Sample records for acoustic wave sh-saw

  1. FEM/BEM impedance and power analysis for measured LGS SH-SAW devices.

    PubMed

    Kenny, Thomas D; Pollard, Thomas B; Berkenpas, Eric; da Cunha, Mauricio Pereira

    2006-02-01

    Pure shear horizontal piezoelectrically active surface and bulk acoustic waves (SH-SAW and SH-BAW) exist along rotated Y-cuts, Euler angles (0 degrees, theta, 90 degrees), of trigonal class 32 group crystals, which include the LGX family of crystals (langasite, langatate, and langanite). In this paper both SH-SAW and SH-BAW generated by finite-length, interdigital transducers (IDTs) on langasite, Euler angles (0 degrees, 22 degrees, 90 degrees), are simulated using combined finite- and boundary-element methods (FEM/BEM). Aluminum and gold IDT electrodes ranging in thickness from 600 A to 2000 A have been simulated, fabricated, and tested, with both free and metalized surfaces outside the IDT regions considered. Around the device's operating frequency, the percent difference between the calculated IDT impedance magnitude using the FEM/BEM model and the measurements is better than 5% for the different metal layers and thicknesses considered. The proportioning of SH-SAW and SH-BAW power is analyzed as a function of the number of IDT electrodes; type of electrode metal; and relative thickness of the electrode film, h/wavelength, where wavelength is the SH-SAW wavelength. Simulation results show that moderate mechanical loading by gold electrodes increases the proportion of input power converted to SH-SAW. For example, with a split-electrode IDT, comprising 238 electrodes with a relative thickness h/wavelength = 0.63% and surrounded by an infinitesimally thin conducting film, nearly 9% more input power is radiated as SH-SAW when gold instead of aluminum electrodes are used.

  2. Development of a high-sensitivity strain measurement system based on a SH SAW sensor

    NASA Astrophysics Data System (ADS)

    Oh, Haekwan; Lee, Keekeun; Eun, Kyoungtae; Choa, Sung-Hoon; Yang, Sang Sik

    2012-02-01

    A strain measurement system based on a shear horizontal surface acoustic wave (SH SAW) was developed. The developed system is composed of a SAW microsensor, a printed circuit board (PCB), an adhesive and a strain gauge. When a compression force is applied to the PCB by the strain gauge, the PCB is bent so that external strain energy can be evenly delivered to the microsensor without any detachment of the sensor from the board. When a stretching force is applied to the PCB under the condition that one side of the PCB is fixed and the other side is modulated, the actual length of the SAW delay line between the two interdigital transducers (IDTs) is increased. The increase in the delay line length causes a change in the time for the propagating SAW to reach the output IDT. If strain energy is applied to the piezoelectric substrate, the substrate density is changed, which then changes the propagation velocity of the SAW. Coupling-of-modes modeling was conducted prior to fabrication to determine the optimal device parameters. Depending on the strain, the frequency difference was linearly modulated. The obtained sensitivity for stretching was 17.3 kHz/% for the SH wave mode and split electrode. And the obtained sensitivity for bending was 46.1 kHz/% for the SH wave mode and split electrode. The SH wave showed about 15% higher sensitivity than the Rayleigh wave, and the dog-bone PCB showed about 8% higher sensitivity than the rectangular PCB. The obtained sensitivity was about five times higher than that of existing SAW-based strain sensors.

  3. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures.

    PubMed

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-12-19

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  4. Surface-acoustic-wave (SAW) flow sensor

    NASA Astrophysics Data System (ADS)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  5. Surface-acoustic-wave (SAW) flow sensor.

    PubMed

    Joshi, S G

    1991-01-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  6. Wideband acoustic wave resonators composed of hetero acoustic layer structure

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Tanaka, Shuji

    2018-07-01

    “Hetero acoustic layer (HAL) surface acoustic wave (SAW) device” is a new type of SAW device using a single crystal piezoelectric thin plate supported by a substrate. In this study, a HAL SAW resonator using a LiNbO3 (LN) thin plate and a multi-layer acoustic film was designed by finite element method (FEM) and fabricated. The thickness of LN is 3.6 µm and the pitch of an interdigital transducer (IDT) (λ) is 5.24 µm for a resonance frequency of 600 MHz. The multi-layer acoustic film is composed of 3 layers of SiO2 and AlN for each, i.e., 6 layers in total, alternately deposited on a glass substrate. The HAL SAW resonator achieved a wide bandwidth of 20.3% and a high impedance ratio of 83 dB. Compared with a 0th shear horizontal (SH0) mode plate wave resonator, the performance is better and the thickness of LN is 7 times larger. The HAL SAW without a cavity is advantageous in terms of mechanical stability, thickness controllability and fabrication yield.

  7. Superconducting Qubit (transmon) coupled to Surface Acoustic Waves (SAWs)

    NASA Astrophysics Data System (ADS)

    Guo, Lingzhen; Johansson, Göran

    We work on a hybrid system, which couples the transmon in circuit QED to the propagating mechanical modes of Surface Acoustic Waves (SAWs). This is an analogue of circuit QED system but replacing the microwave photons by SAW phonons. We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. We show that the giant atom can generate entangled phonon pairs, which may have applications in quantum communication. L.G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).

  8. Characteristics of fundamental acoustic wave modes in thin piezoelectric plates.

    PubMed

    Joshi, S G; Zaitsev, B D; Kuznetsova, I E; Teplykh, A A; Pasachhe, A

    2006-12-22

    The characteristics of the three lowest order plate waves (A(0), S(0), and SH(0)) propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength lambda are theoretically analyzed. It is found that these waves can provide much higher values of electromechanical coupling coefficient K(2) and lower values of temperature coefficient of delay (TCD) than is possible with surface acoustic waves (SAWs). For example, in 30Y-X lithium niobate, the SH(0) mode has K(2)=0.46 and TCD=55 ppm/degrees C. The corresponding values for SAW in the widely used, strong coupling material of 128Y-X lithium niobate are K(2)=0.053 and TCD=75 ppm/degrees C. Another important advantage of plate waves is that, unlike the case of SAWs, they can operate satisfactorily in contact with a liquid medium, thus making possible their use in liquid phase sensors.

  9. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  10. Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers.

    PubMed

    Mujahid, Adnan; Dickert, Franz L

    2017-11-24

    Surface acoustic wave (SAW) resonators represent some of the most prominent acoustic devices for chemical sensing applications. As their frequency ranges from several hundred MHz to GHz, therefore they can record remarkably diminutive frequency shifts resulting from exceptionally small mass loadings. Their miniaturized design, high thermal stability and possibility of wireless integration make these devices highly competitive. Owing to these special characteristics, they are widely accepted as smart transducers that can be combined with a variety of recognition layers based on host-guest interactions, metal oxide coatings, carbon nanotubes, graphene sheets, functional polymers and biological receptors. As a result of this, there is a broad spectrum of SAW sensors, i.e., having sensing applications ranging from small gas molecules to large bio-analytes or even whole cell structures. This review shall cover from the fundamentals to modern design developments in SAW devices with respect to interfacial receptor coatings for exemplary sensor applications. The related problems and their possible solutions shall also be covered, with a focus on emerging trends and future opportunities for making SAW as established sensing technology.

  11. Surface-Acoustic-Wave (SAW)-Driven Device for Dynamic Cell Cultures.

    PubMed

    Greco, Gina; Agostini, Matteo; Tonazzini, Ilaria; Sallemi, Damiano; Barone, Stefano; Cecchini, Marco

    2018-06-19

    In the last few decades, new types of cell cultures have been introduced to provide better cell survival and development, with micro- and nanoenvironmental physicochemical conditions aimed at mimicking those present in vivo. However, despite the efforts made, the systems available to date are often difficult to replicate and use. Here, an easy-to-use surface-acoustic-wave (SAW)-based platform is presented for realizing dynamic cell cultures that is compatible with standard optical microscopes, incubators, and cell-culture dishes. The SAW chip is coupled to a standard Petri dish via a polydimethylsiloxane (PDMS) disc and consists of a lithium niobate (LN) substrate on which gold interdigital transducers (IDTs) are patterned to generate the SAWs and induce acoustic streaming in the dish. SAW excitation is verified and characterized by laser Doppler vibrometry, and the fluid dynamics is studied by microparticle image velocimetry (μPIV). Heating is measured by an infrared (IR) thermal camera. We finally tested this device with the U-937 monocyte cell line for viability and proliferation and cell-morphological analysis. The data demonstrate that it is possible to induce significant fluid recirculation within the Petri dish while maintaining negligible heating. Remarkably, cell proliferation in this condition was enhanced by 36 ± 12% with respect to those of standard static cultures. Finally, we show that cell death does not increase and that cell morphology is not altered in the presence of SAWs. This device is the first demonstration that SAW-induced streaming can mechanically improve cell proliferation and further supports the great versatility and biocompatibility of the SAW technology for cell manipulation.

  12. Identification of acoustic waves in ZnO materials by Brillouin light scattering for SAW device applications

    NASA Astrophysics Data System (ADS)

    Zerdali, M.; Bechiri, F.; Hamzaoui, S.; Teherani, F. H.; Rogers, D. J.; Sandana, V. E.; Bove, P.; Djemia, P.; Roussigné, Y.

    2017-03-01

    Brillouin light scattering (BLS) was conducted on melt-grown ZnO bulk crystals and ZnO thin films grown by pulsed laser deposition. The bulk ZnO crystals presented both longitudinal and transverse bulk acoustic waves. Theoretical calculations agreed well with there being one piezoelectric longitudinal branch and two transverse branches. BLS measurements conducted on ZnO thin films also revealed Rayleigh surface acoustic waves (R-SAW) guided by only the surface of the layer and Sezawa modes, guided by the film thickness. Measurements were conducted for three incidence angles in order to investigate different SAW wave numbers. Higher frequency features were identified as being related to a new class of guided longitudinal (LG) SAW modes which are not usually detected for ZnO thin films. The LG-SAW modes were observed for two incidence angles (θ=45° and 55°) corresponding to frequencies of 17.88 and 20.75 GHz, respectively. BLS measurements enable us to estimate the LG-SAW velocity as 6500 m/s. This value is three times higher than that of the currently used R-SAW. Theoretical simulations were coherent with the presence of LG modes in the ZnO layers. Such LG-SAW modes are promising for the development of novel, higher-speed SAW devices operating in the GHz-band and which could be readily incorporated in Si-based integrated circuitry.

  13. Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers †

    PubMed Central

    2017-01-01

    Surface acoustic wave (SAW) resonators represent some of the most prominent acoustic devices for chemical sensing applications. As their frequency ranges from several hundred MHz to GHz, therefore they can record remarkably diminutive frequency shifts resulting from exceptionally small mass loadings. Their miniaturized design, high thermal stability and possibility of wireless integration make these devices highly competitive. Owing to these special characteristics, they are widely accepted as smart transducers that can be combined with a variety of recognition layers based on host-guest interactions, metal oxide coatings, carbon nanotubes, graphene sheets, functional polymers and biological receptors. As a result of this, there is a broad spectrum of SAW sensors, i.e., having sensing applications ranging from small gas molecules to large bio-analytes or even whole cell structures. This review shall cover from the fundamentals to modern design developments in SAW devices with respect to interfacial receptor coatings for exemplary sensor applications. The related problems and their possible solutions shall also be covered, with a focus on emerging trends and future opportunities for making SAW as established sensing technology. PMID:29186771

  14. Hybrid Surface Acoustic Wave- Electrohydrodynamic Atomization (SAW-EHDA) For the Development of Functional Thin Films

    PubMed Central

    Choi, Kyung Hyun; Kim, Hyun Bum; Ali, Kamran; Sajid, Memoon; Uddin Siddiqui, Ghayas; Chang, Dong Eui; Kim, Hyung Chan; Ko, Jeong Beom; Dang, Hyun Woo; Doh, Yang Hoi

    2015-01-01

    Conventional surface acoustic wave - electrostatic deposition (SAW-ED) technology is struggling to compete with other thin film fabrication technologies because of its limitation in atomizing high density solutions or solutions with strong inter-particle bonding that requires very high frequency (100 MHz) and power. In this study, a hybrid surface acoustic wave - electrohydrodynamic atomization (SAW-EHDA) system has been introduced to overcome this problem by integrating EHDA with SAW to achieve the deposition of different types of conductive inks at lower frequency (19.8 MHZ) and power. Three materials, Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV), Zinc Oxide (ZnO), and Poly(3, 4-ethylenedioxythiophene):Polystyrene Sulfonate (PEDOT:PSS) have been successfully deposited as thin films through the hybrid SAW-EHDA. The films showed good morphological, chemical, electrical, and optical characteristics. To further evaluate the characteristics of deposited films, a humidity sensor was fabricated with active layer of PEDOT:PSS deposited using the SAW-EHDA system. The response of sensor was outstanding and much better when compared to similar sensors fabricated using other manufacturing techniques. The results of the device and the films’ characteristics suggest that the hybrid SAW-EHDA technology has high potential to efficiently produce wide variety of thin films and thus predict its promising future in certain areas of printed electronics. PMID:26478189

  15. Hybrid Surface Acoustic Wave- Electrohydrodynamic Atomization (SAW-EHDA) For the Development of Functional Thin Films

    NASA Astrophysics Data System (ADS)

    Choi, Kyung Hyun; Kim, Hyun Bum; Ali, Kamran; Sajid, Memoon; Uddin Siddiqui, Ghayas; Chang, Dong Eui; Kim, Hyung Chan; Ko, Jeong Beom; Dang, Hyun Woo; Doh, Yang Hoi

    2015-10-01

    Conventional surface acoustic wave - electrostatic deposition (SAW-ED) technology is struggling to compete with other thin film fabrication technologies because of its limitation in atomizing high density solutions or solutions with strong inter-particle bonding that requires very high frequency (100 MHz) and power. In this study, a hybrid surface acoustic wave - electrohydrodynamic atomization (SAW-EHDA) system has been introduced to overcome this problem by integrating EHDA with SAW to achieve the deposition of different types of conductive inks at lower frequency (19.8 MHZ) and power. Three materials, Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV), Zinc Oxide (ZnO), and Poly(3, 4-ethylenedioxythiophene):Polystyrene Sulfonate (PEDOT:PSS) have been successfully deposited as thin films through the hybrid SAW-EHDA. The films showed good morphological, chemical, electrical, and optical characteristics. To further evaluate the characteristics of deposited films, a humidity sensor was fabricated with active layer of PEDOT:PSS deposited using the SAW-EHDA system. The response of sensor was outstanding and much better when compared to similar sensors fabricated using other manufacturing techniques. The results of the device and the films’ characteristics suggest that the hybrid SAW-EHDA technology has high potential to efficiently produce wide variety of thin films and thus predict its promising future in certain areas of printed electronics.

  16. Hybrid Surface Acoustic Wave-Electrohydrodynamic Atomization (SAW-EHDA) For the Development of Functional Thin Films.

    PubMed

    Choi, Kyung Hyun; Kim, Hyun Bum; Ali, Kamran; Sajid, Memoon; Uddin Siddiqui, Ghayas; Chang, Dong Eui; Kim, Hyung Chan; Ko, Jeong Beom; Dang, Hyun Woo; Doh, Yang Hoi

    2015-10-19

    Conventional surface acoustic wave - electrostatic deposition (SAW-ED) technology is struggling to compete with other thin film fabrication technologies because of its limitation in atomizing high density solutions or solutions with strong inter-particle bonding that requires very high frequency (100 MHz) and power. In this study, a hybrid surface acoustic wave - electrohydrodynamic atomization (SAW-EHDA) system has been introduced to overcome this problem by integrating EHDA with SAW to achieve the deposition of different types of conductive inks at lower frequency (19.8 MHZ) and power. Three materials, Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV), Zinc Oxide (ZnO), and Poly(3, 4-ethylenedioxythiophene):Polystyrene Sulfonate ( PSS) have been successfully deposited as thin films through the hybrid SAW-EHDA. The films showed good morphological, chemical, electrical, and optical characteristics. To further evaluate the characteristics of deposited films, a humidity sensor was fabricated with active layer of PSS deposited using the SAW-EHDA system. The response of sensor was outstanding and much better when compared to similar sensors fabricated using other manufacturing techniques. The results of the device and the films' characteristics suggest that the hybrid SAW-EHDA technology has high potential to efficiently produce wide variety of thin films and thus predict its promising future in certain areas of printed electronics.

  17. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation

    PubMed Central

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  18. Standing wave performance test of IDT-SAW transducer prepared by silk-screen printing

    NASA Astrophysics Data System (ADS)

    Wang, Ziping; Jiang, Zhengxuan; Chen, Liangbin; Li, Yefei; Li, Meixia; Wang, Shaohan

    2018-05-01

    With the advantages of high performance and low loss, interdigital surface acoustic wave (IDT-SAW) transducers are widely used in the fields of nondestructive testing, communication and broadcasting. The production, performance and application of surface acoustic wave (SAW) actuators has become a research hotspot. Based on the basic principle of SAW, an IDT-SAW transducer is designed and fabricated using silk-screen printing in this work. The experiment results show that in terms of SAW performance, the fabricated IDT-SAW transducer can generate standing wave fields comparable to those generated using traditional fabrication methods. The resonant frequency response of the IDT-SAW transducer and SAW attenuation coefficient were obtained by experiments. It has provided a method to test the transducer sensing performance by using fabricated IDT-SAW transducer.

  19. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    PubMed Central

    Rocha-Gaso, María-Isabel; March-Iborra, Carmen; Montoya-Baides, Ángel; Arnau-Vives, Antonio

    2009-01-01

    This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW) technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW), Surface Transverse Wave (STW), Love Wave (LW), Flexural Plate Wave (FPW), Shear Horizontal Acoustic Plate Mode (SH-APM) and Layered Guided Acoustic Plate Mode (LG-APM) - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications. PMID:22346725

  20. Suppression of Rayleigh wave spurious signal in ultra-wideband surface acoustic wave devices employing 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Ji, Xiaojun; Xiao, Qiang; Chen, Jing; Wang, Hualei; Omori, Tatsuya; Changjun, Ahn

    2017-05-01

    The propagation characteristics of surface acoustic waves (SAWs) on rotated Y-cut X-propagating 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3(PMN-33%PT) substrate are theoretically analyzed. It is shown that besides the existence of a shear horizontal (SH) SAW with ultrahigh electromechanical coupling factor K2, a Rayleigh SAW also exists causing strong spurious response. The calculated results showed that the spurious Rayleigh SAW can be sufficiently suppressed by properly selecting electrode and its thickness with optimized rotating angle while maintaining large K2 of SH SAW. The fractional -3 dB bandwidth of 47% is achievable for the ladder type filter constructed by Au IDT/48oYX-PMN-33%PT resonators.

  1. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  2. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  3. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  4. Real-time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid measurement

    NASA Astrophysics Data System (ADS)

    Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun

    2017-07-01

    In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.

  5. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  6. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Characterization of microchannel anechoic corners formed by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin

    2018-02-01

    Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).

  8. High quality factor surface Fabry-Perot cavity of acoustic waves

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Fu, Wei; Zou, Chang-ling; Shen, Zhen; Tang, Hong X.

    2018-02-01

    Surface acoustic wave (SAW) resonators are critical components in wireless communications and many sensing applications. They have also recently emerged as a subject of study in quantum acoustics at the single phonon level. Acoustic loss reduction and mode confinement are key performance factors in SAW resonators. Here, we report the design and experimental realization of high quality factor Fabry-Perot SAW resonators formed in between the tapered phononic crystal mirrors patterned on a GaN-on-sapphire material platform. The fabricated SAW resonators are characterized by both an electrical network analyzer and an optical heterodyne vibrometer. We observed standing Rayleigh waves inside the cavity, with an intrinsic quality factor exceeding 1.3 × 104 at ambient conditions.

  9. Acoustic Wave Filter Technology-A Review.

    PubMed

    Ruppel, Clemens C W

    2017-09-01

    Today, acoustic filters are the filter technology to meet the requirements with respect to performance dictated by the cellular phone standards and their form factor. Around two billion cellular phones are sold every year, and smart phones are of a very high percentage of approximately two-thirds. Smart phones require a very high number of filter functions ranging from the low double-digit range up to almost triple digit numbers in the near future. In the frequency range up to 1 GHz, surface acoustic wave (SAW) filters are almost exclusively employed, while in the higher frequency range, bulk acoustic wave (BAW) and SAW filters are competing for their shares. Prerequisites for the success of acoustic filters were the availability of high-quality substrates, advanced and highly reproducible fabrication technologies, optimum filter techniques, precise simulation software, and advanced design tools that allow the fast and efficient design according to customer specifications. This paper will try to focus on innovations leading to high volume applications of intermediate frequency (IF) and radio frequency (RF) acoustic filters, e.g., TV IF filters, IF filters for cellular phones, and SAW/BAW RF filters for the RF front-end of cellular phones.

  10. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  11. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  12. Parameter extraction of coupling-of-modes equations including coupling between two surface acoustic waves on SiO2/Cu/LiNbO3 structures

    NASA Astrophysics Data System (ADS)

    Huang, Yulin; Bao, Jingfu; Li, Xinyi; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2018-07-01

    This paper describes extraction of parameters of an extended coupling-of-modes (COM) model including coupling between Rayleigh and shear-horizontal (SH) surface acoustic waves (SAW) on the SiO2-overlay/Cu-grating/LiNbO3-substrate structure. First, dispersion characteristics of two SAWs are calculated by the finite element method (FEM), and are fitted with those given by the extended COM. Then variation of COM parameters is expressed in polynomials in terms of the SiO2 and Cu thicknesses and the rotation angle Θ of LiNbO3. Then it is shown how the optimal Θ giving the SH SAW suppression changes with the thicknesses. The result agrees well with that obtained directly by FEM. It is also shown the optimal Θ changes abruptly at certain Cu thickness, and is due to decoupling between two SAW modes.

  13. Surface acoustic wave diffraction driven mechanisms in microfluidic systems.

    PubMed

    Fakhfouri, Armaghan; Devendran, Citsabehsan; Albrecht, Thomas; Collins, David J; Winkler, Andreas; Schmidt, Hagen; Neild, Adrian

    2018-06-26

    Acoustic forces arising from high-frequency surface acoustic waves (SAW) underpin an exciting range of promising techniques for non-contact manipulation of fluid and objects at micron scale. Despite increasing significance of SAW-driven technologies in microfluidics, the understanding of a broad range of phenomena occurring within an individual SAW system is limited. Acoustic effects including streaming and radiation force fields are often assumed to result from wave propagation in a simple planar fashion. The propagation patterns of a single SAW emanating from a finite-width source, however, cause a far richer range of physical effects. In this work, we seek a better understanding of the various effects arising from the incidence of a finite-width SAW beam propagating into a quiescent fluid. Through numerical and experimental verification, we present five distinct mechanisms within an individual system. These cause fluid swirling in two orthogonal planes, and particle trapping in two directions, as well as migration of particles in the direction of wave propagation. For a range of IDT aperture and channel dimensions, the relative importance of these mechanisms is evaluated.

  14. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    PubMed

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  16. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    NASA Astrophysics Data System (ADS)

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  17. Circuit quantum acoustodynamics with surface acoustic waves.

    PubMed

    Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J

    2017-10-17

    The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.

