random vibration response of the OSS-1 payload

    NASA Technical Reports Server (NTRS)

    On, F. J.

    1983-01-01

    A comparative evaluation of the Space Transportation System (STS)-3 flight and acoustic test random vibration response of the Office of Space Science-1 (OSS-1) payload is presented. The results provide insight into the characteristics of vibroacoustic response of pallet payload components in the payload bay during STS flights.

  4. Statistical quality control through overall vibration analysis

    NASA Astrophysics Data System (ADS)

    Carnero, M. a. Carmen; González-Palma, Rafael; Almorza, David; Mayorga, Pedro; López-Escobar, Carlos

    2010-05-01

    The present study introduces the concept of statistical quality control in automotive wheel bearings manufacturing processes. Defects on products under analysis can have a direct influence on passengers' safety and comfort. At present, the use of vibration analysis on machine tools for quality control purposes is not very extensive in manufacturing facilities. Noise and vibration are common quality problems in bearings. These failure modes likely occur under certain operating conditions and do not require high vibration amplitudes but relate to certain vibration frequencies. The vibration frequencies are affected by the type of surface problems (chattering) of ball races that are generated through grinding processes. The purpose of this paper is to identify grinding process variables that affect the quality of bearings by using statistical principles in the field of machine tools. In addition, an evaluation of the quality results of the finished parts under different combinations of process variables is assessed. This paper intends to establish the foundations to predict the quality of the products through the analysis of self-induced vibrations during the contact between the grinding wheel and the parts. To achieve this goal, the overall self-induced vibration readings under different combinations of process variables are analysed using statistical tools. The analysis of data and design of experiments follows a classical approach, considering all potential interactions between variables. The analysis of data is conducted through analysis of variance (ANOVA) for data sets that meet normality and homoscedasticity criteria. This paper utilizes different statistical tools to support the conclusions such as chi squared, Shapiro-Wilks, symmetry, Kurtosis, Cochran, Hartlett, and Hartley and Krushal-Wallis. The analysis presented is the starting point to extend the use of predictive techniques (vibration analysis) for quality control. This paper demonstrates the existence

  5. Understanding How Acoustic Vibrations Modulate the Optical Response of Plasmonic Metal Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Aftab; Pelton, Matthew; Guest, Jeffrey R.

    Measurements of acoustic vibrations in nanoparticles provide a unique opportunity to study mechanical phenomena at nanometer length scales and picosecond time scales. Vibrations in noble-metal nanoparticles have attracted particular attention, because they couple to plasmon resonances in the nanoparticles, leading to strong modulation of optical absorption and scattering. There are three mechanisms that transduce the mechanical oscillations into changes in the plasmon resonance: (1) changes in polarizability due to changes in the nanoparticle geometry; (2) changes in electron density due to changes in the nanoparticle volume and (3) changes in the interband transition energies due to compression/expansion of the nanoparticlemore » (deformation potential). These mechanisms have been studied in the past to explain the origin of the experimental signals; however, a thorough quantitative connection between the coupling of phonon and plasmon modes and separate contribution of each coupling mechanism has not yet been made. Here, we present a numerical method to quantitatively determine the coupling between vibrational and plasmon modes in noble-metal nanoparticles of arbitrary geometries, and apply it to spheres, shells, rods, and cubes in the context of time resolved measurements. We separately determine the parts of the optical response that are due to shape changes, changes in electron density, and changes in deformation potential (DP). We further show that coupling is in general strongest when the regions of largest electric field (plasmon mode) and largest displacement (phonon mode) overlap. Lastly, these results clarify reported experimental results, and should help guide future experiments and potential applications.« less

  6. Understanding How Acoustic Vibrations Modulate the Optical Response of Plasmonic Metal Nanoparticles

    DOE PAGES

    Ahmed, Aftab; Pelton, Matthew; Guest, Jeffrey R.

    2017-08-17

    Measurements of acoustic vibrations in nanoparticles provide a unique opportunity to study mechanical phenomena at nanometer length scales and picosecond time scales. Vibrations in noble-metal nanoparticles have attracted particular attention, because they couple to plasmon resonances in the nanoparticles, leading to strong modulation of optical absorption and scattering. There are three mechanisms that transduce the mechanical oscillations into changes in the plasmon resonance: (1) changes in polarizability due to changes in the nanoparticle geometry; (2) changes in electron density due to changes in the nanoparticle volume and (3) changes in the interband transition energies due to compression/expansion of the nanoparticlemore » (deformation potential). These mechanisms have been studied in the past to explain the origin of the experimental signals; however, a thorough quantitative connection between the coupling of phonon and plasmon modes and separate contribution of each coupling mechanism has not yet been made. Here, we present a numerical method to quantitatively determine the coupling between vibrational and plasmon modes in noble-metal nanoparticles of arbitrary geometries, and apply it to spheres, shells, rods, and cubes in the context of time resolved measurements. We separately determine the parts of the optical response that are due to shape changes, changes in electron density, and changes in deformation potential (DP). We further show that coupling is in general strongest when the regions of largest electric field (plasmon mode) and largest displacement (phonon mode) overlap. Lastly, these results clarify reported experimental results, and should help guide future experiments and potential applications.« less

  7. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  8. Vibration mode and vibration shape under excitation of a three phase model transformer core

    NASA Astrophysics Data System (ADS)

    Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi

    2018-04-01

    Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.

  9. Hybrid Electrostatic/Acoustic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won K.; Trinh, Eugene H.; Chung, Sang K.; Elleman, Daniel D.

    1987-01-01

    Because electrostatic and acoustic forces independent of each other, hybrid levitator especially suitable for studies of drop dynamics. Like all-acoustic or all-electrostatic systems, also used in studies of containerless material processing. Vertical levitating force applied to sample by upper and lower electrodes. Torques or vibrational forces in horizontal plane applied by acoustic transducers. Electrically charged water drop about 4 mm in diameter levitated electrostatically and rotated acoustically until it assumed dumbell shape and broke apart.

  10. Manipulating sonic band gaps at will: vibrational density of states in three-dimensional acoustic metamaterial composites

    NASA Astrophysics Data System (ADS)

    Terao, Takamichi

    2018-04-01

    Vibrational properties of elastic composites containing a mass-in-mass microstructure embedded in a solid matrix are numerically studied. Using a lattice model, we investigate the vibrational density of states in three-dimensional composite structures where resonant particles are randomly dispersed. By dispersing such particles in the system, a sonic band gap appears. It is confirmed that this band gap can be introduced in a desired frequency regime by changing the parameters of resonant particles and the frequency width of this band gap can be controlled by varying the concentration of the resonant particles to be dispersed. In addition, multiple sonic band gaps can be realized using different species of resonant particles. These results enable us to suggest an alternative method to fabricate devices that can inhibit the propagation of elastic waves with specific frequencies using acoustic metamaterials.

  11. Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data

    NASA Technical Reports Server (NTRS)

    Lalime, Aimee L.; Johnson, Marty E.; Rizzi, Stephen A. (Technical Monitor)

    2002-01-01

    Binaural or "virtual acoustic" representation has been proposed as a method of analyzing acoustic and vibroacoustic data. Unfortunately, this binaural representation can require extensive computer power to apply the Head Related Transfer Functions (HRTFs) to a large number of sources, as with a vibrating structure. This work focuses on reducing the number of real-time computations required in this binaural analysis through the use of Singular Value Decomposition (SVD) and Equivalent Source Reduction (ESR). The SVD method reduces the complexity of the HRTF computations by breaking the HRTFs into dominant singular values (and vectors). The ESR method reduces the number of sources to be analyzed in real-time computation by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. It is shown that the effectiveness of the SVD and ESR methods improves as the complexity of the source increases. In addition, preliminary auralization tests have shown that the results from both the SVD and ESR methods are indistinguishable from the results found with the exhaustive method.

  12. Influence of Asymmetric Recurrent Laryngeal Nerve Stimulation on Vibration, Acoustics, and Aerodynamics

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar

    2015-01-01

    Objectives/Hypothesis Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Study Design Basic science study using an in vivo canine model. Methods The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Results Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0, glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Conclusion Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. PMID:24913182

  13. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics.

    PubMed

    Chhetri, Dinesh K; Neubauer, Juergen; Sofer, Elazar

    2014-11-01

    Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Basic science study using an in vivo canine model. The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0 ), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0 , glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Comparison of modal analysis results of laser vibrometry and nearfield acoustical holography measurements of an aluminum plate

    NASA Astrophysics Data System (ADS)

    Potter, Jennifer L.

    2011-12-01

    Noise and vibration has long been sought to be reduced in major industries: automotive, aerospace and marine to name a few. Products must be tested and pass certain levels of federally regulated standards before entering the market. Vibration measurements are commonly acquired using accelerometers; however limitations of this method create a need for alternative solutions. Two methods for non-contact vibration measurements are compared: Laser Vibrometry, which directly measures the surface velocity of the aluminum plate, and Nearfield Acoustic Holography (NAH), which measures sound pressure in the nearfield, and using Green's Functions, reconstructs the surface velocity at the plate. The surface velocity from each method is then used in modal analysis to determine the comparability of frequency, damping and mode shapes. Frequency and mode shapes are also compared to an FEA model. Laser Vibrometry is a proven, direct method for determining surface velocity and subsequently calculating modal analysis results. NAH is an effective method in locating noise sources, especially those that are not well separated spatially. Little work has been done in incorporating NAH into modal analysis.

  15. Finite Element Analysis of the Propagation of Acoustic Waves Along Waveguides Immersed in Water

    NASA Astrophysics Data System (ADS)

    Hladky-Hennion, A.-C.; Langlet, P.; de Billy, M.

    1997-03-01

    The finite element approach has previously been used, with the help of the ATILA code, to model the propagation of acoustic waves in waveguides [A.-C. Hladky-Hennion, Journal of Sound and Vibration, 194,119-136 (1996)]. In this paper an extension of the technique to the analysis of the propagation of acoustic waves in immersed waveguides is presented. In the proposed approach, the problem is reduced to a bidimensional problem, in which only the cross-section of the guide and the surrounding fluid domain are meshed by using finite elements. Then, wedges the top angles of which vary, are studied and the finite element results of the wedge wave speed are compared with experimental results. Finally, the conclusion indicates a way to extend this approach to waveguides of any cross-section.

  16. High Energy Vibration for Gas Piping

    NASA Astrophysics Data System (ADS)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  17. Acoustic agglomeration methods and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  18. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses

  19. Acoustic concentration of particles in fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Michael W.; Kaduchak, Gregory

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less

  20. Digital Controller For Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  1. A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Sil; Kim, Jae-Seung; Lee, Seong-Hyun; Seo, Yun-Ho

    2014-12-01

    Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

  2. Vibrating-chamber levitation systems

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C. (Inventor)

    1985-01-01

    Systems are described for the acoustic levitation of objects, which enable the use of a sealed rigid chamber to avoid contamination of the levitated object. The apparatus includes a housing forming a substantially closed chamber, and means for vibrating the entire housing at a frequency that produces an acoustic standing wave pattern within the chamber.

  3. Tipping point analysis of ocean acoustic noise

    NASA Astrophysics Data System (ADS)

    Livina, Valerie N.; Brouwer, Albert; Harris, Peter; Wang, Lian; Sotirakopoulos, Kostas; Robinson, Stephen

    2018-02-01

    We apply tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system and study possible bifurcations and transitions of the system. The analysis is based on a statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the data using time-series techniques. We analyse long-term and seasonal trends, system states and acoustic fluctuations to reconstruct a one-dimensional stochastic equation to approximate the acoustic dynamical system. We apply potential analysis to acoustic fluctuations and detect several changes in the system states in the past 14 years. These are most likely caused by climatic phenomena. We analyse trends in sound pressure level within different frequency bands and hypothesize a possible anthropogenic impact on the acoustic environment. The tipping point analysis framework provides insight into the structure of the acoustic data and helps identify its dynamic phenomena, correctly reproducing the probability distribution and scaling properties (power-law correlations) of the time series.

  4. Anharmonic Damping of Terahertz Acoustic Waves in a Network Glass and Its Effect on the Density of Vibrational States

    NASA Astrophysics Data System (ADS)

    Baldi, G.; Giordano, V. M.; Ruta, B.; Dal Maschio, R.; Fontana, A.; Monaco, G.

    2014-03-01

    We report the observation, by means of high-resolution inelastic x-ray scattering, of an unusually large temperature dependence of the sound attenuation of a network glass at terahertz frequency, an unprecedentedly observed phenomenon. The anharmonicity can be ascribed to the interaction between the propagating acoustic wave and the bath of thermal vibrations. At low temperatures the sound attenuation follows a Rayleigh-Gans scattering law. As the temperature is increased the anharmonic process sets in, resulting in an almost quadratic frequency dependence of the damping in the entire frequency range. We show that the temperature variation of the sound damping accounts quantitatively for the temperature dependence of the density of vibrational states.

  5. Vibro-Acoustic Analysis of an Aircraft Maintenance Dock

    DTIC Science & Technology

    1992-08-01

    evaluated. This evaluation resulted in a table of allowable number of cycles of operation to produce the same impact on the facility as the original...for 18 Gage Galvanized Steel Walls of HV Ducts 209 H13 Summary of Calculated Vibration Response Parameters at Base of HV 217 H 14 Engine Power Level...The reverberant sound field due to the acoustic energy remaining within the AMD after the first reflection of the direct sound. The direct sound field

  6. Vibratory Response and Acoustical Radiation of a Water-Loaded, Turbulence-Excited Plate-Cavity System--Option 6

    DTIC Science & Technology

    1975-07-01

    Statistical Energy Analysis MAJOR ASSUMPTIONS AND LIMITATIONS . Simply supported panel it contidarad to ba vibrating freely in a mode consisting of e...Shells: Statistical Energy Analysis . Modal Coupling and Nonresonant Transmission. Univ Houston, Dept Mech Eng Tech Report 21 (Aug 1970); also J...Oscillators. J. Acoust. Soc. Am., Vol. 34, No. 5 (May 1962). 14. Ungar, E.E., Fundamentals of Statistical Energy Analysis of Vibrating Systems, Tech

  7. Low vibration laboratory with a single-stage vibration isolation for microscopy applications.

    PubMed

    Voigtländer, Bert; Coenen, Peter; Cherepanov, Vasily; Borgens, Peter; Duden, Thomas; Tautz, F Stefan

    2017-02-01

    The construction and the vibrational performance of a low vibration laboratory for microscopy applications comprising a 100 ton floating foundation supported by passive pneumatic isolators (air springs), which rest themselves on a 200 ton solid base plate, are discussed. The optimization of the air spring system leads to a vibration level on the floating floor below that induced by an acceleration of 10 ng for most frequencies. Additional acoustic and electromagnetic isolation is accomplished by a room-in-room concept.

  8. A model-based analysis of extinction ratio effects on phase-OTDR distributed acoustic sensing system performance

    NASA Astrophysics Data System (ADS)

    Aktas, Metin; Maral, Hakan; Akgun, Toygar

    2018-02-01

    Extinction ratio is an inherent limiting factor that has a direct effect on the detection performance of phase-OTDR based distributed acoustics sensing systems. In this work we present a model based analysis of Rayleigh scattering to simulate the effects of extinction ratio on the received signal under varying signal acquisition scenarios and system parameters. These signal acquisition scenarios are constructed to represent typically observed cases such as multiple vibration sources cluttered around the target vibration source to be detected, continuous wave light sources with center frequency drift, varying fiber optic cable lengths and varying ADC bit resolutions. Results show that an insufficient ER can result in high optical noise floor and effectively hide the effects of elaborate system improvement efforts.

  9. Acoustic-Seismic Coupling of Broadband Signals - Analysis of Potential Disturbances during CTBT On-Site Inspection Measurements

    NASA Astrophysics Data System (ADS)

    Liebsch, Mattes; Altmann, Jürgen

    2015-04-01

    For the verification of the Comprehensive Nuclear Test Ban Treaty (CTBT) the precise localisation of possible underground nuclear explosion sites is important. During an on-site inspection (OSI) sensitive seismic measurements of aftershocks can be performed, which, however, can be disturbed by other signals. To improve the quality and effectiveness of these measurements it is essential to understand those disturbances so that they can be reduced or prevented. In our work we focus on disturbing signals caused by airborne sources: When the sound of aircraft (as often used by the inspectors themselves) hits the ground, it propagates through pores in the soil. Its energy is transferred to the ground and soil vibrations are created which can mask weak aftershock signals. The understanding of the coupling of acoustic waves to the ground is still incomplete. However, it is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. We present our recent advances in this field. We performed several measurements to record sound pressure and soil velocity produced by various sources, e.g. broadband excitation by jet aircraft passing overhead and signals artificially produced by a speaker. For our experimental set-up microphones were placed close to the ground and geophones were buried in different depths in the soil. Several sensors were shielded from the directly incident acoustic signals by a box coated with acoustic damping material. While sound pressure under the box was strongly reduced, the soil velocity measured under the box was just slightly smaller than outside of it. Thus these soil vibrations were mostly created outside the box and travelled through the soil to the sensors. This information is used to estimate characteristic propagation lengths of the acoustically induced signals in the soil. In the seismic data we observed interference patterns which are likely caused by the

  10. Vibrational Profiling of Brain Tumors and Cells

    PubMed Central

    Nelson, Sultan L; Proctor, Dustin T; Ghasemloonia, Ahmad; Lama, Sanju; Zareinia, Kourosh; Ahn, Younghee; Al-Saiedy, Mustafa R; Green, Francis HY; Amrein, Matthias W; Sutherland, Garnette R

    2017-01-01

    This study reports vibration profiles of neuronal cells and tissues as well as brain tumor and neocortical specimens. A contact-free method and analysis protocol was designed to convert an atomic force microscope into an ultra-sensitive microphone with capacity to record and listen to live biological samples. A frequency of 3.4 Hz was observed for both cultured rat hippocampal neurons and tissues and vibration could be modulated pharmacologically. Malignant astrocytoma tissue samples obtained from operating room, transported in artificial cerebrospinal fluid, and tested within an hour, vibrated with a much different frequency profile and amplitude, compared to meningioma or lateral temporal cortex providing a quantifiable measurement to accurately distinguish the three tissues in real-time. Vibration signals were converted to audible sound waves by frequency modulation, thus demonstrating, acoustic patterns unique to meningioma, malignant astrocytoma and neocortex. PMID:28744324

  11. [Evaluation of acoustic effectiveness of personnel protectors from extra-aural exposure to aviation noise].

    PubMed

    Dragan, S P; Soldatov, S K; Bogomolov, A V; Drozdov, S V; Poliakov, N M

    2013-01-01

    Purpose of the investigation was to validate testing acoustic effectiveness of a personnel vest-like protector (PP) from extra-aural exposure to aviation noise. Levels of aviation noise for PP testing were determined through calculation. Vest effectiveness in protecting from acoustic vibration generated by high-intensity aviation noise was evaluated both in laboratory and field tests. For comparison analysis, PP was also tested with a dummy exposed on a special tester, i.e. acoustic interferometer.

  12. Asymptotic modal analysis and statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Dowell, Earl H.

    1988-01-01

    Statistical Energy Analysis (SEA) is defined by considering the asymptotic limit of Classical Modal Analysis, an approach called Asymptotic Modal Analysis (AMA). The general approach is described for both structural and acoustical systems. The theoretical foundation is presented for structural systems, and experimental verification is presented for a structural plate responding to a random force. Work accomplished subsequent to the grant initiation focusses on the acoustic response of an interior cavity (i.e., an aircraft or spacecraft fuselage) with a portion of the wall vibrating in a large number of structural modes. First results were presented at the ASME Winter Annual Meeting in December, 1987, and accepted for publication in the Journal of Vibration, Acoustics, Stress and Reliability in Design. It is shown that asymptotically as the number of acoustic modes excited becomes large, the pressure level in the cavity becomes uniform except at the cavity boundaries. However, the mean square pressure at the cavity corner, edge and wall is, respectively, 8, 4, and 2 times the value in the cavity interior. Also it is shown that when the portion of the wall which is vibrating is near a cavity corner or edge, the response is significantly higher.

  13. A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft.

    PubMed

    Jayachandran, V; Bonilha, M W

    2003-03-01

    This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.

  14. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  15. Stresses in acoustically excited panels and shuttle insulation tiles

    NASA Technical Reports Server (NTRS)

    Otalvo, I. U.

    1976-01-01

    Natural vibration and acoustic response results are presented for a 36 x 18 inch panel with 18 6 x 6-inch tiles of 1.0, 1.6 and 2.3 inch thicknesses. Computed results for an untiled panel are compared with experiments performed earlier. Natural frequency and acoustic response comparisons are also given for independent analyses performed upon tiled and untiled panels. The results indicate the general applicability of the computer programs developed for use as shuttle design and analysis tools.

  16. Nonlinear vibration and radiation from a panel with transition to chaos induced by acoustic waves

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Frendi, Abdelkader; Brown, Donald E.

    1992-01-01

    The dynamic response of an aircraft panel forced at resonance and off-resonance by plane acoustic waves at normal incidence is investigated experimentally and numerically. Linear, nonlinear (period doubling) and chaotic responses are obtained by increasing the sound pressure level of the excitation. The response time history is sensitive to the input level and to the frequency of excitation. The change in response behavior is due to a change in input conditions, triggered either naturally or by modulation of the bandwidth of the incident waves. Off-resonance, bifurcation is diffused and difficult to maintain, thus the panel response drifts into a linear behavior. The acoustic pressure emanated by the panel is either linear or nonlinear as is the vibration response. The nonlinear effects accumulate during the propagation with distance. Results are also obtained on the control of the panel response using damping tape on aluminum panel and using a graphite epoxy panel having the same size and weight. Good agreement is obtained between the experimental and numerical results.

  17. The Shock and Vibration Digest. Volume 14, Number 1, January 1982

    DTIC Science & Technology

    1982-01-01

    vibration, ity of the examples in those days. Morris and Head non4inear vibration, acoustics , and modeling and [45] discusses the ’escalator’ method which...with modeling and acoustic emission view on the testing techniques, philosophies, and monitoring. This session also contained several relationship of... Modelling R.K. Jeyapalan and NA. Halliwell Inst. Sound Vib. Res., Univ. of Southampton, South- ampton, UK, Appl. Acoust .. 1A (5), pp 361-376 (Sept

  18. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  19. Improved Acoustic Blanket Developed and Tested

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Acoustic blankets are used in the payload fairing of expendable launch vehicles to reduce the fairing's interior acoustics and the subsequent vibration response of the spacecraft. The Cassini spacecraft, to be launched on a Titan IV in October 1997, requires acoustic levels lower than those provided by the standard Titan IV blankets. Therefore, new acoustic blankets were recently developed and tested to reach NASA's goal of reducing the Titan IV acoustic environment to the allowable levels for the Cassini spacecraft.

  20. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.; Turner, Travis L. (Technical Monitor)

    2001-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibits enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  1. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.

    2000-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibit enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  2. Vibro-acoustic analysis of composite plates

    NASA Astrophysics Data System (ADS)

    Sarigül, A. S.; Karagözlü, E.

    2014-03-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed.

  3. Non-contact transportation using near-field acoustic levitation

    PubMed

    Ueha; Hashimoto; Koike

    2000-03-01

    Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described.

  4. The Shock and Vibration Digest. Volume 15. Number 1

    DTIC Science & Technology

    1983-01-01

    acoustics The books are arranged to engineer is statistical energy analysis (SEA). This show the wealth of information that exists and the concept is...is also used for vibrating systems in pie nonlinear elements. However, for systems with a which statistical energy analysis and power flow continuous... statistical energy analysis to analyze the random nonlinear algebraic equations can be difficult. response of two identical subsystems coupled at an end

  5. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  6. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.; Nagpal, Vinod K.; Sutjahjo, Edhi

    1991-01-01

    Predictive methods/computer codes for the computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component are discussed. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of acoustic noise generated from a vibrating component, degradation in material properties of a composite laminate at use temperature, dynamic response of acoustically excited hot multilayered composite structure, degradation in the first ply strength of the excited structure due to acoustic loading, and acoustic fatigue resistance of the excited structure, including the propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisture) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  7. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  8. Combined Effects of High-Speed Railway Noise and Ground Vibrations on Annoyance

    PubMed Central

    Yokoshima, Shigenori; Morihara, Takashi; Sato, Tetsumi; Yano, Takashi

    2017-01-01

    The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway. PMID:28749452

  9. Combined Effects of High-Speed Railway Noise and Ground Vibrations on Annoyance.

    PubMed

    Yokoshima, Shigenori; Morihara, Takashi; Sato, Tetsumi; Yano, Takashi

    2017-07-27

    The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway.

  10. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  11. On the Coriolis effect in acoustic waveguides.

    PubMed

    Wegert, Henry; Reindl, Leonard M; Ruile, Werner; Mayer, Andreas P

    2012-05-01

    Rotation of an elastic medium gives rise to a shift of frequency of its acoustic modes, i.e., the time-period vibrations that exist in it. This frequency shift is investigated by applying perturbation theory in the regime of small ratios of the rotation velocity and the frequency of the acoustic mode. In an expansion of the relative frequency shift in powers of this ratio, upper bounds are derived for the first-order and the second-order terms. The derivation of the theoretical upper bounds of the first-order term is presented for linear vibration modes as well as for stable nonlinear vibrations with periodic time dependence that can be represented by a Fourier series.

  12. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  13. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  14. Acoustic vibration sensor based on nonadiabatic tapered fibers.

    PubMed

    Xu, Ben; Li, Yi; Sun, Miao; Zhang, Zhen-Wei; Dong, Xin-Yong; Zhang, Zai-Xuan; Jin, Shang-Zhong

    2012-11-15

    A simple and low-cost vibration sensor based on single-mode nonadiabatic fiber tapers is proposed and demonstrated. The environmental vibrations can be detected by demodulating the transmission loss of the nonadiabatic fiber taper. Theoretical simulations show that the transmission loss is related to the microbending of the fiber taper induced by vibrations. Unlike interferometric sensors, this vibration sensor does not need any feedback loop to control the quadrature point to obtain a stable performance. In addition, it has no requirement for the coherence of the light source and is insensitive to temperature changes. Experimental results show that this sensing system has a wide frequency response range from a few hertz to tens of kilohertz with the maximal signal to noise ratio up to 73 dB.

  15. A case study of acoustics and vibration of mine fans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, T.; Vitton, S.J.

    1995-11-01

    In December 1991, several residents of Hueytown, AL, began hearing what they referred to as a mysterious sound. This sound, which became known as the Hueytown Hum, was alleged to be so disruptive that one resident claimed it made it impossible to hold a prayer meeting in this house. Bathroom pipes were said to rattle, and the sound would quickly come and go. This phenomenon attracted considerable attention from the news media, including ABC Evening News, CNN, The New York times, A Current Affair, and others. Jim Walter Resources Inc. (JWR) owns and operates a large underground coal mine inmore » the vicinity of Hueytown, and city officials were quick to blame the mysterious sound on a mine-ventilation fan which was installed at approximately the same time the noise began.To address the concerns of the city officials, JWR contracted with The University of Alabama to perform a study to determine if the ventilation fans were a contributing factor to the Hueytown Hum. The purpose of this study was to investigate the acoustical and vibrational characteristics of the JWR fans operating in the Hueytown area. This paper presents the findings of this investigation.« less

  16. Vibration, acoustic, and shock design and test criteria for components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.

  17. Plate-shaped non-contact ultrasonic transporter using flexural vibration.

    PubMed

    Ishii, Takahiko; Mizuno, Yosuke; Koyama, Daisuke; Nakamura, Kentaro; Harada, Kana; Uchida, Yukiyoshi

    2014-02-01

    We developed a plate-shaped non-contact transporter based on ultrasonic vibration, exploiting a phenomenon that a plate can be statically levitated at the place where its gravity and the acoustic radiation force are balanced. In the experiment, four piezoelectric zirconate titanate elements were attached to aluminum plates, on which lattice flexural vibration was excited at 22.3 kHz. The vibrating plates were connected to a loading plate via flexible posts that can minimize the influence of the flexure induced by heavy loads. The distribution of the vibration displacement on the plate was predicted through finite-element analysis to find the appropriate positions of the posts. The maximum levitation height of this transporter was 256 μm with no load. When two vibrating plates were connected to a loading plate, the maximum transportable load was 4.0 kgf. Copyright © 2013. Published by Elsevier B.V.

  18. Non-contact defect diagnostics in Cz-Si wafers using resonance ultrasonic vibrations

    NASA Astrophysics Data System (ADS)

    Belyaev, A.; Kochelap, V. A.; Tarasov, I.; Ostapenko, S.

    2001-01-01

    A new resonance effect of generation of sub-harmonic acoustic vibrations was applied to characterize defects in as-grown and processed Cz-Si wafers. Ultrasonic vibrations were generated into standard 8″ wafers using an external ultrasonic transducer and their amplitude recorded in a non-contact mode using a scanning acoustic probe. By tuning the frequency, f, of the transducer we observed generation of intense sub-harmonic acoustic mode ("whistle" or w-mode) with f/2 frequency. The characteristics of the w-mode-amplitude dependence, frequency scans, spatial distribution allow a clear distinction versus harmonic vibrations of the same wafer. The origin of sub-harmonic vibrations observed on 8″ Cz-Si wafers is attributed to a parametric resonance of flexural vibrations in thin silicon circular plates. We present evidence that "whistle" effect shows a strong dependence on the wafer's growth and processing history and can be used for quality assurance purposes.