  18. Steering elastic SH waves in an anomalous way by metasurface

    NASA Astrophysics Data System (ADS)

    Cao, Liyun; Yang, Zhichun; Xu, Yanlong

    2018-03-01

    Metasurface, which does not exist in nature, has exhibited exotic essence on the manipulation of both electromagnetic and acoustic waves. In this paper, the concept of metasurface is extended to the field of elastic SH waves, and the anomalous refractions of SH waves across the designed elastic SH wave metasurfaces (SHWMs) are demonstrated numerically. Firstly, a SHWM is designed with supercells, each supercell is composed of four subunits. It is demonstrated that this configuration has the ability of deflecting the vertical and oblique incident waves in an arbitrary desired direction. Then, a unique SHWM with supercell composed of only two subunits is designed. Numerical simulation shows its ability of splitting the vertical and oblique incident waves into two tunable transmitted wave beams, respectively. In the process of steering SH waves, it is also found that two kinds of leakages of transmitted waves across the designed SHWM will occur in some particular situations, which will affect the desired transmitted wave. The mechanisms of the leakages, which are different from that of the common high-order diffraction mentioned in existing literatures, are revealed. The current study can offer theoretical guidance not only for designing devices of directional ultrasonic detection and splitting SH waves but also for steering other kinds of classical waves.

  19. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  20. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  1. Novel Shear-horizontal Surface Acoustic Wave Based Immunosensors Using SiO2Waveguiding Layers And Flow Injection Analysis.

    PubMed

    Guo, X S; Chen, Y Q; Yang, X L; Wang, L R

    2005-01-01

    Surface acoustic wave (SAW) devices based on shear-horizontal (SH) waves can be used as mass-sensitive immunosensors. This paper presents a novel SH-SAW sensor to detect anti-immunoglobulin (IgG) molecules by means of the antibody-antigen binding mechanism. The sensor system comprising dual delay lines was fabricated on 36° Y-X LiTaO3substrate. A SiO2layer was used as love mode waveguiding layers, well as insulating and chemically resistant protective layer. Moreover, flow injection analysis (FIA) method was used for continuous detection the protein molecules. The protein A was immobilized on the optional surface of the gold layer, then coupled with IgG to adsorb the antigens to be measured in the protein solution. The operational frequency of the system changed due to the interaction of antibody-antigen binding. The experimental result demonstrates the sensor has stable frequency response to the mass loading effect of the various anti-IgG concentrations with the sensitivity up to 3.3ng/ml/Hz.

  2. Surface acoustic wave resonators

    NASA Astrophysics Data System (ADS)

    Avitabile, Gianfranco; Roselli, Luca; Atzeni, Carlo; Manes, Gianfranco

    1991-10-01

    The development of surface acoustic wave (SAW) resonators is reviewed with attention given to the design of a simulation package for CAD-assisted SAW resonator design. Basic design configurations and operation parameters are set forth for the SAW resonators including the phase of the reflection factor, evaluation of the stopband center frequency, stopband width, and the free propagation speed. The use of synchronous designs is shown to reduce device sensitivity to variations in the technological process but generate higher insertion losses. The existence of transverse modes and propagation losses is shown to affect the rejection of spurious modes and the achievement of low insertion losses. Several SAW resonators are designed and fabricated with the CAD process, and the resonators in the VHF-UHF bands perform in a manner predicted by simulated results.

  3. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  4. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    PubMed

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Modeling of a Surface Acoustic Wave Strain Sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  6. Characterization of Zinc Oxide (ZnO) piezoelectric properties for Surface Acoustic Wave (SAW) device

    NASA Astrophysics Data System (ADS)

    Rosydi Zakaria, Mohd; Johari, Shazlina; Hafiz Ismail, Mohd; Hashim, Uda

    2017-11-01

    In fabricating Surface Acoustic Wave (SAW) biosensors device, the substrate is one of important factors that affected to performance device. there are many types of piezoelectric substrate in the markets and the cheapest is zinc Oxide substrate. Zinc Oxide (ZnO) with its unique properties can be used as piezoelectric substrate along with SAW devices for detection of DNA in this research. In this project, ZnO thin film is deposited onto silicon oxide substrate using electron beam evaporation (E-beam) and Sol-Gel technique. Different material structure is used to compare the roughness and best piezoelectric substrate of ZnO thin film. Two different structures of ZnO target which are pellet and granular are used for e-beam deposition and one sol-gel liquid were synthesize and compared. Parameter for thickness of ZnO e-beam deposition is fixed to a 0.1kÅ for both materials structure and sol-gel was coat using spin coat technique. After the process is done, samples are annealed at temperature of 500°C for 2 hours. The structural properties of effect of post annealing using different material structure of ZnO are studied using Atomic Force Microscopic (AFM) for surface morphology and X-ray Diffraction (XRD) for phase structure.

  7. Surface Acoustic Wave Tag-Based Coherence Multiplexing

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Malocha, Donald (Inventor); Saldanha, Nancy (Inventor)

    2016-01-01

    A surface acoustic wave (SAW)-based coherence multiplexing system includes SAW tags each including a SAW transducer, a first SAW reflector positioned a first distance from the SAW transducer and a second SAW reflector positioned a second distance from the SAW transducer. A transceiver including a wireless transmitter has a signal source providing a source signal and circuitry for transmitting interrogation pulses including a first and a second interrogation pulse toward the SAW tags, and a wireless receiver for receiving and processing response signals from the SAW tags. The receiver receives scrambled signals including a convolution of the wideband interrogation pulses with response signals from the SAW tags and includes a computing device which implements an algorithm that correlates the interrogation pulses or the source signal before transmitting against the scrambled signals to generate tag responses for each of the SAW tags.

  8. Swimming Using Surface Acoustic Waves

    PubMed Central

    Bourquin, Yannyk; Cooper, Jonathan M.

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  9. Swimming using surface acoustic waves.

    PubMed

    Bourquin, Yannyk; Cooper, Jonathan M

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel.

  10. Surface acoustic wave oxygen pressure sensor

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  11. Enhanced Sensitivity of a Surface Acoustic Wave Gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhua; Wang, Wen

    2009-10-01

    In this paper, we present an optimal design and performance evaluation of a surface acoustic wave (SAW) gyroscope. It consists of a two-port SAW resonator (SAWR) and a SAW sensor (SAWS) structured using a delay line pattern. The SAW resonator provides a stable reference vibration and creates a standing wave, and the vibrating metallic dot array at antinodes of the standing wave induces the second SAW in the normal direction by the Coriolis force, and the SAW sensor is used to detect the secondary SAW. By using the coupling of modes (COM), the SAW resonator was simulated, and the effects of the design parameters on the frequency response of the device were investigated. Also, a theoretical analysis was performed to investigate the effect of metallic dots on the frequency response of the SAW device. The measured frequency response S21 of the fabricated 80 MHz two-port SAW resonator agrees well with the simulated result, that is, a low insertion loss (˜5 dB) and a single steep resonance peak were observed. In the gyroscopic experiments using a rate table, optimal metallic dot thickness was determined, and the sensitivity of the fabricated SAW gyroscope with an optimal metallic dot thickness of ˜350 nm was determined to be 3.2 µV deg-1 s-1.

  12. Low Insertion Loss and Highly Sensitive SH-SAW Sensors Based on 36° YX LiTaO 3 Through the Incorporation of Filled Microcavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Mandek; Sankaranarayanan, Subramanian K. R. S.; Bhethanabotla, Venkat R.

    2015-02-01

    Reduction in power consumption and improvement in mass sensitivity are important considerations for surface acoustic wave (SAW) devices used in various sensing applications. Detection of minute quantities of a particular species (clinical sensing) and power requirements (wireless sensing) are two key metrics that must be optimized. In this paper, a 3-D finite element model (FEM) was employed to compare insertion loss (IL) and mass sensitivity of SAW sensors having microcavities filled with ZnO and nanocrystalline diamond to a standard two-port SAW design. Initial simulation results show that ZnO filled cavities (depth = 5 mu m) were most effective at reducingmore » power loss Delta IL = (6.03 dB) by increasing particle displacement (acousto-electric to mechanical transduction) at the output transducer. A 100-pg/cm(2) load was applied to the sensing area of each device to evaluate mass sensitivity. Our simulations suggest that ZnO filled cavities with shallow depth (2.5 mu m) have the greatest sensitivity. The FEM simulations are used to understand the acoustic wave propagation in microcavity-based SAW sensors. The observed enhancement in mass sensitivity and power transfer is attributed to waveguiding effects and constructive interference of the scattered acoustic waves from the microcavities. Devices fabricated with microcavities similar to 1 mu m deep decreased IL by 3.306 dB compared with a standard SAW device. Additional simulations were conducted for each device configuration using the same depth in order to make a direct comparison between measured and simulated results. Our findings offer encouraging prospects for designing low IL highly sensitive microcavity-based SAW biosensors.« less

  13. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  14. TeO2 slow surface acoustic wave Bragg cell

    NASA Astrophysics Data System (ADS)

    Yao, Shi-Kay

    1991-08-01

    A newly discovered slow acoustic surface wave (SAW) on a (-110) cut TeO2 surface is reported focusing on its properties studied using a PC based numerical method. It is concluded that the slow SAW is rather tolerant to crystal surface orientation errors and has unusually deep penetration of its shear component into the thickness of substrate, about 47 wavelengths for a half amplitude point. The deep shear field is considered to be beneficial for surface acoustooptic interaction with free propagating focused laser beams. Rotation of the substrate about the z-axis makes it possible to adjust a slow SAW velocity with the potential advantage of trading acoustic velocity for less acoustic attenuation. Wider-bandwidth long signal processing time Bragg cells may be feasible utilizing this trade-off. The slow SAW device is characterized by an extremely low power consumption which might be useful for compact portable or avionics signal processing equipment applications.

  15. Radiation dominated acoustophoresis driven by surface acoustic waves.

    PubMed

    Guo, Jinhong; Kang, Yuejun; Ai, Ye

    2015-10-01

    Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  17. Magnetic skyrmion bubble motion driven by surface acoustic waves

    DOE PAGES

    Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.

    2018-03-12

    Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.

  18. Magnetic skyrmion bubble motion driven by surface acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.

    Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.

  19. High resolution SAW elastography for ex-vivo porcine skin specimen

    NASA Astrophysics Data System (ADS)

    Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.

  20. A 200 MHz surface acoustic wave mass microbalance

    NASA Technical Reports Server (NTRS)

    Bowers, William D.; Chuan, Raymond L.

    1990-01-01

    The principle of operation of the surface acoustic wave (SAW) piezoelectric crystals used as microgravimetric sensors in mass microbalances is discussed. Special attention is given to a SAW 200-MHz crystal developed for measuring molecular deposition on spacecrafts, whose operating frequency does not depend on the thickness of the crystal. The frequency stability of the 200 MHz SAW device is better than 5 x 10 exp -9, which corresponds to a lower limit-of-detection of 3 x 10 exp -12 g for a signal-to-noise ratio of 3. A block diagram of the 200 MHz SAW mass microbalance and a schematic diagram of SAW resonator are presented together with performance data of this device.

  1. Surface acoustic-wave piezoelectric crystal aerosol mass microbalance

    NASA Technical Reports Server (NTRS)

    Bowers, W. D.; Chuan, R. L.

    1989-01-01

    The development of a particulate mass-sensing instrument based on a quartz-crystal microbalance and enhanced with the new surface acoustic-wave (SAW) technology is reported. Mass sensitivity comparisons of a 158-MHz SAW piezoelectric microbalance and a conventional 10-MHz quartz-crystal microbalance show that the SAW crystal is 266 times more sensitive, in good agreement with the theoretical value of 250. The frequency stability of a single SAW resonator is 6 parts in 10 to the 8th over 1 min. The response to temperature changes is found to be very linear over the range +30 to -30 C. A strong response to 15 ppm SO2 has been demonstrated on a chemically coated SAW crystal.

  2. Magnetically Controlled Surface Acoustic Waves on Multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Ishii, Y.; Sasaki, R.; Nii, Y.; Ito, T.; Onose, Y.

    2018-03-01

    We fabricate a surface acoustic wave (SAW) device on a multiferroic BiFeO3 crystal while SAW devices are usually fabricated on nonmagnetic piezoelectrics and commercially available as bandpass filters. By using the time-domain technique, we demonstrate the SAW excitation on BiFeO3 . The amplitude and phase of the SAW signal are modulated by the external magnetic field reflecting the multiferroicity of BiFeO3 . The magnetic controllability of the multiferroic SAW device seems useful for the further functionalization of the SAW device.

  3. The power flow angle of acoustic waves in thin piezoelectric plates.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Teplykh, Andrei A; Joshi, Shrinivas G; Kuznetsova, Anastasia S

    2008-09-01

    The curves of slowness and power flow angle (PFA) of quasi-antisymmetric (A(0)) and quasi-symmetric (S(0)) Lamb waves as well as quasi-shear-horizontal (SH(0)) acoustic waves in thin plates of lithium niobate and potassium niobate of X-,Y-, and Z-cuts for various propagation directions and the influence of electrical shorting of one plate surface on these curves and PFA have been theoretically investigated. It has been found that the group velocity of such waves does not coincide with the phase velocity for the most directions of propagation. It has been also shown that S(0) and SH(0) wave are characterized by record high values of PFA and its change due to electrical shorting of the plate surface in comparison with surface and bulk acoustic waves in the same material. The most interesting results have been verified by experiment. As a whole, the results obtained may be useful for development of various devices for signal processing, for example, electrically controlled acoustic switchers.

  4. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  5. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  6. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  7. SAW properties in quartz-like α-GeO2 single crystal

    NASA Astrophysics Data System (ADS)

    Taziev, R. M.

    2018-05-01

    The paper investigates numerically the properties of surface acoustic waves (SAW) in a new α-GeO2 single crystal of trigonal crystal symmetry (32). It is shown that the SAW has a maximum value of electromechanical coupling coefficient ≈0.14% on Z+120°, X –cut of a crystal with a zero power flow deflection angle. For the case of Z+140°X+25°-cut, the SAW electromechanical coupling coefficient equals 0.17 %, but the power flow deflection angle is not zero. Calculations are made of the frequency dependence of the conductance of SAW interdigital transducers (IDT), which electrode number equals 100 and wavelength is 20 microns on Z+120°,X –cut crystal. The excitations of bulk acoustic waves are absent in this cut case. Leaky acoustic wave, generated by IDT on Z+120°,X –cut of crystal, has a small electromechanical coupling coefficient, which is 4 times less than that for SAW.

  8. SAW Synthesis With IDTs Array and the Inverse Filter: Toward a Versatile SAW Toolbox for Microfluidics and Biological Applications.

    PubMed

    Riaud, Antoine; Baudoin, Michael; Thomas, Jean-Louis; Bou Matar, Olivier

    2016-10-01

    Surface acoustic waves (SAWs) are versatile tools to manipulate fluids at small scales for microfluidics and biological applications. A nonexhaustive list of operations that can be performed with SAW includes sessile droplet displacement, atomization, division, and merging but also the actuation of fluids embedded in microchannels or the manipulation of suspended particles. However, each of these operations requires a specific design of the wave generation system, the so-called interdigitated transducers (IDTs). Depending on the application, it might indeed be necessary to generate focused or plane, propagating or standing, and aligned or shifted waves. Furthermore, the possibilities offered by more complex wave fields such as acoustical vortices for particle tweezing and liquid twisting cannot be explored with classical IDTs. In this paper, we show that the inverse filter technique coupled with an IDTs array enables us to synthesize all classical wave fields used in microfluidics and biological applications with a single multifunctional platform. It also enables us to generate swirling SAWs, whose potential for the on-chip synthesis of tailored acoustical vortices has been demonstrated lately. The possibilities offered by this platform are illustrated by performing many operations successively on sessile droplets with the same system.

  9. Surface and pseudo surface acoustic waves in langatate: predictions and measurements.

    PubMed

    Pereira da Cunha, Maurício; Malocha, Donald C; Adler, Eric L; Casey, Kevin J

    2002-09-01

    Langatate (LGT, La3Ga(5.5)Ta(0.5)O14) is a recent addition to materials of the trigonal crystal class 32, which is the same crystal class as quartz, langasite, langanite, and gallium phosphate. Langatate has several attractive acoustical properties, in particular: a measured bulk acoustic wave (BAW) resonator quality factor frequency product (Qf) of 16 million, comparable to that of AT cut quartz; high-piezoelectric coupling orientations, up to 0.5% for surface acoustic waves (SAWs), about five times larger than that of ST-X quartz; low power flow angle orientations in the vicinity of high coupling orientations; phase velocities about 20% smaller than those of ST-X quartz, facilitating the production of smaller, lower frequency devices; the existence of pseudo SAW modes for higher frequency applications. In this paper SAW contour plots of the phase velocity (vp), the electromechanical coupling coefficient (K2), the temperature coefficient of delay (TCD), and the power flow angle (PFA), are given showing the orientations in space in which high coupling is obtained, with the corresponding TCD, PFA, and vp characteristics for these orientations. This work reports experimental results on the SAW temperature fractional frequency variation (delta f/fo) and the TCD for several LGT orientations on the plane with Euler angles: (0 degrees, 132 degrees, psi). The temperature behavior has been measured directly on SAW wafers from 10 to 200 degrees C, and the results are compared with numerical predictions using our recently measured temperature coefficients for LGT material constants. This research also has uncovered temperature compensated orientations, which we have experimentally verified with parabolic behavior, turnover temperatures in the 130 to 160 degrees C range, and delta f/fo within 1000 ppm variation from 10 to 260 degrees C, appropriate for higher temperature device applications. Regarding the pseudo surface acoustic waves (PSAWs), results of calculations are

  10. The particle valve: On-demand particle trapping, filtering, and release from a microfabricated polydimethylsiloxane membrane using surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Collins, David J.; Alan, Tuncay; Neild, Adrian

    2014-07-01

    We introduce a surface acoustic wave (SAW) based method for acoustically controlled concentration, capture, release, and sorting of particles in a microfluidic system. This method is power efficient by the nature of its design: the vertical direction of a traveling acoustic wave, in which the majority of the energy at the SAW-water interface is directed, is used to concentrate particles behind a microfabricated polydimethylsiloxane membrane extending partially into a channel. Sorting is also demonstrated with this concentration shown to be size-dependent. Low-power, miniature SAW devices, using methods such as the one demonstrated here, are well placed for future integration into point-of-care diagnostic systems.

  11. Propagation of SH waves in an infinite/semi-infinite piezoelectric/piezomagnetic periodically layered structure.

    PubMed

    Pang, Yu; Liu, Yu-Shan; Liu, Jin-Xi; Feng, Wen-Jie

    2016-04-01

    In this paper, SH bulk/surface waves propagating in the corresponding infinite/semi-infinite piezoelectric (PE)/piezomagnetic (PM) and PM/PE periodically layered composites are investigated by two methods, the stiffness matrix method and the transfer matrix method. For a semi-infinite PE/PM or PM/PE medium, the free surface is parallel to the layer interface. Both PE and PM materials are assumed to be transversely isotropic solids. Dispersion equations are derived by the stiffness/transfer matrix methods, respectively. The effects of electric-magnetic (ME) boundary conditions at the free surface and the layer thickness ratios on dispersion curves are considered in detail. Numerical examples show that the results calculated by the two methods are the same. The dispersion curves of SH surface waves are below the bulk bands or inside the frequency gaps. The ratio of the layer thickness has an important effect not only on the bulk bands but also on the dispersion curves of SH surface waves. Electric and magnetic boundary conditions, respectively, determine the dispersion curves of SH surface waves for the PE/PM and PM/PE semi-infinite structures. The band structures of SH bulk waves are consistent for the PE/PM and PM/PE structures, however, the dispersive behaviors of SH surface waves are indeed different for the two composites. The realization of the above-mentioned characteristics of SH waves will make it possible to design PE/PM acoustic wave devices with periodical structures and achieve the better performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Non-leaky modes and bandgaps of surface acoustic waves in wrinkled stiff-film/compliant-substrate bilayers

    NASA Astrophysics Data System (ADS)

    Li, Guo-Yang; Xu, Guoqiang; Zheng, Yang; Cao, Yanping

    2018-03-01

    Surface acoustic wave (SAW) devices have found a wide variety of technical applications, including SAW filters, SAW resonators, microfluidic actuators, biosensors, flow measurement devices, and seismic wave shields. Stretchable/flexible electronic devices, such as sensory skins for robotics, structural health monitors, and wearable communication devices, have received considerable attention across different disciplines. Flexible SAW devices are essential building blocks for these applications, wherein piezoelectric films may need to be integrated with the compliant substrates. When piezoelectric films are much stiffer than soft substrates, SAWs are usually leaky and the devices incorporating them suffer from acoustic losses. In this study, the propagation of SAWs in a wrinkled bilayer system is investigated, and our analysis shows that non-leaky modes can be achieved by engineering stress patterns through surface wrinkles in the system. Our analysis also uncovers intriguing bandgaps (BGs) related to the SAWs in a wrinkled bilayer system; these are caused by periodic deformation patterns, which indicate that diverse wrinkling patterns could be used as metasurfaces for controlling the propagation of SAWs.

  13. Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves.

    PubMed

    Behrens, Jan; Langelier, Sean; Rezk, Amgad R; Lindner, Gerhard; Yeo, Leslie Y; Friend, James R

    2015-01-07

    We present a versatile and very low-power traveling SAW microfluidic sorting device able to displace and separate particles of different diameter in aqueous suspension; the travelling wave propagates through the fluid bulk and diffuses via a Schröder diffuser, adapted from its typical use in concert hall acoustics to be the smallest such diffuser to be suitable for microfluidics. The effective operating power range is two to three orders of magnitude less than current SAW devices, uniquely eliminating the need for amplifiers, and by using traveling waves to impart forces directly upon suspended microparticles, they can be separated by size.

  14. Rapid SAW Sensor Development Tools

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    The lack of integrated design tools for Surface Acoustic Wave (SAW) devices has led us to develop tools for the design, modeling, analysis, and automatic layout generation of SAW devices. These tools enable rapid development of wireless SAW sensors. The tools developed have been designed to integrate into existing Electronic Design Automation (EDA) tools to take advantage of existing 3D modeling, and Finite Element Analysis (FEA). This paper presents the SAW design, modeling, analysis, and automated layout generation tools.

  15. Investigation of phononic crystals for dispersive surface acoustic wave ozone sensors

    NASA Astrophysics Data System (ADS)

    Westafer, Ryan S.

    The object of this research was to investigate dispersion in surface phononic crystals (PnCs) for application to a newly developed passive surface acoustic wave (SAW) ozone sensor. Frequency band gaps and slow sound already have been reported for PnC lattice structures. Such engineered structures are often advertised to reduce loss, increase sensitivity, and reduce device size. However, these advances have not yet been realized in the context of surface acoustic wave sensors. In early work, we computed SAW dispersion in patterned surface structures and we confirmed that our finite element computations of SAW dispersion in thin films and in one dimensional surface PnC structures agree with experimental results obtained by laser probe techniques. We analyzed the computations to guide device design in terms of sensitivity and joint spectral operating point. Next we conducted simulations and experiments to determine sensitivity and limit of detection for more conventional dispersive SAW devices and PnC sensors. Finally, we conducted extensive ozone detection trials on passive reflection mode SAW devices, using distinct components of the time dispersed response to compensate for the effect of temperature. The experimental work revealed that the devices may be used for dosimetry applications over periods of several days.

  16. A Comparison of Surface Acoustic Wave Modeling Methods

    NASA Technical Reports Server (NTRS)

    Wilson, W. c.; Atkinson, G. M.

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.

  17. SH-wave refraction/reflection and site characterization

    USGS Publications Warehouse

    Wang, Z.; Street, R.L.; Woolery, E.W.; Madin, I.P.