  19. Materials of acoustic analysis: sustained vowel versus sentence.

    PubMed

    Moon, Kyung Ray; Chung, Sung Min; Park, Hae Sang; Kim, Han Su

    2012-09-01

    Sustained vowel is a widely used material of acoustic analysis. However, vowel phonation does not sufficiently demonstrate sentence-based real-life phonation, and biases may occur depending on the test subjects intent during pronunciation. The purpose of this study was to investigate the differences between the results of acoustic analysis using each material. An individual prospective study. Two hundred two individuals (87 men and 115 women) with normal findings in videostroboscopy were enrolled. Acoustic analysis was done using the speech pattern element acquisition and display program. Fundamental frequency (Fx), amplitude (Ax), contact quotient (Qx), jitter, and shimmer were measured with sustained vowel-based acoustic analysis. Average fundamental frequency (FxM), average amplitude (AxM), average contact quotient (QxM), Fx perturbation (CFx), and amplitude perturbation (CAx) were measured with sentence-based acoustic analysis. Corresponding data of the two methods were compared with each other. SPSS (Statistical Package for the Social Sciences, Version 12.0; SPSS, Inc., Chicago, IL) software was used for statistical analysis. FxM was higher than Fx in men (Fx, 124.45 Hz; FxM, 133.09 Hz; P=0.000). In women, FxM seemed to be lower than Fx, but the results were not statistically significant (Fx, 210.58 Hz; FxM, 208.34 Hz; P=0.065). There was no statistical significance between Ax and AxM in both the groups. QxM was higher than Qx in men and women. Jitter was lower in men, but CFx was lower in women. Both Shimmer and CAx were higher in men. Sustained vowel phonation could not be a complete substitute for real-time phonation in acoustic analysis. Characteristics of acoustic materials should be considered when choosing the material for acoustic analysis and interpreting the results. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  20. The Shock and Vibration Bulletin. Part 3. Skylab, Vibration Testing and Analysis

    DTIC Science & Technology

    1973-06-01

    Zft- ,Instrument Unit - (Acoustic Test Only) -orward Compartment Crew Ouarters Meteoroid Shield IntertageTACS Spheres (Acoustic Tesi - Radiator...weighs more than the lower floor. You Mru ertes: You hadn’t flown this struc- might feel that since the analysis approach wasconfirmed on the upper floor

  1. Sound insulation and energy harvesting based on acoustic metamaterial plate

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2015-03-01

    The emergence of artificially designed sub-wavelength acoustic materials, denoted acoustic metamaterials (AMM), has significantly broadened the range of materials responses found in nature. These engineered materials can indeed manipulate sound/vibration in surprising ways, which include vibration/sound insulation, focusing, cloaking, acoustic energy harvesting …. In this work, we report both on the analysis of the airborne sound transmission loss (STL) through a thin metamaterial plate and on the possibility of acoustic energy harvesting. We first provide a theoretical study of the airborne STL and confronted them to the structure-borne dispersion of a metamaterial plate. Second, we propose to investigate the acoustic energy harvesting capability of the plate-type AMM. We have developed semi-analytical and numerical methods to investigate the STL performances of a plate-type AMM with an airborne sound excitation having different incident angles. The AMM is made of silicone rubber stubs squarely arranged in a thin aluminum plate, and the STL is calculated at low-frequency range [100Hz to 3kHz] for an incoming incident sound pressure wave. The obtained analytical and numerical STL present a very good agreement confirming the reliability of developed approaches. A comparison between computed STL and the band structure of the considered AMM shows an excellent agreement and gives a physical understanding of the observed behavior. On another hand, the acoustic energy confinement in AMM with created defects with suitable geometry was investigated. The first results give a general view for assessing the acoustic energy harvesting performances making use of AMM.

  2. Gas Bubble Dynamics under Mechanical Vibrations

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  3. Equivalent Linearization Analysis of Geometrically Nonlinear Random Vibrations Using Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2002-01-01

    Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.

  4. Coupled Electro-Magneto-Mechanical-Acoustic Analysis Method Developed by Using 2D Finite Element Method for Flat Panel Speaker Driven by Magnetostrictive-Material-Based Actuator

    NASA Astrophysics Data System (ADS)

    Yoo, Byungjin; Hirata, Katsuhiro; Oonishi, Atsurou

    In this study, a coupled analysis method for flat panel speakers driven by giant magnetostrictive material (GMM) based actuator was developed. The sound field produced by a flat panel speaker that is driven by a GMM actuator depends on the vibration of the flat panel, this vibration is a result of magnetostriction property of the GMM. In this case, to predict the sound pressure level (SPL) in the audio-frequency range, it is necessary to take into account not only the magnetostriction property of the GMM but also the effect of eddy current and the vibration characteristics of the actuator and the flat panel. In this paper, a coupled electromagnetic-structural-acoustic analysis method is presented; this method was developed by using the finite element method (FEM). This analysis method is used to predict the performance of a flat panel speaker in the audio-frequency range. The validity of the analysis method is verified by comparing with the measurement results of a prototype speaker.

  5. Robust analysis method for acoustic properties of biological specimens measured by acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Arakawa, Mototaka; Mori, Shohei; Kanai, Hiroshi; Nagaoka, Ryo; Horie, Miki; Kobayashi, Kazuto; Saijo, Yoshifumi

    2018-07-01

    We proposed a robust analysis method for the acoustic properties of biological specimens measured by acoustic microscopy. Reflected pulse signals from the substrate and specimen were converted into frequency domains to obtain sound speed and thickness. To obtain the average acoustic properties of the specimen, parabolic approximation was performed to determine the frequency at which the amplitude of the normalized spectrum became maximum or minimum, considering the sound speed and thickness of the specimens and the operating frequency of the ultrasonic device used. The proposed method was demonstrated for a specimen of malignant melanoma of the skin by using acoustic microscopy attaching a concave transducer with a center frequency of 80 MHz. The variations in sound speed and thickness analyzed by the proposed method were markedly smaller than those analyzed by the method based on an autoregressive model. The proposed method is useful for the analysis of the acoustic properties of bilogical tissues or cells.

  6. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    NASA Astrophysics Data System (ADS)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  7. Fish-bone-structured acoustic sensor toward silicon cochlear systems

    NASA Astrophysics Data System (ADS)

    Harada, Muneo; Ikeuchi, Naoki; Fukui, Shoichi; Ando, Shigeru

    1998-09-01

    This paper describes a micro mechanical acoustic sensor modeling the basilar membrane of the human cochlea. The skeleton of the acoustic sensor is an array of resonators each of specific frequency selectivity. The mechanical structure of the sensor is designed using FEM analysis to have a particular geometrical structure looking like a fish bone that consists of cantilever ribs extending out from a backbone. Acoustic wave is supposed to be introduced to the diaphragm placed at one end of the backbone to travel in one way along the backbone. During traveling each frequency component of the wave is delivered to the corresponding cantilever according to its resonant frequency. The mechanical vibrations of each cantilever are detected in parallel by use of piezoresistors. The fish-bone structure is fabricated to be suspended in the air on a silicon substrate using silicon micromachining technology. We observe the frequency response of each cantilever to verify fairly sharp frequency selectivity associated with the one- way flow of the vibration energy. The present results encourage us to implement the human auditory system on a silicon chip toward the goal of silicon cochlea.

  8. Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas; Schiller, Noah H.

    2011-01-01

    The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.

  9. Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect

    NASA Astrophysics Data System (ADS)

    Georgiev, V. B.; Cuenca, J.; Gautier, F.; Simon, L.; Krylov, V. V.

    2011-05-01

    Flexural waves in beams and plates slow down if their thickness decreases. Such property was used in the past for establishing the theory of acoustic black holes (ABH). The aim of the present paper is to establish reliable numerical and experimental approaches for designing, modelling and manufacturing an effective passive vibration damper using the ABH effect. The effectiveness of such vibration absorbers increases with frequency. Initially, the dynamic behaviour of an Euler-Bernoulli beam is expressed using the Impedance Method, which in turn leads to a Riccati equation for the beam impedance. This equation is numerically integrated using an adaptive Runge-Kutta-Fehlberg method, yielding the frequency- and spatially-dependent impedance matrix of the beam, from which the reflection matrix is obtained. Moreover, the mathematical model can be extended to incorporate an absorbing film that assists for reducing reflected waves from the truncated edge. Therefore, the influence of the geometrical and material characteristics of the absorbing film is then studied and an optimal configuration of these parameters is proposed. An experiment consisting of an elliptical plate with a pit of power-law profile placed in one of its foci is presented. The elliptical shape of the plate induces a complete focalisation of the waves towards ABH in case they are generated in the other focus. Consequently, the derived 1-D method for an Euler-Bernoulli beam can be used as a phenomenological model assisting for better understanding the complex processes in 2-D elliptical structure. Finally, both, numerical simulations and experimental measurements show significant reduction of vibration levels.

  10. Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements

    NASA Astrophysics Data System (ADS)

    Czajkowska, Marzena

    2012-06-01

    One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in

  11. Acoustic Design of Naval Structures

    DTIC Science & Technology

    2005-12-01

    Ship Signatures Department Research and Development Report NSWCCD-70--TR-2005/149 December 2005 ACOUSTIC DESIGN OF NAVAL STRUCTURES by: S. Nikiforov...NSWCCD-70--TR–2005/149 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Office of Naval Research ...approach, gained through his research experience on the acoustic characteristics of vibration and radiation of ship structures, sources of the main

  12. Acoustic Pump

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1993-01-01

    Pump uses acoustic-radiation forces. Momentum transferred from sound waves to sound-propagating material in way resulting in net pumping action on material. Acoustic pump is solid-state pump. Requires no moving parts, entirely miniaturized, and does not invade pumped environment. Silent, with no conventional vibration. Used as pump for liquid, suspension, gas, or any other medium interacting with radiation pressure. Also used where solid-state pump needed for reliability and controllability. In microgravity environment, device offers unusual control for low flow rates. For medical or other applications in which contamination cannot be allowed, offers noninvasive pumping force.

  13. Fine-tuning molecular acoustic models: sensitivity of the predicted attenuation to the Lennard-Jones parameters

    NASA Astrophysics Data System (ADS)

    Petculescu, Andi G.; Lueptow, Richard M.

    2005-01-01

    In a previous paper [Y. Dain and R. M. Lueptow, J. Acoust. Soc. Am. 109, 1955 (2001)], a model of acoustic attenuation due to vibration-translation and vibration-vibration relaxation in multiple polyatomic gas mixtures was developed. In this paper, the model is improved by treating binary molecular collisions via fully pairwise vibrational transition probabilities. The sensitivity of the model to small variations in the Lennard-Jones parameters-collision diameter (σ) and potential depth (ɛ)-is investigated for nitrogen-water-methane mixtures. For a N2(98.97%)-H2O(338 ppm)-CH4(1%) test mixture, the transition probabilities and acoustic absorption curves are much more sensitive to σ than they are to ɛ. Additionally, when the 1% methane is replaced by nitrogen, the resulting mixture [N2(99.97%)-H2O(338 ppm)] becomes considerably more sensitive to changes of σwater. The current model minimizes the underprediction of the acoustic absorption peak magnitudes reported by S. G. Ejakov et al. [J. Acoust. Soc. Am. 113, 1871 (2003)]. .

  14. An improved method for the calculation of Near-Field Acoustic Radiation Modes

    NASA Astrophysics Data System (ADS)

    Liu, Zu-Bin; Maury, Cédric

    2016-02-01

    Sensing and controlling Acoustic Radiation Modes (ARMs) in the near-field of vibrating structures is of great interest for broadband noise reduction or enhancement, as ARMs are velocity distributions defined over a vibrating surface, that independently and optimally contribute to the acoustic power in the acoustic field. But present methods only provide far-field ARMs (FFARMs) that are inadequate for the acoustic near-field problem. The Near-Field Acoustic Radiation Modes (NFARMs) are firstly studied with an improved numerical method, the Pressure-Velocity method, which rely on the eigen decomposition of the acoustic transfers between the vibrating source and a conformal observation surface, including sound pressure and velocity transfer matrices. The active and reactive parts of the sound power are separated and lead to the active and reactive ARMs. NFARMs are studied for a 2D baffled beam and for a 3D baffled plate, and so as differences between the NFARMS and the classical FFARMs. Comparisons of the NFARMs are analyzed when varying frequency and observation distance to the source. It is found that the efficiencies and shapes of the optimal active ARMs are independent on the distance while that of the reactive ones are distinctly related on.

  15. Capabilities, Design, Construction and Commissioning of New Vibration, Acoustic, and Electromagnetic Capabilities Added to the World's Largest Thermal Vacuum Chamber at NASA's Space Power Facility

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Ludwiczak, Damian R.; Carek, Gerald A.; Sorge, Richard N.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    NASA s human space exploration plans developed under the Exploration System Architecture Studies in 2005 included a Crew Exploration Vehicle launched on an Ares I launch vehicle. The mass of the Crew Exploration Vehicle and trajectory of the Ares I coupled with the need to be able to abort across a large percentage of the trajectory generated unprecedented testing requirements. A future lunar lander added to projected test requirements. In 2006, the basic test plan for Orion was developed. It included several types of environment tests typical of spacecraft development programs. These included thermal-vacuum, electromagnetic interference, mechanical vibration, and acoustic tests. Because of the size of the vehicle and unprecedented acoustics, NASA conducted an extensive assessment of options for testing, and as result, chose to augment the Space Power Facility at NASA Plum Brook Station, of the John H. Glenn Research Center to provide the needed test capabilities. The augmentation included designing and building the World s highest mass capable vibration table, the highest power large acoustic chamber, and adaptation of the existing World s largest thermal vacuum chamber as a reverberant electromagnetic interference test chamber. These augmentations were accomplished from 2007 through early 2011. Acceptance testing began in Spring 2011 and will be completed in the Fall of 2011. This paper provides an overview of the capabilities, design, construction and acceptance of this extraordinary facility.

  16. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  17. Three-dimensional manipulation of single cells using surface acoustic waves

    PubMed Central

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-01-01

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444

  18. Three-dimensional manipulation of single cells using surface acoustic waves.

    PubMed

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-02-09

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

  19. Active-passive gradient shielding for MRI acoustic noise reduction.

    PubMed

    Edelstein, William A; Kidane, Tesfaye K; Taracila, Victor; Baig, Tanvir N; Eagan, Timothy P; Cheng, Yu-Chung N; Brown, Robert W; Mallick, John A

    2005-05-01

    An important source of MRI acoustic noise-magnet cryostat warm-bore vibrations caused by eddy-current-induced forces-can be mitigated by a passive metal shield mounted on the outside of a vibration-isolated, vacuum-enclosed shielded gradient set. Finite-element (FE) calculations for a z-gradient indicate that a 2-mm-thick Cu layer wrapped on the gradient assembly can decrease mechanical power deposition in the warm bore and reduce warm-bore acoustic noise production by about 25 dB. Eliminating the conducting warm bore and other magnet parts as significant acoustic noise sources could lead to the development of truly quiet, fully functioning MRI systems with noise levels below 70 dB. Copyright 2005 Wiley-Liss, Inc.

  20. Experimental validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.

    1994-01-01

    This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.

  1. Convection and fluidization in oscillatory granular flows: The role of acoustic streaming.

    PubMed

    Valverde, Jose Manuel

    2015-06-01

    Convection and fluidization phenomena in vibrated granular beds have attracted a strong interest from the physics community since the last decade of the past century. As early reported by Faraday, the convective flow of large inertia particles in vibrated beds exhibits enigmatic features such as frictional weakening and the unexpected influence of the interstitial gas. At sufficiently intense vibration intensities surface patterns appear bearing a stunning resemblance with the surface ripples (Faraday waves) observed for low-viscosity liquids, which suggests that the granular bed transits into a liquid-like fluidization regime despite the large inertia of the particles. In his 1831 seminal paper, Faraday described also the development of circulation air currents in the vicinity of vibrating plates. This phenomenon (acoustic streaming) is well known in acoustics and hydrodynamics and occurs whenever energy is dissipated by viscous losses at any oscillating boundary. The main argument of the present paper is that acoustic streaming might develop on the surface of the large inertia particles in the vibrated granular bed. As a consequence, the drag force on the particles subjected to an oscillatory viscous flow is notably enhanced. Thus, acoustic streaming could play an important role in enhancing convection and fluidization of vibrated granular beds, which has been overlooked in previous studies. The same mechanism might be relevant to geological events such as fluidization of landslides and soil liquefaction by earthquakes and sound waves.

  2. Assessment of impact of acoustic and nonacoustic parameters on performance and well-being

    NASA Astrophysics Data System (ADS)

    Mellert, Volker; Weber, Reinhard; Nocke, Christian

    2004-05-01

    It is of interest to estimate the influence of the environment in a specific work place area on the performance and well-being of people. Investigations have been carried out for the cabin environment of an airplane and for class rooms. Acoustics is only one issue of a variety of environmental factors, therefore the combined impact of temperature, humidity, air quality, lighting, vibration, etc. on human perception is the subject of psychophysical research. Methods for the objective assessment of subjective impressions have been developed for applications in acoustics for a long time, e.g., for concert hall acoustics, noise evaluation, and sound design. The methodology relies on questionnaires, measurement of acoustic parameters, ear-related signal processing and analysis, and on correlation of the physical input with subjective output. Methodology and results are presented from measurements of noise and vibration, temperature and humidity in aircraft simulators, and of reverberation, coloring, and lighting in a primary school, and of the environmental perception. [The work includes research with M. Klatte, A. Schick from the Psychology Department of Oldenburg University, and M. Meis from Hoerzentrum Oldenburg GmbH and with the European Project HEACE (for partners see www.heace.org).

  3. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: demonstrations with a passive wireless acoustic delay line probe and vision.

    PubMed

    Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.

  4. Opto-acoustic thrombolysis

    DOEpatents

    Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Fitch, Pat

    2000-01-01

    This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.

  5. Towards non-contact photo-acoustic endoscopy using speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Lengenfelder, Benjamin; Mehari, Fanuel; Tang, Yuqi; Klämpfl, Florian; Zalevsky, Zeev; Schmidt, Michael

    2017-03-01

    Photoacoustic Tomography combines the advantages of optical and acoustic imaging as it makes use of the high optical contrast of tissue and the high resolution of ultrasound. Furthermore, high penetration depths in tissue in the order of several centimeters can be achieved by the combination of these modalities. Extensive research is being done in the field of miniaturization of photoacoustic devices, as photoacoustic imaging could be of significant benefits for the physician during endoscopic interventions. All the existing miniature systems are based on contact transducers for signal detection that are placed at the distal end of an endoscopic device. This makes the manufacturing process difficult and impedance matching to the inspected surface a requirement. The requirement for contact limits the view of the physician during the intervention. Consequently, a fiber based non-contact optical sensing technique would be highly beneficial for the development of miniaturized photoacoustic endoscopic devices. This work demonstrates the feasibility of surface displacement detection using remote speckle-sensing using a high speed camera and an imaging fiber bundle that is used in commercially available video endoscopes. The feasibility of displacement sensing is demonstrated by analysis of phantom vibrations which are induced by loudspeaker membrane oscillations. Since the usability of the remote speckle-sensing for photo-acoustic signal detection was already demonstrated, the fiber bundle approach demonstrates the potential for non-contact photoacoustic detections during endoscopy.

  6. Vibration Penalty Estimates for Indoor Annoyance Caused by Sonic Boom

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Klos, Jacob

    2016-01-01

    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One key objective is a predictive model for indoor annoyance based on factors such as noise and indoor vibration levels. The current study quantified the increment in indoor sonic boom annoyance when sonic booms can be felt directly through structural vibrations in addition to being heard. A shaker mounted below each chair in the sonic boom simulator emulated vibrations transmitting through the structure to that chair. The vibration amplitudes were determined from numeric models of a large range of residential structures excited by the same sonic boom waveforms used in the experiment. The analysis yielded vibration penalties, which are the increments in sound level needed to increase annoyance as much as the vibration does. For sonic booms at acoustic levels from 75 to 84 dB Perceived Level, vibration signals with lower amplitudes (+1 sigma) yielded penalties from 0 to 5 dB, and vibration signals with higher amplitudes (+3 sigma) yielded penalties from 6 to 10 dB.

  7. A New Approach in Force-Limited Vibration Testing of Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Kern, Dennis L.

    2012-01-01

    The force-limited vibration test approaches discussed in NASA-7004C were developed to reduce overtesting associated with base shake vibration tests of aerospace hardware where the interface responses are excited coherently. This handbook outlines several different methods of specifying the force limits. The rationale for force limiting is based on the disparity between the impedances of typical aerospace mounting structures and the large impedances of vibration test shakers when the interfaces in general are coherently excited. Among these approaches, the semi-empirical method is presently the most widely used method to derive the force limits. The inclusion of the incoherent excitation of the aerospace structures at mounting interfaces has not been accounted for in the past and provides the basis for more realistic force limits for qualifying the hardware using shaker testing. In this paper current methods for defining the force limiting specifications discussed in the NASA handbook are reviewed using data from a series of acoustic and vibration tests. A new approach based on considering the incoherent excitation of the structural mounting interfaces using acoustic test data is also discussed. It is believed that the new approach provides much more realistic force limits that may further remove conservatism inherent in shaker vibration testing not accounted for by methods discussed in the NASA handbook. A discussion on using FEM/BEM analysis to obtain realistic force limits for flight hardware is provided.

  8. New Acoustic Treatment For Aircraft Sidewalls

    NASA Technical Reports Server (NTRS)

    Vaicaitis, Rimas

    1988-01-01

    New aircraft-sidewall acoustic treatment reduces interior noise to acceptable levels and minimizes addition of weight to aircraft. Transmission of noise through aircraft sidewall reduced by stiffening device attached to interior side of aircraft skin, constrained-layer damping tape attached to stiffening device, porous acoustic materials of high resistivity, and relatively-soft trim panel isolated from vibrations of main fuselage structure.

  9. Morphological basis for the evolution of acoustic diversity in oscine songbirds

    PubMed Central

    Riede, Tobias; Goller, Franz

    2014-01-01

    Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires. PMID:24500163

  10. Morphological basis for the evolution of acoustic diversity in oscine songbirds.

    PubMed

    Riede, Tobias; Goller, Franz

    2014-03-22

    Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires.

  11. The near-field acoustic levitation of high-mass rotors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Z. Y.; Lü, P.; Geng, D. L.

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  12. The near-field acoustic levitation of high-mass rotors.

    PubMed

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  13. Acoustic Measurements of Small Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Rocket acoustic noise can induce loads and vibration on the vehicle as well as the surrounding structures. Models have been developed to predict these acoustic loads based on scaling existing solid rocket motor data. The NASA Marshall Space Flight Center acoustics team has measured several small solid rocket motors (thrust below 150,000 lbf) to anchor prediction models. This data will provide NASA the capability to predict the acoustic environments and consequent vibro-acoustic response of larger rockets (thrust above 1,000,000 lbf) such as those planned for the NASA Constellation program. This paper presents the methods used to measure acoustic data during the static firing of small solid rocket motors and the trends found in the data.

  14. Validity and reliability of acoustic analysis of respiratory sounds in infants

    PubMed Central

    Elphick, H; Lancaster, G; Solis, A; Majumdar, A; Gupta, R; Smyth, R

    2004-01-01

    Objective: To investigate the validity and reliability of computerised acoustic analysis in the detection of abnormal respiratory noises in infants. Methods: Blinded, prospective comparison of acoustic analysis with stethoscope examination. Validity and reliability of acoustic analysis were assessed by calculating the degree of observer agreement using the κ statistic with 95% confidence intervals (CI). Results: 102 infants under 18 months were recruited. Convergent validity for agreement between stethoscope examination and acoustic analysis was poor for wheeze (κ = 0.07 (95% CI, –0.13 to 0.26)) and rattles (κ = 0.11 (–0.05 to 0.27)) and fair for crackles (κ = 0.36 (0.18 to 0.54)). Both the stethoscope and acoustic analysis distinguished well between sounds (discriminant validity). Agreement between observers for the presence of wheeze was poor for both stethoscope examination and acoustic analysis. Agreement for rattles was moderate for the stethoscope but poor for acoustic analysis. Agreement for crackles was moderate using both techniques. Within-observer reliability for all sounds using acoustic analysis was moderate to good. Conclusions: The stethoscope is unreliable for assessing respiratory sounds in infants. This has important implications for its use as a diagnostic tool for lung disorders in infants, and confirms that it cannot be used as a gold standard. Because of the unreliability of the stethoscope, the validity of acoustic analysis could not be demonstrated, although it could discriminate between sounds well and showed good within-observer reliability. For acoustic analysis, targeted training and the development of computerised pattern recognition systems may improve reliability so that it can be used in clinical practice. PMID:15499065

  15. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  16. Advances in Acoustic Landmine Detection

    DTIC Science & Technology

    2006-10-01

    8] A. Petculescu and J. M. Sabatier, “ Feasibility study of an air - coupled acoustic sensor for measuring small vibrations, Proc. SPIE 17th...the acoustic-to-seismic (A/S) coupling of airborne sound into the ground for buried anti-personnel and anti-tank landmine detection is well established...113, pp.1333-1341 (2003)]. A sound source is used to insonify the ground surface. The airborne sound couples into the soil and excites the

  17. Analysis of nonlinear modulation between sound and vibrations in metallic structure and its use for damage detection

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Gang, Tie; Wan, Chuhao; Wang, Changxi; Luo, Zhiwei

    2015-07-01

    Vibro-acoustic modulation technique is a nonlinear ultrasonic method in nondestructive testing. This technique detects the defects by monitoring the modulation components generated by the interaction between the vibration and the ultrasound wave due to the nonlinear material behaviour caused by the damage. In this work, a swept frequency signal was used as high frequency excitation, then the Hilbert transform based amplitude and phase demodulation and synchronous demodulation (SD) were used to extract the modulation information from the received signal, the results were graphed in the time-frequency domain after the short time Fourier transform. The demodulation results were quite different from each other. The reason for the difference was investigated by analysing the demodulation process of the two methods. According to the analysis and the subsequent verification test, it was indicated that the SD method was more proper for the test and a new index called MISD was defined to evaluate the structure quality in the Vibro-acoustic modulation test with swept probing excitation.

  18. Erratum: "Low vibration laboratory with a single-stage vibration isolation for microscopy applications" [Rev. Sci. Instrum. 88, 023703 (2017)

    NASA Astrophysics Data System (ADS)

    Voigtländer, Bert; Coenen, Peter; Cherepanov, Vasily; Borgens, Peter; Duden, Thomas; Tautz, F. Stefan

    2018-01-01

    The construction and the vibrational performance of a low vibration laboratory for microscopy applications comprising a 100 ton floating foundation supported by passive pneumatic isolators (air springs), which rest themselves on a 200 ton solid base plate is discussed. The optimization of the air spring system lead to a vibration level on the floating floor below that induced by an acceleration of 10 ng for most frequencies. Additional acoustic and electromagnetic isolation is accomplished by a room-in-room concept.

  19. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.

    PubMed

    Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F

    2015-09-01

    The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  1. Acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction

    NASA Astrophysics Data System (ADS)

    Li, Yi-Ling; Ma, Qing-Yu; Zhang, Dong; Xia, Rong-Min

    2011-08-01

    An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is proposed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiation and acoustic waveform detection with a planar piston transducer. The collected waveforms provide information about the conductivity boundaries in various vibration intensities and phases due to the acoustic dipole radiation pattern. Combined with the simplified back projection algorithm, the conductivity configuration of the measured layer in terms of shape and size can be reconstructed with obvious border stripes. The numerical simulation is performed for a two-layer cylindrical phantom model and it is also verified by the experimental results of MAT-MI for a tissue-like sample phantom. The proposed model suggests a potential application of conductivity differentiation and provides a universal basis for the further study of conductivity reconstruction for MAT-MI.

  2. Mobility power flow analysis of coupled plate structure subjected to mechanical and acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1992-01-01

    The mobility power flow approach that was previously applied in the derivation of expressions for the vibrational power flow between coupled plate substructures forming an L configuration and subjected to mechanical loading is generalized. Using the generalized expressions, both point and distributed mechanical loads on one or both of the plates can be considered. The generalized approach is extended to deal with acoustic excitation of one of the plate substructures. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the plate structure and the acoustic fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure. For a number of coupled plate substrates, the acoustic pressure generated by one substructure will interact with the motion of another substructure. That is, in the case of the L-shaped plate, acoustic interaction exists between the two plate substructures due to the generation of the acoustic waves by each of the substructures. An approach to deal with this phenomena is described.

  3. Subscale Acoustic Testing: Comparison of ALAT and ASMAT

    NASA Technical Reports Server (NTRS)

    Houston, Janice D.; Counter, Douglas

    2014-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option. This paper compares the acoustic measurements of two different subscale tests: the 2% Ares Liftoff Acoustic Test conducted at Stennis Space Center and the 5% Ares I Scale Model Acoustic Test conducted at Marshall Space Flight Center.

  4. New acoustic test facility at Georgia Tech

    NASA Astrophysics Data System (ADS)

    Biesel, Van; Cunefare, Kenneth

    2002-11-01

    Georgia Tech's Integrated Acoustics Laboratory (IAL) is a state of the art research facility dedicated to the study of acoustics and vibration. The centerpiece of the laboratory is a 24 ft x24 ft x20 ft full anechoic chamber, which has been in operation since 1998. The IAL is currently expanding to include a reverberation room and hemi-anechoic chamber, designed and built by Acoustic Systems. These two chambers will be joined by an 8 ft x8 ft transmission loss opening, allowing for a detailed measurement and analysis of complex barriers. Both chambers will accommodate vehicles and similarly large structures. The reverberation room will have adequate volume for standardized absorption measurements. Each chamber will be equipped with dedicated multichannel data acquisition systems and instrumentation for the support of simultaneous research in all areas of the laboratory. The new test chambers are funded by a grant from the Ford Motor Company and are planned to be completed and fully functional by 1 January 2003.

  5. Nonlinear acoustic spectroscopy of cracked flaws and disbonds: Fundamentals, techniques, and applications

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.; Solodov, I. Yu.

    2000-05-01

    Classical nonlinear acoustics of solids operates with distributed material nonlinearity related to unharmonicity of molecular interaction forces. Weakening of molecular bonds in a defect area or intermittent lack of elastic coupling between the faces of a vibrating crack or unbond ("clapping") results in anomalously high local contact acoustic nonlinearity (CAN). CAN properties and spectral features are different from those of the classical analog and important to develop new acoustic NDE techniques. Three approaches to nonlinear NDE methodology have been experimentally verified: low-frequency (hundreds of Hz) vibration technique, intermediate-frequency (hundreds of kHz) standing wave and high-frequency (tens of MHz) propagation modes. Low-frequency nonlinear contact vibrations revealed multiple sub- and super-harmonics generation featuring non-monotonous (sinx/x type) spectra. Parametric instability observed in resonator with a nonlinear contact leads to the output spectrum splitting up into successive sub-harmonics as the wave amplitude increases. High-frequency experiments demonstrated abnormal increases in the third harmonic amplitude: 3 or 4 order enhancement of the 3-ω nonlinear parameter was measured for the nonlinear contact. The CAN spectral features in both acoustic and vibration modes were used for nonlinear NDE of simulated and realistic flaws in glass, metal welds, etc. The sensitivities of the techniques are compared and their practical applicability assessed.

  6. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-01-01

    The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Membrane Vibration Analysis Above the Nyquist Limit with Fluorescence Videogrammetry

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.; Pappa, Richard S.

    2004-01-01

    A new method for generating photogrammetric targets by projecting an array of laser beams onto a membrane doped with fluorescent laser dye has recently been developed. In this paper we review this new fluorescence based technique, then proceed to show how it can be used for dynamic measurements, and how a short pulsed (10 ns) laser allows the measurement of vibration modes at frequencies several times the sampling frequency. In addition, we present experimental results showing the determination of fundamental and harmonic vibration modes of a drum style dye-doped polymer membrane tautly mounted on a 12-inch circular hoop and excited with 30 Hz and 62 Hz sinusoidal acoustic waves. The projected laser dot pattern was generated by passing the beam from a pulsed Nd:YAG laser though a diffractive optical element, and the resulting fluorescence was imaged with three digital video cameras, all of which were synchronized with a pulse and delay generator. Although the video cameras are capable of 240 Hz frame rates, the laser s output was limited to 30 Hz and below. Consequently, aliasing techniques were used to allow the measurement of vibration modes up to 186 Hz with a Nyquist limit of less than 15 Hz.

  8. Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations

    NASA Astrophysics Data System (ADS)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.

    2018-04-01

    Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.

  9. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  10. Detecting Structural Failures Via Acoustic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Joshi, Sanjay S.

    1995-01-01

    Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.

  11. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    PubMed

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force.

  12. Acoustic Measurement Of Periodic Motion Of Levitated Object

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Barmatz, Martin B.

    1992-01-01

    Some internal vibrations, oscillations in position, and rotations of acoustically levitated object measured by use of microphone already installed in typical levitation chamber for tuning chamber to resonance and monitoring operation. Levitating acoustic signal modulated by object motion of lower frequency. Amplitude modulation detected and analyzed spectrally to determine amplitudes and frequencies of motions.

  13. Acoustic monitoring of a ball sinking in vibrated granular sediments

    NASA Astrophysics Data System (ADS)

    van den Wildenberg, Siet; Léopoldès, Julien; Tourin, Arnaud; Jia, Xiaoping

    2017-06-01

    We develop an ultrasound probing to investigate the dynamics of a high density ball sinking in 3D opaque dense granular suspensions under horizontal weak vibrations. We show that the motion of the ball in these horizontally vibrated glass bead packings saturated by water is consistent with the frictional rheology. The extracted stress-strain relation evidences an evolution of flow behaviour from frictional creep to inertial regimes. Our main finding is that weak external vibration primarily affects the yield stress and controls the depth of sinking via vibration-induced sliding at the grain contact. Also, we observe that the extracted rheological parameters depend on the size of the probing ball, suggesting thus a non-local rheology.

  14. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  15. Dynamic tire pressure sensor for measuring ground vibration.

    PubMed

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  16. Dynamic Tire Pressure Sensor for Measuring Ground Vibration

    PubMed Central

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L.

    2012-01-01

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application. PMID:23202206

  17. Development of a Multi-Channel Piezoelectric Acoustic Sensor Based on an Artificial Basilar Membrane

    PubMed Central

    Jung, Youngdo; Kwak, Jun-Hyuk; Lee, Young Hwa; Kim, Wan Doo; Hur, Shin

    2014-01-01

    In this research, we have developed a multi-channel piezoelectric acoustic sensor (McPAS) that mimics the function of the natural basilar membrane capable of separating incoming acoustic signals mechanically by their frequency and generating corresponding electrical signals. The McPAS operates without an external energy source and signal processing unit with a vibrating piezoelectric thin film membrane. The shape of the vibrating membrane was chosen to be trapezoidal such that different locations of membrane have different local resonance frequencies. The length of the membrane is 28 mm and the width of the membrane varies from 1 mm to 8 mm. Multiphysics finite element analysis (FEA) was carried out to predict and design the mechanical behaviors and piezoelectric response of the McPAS model. The designed McPAS was fabricated with a MEMS fabrication process based on the simulated results. The fabricated device was tested with a mouth simulator to measure its mechanical and piezoelectrical frequency response with a laser Doppler vibrometer and acoustic signal analyzer. The experimental results show that the as fabricated McPAS can successfully separate incoming acoustic signals within the 2.5 kHz–13.5 kHz range and the maximum electrical signal output upon acoustic signal input of 94 dBSPL was 6.33 mVpp. The performance of the fabricated McPAS coincided well with the designed parameters. PMID:24361926

  18. Scaling and dimensional analysis of acoustic streaming jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moudjed, B.; Botton, V.; Henry, D.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with amore » review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.« less

  19. Nonuniform distribution of phase noise in distributed acoustic sensing based on phase-sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Yu, Zhijie; Lu, Yang; Meng, Zhou

    2017-10-01

    A phase-sensitive optical time-domain reflectometry (∅-OTDR) implements distributed acoustic sensing (DAS) due to its ability for high sensitivity vibration measurement. Phase information of acoustic vibration events can be acquired by interrogation of the vibration-induced phase change between coherent Rayleigh scattering light from two points of the sensing fiber. And DAS can be realized when applying phase generated carrier (PGC) algorithm to the whole sensing fiber while the sensing fiber is transformed into a series of virtual sensing channels. Minimum detectable vibration of a ∅-OTDR is limited by phase noise level. In this paper, nonuniform distribution of phase noise of virtual sensing channels in a ∅-OTDR is investigated theoretically and experimentally. Correspondence between the intensity of Rayleigh scattering light and interference fading as well as polarization fading is analyzed considering inner interference of coherent Rayleigh light scattered from a multitude of scatters within pulse duration, and intensity noise related to the intensity of Rayleigh scattering light can be converted to phase noise while measuring vibration-induced phase change. Experiments are performed and the results confirm the predictions of the theoretical analysis. This study is essential for acquiring insight into nonuniformity of phase noise in DAS based on a ∅-OTDR, and would put forward some feasible methods to eliminate the effect of interference fading and polarization fading and optimize the minimum detectable vibration of a ∅-OTDR.

  20. Measurements of the frame acoustic properties of porous and granular materials

    NASA Astrophysics Data System (ADS)

    Park, Junhong

    2005-12-01

    For porous and granular materials, the dynamic characteristics of the solid component (frame) are important design factors that significantly affect the material's acoustic properties. The primary goal of this study was to present an experimental method for measuring the vibration characteristics of this frame. The experimental setup was designed to induce controlled vibration of the solid component while minimizing the influence from coupling between vibrations of the fluid and the solid component. The Biot theory was used to verify this assumption, taking the two dilatational wave propagations and interactions into account. The experimental method was applied to measure the dynamic properties of glass spheres, lightweight microspheres, acoustic foams, and fiberglass. A continuous variation of the frame vibration characteristics with frequency similar to that of typical viscoelastic materials was measured. The vibration amplitude had minimal effects on the dynamic characteristics of the porous material compared to those of the granular material. For the granular material, materials comprised of larger particles and those under larger vibration amplitudes exhibited lower frame wave speeds and larger decay rates.

  1. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2014-10-21

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  2. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory [Los Alamos, NM; Ward, Michael D [Los Alamos, NM

    2011-12-27

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  3. Acoustic black holes: recent developments in the theory and applications.

    PubMed

    Krylov, Victor

    2014-08-01

    Acoustic black holes are relatively new physical objects that have been introduced and investigated mainly during the last decade. They can absorb almost 100% of the incident wave energy, and this makes them very attractive for such traditional engineering applications as vibration damping in different engineering structures and sound absorption in gases and liquids. They also could be useful for some ultrasonic devices using Lamb wave propagation to provide anechoic termination for such waves. So far, acoustic black holes have been investigated mainly for flexural waves in thin plates, for which the required gradual changes in local wave velocity with distance can be easily achieved by changing the plates' local thickness. The present paper provides a brief review of the theory of acoustic black holes, including their comparison with optic black holes introduced about five years ago. Review is also given of the recent experimental work carried out at Loughborough University on damping structural vibrations using the acoustic black hole effect. This is followed by the discussion on potential applications of the acoustic black hole effect for sound absorption in air.

  4. Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime

    NASA Astrophysics Data System (ADS)

    Cheng, Tin Kei; Lau, Denvid

    2014-04-01

    As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.

  5. Acoustic Source Analysis of Magnetoacoustic Tomography With Magnetic Induction for Conductivity Gradual-Varying Tissues.

    PubMed

    Wang, Jiawei; Zhou, Yuqi; Sun, Xiaodong; Ma, Qingyu; Zhang, Dong

    2016-04-01

    As a multiphysics imaging approach, magnetoacoustic tomography with magnetic induction (MAT-MI) works on the physical mechanism of magnetic excitation, acoustic vibration, and transmission. Based on the theoretical analysis of the source vibration, numerical studies are conducted to simulate the pathological changes of tissues for a single-layer cylindrical conductivity gradual-varying model and estimate the strengths of sources inside the model. The results suggest that the inner source is generated by the product of the conductivity and the curl of the induced electric intensity inside conductivity homogeneous medium, while the boundary source is produced by the cross product of the gradient of conductivity and the induced electric intensity at conductivity boundary. For a biological tissue with low conductivity, the strength of boundary source is much higher than that of the inner source only when the size of conductivity transition zone is small. In this case, the tissue can be treated as a conductivity abrupt-varying model, ignoring the influence of inner source. Otherwise, the contributions of inner and boundary sources should be evaluated together quantitatively. This study provide basis for further study of precise image reconstruction of MAT-MI for pathological tissues.

  6. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  7. The Effects of Sediment Properties on Low Frequency Acoustic Propagation

    DTIC Science & Technology

    2013-09-30

    Ballroom Music Spillover into a Beluga Whale Aquarium Exhibit,” Advances in Acoustics and Vibration, 2012 (doi:10.1155/2012/402130) [ refereed]. 12... Acoustic Propagation James H. Miller and Gopu R. Potty University of Rhode Island Department of Ocean Engineering Narragansett, RI 02881 Phone (401...investigations have indicated that water-borne acoustic arrival properties such as their Airy Phase are sensitive to sediment shear properties. Our major

  8. A Mobile Acoustic Subsurface Sensing (MASS) System for Rapid Roadway Assessment

    PubMed Central

    Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J. Gregory; Wang, Ming L.

    2013-01-01

    Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test. PMID:23698266

  9. Study and application of acoustic emission testing in fault diagnosis of low-speed heavy-duty gears.

    PubMed

    Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei

    2011-01-01

    Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis.

  10. Study and Application of Acoustic Emission Testing in Fault Diagnosis of Low-Speed Heavy-Duty Gears

    PubMed Central

    Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei

    2011-01-01

    Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis. PMID:22346592

  11. Fluid-acoustic interactions and their impact on pathological voiced speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Zanartu, Matias; Peterson, Sean D.; Plesniak, Michael W.

    2011-11-01

    Voiced speech is produced by vibration of the vocal fold structures. Vocal fold dynamics arise from aerodynamic pressure loadings, tissue properties, and acoustic modulation of the driving pressures. Recent speech science advancements have produced a physiologically-realistic fluid flow solver (BLEAP) capable of prescribing asymmetric intraglottal flow attachment that can be easily assimilated into reduced order models of speech. The BLEAP flow solver is extended to incorporate acoustic loading and sound propagation in the vocal tract by implementing a wave reflection analog approach for sound propagation based on the governing BLEAP equations. This enhanced physiological description of the physics of voiced speech is implemented into a two-mass model of speech. The impact of fluid-acoustic interactions on vocal fold dynamics is elucidated for both normal and pathological speech through linear and nonlinear analysis techniques. Supported by NSF Grant CBET-1036280.

  12. Experimental verification of the asymtotic modal analysis method as applied to a rectangular acoustic cavity excited by structural vibration

    NASA Technical Reports Server (NTRS)

    Peretti, L. F.; Dowell, E. H.

    1992-01-01

    An experiment was performed on a rigid wall rectangular acoustic cavity driven by a flexible plate mounted in a quarter of one end wall and excited by white noise. The experiment was designed so that the assumptions of Asymptotic Modal Analysis (AMA) were satisfied for certain bandwidths and center frequencies. Measurements of sound pressure levels at points along the boundaries and incrementally into tbe interior were taken. These were compared with the theoretical results predicted with AMA, and found to be in good agreement, particularly for moderate (1/3 octave) bandwidths and sufficiently high center frequencies. Sound pressure level measurements were also taken well into the cavity interior at various points along the 5 totally rigid walls. The AMA theory, including boundary intensification effects, was shown to be accurate provided the assumption of large number of acoustic modes is satisfied, and variables such as power spectra of the wall acceleration, frequency, and damping are slowly varying in the frequency of bandwidth.

  13. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    NASA Astrophysics Data System (ADS)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  14. Numerical analysis of the transportation characteristics of a self-running sliding stage based on near-field acoustic levitation.

    PubMed

    Feng, Kai; Liu, Yuanyuan; Cheng, Miaomiao

    2015-12-01

    Owing to its distinct non-contact and oil-free characteristics, a self-running sliding stage based on near-field acoustic levitation can be used in an environment, which demands clean rooms and zero noise. This paper presents a numerical analysis on the lifting and transportation capacity of a non-contact transportation system. Two simplified structure models, namely, free vibration and force vibration models, are proposed for the study of the displacement amplitude distribution of two cases using the finite element method. After coupling the stage displacement into the film thickness, the Reynolds equation is solved by the finite difference method to obtain the lifting and thrusting forces. Parametric analyses of the effects of amplitude, frequency, and standing wave ratio (SWR) on the sliding stage dynamic performance are investigated. Numerical results show good agreement with published experimental values. The predictions also reveal that greater transportation capacity of the self-running sliding stage is generally achieved at less SWR and at higher amplitude.

  15. Echo planar imaging at 4 Tesla with minimum acoustic noise.

    PubMed

    Tomasi, Dardo G; Ernst, Thomas

    2003-07-01

    To minimize the acoustic sound pressure levels of single-shot echo planar imaging (EPI) acquisitions on high magnetic field MRI scanners. The resonance frequencies of gradient coil vibrations, which depend on the coil length and the elastic properties of the materials in the coil assembly, were measured using piezoelectric transducers. The frequency of the EPI-readout train was adjusted to avoid the frequency ranges of mechanical resonances. Our MRI system exhibited two sharp mechanical resonances (at 720 and 1220 Hz) that can increase vibrational amplitudes up to six-fold. A small adjustment of the EPI-readout frequency made it possible to reduce the sound pressure level of EPI-based perfusion and functional MRI scans by 12 dB. Normal vibrational modes of MRI gradient coils can dramatically increase the sound pressure levels during echo planar imaging (EPI) scans. To minimize acoustic noise, the frequency of EPI-readout trains and the resonance frequencies of gradient coil vibrations need to be different. Copyright 2003 Wiley-Liss, Inc.

  16. Structural Noise and Acoustic Characteristics Improvement of Transport Power Plants

    NASA Astrophysics Data System (ADS)

    Chaynov, N. D.; Markov, V. A.; Savastenko, A. A.

    2018-03-01

    Noise reduction generated during the operation of various machines and mechanisms is an urgent task with regard to the power plants and, in particular, to internal combustion engines. Sound emission from the surfaces vibration of body parts is one of the main noise manifestations of the running engine and it is called a structural noise. The vibration defining of the outer surfaces of complex body parts and the calculation of their acoustic characteristics are determined with numerical methods. At the same time, realization of finite and boundary elements methods combination turned out to be very effective. The finite element method is used in calculating the structural elements vibrations, and the boundary elements method is used in the structural noise calculation. The main conditions of the methodology and the results of the structural noise analysis applied to a number of automobile engines are shown.

  17. Modeling and dynamic environment analysis technology for spacecraft

    NASA Astrophysics Data System (ADS)

    Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei

    Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.

  18. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  19. Sound power and vibration levels for two different piano soundboards

    NASA Astrophysics Data System (ADS)

    Squicciarini, Giacomo; Valiente, Pablo Miranda; Thompson, David J.

    2016-09-01

    This paper compares the sound power and vibration levels for two different soundboards for upright pianos. One of them is made of laminated spruce and the other of solid spruce (tone-wood). These differ also in the number of ribs and manufacturing procedure. The methodology used is defined in two major steps: (i) acoustic power due to a unit force is obtained reciprocally by measuring the acceleration response of the piano soundboards when excited by acoustic waves in reverberant field; (ii) impact tests are adopted to measure driving point and spatially-averaged mean-square transfer mobility. The results show that, in the midhigh frequency range, the soundboard made of solid spruce has a greater vibrational and acoustic response than the laminated soundboard. The effect of string tension is also addressed, showing that is only relevant at low frequencies.

  20. A numerical study of the acoustic radiation due to eddy current-cryostat interactions.

    PubMed

    Wang, Yaohui; Liu, Feng; Zhou, Xiaorong; Li, Yu; Crozier, Stuart

    2017-06-01

    To investigate the acoustic radiation due to eddy current-cryostat interactions and perform a qualitative analysis on noise reduction methods. In order to evaluate the sound pressure level (SPL) of the eddy current induced warm bore wall vibration, a Finite Element (FE) model was created to simulate the noises from both the warm bore wall vibration and the gradient coil assembly. For the SPL reduction of the warm bore wall vibration, we first improved the active shielding of the gradient coil, thus reducing the eddy current on the warm bore wall. A damping treatment was then applied to the warm bore wall to control the acoustic radiation. Initial simulations show that the SPL of the warm bore wall is higher than that of the gradient assembly with typical design shielding ratios at many frequencies. Subsequent simulation results of eddy current control and damping treatment application show that the average SPL reduction of the warm bore wall can be as high as 9.6 dB, and even higher in some frequency bands. Combining eddy current control and suggested damping scheme, the noise level in a MRI system can be effectively reduced. © 2017 American Association of Physicists in Medicine.

  1. A vibration model for frequency analysis of arterial tubes with tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Fatemi, Mostafa; Greenleaf, James F.

    2003-04-01

    Vibro-acoustography is a new noncontact imaging method based on the radiation force of ultrasound. We extend this technique for tissue characterization of arterial tubes by vibration techniques. The arterial tube can be excited remotely by ultrasound at its resonant frequencies where the vibration and acoustic emission of the tube can be measurable. From these resonant frequencies, the material properties of the arterial tube can be found. A theory for a tube with tissue is formulated using first-order shear deformation theory to include the effects of transverse shear deformation and rotary inertia. A wave propagation approach is applied for easy handling of the boundary conditions. Experimental studies were carried out on a silicone tube embedded in a cylindrical gel phantom. A confocal transducer is used to produce the radiation force of ultrasound for exciting the tube-phantom structure. The vibration of the tube and the phantom are measured with a laser vibrometry system. The fundamental mode of a tube-phantom structure is well excited by the radiation force of ultrasound, and was measured to be 81.8 Hz, which is close to the theoretical prediction of 83.3 Hz. Both excitation and measurement are remote and noncontact, important attributes for future study of arteries.

  2. Apparatus and method for acoustic monitoring of steam quality and flow

    DOEpatents

    Sinha, Dipen N.; Pantea, Cristian

    2016-09-13

    An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.

  3. Vibration Analysis Of Automotive Structures Using Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Brown, G. M.; Wales, R. R.

    1983-10-01

    Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.

  4. Acoustic analysis of warp potential of green ponderosa pine lumber

    Treesearch

    Xiping Wang; William T. Simpson

    2005-01-01

    This study evaluated the potential of acoustic analysis as presorting criteria to identify warp-prone boards before kiln drying. Dimension lumber, 38 by 89 mm (nominal 2 by 4 in.) and 2.44 m (8 ft) long, sawn from open-grown small-diameter ponderosa pine trees, was acoustically tested lengthwise at green condition. Three acoustic properties (acoustic speed, rate of...

  5. SLS Scale Model Acoustic Test Liftoff Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, Douglas; Giacomoni, Clothilde

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible design phase test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments.

  6. Innovative Techniques Simplify Vibration Analysis

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  7. Acoustic and Perceptual Effects of Left–Right Laryngeal Asymmetries Based on Computational Modeling

    PubMed Central

    Samlan, Robin A.; Story, Brad H.; Lotto, Andrew J.; Bunton, Kate

    2015-01-01

    Purpose Computational modeling was used to examine the consequences of 5 different laryngeal asymmetries on acoustic and perceptual measures of vocal function. Method A kinematic vocal fold model was used to impose 5 laryngeal asymmetries: adduction, edge bulging, nodal point ratio, amplitude of vibration, and starting phase. Thirty /a/ and /I/ vowels were generated for each asymmetry and analyzed acoustically using cepstral peak prominence (CPP), harmonics-to-noise ratio (HNR), and 3 measures of spectral slope (H1*-H2*, B0-B1, and B0-B2). Twenty listeners rated voice quality for a subset of the productions. Results Increasingly asymmetric adduction, bulging, and nodal point ratio explained significant variance in perceptual rating (R2 = .05, p < .001). The same factors resulted in generally decreasing CPP, HNR, and B0-B2 and in increasing B0-B1. Of the acoustic measures, only CPP explained significant variance in perceived quality (R2 = .14, p < .001). Increasingly asymmetric amplitude of vibration or starting phase minimally altered vocal function or voice quality. Conclusion Asymmetries of adduction, bulging, and nodal point ratio drove acoustic measures and perception in the current study, whereas asymmetric amplitude of vibration and starting phase demonstrated minimal influence on the acoustic signal or voice quality. PMID:24845730

  8. Analysis and control of the vibration of doubly fed wind turbine

    NASA Astrophysics Data System (ADS)

    Yu, Manye; Lin, Ying

    2017-01-01

    The fault phenomena of the violent vibration of certain doubly-fed wind turbine were researched comprehensively, and the dynamic characteristics, load and fault conditions of the system were discussed. Firstly, the structural dynamics analysis of wind turbine is made, and the dynamics mold is built. Secondly, the vibration testing of wind turbine is done with the German test and analysis systems BBM. Thirdly, signal should be analyzed and dealt with. Based on the experiment, spectrum analysis of the motor dynamic balance can be made by using signal processing toolbox of MATLAB software, and the analysis conclusions show that the vibration of wind turbine is caused by dynamic imbalance. The results show that integrating mechanical system dynamics theory with advanced test technology can solve the vibration problem more successfully, which is important in vibration diagnosis of mechanical equipment.

  9. Estimating Vibrational Powers Of Parts In Fluid Machinery

    NASA Technical Reports Server (NTRS)

    Harvey, S. A.; Kwok, L. C.

    1995-01-01

    In new method of estimating vibrational power associated with component of fluid-machinery system, physics of flow through (or in vicinity of) component regarded as governing vibrations. Devised to generate scaling estimates for design of new parts of rocket engines (e.g., pumps, combustors, nozzles) but applicable to terrestrial pumps, turbines, and other machinery in which turbulent flows and vibrations caused by such flows are significant. Validity of method depends on assumption that fluid flows quasi-steadily and that flow gives rise to uncorrelated acoustic powers in different parts of pump.

  10. Time-Varying Vocal Folds Vibration Detection Using a 24 GHz Portable Auditory Radar.

    PubMed

    Hong, Hong; Zhao, Heng; Peng, Zhengyu; Li, Hui; Gu, Chen; Li, Changzhi; Zhu, Xiaohua

    2016-07-28

    Time-varying vocal folds vibration information is of crucial importance in speech processing, and the traditional devices to acquire speech signals are easily smeared by the high background noise and voice interference. In this paper, we present a non-acoustic way to capture the human vocal folds vibration using a 24-GHz portable auditory radar. Since the vocal folds vibration only reaches several millimeters, the high operating frequency and the 4 × 4 array antennas are applied to achieve the high sensitivity. The Variational Mode Decomposition (VMD) based algorithm is proposed to decompose the radar-detected auditory signal into a sequence of intrinsic modes firstly, and then, extract the time-varying vocal folds vibration frequency from the corresponding mode. Feasibility demonstration, evaluation, and comparison are conducted with tonal and non-tonal languages, and the low relative errors show a high consistency between the radar-detected auditory time-varying vocal folds vibration and acoustic fundamental frequency, except that the auditory radar significantly improves the frequency-resolving power.

  11. Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalentmore » pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown.« less

  12. The phononic crystals: An unending quest for tailoring acoustics

    NASA Astrophysics Data System (ADS)

    Kushwaha, M.

    Periodicity (in time or space) is a part and parcel of every living being: One can see, hear, and feel it. Everyday examples are locomotion, respiration, and heart beat. The reinforced N-dimensional periodicity over two or more crystalline solids results in the so-called phononic band-gap crystals. These can have dramatic consequences on the propagation of phonons, vibrations, and sound. The fundamental physics of cleverly fabricated phononic crystals can offer a systematic route to realize the Anderson localization of sound and vibrations. As to the applications, the phononic crystals are envisaged to find ways in the architecture, acoustic waveguides, designing transducers, elastic/acoustic filters, noise control, ultrasonics, medical imaging, and acoustic cloaking, to mention a few. This review focuses on the brief sketch of the progress made in the field that seems to have prospered even more than was originally imagined in the early nineties.

  13. Vibration analysis of rotor blades with pendulum absorbers

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Hammond, C. E.

    1979-01-01

    A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.

  14. Reproducibility of dynamically represented acoustic lung images from healthy individuals

    PubMed Central

    Maher, T M; Gat, M; Allen, D; Devaraj, A; Wells, A U; Geddes, D M

    2008-01-01

    Background and aim: Acoustic lung imaging offers a unique method for visualising the lung. This study was designed to demonstrate reproducibility of acoustic lung images recorded from healthy individuals at different time points and to assess intra- and inter-rater agreement in the assessment of dynamically represented acoustic lung images. Methods: Recordings from 29 healthy volunteers were made on three separate occasions using vibration response imaging. Reproducibility was measured using quantitative, computerised assessment of vibration energy. Dynamically represented acoustic lung images were scored by six blinded raters. Results: Quantitative measurement of acoustic recordings was highly reproducible with an intraclass correlation score of 0.86 (very good agreement). Intraclass correlations for inter-rater agreement and reproducibility were 0.61 (good agreement) and 0.86 (very good agreement), respectively. There was no significant difference found between the six raters at any time point. Raters ranged from 88% to 95% in their ability to identically evaluate the different features of the same image presented to them blinded on two separate occasions. Conclusion: Acoustic lung imaging is reproducible in healthy individuals. Graphic representation of lung images can be interpreted with a high degree of accuracy by the same and by different reviewers. PMID:18024534

  15. Effect of the secondary process on mass point vibration velocity propagation in magneto-acoustic tomography and magneto-acousto-electrical tomography.

    PubMed

    Sun, Zhishen; Liu, Guoqiang; Guo, Liang; Xia, Hui; Wang, Xinli

    2016-04-29

    As two of the new biological electrical impedance tomography (EIT), magneto-acoustic tomography (MAT) and magneto-acousto-electrical tomography (MAET) achieve both the high contrast property of EIT and the high spatial resolution property of sonography through combining EIT and sonography. As both MAT and MAET contain a uniform magnetic field, vibration and electrical current density, there is a secondary process both in MAT and in MAET, which is MAET and MAT respectively. To analyze the effect of the secondary process on mass point vibration velocity (MPVV) propagation in MAT and MAET. By analyzing the total force to the sample, the wave equations of MPVV in MAT and MAET - when the secondary processes were considered - were derived. The expression of the attenuation constant in the wave number was derived in the case that the mass point vibration velocity propagates in the form of cylindrical wave and plane wave. Attenuations of propagation of the MPVV in several samples were quantified. Attenuations of the MPVV after propagating for 1 mm in copper or aluminum foil, and for 5 cm in gel phantom or biological soft tissue were less than 1%. Attenuations of the MPVV in MAT and MAET due to the secondary processes are relatively minor, and effects of the secondary processes on MPVV propagation in MAT and MAET can be ignored.

  16. Vibration mode imaging.

    PubMed

    Zhang, Xiaoming; Zeraati, Mohammad; Kinnick, Randall R; Greenleaf, James F; Fatemi, Mostafa

    2007-06-01

    A new method for imaging the vibration mode of an object is investigated. The radiation force of ultrasound is used to scan the object at a resonant frequency of the object. The vibration of the object is measured by laser and the resulting acoustic emission from the object is measured by a hydrophone. It is shown that the measured signal is proportional to the value of the mode shape at the focal point of the ultrasound beam. Experimental studies are carried out on a mechanical heart valve and arterial phantoms. The mode images on the valve are made by the hydrophone measurement and confirmed by finite-element method simulations. Compared with conventional B-scan imaging on arterial phantoms, the mode imaging can show not only the interface of the artery and the gelatin, but also the vibration modes of the artery. The images taken on the phantom surface suggest that an image of an interior artery can be made by vibration measurements on the surface of the body. However, the image of the artery can be improved if the vibration of the artery is measured directly. Imaging of the structure in the gelatin or tissue can be enhanced by small bubbles and contrast agents.