    2000-01-01

    Traditionally, nonintrusive techniques used to characterize soils have been based on P-wave refraction/reflection methods. However, near-surface unconsolidated soils are oftentimes water-saturated, and when groundwater is present at a site, the velocity of the P-waves is more related to the compressibility of the pore water than to the matrix of the unconsolidated soils. Conversely, SH-waves are directly relatable to the soil matrix. This makes SH-wave refraction/reflection methods effective in site characterizations where groundwater is present. SH-wave methods have been used extensively in site characterization and subsurface imaging for earthquake hazard assessments in the central United States and western Oregon. Comparison of SH-wave investigations with geotechnical investigations shows that SH-wave refraction/reflection techniques are viable and cost-effective for engineering site characterization.

  18. Ray splitting in the reflection and refraction of surface acoustic waves in anisotropic solids.

    PubMed

    Every, A G; Maznev, A A

    2010-05-01

    This paper examines the conditions for, and provides examples of, ray splitting in the reflection and refraction of surface acoustic waves (SAW) in elastically anisotropic solids at straight obstacles such as edges, surface breaking cracks, and interfaces between different solids. The concern here is not with the partial scattering of an incident SAW's energy into bulk waves, but with the occurrence of more than one SAW ray in the reflected and/or transmitted wave fields, by analogy with birefringence in optics and mode conversion of bulk elastic waves at interfaces. SAW ray splitting is dependent on the SAW slowness curve possessing concave regions, which within the constraint of wave vector conservation parallel to the obstacle allows multiple outgoing SAW modes for certain directions of incidence and orientation of obstacle. The existence of pseudo-SAW for a given surface provides a further channel for ray splitting. This paper discusses some typical material configurations for which SAW ray splitting occurs. An example is provided of mode conversion entailing backward reflection or negative refraction. Experimental demonstration of ray splitting in the reflection of a laser generated SAW in GaAs(111) is provided. The calculation of SAW mode conversion amplitudes lies outside the scope of this paper.

  19. Using Nano-mechanics and Surface Acoustic Wave (SAW) for Disease Monitoring and Diagnostics at a Cellular Level in Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay

    A popular approach to monitoring diseases and their diagnosis is through biological, pathological or immunological characterization. However, at a cellular level progression of certain diseases manifests itself through mechanical effects as well. Here, we present a method which exploits localised flow; surface acoustic wave (SAW) induced acoustic streaming in a 9 μL droplet to characterize the adhesive properties of red blood cells (healthy, gluteraldehyde treated and malaria infected) in approximately 50 seconds. Our results show a 79% difference in cell mobilization between healthy malaria infected RBCs (and a 39% difference between healthy and treated ones), indicating that the method can serve as a platform for rapid clinical diagnosis; where separation of two or more different cell populations in a mixed solution is desirable. It can also act as a key biomarker for monitoring some diseases offering quantitative measures of disease progression and response to therapy.

  20. An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection

    NASA Astrophysics Data System (ADS)

    Arun, K.; Dhayalan, R.; Balasubramaniam, Krishnan; Maxfield, Bruce; Peres, Patrick; Barnoncel, David

    2012-05-01

    The evaluation of adhesively bonded structures has been a challenge over the several decades that these structures have been used. Applications within the aerospace industry often call for particularly high performance adhesive bonds. Several techniques have been proposed for the detection of disbonds and cohesive weakness but a reliable NDE method for detecting interfacial weakness (also sometimes called a kissing bond) has been elusive. Different techniques, including ultrasonic, thermal imaging and shearographic methods, have been proposed; all have had some degree of success. In particular, ultrasonic methods, including those based upon shear and guided waves, have been explored for the assessment of interfacial bond quality. Since 3-D guided shear horizontal (SH) waves in plates have predominantly shear displacement at the plate surfaces, we conjectured that SH guided waves should be influenced by interfacial conditions when they propagate between adhesively bonded plates of comparable thickness. This paper describes a new technique based on SH guided waves that propagate within and through a lap joint. Through mechanisms we have yet to fully understand, the propagation of an SH wave through a lap joint gives rise to a reverberation signal that is due to one or more reflections of an SH guided wave mode within that lap joint. Based upon a combination of numerical simulations and measurements, this method shows promise for detecting and classifying interfacial bonds. It is also apparent from our measurements that the SH wave modes can discriminate between adhesive and cohesive bond weakness in both Aluminum-Epoxy-Aluminum and Composite-Epoxy-Composite lap joints. All measurements reported here used periodic permanent magnet (PPM) Electro-Magnetic Acoustic Transducers (EMATs) to generate either or both of the two lowest order SH modes in the plates that comprise the lap joint. This exact configuration has been simulated using finite element (FE) models to

  1. Method for nondestructive testing of the film coating behavior of surface acoustic wave (SAW) sensors

    NASA Astrophysics Data System (ADS)

    Taslakov, M. A.; Avramov, I. D.

    2010-04-01

    This paper presents a practical non-destructive method for studying the film coating behavior of SAW devices by using a water soluble dielectric film (manitol) deposited on the SAW device surface by resistive evaporation. After measuring the electrical parameters of the film coated SAW device, the film can easily be removed from its surface by water rinsing without causing any damage to it. The SAW device can then be used over and over again in a large number of film depositions. The method was tested on a 1 GHz surface transverse wave (STW) resonator coated with manitol of varying thickness. After each coating and evaluation, the STW device was successfully recovered without significant performance degradation. Data is presented on the electrical changes of the STW device as a result of depositing manitol coatings of various thicknesses.

  2. Modeling of SAW Delay Lines

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    Integrated Vehicle Health Monitoring (IVHM) of aerospace vehicles requires rugged sensors having reduced volume, mass, and power that can be used to measure a variety of phenomena. Wireless systems are preferred when retro-fitting sensors onto existing vehicles. Surface Acoustic Wave (SAW) devices are capable of sensing: temperature, pressure, strain, chemical species, mass loading, acceleration, and shear stress. SAW technology is low cost, rugged, lightweight, and extremely low power. To aid in the development of SAW sensors for IVHM applications, a first order model of a SAW Delay line has been created.

  3. Improved Multiple-DOF SAW Piezoelectric Motors

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Hull, Anthony; Wright, John

    2003-01-01

    Surface-acoustic-wave (SAW) piezoelectric motors of a proposed type would be capable of operating in multiple degrees of freedom (DOFs) simultaneously and would be amenable to integration into diverse structures and mechanisms. These motors would be compact and structurally simple and would not contain bearings or lead screws. One example of a particularly useful motor of this type would be a two-dimensional- translation stage. Another such example would be a self-actuated spherical joint that could be made to undergo controlled, simultaneous rotations about two orthogonal axes: Such a motor could serve as a mechanism for aiming an "eyeball" camera or as a compact transducer in, and an integral part of, a joint in a robot arm. The multiple-DOF SAW piezoelectric motors as now proposed would be successors to the ones reported in "Multiple-DOF Surface-Acoustic-Wave Piezoelectric Motors" (NPO-20735), NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 5b. The basic principle of operation of a multiple-DOF SAW piezoelectric motor is a straightforward extension of that of single-DOF SAW piezoelectric motors, which have been reported in several previous NASA Tech Briefs articles: For example, in the case of a linear SAW piezoelectric motor, piezoelectric transducers at opposite ends of a stator excite surface acoustic waves that travel along the surface of the stator. An object (denoted the slider) is pressed against the stator with sufficient pressure (in practice .300 MPa) that it remains in frictional contact with the stator at all times. The slider rides the crests of the waves and is thereby made to move along the surface of the stator. The direction of motion (forward or backward) is controlled by selecting the relative phase of waves generated by the two piezoelectric transducers. The speed increases with the amplitude of the waves and thus with the magnitude of the voltage applied to the transducers.

  4. An oxygen pressure sensor using surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  5. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Kryshtal, R. G.; Medved, A. V.

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW - magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW - magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW - magnonic crystals are promising for signal processing in the GHz range.

  6. Tunable surface acoustic wave device based on acoustoelectric interaction in ZnO/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Rui; Reyes, Pavel I.; Ragavendiran, Sowmya; Shen, H.; Lu, Yicheng

    2015-08-01

    A tunable surface acoustic wave (SAW) device is developed on a multilayer structure which consists of an n-type semiconductor ZnO layer and a Ni-doped piezoelectric ZnO layer deposited on a GaN/c-Al2O3 substrate. The unique acoustic dispersion relationship between ZnO and GaN generates the multi-mode SAW response in this structure, facilitating high frequency operation. A dc bias voltage is applied to a Ti/Au gate layer deposited on the path of SAW delay line to modulate the electrical conductivity for tuning the acoustic velocity. For devices operating at 1.25 GHz, a maximum SAW velocity change of 0.9% is achieved, equivalent to the frequency change of 11.2 MHz. This voltage-controlled frequency tuning device has potential applications in resettable sensors, adaptive signal processing, and secure wireless communication.

  7. Enhancing the sensitivity of three-axis detectable surface acoustic wave gyroscope by using a floating thin piezoelectric membrane

    NASA Astrophysics Data System (ADS)

    Lee, Munhwan; Lee, Keekeun

    2017-06-01

    A new type of surface acoustic wave (SAW) gyroscope was developed on a floating thin piezoelectric membrane to enhance sensitivity and reliability by removing a bulk noise effect and by importing a higher amplitude of SAW. The developed device constitutes a two-port SAW resonator with a metallic dot array between two interdigital transducers (IDTs), and a one-port SAW delay line. The bulk silicon was completely etched away, leaving only a thin piezoelectric membrane with a thickness of one wavelength. A voltage controlled oscillator (VCO) was connected to a SAW resonator to activate the SAW resonator, while the SAW delay line was connected to the oscilloscope to monitor any variations caused by the Coriolis force. When the device was rotated, a secondary wave was generated, changing the amplitude of the SAW delay line. The highest sensitivity was observed in a device with a full acoustic wavelength thickness of the membrane because most of the acoustic field is confined within an acoustic wavelength thickness from the top surface; moreover, the thin-membrane-based gyroscope eliminates the bulk noise effect flowing along the bulk substrate. The obtained sensitivity and linearity of the SAW gyroscope were ˜27.5 µV deg-1 s-1 and ˜4.3%, respectively. Superior directivity was observed. The device surface was vacuum-sealed using poly(dimethylsiloxane) (PDMS) bonding to eliminate environmental interference. A three-axis detectable gyroscope was also implemented by placing three gyrosensors with the same configuration at right angles to each other on a printed circuit board.

  8. Surface acoustic wave solid-state rotational micromotor

    NASA Astrophysics Data System (ADS)

    Shilton, Richie J.; Langelier, Sean M.; Friend, James R.; Yeo, Leslie Y.

    2012-01-01

    Surface acoustic waves (SAWs) are used to drive a 1 mm diameter rotor at speeds exceeding 9000 rpm and torque of nearly 5 nNm. Unlike recent high-speed SAW rotary motors, however, the present design does not require a fluid coupling layer but interestingly exploits adhesive stiction as an internal preload, a force usually undesirable at these scales; with additional preloads, smaller rotors can be propelled to 15 000 rpm. This solid-state motor has no moving parts except for the rotor and is sufficiently simple to allow integration into miniaturized drive systems for potential use in microfluidic diagnostics, optical switching and microrobotics.

  9. Molecular recognition in gas sensing: Results from acoustic wave and in-situ FTIR measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hierlemann, A.; Ricco, A.J.; Bodenhoefer, K.

    Surface acoustic wave (SAW) measurements were combined with direct, in-situ molecular spectroscopy to understand the interactions of surface-confined sensing films with gas-phase analytes. This was accomplished by collecting Fourier-transform infrared external-reflectance spectra (FTIR-ERS) on operating SAW devices during dosing of their specifically coated surfaces with key analytes.

  10. Toward soft-tissue elastography using digital holography to monitor surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Li, Shiguang; Mohan, Karan D.; Sanders, William W.; Oldenburg, Amy L.

    2011-11-01

    Measuring the elasticity distribution inside the human body is of great interest because elastic abnormalities can serve as indicators of several diseases. We present a method for mapping elasticity inside soft tissues by imaging surface acoustic waves (SAWs) with digital holographic interferometry. With this method, we show that SAWs are consistent with Rayleigh waves, with velocities proportional to the square root of the elastic modulus greater than 2-40 kPa in homogeneous tissue phantoms. In two-layer phantoms, the SAW velocity transitions approximately from that of the lower layer to that of the upper layer as frequency is increased in agreement with the theoretical relationship between SAW dispersion and the depth-dependent stiffness profile. We also observed deformation in the propagation direction of SAWs above a stiff inclusion placed 8 mm below the surface. These findings demonstrate the potential for quantitative digital holography-based elastography of soft tissues as a noninvasive method for disease detection.

  11. Nonreciprocal Surface Acoustic Waves in Multilayers with Magnetoelastic and Interfacial Dzyaloshinskii-Moriya Interactions

    NASA Astrophysics Data System (ADS)

    Verba, Roman; Lisenkov, Ivan; Krivorotov, Ilya; Tiberkevich, Vasil; Slavin, Andrei

    2018-06-01

    Surface acoustic waves (SAWs) propagating in a piezoelectric substrate covered with a thin ferromagnetic-heavy-metal bilayer are found to exhibit a substantial degree of nonreciprocity, i.e., the frequencies of these waves are nondegenerate with respect to the inversion of the SAW propagation direction. The simultaneous action of the magnetoelastic interaction in the ferromagnetic layer and the interfacial Dzyaloshinskii-Moriya interaction in the ferromagnetic-heavy-metal interface results in the openings of magnetoelastic band gaps in the SAW spectrum, and the frequency position of these band gaps is different for opposite SAW propagation directions. The band-gap widths and the frequency separation between them can be controlled by a proper selection of the magnetization angle and the thickness of the ferromagnetic layer. Using numerical simulations, we demonstrate that the isolation between SAWs propagating in opposite directions in such a system can exceed the direct SAW propagation losses by more than 1 order of magnitude.

  12. Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves

    PubMed Central

    Meng, Long; Cai, Feiyan; Zhang, Zidong; Niu, Lili; Jin, Qiaofeng; Yan, Fei; Wu, Junru; Wang, Zhanhui; Zheng, Hairong

    2011-01-01

    A microfluidic device was developed to precisely transport a single cell or multiple microbubbles by introducing phase-shifts to a standing leaky surface acoustic wave (SLSAW). The device consists of a polydimethyl-siloxane (PDMS) microchannel and two phase-tunable interdigital transducers (IDTs) for the generation of the relative phase for the pair of surface acoustic waves (SAW) propagating along the opposite directions forming a standing wave. When the SAW contacts the fluid medium inside the microchannel, some of SAW energy is coupled to the fluid and the SAW becomes the leaky surface wave. By modulating the relative phase between two IDTs, the positions of pressure nodes of the SLSAW in the microchannel change linearly resulting in the transportation of a single cell or microbubbles. The results also reveal that there is a good linear relationship between the relative phase and the displacement of a single cell or microbubbles. Furthermore, the single cell and the microbubbles can be transported over a predetermined distance continuously until they reach the targeted locations. This technique has its distinct advantages, such as precise position-manipulation, simple to implement, miniature size, and noninvasive character, which may provide an effective method for the position-manipulation of a single cell and microbubbles in many biological and biomedical applications. PMID:22662056

  13. Frequency Domain Modeling of SAW Devices

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, G. M.

    2007-01-01

    New SAW sensors for integrated vehicle health monitoring of aerospace vehicles are being investigated. SAW technology is low cost, rugged, lightweight, and extremely low power. However, the lack of design tools for MEMS devices in general, and for Surface Acoustic Wave (SAW) devices specifically, has led to the development of tools that will enable integrated design, modeling, simulation, analysis and automatic layout generation of SAW devices. A frequency domain model has been created. The model is mainly first order, but it includes second order effects from triple transit echoes. This paper presents the model and results from the model for a SAW delay line device.

  14. Theoretical investigation of surface acoustic wave in the new, three-layered structure: ZnO/AlN/diamond.

    PubMed

    El Hakiki, Mohamed; Elmazria, Omar; Alnot, Patrick

    2007-03-01

    The new layered structure, ZnO/AlN/diamond, for surface acoustic wave (SAW) devices is investigated for gigahertz-band applications. This structure combines the advantages of both piezoelectric materials, with a high electromechanical coupling coefficient (K2) of ZnO and high acoustic velocity of AlN. Theoretical results show that Rayleigh mode SAWs with large phase velocities up to 12,200 m/s and large K2 from 1 to 3% were generated with this new structure.

  15. Quantum Control of a Nitrogen-Vacancy Center using Surface Acoustic Waves in the Resolved Sideband Limit

    NASA Astrophysics Data System (ADS)

    Golter, David; Oo, Thein; Amezcua, Maira; Wang, Hailin

    Micro-electromechanical systems research is producing increasingly sophisticated tools for nanophononic applications. Such technology is well-suited for achieving chip-based, integrated acoustic control of solid-state quantum systems. We demonstrate such acoustic control in an important solid-state qubit, the diamond nitrogen-vacancy (NV) center. Using an interdigitated transducer to generate a surface acoustic wave (SAW) field in a bulk diamond, we observe phonon-assisted sidebands in the optical excitation spectrum of a single NV center. This exploits the strong strain sensitivity of the NV excited states. The mechanical frequencies far exceed the relevant optical linewidths, reaching the resolved-sideband regime. This enables us to use the SAW field for driving Rabi oscillations on the phonon-assisted optical transition. These results stimulate the further integration of SAW-based technologies with the NV center system.

  16. Development of an ultrasonic inspection robot using an electromagnetic acoustic transducer for a Lamb wave and an SH-plate wave.

    PubMed

    Murayama, Riichi; Makiyama, Shunnichi; Kodama, Mitutoshi; Taniguchi, Yasutoshi

    2004-04-01

    For inspection of a storage tank and pipeline in service, the application of an automatic inspection system (nondestructive inspection robot) is desirable, because manual inspection is difficult to perfectly and exactly perform due to the enormous amount of inspection needed. However, an ultrasonic nondestructive inspection robot with a piezoelectric oscillator needs to touch only the material surface to be directly inspected using a coupling medium. That is, the material surface and the sensor must always be held by constant pressure in the vertical direction on the material side. Actually, it is difficult to overcome these problems; thus an ultrasonic inspection robot could not be widely applied. We then tried to develop an ultrasonic inspection robot with an electromagnetic acoustic transducer (EMAT) which did not require a coupling medium to inspect the circumferential pipe parts. We developed a special EMAT that could transmit and receive alternately a Lamb wave with high sensitivity and a SH-plate wave without influence by the welded part. The method by which the inspection robot turned around the direction of the steel pipe surroundings was executed by observing the tape pasted in the direction of the steel pipe surroundings with an installed CCD camera. In this report, the basic mechanism of this inspection robot and an examination of results are described.

  17. Complex dispersion relation of surface acoustic waves at a lossy metasurface

    NASA Astrophysics Data System (ADS)

    Schwan, Logan; Geslain, Alan; Romero-García, Vicente; Groby, Jean-Philippe

    2017-01-01

    The complex dispersion relation of surface acoustic waves (SAWs) at a lossy resonant metasurface is theoretically and experimentally reported. The metasurface consists of the periodic arrangement of borehole resonators in a rigid substrate. The theoretical model relies on a boundary layer approach that provides the effective metasurface admittance governing the complex dispersion relation in the presence of viscous and thermal losses. The model is experimentally validated by measurements in the semi-anechoic chamber. The complex SAW dispersion relation is experimentally retrieved from the analysis of the spatial Laplace transform of the pressure scanned along a line at the metasurface. The geometrical spreading of the energy from the speaker is accounted for, and both the real and imaginary parts of the SAW wavenumber are obtained. The results show that the strong reduction of the SAW group velocity occurs jointly with a drastic attenuation of the wave, leading to the confinement of the field close to the source and preventing the efficient propagation of such slow-sound surface modes. The method opens perspectives to theoretically predict and experimentally characterize both the dispersion and the attenuation of surface waves at structured surfaces.

  18. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW).

    PubMed

    Shi, Jinjie; Yazdi, Shahrzad; Lin, Sz-Chin Steven; Ding, Xiaoyun; Chiang, I-Kao; Sharp, Kendra; Huang, Tony Jun

    2011-07-21

    Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bonded between them. To understand the working principle of the SSAW-based 3D focusing and investigate the position of the focal point, we computed longitudinal waves, generated by the SAWs and radiated into the fluid media from opposite sides of the microchannel, and the resultant pressure and velocity fields due to the interference and reflection of the longitudinal waves. Simulation results predict the existence of a focusing point which is in good agreement with our experimental observations. Compared with other 3D focusing techniques, this method is non-invasive, robust, energy-efficient, easy to implement, and applicable to nearly all types of microparticles.

  19. DNA concentration modulation on supported lipid bilayers switched by surface acoustic waves.

    PubMed

    Hennig, Martin; Wolff, Manuel; Neumann, Jürgen; Wixforth, Achim; Schneider, Matthias F; Rädler, Joachim O

    2011-12-20

    Spatially addressable arrays of molecules embedded in or anchored to supported lipid bilayers are important for on-chip screening and binding assays; however, methods to sort or accumulate components in a fluid membrane on demand are still limited. Here we apply in-plane surface acoustic shear waves (SAWs) to laterally accumulate double-stranded DNA segments electrostatically bound to a cationic supported lipid bilayer. The fluorescently labeled DNA segments are found to segregate into stripe patterns with a spatial frequency corresponding to the periodicity of the standing SAW wave (~10 μm). The DNA molecules are accumulated 10-fold in the regions of SAW antinodes. The superposition of two orthogonal sets of SAW sources creates checkerboard like arrays of DNA demonstrating the potential to generate arrayed fields dynamically. The pattern relaxation time of 0.58 s, which is independent of the segment length, indicates a sorting and relaxation mechanism dominated by lipid diffusion rather than DNA self-diffusion. © 2011 American Chemical Society

  20. Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics.

    PubMed

    Stratoudaki, Theodosia; Ellwood, Robert; Sharples, Steve; Clark, Matthew; Somekh, Michael G; Collison, Ian J

    2011-04-01

    A dual frequency mixing technique has been developed for measuring velocity changes caused by material nonlinearity. The technique is based on the parametric interaction between two surface acoustic waves (SAWs): The low frequency pump SAW generated by a transducer and the high frequency probe SAW generated and detected using laser ultrasonics. The pump SAW stresses the material under the probe SAW. The stress (typically <5 MPa) is controlled by varying the timing between the pump and probe waves. The nonlinear interaction is measured as a phase modulation of the probe SAW and equated to a velocity change. The velocity-stress relationship is used as a measure of material nonlinearity. Experiments were conducted to observe the pump-probe interaction by changing the pump frequency and compare the nonlinear response of aluminum and fused silica. Experiments showed these two materials had opposite nonlinear responses, consistent with previously published data. The technique could be applied to life-time predictions of engineered components by measuring changes in nonlinear response caused by fatigue.

  1. Hybrid Resonant Acoustics: Exploiting a New Class of Sound Waves for Highly Efficient Microfluidic Nebulisation

    NASA Astrophysics Data System (ADS)

    Rezk, Amgad; Yeo, Leslie

    2017-11-01

    A longstanding convention in acoustomicrofluidic manipulation-a consequence of wholesale adoption from decades long application of surface acoustic waves (SAWs) in electronics and telecommunications-has been to employ pure SAWs by eliminating wave reflections and bulk resonances in single crystal piezoelectric substrates with the assumption that this provides the most efficient way to actuate or manipulate fluid flow at microscale dimensions. Despite the many advantages of SAW microfluidics, particularly for aerosolising and hence delivering next generation macromolecular-based therapeutics via inhalation, the limitation of the SAW devices, however, lies in the input power it can sustain, thus constraining the nebulisation rates that can be generated, which has, among other things, severely hampered its practical adoption in pulmonary drug administration to date. Here, we unravel the existence of a surface reflected bulk wave (SRBW)-the first new class of sound waves to have been discovered in well over five decades-and show, quite counterintuitively, that it is possible to obtain an order-of-magnitude improvement in microfluidic manipulation efficiency through this unique hybrid combination of surface and bulk waves without increasing complexity or cost.

  2. Integrated immunoassay using tuneable surface acoustic waves and lensfree detection.

    PubMed

    Bourquin, Yannyk; Reboud, Julien; Wilson, Rab; Zhang, Yi; Cooper, Jonathan M

    2011-08-21

    The diagnosis of infectious diseases in the Developing World is technologically challenging requiring complex biological assays with a high analytical performance, at minimal cost. By using an opto-acoustic immunoassay technology, integrating components commonly used in mobile phone technologies, including surface acoustic wave (SAW) transducers to provide pressure driven flow and a CMOS camera to enable lensfree detection technique, we demonstrate the potential to produce such an assay. To achieve this, antibody functionalised microparticles were manipulated on a low-cost disposable cartridge using the surface acoustic waves and were then detected optically. Our results show that the biomarker, interferon-γ, used for the diagnosis of diseases such as latent tuberculosis, can be detected at pM concentrations, within a few minutes (giving high sensitivity at a minimal cost). This journal is © The Royal Society of Chemistry 2011

  3. A high-performance lab-on-a-chip liquid sensor employing surface acoustic wave resonance

    NASA Astrophysics Data System (ADS)

    Kustanovich, K.; Yantchev, V.; Kirejev, V.; Jeffries, G. D. M.; Lobovkina, T.; Jesorka, A.

    2017-11-01

    We demonstrate herein a new concept for lab-on-a-chip in-liquid sensing, through integration of surface acoustic wave resonance (SAR) in a one-port configuration with a soft polymer microfluidic delivery system. In this concept, the reflective gratings of a one-port surface acoustic wave (SAW) resonator are employed as mass loading-sensing elements, while the SAW transducer is protected from the measurement environment. We describe the design, fabrication, implementation, and characterization using liquid medium. The sensor operates at a frequency of 185 MHz and has demonstrated a comparable sensitivity to other SAW in-liquid sensors, while offering quality factor (Q) value in water of about 250, low impedance and fairly low susceptibility to viscous damping. For proof of principle, sensing performance was evaluated by means of binding 40 nm neutravidin-coated SiO2 nanoparticles to a biotin-labeled lipid bilayer deposited over the reflectors. Frequency shifts were determined for every step of the affinity assay. Demonstration of this integrated technology highlights the potential of SAR technology for in-liquid sensing.

  4. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.

    2014-06-01

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  5. An emerging reactor technology for chemical synthesis: surface acoustic wave-assisted closed-vessel Suzuki coupling reactions.

    PubMed

    Kulkarni, Ketav; Friend, James; Yeo, Leslie; Perlmutter, Patrick

    2014-07-01

    In this paper we demonstrate the use of an energy-efficient surface acoustic wave (SAW) device for driving closed-vessel SAW-assisted (CVSAW), ligand-free Suzuki couplings in aqueous media. The reactions were carried out on a mmolar scale with low to ultra-low catalyst loadings. The reactions were driven by heating resulting from the penetration of acoustic energy derived from RF Raleigh waves generated by a piezoelectric chip via a renewable fluid coupling layer. The yields were uniformly high and the reactions could be executed without added ligand and in water. In terms of energy density this new technology was determined to be roughly as efficient as microwaves and superior to ultrasound. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  6. Enhanced Sensitivity of Novel Surface Acoustic Wave Microelectromechanical System-Interdigital Transducer Gyroscope

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Oh, Haekwan; Lee, Keekeun; Yoon, Sungjin; Yang, Sangsik

    2009-06-01

    In this paper, we present a novel microelectromechanical system-interdigital transducer (MEMS-IDT) surface acoustic wave (SAW) gyroscope with an 80 MHz central frequency on a 128° YX LiNbO3 wafer. The developed MEMS-IDT gyroscope is composed of a two-port SAW resonator, a dual delay line oscillator, and metallic dots. The SAW resonator provides a stable standing wave, and the vibrating metallic dot at an antinode of the standing wave induces the second SAW in the normal direction of its vibrating axis. The dual delay line oscillator detects the Coriolis force by comparing the resonant frequencies between two oscillators through the interference effect. The coupling of mode (COM) modeling was used to extract the optimal design parameters prior to fabrication. In the electrical testing by the network analyzer, the fabricated SAW resonator and delay lines showed low insertion loss and similar operation frequencies between a resonator and delay lines. When the device was rotated, the resonant frequency differences between two oscillators linearly varied owing to the Coriolis force. The obtained sensitivity was approximately 119 Hz deg-1 s-1 in the angular rate range of 0-1000 deg/s. Satisfactory linearity and superior directivity were also observed in the test.

  7. SAW Sensors for Chemical Vapors and Gases

    PubMed Central

    Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.

    2017-01-01

    Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future. PMID:28397760

  8. SAW Sensors for Chemical Vapors and Gases.

    PubMed

    Devkota, Jagannath; Ohodnicki, Paul R; Greve, David W

    2017-04-08

    Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future.

  9. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    PubMed

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-02-26

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

  10. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    PubMed Central

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-01-01

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz·deg·s−1) and good linearity were observed. PMID:24577520

  11. Passive hybrid sensing tag with flexible substrate saw device

    DOEpatents

    Skinner, Jack L.; Chu, Eric Y.; Ho, Harvey

    2012-12-25

    The integration of surface acoustic wave (SAW) filters, microfabricated transmission lines, and sensors onto polymer substrates in order to enable a passive wireless sensor platform is described herein. Incident microwave pulses on an integrated antenna are converted to an acoustic wave via a SAW filter and transmitted to an impedance based sensor, which for this work is a photodiode. Changes in the sensor state induce a corresponding change in the impedance of the sensor resulting in a reflectance profile. Data collected at a calibrated receiver is used to infer the state of the sensor. Based on this principal, light levels were passively and wirelessly demonstrated to be sensed at distances of up to about 12 feet.

  12. Transport Powder and Liquid Samples by Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Louyeh, Sahar

    2009-01-01

    Sample transport is an important requirement for In-situ analysis of samples in NASA planetary exploration missions. Tests have shown that powders or liquid drops on a surface can be transported by surface acoustic waves (SAW) that are generated on the surface using interdigital transducers. The phenomena were investigated experimentally and to generate SAWs interdigital electrodes were deposited on wafers of 128 deg rotated Y-cut LiNbO?. Transporting capability of the SAW device was tested using particles of various sizes and drops of various viscosities liquids. Because of different interaction mechanisms with the SAWs, the powders and the liquid drops were observed to move in opposite directions. In the preliminary tests, a speed of 180 mm/s was achieved for powder transportation. The detailed experimental setup and results are presented in this paper. The transporting mechanism can potentially be applied to miniaturize sample analysis system or " lab-on-chip" devices.

  13. Evaluation of Relative Sensitivity of SAW and Flexural Plate Wave Devices for Atmospheric Sensing

    NASA Technical Reports Server (NTRS)

    White, Richard M.; Black, Justin; Chen, Bryan

    1998-01-01

    The objective of this project is to evaluate the suitability of the ultrasonic flexural plate wave (FPW) device as the detector in a gas chromatograph (GC). Of particular interest is the detection of nitrous oxide (N2O). From experimental results we conclude analyte detection is achieved through two mechanisms: changes in gas density, and mass loading of the device membrane due to the sorption of gas molecules. Reducing the dead volume of the FPW chamber increased the FPW response. A comparison of the FPW response to that of the surface acoustic wave (SAW) detector provided with the GC (made by MSI, Microsensor Technologies, Inc.), shows that for unseparated N2O in N2, the FPW exhibits a sensitivity that is at least 550 times greater than that of the SAW device. A Porapak Q column was found to separate N2O from its carrier gas, N2 or He. With the Porapak Q column, a coated FPW detected 1 ppm N2O in N2 or He, with a response magnitude of 7 Hz. A coated SAW exhibited a response of 25 Hz to pure N2O. The minimal detectable N2O concentrations of the sensors were not evaluated.

  14. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.

    PubMed

    El Gowini, Mohamed M; Moussa, Walied A

    2010-01-01

    Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  15. Differentiation of red wines using an electronic nose based on surface acoustic wave devices.

    PubMed

    García, M; Fernández, M J; Fontecha, J L; Lozano, J; Santos, J P; Aleixandre, M; Sayago, I; Gutiérrez, J; Horrillo, M C

    2006-02-15

    An electronic nose, utilizing the principle of surface acoustic waves (SAW), was used to differentiate among different wines of the same variety of grapes which come from the same cellar. The electronic nose is based on eight surface acoustic wave sensors, one is a reference sensor and the others are coated by different polymers by spray coating technique. Data analysis was performed by two pattern recognition methods; principal component analysis (PCA) and probabilistic neuronal network (PNN). The results showed that electronic nose was able to identify the tested wines.

  16. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  17. A differential optical interferometer for measuring short pulses of surface acoustic waves.

    PubMed

    Shaw, Anurupa; Teyssieux, Damien; Laude, Vincent

    2017-09-01

    The measurement of the displacements caused by the propagation of a short pulse of surface acoustic waves on a solid substrate is investigated. A stabilized time-domain differential interferometer is proposed, with the surface acoustic wave (SAW) sample placed outside the interferometer. Experiments are conducted with surface acoustic waves excited by a chirped interdigital transducer on a piezoelectric lithium niobate substrate having an operational bandwidth covering the 200-400MHz frequency range and producing 10-ns pulses with 36nm maximum out-of-plane displacement. The interferometric response is compared with a direct electrical measurement obtained with a receiving wide bandwidth interdigital transducer and good correspondence is observed. The effects of varying the path difference of the interferometer and the measurement position on the surface are discussed. Pulse compression along the chirped interdigital transducer is observed experimentally. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A surface acoustic wave response detection method for passive wireless torque sensor

    NASA Astrophysics Data System (ADS)

    Fan, Yanping; Kong, Ping; Qi, Hongli; Liu, Hongye; Ji, Xiaojun

    2018-01-01

    This paper presents an effective surface acoustic wave (SAW) response detection method for the passive wireless SAW torque sensor to improve the measurement accuracy. An analysis was conducted on the relationship between the response energy-entropy and the bandwidth of SAW resonator (SAWR). A self-correlation method was modified to suppress the blurred white noise and highlight the attenuation characteristic of wireless SAW response. The SAW response was detected according to both the variation and the duration of energy-entropy ascension of an acquired RF signal. Numerical simulation results showed that the SAW response can be detected even when the signal-to-noise ratio (SNR) is 6dB. The proposed SAW response detection method was evaluated with several experiments at different conditions. The SAW response can be well distinguished from the sinusoidal signal and the noise. The performance of the SAW torque measurement system incorporating the detection method was tested. The obtained repeatability error was 0.23% and the linearity was 0.9934, indicating the validity of the detection method.

  19. Application of acoustic surface wave technology to shuttle radar

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The application of surface acoustic wave (SAW) signal processing devices in the space shuttle was explored. In order to demonstrate the functions which a SAW device might perform, a breadboard pulse compression filter (PCF) module was assembled. The PCF permits a pulse radar to operate with a large duty cycle and low peak power, a regime favorable to the use of solid state RF sources. The transducer design, strong coupling compensation, circuit model analysis, fabrication limitations, and performance evaluation of a PCF are described. The nominal value of the compression ratio is 100:1 with 10-MHz bandwidth centered at 60 MHz and 10-microsecond dispersive delay. The PCF incorporates dispersive interdigital transducers and a piezoelectric lithium niobate substrate.

  20. Reader Architectures for Wireless Surface Acoustic Wave Sensors.

    PubMed

    Lurz, Fabian; Ostertag, Thomas; Scheiner, Benedict; Weigel, Robert; Koelpin, Alexander

    2018-05-28

    Wireless surface acoustic wave (SAW) sensors have some unique features that make them promising for industrial metrology. Their decisive advantage lies in their purely passive operation and the wireless readout capability allowing the installation also at particularly inaccessible locations. Furthermore, they are small, low-cost and rugged components on highly stable substrate materials and thus particularly suited for harsh environments. Nevertheless, a sensor itself does not carry out any measurement but always requires a suitable excitation and interrogation circuit: a reader. A variety of different architectures have been presented and investigated up to now. This review paper gives a comprehensive survey of the present state of reader architectures such as time domain sampling (TDS), frequency domain sampling (FDS) and hybrid concepts for both SAW resonators and reflective SAW delay line sensors. Furthermore, critical performance parameters such as measurement accuracy, dynamic range, update rate, and hardware costs of the state of the art in science and industry are presented, compared and discussed.

  1. SAW Sensors for Chemical Vapors and Gases

    DOE PAGES

    Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.

    2017-04-08

    Here, surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identifymore » new opportunities and needs for additional research in this area moving into the future.« less

  2. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.

    2016-06-06

    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotatingmore » the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.« less

  3. High-Efficiency Photovoltaic Energy Conversion using Surface Acoustic Waves in Piezoelectric Semiconductors

    NASA Astrophysics Data System (ADS)

    Yakovenko, Victor

    2010-03-01

    We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).

  4. ZnO nanomaterials based surface acoustic wave ethanol gas sensor.

    PubMed

    Wu, Y; Li, X; Liu, J H; He, Y N; Yu, L M; Liu, W H

    2012-08-01

    ZnO nanomaterials based surface acoustic wave (SAW) gas sensor has been investigated in ethanol environment at room temperature. The ZnO nanomaterials have been prepared through thermal evaporation of high-purity zinc powder. The as-prepared ZnO nanomaterials have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques. The results indicate that the obtained ZnO nanomaterials, including many types of nanostructures such as nanobelts, nanorods, nanowires as well as nanosheets, are wurtzite with hexagonal structure and well-crystallized. The SAW sensor coated with the nanostructured ZnO materials has been tested in ethanol gas of various concentrations at room temperature. A network analyzer is used to monitor the change of the insertion loss of the SAW sensor when exposed to ethanol gas. The insertion loss of the SAW sensor varies significantly with the change of ethanol concentration. The experimental results manifest that the ZnO nanomaterials based SAW ethanol gas sensor exhibits excellent sensitivity and good short-term reproducibility at room temperature.

  5. Very small IF resonator filters using reflection of shear horizontal wave at free edges of substrate.

    PubMed

    Kadota, Michio; Ago, Junya; Horiuchi, Hideya; Ikeura, Mamoru

    2002-09-01

    A shear horizontal (SH) wave has the characteristic of complete reflection at the free edges of a substrate with a large dielectric constant. A conventional surface acoustic wave (SAW) resonator filter requires reflectors consisting of numerous grating fingers on both sides of interdigital transducers (IDTs). On the contrary, it is considered that small-sized and low loss resonator filters without reflectors consisting of grating fingers can be realized by exploiting this characteristic of the SH wave or the Bleustein-Gulyaev-Shimizu (BGS) wave. There are two types of resonator filters: transversely coupled and longitudinally coupled. No transversely coupled filters (neither conventional nor edge-reflection) using the SH wave on a single-crystal substrate have been realized until now, because two transverse modes (symmetrical and asymmetrical modes) are not easily coupled. However, the authors have realized small low loss transversely coupled resonator filters in the range of 25 to 52 MHz using edge reflections of the BGS wave on piezoelectric ceramic (PZT: Pb(Zr,Ti)O3) substrates for the first time by developing methods by which the two transverse modes could be coupled. On the other hand, longitudinally coupled resonator filters using edge reflection of the SH or BGS wave always have large spurious responses because of the even modes in the out-of-band range, because the frequencies of even modes do not coincide with the nulls of the frequency spectra of the IDTs. Consequently, longitudinally coupled resonator filters using the edge reflection of the SH wave have not been realized. By developing a method of reducing the spurious responses without increasing of the insertion loss, the authors have realized small low loss longitudinally coupled resonator filters in the range of 40 to 190 MHz using edge reflection of BGS or SH waves on PZT or 36 degrees-rotated-Y X-propagation LiTaO3 substrates for the first time. Despite being intermediate frequency (IF) filters

  6. SAW correlator spread spectrum receiver

    DOEpatents

    Brocato, Robert W

    2014-04-01

    A surface acoustic wave (SAW) correlator spread-spectrum (SS) receiver is disclosed which utilizes a first demodulation stage with a chip length n and a second demodulation stage with a chip length m to decode a transmitted SS signal having a code length l=n.times.m which can be very long (e.g. up to 2000 chips or more). The first demodulation stage utilizes a pair of SAW correlators which demodulate the SS signal to generate an appropriate code sequence at an intermediate frequency which can then be fed into the second demodulation stage which can be formed from another SAW correlator, or by a digital correlator. A compound SAW correlator comprising two input transducers and a single output transducer is also disclosed which can be used to form the SAW correlator SS receiver, or for use in processing long code length signals.

  7. Incredible negative values of effective electromechanical coupling coefficient for surface acoustic waves in piezoelectrics.

    PubMed

    Mozhaev, V G; Weihnacht, M

    2000-07-01

    The extraordinary case of increase in velocity of surface acoustic waves (SAW) caused by electrical shorting of the surface of the superstrong piezoelectric crystal potassium niobate, KNbO3, is numerically found. The explanation of this effect is based on considering SAWs as coupled Rayleigh and Bleustein-Gulyaev modes. A general procedure of approximate decoupling of the modes is suggested for piezoelectric crystals of arbitrary anisotropy. The effect under study takes place when the phase velocity of uncoupled sagittally polarized Rayleigh waves is intermediate between the phase velocities of uncoupled shear-horizontal Bleustein Gulyaev waves at the free and metallized surfaces. In this case, the metallization of the surface by an infinitely thin layer may cause a crossover of the velocity curves of the uncoupled waves. The presence of the mode coupling results in splitting of the curves with transition from one uncoupled branch to the other. This transition is responsible for the increase in SAW velocity, which appears to be greater than its common decrease produced by electrical shorting of the substrate surface.

  8. Parameterizable Library Components for SAW Devices

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2006-01-01

    To facilitate quick fabrication of Surface Acoustic Wave (SAW) sensors we have found it necessary to develop a library of parameterizable components. This library is the first module in our strategy towards a design tool that is integrated into existing Electronic Design Automation (EDA) tools. This library is similar to the standard cell libraries found in digital design packages. The library cells allow the user to input the design parameters which automatically generate a detailed layout of the SAW component. This paper presents the results of our development of parameterizable cells for an InterDigitated Transducer (IDT), reflector, SAW delay line, and both one and two port resonators.

  9. Resonant surface acoustic wave chemical detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acousticmore » cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.« less

  10. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.

    PubMed

    Ash, B J; Worsfold, S R; Vukusic, P; Nash, G R

    2017-08-02

    Surface acoustic wave (SAW) devices are widely used for signal processing, sensing and increasingly for lab-on-a-chip applications. Phononic crystals can control the propagation of SAW, analogous to photonic crystals, enabling components such as waveguides and cavities. Here we present an approach for the realisation of robust, tailorable SAW phononic crystals, based on annular holes patterned in a SAW substrate. Using simulations and experiments, we show that this geometry supports local resonances which create highly attenuating phononic bandgaps at frequencies with negligible coupling of SAWs into other modes, even for relatively shallow features. The enormous bandgap attenuation is up to an order-of-magnitude larger than that achieved with a pillar phononic crystal of the same size, enabling effective phononic crystals to be made up of smaller numbers of elements. This work transforms the ability to exploit phononic crystals for developing novel SAW device concepts, mirroring contemporary progress in photonic crystals.The control and manipulation of propagating sound waves on a surface has applications in on-chip signal processing and sensing. Here, Ash et al. deviate from standard designs and fabricate frequency tailorable phononic crystals with an order-of-magnitude increase in attenuation.

  11. Emission and detection of surface acoustic waves by AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Zhang, Meng; Banerjee, Animesh; Bhattacharya, Pallab; Pipe, Kevin P.

    2011-12-01

    Using integrated interdigital transducers (IDTs), we demonstrate the emission of surface acoustic waves (SAWs) by AlGaN/GaN high electron mobility transistors (HEMTs) under certain bias conditions through dynamic screening of the HEMTs vertical field by modulation of its two-dimensional electron gas. We show that a strong SAW signal can be detected if the IDT geometry replicates the HEMT electrode geometry at which RF bias is applied. In addition to characterizing SAW emission during both gate-source and drain-source modulation, we demonstrate SAW detection by HEMTs. Integrated HEMT-IDT structures could enable real-time evaluation of epitaxial degradation as well as high-speed, amplified detection of SAWs.

  12. SAW devices for consumer communication applications.

    PubMed

    Ruppel, C W; Dill, R; Fischerauer, A; Fischerauer, G; Gawlik, A; Machui, J; Muller, F; Reindl, L; Ruile, W; Scholl, G; Schropp, I; Wagner, K C

    1993-01-01

    An overview of surface acoustic wave (SAW) filter techniques available for different applications is given. Techniques for TV IF applications are outlined, and typical structures are presented. This is followed by a discussion of applications for SAW resonators. Low-loss devices for mobile communication systems and pager applications are examined. Tapped delay lines (matched filters) and convolvers for code-division multiaccess (CDMA) systems are also covered. Although simulation procedures are not considered, for many devices the theoretical frequency response is presented along with the measurement curve.

  13. Stable, low cost SAW microwave transmitter

    NASA Astrophysics Data System (ADS)

    Lau, K. F.; Yen, K. H.

    1986-06-01

    The design flexibility and application possibilities of surface acoustic wave (SAW) technology is discussed. When a highly stable, AM-modulated transmitter is required, a SAW resonator can provide an oscillator Q of up to 20,000 at 1 GHz. When FM modulation is required, the SAW delay line can provide a lower oscillator Q, which represents the optimum tradeoff between frequency stability and FM modulability. The capabilities of SAW oscillators are reviewed, and two example transmitters are presented. One transmitter operates at 1680 MHz and provides an AM-modulated signal. The second operates at the 400 to 406 MHz range and provides an FM-modulated output at one of six frequencies. SAW transmitters are suitable for applications where moderately high stability and low cost are key factors. With direct generation of signals at microwave frequencies and the flexibility of SAW oscillator design, a wide range of performance characteristics can be achieved.

  14. Response mechanism for surface acoustic wave gas sensors based on surface-adsorption.

    PubMed

    Liu, Jiansheng; Lu, Yanyan

    2014-04-16

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data.

  15. Response Mechanism for Surface Acoustic Wave Gas Sensors Based on Surface-Adsorption

    PubMed Central

    Liu, Jiansheng; Lu, Yanyan

    2014-01-01

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data. PMID:24743157

  16. Surface acoustic wave micromotor with arbitrary axis rotational capability

    NASA Astrophysics Data System (ADS)

    Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.

    2011-11-01

    A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

  17. Hybrid finite-difference/lattice Boltzmann simulations of microchannel and nanochannel acoustic streaming driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Yeo, Leslie Y.