  17. CO2 compressor vibration and cause analysis

    NASA Technical Reports Server (NTRS)

    Ying, Y. L.

    1985-01-01

    The operational experience of a large turbine drive carbon dioxide compressor train in a urea plant with capacity of 1620 tons/day is considered. After the initial start-up in 1976, the vibration in the HP cylinder was comparatively serious. The radial vibration reached 4.2 to 4.5 mils and fluctuated around this value. It was attributed to the rotating stall based on the spectrum analysis. Additional return line from the 4th to 4th and higher temperature of the 4th inlet has cured the vibration. Problems are described which were encountered in the operation along with their solutions, and/or improvements.

  18. Elements for a conformity assessment system in acoustics, vibrations and ultrasound in Mexico

    NASA Astrophysics Data System (ADS)

    Echeverria-Villagomez, Salvador; Elias-Juarez, Alfredo

    2002-11-01

    Conformity assessment in acoustics, vibrations, and ultrasound have great relevance for human health, safety, and environmental protection. Due to this fact, it is usually the government and public agencies that promote, together with the National Standards Institute (NSI) and representatives from the whole society, the development and continuous updating of standards and regulations. Besides appropriate regulations, conformity evaluation requires the existence and fitness of, at least, two other elements: adequate measuring capabilities and a proper system of consequences. The measuring capabilities are embodied in the infrastructure that goes from the National Metrology Institute (NMI) to the calibration and testing laboratories and verification units. The system of consequences, the means by which compliance with regulations can be verified and required, can be established by the same government and public agencies (GPA) of the field of work in which the regulation has been developed. In Mexico, a conformity assessment system of this kind has been evolving rapidly during the past 10 years, since the establishment of CENAM. The paper will present a proposed conformity assessment system, arising from a comparison of the Mexican system with those of other countries.

  19. Vibration analysis of a hydro generator for different operating regimes

    NASA Astrophysics Data System (ADS)

    Haţiegan, C.; Pădureanu, I.; Jurcu, M.; Nedeloni, M. D.; Hamat, C. O.; Chioncel, C. P.; Trocaru, S.; Vasile, O.; Bădescu, O.; Micliuc, D.; (Filip Nedeloni, L.; Băra, A.; (Barboni Haţiegan, L.

    2017-01-01

    Based on experimental measurements, this paper presents the vibration analysis of a hydro generator that equips a Kaplan hydraulic turbine of a Hydropower plant in Romania. This analysis means vibrations measurement to different operating regimes of the hydro generator respectively before installing it and into operation, namely putting off load mode (unexcited and excited) respectively putting on load mode. By comparing, through the experimental results obtained before and after the operation of hydro aggregates are observed vibrations improvements.

  20. Tracking sperm whales with a towed acoustic vector sensor.

    PubMed

    Thode, Aaron; Skinner, Jeff; Scott, Pam; Roswell, Jeremy; Straley, Janice; Folkert, Kendall

    2010-11-01

    Passive acoustic towed linear arrays are increasingly used to detect marine mammal sounds during mobile anthropogenic activities. However, these arrays cannot resolve between signals arriving from the port or starboard without vessel course changes or multiple cable deployments, and their performance is degraded by vessel self-noise and non-acoustic mechanical vibration. In principle acoustic vector sensors can resolve these directional ambiguities, as well as flag the presence of non-acoustic contamination, provided that the vibration-sensitive sensors can be successfully integrated into compact tow modules. Here a vector sensor module attached to the end of a 800 m towed array is used to detect and localize 1813 sperm whale "clicks" off the coast of Sitka, AK. Three methods were used to identify frequency regimes relatively free of non-acoustic noise contamination, and then the active intensity (propagating energy) of the signal was computed between 4-10 kHz along three orthogonal directions, providing unambiguous bearing estimates of two sperm whales over time. These bearing estimates are consistent with those obtained via conventional methods, but the standard deviations of the vector sensor bearing estimates are twice those of the conventionally-derived bearings. The resolved ambiguities of the bearings deduced from vessel course changes match the vector sensor predictions.

  1. Vibro-acoustic performance of newly designed tram track structures

    NASA Astrophysics Data System (ADS)

    Haladin, Ivo; Lakušić, Stjepan; Ahac, Maja

    2017-09-01

    Rail vehicles in interaction with a railway structure induce vibrations that are propagating to surrounding structures and cause noise disturbance in the surrounding areas. Since tram tracks in urban areas often share the running surface with road vehicles one of top priorities is to achieve low maintenance and long lasting structure. Research conducted in scope of this paper gives an overview of newly designed tram track structures designated for use on Zagreb tram network and their performance in terms of noise and vibration mitigation. Research has been conducted on a 150 m long test section consisted of three tram track types: standard tram track structure commonly used on tram lines in Zagreb, optimized tram structure for better noise and vibration mitigation and a slab track with double sleepers embedded in a concrete slab, which presents an entirely new approach of tram track construction in Zagreb. Track has been instrumented with acceleration sensors, strain gauges and revision shafts for inspection. Relative deformations give an insight into track structure dynamic load distribution through the exploitation period. Further the paper describes vibro-acoustic measurements conducted at the test site. To evaluate the track performance from the vibro-acoustical standpoint, detailed analysis of track decay rate has been analysed. Opposed to measurement technique using impact hammer for track decay rate measurements, newly developed measuring technique using vehicle pass by vibrations as a source of excitation has been proposed and analysed. Paper gives overview of the method, it’s benefits compared to standard method of track decay rate measurements and method evaluation based on noise measurements of the vehicle pass by.

  2. Acoustically and Electrokinetically Driven Transport in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin

    Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the

  3. The Dornier 328 Acoustic Test Cell (ATC) for interior noise tests and selected test results

    NASA Technical Reports Server (NTRS)

    Hackstein, H. Josef; Borchers, Ingo U.; Renger, Klaus; Vogt, Konrad

    1992-01-01

    To perform acoustic studies for achieving low noise levels for the Dornier 328, an acoustic test cell (ATC) of the Dornier 328 has been built. The ATC consists of a fuselage section, a realistic fuselage suspension system, and three exterior noise simulation rings. A complex digital 60 channel computer/amplifier noise generation system as well as multichannel digital data acquisition and evaluation system have been used. The noise control tests started with vibration measurements for supporting acoustic data interpretation. In addition, experiments have been carried out on dynamic vibration absorbers, the most important passive noise reduction measure for low frequency propeller noise. The design and arrangement of the current ATC are presented. Furthermore, exterior noise simulation as well as data acquisition are explained. The most promising results show noise reduction due to synchrophasing and dynamic vibration absorbers.

  4. Acoustic analysis in Mudejar-Gothic churches: Experimental results

    NASA Astrophysics Data System (ADS)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. .

  5. Acoustic analysis in Mudejar-Gothic churches: experimental results.

    PubMed

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria.

  6. Bistable metamaterial for switching and cascading elastic vibrations

    PubMed Central

    Foehr, André; Daraio, Chiara

    2017-01-01

    The realization of acoustic devices analogous to electronic systems, like diodes, transistors, and logic elements, suggests the potential use of elastic vibrations (i.e., phonons) in information processing, for example, in advanced computational systems, smart actuators, and programmable materials. Previous experimental realizations of acoustic diodes and mechanical switches have used nonlinearities to break transmission symmetry. However, existing solutions require operation at different frequencies or involve signal conversion in the electronic or optical domains. Here, we show an experimental realization of a phononic transistor-like device using geometric nonlinearities to switch and amplify elastic vibrations, via magnetic coupling, operating at a single frequency. By cascading this device in a tunable mechanical circuit board, we realize the complete set of mechanical logic elements and interconnect selected ones to execute simple calculations. PMID:28416663

  7. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.

    PubMed

    Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli

    2017-05-01

    A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.

  8. Characterization of the Acoustic Radiation Properties of Laminated and Sandwich Composite Panels in Thermal Environment

    NASA Astrophysics Data System (ADS)

    Sharma, Nitin; Ranjan Mahapatra, Trupti; Panda, Subrata Kumar; Sahu, Pruthwiraj

    2018-03-01

    In this article, the acoustic radiation characteristics of laminated and sandwich composite spherical panels subjected to harmonic point excitation under thermal environment are investigated. The finite element (FE) simulation model of the vibrating panel structure is developed in ANSYS using ANSYS parametric design language (APDL) code. Initially, the critical buckling temperatures of the considered structures are obtained and the temperature loads are assorted accordingly. Then, the modal analysis of the thermally stressed panels is performed and the thermo-elastic free vibration responses so obtained are validated with the benchmark solutions. Subsequently, an indirect boundary element (BE) method is utilized to conduct a coupled FE-BE analysis to compute the sound radiation properties of panel structure. The agreement of the present sound power responses with the existing results available in the published literature establishes the validity of the proposed scheme. Finally, the current standardised scheme is extended to solve several numerical examples to bring out the influence of various parameters on the thermo-acoustic characteristics of laminated composite panels.

  9. Vibration-Induced Gas-Liquid Interface Breakup

    NASA Astrophysics Data System (ADS)

    O'Hern, Timothy; Torczynski, John; Romero, Ed; Shelden, Bion

    2010-11-01

    Gas-liquid interfaces can be forced to break up when subjected to vibrations within critical ranges of frequency and amplitude. This breakup mechanism was examined experimentally using deep layers of silicone oils over a range of viscosity and sinusoidal, primarily axial vibration conditions that can produce dramatic disturbances at the gas-liquid free surface. Although small-amplitude vibrations produce standing Faraday waves, large-amplitude vibrations produce liquid jets into the gas, droplets pinching off from the jets, gas cavities in the liquid from droplet impact, and bubble transport below the interface. Experiments used several different silicone oils over a range of pressures and vibration conditions. Computational simulations exhibiting similar behavior will be included in the presentation. Applications include liquid fuel rockets, inertial sensing devices, moving vehicles, mixing processes, and acoustic excitation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Generation and development of small-amplitude disturbances in a laminar boundary layer in the presence of an acoustic field

    NASA Technical Reports Server (NTRS)

    Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.

    1985-01-01

    A low-turbulence subsonic wind tunnel was used to study the influence of acoustic disturbances on the development of small sinusoidal oscillations (Tollmien-Schlichting waves) which constitute the initial phase of turbulent transition. It is found that acoustic waves propagating opposite to the flow generate vibrations of the model (plate) in the flow. Neither the plate vibrations nor the acoustic field itself have any appreciable influence on the stability of the laminar boundary layer. The influence of an acoustic field on laminar boundary layer disturbances is limited to the generation of Tollmien-Schlichting waves at the leading-edge of the plate.

  11. Study of a vibrating plate: comparison between experimental (ESPI) and analytical results

    NASA Astrophysics Data System (ADS)

    Romero, G.; Alvarez, L.; Alanís, E.; Nallim, L.; Grossi, R.

    2003-07-01

    Real-time electronic speckle pattern interferometry (ESPI) was used for tuning and visualization of natural frequencies of a trapezoidal plate. The plate was excited to resonant vibration by a sinusoidal acoustical source, which provided a continuous range of audio frequencies. Fringe patterns produced during the time-average recording of the vibrating plate—corresponding to several resonant frequencies—were registered. From these interferograms, calculations of vibrational amplitudes by means of zero-order Bessel functions were performed in some particular cases. The system was also studied analytically. The analytical approach developed is based on the Rayleigh-Ritz method and on the use of non-orthogonal right triangular co-ordinates. The deflection of the plate is approximated by a set of beam characteristic orthogonal polynomials generated by using the Gram-Schmidt procedure. A high degree of correlation between computational analysis and experimental results was observed.

  12. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  13. Acoustic Emission Analysis Applet (AEAA) Software

    NASA Technical Reports Server (NTRS)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  14. Acoustical consulting-Reflections on a challenging career

    NASA Astrophysics Data System (ADS)

    Braslau, David

    2004-05-01

    The acoustical consulting profession can be entered in a number of ways. The most direct approach is to obtain a degree in acoustics and join a large consulting firm immediately after graduation. Acoustical consulting can also be entered indirectly from various fields of engineering or physics which can provide a somewhat broader background. These disciplines might include, for example, structural engineering and structural dynamics, mechanics of materials, dynamic behavior of solids or geophysics. Acoustical consulting specialization can be very broad or very narrow as seen from the National Council of Acoustical Consultants capability listing. As an acoustical consultant, one must address a wide range of problems which provides both the challenges and joys of this profession. Technical capabilities and professional judgment are constantly developed from exposure to these problems and through interaction with other members of the profession. Selected case studies including sound isolation in buildings, noise and vibration from blasting, control of noise from environmental sources, acoustical design of classrooms and performing spaces, and product design demonstrate the variety of challenges faced by an acoustical consultant.

  15. Vibrations Detection in Industrial Pumps Based on Spectral Analysis to Increase Their Efficiency

    NASA Astrophysics Data System (ADS)

    Rachid, Belhadef; Hafaifa, Ahmed; Boumehraz, Mohamed

    2016-03-01

    Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analysis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  16. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GREGORY,DANNY LYNN; CAP,JEROME S.; TOGAMI,THOMAS C.

    1999-11-11

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented.

  17. Validation of Methods to Predict Vibration of a Panel in the Near Field of a Hot Supersonic Rocket Plume

    NASA Technical Reports Server (NTRS)

    Bremner, P. G.; Blelloch, P. A.; Hutchings, A.; Shah, P.; Streett, C. L.; Larsen, C. E.

    2011-01-01

    This paper describes the measurement and analysis of surface fluctuating pressure level (FPL) data and vibration data from a plume impingement aero-acoustic and vibration (PIAAV) test to validate NASA s physics-based modeling methods for prediction of panel vibration in the near field of a hot supersonic rocket plume. For this test - reported more fully in a companion paper by Osterholt & Knox at 26th Aerospace Testing Seminar, 2011 - the flexible panel was located 2.4 nozzle diameters from the plume centerline and 4.3 nozzle diameters downstream from the nozzle exit. The FPL loading is analyzed in terms of its auto spectrum, its cross spectrum, its spatial correlation parameters and its statistical properties. The panel vibration data is used to estimate the in-situ damping under plume FPL loading conditions and to validate both finite element analysis (FEA) and statistical energy analysis (SEA) methods for prediction of panel response. An assessment is also made of the effects of non-linearity in the panel elasticity.

  18. Study of intensification zones in a rectangular acoustic cavity

    NASA Technical Reports Server (NTRS)

    Peretti, Linda F.; Dowell, Earl H.

    1992-01-01

    The interior acoustic field of a rectangular acoustic cavity, which is excited by the structural vibration of one of its walls, or a portion of the wall, has been studied. Particularly, the spatial variations of sound pressure levels from the peak levels at the boundaries (intensification zones) to the uniform interior are considered. Analytical expressions, which describe the intensification zones, are obtained using the methodology of asymptotic modal analysis. These results agree well with results computed by a discrete summation over all of the modes. The intensification zones were also modeled as a set of oblique waves incident upon a surface. The result for a rigid surface agrees with the asymptotic modal analysis result. In the presence of an absorptive surface, the character of the intensification zone is dramatically changed. The behavior of the acoustic field near an absorptive wall is described by an expression containing the rigid wall result plus additional terms containing impedance information. The important parameter in the intensification zone analysis is the bandwidth to center frequency ratio. The effect of bandwidth is separated from that of center frequency by expanding the expression about the center frequency wave number. The contribution from the bandwidth is second order in bandwidth to center frequency ratio.

  19. Measurement of transmission loss characteristics using acoustic intensity techniques at the KU-FRL Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1983-01-01

    The transmission loss characteristics of panels using the acoustic intensity technique is presented. The theoretical formulation, installation of hardware, modifications to the test facility, and development of computer programs and test procedures are described. A listing of all the programs is also provided. The initial test results indicate that the acoustic intensity technique is easily adapted to measure transmission loss characteristics of panels. Use of this method will give average transmission loss values. The fixtures developed to position the microphones along the grid points are very useful in plotting the intensity maps of vibrating panels.

  20. High-frequency acoustic spectrum analyzer based on polymer integrated optics

    NASA Astrophysics Data System (ADS)

    Yacoubian, Araz

    This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.

  1. VEGA Launch Vehicle Vibro-Acoustic Approach for Multi Payload Configuration Qualification

    NASA Astrophysics Data System (ADS)

    Bartoccini, D.; Di Trapani, C.; Fotino, D.; Bonnet, M.

    2014-06-01

    Acoustic loads are one of the principal source of structural vibration and internal noise during a launch vehicle flight but do not generally present a critical design condition for the main load-carrying structure. However, acoustic loads may be critical to the proper functioning of vehicle components and their supporting structures, which are otherwise lightly loaded. Concerning the VEGA program, in order to demonstrate VEGA Launch Vehicle (LV) on-ground qualification, prior to flight, to the acoustic load, the following tests have been performed: small-scale acoustic test intended for the determination of the acoustic loading of the LV and its nature and full-scale acoustic chamber test to determine the vibro-acoustic response of the structures as well as of the acoustic cavities.

  2. Methodology for fault detection in induction motors via sound and vibration signals

    NASA Astrophysics Data System (ADS)

    Delgado-Arredondo, Paulo Antonio; Morinigo-Sotelo, Daniel; Osornio-Rios, Roque Alfredo; Avina-Cervantes, Juan Gabriel; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene de Jesus

    2017-01-01

    Nowadays, timely maintenance of electric motors is vital to keep up the complex processes of industrial production. There are currently a variety of methodologies for fault diagnosis. Usually, the diagnosis is performed by analyzing current signals at a steady-state motor operation or during a start-up transient. This method is known as motor current signature analysis, which identifies frequencies associated with faults in the frequency domain or by the time-frequency decomposition of the current signals. Fault identification may also be possible by analyzing acoustic sound and vibration signals, which is useful because sometimes this information is the only available. The contribution of this work is a methodology for detecting faults in induction motors in steady-state operation based on the analysis of acoustic sound and vibration signals. This proposed approach uses the Complete Ensemble Empirical Mode Decomposition for decomposing the signal into several intrinsic mode functions. Subsequently, the frequency marginal of the Gabor representation is calculated to obtain the spectral content of the IMF in the frequency domain. This proposal provides good fault detectability results compared to other published works in addition to the identification of more frequencies associated with the faults. The faults diagnosed in this work are two broken rotor bars, mechanical unbalance and bearing defects.

  3. Distributed bearing fault diagnosis based on vibration analysis

    NASA Astrophysics Data System (ADS)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  4. Time-Varying Vocal Folds Vibration Detection Using a 24 GHz Portable Auditory Radar

    PubMed Central

    Hong, Hong; Zhao, Heng; Peng, Zhengyu; Li, Hui; Gu, Chen; Li, Changzhi; Zhu, Xiaohua

    2016-01-01

    Time-varying vocal folds vibration information is of crucial importance in speech processing, and the traditional devices to acquire speech signals are easily smeared by the high background noise and voice interference. In this paper, we present a non-acoustic way to capture the human vocal folds vibration using a 24-GHz portable auditory radar. Since the vocal folds vibration only reaches several millimeters, the high operating frequency and the 4 × 4 array antennas are applied to achieve the high sensitivity. The Variational Mode Decomposition (VMD) based algorithm is proposed to decompose the radar-detected auditory signal into a sequence of intrinsic modes firstly, and then, extract the time-varying vocal folds vibration frequency from the corresponding mode. Feasibility demonstration, evaluation, and comparison are conducted with tonal and non-tonal languages, and the low relative errors show a high consistency between the radar-detected auditory time-varying vocal folds vibration and acoustic fundamental frequency, except that the auditory radar significantly improves the frequency-resolving power. PMID:27483261

  5. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes.

    PubMed

    Conlon, Stephen C; Fahnline, John B; Semperlotti, Fabio

    2015-01-01

    The concept of an Acoustic Black Hole (ABH) has been developed and exploited as an approach for passively attenuating structural vibration. The basic principle of the ABH relies on proper tailoring of the structure geometrical properties in order to produce a gradual reduction of the flexural wave speed, theoretically approaching zero. For practical systems the idealized "zero" wave speed condition cannot be achieved so the structural areas of low wave speed are treated with surface damping layers to allow the ABH to approach the idealized dissipation level. In this work, an investigation was conducted to assess the effects that distributions of ABHs embedded in plate-like structures have on both vibration and structure radiated sound, focusing on characterizing and improving low frequency performance. Finite Element and Boundary Element models were used to assess the vibration response and radiated sound power performance of several plate configurations, comparing baseline uniform plates with embedded periodic ABH designs. The computed modal loss factors showed the importance of the ABH unit cell low order modes in the overall vibration reduction effectiveness of the embedded ABH plates at low frequencies where the free plate bending wavelengths are longer than the scale of the ABH.

  6. Whistle register: a preliminary investigation by HSDI visualization and acoustics on female cases

    NASA Astrophysics Data System (ADS)

    Di Corcia, Antonio; Fussi, Franco

    2012-02-01

    In this study we investigated laryngeal behaviors involved during vocal production of highest female vocal ranges in Flute in M3 Register, in Whistle Register and in a newly formulated by us, Hiss Register. Observations were carried with stroboscopy and High Speed Digital Imaging and with spectrographic and psycho-acoustic analysis by means of a software system having a wide spectral range (0-20.000 Hz). Results indicate that at the highest pitch vocal folds vibration is absent or significantly reduced, glottic contact is incomplete. These acoustic form of extreme pitch levels comprised intra-harmonic noise and overtones within 10 to 18 kHz range.

  7. The Application of Acoustic Measurements and Audio Recordings for Diagnosis of In-Flight Hardware Anomalies

    NASA Technical Reports Server (NTRS)

    Welsh, David; Denham, Samuel; Allen, Christopher

    2011-01-01

    In many cases, an initial symptom of hardware malfunction is unusual or unexpected acoustic noise. Many industries such as automotive, heating and air conditioning, and petro-chemical processing use noise and vibration data along with rotating machinery analysis techniques to identify noise sources and correct hardware defects. The NASA/Johnson Space Center Acoustics Office monitors the acoustic environment of the International Space Station (ISS) through periodic sound level measurement surveys. Trending of the sound level measurement survey results can identify in-flight hardware anomalies. The crew of the ISS also serves as a "detection tool" in identifying unusual hardware noises; in these cases the spectral analysis of audio recordings made on orbit can be used to identify hardware defects that are related to rotating components such as fans, pumps, and compressors. In this paper, three examples of the use of sound level measurements and audio recordings for the diagnosis of in-flight hardware anomalies are discussed: identification of blocked inter-module ventilation (IMV) ducts, diagnosis of abnormal ISS Crew Quarters rack exhaust fan noise, and the identification and replacement of a defective flywheel assembly in the Treadmill with Vibration Isolation (TVIS) hardware. In each of these examples, crew time was saved by identifying the off nominal component or condition that existed and in directing in-flight maintenance activities to address and correct each of these problems.

  8. Books on acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil A.

    2004-05-01

    The legacy of a man is not limited to just his projects. His writings in many cases are a more lasting, and a definitely more accessible, monument. For 60 years, Leo L. Beranek has produced books on acoustics, acoustic measurements, sound control, music and architecture, noise and vibration control, concert halls, and opera houses in addition to teaching and consulting. His books are standard references and still cited in other books and in technical and professional articles. Many of his books were among, if not, the first comprehensive modern treatment of the subject and many are still foremost. A review of Dr. Beranek's many books as well as some anecdotes about the circumstances and consequences of same will be presented.

  9. Study on Nonlinear Vibration Analysis of Gear System with Random Parameters

    NASA Astrophysics Data System (ADS)

    Tong, Cao; Liu, Xiaoyuan; Fan, Li

    2018-03-01

    In order to study the dynamic characteristics of gear nonlinear vibration system and the influence of random parameters, firstly, a nonlinear stochastic vibration analysis model of gear 3-DOF is established based on Newton’s Law. And the random response of gear vibration is simulated by stepwise integration method. Secondly, the influence of stochastic parameters such as meshing damping, tooth side gap and excitation frequency on the dynamic response of gear nonlinear system is analyzed by using the stability analysis method such as bifurcation diagram and Lyapunov exponent method. The analysis shows that the stochastic process can not be neglected, which can cause the random bifurcation and chaos of the system response. This study will provide important reference value for vibration engineering designers.

  10. Sonic Booms And Building Vibration Revisited

    NASA Astrophysics Data System (ADS)

    Sutherland, Louis C.; Kryter, Karl D.; Czech, Joseph

    2006-05-01

    Lessons learned from the 1960's sonic boom tests at St. Louis, Oklahoma City and at Edwards Air Force Base (EAFB) and more recently in communities near EAFB and Nellis AFB are briefly reviewed from the standpoint of building vibration and rattle response induced by the sonic boom signature. Available data on the vibro-acoustic threshold of rattle are considered along with the principal sonic boom signature parameters, peak overpressure and duration, which drive the low frequency vibration response of buildings to sonic booms. Implications for the current effort to develop an acceptable sonic boom signature are considered with this overview of current understanding of building vibration response to sonic booms. Possible gaps in this current knowledge for current technology boom signatures are considered.

  11. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    PubMed

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  12. Annoyance due to railway vibration at different times of the day.

    PubMed

    Peris, Eulalia; Woodcock, James; Sica, Gennaro; Moorhouse, Andrew T; Waddington, David C

    2012-02-01

    The time of day when vibration occurs is considered as a factor influencing the human response to vibration. The aim of the present paper is to identify the times of day during which railway vibration causes the greatest annoyance, to measure the differences between annoyance responses for different time periods and to obtain estimates of the time of day penalties. This was achieved using data from case studies comprised of face-to-face interviews and internal vibration measurements (N=755). Results indicate that vibration annoyance differs with time of day and that separate time of day weights can be applied when considering exposure-response relationships from railway vibration in residential environments. © 2012 Acoustical Society of America

  13. Acoustic plane waves incident on an oblique clamped panel in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1980-01-01

    The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.

  14. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  15. Systems and methods for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D.

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  16. Resonant capacitive MEMS acoustic emission transducers

    NASA Astrophysics Data System (ADS)

    Ozevin, D.; Greve, D. W.; Oppenheim, I. J.; Pessiki, S. P.

    2006-12-01

    We describe resonant capacitive MEMS transducers developed for use as acoustic emission (AE) detectors, fabricated in the commercial three-layer polysilicon surface micromachining process (MUMPs). The 1 cm square device contains six independent transducers in the frequency range between 100 and 500 kHz, and a seventh transducer at 1 MHz. Each transducer is a parallel plate capacitor with one plate free to vibrate, thereby causing a capacitance change which creates an output signal in the form of a current under a dc bias voltage. With the geometric proportions we employed, each transducer responds with two distinct resonant frequencies. In our design the etch hole spacing was chosen to limit squeeze film damping and thereby produce an underdamped vibration when operated at atmospheric pressure. Characterization experiments obtained by capacitance and admittance measurements are presented, and transducer responses to physically simulated AE source are discussed. Finally, we report our use of the device to detect acoustic emissions associated with crack initiation and growth in weld metal.

  17. A review on the major sources of the interior sound vibration and riding comfort in vehicles

    NASA Astrophysics Data System (ADS)

    AlDhahebi, Adel Mohammed; Junoh, Ahmad Kadri; Ahmed, Amran

    2016-10-01

    Vehicle interior comfort is a crucial criteria that is considered by the perspective customer when purchasing a new vehicle. Meanwhile, automotive industries face the challenges for producing vehicles with better design criteria that meet the expectations of customers and eventually promote higher competitive advantages in areas of acoustic performance, cost effectiveness, product weight, and global competitive market. This review presents the major sources that influence the generation of noise and vibration in the interior part of the vehicles. It also demonstrates the relative methods that are used to assess the interior acoustics and vibration and further improve the riding comfort. This study is of a particular importance for acoustical researchers and automobile engineers, where it brings about suggestions and fundamentals that can contribute to acoustical comfort in vehicles.

  18. Lateral vibration behavior analysis and TLD vibration absorption design of the soft yoke single-point mooring system

    NASA Astrophysics Data System (ADS)

    Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu

    2017-06-01

    Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.

  19. Energy Finite Element Analysis for Computing the High Frequency Vibration of the Aluminum Testbed Cylinder and Correlating the Results to Test Data

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas

    2005-01-01

    The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.

  20. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  1. Exploring Modeling Options and Conversion of Average Response to Appropriate Vibration Envelopes for a Typical Cylindrical Vehicle Panel with Rib-stiffened Design

    NASA Technical Reports Server (NTRS)

    Harrison, Phil; LaVerde, Bruce; Teague, David

    2009-01-01

    Although applications for Statistical Energy Analysis (SEA) techniques are more widely used in the aerospace industry today, opportunities to anchor the response predictions using measured data from a flight-like launch vehicle structure are still quite valuable. Response and excitation data from a ground acoustic test at the Marshall Space Flight Center permitted the authors to compare and evaluate several modeling techniques available in the SEA module of the commercial code VA One. This paper provides an example of vibration response estimates developed using different modeling approaches to both approximate and bound the response of a flight-like vehicle panel. Since both vibration response and acoustic levels near the panel were available from the ground test, the evaluation provided an opportunity to learn how well the different modeling options can match band-averaged spectra developed from the test data. Additional work was performed to understand the spatial averaging of the measurements across the panel from measured data. Finally an evaluation/comparison of two conversion approaches from the statistical average response results that are output from an SEA analysis to a more useful envelope of response spectra appropriate to specify design and test vibration levels for a new vehicle.

  2. Vibrations used to talk to quantum circuits

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-03-01

    The budding discipline of quantum acoustics could shake up embryonic quantum computers. Such machines run by flipping quantum bits, or qubits, that can be set not only to zero or one, but, bizarrely, to zero and one at the same time. The most advanced qubits are circuits made of superconducting metal, and to control or read out a qubit, researchers make it interact with a microwave resonator—typically a strip of metal on the qubit chip or a finger-size cavity surrounding it—which rings with microwave photons like an organ pipe rings with sound. But some physicists see advantages to replacing the microwave resonator with a mechanical one that rings with quantized vibrations, or phonons. A well-designed acoustic resonator could ring longer than a microwave one does and could be far smaller, enabling researchers to produce more compact technologies. But first scientists must gain quantum control over vibrations. And several groups are on the cusp of doing that, as they reported at a recent meeting.

  3. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  4. Application of a computerized vibroacoustic data bank for random vibration criteria development

    NASA Technical Reports Server (NTRS)

    Ferebee, R. C.

    1982-01-01

    A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablets, and a dry silver hard copier which are all desk top type hardware and occupy minimal space. Currently, the data bank contains data from the Saturn 5 and Titan 3 flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one third octave band plots over the frequency range from 20 to 2000 Hz. The data were stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data were statistically analyzed, and the resulting 97.5 percent confidence levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. A user's manual is included to guide potential users through the programs.

  5. Vibration measurement by atomic force microscopy with laser readout

    NASA Astrophysics Data System (ADS)

    Snitka, Valentinas J.; Mizariene, Vida; Kalinauskas, Margiris; Lucinskas, Paulius

    1998-06-01

    Micromachined cantilever beams are widely used for different microengineering and nanotechnology actuators and sensors applications. The micromechanical cantilever tip-based data storage devices with reading real data at the rates exceeding 1Mbit/s have been demonstrated. The vibrational noise spectrum of a cantilever limits the data storage resolution. Therefore the possibility to measure the microvibrations and acoustic fields in different micromachined devices are of great interest. We describe a method to study a micromechanical cantilever and surface vibrations based on laser beam deflection measurements. The influence of piezoelectric plate vibrations and the tip- surface contact condition on the cantilever vibrations were investigated in the frequency range of 1-200 kHz. The experiments were performed using the measurement results. The V-shaped cantilevers exited by the normal vibrations due to the non-linearity at the tip-surface contact vibrates with a complex motion and has a lateral vibration mode coupled with normal vibration mode. The possibility to use laser deflection technique for the vibration measurements in micromachined structures with nano resolution is shown.

  6. Acoustic Analysis of Voice in Singers: A Systematic Review

    ERIC Educational Resources Information Center

    Gunjawate, Dhanshree R.; Ravi, Rohit; Bellur, Rajashekhar

    2018-01-01

    Purpose: Singers are vocal athletes having specific demands from their voice and require special consideration during voice evaluation. Presently, there is a lack of standards for acoustic evaluation in them. The aim of the present study was to systematically review the available literature on the acoustic analysis of voice in singers. Method: A…

  7. A Meta-Analysis: Acoustic Measurement of Roughness and Breathiness

    ERIC Educational Resources Information Center

    v. Latoszek, Ben Barsties; Maryn, Youri; Gerrits, Ellen; De Bodt, Marc

    2018-01-01

    Purpose: Over the last 5 decades, many acoustic measures have been created to measure roughness and breathiness. The aim of this study is to present a meta-analysis of correlation coefficients (r) between auditory-perceptual judgment of roughness and breathiness and various acoustic measures in both sustained vowels and continuous speech. Method:…

  8. Fault diagnosis of helical gearbox using acoustic signal and wavelets

    NASA Astrophysics Data System (ADS)

    Pranesh, SK; Abraham, Siju; Sugumaran, V.; Amarnath, M.

    2017-05-01

    The efficient transmission of power in machines is needed and gears are an appropriate choice. Faults in gears result in loss of energy and money. The monitoring and fault diagnosis are done by analysis of the acoustic and vibrational signals which are generally considered to be unwanted by products. This study proposes the usage of machine learning algorithm for condition monitoring of a helical gearbox by using the sound signals produced by the gearbox. Artificial faults were created and subsequently signals were captured by a microphone. An extensive study using different wavelet transformations for feature extraction from the acoustic signals was done, followed by waveletselection and feature selection using J48 decision tree and feature classification was performed using K star algorithm. Classification accuracy of 100% was obtained in the study

  9. Analysis of whole-body vibration on rheological models for tissues

    NASA Astrophysics Data System (ADS)

    Neamţu, A.; Simoiu, D.; Nyaguly, E.; Crastiu, I.; Bereteu, L.

    2018-01-01

    Whole body vibrations have become a very popular method in recent years, both in physical therapy and in sports. This popularity is due to the fact that, as a result of analyzing the groups of subjects, the effects of small amplitude vibration and low frequency vibration, it was found an increase in the force developed by the feet, a hardening of bone strength or an increase in bone density. In this paper we propose to give a possible explanation of the stress relieving in muscle and/or bone after whole body vibration treatment. To do this we consider some rheological models which after whole body vibrations and after the analysis of their response lead to various experiments.

  10. Progressive phase trends in plates with embedded acoustic black holes.

    PubMed

    Conlon, Stephen C; Feurtado, Philip A

    2018-02-01

    Acoustic black holes (ABHs) have been explored and demonstrated to be effective passive treatments for broadband noise and vibration control. Performance metrics for assessing damping concepts are often focused on maximizing structural damping loss factors. Optimally performing damping treatments can reduce the resonant response of a driven system well below the direct field response. This results in a finite structure whose vibration input-output response follows that of an infinite structure. The vibration mobility transfer functions between locations on a structure can be used to assess the structure's vibration response phase, and compare its phase response characteristics to those of idealized systems. This work experimentally explores the phase accumulation in finite plates, with and without embedded grids of ABHs. The measured results are compared and contrasted with theoretical results for finite and infinite uniform plates. Accumulated phase characteristics, their spatial dependence and limits, are examined for the plates and compared to theoretical estimates. The phase accumulation results show that the embedded acoustic black hole treatments can significantly enhance the damping of the plates to the point that their phase accumulation follows that of an infinite plate.

  11. Analysis of Design Parameters Effects on Vibration Characteristics of Fluidlastic Isolators

    NASA Astrophysics Data System (ADS)

    Deng, Jing-hui; Cheng, Qi-you

    2017-07-01

    The control of vibration in helicopters which consists of reducing vibration levels below the acceptable limit is one of the key problems. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters is very important to obtain efficient vibration-suppressed. Aiming at getting the effect of design parameters on the property of fluidlastic isolator, a dynamic equation is set up based on the theory of dynamics. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. Dynamic analysis results have shown that fluidlastic isolator can reduce the vibration effectively. Analysis results also showed that the design parameters such as the fluid density, viscosity coefficient, stiffness (K1 and K2) and loss coefficient have obvious influence on the performance of isolator. The efficient vibration-suppressed can be obtained by the design optimization of parameters.

  12. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Dynamics of acoustically levitated disk samples.

    PubMed

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gammaacoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  14. Dynamics of acoustically levitated disk samples

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King’s theory, and a larger force can be obtained for thin disks. When the disk aspect ratio γ is larger than a critical value γ*(≈1.9) and the disk radius a is smaller than the critical value a*(γ) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples (γ⩽γ*) can be formulated by the shape factor f(γ,a) when a⩽a*(γ) . It is found experimentally that a necessary condition of the acoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval Hn . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  15. Granular metamaterials for vibration mitigation

    NASA Astrophysics Data System (ADS)

    Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.

    2013-09-01

    Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.

  16. Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor.

    PubMed

    Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding

    2018-03-01

    A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor's working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0-6000 Hz for vibration sensing and 0-100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration.

  17. Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor

    PubMed Central

    Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding

    2018-01-01

    A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor’s working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0–6000 Hz for vibration sensing and 0–100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration. PMID:29494544

  18. Coherent acoustic phonons in nanostructures

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.

    2008-02-01

    Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.

  19. Application of the Spectral Element Method to Acoustic Radiation

    NASA Technical Reports Server (NTRS)

    Doyle, James F.; Rizzi, Stephen A. (Technical Monitor)

    2000-01-01

    This report summarizes research to develop a capability for analysis of interior noise in enclosed structures when acoustically excited by an external random source. Of particular interest was the application to the study of noise and vibration transmission in thin-walled structures as typified by aircraft fuselages. Three related topics are focused upon. The first concerns the development of a curved frame spectral element, the second shows how the spectral element method for wave propagation in folded plate structures is extended to problems involving curved segmented plates. These are of significance because by combining these curved spectral elements with previously presented flat spectral elements, the dynamic response of geometrically complex structures can be determined. The third topic shows how spectral elements, which incorporate the effect of fluid loading on the structure, are developed for analyzing acoustic radiation from dynamically loaded extended plates.

  20. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice

    2014-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  1. Air-coupled acoustic thermography for in-situ evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor); Yost, William T. (Inventor)

    2010-01-01

    Acoustic thermography uses a housing configured for thermal, acoustic and infrared radiation shielding. For in-situ applications, the housing has an open side adapted to be sealingly coupled to a surface region of a structure such that an enclosed chamber filled with air is defined. One or more acoustic sources are positioned to direct acoustic waves through the air in the enclosed chamber and towards the surface region. To activate and control each acoustic source, a pulsed signal is applied thereto. An infrared imager focused on the surface region detects a thermal image of the surface region. A data capture device records the thermal image in synchronicity with each pulse of the pulsed signal such that a time series of thermal images is generated. For enhanced sensitivity and/or repeatability, sound and/or vibrations at the surface region can be used in feedback control of the pulsed signal applied to the acoustic sources.

  2. Optical control of the coherent acoustic vibration of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Arbouet, A.; Del Fatti, N.; Vallee, F.

    2006-04-01

    Optical control of the coherent breathing vibrations of silver nanospheres is demonstrated using a high-sensitivity femtosecond pump-probe technique in a double-pump pulse configuration. Oscillation of the fundamental mode that usually dominates the time-domain vibrational response can thus be stopped, permitting observation of the first order radial mode and determination of its properties. These are found to be in agreement with the predictions of the model of an elastic sphere embedded in an elastic matrix.

  3. Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.

  4. Piezoelectric Vibrational and Acoustic Alert for a Personal Communication Device

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Hellbaum, Richard F. (Inventor); Daugherty, Robert H. (Inventor); Scholz, Raymond C. (Inventor); Little, Bruce D. (Inventor); Fox, Robert L. (Inventor); Denhardt, Gerald A. (Inventor); Jang, SeGon (Inventor); Balein, Rizza (Inventor)

    2001-01-01

    An alert apparatus for a personal communication device includes a mechanically prestressed piezoelectric wafer positioned within the personal communication device and an alternating voltage input line coupled at two points of the wafer where polarity is recognized. The alert apparatus also includes a variable frequency device coupled to the alternating voltage input line, operative to switch the alternating voltage on the alternating voltage input line at least between an alternating voltage having a first frequency and an alternating voltage having a second frequency. The first frequency is preferably sufficiently high so as to cause the wafer to vibrate at a resulting frequency that produces a sound perceptible by a human ear, and the second frequency is preferably sufficiently low so as to cause the wafer to vibrate at a resulting frequency that produces a vibration readily felt by a holder of the personal communication device.

  5. Vibration Damping Via Acoustic Treatment Attached To Vehicle Body Panels

    NASA Astrophysics Data System (ADS)

    Gambino, Carlo

    Currently, in the automotive industry, the control of noise and vibration is the subject of much research, oriented towards the creation of innovative solutions to improve the comfort of the vehicle and to reduce its cost and weight. This thesis fits into this particular framework, as it aims to investigate the possibility of integrating the functions of sound absorptioninsulation and vibration damping in a unique component. At present the bituminous viscoelastic treatments, which are bonded to the car body panels, take charge of the vibration damping, while the sound absorption and insulation is obtained by means of the poroacoustic treatments. The solution proposed here consists of employing porous materials to perform both these functions, thus allowing the partial or complete removal of the viscoelastic damping treatments from the car body. This should decrease the weight of the vehicle, reducing fuel consumption and emissions, and it might also benefit production costs.

  6. Measuring vibrational motion in the presence of speckle using off-axis holography.

    PubMed

    Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony

    2016-02-20

    We present a holographic laser vibrometer designed to mitigate the effects of speckle noise when measuring the vibrational motion of a rough object. We show that multiplexing the interferometric measurement across 105 pixels provides a 50 dB reduction in the incoherent noise. Using a high-speed camera, this enables a displacement sensitivity of 50  fm/√Hz with a bandwidth of 12.5 kHz when measuring rough objects, representing a 20 dB improvement compared with a commercially available single-detector-based laser vibrometer. Finally, we show that the holographic vibrometer system is capable of stand-off acoustic sensing by measuring the acoustic-induced vibrations of a piece of paper with sensitivity as low as 10 dB (re 20 μPa). The ability to sensitively and noninvasively measure the vibrations of arbitrary rough surfaces could enable new applications in laser vibrometry.

  7. Screw compressor analysis from a vibration point-of-view

    NASA Astrophysics Data System (ADS)

    Hübel, D.; Žitek, P.

    2017-09-01

    Vibrations are a very typical feature of all compressors and are given great attention in the industry. The reason for this interest is primarily the negative influence that it can have on both the operating staff and the entire machine's service life. The purpose of this work is to describe the methodology of screw compressor analysis from a vibration point-of-view. This analysis is an essential part of the design of vibro-diagnostics of screw compressors with regard to their service life.

  8. Screening Efficiency Analysis of Vibrosieves with the Circular Vibrations

    NASA Astrophysics Data System (ADS)

    Djoković, Jelena M.; Tanikić, Dejan I.; Nikolić, Ružica R.; Kalinović, Saša M.

    2017-06-01

    The analysis of influence of factors that depend on construction characteristics of the vibrosieves with circular vibrations on screening efficiency is presented in this paper. The dependence of the screening efficiency on the aperture size, length and inclination of the screen, as well as on vibration amplitude, is considered. Based on obtained results, one can see that the screening efficiency increases with vibration amplitude and the screen length increase. Further, increases of the screen inclination and aperture size are causing an initial increase of the screening efficiency, which is later decreasing.

  9. Structural-Vibration-Response Data Analysis

    NASA Technical Reports Server (NTRS)

    Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.

    1983-01-01

    Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.

  10. Analysis of cracked RC beams under vibration

    NASA Astrophysics Data System (ADS)

    Capozucca, R.; Magagnini, E.

    2017-05-01

    Among the methods of monitoring of integrity, vibration analysis is more convenient as non-destructive testing (NDT) method. Many aspects regarding the vibration monitoring of the structural integrity of damaged RC elements have not been completely analysed in literature. The correlation between the development of the crack pattern on concrete surface under bending loadings, as well as the width and depth of cracks, and the variation of dynamic parameters on a structural element is an important aspects that has to be more investigated. This paper deals with cracked RC beams controlled by NDT based on natural vibration, which may be correlated to damage degree due to cracking of concrete under severe state of loading. An experimental investigation on the assessment of RC beams in different scale under loading has been done through dynamic tests in different constraint conditions of edges measuring frequency values and frequency variation. Envelope of Frequency Response Functions (FRFs) are shown and the changes of natural frequency values are related to the damage degree of RC beams subjected to static tests. Finally, a comparison between data obtained by finite element analysis and experimental results is shown.

  11. Pattern-formation under acoustic driving forces

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  12. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications.

    PubMed

    Segura-Garcia, Jaume; Navarro-Ruiz, Juan Miguel; Perez-Solano, Juan J; Montoya-Belmonte, Jose; Felici-Castell, Santiago; Cobos, Maximo; Torres-Aranda, Ana M

    2018-02-26

    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system.

  13. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications

    PubMed Central

    Montoya-Belmonte, Jose; Cobos, Maximo; Torres-Aranda, Ana M.

    2018-01-01

    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system. PMID:29495407

  14. Good Vibrations

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A Small Business Innovation Research (SBIR) sponsorship from NASA's Dryden Flight Research Center, assisted MetroLaser, of Irvine, California, in the development of a self-aligned laser vibrometer system. VibroMet, capable of measuring surface vibrations in a variety of industries, provides information on the structural integrity and acoustical characteristics of manufactured products. This low-cost, easy-to-use sensor performs vibration measurement from distances of up to three meters without the need for adjustment. The laser beam is simply pointed at the target and the system then uses a compact laser diode to illuminate the surface and to subsequently analyze the reflected light. The motion of the surface results in a Doppler shift that is measured with very high precision. VibroMet is considered one of the many behind-the-scenes tools that can be relied on to assure the quality, reliability and safety of everything from airplane panels to disk brakes

  15. Assessing the Underwater Acoustics of the World's Largest Vibration Hammer (OCTA-KONG) and Its Potential Effects on the Indo-Pacific Humpbacked Dolphin (Sousa chinensis)

    PubMed Central

    Wang, Zhitao; Wu, Yuping; Duan, Guoqin; Cao, Hanjiang; Liu, Jianchang; Wang, Kexiong; Wang, Ding

    2014-01-01

    Anthropogenic noise in aquatic environments is a worldwide concern due to its potential adverse effects on the environment and aquatic life. The Hongkong-Zhuhai-Macao Bridge is currently under construction in the Pearl River Estuary, a hot spot for the Indo-Pacific humpbacked dolphin (Sousa chinensis) in China. The OCTA-KONG, the world's largest vibration hammer, is being used during this construction project to drive or extract steel shell piles 22 m in diameter. This activity poses a substantial threat to marine mammals, and an environmental assessment is critically needed. The underwater acoustic properties of the OCTA-KONG were analyzed, and the potential impacts of the underwater acoustic energy on Sousa, including auditory masking and physiological impacts, were assessed. The fundamental frequency of the OCTA-KONG vibration ranged from 15 Hz to 16 Hz, and the noise increments were below 20 kHz, with a dominant frequency and energy below 10 kHz. The resulting sounds are most likely detectable by Sousa over distances of up to 3.5 km from the source. Although Sousa clicks do not appear to be adversely affected, Sousa whistles are susceptible to auditory masking, which may negatively impact this species' social life. Therefore, a safety zone with a radius of 500 m is proposed. Although the zero-to-peak source level (SL) of the OCTA-KONG was lower than the physiological damage level, the maximum root-mean-square SL exceeded the cetacean safety exposure level on several occasions. Moreover, the majority of the unweighted cumulative source sound exposure levels (SSELs) and the cetacean auditory weighted cumulative SSELs exceeded the acoustic threshold levels for the onset of temporary threshold shift, a type of potentially recoverable auditory damage resulting from prolonged sound exposure. These findings may aid in the identification and design of appropriate mitigation methods, such as the use of air bubble curtains, “soft start” and “power down

  16. Assessing the underwater acoustics of the world's largest vibration hammer (OCTA-KONG) and its potential effects on the Indo-Pacific humpbacked dolphin (Sousa chinensis).

    PubMed

    Wang, Zhitao; Wu, Yuping; Duan, Guoqin; Cao, Hanjiang; Liu, Jianchang; Wang, Kexiong; Wang, Ding

    2014-01-01

    Anthropogenic noise in aquatic environments is a worldwide concern due to its potential adverse effects on the environment and aquatic life. The Hongkong-Zhuhai-Macao Bridge is currently under construction in the Pearl River Estuary, a hot spot for the Indo-Pacific humpbacked dolphin (Sousa chinensis) in China. The OCTA-KONG, the world's largest vibration hammer, is being used during this construction project to drive or extract steel shell piles 22 m in diameter. This activity poses a substantial threat to marine mammals, and an environmental assessment is critically needed. The underwater acoustic properties of the OCTA-KONG were analyzed, and the potential impacts of the underwater acoustic energy on Sousa, including auditory masking and physiological impacts, were assessed. The fundamental frequency of the OCTA-KONG vibration ranged from 15 Hz to 16 Hz, and the noise increments were below 20 kHz, with a dominant frequency and energy below 10 kHz. The resulting sounds are most likely detectable by Sousa over distances of up to 3.5 km from the source. Although Sousa clicks do not appear to be adversely affected, Sousa whistles are susceptible to auditory masking, which may negatively impact this species' social life. Therefore, a safety zone with a radius of 500 m is proposed. Although the zero-to-peak source level (SL) of the OCTA-KONG was lower than the physiological damage level, the maximum root-mean-square SL exceeded the cetacean safety exposure level on several occasions. Moreover, the majority of the unweighted cumulative source sound exposure levels (SSELs) and the cetacean auditory weighted cumulative SSELs exceeded the acoustic threshold levels for the onset of temporary threshold shift, a type of potentially recoverable auditory damage resulting from prolonged sound exposure. These findings may aid in the identification and design of appropriate mitigation methods, such as the use of air bubble curtains, "soft start" and "power down" techniques.

  17. Characterization and calibration of piezoelectric polymers: In situ measurements of body vibrations

    NASA Astrophysics Data System (ADS)

    Kappel, Marcel; Abel, Markus; Gerhard, Reimund

    2011-07-01

    Piezoelectric polymers are known for their flexibility in applications, mainly due to their bending ability, robustness, and variable sensor geometry. It is an optimal material for minimal-invasive investigations in vibrational systems, e.g., for wood, where acoustical impedance matches particularly well. Many applications may be imagined, e.g., monitoring of buildings, vehicles, machinery, alarm systems, such that our investigations may have a large impact on technology. Longitudinal piezoelectricity converts mechanical vibrations normal to the polymer-film plane into an electrical signal, and the respective piezoelectric coefficient needs to be carefully determined in dependence on the relevant material parameters. In order to evaluate efficiency and durability for piezopolymers, we use polyvinylidene fluoride and measure the piezoelectric coefficient with respect to static pressure, amplitude of the dynamically applied force, and long-term stability. A known problem is the slow relaxation of the material towards equilibrium, if the external pressure changes; here, we demonstrate how to counter this problem with careful calibration. Since our focus is on acoustical measurements, we determine accurately the frequency response curve - for acoustics probably the most important characteristic. Eventually, we show that our piezopolymer transducers can be used as a calibrated acoustical sensors for body vibration measurements on a wooden musical instrument, where it is important to perform minimal-invasive measurements. A comparison with the simultaneously recorded airborne sound yields important insight of the mechanism of sound radiation in comparison with the sound propagating in the material. This is especially important for transient signals, where not only the long-living eigenmodes contribute to the sound radiation. Our analyses support that piezopolymer sensors can be employed as a general tool for the determination of the internal dynamics of vibrating systems.

  18. Holding characteristics of planar objects suspended by near-field acoustic levitation

    PubMed

    Matsuo; Koike; Nakamura; Ueha; Hashimoto

    2000-03-01

    The authors have found the acoustic levitation phenomenon where planar objects of 10 kg weight can be levitated near a vibration surface. This phenomenon has been studied for non-contact transportation. A circular planar object can be suspended without contacting a circular vibration plate. We have studied the holding force which acts horizontally on the levitated objects. The horizontal position of the object is stabilized by this force. In this paper, we discuss the effect of the radius of a levitated object, levitation distance, displacement amplitude of the vibration plate and the vibration mode on the suspending force.

  19. Contribution of the supraglottic larynx to the vocal product: imaging and acoustic analysis

    NASA Astrophysics Data System (ADS)

    Gracco, L. Carol

    1996-04-01

    Horizontal supraglottic laryngectomy is a surgical procedure to remove a mass lesion located in the region of the pharynx superior to the true vocal folds. In contrast to full or partial laryngectomy, patients who undergo horizontal supraglottic laryngectomy often present with little or nor involvement to the true vocal folds. This population provides an opportunity to examine the acoustic consequences of altering the pharynx while sparing the laryngeal sound source. Acoustic and magnetic resonance imaging (MRI) data were acquired in a group of four patients before and after supraglottic laryngectomy. Acoustic measures included the identification of vocal tract resonances and the fundamental frequency of the vocal fold vibration. 3D reconstruction of the pharyngeal portion of each subjects' vocal tract were made from MRIs taken during phonation and volume measures were obtained. These measures reveal a variable, but often dramatic difference in the surgically-altered area of the pharynx and changes in the formant frequencies of the vowel/i/post surgically. In some cases the presence of the tumor created a deviation from the expected formant values pre-operatively with post-operative values approaching normal. Patients who also underwent radiation treatment post surgically tended to have greater constriction in the pharyngeal area of the vocal tract.

  20. Acoustic excitations in glassy sorbitol and their relation with the fragility and the boson peak

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Baldi, G.; Scarponi, F.; Fioretto, D.; Giordano, V. M.; Monaco, G.

    2012-12-01

    We report a detailed analysis of the dynamic structure factor of glassy sorbitol by using inelastic X-ray scattering and previously measured light scattering data [B. Ruta, G. Monaco, F. Scarponi, and D. Fioretto, Philos. Mag. 88, 3939 (2008), 10.1080/14786430802317586]. The thus obtained knowledge on the density-density fluctuations at both the mesoscopic and macroscopic length scale has been used to address two debated topics concerning the vibrational properties of glasses. The relation between the acoustic modes and the universal boson peak (BP) appearing in the vibrational density of states of glasses has been investigated, also in relation with some recent theoretical models. Moreover, the connection between the elastic properties of glasses and the slowing down of the structural relaxation process in supercooled liquids has been scrutinized. For what concerns the first issue, it is here shown that the wave vector dependence of the acoustic excitations can be used, in sorbitol, to quantitatively reproduce the shape of the boson peak, supporting the relation between BP and acoustic modes. For what concerns the second issue, a proper study of elasticity over a wide spatial range is shown to be fundamental in order to investigate the relation between elastic properties and the slowing down of the dynamics in the corresponding supercooled liquid phase.

  1. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Hunt, Ron

    2013-01-01

    Fluid structural interaction problems that estimate panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. Even when the analyst elects to use a fitted function for the spatial correlation an error may be introduced if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Both qualitative and quantitative illustrations evaluating the adequacy of different patch density assumptions to approximate the fitted spatial correlation function are provided. The actual response of a typical vehicle panel system is then evaluated in a convergence study where the patch density assumptions are varied over the same finite element model. The convergence study results are presented illustrating the impact resulting from a poor choice of patch density. The fitted correlation function used in this study represents a Diffuse Acoustic Field (DAF) excitation of the panel to produce vibration response.

  2. Effects of vibration and shock on the performance of gas-bearing space-power Brayton cycle turbomachinery. Part 3: Sinusoidal and random vibration data reduction and evaluation, and random vibration probability analysis

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.; Chiang, T.; Badgley, R. H.

    1973-01-01

    The random vibration response of a gas bearing rotor support system has been experimentally and analytically investigated in the amplitude and frequency domains. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10 KWe turbogenerator had previously been subjected in the laboratory to external random vibrations, and the response data recorded on magnetic tape. This data has now been experimentally analyzed for amplitude distribution and magnetic tape. This data has now been experimentally analyzed for amplitude distribution and frequency content. The results of the power spectral density analysis indicate strong vibration responses for the major rotor-bearing system components at frequencies which correspond closely to their resonant frequencies obtained under periodic vibration testing. The results of amplitude analysis indicate an increasing shift towards non-Gaussian distributions as the input level of external vibrations is raised. Analysis of axial random vibration response of the BRU was performed by using a linear three-mass model. Power spectral densities, the root-mean-square value of the thrust bearing surface contact were calculated for specified input random excitation.

  3. Comparison of high‐intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting

    PubMed Central

    Seiffert, Gary; Sutcliffe, Chris

    2015-01-01

    Abstract Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high‐intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting‐fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high‐intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117–123, 2017. PMID:26426906

  4. Two-dimensional noncontact transportation of small objects in air using flexural vibration of a plate.

    PubMed

    Kashima, Ryota; Koyama, Daisuke; Matsukawa, Mami

    2015-12-01

    This paper investigates a two-dimensional ultrasonic manipulation technique for small objects in air. The ultrasonic levitation system consists of a rectangular vibrating plate with four ultrasonic transducers and a reflector. The configuration of the vibrator, the resonant frequency, and the positions of the four transducers with step horns were determined from finite element analysis such that an intense acoustic standing-wave field could be generated between the plates. A lattice flexural vibration mode with a wavelength of 28.3 mm was excited on the prototype plate at 24.6 kHz. Small objects could get trapped in air along the horizontal nodal plane of the standing wave. By controlling the driving phase difference between the transducers, trapped objects could be transported without contact in a two-dimensional plane. When the phase difference was changed from 0° to 720°, the distance moved by a small particle in the orthogonal direction was approximately 29 mm, which corresponds with the wavelength of the flexural vibration on the vibrating plate.

  5. Adaptive Back Sheet Material for Acoustic Liner Applications-ARMD Seedling Fund Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Farrar, Dawnielle

    2014-01-01

    A recently developed piezo-electric composite film is evaluated for its usefulness in application in acoustic liners. Researchers at the NASA Langley Research Center Liner Technology Facility developed experiments to measure the electrical response of the material to acoustic excitation and the vibrational response of the material to electrical excitation. The robustness of the piezo-electric film was also assessed. The material's electrical response to acoustic excitation is found to be comparable to a commercial microphone in the range of frequencies from 500 to 3000 Hz. However, the vibrational response to electrical excitation in the frequency range of interest is an order of magnitude less than may be necessary for application to acoustic liners. Nevertheless, experimental results indicate that the potential exists for the material to produce a measurable change in the impedance spectrum of a liner. Work continues to improve the authority of the piezo-electric film.

  6. Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations

    NASA Astrophysics Data System (ADS)

    Jamróz, Michał H.

    2013-10-01

    The principle of operations of the VEDA program written by the author for Potential Energy Distribution (PED) analysis of theoretical vibrational spectra is described. Nowadays, the PED analysis is indispensible tool in serious analysis of the vibrational spectra. To perform the PED analysis it is necessary to define 3N-6 linearly independent local mode coordinates. Already for 20-atomic molecules it is a difficult task. The VEDA program reads the input data automatically from the Gaussian program output files. Then, VEDA automatically proposes an introductory set of local mode coordinates. Next, the more adequate coordinates are proposed by the program and optimized to obtain maximal elements of each column (internal coordinate) of the PED matrix (the EPM parameter). The possibility for an automatic optimization of PED contributions is a unique feature of the VEDA program absent in any other programs performing PED analysis.