    2018-04-01

    A two-dimensional hybrid numerical method that allows full coupling of the elastic motion in a piezoelectric solid (modeled using a finite-difference time-domain technique) with the resultant compressional flow in a fluid (simulated using a lattice Boltzmann scheme) is developed to study the acoustic streaming that arises in both microchannels and nanochannels under surface acoustic wave (SAW) excitation. In addition to verifying the model through a comparison of the simulations with results from experimental and numerical studies of microchannel and nanochannel flows driven by both standing and traveling SAWs in the literature, we highlight salient features of the flow field that arise and discuss the underlying mechanisms responsible for the flow. In microchannels, boundary layer streaming is the dominant mechanism when the channel height is below the sound wavelength in the liquid, whereas Eckart streaming—arising as a consequence of the attenuation of the sound wave in the liquid—dominates in the form of periodic vortices for larger channel heights. The absence of Eckart streaming and the overlapping of boundary layers in nanochannels with heights below the boundary layer thickness, on the other hand, give rise to a time-averaged dynamic acoustic pressure that results in an inertial-dominant flow, which paradoxically possesses a parabolic-like velocity profile resembling pressure-driven laminar flow. In contrast, if the nanochannel were to be filled instead with air, the significantly lower fluid density leads to a considerable reduction in the dynamic acoustic pressure and hence inertial forcing such that boundary layer streaming once again dominates, asymptotically imposing a slip condition along the channel surface that results in a negative pluglike velocity profile.

  18. Near-surface, SH-wave surveys in unconsolidated, alluvial sediments

    USGS Publications Warehouse

    Young, Roger A.; Hoyos, Jorge

    2001-01-01

    The past decade of hydrocarbon exploration has been marked by sweeping technological innovations that have greatly advanced methods for exploration and development of oil and gas reserves. An example of major importance is the use of shear waves in marine oil and gas exploration to image reflectors beneath gas chimneys. This technology grew from infancy to maturity in the 1990s, is now incorporated into commercial processing packages, and is being used with success in a number of situations. Recent SEG Annual Meetings and the Special Section of this issue of TLE have had many documented case histories about the use of converted (P-SV) waves.The SH-wave (another type of shear wave), however, has been of less interest to the energy industry during the past decade. Near-surface applications of SH-waves, in contrast, have received increasing attention. The present article briefly reviews shear-wave technology advances made in the energy industry over the past decade that prepared the way for the present near-surface application of SH-waves. The article concludes with a near-surface case study using combined P- and SH-wave interpretation in an unconsolidated, alluvial setting.

  19. Optical fiber repeatered transmission systems utilizing SAW filters

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. L.; Ross, D. G.; Trischitta, P. R.; Fishman, D. A.; Armitage, C. B.

    1983-05-01

    Baseband digital transmission-line systems capable of signaling rates of several hundred to several thousand Mbit/s are presently being developed around the world. The pulse regeneration process is gated by a timing wave which is synchronous with the symbol rate of the arriving pulse stream. Synchronization is achieved by extracting a timing wave from the arriving pulse stream, itself. To date, surface acoustic-wave (SAW) filters have been widely adopted for timing recovery in the in-line regenerators of high-bit-rate systems. The present investigation has the objective to acquaint the SAW community in general, and SAW filter suppliers in particular, with the requirements for timing recovery filters in repeatered digital transmission systems. Attention is given to the system structure, the timing loop function, the system requirements affecting the timing-recovery filter, the decision process, timing jitter accumulation, the filter 'ringing' requirement, and aspects of reliability.

  20. Surface acoustic wave devices for sensor applications

    NASA Astrophysics Data System (ADS)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  1. Buzz-saw noise : propagation of shock waves in aero-engine inlet ducts

    NASA Astrophysics Data System (ADS)

    Fernando, Rasika; Marchiano, Régis; Coulouvrat, François; Druon, Yann

    2008-06-01

    For supersonic flows relative to turbo-engine fan blades, measured acoustic spectra near the inlet present tones at fan blade passing frequency (BPF), engine shaft rotation frequency, or Engine Order (EO), and their respective harmonics. The latter are responsible for the Buzz-saw noise and are thus referred to as "Buzz-saw" or "multiple pure" tones. This work first attempts to reformulate McAlpine and Fisher's frequency domain model (2001) for the propagation of a unidimensional sawtooth waveform spiralling inside a hard-walled cylindrical duct in the presence of a uniform flow. The non-dissipative Burgers equation is solved using a shock fitting method, and modal attenuation and dispersion are added using a split-step computational method. In practice, shocks do not only occur at blade tips but on a significant portion of the blade span. The plane wave hypothesis being no longer valid, a new three dimensional model is required. This model is based on the computation of the axially varying amplitudes of the modal solutions, in order to take into account the nonlinear modal interactions.

  2. Grating-patterned FeCo coated surface acoustic wave device for sensing magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Jia, Yana; Xue, Xufeng; Liang, Yong; Du, Zhaofu

    2018-01-01

    This study addresses the theoretical and experimental investigations of grating-patterned magnetostrictive FeCo coated surface acoustic wave (SAW) device for sensing magnetic field. The proposed sensor is composed of a configuration of differential dual-delay-line oscillators, and a magnetostrictive FeCo grating array deposited along the SAW propagation path of the sensing device, which suppresses effectively the hysteresis effect by releasing the internal binding force in FeCo. The magnetostrictive strain and ΔE effect from the FeCo coating modulates the SAW propagation characteristic, and the corresponding shift in differential oscillation frequency was utilized to evaluate the measurant. A theoretical model is performed to investigate the wave propagation in layered structure of FeCo/LiNbO3 in the effect of magnetostrictive, and allowing determining the optimal structure. The experimental results indicate that higher sensitivity, excellent linearity, and lower hysteresis error over the typical FeCo thin-film coated sensor were achieved from the grating-patterned FeCo coated sensor successfully.

  3. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.

    PubMed

    Collins, David J; Ma, Zhichao; Han, Jongyoon; Ai, Ye

    2016-12-20

    Despite increasing demand in the manipulation of nanoscale objects for next generation biological and industrial processes, there is a lack of methods for reliable separation, concentration and purification of nanoscale objects. Acoustic methods have proven their utility in contactless manipulation of microscale objects mainly relying on the acoustic radiation effect, though the influence of acoustic streaming has typically prevented manipulation at smaller length scales. In this work, however, we explicitly take advantage of the strong acoustic streaming in the vicinity of a highly focused, high frequency surface acoustic wave (SAW) beam emanating from a series of focused 6 μm substrate wavelength interdigital transducers patterned on a piezoelectric lithium niobate substrate and actuated with a 633 MHz sinusoidal signal. This streaming field serves to focus fluid streamlines such that incoming particles interact with the acoustic field similarly regardless of their initial starting positions, and results in particle displacements that would not be possible with a travelling acoustic wave force alone. This streaming-induced manipulation of nanoscale particles is maximized with the formation of micro-vortices that extend the width of the microfluidic channel even with the imposition of a lateral flow, occurring when the streaming-induced flow velocities are an order of magnitude larger than the lateral one. We make use of this acoustic streaming to demonstrate the continuous and differential focusing of 100 nm, 300 nm and 500 nm particles.

  4. X-ray diffraction and surface acoustic wave analysis of BST/Pt/TiO{sub 2}/SiO{sub 2}/Si thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mseddi, Souhir; Hedi Ben Ghozlen, Mohamed; Njeh, Anouar

    2011-11-15

    High dielectric constant and electrostriction property of (Ba, Sr)Ti0{sub 3} (BST) thin films result in an increasing interest for dielectric devices and microwave acoustic resonator. Barium strontium titanate (Ba{sub 0.645}Sr{sub 0.355}TiO{sub 3}) films of about 300 nm thickness are grown on Pt(111)/TiO{sub 2}/SiO{sub 2}/Si(001) substrates by rf magnetron sputtering deposition techniques. X-ray diffraction is applied for the microstructural characterization. The BST films exhibit a cubic perovskite structure with a dense and smooth surface. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in the BST films. Young's modulus E and the Poisson ratio {nu}more » of TiO{sub 2,} Pt and BST films in different propagation directions are derived from the measured dispersion curves. Estimation of BST elastics constants are served in SAW studies. Impact of stratification process on SAW, propagating along [100] and [110] directions of silicon substrate, has been interpreted on the basis of ordinary differential equation (ODE) and stiffness matrix method (SMM). A good agreement is observed between experimental and calculated dispersion curves. The performed calculations are strongly related to the implemented crystallographic data of each layer. Dispersion curves are found to be sensitive to the SAW propagation direction and the stratification process for the explored frequency ranges 50-250 MHz, even though it corresponds to a wave length clearly higher than the whole films thickness.« less

  5. An Acoustic Charge Transport Imager for High Definition Television Applications: Low-Voltage SAW Amplifiers on Multilayer GaAs/ZnO Substrates

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Cameron, Thomas P.

    1996-01-01

    This thesis addresses the acoustoelectric issues concerning the amplification of surface acoustic waves (SAWs) and the reflection of SAWs from slanted reflector gratings on GaAs, with application to a novel acoustic charge transport (ACT) device architecture. First a simple model of the SAWAMP was developed, which was subsequently used to define the epitaxially grown material structure necessary to provide simultaneously high resistance and high electron mobility. In addition, a segmented SAWAMP structure was explored with line widths on the order of an acoustic wavelength. This resulted in the demonstration of SAWAMPS with an order of magnitude less voltage and power requirements than previously reported devices. A two-dimensional model was developed to explain the performance of devices with charge confinement layers less then 0.5 mm, which was experimentally verified. This model was extended to predict a greatly increased gain from the addition of a ZnO overlay. These overlays were experimentally attempted, but no working devices were reported due to process incompatibilities. In addition to the SAWAMP research, the reflection of SAWs from slanted gratings on GaAs was also studied and experimentally determined reflection coefficients for both 45 deg grooves and Al stripes on GaAs have been reported for the first time. The SAWAMp and reflector gratings were combined to investigate the integrated ring oscillator for application to the proposed ACT device and design parameters for this device have been provided.

  6. Effect of droplet shrinking on surface acoustic wave response in microfluidic applications

    NASA Astrophysics Data System (ADS)

    Bui, ThuHang; Nguyen, Van; Vollebregt, Sten; Morana, Bruno; van Zeijl, Henk; Chu Duc, Trinh; Sarro, Pasqualina M.

    2017-12-01

    The effect of the contact angle and radius of a microsize droplet on the surface acoustic wave (SAW) response for microfluidic applications is reported. It is studied through the dynamic change of the droplet shape during the evaporation process. An aluminium nitride SAW device, operating at 125.7 MHz, is utilized to investigate the deformation of the droplet shape (contact angle and contact radius) caused by shrinking. The large cavity placed on the propagation path distorts the in-band SAW response one time at the centre frequency. The fractional coefficient of the SAW insertion loss, before and after dropping the liquid on the propagation path, is continuously recorded. The change in the fractional coefficient shows that the radiated acoustic kinetic energy depends on the contact area between the sessile micro-size droplet and the SAW device more than the contact angle of the droplet. Three droplet volumes have been considered, namely 0.05, 0.1 and 0.13 μl, and the electrical results show a better agreement with the theoretical data than the optical image data. The average duration of the fractional coefficient change for these cases is 420, 573 and 760 s, respectively. The effect of the hydrophobicity versus hydrophilicity of the contact surface on the duration of the fractional coefficient change is studied by coating the SAW with a silicon oxide or hexamethyldisilazane (HMDS) thin layer. For the same 0.05 μl sessile droplet on the hydrophobic surface, this duration is on average 110 s longer than that on the hydrophilic surface.

  7. Texture in steel plates revealed by laser ultrasonic surface acoustic waves velocity dispersion analysis.

    PubMed

    Yin, Anmin; Wang, Xiaochen; Glorieux, Christ; Yang, Quan; Dong, Feng; He, Fei; Wang, Yanlong; Sermeus, Jan; Van der Donck, Tom; Shu, Xuedao

    2017-07-01

    A photoacoustic, laser ultrasonics based approach in an Impulsive Stimulated Scattering (ISS) implementation was used to investigate the texture in polycrystalline metal plates. The angular dependence of the 'polycrystalline' surface acoustic wave (SAW) velocity measured along regions containing many grains was experimentally determined and compared with simulated results that were based on the angular dependence of the 'single grain' SAW velocity within single grains and the grain orientation distribution. The polycrystalline SAW velocities turn out to vary with texture. The SAW velocities and their angular variations for {110} texture were found to be larger than that the ones for {111} texture or the strong γ fiber texture. The SAW velocities for {001} texture were larger than for {111} texture, but with almost the same angular dependence. The results infer the feasibility to apply angular SAW angular dispersion measurements by laser ultrasonics for on-line texture monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. SAW based systems for mobile communications satellites

    NASA Technical Reports Server (NTRS)

    Peach, R. C.; Miller, N.; Lee, M.

    1993-01-01

    Modern mobile communications satellites, such as INMARSAT 3, EMS, and ARTEMIS, use advanced onboard processing to make efficient use of the available L-band spectrum. In all of these cases, high performance surface acoustic wave (SAW) devices are used. SAW filters can provide high selectivity (100-200 kHz transition widths), combined with flat amplitude and linear phase characteristics; their simple construction and radiation hardness also makes them especially suitable for space applications. An overview of the architectures used in the above systems, describing the technologies employed, and the use of bandwidth switchable SAW filtering (BSSF) is given. The tradeoffs to be considered when specifying a SAW based system are analyzed, using both theoretical and experimental data. Empirical rules for estimating SAW filter performance are given. Achievable performance is illustrated using data from the INMARSAT 3 engineering model (EM) processors.

  9. Design of surface acoustic wave filters for the multiplex transmission system of multilevel inverter circuits

    NASA Astrophysics Data System (ADS)

    Kubo, Keita; Kanai, Nanae; Kobayashi, Fumiya; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji

    2017-07-01

    We designed surface acoustic wave (SAW) filters for a multiplex transmission system of multilevel inverter circuits, and applied them to a single-phase three-level inverter. To reduce the transmission delay time of the SAW filters, a four-channel SAW filter array was fabricated and its characteristics were measured. The delay time of the SAW filters was <350 ns, and the delay time difference was reduced to ≤184 ns, less than half that previously reported. The SAW filters withstood up to 990 V, which is sufficient for the inverters used in most domestic appliances. A single-phase three-level inverter with the fabricated SAW filters worked with a total delay time shorter than our target delay time of 2.5 µs. The delay time difference of the proposed system was 0.26 µs, which is sufficient for preventing the inverter circuit from short-circuiting. The SAW filters controlled a multilevel inverter system with simple signal wiring and high dielectric withstanding voltages.

  10. Model parameter extraction of lateral propagating surface acoustic waves with coupling on SiO2/grating/LiNbO3 structure

    NASA Astrophysics Data System (ADS)

    Zhang, Benfeng; Han, Tao; Li, Xinyi; Huang, Yulin; Omori, Tatsuya; Hashimoto, Ken-ya

    2018-07-01

    This paper investigates how lateral propagation of Rayleigh and shear horizontal (SH) surface acoustic waves (SAWs) changes with rotation angle θ and SiO2 and electrode thicknesses, h SiO2 and h Cu, respectively. The extended thin plate model is used for purpose. First, the extraction method is presented for determining parameters appearing in the extended thin plate model. Then, the model parameters are expressed in polynomials in terms of h SiO2, h Cu, and θ. Finally, a piston mode structure without phase shifters is designed using the extracted parameters. The possible piston mode structures can be searched automatically by use of the polynomial expression. The resonance characteristics are analyzed by both the extended thin plate model and three-dimensional (3D) finite element method (FEM). Agreement between the results of both methods confirms validity and effectiveness of the parameter extraction process and the design technique.

  11. Elasticity study of textured barium strontium titanate thin films by X-ray diffraction and laser acoustic waves

    NASA Astrophysics Data System (ADS)

    Chaabani, Anouar; Njeh, Anouar; Donner, Wolfgang; Klein, Andreas; Hédi Ben Ghozlen, Mohamed

    2017-05-01

    Ba0.65Sr0.35TiO3 (BST) thin films of 300 nm were deposited on Pt(111)/TiO2/SiO2/Si(001) substrates by radio frequency magnetron sputtering. Two thin films with different (111) and (001) fiber textures were prepared. X-ray diffraction was applied to measure texture. The raw pole figure data were further processed using the MTEX quantitative texture analysis software for plotting pole figures and calculating elastic constants and Young’s modulus from the orientation distribution function (ODF) for each type of textured fiber. The calculated elastic constants were used in the theoretical studies of surface acoustics waves (SAW) propagating in two types of multilayered BST systems. Theoretical dispersion curves were plotted by the application of the ordinary differential equation (ODE) and the stiffness matrix methods (SMM). A laser acoustic waves (LAW) technique was applied to generate surface acoustic waves (SAW) propagating in the BST films, and from a recursive process, the effective Young’s modulus are determined for the two samples. These methods are used to extract and compare elastic properties of two types of BST films, and quantify the influence of texture on the direction-dependent Young’s modulus.

  12. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.

    PubMed

    Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F

    2018-05-01

    The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A novel shock and heat tolerant gyrosensor utilizing a one-port surface acoustic wave reflective delay line

    NASA Astrophysics Data System (ADS)

    Oh, Haekwan; Fu, Chen; Yang, Sang Sik; Wang, Wen; Lee, Keekeun

    2012-04-01

    A surface acoustic wave (SAW)-based gyroscope with an 80 MHz central frequency was fabricated on a 128° YX LiNbO3 piezoelectric substrate. The fabricated gyroscope is composed of a SAW resonator, metallic dots and a SAW reflective delay line. The SAW resonator, which is activated by a voltage-controlled oscillator, generates a stable standing wave with a large amplitude at an 80 MHz resonant frequency, and the metallic dots induce a Coriolis force and generate a secondary SAW in the direction orthogonal to the propagating standing wave. The SAW reflective delay line is employed to measure the Coriolis effect by analyzing the deviations in the resonant frequency of the SAW reflective delay line. A combined finite element method/boundary element method was utilized to extract the optimal device parameters prior to fabrication. The device was fabricated according to the modeling results and then measured on a rate table. When the device was subjected to an angular rotation, a secondary SAW from the vibrating metallic dots was generated owing to the Coriolis force, resulting in a perturbation of the propagating SAW in the SAW reflective delay line. Depending on the angular velocity, the reflection peak of SAW reflective delay line was changed linearly, and this change was measured by the network analyzer. The measured results matched the modeling results well. The obtained sensitivity was approximately 1.23 deg/(deg/s) in an angular rate range of 0-2000 deg s-1. Good thermal and shock stabilities were observed during the evaluation process proving the shock and heat robustness of the fabricated SAW gyroscope.

  14. Single-Input and Multiple-Output Surface Acoustic Wave Sensing for Damage Quantification in Piezoelectric Sensors.

    PubMed

    Pamwani, Lavish; Habib, Anowarul; Melandsø, Frank; Ahluwalia, Balpreet Singh; Shelke, Amit

    2018-06-22

    The main aim of the paper is damage detection at the microscale in the anisotropic piezoelectric sensors using surface acoustic waves (SAWs). A novel technique based on the single input and multiple output of Rayleigh waves is proposed to detect the microscale cracks/flaws in the sensor. A convex-shaped interdigital transducer is fabricated for excitation of divergent SAWs in the sensor. An angularly shaped interdigital transducer (IDT) is fabricated at 0 degrees and ±20 degrees for sensing the convex shape evolution of SAWs. A precalibrated damage was introduced in the piezoelectric sensor material using a micro-indenter in the direction perpendicular to the pointing direction of the SAW. Damage detection algorithms based on empirical mode decomposition (EMD) and principal component analysis (PCA) are implemented to quantify the evolution of damage in piezoelectric sensor material. The evolution of the damage was quantified using a proposed condition indicator (CI) based on normalized Euclidean norm of the change in principal angles, corresponding to pristine and damaged states. The CI indicator provides a robust and accurate metric for detection and quantification of damage.

  15. Slippery Liquid-Infused Porous Surfaces and Droplet Transportation by Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Luo, J. T.; Geraldi, N. R.; Guan, J. H.; McHale, G.; Wells, G. G.; Fu, Y. Q.

    2017-01-01

    On a solid surface, a droplet of liquid will stick due to the capillary adhesion, and this causes low droplet mobility. To reduce contact line pinning, surface chemistry can be coupled to micro- and/or nanostructures to create superhydrophobic surfaces on which a droplet balls up into an almost spherical shape, thus, minimizing the contact area. Recent progress in soft matter has now led to alternative lubricant-impregnated surfaces capable of almost zero contact line pinning and high droplet mobility without causing droplets to ball up and minimize the contact area. Here we report an approach to surface-acoustic-wave- (SAW) actuated droplet transportation enabled using such a surface. These surfaces maintain the contact area required for efficient energy and momentum transfer of the wave energy into the droplet while achieving high droplet mobility and a large footprint, therefore, reducing the threshold power required to induce droplet motion. In our approach, we use a slippery layer of lubricating oil infused into a self-assembled porous hydrophobic layer, which is significantly thinner than the SAW wavelength, and avoid damping of the wave. We find a significant reduction (up to 85%) in the threshold power for droplet transportation compared to that using a conventional surface-treatment method. Moreover, unlike droplets on superhydrophobic surfaces, where interaction with the SAW induces a transition from a Cassie-Baxter state to a Wenzel state, the droplets on our liquid-impregnated surfaces remain in a mobile state after interaction with the SAW.

  16. Finite-element analysis of scattering parameters of surface acoustic wave bandpass filter formed on barium titanate thin film

    NASA Astrophysics Data System (ADS)

    Timoshenko; Kalinchuk; Shirokov

    2018-04-01

    The frequency dependence of scattering parameters of interdigital surface acoustic wave transducers placed on ferroelectric barium titanate (BaTiO3) epitaxial film in c-phase coated over magnesium oxide has been studied using the finite-element method (FEM) approach along with the perfectly matched layer (PML) technique. The interdigital transducer which has a comb-like structure with aluminum electrodes excites the mechanical wave. The distance between the fingers allows tuning the frequency properties of the wave propagation. The magnesium oxide is taken as the substrate. The two-dimensional model of two-port surface acoustic wave filter is created to calculate scattering parameters and to show how to design the fixture in COMSOLTM. Some practical computational challenges of finite element modeling of SAW devices in COMSOLTM are shown. The effect of lattice misfit strain on acoustic properties of heterostructures of BaTiO3 epitaxial film in c-phase at room temperature is discussed in present article for two low-frequency surface acoustic resonances.

  17. Electrical detection and analysis of surface acoustic wave in line-defect two-dimensional piezoelectric phononic crystals

    NASA Astrophysics Data System (ADS)

    Cai, Feida; Li, Honglang; Tian, Yahui; Ke, Yabing; Cheng, Lina; Lou, Wei; He, Shitang

    2018-03-01

    Line-defect piezoelectric phononic crystals (PCs) show good potential applications in surface acoustic wave (SAW) MEMS devices for RF communication systems. To analyze the SAW characteristics in line-defect two-dimensional (2D) piezoelectric PCs, optical methods are commonly used. However, the optical instruments are complex and expensive, whereas conventional electrical methods can only measure SAW transmission of the whole device and lack spatial resolution. In this paper, we propose a new electrical experimental method with multiple receiving interdigital transducers (IDTs) to detect the SAW field distribution, in which an array of receiving IDTs of equal aperture was used to receive the SAW. For this new method, SAW delay lines with perfect and line-defect 2D Al/128°YXLiNbO3 piezoelectric PCs on the transmitting path were designed and fabricated. The experimental results showed that the SAW distributed mainly in the line-defect region, which agrees with the theoretical results.