  7. Statistical evaluation of vibration analysis techniques

    NASA Technical Reports Server (NTRS)

    Milner, G. Martin; Miller, Patrice S.

    1987-01-01

    An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.

  8. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  9. Integrated Structural Analysis and Test Program

    NASA Technical Reports Server (NTRS)

    Kaufman, Daniel

    2005-01-01

    An integrated structural-analysis and structure-testing computer program is being developed in order to: Automate repetitive processes in testing and analysis; Accelerate pre-test analysis; Accelerate reporting of tests; Facilitate planning of tests; Improve execution of tests; Create a vibration, acoustics, and shock test database; and Integrate analysis and test data. The software package includes modules pertaining to sinusoidal and random vibration, shock and time replication, acoustics, base-driven modal survey, and mass properties and static/dynamic balance. The program is commanded by use of ActiveX controls. There is minimal need to generate command lines. Analysis or test files are selected by opening a Windows Explorer display. After selecting the desired input file, the program goes to a so-called analysis data process or test data process, depending on the type of input data. The status of the process is given by a Windows status bar, and when processing is complete, the data are reported in graphical, tubular, and matrix form.

  10. Finite Element Analysis and Vibration Control of Lorry’s Shift Mechanism

    NASA Astrophysics Data System (ADS)

    Qiangwei, Li

    2017-11-01

    The transmission is one of the important parts of the automobile’s transmission system, Shift mechanism’s main function of transmission is to adjust the position of the shift fork, toggle the synchronizer’s tooth ring, so that the gears are separated and combined to achieve the shift. Therefore, in order to ensure the reliability and stability of the shift process, the vibration characteristics of the shift mechanism cannot be ignored. The static analysis of the shift fork is carried out, and the stress distribution of the shift fork is obtained according to the operating characteristics of the shift mechanism of the lorry transmission in this paper. The modal analysis of the shift mechanism shows the low-order vibration frequencies and the corresponding modal vibration shapes, and the vibration control analysis is carried out according to the simulation results. The simulation results provide the theoretical basis for the reasonable optimization design of the shift mechanism of the lorry transmission.

  11. The vibrational signals that male fiddler crabs ( Uca lactea) use to attract females into their burrows

    NASA Astrophysics Data System (ADS)

    Takeshita, Fumio; Murai, Minoru

    2016-06-01

    In some fiddler crab species, males emit vibrations from their burrows to mate-searching females after they have attracted a female to the burrow entrance using a waving display. Although the vibrations are considered acoustic signals to induce mating, it has not been demonstrated whether the vibrations attract the females into the burrow and, consequently, influence females' mating decisions. We investigated the structures and patterns of the vibrations using a dummy female and demonstrated experimentally a female preference for male vibrations in Uca lactea in the field. The acoustic signals consisted of repetitions of pulses. The dominant frequency of the pulses decreased with male carapace width. The pulse length decreased slightly with an increasing number of vibrational repetitions, and the pulse interval increased with increasing repetitions. These factors imply that the vibrations convey information on male characteristics, such as body size and stamina. In the experiment on female mate choice, the females significantly preferred males with higher pulse repetition rates when they were positioned at the entrance of the burrow, indicating that the females use the male vibrational signals to decide whether to enter the burrow. However, females showed no preference for the vibrations once they were inside a burrow, i.e., whether they decided to copulate, suggesting that the vibrations do not independently affect a female's final decision of mate choice. The vibrations inside the burrow might influence a female's decision by interaction with other male traits such as the burrow structure.

  12. Amide I vibrational circular dichroism of dipeptide: Conformation dependence and fragment analysis

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2004-03-01

    The amide I vibrational circular dichroic response of alanine dipeptide analog (ADA) was theoretically investigated and the density functional theory calculation and fragment analysis results are presented. A variety of vibrational spectroscopic properties, local and normal mode frequencies, coupling constant, dipole, and rotational strengths, are calculated by varying two dihedral angles determining the three-dimensional ADA conformation. Considering two monopeptide fragments separately, we show that the amide I vibrational circular dichroism of the ADA can be quantitatively predicted. For several representative conformations of the model ADA, vibrational circular dichroism spectra are calculated by using both the density functional theory calculation and fragment analysis methods.

  13. Contrast-enhanced optical coherence microangiography with acoustic-actuated microbubbles

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsuan; Zhang, Jia-Wei; Yeh, Chih-Kuang; Wei, Kuo-Chen; Liu, Hao-Li; Tsai, Meng-Tsan

    2017-04-01

    In this study, we propose to use gas-filled microbubbles (MBs) simultaneously actuated by the acoustic wave to enhance the imaging contrast of optical coherence tomography (OCT)-based angiography. In the phantom experiments, MBs can result in stronger backscattered intensity, enabling to enhance the contrast of OCT intensity image. Moreover, simultaneous application of low-intensity acoustic wave enables to temporally induce local vibration of particles and MBs in the vessels, resulting in time-variant OCT intensity which can be used for enhancing the contrast of OCT intensitybased angiography. Additionally, different acoustic modes and different acoustic powers to actuate MBs are performed and compared to investigate the feasibility of contrast enhancement. Finally, animal experiments are performed. The findings suggest that acoustic-actuated MBs can effectively enhance the imaging contrast of OCT-based angiography and the imaging depth of OCT angiography is also extended.

  14. Vibrational analysis of α-cyanohydroxycinnamic acid

    NASA Astrophysics Data System (ADS)

    Mojica, Elmer-Rico E.; Vedad, Jayson; Desamero, Ruel Z. B.

    2015-08-01

    In the present study, a comparative Raman vibrational analysis of alpha-cyano-4-hydroxycinnamic acid (4CHCA) and its derivative, alpha-cyano-3-hydroxycinnamic acid (3CHCA), was performed. The Raman spectra of the 4CHCA and 3CHCA in solid form were obtained and analyzed to determine differences between the two structurally similar derivatives. For comparison, the CHCA derivatives cyanocinnamic acid (CCA) and coumaric acid (CA) were also studied. The plausible vibrational assignments were made and matched with those obtained theoretically using density functional theory (DFT) based method employing a 6-31 g basis set. The computational wavenumbers obtained were in good agreement with the observed experimental results. This was the first reported Raman study of CCA, 3CHCA and 4CHCA.

  15. Spectroscopic Imaging of Deep Tissue through Photoacoustic Detection of Molecular Vibration

    PubMed Central

    Wang, Pu; Rajian, Justin R.; Cheng, Ji-Xin

    2013-01-01

    The quantized vibration of chemical bonds provides a way of imaging target molecules in a complex tissue environment. Photoacoustic detection of harmonic vibrational transitions provides an approach to visualize tissue content beyond the ballistic photon regime. This method involves pulsed laser excitation of overtone transitions in target molecules inside a tissue. Fast relaxation of the vibrational energy into heat results in a local temperature rise on the order of mK and a subsequent generation of acoustic waves detectable with an ultrasonic transducer. In this perspective, we review recent advances that demonstrate the advantages of vibration-based photoacoustic imaging and illustrate its potential in diagnosing cardiovascular plaques. An outlook into future development of vibrational photoacoustic endoscopy and tomography is provided. PMID:24073304

  16. Optoacoustic induced vibrations within the inner ear.

    PubMed

    Zhang, K Y; Wenzel, G I; Balster, S; Lim, H H; Lubatschowski, H; Lenarz, T; Ertmer, W; Reuter, G

    2009-12-07

    An acoustic transient can be generated inside an absorbing tissue as a result of laser-tissue interaction after pulsed laser irradiation. Herein we report a novel application of this physical process, the optoacoustic wave generation in the inner ear and subsequently the induction of basilar membrane vibrations. These laser induced vibrations show a direct correlation to the laser energy and an indirect correlation to the distance from the irradiation focus. Through these characteristics they may be used, in a new generation of cochlear implants, to improve the frequency specific cochlear activation and consequently improve speech perception in hearing impaired patients with residual hearing.

  17. A Review of Large Solid Rocket Motor Free Field Acoustics, Part I

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Kenny, Robert Jeremy

    2011-01-01

    At the ATK facility in Utah, large full scale solid rocket motors are tested. The largest is a five segment version of the Reusable Solid Rocket Motor, which is for use on future launch vehicles. Since 2006, Acoustic measurements have been taken on large solid rocket motors at ATK. Both the four segment RSRM and the five segment RSRMV have been instrumented. Measurements are used to update acoustic prediction models and to correlate against vibration responses of the motor. Presentation focuses on two major sections: Part I) Unique challenges associated with measuring rocket acoustics Part II) Acoustic measurements summary over past five years

  18. Active Control of Panel Vibrations Induced by a Boundary Layer Flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1998-01-01

    In recent years, active and passive control of sound and vibration in aeroelastic structures have received a great deal of attention due to many potential applications to aerospace and other industries. There exists a great deal of research work done in this area. Recent advances in the control of sound and vibration can be found in the several conference proceedings. In this report we will summarize our research findings supported by the NASA grant NAG-1-1175. The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to study the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. The vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings will be presented in the next three sections. In Section II we shall describe our results on the boundary control of nonlinear panel vibration, with or without flow excitation. Section III is concerned with active control of the vibration and sound radiation from a nonlinear elastic panel. A detailed description of our work on the parametric vibrational control of nonlinear elastic panel will be presented in Section IV. This paper will be submitted to the Journal

  19. Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators

    PubMed Central

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-01-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121

  20. An experimental approach to free vibration analysis of smart composite beam

    NASA Astrophysics Data System (ADS)

    Yashavantha Kumar, G. A.; Sathish Kumar, K. M.

    2018-02-01

    Experimental vibration analysis is a main concern of this study. In designing any structural component the important parameter that has to be considered is vibration. The present work involves the experimental investigation of free vibration analysis of a smart beam. Smart beam consists of glass/epoxy composite as a main substrate and two PZT patches. The PZT patches are glued above and below the main beam. By experimentation the natural frequencies and mode shapes are obtained for both with and without PZT patches of a beam. Finally through experimentation the response of the smart beam is recorded.

  1. Mechanical property characterization of bilayered tablets using nondestructive air-coupled acoustics.

    PubMed

    Akseli, Ilgaz; Dey, Dipankar; Cetinkaya, Cetin

    2010-03-01

    A noncontact/nondestructive air-coupled acoustic technique to be potentially used in mechanical property determination of bilayer tablets is presented. In the reported experiments, a bilayer tablet is vibrated via an acoustic field of an air-coupled transducer in a frequency range sufficiently high to excite several vibrational modes (harmonics) of the tablet. The tablet vibrational transient responses at a number of measurement points on the tablet are acquired by a laser vibrometer in a noncontact manner. An iterative computational procedure based on the finite element method is utilized to extract the Young's modulus, the Poisson's ratio, and the mass density values of each layer material of a bilayer tablet from a subset of the measured resonance frequencies. For verification purposes, a contact ultrasonic technique based on the time-of-flight data of the longitudinal (pressure) and transverse (shear) acoustic waves in each layer of a bilayer tablet is also utilized. The extracted mechanical properties from the air-coupled acoustic data agree well with those determined from the contact ultrasonic measurements. The mechanical properties of solid oral dosage forms have been shown to impact its mechanical integrity, disintegration profile and the release rate of the drug in the digestive tract, thus potentially affecting its therapeutic response. The presented nondestructive technique provides greater insight into the mechanical properties of the bilayer tablets and has the potential to identify quality and performance problems related to the mechanical properties of the bilayer tablets early on the production process and, consequently, reduce associated cost and material waste.

  2. Melde's Experiment on a Vibrating Liquid Foam Microchannel

    NASA Astrophysics Data System (ADS)

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2017-12-01

    We subject a single Plateau border channel to a transverse harmonic excitation, in an experiment reminiscent of the historical one by Melde on vibrating strings, to study foam stability and wave properties. At low driving amplitudes, the liquid string exhibits regular oscillations. At large ones, a nonlinear regime appears and the acoustic radiation splits the channel into two zones of different cross section area, vibration amplitude, and phase difference with the neighboring soap films. The channel experiences an inertial dilatancy that is accounted for by a new Bernoulli-like relation.

  3. Melde's Experiment on a Vibrating Liquid Foam Microchannel.

    PubMed

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2017-12-08

    We subject a single Plateau border channel to a transverse harmonic excitation, in an experiment reminiscent of the historical one by Melde on vibrating strings, to study foam stability and wave properties. At low driving amplitudes, the liquid string exhibits regular oscillations. At large ones, a nonlinear regime appears and the acoustic radiation splits the channel into two zones of different cross section area, vibration amplitude, and phase difference with the neighboring soap films. The channel experiences an inertial dilatancy that is accounted for by a new Bernoulli-like relation.

  4. Excellent low-frequency sound absorption of radial membrane acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Hou, Hong; Yu, Lie

    2017-01-01

    This paper proposes a new radial membrane acoustic metamaterial (RMAM) structure, wherein a layer membrane substrate is covered with a rigid ring (polymethyl methacrylate frame and aluminum lump). The dispersion relationships, transmission spectra and displacement fields of the eigenmodes of this radial membrane acoustic metamaterial are studied with FEM. In contrast to the traditional radial phononic crystals (RPCs), the proposed structures can open bandgaps (BGs) in lower frequency range (0-300 Hz). Simulation results show that the physical mechanism behind the bandgaps is the coupling effects between the rotational vibration of aluminum lump and the transverse vibration of membrane. Geometrical parameters which can adjust the bandgaps’ widths or positions are analyzed. Finally, we investigate the axial sound transmission loss of this acoustic metamaterial structure, and discuss the effects of factor loss, membrane thickness and the number of layers of unit cell on the axial sound transmission loss. Dynamic effective density proves the accuracy of the FEM results. This kind of structure has potential application in pipe or circular ring structure for damping/noise reduction.

  5. Acoustic Facies Analysis of Side-Scan Sonar Data

    NASA Astrophysics Data System (ADS)

    Dwan, Fa Shu

    Acoustic facies analysis methods have allowed the generation of system-independent values for the quantitative seafloor acoustic parameter, backscattering strength, from GLORIA and (TAMU) ^2 side-scan sonar data. The resulting acoustic facies parameters enable quantitative comparisons of data collected by different sonar systems, data from different environments, and measurements made with survey geometries. Backscattering strength values were extracted from the sonar amplitude data by inversion based on the sonar equation. Image processing products reveal seafloor features and patterns of relative intensity. To quantitatively compare data collected at different times or by different systems, and to ground truth-measurements and geoacoustic models, quantitative corrections must be made on any given data set for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area contribution, and grazing angle effects. In the sonar equation, backscattering strength is the sonar parameter which is directly related to seafloor properties. The GLORIA data used in this study are from the edge of a distal lobe of the Monterey Fan. An interfingered region of strong and weak seafloor signal returns from a flat seafloor region provides an ideal data set for this study. Inversion of imagery data from the region allows the quantitative definition of different acoustic facies. The (TAMU) ^2 data used are from a calibration site near the Green Canyon area of the Gulf of Mexico. Acoustic facies analysis techniques were implemented to generate statistical information for acoustic facies based on the estimates of backscattering strength. The backscattering strength values have been compared with Lambert's Law and other functions to parameterize the description of the acoustic facies. The resulting Lambertian constant values range from -26 dB to -36 dB. A modified Lambert relationship, which consists of both intercept and slope

  6. Vibrational energy distribution analysis (VEDA): scopes and limitations.

    PubMed

    Jamróz, Michał H

    2013-10-01

    The principle of operations of the VEDA program written by the author for Potential Energy Distribution (PED) analysis of theoretical vibrational spectra is described. Nowadays, the PED analysis is indispensible tool in serious analysis of the vibrational spectra. To perform the PED analysis it is necessary to define 3N-6 linearly independent local mode coordinates. Already for 20-atomic molecules it is a difficult task. The VEDA program reads the input data automatically from the Gaussian program output files. Then, VEDA automatically proposes an introductory set of local mode coordinates. Next, the more adequate coordinates are proposed by the program and optimized to obtain maximal elements of each column (internal coordinate) of the PED matrix (the EPM parameter). The possibility for an automatic optimization of PED contributions is a unique feature of the VEDA program absent in any other programs performing PED analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Derivation of Design Loads and Random Vibration specifications for Spacecraft Instruments and Sub-Units

    NASA Astrophysics Data System (ADS)

    Fransen, S.; Yamawaki, T.; Akagi, H.; Eggens, M.; van Baren, C.

    2014-06-01

    After a first estimation based on statistics, the design loads for instruments are generally estimated by coupled spacecraft/instrument sine analysis once an FE-model of the spacecraft is available. When the design loads for the instrument have been derived, the next step in the process is to estimate the random vibration environment at the instrument base and to compute the RMS load at the centre of gravity of the instrument by means of vibro-acoustic analysis. Finally the design loads of the light-weight sub-units of the instrument can be estimated through random vibration analysis at instrument level, taking into account the notches required to protect the instrument interfaces in the hard- mounted random vibration test. This paper presents the aforementioned steps of instrument and sub-units loads derivation in the preliminary design phase of the spacecraft and identifies the problems that may be encountered in terms of design load consistency between low-frequency and high-frequency environments. The SpicA FAR-infrared Instrument (SAFARI) which is currently developed for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) will be used as a guiding example.

  8. Vibration safety limits for magnetic resonance elastography.

    PubMed

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2008-02-21

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  9. Vibration safety limits for magnetic resonance elastography

    PubMed Central

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2010-01-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure, and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast, and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values, and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans. PMID:18263949

  10. Design and Analysis of Underwater Acoustic Networks with Reflected Links

    NASA Astrophysics Data System (ADS)

    Emokpae, Lloyd

    -of-sight (LOS) and NLOS links by utilizing directional antennas, which will boost the signal-to-noise ratio (SNR) at the receiver while promoting NLOS usage. In our model, we employ a directional underwater acoustic antenna composed of an array of hydrophones that can be summed up at various phases and amplitudes resulting in a beam-former. We have also adopted a practical multimodal directional transducer concept which generates both directional and omni-directional beam patterns by combining the fundamental vibration modes of a cylindrical acoustic radiator. This allows the transducer to be electrically controlled and steered by simply adjusting the electrical voltage weights. A prototype acoustic modem is then developed to utilize the multimodal directional transducer for both LOS and NLOS communication. The acoustic modem has also been used as a platform for empirically validating our SBR communication model in a tank and with empirical data. Networking protocols have been developed to exploit the SBR communication model. These protocols include node discovery and localization, directional medium access control (D-MAC) and geographical routing. In node discovery and localization, each node will utilize SBR-based range measurements to its neighbors to determine their relative position. The D-MAC protocol utilizes directional antennas to increase the network throughput due to the spatial efficiency of the antenna model. In the proposed reflection-enabled directional MAC protocol (RED-MAC), each source node will be able to determine if an obstacle is blocking the LOS link to the destination and switch to the best NLOS link by utilizing surface/bottom reflections. Finally, we have developed a geographical routing algorithm which aims to establish the best stable route from a source node to a destination node. The optimized route is selected to achieve maximum network throughput. Extensive analysis of the network throughput when utilizing directional antennas is also presented

  11. Analysis of Piezoelectric Actuator for Vibration Control of Composite plate

    NASA Astrophysics Data System (ADS)

    Gomaa, Ahmed R.; Hai, Huang

    2017-07-01

    Vibration analysis is studied numerically in this paper for a simply supported composite plate subjected to external loadings. Vibrations are controlled by using piezoelectric patches. Finite element method (ANSYS) is used for obtaining finite element model of the smart plate structure, a layered composite plate is manufactured experimentally and tested to obtain the structure mechanical properties. Different piezoelectric patch areas and different applied gain voltage effects on vibration attenuation is studied. The numerical solution is compared with the experimental work, a good agreement achieved.

  12. The NASA/industry design analysis methods for vibrations (DAMVIBS) program - Accomplishments and contributions

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1991-01-01

    A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.

  13. The NASA/industry design analysis methods for vibrations (DAMVIBS) program: Accomplishments and contributions

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1991-01-01

    A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.

  14. My 65 years in acoustics

    NASA Astrophysics Data System (ADS)

    Beranek, Leo L.

    2004-05-01

    My entry into acoustics began as research assistant to Professor F. V. Hunt at Harvard University. I received my doctorate in 1940 and directed the Electro-Acoustic Laboratory at Harvard from October 1940 until September 1945. In 1947, I became a tenured associate professor at MIT, and, with Richard H. Bolt, formed the consulting firm Bolt and Beranek, that later included Robert B. Newman, becoming BBN. My most significant contributions before 1970 were design of wedge-lined anechoic chambers, systemization of noise reduction in ventilation systems, design of the world's largest muffler for the testing of supersonic jet engines at NASA's Lewis Laboratory in Cleveland, speech interference level, NC noise criterion curves, heading New York Port Authority's noise study that resulted in mufflers on jet aircraft, and steep aircraft climb procedures, and publishing books titled, Acoustical Measurements, Acoustics, Noise Reduction, Noise and Vibration Control, and Music, Acoustics and Architecture. As President of BBN, I supervised the formation of the group that built and operated the ARPANET (1969), which, when split in two (using TCP/IP protocol) became the INTERNET (1984). Since then, I have written two books on Concert Halls and Opera Houses and have consulted on four concert halls and an opera house.

  15. Free vibration Analysis of Sandwich Plates with cutout

    NASA Astrophysics Data System (ADS)

    Mishra, N.; Basa, B.; Sarangi, S. K.

    2016-09-01

    This paper presents the free vibration analysis of sandwich plates with cutouts. Cutouts are inevitable in structural applications and the presence of these cutouts in the structures greatly influences their dynamic characteristics. A finite element model has been developed here using the ANSYS 15.0 software to study the free vibration characteristics of sandwich plates in the presence of cutouts. Shell 281 element, an 8-noded element with six degrees of freedom suited for analyzing thin to moderately thick structures is considered in the development of the model. Block Lanczose method is adopted to extract the mode shapes to obtain the natural frequency corresponding to free vibration of the plate. The effects of parametric variation on the natural frequency of the sandwich plates with cutout are studied and results are presented.

  16. Acoustic Mode Hybridization in a Single Dimer of Gold Nanoparticles.

    PubMed

    Girard, Adrien; Gehan, Hélène; Mermet, Alain; Bonnet, Christophe; Lermé, Jean; Berthelot, Alice; Cottancin, Emmanuel; Crut, Aurélien; Margueritat, Jérémie

    2018-06-13

    The acoustic vibrations of single monomers and dimers of gold nanoparticles were investigated by measuring for the first time their ultralow-frequency micro-Raman scattering. This experiment provides access not only to the frequency of the detected vibrational modes but also to their damping rate, which is obscured by inhomogeneous effects in measurements on ensembles of nano-objects. This allows a detailed analysis of the mechanical coupling occurring between two close nanoparticles (mediated by the polymer surrounding them) in the dimer case. Such coupling induces the hybridization of the vibrational modes of each nanoparticle, leading to the appearance in the Raman spectra of two ultralow-frequency modes corresponding to the out-of-phase longitudinal and transverse (with respect to the dimer axis) quasi-translations of the nanoparticles. Additionally, it is also shown to shift the frequency of the quadrupolar modes of the nanoparticles. Experimental results are interpreted using finite-element simulations, which enable the unambiguous identification of the detected modes and despite the simplifications made lead to a reasonable reproduction of their measured frequencies and quality factors. The demonstrated feasibility of low-frequency Raman scattering experiments on single nano-objects opens up new possibilities to improve the understanding of nanoscale vibrations with this technique being complementary with single nano-object time-resolved spectroscopy as it gives access to different vibrational modes.

  17. [Applicability of voice acoustic analysis with vocal loading testto diagnostics of occupational voice diseases].

    PubMed

    Niebudek-Bogusz, Ewa; Sliwińska-Kowalska, Mariola

    2006-01-01

    An assessment of the vocal system, as a part of the medical certification of occupational diseases, should be objective and reliable. Therefore, interest in the method of acoustic voice analysis enabling objective assessment of voice parameters is still growing. The aim of the present study was to evaluate the applicability of acoustic analysis with vocal loading test to the diagnostics of occupational voice disorders. The results of acoustic voice analysis were compared using IRIS software for phoniatrics, before and after a 30-min vocal loading test in 35 female teachers with diagnosed occupational voice disorders (group I) and in 31 female teachers with functional dysphonia (group II). In group I, vocal effort produced significant abnormalities in voice acoustic parameters, compared to group II. These included significantly increased mean fundamental frequency (Fo) value (by 11 Hz) and worsened jitter, shimmer and NHR parameters. Also, the percentage of subjects showing abnormalities in voice acoustic analysis was higher in this group. Conducting voice acoustic analysis before and after the vocal loading test makes it possible to objectively confirm irreversible voice impairments in persons with work-related pathologies of the larynx, which is essential for medical certification of occupational voice diseases.

  18. Hydrogen vibrations in austenitic fcc Fe-Cr-Mn-Ni steels

    NASA Astrophysics Data System (ADS)

    Danilkin, S. A.; Fuess, H.; Wipf, H.; Ivanov, A.; Gavriljuk, V. G.; Delafosse, D.; Magnin, T.

    2003-07-01

    By neutron spectroscopy, we studied vibrations of H interstitials in two austenitic fcc steels (Fe0.55Cr0.20Mn0.10Ni0.15 and Fe0.54Cr0.27Ni0.19) doped with 0.37 and 0.33 at% H. The band modes, in which H vibrates with its metal neighbours, cause a weak intensity in the energy range of the acoustic vibrations of the H-free steels. The energies of the fundamental and the twofold local-mode excitations, in which H vibrates against its metal neighbours, were ~ 130 and ~ 260 meV, respectively. The respective peaks in the spectra were broadened because the metal neighbours of H, and thus its vibrational energies, vary from interstitial site to interstitial site. The above energy values support an H occupation of octahedral interstitial sites.

  19. Vibration mode analysis of the proton exchange membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.

    2016-11-01

    Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.

  20. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting.

    PubMed

    Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris

    2017-01-01

    Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  1. Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT)☆

    PubMed Central

    Jaeger, Michael; Bamber, Jeffrey C.; Frenz, Martin

    2013-01-01

    This paper investigates a novel method which allows clutter elimination in deep optoacoustic imaging. Clutter significantly limits imaging depth in clinical optoacoustic imaging, when irradiation optics and ultrasound detector are integrated in a handheld probe for flexible imaging of the human body. Strong optoacoustic transients generated at the irradiation site obscure weak signals from deep inside the tissue, either directly by propagating towards the probe, or via acoustic scattering. In this study we demonstrate that signals of interest can be distinguished from clutter by tagging them at the place of origin with localised tissue vibration induced by the acoustic radiation force in a focused ultrasonic beam. We show phantom results where this technique allowed almost full clutter elimination and thus strongly improved contrast for deep imaging. Localised vibration tagging by means of acoustic radiation force is especially promising for integration into ultrasound systems that already have implemented radiation force elastography. PMID:25302147

  2. Interaction of acoustic levitation field with liquid reflecting surface

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Xie, W. J.; Wei, B.

    2010-01-01

    Single-axis acoustic levitation of substances, such as foam, water, polymer, and aluminum, is achieved by employing various liquids as the sound reflectors. The interaction of acoustic levitation field with liquid reflecting surface is investigated theoretically by considering the deformation of the liquid surface under acoustic radiation pressure. Numerical calculations indicate that the deformation degree of the reflecting surface shows a direct proportion to the acoustic radiation power. Appropriate deformation is beneficial whereas excessive deformation is unfavorable to enhance the levitation capability. Typically, the levitation capability with water reflector is smaller than that with the concave rigid reflector but slightly larger than that with the planar rigid reflector at low emitter vibration intensity. Liquid reflectors with larger surface tension and higher density behave more closely to the planar rigid reflector.

  3. Major depressive disorder discrimination using vocal acoustic features.

    PubMed

    Taguchi, Takaya; Tachikawa, Hirokazu; Nemoto, Kiyotaka; Suzuki, Masayuki; Nagano, Toru; Tachibana, Ryuki; Nishimura, Masafumi; Arai, Tetsuaki

    2018-01-01

    The voice carries various information produced by vibrations of the vocal cords and the vocal tract. Though many studies have reported a relationship between vocal acoustic features and depression, including mel-frequency cepstrum coefficients (MFCCs) which applied to speech recognition, there have been few studies in which acoustic features allowed discrimination of patients with depressive disorder. Vocal acoustic features as biomarker of depression could make differential diagnosis of patients with depressive state. In order to achieve differential diagnosis of depression, in this preliminary study, we examined whether vocal acoustic features could allow discrimination between depressive patients and healthy controls. Subjects were 36 patients who met the criteria for major depressive disorder and 36 healthy controls with no current or past psychiatric disorders. Voices of reading out digits before and after verbal fluency task were recorded. Voices were analyzed using OpenSMILE. The extracted acoustic features, including MFCCs, were used for group comparison and discriminant analysis between patients and controls. The second dimension of MFCC (MFCC 2) was significantly different between groups and allowed the discrimination between patients and controls with a sensitivity of 77.8% and a specificity of 86.1%. The difference in MFCC 2 between the two groups reflected an energy difference of frequency around 2000-3000Hz. The MFCC 2 was significantly different between depressive patients and controls. This feature could be a useful biomarker to detect major depressive disorder. Sample size was relatively small. Psychotropics could have a confounding effect on voice. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modal analysis and dynamic stresses for acoustically excited shuttle insulation tiles

    NASA Technical Reports Server (NTRS)

    Ojalvo, I. U.; Ogilvie, P. L.

    1975-01-01

    Improvements and extensions to the RESIST computer program developed for determining the normalized modal stress response of shuttle insulation tiles are described. The new version of RESIST can accommodate primary structure panels with closed-cell stringers, in addition to the capability for treating open-cell stringers. In addition, the present version of RESIST numerically solves vibration problems several times faster than its predecessor. A new digital computer program, titled ARREST (Acoustic Response of Reusable Shuttle Tiles) is also described. Starting with modal information contained on output tapes from RESIST computer runs, ARREST determines RMS stresses, deflections and accelerations of shuttle panels with reusable surface insulation tiles. Both programs are applicable to stringer stiffened structural panels with or without reusable surface insulation titles.