  18. Increasing the Sensitivity of Surface Acoustic Wave (SAW) Chemical Sensors and other Chemical Sensing Investigations

    DTIC Science & Technology

    2010-03-01

    are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S...device recovers to a neutral state [8]. 2.1.2 Sensing Methods There are many methods of using acoustic waves for sensing applications. Some of the

  19. Characteristics of surface acoustic waves in (11\\bar 2 0)ZnO film/ R-sapphire substrate structures

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, ShuYi; Xu, Jing; Xie, YingCai; Lan, XiaoDong

    2018-02-01

    (11\\bar 2 0)ZnO film/ R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [1ī00] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity ( v p), electromechanical coupling coefficient ( k 2), temperature coefficient of frequency ( TCF) and reflection coefficient ( r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large k 2 of 4.95% in (90°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate associated with a phase velocity of 5300 m/s; and the 0th Love wave in (0°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate has a maximum k 2 of 3.86% associated with a phase velocity of 3400 m/s. And (11\\bar 2 0)ZnO film/ R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.

  20. 3.5 GHz longitudinal leaky surface acoustic wave resonator using a multilayered waveguide structure for high acoustic energy confinement

    NASA Astrophysics Data System (ADS)

    Kimura, Tetsuya; Kishimoto, Yutaka; Omura, Masashi; Hashimoto, Ken-ya

    2018-07-01

    In this paper, the use of a structure comprising a thin LiNbO3 plate and a multilayered acoustic mirror composed of SiO2 and Pt for high-performance longitudinal leaky surface acoustic wave (LLSAW) device is proposed. The mirror is expected to offer a much higher reflectivity than that composed of SiO2 and AlN, which the authors proposed previously. The field distribution of these structures is calculated by using a finite element method. It is shown that the acoustic wave energy of the proposed structure is well confined in the vicinity of the top surface, and that leakage to the substrate is reduced. A one-port resonator is fabricated on the structure and its performance characteristics are evaluated. Owing to a high phase velocity of 6,035 m/s, which is about 1.5 times higher than that of conventional SAWs, a large impedance ratio of 71 dB was achieved at 3.5 GHz in addition to a large fractional bandwidth of 9.5%.

  1. Passive Wireless SAW Sensors for IVHM

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Perey, Daniel F.; Atkinson, Gary M.; Barclay, Rebecca O.

    2008-01-01

    NASA aeronautical programs require integrated vehicle health monitoring (IVHM) to ensure the safety of the crew and the vehicles. Future IVHM sensors need to be small, light weight, inexpensive, and wireless. Surface acoustic wave (SAW) technology meets all of these constraints. In addition it operates in harsh environments and over wide temperature ranges, and it is inherently radiation hardened. This paper presents a survey of research opportunities for universities and industry to develop new sensors that address anticipated IVHM needs for aerospace vehicles. Potential applications of passive wireless SAW sensors from ground testing to high altitude aircraft operations are presented, along with some of the challenges and issues of the technology.

  2. Single-electron population and depopulation of an isolated quantum dot using a surface-acoustic-wave pulse.

    PubMed

    Kataoka, M; Schneble, R J; Thorn, A L; Barnes, C H W; Ford, C J B; Anderson, D; Jones, G A C; Farrer, I; Ritchie, D A; Pepper, M

    2007-01-26

    We use a pulse of surface acoustic waves (SAWs) to control the electron population and depopulation of a quantum dot. The barriers between the dot and reservoirs are set high to isolate the dot. Within a time scale of approximately 100 s the dot can be set to a nonequilibrium charge state, where an empty (occupied) level stays below (above) the Fermi energy. A pulse containing a fixed number of SAW periods is sent through the dot, controllably changing the potential, and hence the tunneling probability, to add (remove) an electron to (from) the dot.

  3. Surface Acoustic Wave Devices as Chemical Vapor Sensors

    DTIC Science & Technology

    2009-03-26

    x105cm/s) (x10−6cm1/2g1/2) (pF/cm) (ppm/oC) Quartz ST 3.158 0.13 1.34 0.88 0.0011 0.5 ∼ 0 X Lithium Niobate -Y 3.488 0 0.83 0.56 0.048 4.6 94 X Gallium ...sensitivity, followed by lithium niobate and gallium arsenide in ratios of 7.4:5.9:4.8, re- spectively. Thus, even though lithium niobate has the superior...Acoustic Wave (SAW) Sensor for 2,4-Dinitro Toluene (DNT) Vapour Detection,” Sensors and Actuators B: Chemical, vol. 101, no. 3, pp. 328–334, 2004. 8

  4. On resonant coupling of acoustic waves and gravity waves

    NASA Astrophysics Data System (ADS)

    Millet, Christophe

    2017-11-01

    Acoustic propagation in the atmosphere is often modeled using modes that are confined within waveguides causing the sound to propagate through multiple paths to the receiver. On the other hand, direct observations in the lower stratosphere show that the gravity wave field is intermittent, and is often dominated by rather well defined large-amplitude wave packets. In the present work, we use normal modes to describe both the gravity wave field and the acoustic field. The gravity wave spectrum is obtained by launching few monochromatic waves whose properties are chosen stochastically to mimic the intermittency. Owing to the disparity of the gravity and acoustic length scales, the interactions between the gravity wave field and each of the acoustic modes can be described using a multiple-scale analysis. The appropriate amplitude evolution equation for the acoustic field involves certain random terms that can be directly related to the gravity wave sources. We will show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the gravity wave parameterization can create or destroy specific acoustic features.

  5. AlN/Pt/LN structure for SAW sensors capable of operating at high temperature

    NASA Astrophysics Data System (ADS)

    Naumenko, Natalya; Nicolay, Pascal

    2017-08-01

    There is a need for wireless sensors able to operate in the intermediate temperature range (ITR) between 300 °C and 600 °C. Surface acoustic wave (SAW) sensors are promising candidates to solve this issue. However, existing SAW sensors most often fail in the ITR, due to the quick degradation of the sensor housing in extreme conditions. A promising way to circumvent the issue is to use "package-less" devices, where the acoustic waves are guided in a multilayered structure where they are intrinsically protected from adverse environmental effects. We present here an innovative multilayered structure that fulfills all the basic requirements, to achieve a wireless and "package-less" SAW Sensor for the ITR. The structure is made of a thin AlN layer deposited on top of a Y + 128°LN substrate and equipped with buried Pt electrodes. Numerical simulations of the acoustic waves propagating in SAW resonators built on this structure reveal the existence of a useful Rayleigh-type SAW that propagates at the AlN/LN interface with a velocity up to 4500 m/s and a high electromechanical coupling k2=5.6%, without leakage into the substrate. The existence of this mode is due to specific properties of the Y + 128°LN cut, which are analyzed in detail in this paper. The performances of an optimized AlN/Pt/LN structure are also compared to the ones of previously suggested "package-less" structures, including AlN/ZnO/Sapphire. It is shown that better device characteristics can be expected from the AlN/Pt/LN structure in the ITR.

  6. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-08-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW.

  7. SAW chirp filter technology for satellite on-board processing applications

    NASA Astrophysics Data System (ADS)

    Shaw, M. D.; Miller, N. D. J.; Malarky, A. P.; Warne, D. H.

    1989-11-01

    Market growth in the area of thin route satellite communications services has led to consideration of nontraditional system architectures requiring sophisticated on-board processing functions. Surface acoustic wave (SAW) technology exists today which can provide implementation of key on-board processing subsystems by using multicarrier demodulators. This paper presents a review of this signal processing technology, along with a brief review of dispersive SAW device technology as applied to the implementation of multicarrier demodulators for on-board signal processing.

  8. Fabrication of Low Cost Surface Acoustic Wave Sensors Using Direct Printing by Aerosol Inkjet

    DOE PAGES

    Morales-Rodriguez, Marissa E.; Joshi, Pooran C.; Humphries, James R.; ...

    2018-04-09

    Advancements in additive manufacturing techniques, printed electronics, and nanomaterials have made it possible for the cost-effective fabrication of sensors and systems. Low-cost sensors for continuous and real time monitoring of physical and chemical parameters will directly impact the energy-efficiency, safety, and manufacturing challenges of diverse technology sectors. In this paper, we present the design, printing, and characterization of a two-port surface acoustic wave (SAW) integrated on LiNbO 3 substrate. The aerosol jet printer was used for direct-writing of interdigitated transducers for SAW devices with center frequency in the range of 40-87 MHz. In conclusion, the linear response of a temperaturemore » sensor based on the SAW design shows promise for direct-writing of environmental sensors on low-temperature substrates.« less

  9. Fabrication of Low Cost Surface Acoustic Wave Sensors Using Direct Printing by Aerosol Inkjet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales-Rodriguez, Marissa E.; Joshi, Pooran C.; Humphries, James R.

    Advancements in additive manufacturing techniques, printed electronics, and nanomaterials have made it possible for the cost-effective fabrication of sensors and systems. Low-cost sensors for continuous and real time monitoring of physical and chemical parameters will directly impact the energy-efficiency, safety, and manufacturing challenges of diverse technology sectors. In this paper, we present the design, printing, and characterization of a two-port surface acoustic wave (SAW) integrated on LiNbO 3 substrate. The aerosol jet printer was used for direct-writing of interdigitated transducers for SAW devices with center frequency in the range of 40-87 MHz. In conclusion, the linear response of a temperaturemore » sensor based on the SAW design shows promise for direct-writing of environmental sensors on low-temperature substrates.« less

  10. Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome

    NASA Astrophysics Data System (ADS)

    Jin, Hao; Tao, Xiang; Dong, Shurong; Qin, Yiheng; Yu, Liyang; Luo, Jikui; Deen, M. Jamal

    2017-11-01

    Obstructive sleep apnea syndrome (OSAS) has received much attention in recent years due to its significant harm to human health and high morbidity rate. A respiration monitoring system is needed to detect OSAS, so that the patient can receive treatment in a timely manner. Wired and wireless OSAS monitoring systems have been developed, but they require a wire connection and batteries to operate, and they are bulky, heavy and not user-friendly. In this paper, we propose the use of a flexible surface acoustic wave (SAW) microsensor to detect and monitor OSAS by measuring the humidity change associated with the respiration of a person. SAW sensors on rigid 128° YX LiNbO3 substrate are also characterized for this application. Results show both types of SAW sensors are suitable for OSAS monitoring with good sensitivity, repeatability and reliability, and the response time and recovery time for the flexible SAW sensors are 1.125 and 0.75 s, respectively. Our work demonstrates the potential for an innovative flexible microsensor for the detection and monitoring of OSAS.

  11. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    PubMed

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  12. Full skin quantitative optical coherence elastography achieved by combining vibration and surface acoustic wave methods

    NASA Astrophysics Data System (ADS)

    Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam

    2015-03-01

    By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.

  13. Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition

    NASA Astrophysics Data System (ADS)

    Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.

    2006-03-01

    As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.

  14. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  15. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection

    PubMed Central

    Qiu, Gongzhe

    2017-01-01

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly. PMID:29186790

  16. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection.

    PubMed

    Song, Xiaochun; Qiu, Gongzhe

    2017-11-24

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  17. Acoustic wave filter based on periodically poled lithium niobate.

    PubMed

    Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain

    2012-09-01

    Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

  18. Calibration of the QCM/SAW Cascade Impactor for Measurement of Ozone

    NASA Technical Reports Server (NTRS)

    Williams, Cassandra K.; Peterson, C. B.; Morris, V. R.

    1997-01-01

    The Quartz Crystal Microbalance Surface Acoustic Wave (QCM/SAW) cascade impactor is an instrument designed to collect size-fractionated distributions of aerosols on a series of quartz crystals and employ SAW devices coated with chemical sensors for gas detection. We are calibrating the cascade impactor in our laboratory for future deployment for in-situ experiments to measure ozone. Experiments have been performed to characterize the QCM and SAW mass loading, saturation limits, mass frequency relationships, and sensitivity. The characteristics of mass loading, saturation limits, mass-frequency relationships, sensitivity, and the loss of ozone on different materials have been quantified.

  19. Reflectance Infrared Spectroscopy on Operating Surface Acoustic Wave Chemical Sensors During Exposure to Gas-Phase Analytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hierlemann, A.; Hill, M.; Ricco, A.J.

    We have developed instrumentation to enable the combination of surface acoustic wave (SAW) sensor measurements with direct, in-situ molecular spectroscopic measurements to understand the response of the SAW sensors with respect to the interfacial chemistry of surface-confined sensing films interacting with gas-phase analytes. Specifically, the instrumentation and software was developed to perform in-situ Fourier-transform infrared external-reflectance spectroscopy (FTIR-ERS) on operating SAW devices during dosing of their chemically modified surfaces with analytes. By probing the surface with IR spectroscopy during gas exposure, it is possible to understand in unprecedented detail the interaction processes between the sorptive SAW coatings and the gaseousmore » analyte molecules. In this report, we provide details of this measurement system, and also demonstrate the utility of these combined measurements by characterizing the SAW and FTIR-ERS responses of organic thin-film sensor coatings interacting with gas-phase analytes.« less

  20. Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    NASA Technical Reports Server (NTRS)

    Williams, James H., Jr.; Nagem, Raymond J.

    1989-01-01

    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.

  1. Feasibility of ultra-wideband SAW RFID tags meeting FCC rules.

    PubMed

    Härmä, Sanna; Plessky, Victor P; Li, Xianyi; Hartogh, Paul

    2009-04-01

    We discuss the feasibility of surface acoustic wave (SAW) radio-frequency identification (RFID) tags that rely on ultra-wideband (UWB) technology. We propose a design of a UWB SAW tag, carry out numerical experiments on the device performance, and study signal processing in the system. We also present experimental results for the proposed device and estimate the potentially achievable reading distance. UWB SAW tags will have an extremely small chip size (<0.5 x 1 mm(2)) and a low cost. They also can provide a large number of different codes. The estimated read range for UWB SAW tags is about 2 m with a reader radiating as low as <0.1 mW power levels with an extremely low duty factor.

  2. Development and comparative investigation of Ag-sensitive layer based SAW and QCM sensors for mercury sensing applications.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J; Bhargava, Suresh K

    2016-04-21

    Piezoelectric acoustic wave devices integrated with noble metal surfaces provide exciting prospects for the direct measurement of toxic gas species such as mercury (Hg) in the atmosphere. Even though gold (Au) based acoustic wave sensors have been utilized extensively for detecting Hg, the potential of using other metal surfaces such as silver (Ag) is yet to be thoroughly studied. Here, we developed Ag sensitive layer-based surface acoustic wave (SAW) and quartz crystal microbalance (QCM) sensors and focused on their comparative analysis for Hg sensing applications with parameters such as the sensor sensitivity, selectivity, adsorption/desorption isotherm and Hg diffusion into the surface thoroughly studied. The SAW sensor was fabricated with nickel (Ni) interdigitated transducer (IDT) electrodes and a Ag thin film on the delay line of the device. In the case of the QCM sensor, the electrodes were constructed of Ag thin film and simultaneously employed as a sensitive layer. Mercury sensing experiments were conducted for a range of concentrations between 24-365 ppbv without/with the presence of some common industrial interfering gas species (i.e. ammonia, acetaldehyde, ethyl mercaptan, dimethyl disulphide, methyl ethyl ketone and humidity) at various operating temperatures in the range of 35-95 °C. The SAW sensor was found to possess up to 70 times higher response magnitudes than its QCM counterpart at 35 °C while up to 30 and 23 times higher response magnitudes were observed for the SAW sensor at elevated temperatures of 75 and 95 °C, respectively. Furthermore, the SAW sensor showed good selectivity (>89%) toward Hg(0) vapor in the presence of all the interferents tested at an operating temperature of 75 °C while the QCM sensor exhibited significant cross-sensitivity when ethyl mercaptan was introduced along with Hg(0) vapor. Overall, it is indicative that Ag-based acoustic wave sensors do have great potential for Hg sensing applications, given that right

  3. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  4. Distributed feedback acoustic surface wave oscillator

    NASA Technical Reports Server (NTRS)

    Elachi, C. (Inventor)

    1977-01-01

    An acoustic surface wave oscillator is constructed from a semiconductor piezoelectric acoustic surface wave amplifier by providing appropriate perturbations at the piezoelectric boundary. The perturbations cause Bragg order reflections that maintain acoustic wave oscillation under certain conditions of gain and feedback.

  5. ZnO films on /001/-cut (110)-propagating GaAs substrates for surface acoustic wave device applications

    NASA Technical Reports Server (NTRS)

    Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei; Kim, Yoonkee; Hunt, William D.

    1995-01-01

    A potential application for piezoelectric films substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on /001/-cut group of (110) zone axes-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(sup 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on /001/-cut GaAs samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. It was found that near the group of (110) zone axes propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the (100) direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  6. ZnO Films on {001}-Cut <110>-Propagating GaAs Substrates for Surface Acoustic Wave Device Applications

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei

    1995-01-01

    A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut <110> -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the <100> direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  7. Power Flow Angles for Slanted Finger Surface Acoustic Wave Filters on Langasite Substrate

    NASA Astrophysics Data System (ADS)

    Goto, Mikihiro; Yatsuda, Hiromi; Chiba, Takao

    2007-07-01

    Power flow angles (PFAs) on a langasite (LGS) substrate with Euler angles of (0{\\degree}, 138.5{\\degree}, \\psi), \\psi=25.7 to 27.7° are investigated for slanted finger interdigital transducer (SFIT) surface acoustic wave (SAW) filters by an electrical and optical methods. In the electrical method, several tilted SFIT SAW filters with different tilt angles for (0{\\degree}, 138.5{\\degree}, \\psi) LGS substrates were designed, and the frequency responses of the filters were measured. In the optical method, the PFAs were directly measured by optical probing for a parallel interdigital transducer (IDT) with wide propagation area on the substrate. As a result, a good correlation between electrical and optical measurements of the PFAs is obtained, but the calculated PFAs are slightly different from the measured PFAs. A good frequency response of a tilted 380 MHz SFIT SAW filter with an appropriate tilt angle corresponding to the PFA on the substrate is obtained even though the aperture is small.

  8. Theoretical Study of the Effect of Enamel Parameters on Laser-Induced Surface Acoustic Waves in Human Incisor

    NASA Astrophysics Data System (ADS)

    Yuan, Ling; Sun, Kaihua; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian

    2015-06-01

    The laser ultrasound technique has great potential for clinical diagnosis of teeth because of its many advantages. To study laser surface acoustic wave (LSAW) propagation in human teeth, two theoretical methods, the finite element method (FEM) and Laguerre polynomial extension method (LPEM), are presented. The full field temperature values and SAW displacements in an incisor can be obtained by the FEM. The SAW phase velocity in a healthy incisor and dental caries is obtained by the LPEM. The methods and results of this work can provide a theoretical basis for nondestructive evaluation of human teeth with LSAWs.

  9. Wireless SAW passive tag temperature measurement in the collision case

    NASA Astrophysics Data System (ADS)

    Sorokin, A.; Shepeta, A.; Wattimena, M.

    2018-04-01

    This paper describes temperature measurement in the multisensor systems based on the radio-frequency identification SAW passive tags which are currently applied in the electric power systems and the switchgears. Different approaches of temperature measurement in the collision case are shown here. The study is based on the tag model with specific topology, which allows us to determine temperature through the response signal with time-frequency information. This research considers the collision case for several passive tags as the temperature sensors which are placed in the switchgear. This research proposal is to analyze the possibility of using several SAW passive sensors in the collision case. We consider the using of the different typical elements for passive surface acoustic wave tag which applies as an anticollision passive sensor. These wireless sensors based on the surface acoustic waves tags contain specifically coded structures. This topology makes possible the reliability of increasing tag identification and the temperature measurement in the collision case. As the results for this case we illustrate simultaneous measurement of at least six sensors.

  10. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    DOEpatents

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  11. Design and simulation study of high frequency response for surface acoustic wave device by using CST software

    NASA Astrophysics Data System (ADS)

    Zakaria, M. R.; Hashim, U.; Amin, Mohd Hasrul I. M.; Ayub, R. Mat; Hashim, M. N.; Adam, T.

    2015-05-01

    This paper focuses on the enhancement and improvement of the Surface Acoustic Wave (SAW) device performance. Due to increased demand in the international market for biosensor product, the product must be emphasized in terms of quality. However, within the technological advances, demand for device with low cost, high efficiency and friendly-user preferred. Surface Acoustic Wave (SAW) device with the combination of pair electrode know as Interdigital Transducer (IDT) was fabricated on a piezoelectric substrate. The design of Interdigital Transducer (IDT) parameter is changes in several sizes and values for which it is able to provide greater efficiency in sensing sensitivity by using process simulation with CST STUDIO Suite software. In addition, Interdigital Transducer (IDT) parameters also changed to be created the products with a smaller size and easy to handle where it also reduces the cost of this product. Parameter values of an Interdigital Transducer (IDT) will be changed in the design is the total number of fingers pair, finger length, finger width and spacing, aperture and also the thickness of the Interdigital Transducer (IDT). From the result, the performance of the sensor is improved significantly after modification is done.

  12. Strong SH-to-Love wave scattering off the Southern California Continental Borderland

    USGS Publications Warehouse

    Yu, Chunquan; Zhan, Zhongwen; Hauksson, Egill; Cochran, Elizabeth S.

    2017-01-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers associated with lateral heterogeneities remains challenging. In this study, we analyze broadband waveforms recorded by the Southern California Seismic Network and observe strongly scattered Love waves following the arrival of teleseismic SH wave. These scattered Love waves travel approximately in the same (azimuthal) direction as the incident SH wave at a dominant period of ~10 s but at an apparent velocity of ~3.6 km/s as compared to the ~11 km/s for the SH wave. Back-projection suggests that this strong scattering is associated with pronounced bathymetric relief in the Southern California Continental Borderland, in particular the Patton Escarpment. Finite-difference simulations using a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling suggests a relatively low shear wave velocity in the Continental Borderland.

  13. Bimorph material/structure designs for high sensitivity flexible surface acoustic wave temperature sensors.

    PubMed

    Tao, R; Hasan, S A; Wang, H Z; Zhou, J; Luo, J T; McHale, G; Gibson, D; Canyelles-Pericas, P; Cooke, M D; Wood, D; Liu, Y; Wu, Q; Ng, W P; Franke, T; Fu, Y Q

    2018-06-13

    A fundamental challenge for surface acoustic wave (SAW) temperature sensors is the detection of small temperature changes on non-planar, often curved, surfaces. In this work, we present a new design methodology for SAW devices based on flexible substrate and bimorph material/structures, which can maximize the temperature coefficient of frequency (TCF). We performed finite element analysis simulations and obtained theoretical TCF values for SAW sensors made of ZnO thin films (~5 μm thick) coated aluminum (Al) foil and Al plate substrates with thicknesses varied from 1 to 1600 μm. Based on the simulation results, SAW devices with selected Al foil or plate thicknesses were fabricated. The experimentally measured TCF values were in excellent agreements with the simulation results. A normalized wavelength parameter (e.g., the ratio between wavelength and sample thickness, λ/h) was applied to successfully describe changes in the TCF values, and the TCF readings of the ZnO/Al SAW devices showed dramatic increases when the normalized wavelength λ/h was larger than 1. Using this design approach, we obtained the highest reported TCF value of -760 ppm/K for a SAW device made of ZnO thin film coated on Al foils (50 μm thick), thereby enabling low cost temperature sensor applications to be realized on flexible substrates.

  14. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  15. High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Sherrit, Stewart; Badescu, Mircea; Lih, Shyh-shiuh

    2012-01-01

    A compact sampling tool mechanism that can operate at various temperatures, and transport and sieve particle sizes of powdered cuttings and soil grains with no moving parts, has been created using traveling surface acoustic waves (SAWs) that are emitted by an inter-digital transducer (IDT). The generated waves are driven at about 10 MHz, and it causes powder to move towards the IDT at high speed with different speeds for different sizes of particles, which enables these particles to be sieved. This design is based on the use of SAWs and their propelling effect on powder particles and fluids along the path of the waves. Generally, SAWs are elastic waves propagating in a shallow layer of about one wavelength beneath the surface of a solid substrate. To generate SAWs, a piezoelectric plate is used that is made of LiNbO3 crystal cut along the x-axis with rotation of 127.8 along the y-axis. On this plate are printed pairs of fingerlike electrodes in the form of a grating that are activated by subjecting the gap between the electrodes to electric field. This configuration of a surface wave transmitter is called IDT. The IDT that was used consists of 20 pairs of fingers with 0.4-mm spacing, a total length of 12.5 mm. The surface wave is produced by the nature of piezoelectric material to contract or expand when subjected to an electric field. Driving the IDT to generate wave at high amplitudes provides an actuation mechanism where the surface particles move elliptically, pulling powder particles on the surface toward the wavesource and pushing liquids in the opposite direction. This behavior allows the innovation to separate large particles and fluids that are mixed. Fluids are removed at speed (7.5 to 15 cm/s), enabling this innovation of acting as a bladeless wiper for raindrops. For the windshield design, the electrodes could be made transparent so that they do not disturb the driver or pilot. Multiple IDTs can be synchronized to transport water or powder over larger

  16. High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection

    PubMed Central

    Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew

    2016-01-01

    Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792

  17. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    DOE PAGES

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; ...

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs,more » we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.« less

  18. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  19. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  20. SAW Humidity Sensor Sensitivity Enhancement via Electrospraying of Silver Nanowires

    PubMed Central

    Sayar Irani, Farid; Tunaboylu, Bahadir

    2016-01-01

    In this research, we investigated the influence of the surface coatings of silver nanowires on the sensitivity of surface acoustic wave (SAW) humidity sensors. Silver nanowires, with poly(vinylpyrrolidone) (PVP), which is a hydrophilic capping agent, were chemically synthesized, with an average length of 15 µm and an average diameter of 60 nm. Humidity sensors, with 433 MHz frequency dual-port resonator Rayleigh-SAW devices, were coated by silver nanowires (AgNWs) using the electrospray coating method. It was demonstrated that increasing thickness of coated AgNW on the surfaces of SAW devices results in increased sensitivity. The highest frequency shift (262 kHz) in these SAW devices was obtained with an injection of 0.5 mL of the AgNW solution with a concentration of 0.5 mg/mL at an injection rate of 1 mL/h. It also showed the highest humidity sensitivity among the other prepared SAW devices. PMID:27916870

  1. Calibration of the QCM/SAW Cascade Impactor for Measurement of Ozone in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Wright, Cassandra K.; Sims, S. C.; Peterson, C. B.; Morris, V. R.

    1997-01-01

    The Quartz Crystal Microbalance Surface Acoustic Wave (QCM/SAW) cascade impactor collects size-fractionated distributions of aerosols on a series of 10 MHz quartz crystals and employs SAW devices coated with chemical sensors for gas detection. Presently, we are calibrating the ER-2 certified QCM/SAW cascade impactor in the laboratory for the detection of ozone. Experiments have been performed to characterize the QCM and SAW mass loading, saturation limits, mass frequency relationships, and sensitivity. We are also characterizing sampling efficiency by measuring the loss of ozone on different materials. There are parallel experiments underway to measure the variations in the sensitivity and response of the QCM/SAW crystals as a function of temperature and pressure. Results of the work to date will be shown.

  2. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenbo; He, Xingli; Ye, Zhi, E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are muchmore » higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.« less

  3. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  4. Development of High Precision Metal Micro-Electro-Mechanical-Systems Column for Portable Surface Acoustic Wave Gas Chromatograph

    NASA Astrophysics Data System (ADS)

    Iwaya, Takamitsu; Akao, Shingo; Sakamoto, Toshihiro; Tsuji, Toshihiro; Nakaso, Noritaka; Yamanaka, Kazushi

    2012-07-01

    In the field of environmental measurement and security, a portable gas chromatograph (GC) is required for the on-site analysis of multiple hazardous gases. Although the gas separation column has been downsized using micro-electro-mechanical-systems (MEMS) technology, an MEMS column made of silicon and glass still does not have sufficient robustness and a sufficiently low fabrication cost for a portable GC. In this study, we fabricated a robust and inexpensive high-precision metal MEMS column by combining diffusion-bonded etched stainless-steel plates with alignment evaluation using acoustic microscopy. The separation performance was evaluated using a desktop GC with a flame ionization detector and we achieved the high separation performance comparable to the best silicon MEMS column fabricated using a dynamic coating method. As an application, we fabricated a palm-size surface acoustic wave (SAW) GC combining this column with a ball SAW sensor and succeeded in separating and detecting a mixture of volatile organic compounds.

  5. Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface acoustic wave sensor.

    PubMed

    Oh, Se Yeon; Shin, Hyun Du; Kim, Sung Jean; Hong, Jongki

    2008-03-07

    A novel analytical method using fast gas chromatography combined with surface acoustic wave sensor (GC/SAW) has been developed for the detection of volatile aroma compounds emanated from lilac blossom (Syringa species: Syringa vulgaris variginata and Syringa dilatata). GC/SAW could detect and quantify various fragrance emitted from lilac blossom, enabling to provide fragrance pattern analysis results. The fragrance pattern analysis could easily characterize the delicate differences in aromas caused by the substantial difference of chemical composition according to different color and shape of petals. Moreover, the method validation of GC/SAW was performed for the purpose of volatile floral actual aroma analysis, achieving a high reproducibility and excellent sensitivity. From the validation results, GC/SAW could serve as an alternative analytical technique for the analysis of volatile floral actual aroma of lilac. In addition, headspace solid-phase microextraction (HS-SPME) GC-MS was employed to further confirm the identification of fragrances emitted from lilac blossom and compared to GC/SAW.

  6. The origin of SH-wave resonance frequencies in sedimentary layers

    NASA Astrophysics Data System (ADS)

    van der Baan, Mirko

    2009-09-01

    Resonance frequencies are often analysed in geo-engineering studies to evaluate seismic risk and microzonation in urban areas. The Nakamura technique constitutes a popular approach that computes the spectral ratio of horizontal-to-vertical ground motion in ambient noise recordings to reveal the existence of any site resonance frequencies. Its theoretical basis remains however unclear with some authors arguing that the method de-emphasizes any Rayleigh-wave contributions and that the resonance frequencies are solely caused by vertically incident SH waves. Other authors explain the same resonance frequencies by the ellipticity of the fundamental Rayleigh wave. Recent numerical simulations reveal that the magnitude of the peak frequency is proportional to the relative portion of Love waves present. This study demonstrates that Love waves alone can be responsible for any observed resonance frequencies in sedimentary layers. Yet sharp SH-wave resonance frequencies are only excited by a source in the bedrock. These resonance frequencies are caused by inhomogeneous waves excited by the bedrock source that tunnel through the high-velocity bedrock to emerge in the low-velocity sediments with a very reduced range of slownesses. The resulting SH waves are then free to interfere constructively thereby creating the observed resonance frequencies. This general trigger mechanism leads to resonances that are almost offset independent. The resulting resonance frequencies map onto points of maximum curvature in the Love-wave phase-velocity dispersion curves at or just beyond the critical horizontal slowness. They can be analysed with the quarter-wavelength law if a large velocity contrast exists between the unconsolidated sediments and the bedrock. A minor modification of the quarter-wavelength law provides more accurate predictions, also for smaller velocity contrasts. Multisource simulations show that site amplification factors as determined by horizontal-over-vertical (H

  7. Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves.

    PubMed

    Li, Chunhui; Guan, Guangying; Zhang, Fan; Song, Shaozhen; Wang, Ruikang K; Huang, Zhihong; Nabi, Ghulam

    2014-12-01

    The maintenance of urinary bladder elasticity is essential to its functions, including the storage and voiding phases of the micturition cycle. The bladder stiffness can be changed by various pathophysiological conditions. Quantitative measurement of bladder elasticity is an essential step toward understanding various urinary bladder disease processes and improving patient care. As a nondestructive, and noncontact method, laser-induced surface acoustic waves (SAWs) can accurately characterize the elastic properties of different layers of organs such as the urinary bladder. This initial investigation evaluates the feasibility of a noncontact, all-optical method of generating and measuring the elasticity of the urinary bladder. Quantitative elasticity measurements of ex vivo porcine urinary bladder were made using the laser-induced SAW technique. A pulsed laser was used to excite SAWs that propagated on the bladder wall surface. A dedicated phase-sensitive optical coherence tomography (PhS-OCT) system remotely recorded the SAWs, from which the elasticity properties of different layers of the bladder were estimated. During the experiments, series of measurements were performed under five precisely controlled bladder volumes using water to estimate changes in the elasticity in relation to various urinary bladder contents. The results, validated by optical coherence elastography, show that the laser-induced SAW technique combined with PhS-OCT can be a feasible method of quantitative estimation of biomechanical properties.

  8. Direct observation of the lattice precursor of the metal-to-insulator transition in V2O3 thin films by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Kündel, J.; Pontiller, P.; Müller, C.; Obermeier, G.; Liu, Z.; Nateprov, A. A.; Hörner, A.; Wixforth, A.; Horn, S.; Tidecks, R.

    2013-03-01

    A surface acoustic wave (SAW) delay line is used to study the metal-to-insulator (MI) transition of V2O3 thin films deposited on a piezoelectric LiNbO3 substrate. Effects contributing to the sound velocity shift of the SAW which are caused by elastic properties of the lattice of the V2O3 films when changing the temperature are separated from those originating from the electrical conductivity. For this purpose the electric field accompanying the elastic wave of the SAW has been shielded by growing the V2O3 film on a thin metallic Cr interlayer (coated with Cr2O3), covering the piezoelectric substrate. Thus, the recently discovered lattice precursor of the MI transition can be directly observed in the experiments, and its fine structure can be investigated.

  9. Modeling electrical response of polymer-coated SAW resonators by equivalent circuit representation.

    PubMed

    Kshetrimayum, Roshan; Yadava, R D S; Tandon, R P

    2011-07-01

    The paper presents an equivalent circuit model of the polymer coated surface acoustic wave (SAW) resonators by combining coupling-of-mode (COM) description of SAW resonators and perturbation calculation of SAW propagation under polymer loading. An expression for the motional load produced by polymer coating is deduced in terms of COM parameters and polymer characteristics. In addition, expressions for the shifts in resonance frequency and attenuation due to polymer loading are obtained. Simulation results are presented for one-port and two-port resonator devices coated with viscoelastic thin polymer film. The influence of polymer film on resonator response is studied with regard to variations in film thickness and shear modulus. The model simplifies understanding of polymer-coated SAW sensors. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Is dust acoustic wave a new plasma acoustic mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, C.B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi {ital et al.} [J. Plasma Phys. {bold 41}, 219 (1989)]. It is suggested that both correct and more usable nomenclature of themore » ALM should be the so-called acoustic mode. {copyright} {ital 1997 American Institute of Physics.}« less

  11. Surface acoustic wave regulated single photon emission from a coupled quantum dot–nanocavity system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiß, M.; Kapfinger, S.; Wixforth, A.

    2016-07-18

    A coupled quantum dot–nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a f{sub SAW} ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g{sup (2)}. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g{sup (2)}, demonstrating high fidelity regulation of the stream of single photonsmore » emitted by the system.« less

  12. 1st Order Modeling of a SAW Delay Line using MathCAD(Registered)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    To aid in the development of SAW sensors for Integrated Vehicle Health Monitoring applications, a first order model of a SAW Delay line has been created using MathCadA. The model implements the Impulse Response method to calculate the frequency response, impedance, and insertion loss. This paper presents the model and the results from the model for a SAW delay line design. Integrated Vehicle Health Monitoring (IVHM) of aerospace vehicles requires rugged sensors having reduced volume, mass, and power that can be used to measure a variety of phenomena. Wireless systems are preferred when retro-fitting sensors onto existing vehicles [1]. Surface Acoustic Wave (SAW) devices are capable of sensing: temperature, pressure, strain, chemical species, mass loading, acceleration, and shear stress. SAW technology is low cost, rugged, lightweight, and extremely low power. Passive wireless sensors have been developed using SAW technology. For these reasons new SAW sensors are being investigated for aerospace applications.

  13. Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Fang; Zhang, Zheng-Wei; He, Yan-Lan; Liu, Yi-Xing; Li, Shuang; Fang, Jing-Yue; Zhang, Xue-Ao; Peng, Gang

    2016-04-01

    Decane is one of the volatile organic compounds (VOCs) in human breath. Successful detection of decane in human breath has vast prospects for early lung cancer diagnosis. In this paper, a novel detecting device based on a filter surface acoustic wave (SAW) gas sensor is presented. SAW sensors coated with a thin oxidized graphene film were used to detect decane in parts per million (ppm) concentrations. Control and signal detection circuits were designed using a vector network analyzer with a detection resolution of insertion loss down to 0.0001 dB. The results showed that the SAW sensor could respond quickly with great sensitivity when exposed to 0.2 ppm decane. This device shows tremendous potential in medical diagnosis and environmental assessment.

  14. SH wave structure of the crust and upper mantle in southeastern margin of the Tibetan Plateau from teleseismic Love wave tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yuanyuan V.; Jia, Ruizhi; Han, Fengqin; Chen, Anguo

    2018-06-01

    The deep structure of southeastern Tibet is important for determining lateral plateau expansion mechanisms, such as movement of rigid crustal blocks along large strike-slip faults, continuous deformation or the eastward crustal channel flow. We invert for 3-D isotropic SH wave velocity model of the crust and upper mantle to the depth of 110 km from Love wave phase velocity data using a best fitting average model as the starting model. The 3-D SH velocity model presented here is the first SH wave velocity structure in the study area. In the model, the Tibetan Plateau is characterized by prominent slow SH wave velocity with channel-like geometry along strike-slip faults in the upper crust and as broad zones in the lower crust, indicating block-like and distributed deformation at different depth. Positive radial anisotropy (VSH > VSV) is suggested by a high SH wave and low SV wave anomaly at the depths of 70-110 km beneath the northern Indochina block. This positive radial anisotropy could result from the horizontal alignment of anisotropic minerals caused by lithospheric extensional deformation due to the slab rollback of the Australian plate beneath the Sumatra trench.

  15. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and In-Situ FTIR Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodenhofer, K,; Gopel, W.; Hierlemann, A.

    To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination,more » "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.« less

  16. Reflection and Refraction of Acoustic Waves by a Shock Wave

    NASA Technical Reports Server (NTRS)

    Brillouin, J.

    1957-01-01

    The presence of sound waves in one or the other of the fluid regions on either side of a shock wave is made apparent, in the region under superpressure, by acoustic waves (reflected or refracted according to whether the incident waves lie in the region of superpressure or of subpressure) and by thermal waves. The characteristics of these waves are calculated for a plane, progressive, and uniform incident wave. In the case of refraction, the refracted acoustic wave can, according to the incidence, be plane, progressive, and uniform or take the form of an 'accompanying wave' which remains attached to the front of the shock while sliding parallel to it. In all cases, geometrical constructions permit determination of the kinematic characteristics of the reflected or refractive acoustic waves. The dynamic relationships show that the amplitude of the reflected wave is always less than that of the incident wave. The amplitude of the refracted wave, whatever its type, may in certain cases be greater than that of the incident wave.

  17. Selective Surface Acoustic Wave-Based Organophosphorus Sensor Employing a Host-Guest Self-Assembly Monolayer of β-Cyclodextrin Derivative

    PubMed Central

    Pan, Yong; Mu, Ning; Shao, Shengyu; Yang, Liu; Wang, Wen; Xie, Xiao; He, Shitang

    2015-01-01

    Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a β-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluoridate, GB). Using sarin acid (isoprophyl hydrogen methylphosphonate) as an imprinting template, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  18. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  19. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  20. Evaluation of near-surface stress distributions in dissimilar welded joint by scanning acoustic microscopy.

    PubMed

    Kwak, Dong Ryul; Yoshida, Sanichiro; Sasaki, Tomohiro; Todd, Judith A; Park, Ik Keun

    2016-04-01

    This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Characteristics of one-port surface acoustic wave resonator fabricated on ZnO/6H-SiC layered structure

    NASA Astrophysics Data System (ADS)

    Li, Qi; Qian, Lirong; Fu, Sulei; Song, Cheng; Zeng, Fei; Pan, Feng

    2018-04-01

    Characteristics of one-port surface acoustic wave (SAW) resonators fabricated on ZnO/6H-SiC layered structure were investigated experimentally and theoretically. Phase velocities (V p), electromechanical coupling coefficients (K 2), quality factors (Q), and temperature coefficients of frequency (TCF) of Rayleigh wave (0th mode) and first- and second-order Sezawa wave (1st and 2nd modes, respectively) for different piezoelectric film thickness-to-wavelength (h ZnO /λ) ratios were systematically studied. Results demonstrated that one-port SAW resonators fabricated on the ZnO/6H-SiC layered structure were promising for high-frequency SAW applications with moderate K 2 and TCF values. A high K 2 of 2.44% associated with a V p of 5182 m s‑1 and a TCF of  ‑41.8 ppm/°C was achieved at h ZnO /λ  =  0.41 in the 1st mode, while a large V p of 7210 m s‑1 with a K 2 of 0.19% and a TCF of  ‑36.4 ppm/°C was obtained for h ZnO /λ  =  0.31 in the 2nd mode. Besides, most of the parameters were reported for the first time and will be helpful for the future design and optimization of SAW devices fabricated on ZnO/6H-SiC layered structures.

  2. Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film

    NASA Astrophysics Data System (ADS)

    Xu, Hongsheng; Dong, Shurong; Xuan, Weipeng; Farooq, Umar; Huang, Shuyi; Li, Menglu; Wu, Ting; Jin, Hao; Wang, Xiaozhi; Luo, Jikui

    2018-02-01

    A flexible surface acoustic wave (SAW) strain sensor in the frequency range of 162-325 MHz was developed based on a single crystalline LiNbO3 thin film with dual resonance modes, namely, the Rayleigh mode and the thickness shear mode (TSM). This SAW sensor could handle a wide strain range up to ±3500 μɛ owing to its excellent flexibility, which is nearly six times the detecting range of bulk piezoelectric substrate based SAW strain sensors. The sensor exhibited a high sensitivity of 193 Hz/ μɛ with a maximum hysteresis less than 1.5%. The temperature coefficients of frequency, for Rayleigh and TSM modes, were -85 and -59 ppm/ °C , respectively. No visible deterioration was observed after cyclic bending for hundreds of times, showing its desirable stability and reliability. By utilizing the dual modes, the strain sensor with a self-temperature calibrated capability can be achieved. The results demonstrate that the sensor is an excellent candidate for strain sensing.

  3. Ion acoustic wave assisted laser beat wave terahertz generation in a plasma channel

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav; Garg, Deepak

    2018-04-01

    Resonant excitation of terahertz (THz) radiation by non-linear mixing of two lasers in the presence of an electrostatic wave is investigated. The electrostatic wave assists in k matching and contributes to non-linear coupling. In this plasma channel, the electron plasma frequency becomes minimum on the axis. The beat frequency ponderomotive force imparts an oscillating velocity to the electrons. In the presence of an ion-acoustic wave, density perturbation due to the ion-acoustic wave couples with the oscillating velocity of the electrons and give rise to non-linear current that gives rise to an ion-acoustic wave frequency assisted THz radiation field. The normalized field amplitude of ion acoustic wave assisted THz varies inversely for ω/ωp . The field amplitude of ion acoustic wave assisted THz decreases as ω/ωp increases.

  4. Polyvinylpyrrolidone/Multiwall Carbon Nanotube Composite Based 36° YX LiTaO3 Surface Acoustic Wave For Hydrogen Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Chee, Pei Song; Arsat, Rashidah; He, Xiuli; Kalantar-zadeh, Kourosh; Arsat, Mahyuddin; Wlodarski, Wojtek

    2011-05-01

    Poly-vinyl-pyrrolidone (PVP) /Multiwall Carbon Nanotubes (MWNTs) based Surface Acoustic Wave (SAW) sensors are fabricated and characterized, and their performances towards hydrogen gas are investigated. The PVP/MWNTs fibers composite are prepared by electrospinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nanostructure material is observed. From the dynamic response, frequency shifts of 530 Hz (1% H2) and 11.322 kHz (0.25% H2) are recorded for the sensors contain of 1.525 g and 1.025 g PVP concentrations, respectively.

  5. Suitability of surface acoustic wave oscillators fabricated using low temperature-grown AlN films on GaN/sapphire as UV sensors.

    PubMed

    Chen, Tzu Chieh; Lin, Yueh Ting; Lin, Chung Yi; Chen, W C; Chen, Meei Ru; Kao, Hui-Ling; Chyi, J I; Hsu, C H

    2008-02-01

    Epitaxial AlN films were prepared on GaN/sapphire using a helicon sputtering system at the low temperature of 300 degrees C. Surface acoustic wave (SAW) devices fabricated on AlN/GaN/sapphire exhibited superior characteristics compared with those made on GaN/sapphire. An oscillator using an AlN/GaN/sapphirebased SAW device is presented. The oscillation frequency decreased when the device was illuminated by ultraviolet (UV) radiation, and the downshift of the oscillation frequency increased with the illuminating UV power density. The results showed that the AlN/GaN/sapphire-layered structure SAW oscillators are suitable for visible blind UV detection and opened up the feasibility of developing remote UV sensors for different ranges of wavelengths on the III-nitrides.

  6. Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications.

    PubMed

    Streque, Jeremy; Rouxel, Didier; Talbi, Abdelkrim; Thomassey, Matthieu; Vincent, Brice

    2018-05-01

    Polydimethylsiloxane (PDMS) and other related silicon-based polymers are among the most widely employed elastomeric materials in microsystems, owing to their physical and chemical properties. Meanwhile, surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors and filters have been vastly explored for sensing and wireless applications. Many fields could benefit from the combined use of acoustic wave devices, and polydimethylsiloxane-based soft-substrates, microsystems, or packaging elements. The mechanical constants of PDMS strongly depend on frequency, similar to rubber materials. This brings to the exploration of the specific mechanical properties of PDMS encountered at high frequency, required for its exploitation in SAW or BAW devices. First, low-frequency mechanical behavior is confirmed from stress strain measurements, remaining useful for the exploitation of PDMS as a soft substrate or packaging material. The study, then, proposes a temperature-dependent, high-frequency mechanical study of PDMS based on Brillouin spectroscopy to determine the evolution of the longitudinal acoustic velocity in this material, which constitutes the main mechanical parameter for the design of acoustic wave devices. The PDMS glass transition is then retrieved by differential scanning calorimetry in order to confirm the observations made by Brillouin spectroscopy. This paper validates Brillouin spectroscopy as a very suitable characterization technique for the retrieval of longitudinal mechanical properties at low temperature, as a preliminary investigation for the design of acoustic wave devices coupled with soft materials.

  7. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    PubMed

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  8. Ion acoustic waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Plasma wave measurements on the Helios 1 and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are shortwavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic wave turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered.

  9. In situ evaluation of density, viscosity, and thickness of adsorbed soft layers by combined surface acoustic wave and surface plasmon resonance.