  5. Vibration analysis based on electronic stroboscopic speckle-shearing pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jia, Dagong; Yu, Changsong; Xu, Tianhua; Jin, Chao; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo

    2008-12-01

    In this paper, an electronic speckle-shearing pattern interferometer with pulsed laser and pulse frequency controller is fabricated. The principle of measuring the vibration in the object using electronic stroboscopic speckle--shearing pattern interferometer is analyzed. Using a metal plate, the edge of which is clamped, as an experimental specimen, the shear interferogram are obtained under two experimental frequencies, 100 Hz and 200 Hz. At the same time, the vibration of this metal plate under the same experimental conditions is measured using the time-average method in order to test the performance of this electronic stroboscopic speckle-shearing pattern interferometer. The result indicated that the fringe of shear interferogram become dense with the experimental frequency increasing. Compared the fringe pattern obtained by the stroboscopic method with the fringe obtained by the time-average method, the shearing interferogram of stroboscopic method is clearer than the time-average method. In addition, both the time-average method and stroboscopic method are suited for qualitative analysis for the vibration of the object. More over, the stroboscopic method is well adapted to quantitative vibration analysis.

  6. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  7. Free vibration analysis of composite railway wheels

    NASA Astrophysics Data System (ADS)

    Ganesan, N.; Ramesh, T. C.

    1992-02-01

    Composite materials have been finding increasing applications in the field of transportation. A U.S.A. patent suggesting the use of composite materials for railway wheels is the basis for this paper. In thispaper, the natural vibrations of railway wheels made of composite materials have been theoretically estimated by the finite element method and compared with those in wheels made of steel. A thick conical shell element with displacements in the axial, radial and circumferential directions has been used in the analysis. This element brings out the coupling between the different modes of vibration, and this aspect is important in the dynamic analysis of composite wheels. Three geometries of wheels and two materials (Kevlar-epoxy and graphite-epoxy) have been used in the study. For each of these materials, two fiber orientations (radial and circumferential) have been taken up and their natural frequencies determined.

  8. The Physics of Vibration

    NASA Astrophysics Data System (ADS)

    Pippard, A. B.

    1989-11-01

    The study of vibration in physical systems is an important part of almost all fields in physics and engineering. This work, originally published in two volumes, examines the classical aspects in Part I and the quantum oscillator in Part II. The classical linear vibrator is treated first and the underlying unity of all linear oscillations in electrical, mechanical and acoustic systems is emphasized. Following this the book turns to the treatment of nonlinear vibrations, a field with which engineers and physicists are generally less familiar. In Part II the emphasis turns to quantum systems, that is those systems which can only be adequately described by quantum mechanics. The treatment concentrates on vibrations in atoms and molecules and their interaction with electromagnetic radiation. The similarities of classical and quantum methods are stressed and the limits of the classical treatment are examined. Throughout the book, each phenomenon discussed is illustrated with many examples and theory and experiment are compared. Although the reader may find that the physics discussed is demanding and the concepts are subtle in places, all mathematics used is familiar to both engineers and experimental scientists. Although not a textbook this is a useful introduction to the more advanced mathematical treatment of vibrations as it bridges the gap between the basic principles and more specialized concepts. It will be of great interest to advanced undergraduates and postgraduates as well as applied mathematicians, physicists and engineers in university and industry.

  9. Development of a long-gauge vibration sensor

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Recently, we found that by terminating a long length of fiber of up to 2 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.

  10. Development of a long-gauge vibration sensor

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei

    2014-11-01

    Recently, we found that by terminating a long length of fiber of up to 1 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large reenforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.

  11. Development of a long-gauge vibration sensor

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei

    2015-03-01

    We have recently found that a long length of fiber of up to 1 km terminated with an in-fiber cavity structure can detect vibrations over a frequency range from 5 Hz to 2 kHz. We want to determine whether the sensor (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to maintenance cost. The sensor may also help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that requires the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Acoustic vibration monitoring may need sensing at even higher frequencies (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed longgauge vibration sensor depends on packaging.

  12. Application of Air Coupled Acoustic Thermography (ACAT) for Inspection of Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Pergantis, Charles; Flanagan, David; Deschepper, Daniel

    2009-01-01

    The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.

  13. Plants respond to leaf vibrations caused by insect herbivore chewing.

    PubMed

    Appel, H M; Cocroft, R B

    2014-08-01

    Plant germination and growth can be influenced by sound, but the ecological significance of these responses is unclear. We asked whether acoustic energy generated by the feeding of insect herbivores was detected by plants. We report that the vibrations caused by insect feeding can elicit chemical defenses. Arabidopsis thaliana (L.) rosettes pre-treated with the vibrations caused by caterpillar feeding had higher levels of glucosinolate and anthocyanin defenses when subsequently fed upon by Pieris rapae (L.) caterpillars than did untreated plants. The plants also discriminated between the vibrations caused by chewing and those caused by wind or insect song. Plants thus respond to herbivore-generated vibrations in a selective and ecologically meaningful way. A vibration signaling pathway would complement the known signaling pathways that rely on volatile, electrical, or phloem-borne signals. We suggest that vibration may represent a new long distance signaling mechanism in plant-insect interactions that contributes to systemic induction of chemical defenses.

  14. Theoretical and experimental study of vibration, generated by monorail trains

    NASA Astrophysics Data System (ADS)

    Rybak, Samuil A.; Makhortykh, Sergey A.; Kostarev, Stanislav A.

    2002-11-01

    Monorail transport as all other city transport vehicles is the source of high noise and vibration levels. It is less widespread than cars or underground transport but its influence in modern cities enhances. Now in Moscow the first monorail road with trains on tires is designed, therefore the problem of vibration and noise assessments and prediction of its impact on the residential region appears. To assess the levels of generated vibration a physical model of interaction in the system wagon-tire-road coating-viaduct-soil has been proposed and then numerically analyzed. The model is based on the known from publications facts of automobile transport vibration and our own practice concerning underground trains vibration generation. To verify computer simulation results and adjust model parameters the series of measurements of noise and vibration near experimental monorail road was carried out. In the report the results of calculations and measurements will be presented and some outcomes of possible acoustical ecologic situation near monorail roads will be proposed.

  15. Acoustics for the Deaf: Can You See Me Now?

    NASA Astrophysics Data System (ADS)

    Vongsawad, Cameron T.; Berardi, Mark L.; Neilsen, Tracianne B.; Gee, Kent L.; Whiting, Jennifer K.; Lawler, M. Jeannette

    2016-09-01

    Although acoustics examples and demonstrations can be an effective tool for engaging students in introductory physics classes and outreach, teaching principles of sound and vibration to the deaf and hard of hearing needs to be approached carefully. The deaf and hard of hearing have less intuition with sound but are no strangers to some of the effects of pressure, vibrations, and other basic principles that are related to sound. We recently expanded our "Sounds to Astound" outreach program and developed an acoustics demonstration program for 80 visiting deaf students mostly between the ages of 13 and 18. Both this experience, which had a "See and Feel" approach, similar to what was proposed by Lang, and a specialized planetarium program helped reinforce for the students the opportunities that exist for them in higher education. This paper describes some of the pedagogical underpinnings, the demonstrations, their implementation and lessons learned, and student responses.

  16. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  17. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn; Lomonosov, Alexey M.

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  18. Reduction of interior sound fields in flexible cylinders by active vibration control

    NASA Technical Reports Server (NTRS)

    Jones, J. D.; Fuller, C. R.

    1988-01-01

    The mechanisms of interior sound reduction through active control of a thin flexible shell's vibrational response are presently evaluated in view of an analytical model. The noise source is a single exterior acoustic monopole. The active control model is evaluated for harmonic excitation; the results obtained indicate spatially-averaged noise reductions in excess of 20 dB over the source plane, for acoustic resonant conditions inside the cavity.

  19. [Measurement and analysis of hand-transmitted vibration of vibration tools in workplace for automobile casting and assembly].

    PubMed

    Xie, X S; Qi, C; Du, X Y; Shi, W W; Zhang, M

    2016-02-20

    To investigate the features of hand-transmitted vibration of common vibration tools in the workplace for automobile casting and assembly. From September to October, 2014, measurement and spectral analysis were performed for 16 typical hand tools(including percussion drill, pneumatic wrench, grinding machine, internal grinder, and arc welding machine) in 6 workplaces for automobile casting and assembly according to ISO 5349-1-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-part 1: General requirements and ISO 5349-2-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 2: Practical guidance for measurement in the workplace. The vibration acceleration waveforms of shearing machine, arc welding machine, and pneumatic wrench were mainly impact wave and random wave, while those of internal grinder, angle grinder, percussion drill, and grinding machine were mainly long-and short-period waves. The daily exposure duration to vibration of electric wrench, pneumatic wrench, shearing machine, percussion drill, and internal grinder was about 150 minutes, while that of plasma cutting machine, angle grinder, grinding machine, bench grinder, and arc welding machine was about 400 minutes. The range of vibration total value(ahv) was as follows: pneumatic wrench 0.30~11.04 m/s(2), grinding wheel 1.61~8.97 m/s(2), internal grinder 1.46~8.70 m/s(2), percussion drill 11.10~14.50 m/s(2), and arc welding machine 0.21~2.18 m/s(2). The workers engaged in cleaning had the longest daily exposure duration to vibration, and the effective value of 8-hour energy-equivalent frequency-weighted acceleration for them[A(8)] was 8.03 m/s(2), while this value for workers engaged in assembly was 4.78 m/s(2). The frequency spectrogram with an 1/3-time frequency interval showed that grinding machine, angle grinder, and percussion drill had a high vibration acceleration, and the vibration limit curve

  20. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice D.

    2014-01-01

    The liftoff phase induces some of the highest acoustic loading over a broad frequency for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle but there are challenges. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests; i.e. static firings conducted in the 1960's, to generate 1/3 octave band Sound Pressure Level (SPL) spectra. These data sets are used to predict the liftoff acoustic environments for launch vehicles. To facilitate the accuracy and quality of acoustic loading, predictions at liftoff for future launch vehicles such as the Space Launch System (SLS), non-stationary flight data from the Ares I-X were processed in PC-Signal in two forms which included a simulated hold-down phase and the entire launch phase. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semiempirical methods. This consisted, initially, of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares IX flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  1. Vibrational response of a rectangular duct of finite length excited by a turbulent internal flow

    NASA Astrophysics Data System (ADS)

    David, Antoine; Hugues, Florian; Dauchez, Nicolas; Perrey-Debain, Emmanuel

    2018-05-01

    Gas transport ductwork in industrial plants or air conditioning networks can be subject to vibrations induced by the internal flow. Most studies in this matter have been carried out on circular ducts. This paper focuses specifically on the vibratory response of a rectangular duct of finite length excited by an internal turbulent flow. A semi-analytical model taking into account the modal response of the structure due to both aerodynamic and acoustic contributions is derived. The aerodynamic component of the excitation is applied on the basis of Corcos model where the power spectral density of the wall pressure is determined experimentally. The acoustic component is based on the propagating modes in the duct where the acoustic modal contribution are extracted via cross-spectral densities. The vibrational response is given for a 0.2 × 0.1 × 0.5 m3 duct made of 3 mm steel plates excited by 20 m/s or 30 m/s flows. Comparisons between experimental results and numerical predictions show a good agreement. The competition between acoustic and aerodynamic components is highlighted.

  2. Acoustic actuation of in situ fabricated artificial cilia

    NASA Astrophysics Data System (ADS)

    Orbay, Sinem; Ozcelik, Adem; Bachman, Hunter; Huang, Tony Jun

    2018-02-01

    We present on-chip acoustic actuation of in situ fabricated artificial cilia. Arrays of cilia structures are UV polymerized inside a microfluidic channel using a photocurable polyethylene glycol (PEG) polymer solution and photomasks. During polymerization, cilia structures are attached to a silane treated glass surface inside the microchannel. Then, the cilia structures are actuated using acoustic vibrations at 4.6 kHz generated by piezo transducers. As a demonstration of a practical application, DI water and fluorescein dye solutions are mixed inside a microfluidic channel. Using pulses of acoustic excitations, and locally fabricated cilia structures within a certain region of the microchannel, a waveform of mixing behavior is obtained. This result illustrates one potential application wherein researchers can achieve spatiotemporal control of biological microenvironments in cell stimulation studies. These acoustically actuated, in situ fabricated, cilia structures can be used in many on-chip applications in biological, chemical and engineering studies.

  3. Active control of sound radiation from a vibrating rectangular panel by sound sources and vibration inputs - An experimental comparison

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Hansen, C. H.; Snyder, S. D.

    1991-01-01

    Active control of sound radiation from a rectangular panel by two different methods has been experimentally studied and compared. In the first method a single control force applied directly to the structure is used with a single error microphone located in the radiated acoustic field. Global attenuation of radiated sound was observed to occur by two main mechanisms. For 'on-resonance' excitation, the control force had the effect of increasing the total panel input impedance presented to the nosie source, thus reducing all radiated sound. For 'off-resonance' excitation, the control force tends not significantly to modify the panel total response amplitude but rather to restructure the relative phases of the modes leading to a more complex vibration pattern and a decrease in radiation efficiency. For acoustic control, the second method, the number of acoustic sources required for global reduction was seen to increase with panel modal order. The mechanism in this case was that the acoustic sources tended to create an inverse pressure distribution at the panel surface and thus 'unload' the panel by reducing the panel radiation impedance. In general, control by structural inputs appears more effective than control by acoustic sources for structurally radiated noise.

  4. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, William; Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Krulevich, Peter; Lee, Abraham

    2002-01-01

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control.

  5. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, William; Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Krulevich, Peter; Lee, Abraham

    1999-01-01

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control.

  6. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, W.; Celliers, P.; Da Silva, L.; Glinsky, M.; London, R.; Maitland, D.; Matthews, D.; Krulevich, P.; Lee, A.

    1999-08-31

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control. 7 figs.

  7. Feasibility of Flaw Detection in Railroad Wheels Using Acoustic Signatures

    DOT National Transportation Integrated Search

    1976-10-01

    The feasibility study on the use of acoustic signatures for detection of flaws in railway wheels was conducted with the ultimate objective of development of an intrack device for moving cars. Determinations of the natural modes of vibrating wheels un...

  8. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  9. Incorporating nuclear vibrational energies into the "atom in molecules" analysis: An analytical study

    NASA Astrophysics Data System (ADS)

    Gharabaghi, Masumeh; Shahbazian, Shant

    2017-04-01

    The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.

  10. Incorporating nuclear vibrational energies into the "atom in molecules" analysis: An analytical study.

    PubMed

    Gharabaghi, Masumeh; Shahbazian, Shant

    2017-04-21

    The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.

  11. Particle analysis in an acoustic cytometer

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  12. Arabidopsis Leaf Trichomes as Acoustic Antennae.

    PubMed

    Liu, Shaobao; Jiao, Jiaojiao; Lu, Tian Jian; Xu, Feng; Pickard, Barbara G; Genin, Guy M

    2017-11-07

    The much studied plant Arabidopsis thaliana has been reported recently to react to the sounds of caterpillars of Pieris rapae chewing on its leaves by promoting synthesis of toxins that can deter herbivory. Identifying participating receptor cells-potential "ears"-of Arabidopsis is critical to understanding and harnessing this response. Motivated in part by other recent observations that Arabidopsis trichomes (hair cells) respond to mechanical stimuli such as pressing or brushing by initiating potential signaling factors in themselves and in the neighboring skirt of cells, we analyzed the vibrational responses of Arabidopsis trichomes to test the hypothesis that trichomes can respond acoustically to vibrations associated with feeding caterpillars. We found that these trichomes have vibrational modes in the frequency range of the sounds of feeding caterpillars, encouraging further experimentation to determine whether trichomes serve as mechanical antennae. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    PubMed

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network

  14. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  15. Acoustic radiation damping of flat rectangular plates subjected to subsonic flows

    NASA Technical Reports Server (NTRS)

    Lyle, Karen Heitman

    1993-01-01

    The acoustic radiation damping for various isotropic and laminated composite plates and semi-infinite strips subjected to a uniform, subsonic and steady flow has been predicted. The predictions are based on the linear vibration of a flat plate. The fluid loading is characterized as the perturbation pressure derived from the linearized Bernoulli and continuity equations. Parameters varied in the analysis include Mach number, mode number and plate size, aspect ratio and mass. The predictions are compared with existing theoretical results and experimental data. The analytical results show that the fluid loading can significantly affect realistic plate responses. Generally, graphite/epoxy and carbon/carbon plates have higher acoustic radiation damping values than similar aluminum plates, except near plate divergence conditions resulting from aeroelastic instability. Universal curves are presented where the acoustic radiation damping normalized by the mass ratio is a linear function of the reduced frequency. A separate curve is required for each Mach number and plate aspect ratio. In addition, acoustic radiation damping values can be greater than or equal to the structural component of the modal critical damping ratio (assumed as 0.01) for the higher subsonic Mach numbers. New experimental data were acquired for comparison with the analytical results.

  16. Principal Components Analysis of Triaxial Vibration Data From Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Huff, Edward M.

    2001-01-01

    Research on the nature of the vibration data collected from helicopter transmissions during flight experiments has led to several crucial observations believed to be responsible for the high rates of false alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need to consider additional sources of information about system vibrations. In this light, helicopter transmission vibration data, collected using triaxial accelerometers, were explored in three different directions, analyzed for content, and then combined using Principal Components Analysis (PCA) to analyze changes in directionality. In this paper, the PCA transformation is applied to 176 test conditions/data sets collected from an OH58C helicopter to derive the overall experiment-wide covariance matrix and its principal eigenvectors. The experiment-wide eigenvectors. are then projected onto the individual test conditions to evaluate changes and similarities in their directionality based on the various experimental factors. The paper will present the foundations of the proposed approach, addressing the question of whether experiment-wide eigenvectors accurately model the vibration modes in individual test conditions. The results will further determine the value of using directionality and triaxial accelerometers for vibration monitoring and anomaly detection.

  17. Computational Modeling of Fluid–Structure–Acoustics Interaction during Voice Production

    PubMed Central

    Jiang, Weili; Zheng, Xudong; Xue, Qian

    2017-01-01

    The paper presented a three-dimensional, first-principle based fluid–structure–acoustics interaction computer model of voice production, which employed a more realistic human laryngeal and vocal tract geometries. Self-sustained vibrations, important convergent–divergent vibration pattern of the vocal folds, and entrainment of the two dominant vibratory modes were captured. Voice quality-associated parameters including the frequency, open quotient, skewness quotient, and flow rate of the glottal flow waveform were found to be well within the normal physiological ranges. The analogy between the vocal tract and a quarter-wave resonator was demonstrated. The acoustic perturbed flux and pressure inside the glottis were found to be at the same order with their incompressible counterparts, suggesting strong source–filter interactions during voice production. Such high fidelity computational model will be useful for investigating a variety of pathological conditions that involve complex vibrations, such as vocal fold paralysis, vocal nodules, and vocal polyps. The model is also an important step toward a patient-specific surgical planning tool that can serve as a no-risk trial and error platform for different procedures, such as injection of biomaterials and thyroplastic medialization. PMID:28243588

  18. Acoustic scattering reduction using layers of elastic materials

    NASA Astrophysics Data System (ADS)

    Dutrion, Cécile; Simon, Frank

    2017-02-01

    Making an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles. These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This paper examines the possibility of designing an acoustic cloak using a bi-layer elastic cylindrical shell to eliminate the acoustic field scattered from a rigid cylinder hit by plane waves. This field depends on the dimensional and mechanical characteristics of the elastic layers. It is computed by a semi-analytical code modelling the vibrations of the coating under plane wave excitation. Optimization by genetic algorithm is performed to determine the characteristics of a bi-layer material minimizing the scattering. Considering an external fluid consisting of air, realistic configurations of elastic coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or over a larger frequency band.

  19. Fiber Bragg Grating vibration sensor with DFB laser diode

    NASA Astrophysics Data System (ADS)

    Siska, Petr; Brozovic, Martin; Cubik, Jakub; Kepak, Stanislav; Vitasek, Jan; Koudelka, Petr; Latal, Jan; Vasinek, Vladimir

    2012-01-01

    The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor's response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.

  20. On the vibration properties of composite materials and structures

    NASA Astrophysics Data System (ADS)

    Lu, Y. P.; Neilson, H. C.; Roscoe, A. J.

    1993-01-01

    In recent years, there has been a widespread assumption that composite materials and structures offer enhanced vibration and acoustic properties. This assumption has to be evaluated or validated. The objective of this article is to address the subject of vibration characteristics and the related force transmissibility properties of composite structures. For a given composite beam made of Hercules AS4/3501-6 graphite/epoxy with a layered structure sequence of (0,0,30,-30)(sub 6S), resonance frequencies, structural damping, responses, impedances, and force transmissibility properties are determined, discussed, and compared with those of a steel beam. This article proposes a procedure to evaluate the vibration properties of individual composites. The criterion defined for performance comparison between composite materials and conventional materials is also discussed.

  1. Acoustic Analysis of Nasal Vowels in Monguor Language

    NASA Astrophysics Data System (ADS)

    Zhang, Hanbin

    2017-09-01

    The purpose of the study is to analyze the spectrum characteristics and acoustic features for the nasal vowels [ɑ˜] and [ɔ˜] in Monguor language. On the base of acoustic parameter database of the Monguor speech, the study finds out that there are five main zero-pole pairs appearing for the nasal vowel [ɔ˜] and two zero-pole pairs appear for the nasal vowel [ɔ˜]. The results of regression analysis demonstrate that the duration of the nasal vowel [ɔ˜] or the nasal vowel [ɔ˜] can be predicted by its F1, F2 and F3 respectively.

  2. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    DOE PAGES

    Lindsay, L.; Kuang, Y.

    2017-03-13

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less

  3. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    NASA Astrophysics Data System (ADS)

    Lindsay, L.; Kuang, Y.

    2017-03-01

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. Here we present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first-principles calculations. We use graphane, a buckled graphene backbone with covalently bonded hydrogen atoms on both sides, as the base material and vary the mass of the hydrogen atoms to simulate the effect of mass variance from other functional groups. We find nonmonotonic behavior of κ with increasing mass of the functional group and an unusual crossover from acoustic-dominated to optic-dominated thermal transport behavior. We connect this crossover to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection-symmetry-based scattering selection rule responsible for their large contributions in graphene. This work demonstrates the potential for manipulation and engineering of thermal transport properties in two-dimensional materials toward targeted applications.

  4. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, L.; Kuang, Y.

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less

  5. Membrane-constrained acoustic metamaterials for low frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaole; Zhao, Hui; Luo, Xudong; Huang, Zhenyu

    2016-01-01

    We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

  6. Finite-element analysis of vibrational modes in piezoelectric ceramic disks.

    PubMed

    Kunkel, H A; Locke, S; Pikeroen, B

    1990-01-01

    The natural vibrational modes of axially symmetric piezoelectric ceramic disks have been calculated by the finite-element method. The disks are of the type used as active elements in compressional wave ultrasonic transducers, and are electrically polarized in thickness with full electrodes on the disk's major faces. To optimize disk geometry for ultrasonic transducer application, the dependence of the vibrational modes on the disk diameter-to-thickness ratio for ratios from 0.2 (a tall cylinder) to 10.0 (a thin disk) has been studied. Series and parallel resonance frequencies for each of the modes are determined through an eigenfrequency analysis, and effective electromechanical coupling coefficients are calculated. The modal displacement fields in the disk are calculated to determine the physical nature of each mode. An analysis of the complete spectrum of piezoelectrically active modes as a function of diameter-thickness ratio is presented for the ceramic PZT-5H, including and identification of radial, edge, length expander, thickness shear, and thickness extensional vibrations. From this analysis, optimal diameter-to-thickness ratios for good transducer performance are discussed.

  7. Modeling and analysis of circular flexural-vibration-mode piezoelectric transformer.

    PubMed

    Huang, Yihua; Huang, Wei

    2010-12-01

    We propose a circular flexural-vibration-mode piezoelectric transformer and perform a theoretical analysis of the transformer. An equivalent circuit is derived from the equations of piezoelectricity and the Hamilton's principle. With this equivalent circuit, the voltage gain ratio, input impedance, and the efficiency of the circular flexural-vibration-mode piezoelectric transformer can be determined. The basic behavior of the transformer is shown by numerical results.

  8. Environment effect on the acoustic vibration of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Voisin, C.; Christofilos, D.; Del Fatti, N.; Vallée, F.

    2002-05-01

    The impact of the environment on the frequency and damping of the breathing acoustic mode of noble metal nanoparticle is discussed using the model of isotropic homogeneous elastic spheres embedded in an elastic medium. The results are compared to the experimental investigations performed in glass embedded silver nanoparticles and gold colloids using a time-resolved pump-probe technique.

  9. An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts

    NASA Astrophysics Data System (ADS)

    Yan, Kun; Cheng, Gengdong

    2018-03-01

    For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.

  10. Linear Stability Analysis of an Acoustically Vaporized Droplet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  11. Evaluation of human response to structural vibrations induced by sonic booms

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Czech, J.

    1992-01-01

    The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.

  12. The Shock and Vibration Bulletin. Part 1: Invited Papers, Vibrations and Acoustics, Blast and Shock

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Development in the modeling and simulation of shock and vibration phenomena are considered. Predicting the noise exposure of payloads in the space shuttle, prediction for step-stress fatigue, pyrotechnique shock simulation using metal-to-metal impact, and prediction of fragment velocities and trajectories are among the topics covered.

  13. A Government/Industry Summary of the Design Analysis Methods for Vibrations (DAMVIBS) Program

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G. (Compiler)

    1993-01-01

    The NASA Langley Research Center in 1984 initiated a rotorcraft structural dynamics program, designated DAMVIBS (Design Analysis Methods for VIBrationS), with the objective of establishing the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. An assessment of the program showed that the DAMVIBS Program has resulted in notable technical achievements and major changes in industrial design practice, all of which have significantly advanced the industry's capability to use and rely on finite-element-based dynamics analyses during the design process.

  14. An analysis of blade vortex interaction aerodynamics and acoustics

    NASA Technical Reports Server (NTRS)

    Lee, D. J.

    1985-01-01

    The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.

  15. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    NASA Astrophysics Data System (ADS)

    Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew

    2013-05-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

  16. Vibration and impulsivity analysis of hand held olive beaters.

    PubMed

    Deboli, Roberto; Calvo, Angela; Preti, Christian

    2016-07-01

    To provide more effective evaluations of hand arm vibration syndromes caused by hand held olive beaters, this study focused on two aspects: the acceleration measured at the tool pole and the analysis of the impulsivity, using the crest factor. The signals were frequency weighted using the weighting curve Wh as described in the ISO 5349-1 standard. The same source signals were also filtered by the Wh-bl filter (ISO/TS 15694), because the weighting filter Wh (unlike the Wh-bl filter) could underestimate the effect of high frequency vibration on vibration-induced finger disorders. Ten (experienced) male operators used three beater models (battery powered) in the real olive harvesting condition. High vibration total values were obtained with values never lower than 20 m(-2). Concerning the crest factor, the values ranged from 5 to more than 22. This work demonstrated that the hand held olive beaters produced high impulsive loads comparable to the industry hand held tools. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Remote Acoustic Emission Monitoring of Metal Ware and Welded Joints

    NASA Astrophysics Data System (ADS)

    Kapranov, Boris I.; Sutorikhin, Vladimir A.

    2017-10-01

    An unusual phenomenon was revealed in the metal-ultrasound interaction. Microwave sensor generates surface electric conductivity oscillations from exposure to elastic ultrasonic vibrations on regions of defects embracing micro-defects termed as “crack mouth.” They are known as the region of “acoustic activity,” method of Acoustic Emission (AE) method. It was established that the high phase-modulation coefficient of reflected field generates intentional Doppler radar signal with the following parameters: amplitude-1-5 nm, 6-30 dB adjusted to 70- 180 mm. This phenomenon is termed as “Gorbunov effect,” which is applied as a remote non-destructive testing method replacing ultrasonic flaw detection and acoustic emission methods.

  18. Automation of vibroacoustic data bank for random vibration criteria development. [for the space shuttle and launch vehicles

    NASA Technical Reports Server (NTRS)

    Ferebee, R. C.

    1982-01-01

    A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablet, and a dry-silver hard copier which are all desk-top type hardware and occupy minimal space. The data bank contains data from the Saturn V and Titan III flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one-third octave band plots over the frequency range from 20 to 2000 Hz. The data was stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data was statistically analyzed and the resulting 97.5% probability levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. This automated vibroacoustic data bank system greatly enhances the speed and accuracy of formulating vibration test criteria. In the future, the data bank will be expanded to include all data acquired from the space shuttle flight test program.

  19. Alignment of an acoustic manipulation device with cepstral analysis of electronic impedance data.

    PubMed

    Hughes, D A; Qiu, Y; Démoré, C; Weijer, C J; Cochran, S

    2015-02-01

    Acoustic particle manipulation is an emerging technology that uses ultrasonic standing waves to position objects with pressure gradients and acoustic radiation forces. To produce strong standing waves, the transducer and the reflector must be aligned properly such that they are parallel to each other. This can be a difficult process due to the need to visualise the ultrasound waves and as higher frequencies are introduced, this alignment requires higher accuracy. In this paper, we present a method for aligning acoustic resonators with cepstral analysis. This is a simple signal processing technique that requires only the electrical impedance measurement data of the resonator, which is usually recorded during the fabrication process of the device. We first introduce the mathematical basis of cepstral analysis and then demonstrate and validate it using a computer simulation of an acoustic resonator. Finally, the technique is demonstrated experimentally to create many parallel linear traps for 10 μm fluorescent beads inside an acoustic resonator. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Acoustic manipulation: Bessel beams and active carriers

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2017-10-01

    In this paper, we address the interaction of zero-order acoustic Bessel beams as an acoustic manipulation tool, with an active spherical shell, as a carrier in drug, agent, or material delivery systems, in order to investigate the controllability of exerted acoustic radiation force as the driver. The active body is comprised of a spherical elastic shell stimulated in its monopole mode of vibrations with the same frequency as the incident wave field via an internally bonded and spatially uniformly excited piezoelectric actuator. The main aim of this work is to examine the performance of a nondiffracting and self-reconstructing zero-order Bessel beam to obtain the full manipulability condition of active carriers in comparison with the case of a plane wave field. The results unveil some unique potentials of the Bessel beams in the company of active carriers, with emphasis on the consumed power of the actuation system. This paper will widen the path toward the single-beam robust acoustic manipulation techniques and may lead to the prospect of combined tweezers and fields, with applications in delivery systems, microswimmers, and trapper designs.

  1. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    PubMed

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Acoustic Analysis of Speech of Cochlear Implantees and Its Implications

    PubMed Central

    Patadia, Rajesh; Govale, Prajakta; Rangasayee, R.; Kirtane, Milind

    2012-01-01

    Objectives Cochlear implantees have improved speech production skills compared with those using hearing aids, as reflected in their acoustic measures. When compared to normal hearing controls, implanted children had fronted vowel space and their /s/ and /∫/ noise frequencies overlapped. Acoustic analysis of speech provides an objective index of perceived differences in speech production which can be precursory in planning therapy. The objective of this study was to compare acoustic characteristics of speech in cochlear implantees with those of normal hearing age matched peers to understand implications. Methods Group 1 consisted of 15 children with prelingual bilateral severe-profound hearing loss (age, 5-11 years; implanted between 4-10 years). Prior to an implant behind the ear, hearing aids were used; prior & post implantation subjects received at least 1 year of aural intervention. Group 2 consisted of 15 normal hearing age matched peers. Sustained productions of vowels and words with selected consonants were recorded. Using Praat software for acoustic analysis, digitized speech tokens were measured for F1, F2, and F3 of vowels; centre frequency (Hz) and energy concentration (dB) in burst; voice onset time (VOT in ms) for stops; centre frequency (Hz) of noise in /s/; rise time (ms) for affricates. A t-test was used to find significant differences between groups. Results Significant differences were found in VOT for /b/, F1 and F2 of /e/, and F3 of /u/. No significant differences were found for centre frequency of burst, energy concentration for stops, centre frequency of noise in /s/, or rise time for affricates. These findings suggest that auditory feedback provided by cochlear implants enable subjects to monitor production of speech sounds. Conclusion Acoustic analysis of speech is an essential method for discerning characteristics which have or have not been improved by cochlear implantation and thus for planning intervention. PMID:22701768

  3. Anharmonic vibrational spectra and mode-mode couplings analysis of 2-aminopyridine

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Bhat, Sheeraz Ahmad; Ahmad, Shabbir

    2018-01-01

    Vibrational spectra of 2-aminopyridine (2AP) have been analyzed using the vibrational self-consistence field theory (VSCF), correlated corrected vibrational self-consistence field theory (CC-VSCF) and vibrational perturbation theory (VPT2) at B3LYP/6-311G(d,p) framework. The mode-mode couplings affect the vibrational frequencies and intensities. The coupling integrals between pairs of normal modes have been obtained on the basis of quartic force field (2MR-QFF) approximation. The overtone and combination bands are also assigned in the FTIR spectrum with the help of anharmonic calculation at VPT2 method. A statistical analysis of deviations shows that estimated anharmonic frequencies are closer to the experiment over harmonic approximation. Furthermore, the anharmonic correction has also been carried out for the dimeric structure of 2AP. The fundamental vibration bands have been assigned on the basis of potential energy distribution (PED) and visual look over the animated modes. Other important molecular properties such as frontier molecular orbitals and molecular electrostatics potential mapping have also been analyzed.

  4. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron

    2013-01-01

    Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.

  5. Laboratory test and acoustic analysis of cabin treatment for propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.

    1991-01-01

    An aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Helmholtz resonators were attached to the cabin trim panels to increase the sidewall transmission loss (TL). Resonators (448) were located between the trim panels and fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a 235 Hz resonance frequency. After flight testing on the PTA aircraft, the enclosure was tested in the Kelly Johnson R and D Center Acoustics Lab. Laboratory noise reduction (NR) test results are discussed. The enclosure was placed in a Gulfstream 2 fuselage section. Broadband (138 dB overall SPL) and tonal (149 dB overall SPL) excitations were used in the lab. Tonal excitation simulated the propfan flight test excitation. The fundamental tone was stepped in 2 Hz intervals from 225 through 245 Hz. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. The effects of flanking, sidewall absorption, cabin adsorption, resonator loading of trim panels, and panel vibrations are presented. Increases in NR of up to 11 dB were measured.

  6. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.

    PubMed

    Zhang, Zhaoyan; Neubauer, Juergen; Berry, David A

    2006-11-01

    In a single-layered, isotropic, physical model of the vocal folds, distinct phonation types were identified based on the medial surface dynamics of the vocal fold. For acoustically driven phonation, a single, in-phase, x-10 like eigenmode captured the essential dynamics, and coupled with one of the acoustic resonances of the subglottal tract. Thus, the fundamental frequency appeared to be determined primarily by a subglottal acoustic resonance. In contrast, aerodynamically driven phonation did not naturally appear in the single-layered model, but was facilitated by the introduction of a vertical constraint. For this phonation type, fundamental frequency was relatively independent of the acoustic resonances, and two eigenmodes were required to capture the essential dynamics of the vocal fold, including an out-of-phase x-11 like eigenmode and an in-phase x-10 like eigenmode, as described in earlier theoretical work. The two eigenmodes entrained to the same frequency, and were decoupled from subglottal acoustic resonances. With this independence from the acoustic resonances, vocal fold dynamics appeared to be determined primarily by near-field, fluid-structure interactions.

  7. Spectral analysis, vibrational assignments, NBO analysis, NMR, UV-Vis, hyperpolarizability analysis of 2-aminofluorene by density functional theory.

    PubMed

    Jone Pradeepa, S; Sundaraganesan, N

    2014-05-05

    In this present investigation, the collective experimental and theoretical study on molecular structure, vibrational analysis and NBO analysis has been reported for 2-aminofluorene. FT-IR spectrum was recorded in the range 4000-400 cm(-1). FT-Raman spectrum was recorded in the range 4000-50 cm(-1). The molecular geometry, vibrational spectra, and natural bond orbital analysis (NBO) were calculated for 2-aminofluorene using Density Functional Theory (DFT) based on B3LYP/6-31G(d,p) model chemistry. (13)C and (1)H NMR chemical shifts of 2-aminofluorene were calculated using GIAO method. The computed vibrational and NMR spectra were compared with the experimental results. The total energy distribution (TED) was derived to deepen the understanding of different modes of vibrations contributed by respective wavenumber. The experimental UV-Vis spectra was recorded in the region of 400-200 nm and correlated with simulated spectra by suitably solvated B3LYP/6-31G(d,p) model. The HOMO-LUMO energies were measured with time dependent DFT approach. The nonlinearity of the title compound was confirmed by hyperpolarizabilty examination. Using theoretical calculation Molecular Electrostatic Potential (MEP) was investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods

    NASA Technical Reports Server (NTRS)

    Mosher, Marianne; Pryor, Anna H.; Lewicki, David G.

    2003-01-01

    In this paper, the authors show a detailed analysis of the vibration signal from the destructive testing of a spiral bevel gear and pinion pair containing seeded faults. The vibration signal is analyzed in the time domain, frequency domain and with four time-frequency transforms: the Short Time Frequency Transform (STFT), the Wigner-Ville Distribution with the Choi-Williams kernel (WV-CW), the Continuous Wavelet' Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels and damage conditions, are analyzed using these methods. A new metric for automatic anomaly detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the time-frequency transforms, as well as time and frequency representations, on this data set. Analysis with the CWT detects changes in the signal at low torque levels not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic anomaly detection and to develop fault detection methods for the metric.

  9. Propulsion of Bubble-Based Acoustic Microswimmers

    NASA Astrophysics Data System (ADS)

    Bertin, Nicolas; Spelman, Tamsin A.; Stephan, Olivier; Gredy, Laetitia; Bouriau, Michel; Lauga, Eric; Marmottant, Philippe

    2015-12-01

    Acoustic microswimmers present a great potential for microfluidic applications and targeted drug delivery. Here, we introduce armored microbubbles (size range, 10 - 20 μ m ) made by three-dimensional microfabrication, which allows the bubbles to last for hours even under forced oscillations. The acoustic resonance of the armored microbubbles is found to be dictated by capillary forces and not by gas volume, and its measurements agree with a theoretical calculation. We further measure experimentally and predict theoretically the net propulsive flow generated by the bubble vibration. This flow, due to steady streaming in the fluid, can reach 100 mm /s , and is affected by the presence of nearby walls. Finally, microswimmers in motion are shown, either as spinning devices or free swimmers.

  10. NASTRAN nonlinear vibration analysis of beam and frame structures

    NASA Technical Reports Server (NTRS)

    Mei, C.; Rogers, J. L., Jr.

    1975-01-01

    A capability for the nonlinear vibration analysis of beam and frame structures suitable for use with NASTRAN level 15.5 is described. The nonlinearity considered is due to the presence of axial loads induced by longitudinal end restraints and lateral displacements that are large compared to the beam height. A brief discussion is included of the mathematical analysis and the geometrical stiffness matrix for a prismatic beam (BAR) element. Also included are a brief discussion of the equivalent linearization iterative process used to determine the nonlinear frequency, the required modifications to subroutines DBAR and XMPLBD of the NASTRAN code, and the appropriate vibration capability, four example problems are presented. Comparisons with existing experimental and analytical results show that excellent accuracy is achieved with NASTRAN in all cases.

  11. Experimental and numerical study on vibration of the full-revolving propulsion ship stern

    NASA Astrophysics Data System (ADS)

    Liu, Chang-qing; Che, Chi-dong; Shen, Xiao-han

    2015-03-01

    In order to solve the severe vibration problems of an ocean engineering ship with a full-revolving propulsion system, the navigation tests, including forced vibration response test and modal test, are carried out in its stern. It is concluded from the comparison of the time-domain waveform and spectrum from different measurement points that three main factors lead to a high-level stern vibration. Firstly, the specific dynamic stiffness of a water tank is relatively small compared with its neighbor hold, which makes it act like a vibration isolator preventing vibrational energy transmitting to the main hold. Secondly, there exists high-density local modes in the working frequency range of the main engine and thus the local resonance occurs. Thirdly, the abnormal engagement of gears caused by the large deflection of the shaft bearing due to its low mounting rigidity leads to violent extra impulse excitations at high speeds. Then the modification against the dynamic defects is given by simply improving the specific stiffness of the water tanks. And the effect is validated by the FEM calculation. Some important experience is obtained with the problems being solved, which is useful in the design of ships with the same propulsion system. It is also believed that the dynamic consideration is as important as the static analysis for the ships, and that most of the vibration problems may be avoided with a proper acoustic design.

  12. Dynamics of liquid films exposed to high-frequency surface vibration

    NASA Astrophysics Data System (ADS)

    Manor, Ofer; Rezk, Amgad R.; Friend, James R.; Yeo, Leslie Y.

    2015-05-01

    We derive a generalized equation that governs the spreading of liquid films under high-frequency (MHz-order) substrate vibration in the form of propagating surface waves and show that this single relationship is universally sufficient to collectively describe the rich and diverse dynamic phenomena recently observed for the transport of oil films under such substrate excitation, in particular, Rayleigh surface acoustic waves. In contrast to low-frequency (Hz- to kHz-order) vibration-induced wetting phenomena, film spreading at such high frequencies arises from convective drift generated by the viscous periodic flow localized in a region characterized by the viscous penetration depth β-1≡(2μ /ρ ω ) 1 /2 adjacent to the substrate that is invoked directly by its vibration; μ and ρ are the viscosity and the density of the liquid, respectively, and ω is the excitation frequency. This convective drift is responsible for driving the spreading of thin films of thickness h ≪kl-1 , which spread self-similarly as t1 /4 along the direction of the drift corresponding to the propagation direction of the surface wave, kl being the wave number of the compressional acoustic wave that forms in the liquid due to leakage of the surface wave energy from the substrate into the liquid and t the time. Films of greater thicknesses h ˜kl-1≫β-1 , in contrast, are observed to spread with constant velocity but in a direction that opposes the drift and surface wave propagation due to the attenuation of the acoustic wave in the liquid. The universal equation derived allows for the collective prediction of the spreading of these thin and thick films in opposing directions.

  13. Substructure program for analysis of helicopter vibrations

    NASA Technical Reports Server (NTRS)

    Sopher, R.

    1981-01-01

    A substructure vibration analysis which was developed as a design tool for predicting helicopter vibrations is described. The substructure assembly method and the composition of the transformation matrix are analyzed. The procedure for obtaining solutions to the equations of motion is illustrated for the steady-state forced response solution mode, and rotor hub load excitation and impedance are analyzed. Calculation of the mass, damping, and stiffness matrices, as well as the forcing function vectors of physical components resident in the base program code, are discussed in detail. Refinement of the model is achieved by exercising modules which interface with the external program to represent rotor induced variable inflow and fuselage induced variable inflow at the rotor. The calculation of various flow fields is discussed, and base program applications are detailed.

  14. Dynamic (Vibration) Testing: Design-Certification of Aerospace System

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin K.

    2010-01-01

    Various types of dynamic testing of structures for certification purposes are described, including vibration, shock and acoustic testing. Modal testing is discussed as it frequently complements dynamic testing and is part of the structural verification/validation process leading up to design certification. Examples of dynamic and modal testing are presented as well as the common practices, procedures and standards employed.

  15. Development of new vibration energy flow analysis software and its applications to vehicle systems

    NASA Astrophysics Data System (ADS)

    Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.

    2005-09-01

    The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.

  16. Design sensitivity analysis of rotorcraft airframe structures for vibration reduction

    NASA Technical Reports Server (NTRS)

    Murthy, T. Sreekanta

    1987-01-01

    Optimization of rotorcraft structures for vibration reduction was studied. The objective of this study is to develop practical computational procedures for structural optimization of airframes subject to steady-state vibration response constraints. One of the key elements of any such computational procedure is design sensitivity analysis. A method for design sensitivity analysis of airframes under vibration response constraints is presented. The mathematical formulation of the method and its implementation as a new solution sequence in MSC/NASTRAN are described. The results of the application of the method to a simple finite element stick model of the AH-1G helicopter airframe are presented and discussed. Selection of design variables that are most likely to bring about changes in the response at specified locations in the airframe is based on consideration of forced response strain energy. Sensitivity coefficients are determined for the selected design variable set. Constraints on the natural frequencies are also included in addition to the constraints on the steady-state response. Sensitivity coefficients for these constraints are determined. Results of the analysis and insights gained in applying the method to the airframe model are discussed. The general nature of future work to be conducted is described.

  17. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    PubMed Central

    Xu, Jie; Lin, Shuyu; Ma, Yan; Tang, Yifan

    2017-01-01

    Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer. PMID:29292785

  18. Analysis and demonstration of vibration waveform reconstruction in distributed optical fiber vibration sensing system

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Shan, Xuekang; Sun, Xiaohan

    2017-10-01

    A method for reconstructing the vibration waveform from the optical time-domain backscattering pulses in the distributed optical fiber sensing system (DOFSS) is proposed, which allows for extracting and recovering the external vibration signal from the tested pulses by analog signal processing, so that can obtain vibration location and waveform simultaneously. We establish the response model of DOFSS to the external vibration and analyze the effects of system parameters on the operational performance. The main parts of the DOFSS are optimized, including delay fiber length and wavelength, to improve the sensitivity of the system. The experimental system is set up and the vibration amplitudes and reconstructed waveforms are fit well with the original driving signal. The experimental results demonstrate that the performance of vibration waveform reconstruction is good with SNR of 15 dB whenever the external vibrations with different intensities and frequencies exert on the sensing fiber.

  19. Acoustic Aspects of Active-Twist Rotor Control

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Wilbur, Matthew L.

    2002-01-01

    The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.

  20. Acoustic measurement study 40 by 80 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An acoustical study conducted during the period from September 1, 1973 to April 30, 1974 measured sound pressure levels and vibration amplitudes inside and outside of the subsonic tunnel and on the tunnel structure. A discussion of the technical aspects of the study, the field measurement and data reduction procedures, and results are presentd, and conclusions resulting from the study which bear upon near field and far field tunnel noise, upon the tunnel as an acoustical enclosure, and upon the sources of noise within the tunnel drive system are given.

  1. Tabulation of data from the tip aerodynamics and acoustics test

    NASA Technical Reports Server (NTRS)

    Cross, Jeffrey L.; Tu, Wilson

    1990-01-01

    In a continuing effort to understand helicopter rotor tip aerodynamics and acoustics, researchers at Ames Research Center conducted a flight test. The test was performed using the NASA White Cobra and a set of highly instrumented blades. Tabular and graphic summaries of two data subsets from the Tip Aerodynamics and Acoustics Test are given. The data presented are for airloads, blade structural loads, blade vibrations, with summary tables of the aircraft states for each test point. The tabular data consist of the first 15 harmonics only, whereas the plots contain the entire measured frequency content.

  2. Actuator placement for active sound and vibration control of cylinders

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1995-01-01

    Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The cylinder is excited by an exterior noise source -- an acoustic monopole -- located near the outside of the cylinder wall. The goal is to determine the force inputs and sites for the piezoelectric actuators so that (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. We studied external monopole excitations at two frequencies. A cylinder resonance of 100 Hz, where the interior acoustic field is driven in multiple, off-resonance cylinder cavity modes, and a cylinder resonance of 200 Hz are characterized by both near and off-resonance cylinder vibration modes which couple effectively with a single, dominant, low-order acoustic cavity mode at resonance. Previous work has focused almost exclusively on meeting objective (1) and solving a complex least-squares problem to arrive at an optimal force vector for a given set of actuator sites. In addition, it has been noted that when the cavity mode couples with cylinder vibration modes (our 200 Hz case) control spillover may occur in higher order cylinder shell vibrational modes. How to determine the best set of actuator sites to meet objectives (1)-(3) is the main contribution of our research effort. The selection of the best set of actuator sites from a set of potential sites is done via two metaheuristics -- simulated annealing and tabu search. Each of these metaheuristics partitions the set of potential actuator sites into two disjoint sets: those that are selected to control the noise (on) and those that are not (off). Next, each metaheuristic attempts to

  3. Translation of an Object Using Phase-Controlled Sound Sources in Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Matsui, Takayasu; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi; Ide, Masao

    1995-05-01

    Acoustic levitation is used for positioning materials in the development of new materials in space where there is no gravity. This technique is applicable to materials for which electromagnetic force cannot be used. If the levitation point of the materials can be controlled freely in this application, possibilities of new applications will be extended. In this paper we report on an experimental study on controlling the levitation point of the object in an acoustic levitation system. The system fabricated and tested in this study has two sound sources with vibrating plates facing each other. Translation of the object can be achieved by controlling the phase of the energizing electrical signal for one of the sound sources. It was found that the levitation point can be moved smoothly in proportion to the phase difference between the vibrating plates.

  4. Characterization of substrate-borne vibrational signals of Euschistus servus (Heteroptera: Pentatomidae)

    USDA-ARS?s Scientific Manuscript database

    Substrate-borne vibrational signals were recorded from the brown stink bug Euschistus servus, revealing an assortment of “songs” in an acoustic repertoire. Females of E. servus emitted two distinct songs while males of E. servus emitted four distinct songs. Each of these songs was characterized by...

  5. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectricmore » actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.« less

  6. Acoustic analysis of the propfan

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Succi, G. P.

    1979-01-01

    A review of propeller noise prediction technology is presented. Two methods for the prediction of the noise from conventional and advanced propellers in forward flight are described. These methods are based on different time domain formulations. Brief descriptions of the computer algorithms based on these formulations are given. The output of the programs (the acoustic pressure signature) was Fourier analyzed to get the acoustic pressure spectrum. The main difference between the two programs is that one can handle propellers with supersonic tip speed while the other is for subsonic tip speed propellers. Comparisons of the calculated and measured acoustic data for a conventional and an advanced propeller show good agreement in general.

  7. Low Frequency Vibrations Disrupt Left-Right Patterning in the Xenopus Embryo

    PubMed Central

    Vandenberg, Laura N.; Pennarola, Brian W.; Levin, Michael

    2011-01-01

    The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs. PMID:21826245

  8. Specificities of Acoustic Streaming in Cylindrical Cavity with Increasing Nonlinearity of the Process

    NASA Astrophysics Data System (ADS)

    Gubaidullin, A. A.; Pyatkova, A. V.

    2018-01-01

    This paper presents a numerical study of a gas acoustic streaming in a cylindrical cavity under a vibratory action. The walls of the cavity are considered impermeable and maintained at a constant temperature. The test gas is air. Variations in acoustic streaming and period-average temperature of the gas in the cavity with increasing nonlinearity of the process are shown. The increase in the nonlinearity is caused by an increase in the vibration amplitude.

  9. Vibration analysis of the SA349/2 helicopter

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth; Precetti, Dominique; Johnson, Wayne

    1991-01-01

    Helicopter airframe vibration is examined using calculations and measurements for the SA349/2 research helicopter. The hub loads, which transmit excitations to the fuselage, are predicted using a comprehensive rotorcraft analysis and correlated with measuring hub loads. The predicted and measured hub loads are then coupled with finite element models representing the SA349/2 fuselage. The resulting vertical acceleration at the pilot seat is examined. Adjustments are made to the airframe structural models to examine the sensitivity of predicted vertical acceleration to the model. Changes of a few percent to the damping and frequency of specific models lead to large reductions in predicted vibration, and to major improvements in the correlations with measured pilot-seat vertical acceleration.

  10. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, S.; Adams, D. E.; Sohn, H.

    2013-01-01

    As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.

  11. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  12. Pathway Analysis Hints Towards Beneficial Effects of Long-Term Vibration on Human Chondrocytes.

    PubMed

    Lützenberg, Ronald; Solano, Kendrick; Buken, Christoph; Sahana, Jayashree; Riwaldt, Stefan; Kopp, Sascha; Krüger, Marcus; Schulz, Herbert; Saar, Kathrin; Huebner, Norbert; Hemmersbach, Ruth; Bauer, Johann; Infanger, Manfred; Grimm, Daniela; Wehland, Markus

    2018-06-27

    Spaceflight negatively influences the function of cartilage tissue in vivo. In vitro human chondrocytes exhibit an altered gene expression of inflammation markers after a two-hour exposure to vibration. Little is known about the impact of long-term vibration on chondrocytes. Human cartilage cells were exposed for up to 24 h (VIB) on a specialised vibration platform (Vibraplex) simulating the vibration profile which occurs during parabolic flights and compared to static control conditions (CON). Afterwards, they were investigated by phase-contrast microscopy, rhodamine phalloidin staining, microarray analysis, qPCR and western blot analysis. Morphological investigations revealed no changes between CON and VIB chondrocytes. F-Actin staining showed no alterations of the cytoskeleton in VIB compared with CON cells. DAPI and TUNEL staining did not identify apoptotic cells. ICAM-1 was elevated and vimentin, beta-tubulin and osteopontin proteins were significantly reduced in VIB compared to CON cells. qPCR of cytoskeletal genes, ITGB1, SOX3, SOX5, SOX9 did not reveal differential regulations. Microarray analysis detected 13 differentially expressed genes, mostly indicating unspecific stimulations. Pathway analyses demonstrated interactions of PSMD4 and CNOT7 with ICAM. Long-term vibration did not damage human chondrocytes in vitro. The reduction of osteopontin protein and the down-regulation of PSMD4 and TBX15 gene expression suggest that in vitro long-term vibration might even positively influence cultured chondrocytes. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. Acoustic resonance spectroscopy (ARS): ARS300 operations manual, software version 2.01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Acoustic Resonance Spectroscopy (ARS) is a nondestructive evaluation technology developed at the Los Alamos National Laboratory. The ARS technique is a fast, safe, and nonintrusive technique that is particularly useful when a large number of objects need to be tested. Any physical object, whether solid, hollow, or fluid filled, has many modes of vibration. These modes of vibration, commonly referred to as the natural resonant modes or resonant frequencies, are determined by the object`s shape, size, and physical properties, such as elastic moduli, speed of sound, and density. If the object is mechanically excited at frequencies corresponding to its characteristicmore » natural vibrational modes, a resonance effect can be observed when small excitation energies produce large amplitude vibrations in the object. At other excitation frequencies, i.e., vibrational response of the object is minimal.« less

  14. Acoustic Emission Analysis of Shuttle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Lane, John; Hooker, Jeffery; Immer, Christopher; Walker, James

    2004-01-01

    Acoustic emission (AE) signals generated from projectile impacts on reinforced and advanced carbon/carbon (RCC and ACC) panels, fired from a compressed-gas gun, identify the type and severity of damage sustained by the target. This type of testing is vital in providing the required "return to flight" (RTF) data needed to ensure continued and safe operation of NASA's Space Shuttle fleet. The gas gun at Kennedy Space Center is capable of propelling 12-inch by 3-inch cylinders of external tank (ET) foam at exit velocities exceeding 1,000 feet per second. Conventional AE analysis techniques require time domain processing of impulse data, along with amplitude distribution analysis. It is well known that identical source excitations can produce a wide range of AE signals amplitudes. In order to satisfy RTF goals, it is necessary to identify impact energy levels above and below damage thresholds. Spectral analysis techniques involving joint time frequency analysis (JTFA) are used to reinforce time domain AE analysis. JTFA analysis of the AE signals consists of short-time Fourier transforms (STFT) and the Huang-Hilbert transform (HHT). The HHT provides a very good measure of the instantaneous frequency of impulse events dominated by a single component. Identifying failure modes and cracking of fibers from flexural and/or extensional mode acoustic signals will help support in-flight as well as postflight impact analysis.

  15. Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo

    2016-09-01

    We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.

  16. Analysis of railway track vibration

    NASA Astrophysics Data System (ADS)

    Ono, K.; Yamada, M.

    1989-04-01

    Analytical formulae are developed for estimating the amplitudes of the vibrations generated in railway tracks by wheels and rail discontinuities or by unevennesses on their surfaces. Rails are assumed to be supported elastically on concrete sleepers by resilient rail-pads inserted between them. The elasticities and the masses of track materials and those of the roadbed are also taken into consideration. It is shown that after an impulse is applied to the track, not only is a vibration with a comparatively low natural frequency generated, but also traveling waves with higher frequencies, and the latter propagate lengthwise along the track or downwards into the roadbed. With the assumption that the power spectral density of the unevennesses on the rail surface is in proportion to the third power of the wavelength, or to (wavenumber) -3, the amplitudes of the vibrations in railway tracks supported by rail-pads and roadbeds with various magnitudes of elastic constants are analyzed and the values for each one-third octave band are estimated. The velocity of the vibration takes on a maximum value for the band with a center frequency of 63 Hz, which corresponds to the resonant frequency of the system composed of the wheel and the track. As the frequency increases beyond this value, the velocity of the vibration takes on a second maximum value at a frequency of about 1000 Hz. These estimates are compared with the data obtained from field measurements and reasonably good correlations are found between them.

  17. Tunable optical lens array using viscoelastic material and acoustic radiation force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Daisuke, E-mail: dkoyama@mail.doshisha.ac.jp; Kashihara, Yuta; Matsukawa, Mami

    2015-10-28

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.

  18. Plastic Deformation Behavior of Ti Foil Under Ultrasonic Vibration in Tension

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Zhang, Hongbin; Du, Zhihao; Lu, Zhen; Zhang, Kaifeng; He, Yushi; Wang, Ruizhuo

    2017-04-01

    The benefits of ultrasonic vibration auxiliary metal forming have been shown by many studies. In this study, a series of experiments were carried out to investigate the deformation behavior of Ti foils under ultrasonic vibration in tension, and the tensile properties of Ti foils with/without the application of ultrasonic vibration were investigated. Then, the microstructure of different tensile samples was analyzed by transmission electron microscopy (TEM). The results of the tensile experiments showed that the tensile strength of tensile samples was reduced when ultrasonic vibration was applied, while the elongation of these samples increased. The flow stress increased with increasing strain without applying ultrasonic vibration, while it decreased steeply when the ultrasonic vibration was applied, and this reduction of flow stress demonstrated the effect of acoustic softening on the properties of the material. Additionally, the range of flow stress reduction was inversely proportional to the time for which ultrasonic vibration was applied. The TEM images showed that there were remarkable differences in dislocation distribution and tangles with/without ultrasonic vibration. The dislocation distribution was inhomogeneous, and copious dislocation tangles were discovered without ultrasonic vibration. When it was applied, the parallel re-arrangement of dislocations could be observed and the mass of dislocation tangles was mostly absent.

  19. Remote measurement of material properties from radiation force induced vibration of an embedded sphere

    NASA Astrophysics Data System (ADS)

    Chen, Shigao; Fatemi, Mostafa; Greenleaf, James F.

    2002-09-01

    A quantitative model is presented for a sphere vibrated by two ultrasound beams of frequency omega1 and omega2. Due to the interference of two sound beams, the radiation force has a dynamic component of frequency omega]2-[omega1. The radiation impedance and mechanical impedance of the sphere are then used to compute the vibration speed of the sphere. Vibration speed versus vibration frequency is measured by laser vibrometer on several spheres, both in water and in gel phantom. These experimental results are used to verify the model. This method can be used to estimate the material properties of the medium (e.g., shear modulus) surrounding the sphere. copyright 2002 Acoustical Society of America.

  20. Vibration analysis of large centrifugal pump rotors

    NASA Astrophysics Data System (ADS)

    Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.

    2013-12-01

    Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.