    PubMed

    Francis, Laurent A; Friedt, Jean-Michel; Zhou, Cheng; Bertrand, Patrick

    2006-06-15

    We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity, and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold-coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is monitored simultaneously in a single setup for the real-time and label-free measurement of the parameters of adsorbed soft layers, which means for layers with a predominant viscous behavior. A general mathematical modeling in equivalent viscoelastic transmission lines is presented to determine the correlation between experimental SAW signal shifts and the waveguide structure including the presence of the adsorbed layer and the supporting liquid from which it segregates. A methodology is presented to identify from SAW and SPR simulations the parameters representatives of the soft layer. During the absorption of a soft layer, thickness or viscosity changes are observed in the experimental ratio of the SAW signal attenuation to the SAW signal phase and are correlated with the theoretical model. As application example, the simulation method is applied to study the thermal behavior of physisorbed PNIPAAm, a polymer whose conformation is sensitive to temperature, under a cycling variation of temperature between 20 and 40 degrees C. Under the assumption of the bulk density and the bulk refractive index of PNIPAAm, thickness and viscosity of the film are obtained from simulations; the viscosity is correlated to the solvent content of the physisorbed layer.

  10. Acoustic parametric pumping of spin waves

    NASA Astrophysics Data System (ADS)

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2014-11-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  11. Distributed feedback acoustic surface wave oscillator

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1974-01-01

    Using a simple model, the feasibility of applying the distributed feedback concept to the generation of acoustic surface waves is evaluated. It is shown that surface corrugation of the piezoelectric boundary in a semiconductor-piezoelectric surface acoustic wave amplifier could lead to self-sustained oscillations.

  12. Acoustoelectric Effect on the Responses of SAW Sensors Coated with Electrospun ZnO Nanostructured Thin Film

    PubMed Central

    Tasaltin, Cihat; Ebeoglu, Mehmet Ali; Ozturk, Zafer Ziya

    2012-01-01

    In this study, zinc oxide (ZnO) was a very good candidate for improving the sensitivity of gas sensor technology. The preparation of an electrospun ZnO nanostructured thin film on a 433 MHz Rayleigh wave based Surface Acoustic Wave (SAW) sensor and the investigation of the acoustoelectric effect on the responses of the SAW sensor are reported. We prepared an electrospun ZnO nanostructured thin film on the SAW devices by using an electrospray technique. To investigate the dependency of the sensor response on the structure and the number of the ZnO nanoparticles, SAW sensors were prepared with different coating loads. The coating frequency shifts were adjusted to fall between 100 kHz and 2.4 MHz. The sensor measurements were performed against VOCs such as acetone, trichloroethylene, chloroform, ethanol, n-propanol and methanol vapor. The sensor responses of n-propanol have opposite characteristics to the other VOCs, and we attributed these characteristics to the elastic effect/acoustoelectric effect.

  13. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detectionmore » was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.« less

  14. Parameters effects study on pulse laser for the generation of surface acoustic waves in human skin detection applications

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen

    2015-10-01

    Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.

  15. FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO₂/Si Multilayer Structure.

    PubMed

    Aslam, Muhammad Zubair; Jeoti, Varun; Karuppanan, Saravanan; Malik, Aamir Farooq; Iqbal, Asif

    2018-05-24

    A Finite Element Method (FEM) simulation study is conducted, aiming to scrutinize the sensitivity of Sezawa wave mode in a multilayer AlN/SiO₂/Si Surface Acoustic Wave (SAW) sensor to low concentrations of Volatile Organic Compounds (VOCs), that is, trichloromethane, trichloroethylene, carbon tetrachloride and tetrachloroethene. A Complimentary Metal-Oxide Semiconductor (CMOS) compatible AlN/SiO₂/Si based multilayer SAW resonator structure is taken into account for this purpose. In this study, first, the influence of AlN and SiO₂ layers’ thicknesses over phase velocities and electromechanical coupling coefficients ( k ²) of two SAW modes (i.e., Rayleigh and Sezawa) is analyzed and the optimal thicknesses of AlN and SiO₂ layers are opted for best propagation characteristics. Next, the study is further extended to analyze the mass loading effect on resonance frequencies of SAW modes by coating a thin Polyisobutylene (PIB) polymer film over the AlN surface. Finally, the sensitivity of the two SAW modes is examined for VOCs. This study concluded that the sensitivity of Sezawa wave mode for 1 ppm of selected volatile organic gases is twice that of the Rayleigh wave mode.

  16. SH3-domain binding protein 1 in the tumor microenvironment promotes hepatocellular carcinoma metastasis through WAVE2 pathway

    PubMed Central

    Tao, Yiming; Hu, Kuan; Tan, Fengbo; Zhang, Sai; Zhou, Ming; Luo, Jia; Wang, Zhiming

    2016-01-01

    SH3-domain binding protein-1 (SH3BP1) specifically inactivating Rac1 and its target WAVE2 is required for cell motility. The present study shows SH3BP1 expression patterns in human HCC tissues and cell lines were examined. The regulation of SH3BP1 on HCC cell migration and invasion related to Rac1-WAVE2 signaling was characterized using in vitro and in vivo models. SH3BP1 overexpressed in HCC tissues and highly metastatic HCC cells was significantly associated vascular invasion (VI). SH3BP1 promoted VEGF secretion via Rac1-WAVE2 signaling, so as to exert an augmentation on cell invasion and microvessel formation. In three study cohorts with a total of 516 HCC patients, high SH3BP1 expression combined with high microvessel density (MVD) was confirmed as a powerful independent predictor of HCC prognosis in both training cohorts and validation cohort. Being an important angiogenic factor of HCC through Rac1-WAVE2 signaling, SH3BP1 promotes tumor invasion and microvessel formation contributing to HCC metastasis and recurrence. SH3BP1 is a novel WAVE2 regulator, a prognostic marker and a potential therapeutic target of HCC. PMID:26933917

  17. SH3-domain binding protein 1 in the tumor microenvironment promotes hepatocellular carcinoma metastasis through WAVE2 pathway.

    PubMed

    Tao, Yiming; Hu, Kuan; Tan, Fengbo; Zhang, Sai; Zhou, Ming; Luo, Jia; Wang, Zhiming

    2016-04-05

    SH3-domain binding protein-1 (SH3BP1) specifically inactivating Rac1 and its target WAVE2 is required for cell motility. The present study shows SH3BP1 expression patterns in human HCC tissues and cell lines were examined. The regulation of SH3BP1 on HCC cell migration and invasion related to Rac1-WAVE2 signaling was characterized using in vitro and in vivo models. SH3BP1 overexpressed in HCC tissues and highly metastatic HCC cells was significantly associated vascular invasion (VI). SH3BP1 promoted VEGF secretion via Rac1-WAVE2 signaling, so as to exert an augmentation on cell invasion and microvessel formation. In three study cohorts with a total of 516 HCC patients, high SH3BP1 expression combined with high microvessel density (MVD) was confirmed as a powerful independent predictor of HCC prognosis in both training cohorts and validation cohort. Being an important angiogenic factor of HCC through Rac1-WAVE2 signaling, SH3BP1 promotes tumor invasion and microvessel formation contributing to HCC metastasis and recurrence. SH3BP1 is a novel WAVE2 regulator, a prognostic marker and a potential therapeutic target of HCC.

  18. A variable-frequency bidirectional shear horizontal (SH) wave transducer based on dual face-shear (d24) piezoelectric wafers.

    PubMed

    Miao, Hongchen; Huan, Qiang; Li, Faxin; Kang, Guozheng

    2018-04-24

    Focusing the incident wave beam along a given direction is very useful in guided wave based structural health monitoring (SHM), as it will not only save input power but also simplify the interpretation of signals. Although the fundamental shear horizontal (SH 0 ) wave is of practical importance in SHM due to its non-dispersive characteristics so far there have been very limited transducers which can control the radiation patterns of SH 0 wave. In this work, a variable-frequency bidirectional SH 0 wave piezoelectric transducer (BSH-PT) is proposed, which consists of two rectangular face-shear (d 24 ) PZT wafers. The opposite face-shear deformation of the two PZT wafers under applied electric fields makes the BSH-PT capable of exciting SH 0 wave along two opposite directions (0° and 180°). Both finite element simulations and experimental testings are conducted to examine the performance of the proposed BSH-PT. Results show that pure SH 0 wave can be generated by this BSH-PT and its wave beam can be focused bi-directionally. Moreover, the bidirectional characteristics of the BSH-PT can be kept over a wide frequency range from 150 kHz to 250 kHz. As the circumferential SH 0 (CSH 0 ) wave in a thin hollow cylindrical structure is essentially equivalent to the SH 0 wave in a plate, the proposed BSH-PT may also be very useful to develop a CSH 0 -wave-based SHM system for hollow cylindrical structures. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Mechanical Characterization of Nanoporous Thin Films by Nanoindentation and Laser-induced Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chow, Gabriel

    Thin films represent a critical sector of modern engineering that strives to produce functional coatings at the smallest possible length scales. They appear most commonly in semiconductors where they form the foundation of all electronic circuits, but exist in many other areas to provide mechanical, electrical, chemical, and optical properties. The mechanical characterization of thin films has been a continued challenge due foremost to the length scales involved. However, emerging thin films focusing on materials with significant porosity, complex morphologies, and nanostructured surfaces produce additional difficulties towards mechanical analysis. Nanoindentation has been the dominant thin film mechanical characterization technique for the last decade because of the quick results, wide range of sample applicability, and ease of sample preparation. However, the traditional nanoindentation technique encounters difficulties for thin porous films. For such materials, alternative means of analysis are desirable and the lesser known laser-induced surface acoustic wave technique (LiSAW) shows great potential in this area. This dissertation focuses on studying thin, porous, and nanostructured films by nanoindentation and LiSAW techniques in an effort to directly correlate the two methodologies and to test the limits and applicabilities of each technique on challenging media. The LiSAW technique is particularly useful for thin porous films because unlike indentation, the substrate is properly accounted for in the wave motion analysis and no plastic deformation is necessary. Additionally, the use of lasers for surface acoustic wave generation and detection allows the technique to be fully non-contact. This is desirable in the measurement of thin, delicate, and porous films where physical sample probing may not be feasible. The LiSAW technique is also valuable in overcoming nanoscale roughness, particularly for films that cannot be mechanically polished, since typical SAW

  20. Z-path SAW RFID tag.

    PubMed

    Härmä, Sanna; Plessky, Victor P; Hartmann, Clinton S; Steichen, William

    2008-01-01

    Surface acoustic wave (SAW) radio-frequency identification (RFID) tags are soon expected to be produced in very high volumes. The size and cost of a SAW RFID tag will be key parameters for many applications. Therefore, it is of primary importance to reduce the chip size. In this work, we describe the design principles of a 2.4-GHz SAW RFID tag that is significantly smaller than earlier reported tags. We also present simulated and experimental results. The coded signal should arrive at the reader with a certain delay (typically about 1 micros), i.e., after the reception of environmental echoes. If the tag uses a bidirectional interdigital transducer (IDT), space for the initial delay is needed on both sides of the IDT. In this work, we replace the bidirectional IDT by a unidirectional one. This halves the space required by the initial delay because all the code reflectors must now be placed on the same side of the IDT. We reduce tag size even further by using a Z-path geometry in which the same space in x-direction is used for both the initial delay and the code reflectors. Chip length is thus determined only by the space required by the code reflectors.

  1. Love-type surface acoustic wave on Y-X LiTaO3 with amorphous Ta2O5 thin film

    NASA Astrophysics Data System (ADS)

    Kakio, Shoji; Fukasawa, Haruka; Hosaka, Keiko

    2015-07-01

    In this study, to obtain a substrate structure with a lower phase velocity, the propagation properties of a Love-type surface acoustic wave (Love SAW) on Y-X LiTaO3 (LT) with an amorphous tantalum pentoxide (a-Ta2O5) thin film were investigated using a simple delay line and a resonator with a wavelength λ of 8 µm. The insertion loss of a simple delay line was decreased markedly by loading with an a-Ta2O5 film owing to a transformation from a leaky SAW (LSAW) to a non-leaky Love SAW. A phase velocity of 3,340 m/s, a coupling factor of 5.8%, and a propagation loss of 0.03 dB/λ were obtained for a normalized thickness h/λ of 0.120. Moreover, the resonance properties of the Love SAW were almost equal or superior to those for an LSAW on Al/36° Y-X LT, except for the fractional bandwidth.

  2. Surface acoustic wave coding for orthogonal frequency coded devices

    NASA Technical Reports Server (NTRS)

    Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)

    2011-01-01

    Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.

  3. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  4. Enhanced spectral efficiency using bandwidth switchable SAW filtering for mobile satellite communications systems

    NASA Technical Reports Server (NTRS)

    Peach, Robert; Malarky, Alastair

    1990-01-01

    Currently proposed mobile satellite communications systems require a high degree of flexibility in assignment of spectral capacity to different geographic locations. Conventionally this results in poor spectral efficiency which may be overcome by the use of bandwidth switchable filtering. Surface acoustic wave (SAW) technology makes it possible to provide banks of filters whose responses may be contiguously combined to form variable bandwidth filters with constant amplitude and phase responses across the entire band. The high selectivity possible with SAW filters, combined with the variable bandwidth capability, makes it possible to achieve spectral efficiencies over the allocated bandwidths of greater than 90 percent, while retaining full system flexibility. Bandwidth switchable SAW filtering (BSSF) achieves these gains with a negligible increase in hardware complexity.

  5. Rapid microscale in-gel processing and digestion of proteins using surface acoustic waves.

    PubMed

    Kulkarni, Ketav P; Ramarathinam, Sri H; Friend, James; Yeo, Leslie; Purcell, Anthony W; Perlmutter, Patrick

    2010-06-21

    A new method for in-gel sample processing and tryptic digestion of proteins is described. Sample preparation, rehydration, in situ digestion and peptide extraction from gel slices are dramatically accelerated by treating the gel slice with surface acoustic waves (SAWs). Only 30 minutes total workflow time is required for this new method to produce base peak chromatograms (BPCs) of similar coverage and intensity to those observed for traditional processing and overnight digestion. Simple set up, good reproducibility, excellent peptide recoveries, rapid turnover of samples and high confidence protein identifications put this technology at the fore-front of the next generation of proteomics sample processing tools.

  6. Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments

    DTIC Science & Technology

    2015-09-30

    Elastic wave propagation mechanisms in underwater acoustic environments Scott D. Frank Marist College Department of Mathematics Poughkeepsie...conversion from elastic propagation to acoustic propagation, and intense interface waves on underwater acoustic environments with elastic bottoms...acoustic propagation will be considered as a means to predict the presence of elastic ice layers. APPROACH In a cylindrically symmetric environment

  7. Interacting Multiscale Acoustic Vortices as Coherent Excitations in Dust Acoustic Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2018-03-01

    In this work, using three-dimensional intermittent dust acoustic wave turbulence in a dusty plasma as a platform and multidimensional empirical mode decomposition into different-scale modes in the 2 +1 D spatiotemporal space, we demonstrate the experimental observation of the interacting multiscale acoustic vortices, winding around wormlike amplitude hole filaments coinciding with defect filaments, as the basic coherent excitations for acoustic-type wave turbulence. For different decomposed modes, the self-similar rescaled stretched exponential lifetime histograms of amplitude hole filaments, and the self-similar power spectra of dust density fluctuations, indicate that similar dynamical rules are followed over a wide range of scales. In addition to the intermode acoustic vortex pair generation, propagation, or annihilation, the intra- and intermode interactions of acoustic vortices with the same or opposite helicity, their entanglement and synchronization, are found to be the key dynamical processes in acoustic wave turbulence, akin to the interacting multiscale vortices around wormlike cores observed in hydrodynamic turbulence.

  8. Dynamic patterns in a supported lipid bilayer driven by standing surface acoustic waves.

    PubMed

    Hennig, Martin; Neumann, Jürgen; Wixforth, Achim; Rädler, Joachim O; Schneider, Matthias F

    2009-11-07

    In the past decades supported lipid bilayers (SLBs) have been an important tool in order to study the physical properties of biological membranes and cells. So far, controlled manipulation of SLBs is very limited. Here we present a new technology to create lateral patterns in lipid membranes controllable in both space and time. Surface acoustic waves (SAWs) are used to generate lateral standing waves on a piezoelectric substrate which create local "traps" in the lipid bilayer and lead to a lateral modulation in lipid concentration. We demonstrate that pattern formation is reversible and does not affect the integrity of the lipid bilayer as shown by extracting the diffusion constant of fluid membranes. The described method could possibly be used to design switchable interfaces for the lateral transport and organization of membrane bound macromolecules to create dynamic bioarrays and control biofilm formation.

  9. Precision cleaning apparatus and method

    DOEpatents

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  10. Precision cleaning apparatus and method

    DOEpatents

    Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  11. Robust acoustic wave manipulation of bubbly liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumerov, N. A., E-mail: gumerov@umiacs.umd.edu; Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076; Akhatov, I. S.

    Experiments with water–air bubbly liquids when exposed to acoustic fields of frequency ∼100 kHz and intensity below the cavitation threshold demonstrate that bubbles ∼30 μm in diameter can be “pushed” away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  12. The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization.

    PubMed

    Qi, Aisha; Yeo, Leslie; Friend, James; Ho, Jenny

    2010-02-21

    Paper has been proposed as an inexpensive and versatile carrier for microfluidics devices with abilities well beyond simple capillary action for pregnancy tests and the like. Unlike standard microfluidics devices, extracting a fluid from the paper is a challenge and a drawback to its broader use. Here, we extract fluid from narrow paper strips using surface acoustic wave (SAW) irradiation that subsequently atomizes the extracted fluid into a monodisperse aerosol for use in mass spectroscopy, medical diagnostics, and drug delivery applications. Two protein molecules, ovalbumin and bovine serum albumin (BSA), have been preserved in paper and then extracted using atomized mist through SAW excitation; protein electrophoresis shows there is less than 1% degradation of either protein molecule in this process. Finally, a solution of live yeast cells was infused into paper, which was subsequently dried for preservation then remoistened to extract the cells via SAW atomization, yielding live cells at the completion of the process. The successful preservation and extraction of fluids, proteins and yeast cells significantly expands the usefulness of paper in microfluidics.

  13. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  14. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  15. Investigation of Various Surface Acoustic Wave Design Configurations for Improved Sensitivity

    NASA Astrophysics Data System (ADS)

    Manohar, Greeshma

    Surface acoustic wave sensors have been a focus of active research for many years. Its ability to respond for surface perturbation is a basic principle for its sensing capability. Sensitivity to surface perturbation changes with every inter-digital transducer (IDT) design parameters, substrate selection, metallization choice and technique, delay line length and working environment. In this thesis, surface acoustic wave (SAW) sensors are designed and characterized to improve sensitivity and reduce loss. To quantify the improvements with a specific design configuration, the sensors are employed to measure temperature. Four SAW sensors design configurations, namely bi-directional, split electrode, single phase unidirectional transducer (SPUDT) and metal grating on delay line (shear transvers wave sensors) are designed and then fabricated in Nanotechnology Research and Education Center (NREC) facility using traditional MEMS fabrication processes Additionally, sensors are then coated with guiding layer SU8-2035 of 40µm using spin coating and SiO 2 of 6µm using plasma enhanced chemical vapor deposition (PECVD) process. Sensors are later diced and tested for every 5°C increment using network analyzer for temperature ranging from 30°C±0.5°C to 80°C±0.5°C. Data acquired from network analyzer is analyzed using plot of logarithmic magnitude, phase and frequency shift. Furthermore, to investigate the effect of metallization technique on the sensor performance, sensors are also fabricated on substrates that were metallized at a commercial MEMS foundry. All in-house and outside sputtered sensor configurations are compared to investigate quality of sputtered metal on wafer. One with better quality sputtered metal is chosen for further study. Later sensors coated with SU8 and SiO2 as guiding layer are compared to investigate effect of each waveguide on sensors and determine which waveguide offers better performance. The results showed that company sputtered sensors have

  16. Study of a high-precision SAW-MOEMS strain sensor with laser optics

    NASA Astrophysics Data System (ADS)

    Liu, Xinwei; Chen, Shufen; Li, Honglang; Zou, Zhengfeng; Fu, Lei; Meng, Yanbin

    2015-02-01

    A novel structure design of a surface acoustic wave (SAW) micro-optic-electro-mechanical-system (MOEMS) strain sensor with a light readout unit is presented in this paper. By measuring the polarization intensity ratio of the TE/TM mode outputted from the waveguide, the strain produced from an object can be measured precisely. The basic working principle of the SAW MOEMS strain sensor is introduced and the mathematical model of the strain sensor system is established. The SAW characteristics effected by the strain sensor are mathematically deduced. The coupling coefficient between the SAW modes and light modes can be calculated based on the theory of coupling modes. The conversion coefficient of polarized light modes is obtained. Due to the restrictions of the specific parameters of the device, the level of technology and the material characteristics, the sensitivity of the strain sensor system is calculated through simulation as 0.1 μɛ, with a dynamic range of 0 ~ ±50 μɛ.

  17. A SAW-based chemical sensor for detecting sulfur-containing organophosphorus compounds using a two-step self-assembly and molecular imprinting technology.

    PubMed

    Pan, Yong; Yang, Liu; Mu, Ning; Shao, Shengyu; Wang, Wen; Xie, Xiao; He, Shitang

    2014-05-19

    This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  18. A SAW-Based Chemical Sensor for Detecting Sulfur-Containing Organophosphorus Compounds Using a Two-Step Self-Assembly and Molecular Imprinting Technology

    PubMed Central

    Pan, Yong; Yang, Liu; Mu, Ning; Shao, Shengyu; Wang, Wen; Xie, Xiao; He, Shitang

    2014-01-01

    This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  19. The detection of organophosphonates by polymer films on a surface acoustic wave device and a micromirror fiber optic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.C.; Ricco, A.J.; Butler, M.A.

    There is a need for sensitive detection of organophosphonates by, inexpensive, portable instruments. Two kinds of chemical sensors, based on surface acoustic wave (SAW) devices and fiber optic micromirrors, show promise for such sensing systems. Chemically sensitive coatings are required for detection and data for thin films of the polymer polysiloxane are reported for both kinds of physical transducers. Both kinds of sensor are shown to be capable of detecting concentrations of diisopropylmethylphosphonate (DIMP) down to 1 ppM.

  20. Development of flexible SAW sensors for non-destructive testing of structure

    NASA Astrophysics Data System (ADS)

    Takpara, R.; Duquennoy, M.; Courtois, C.; Gonon, M.; Ouaftouh, M.; Martic, G.; Rguiti, M.; Jenot, F.; Seronveaux, L.; Pelegris, C.

    2016-02-01

    In order to accurately examine structures surfaces, it is interesting to use surface SAW (Surface Acoustic Wave). Such waves are well suited for example to detect early emerging cracks or to test the quality of a coating. In addition, when coatings are thin or when emergent cracks are precocious, it is necessary to excite surface waves beyond 10MHz. Finally, when structures are not flat, it makes sense to have flexible or conformable sensors for their characterization. To address this problem, we propose to develop SAW type of interdigital sensors (or IDT for InterDigital Transducer), based on flexible piezoelectric plates. Initially, in order to optimize these sensors, we modeled the behavior of these sensors and identified the optimum characteristic sizes. In particular, the thickness of the piezoelectric plate and the width of the interdigital electrodes have been studied. Secondly, we made composites based on barium titanate foams in order to have flexible piezoelectric plates and to carry out thereafter sensors. Then, we studied several techniques in order to optimize the interdigitated electrodes deposition on this type of material. One of the difficulties concerns the fineness of these electrodes because the ratio between the length (typically several millimeters) and the width (a few tens of micrometers) of electrodes is very high. Finally, mechanical, electrical and acoustical characterizations of the sensors deposited on aluminum substrates were able to show the quality of our achievement.

  1. Steering of SH wave propagation in electrorheological elastomer with a structured meta-slab by tunable phase discontinuities

    NASA Astrophysics Data System (ADS)

    Xu, Yanlong; Li, Yi; Cao, Liyun; Yang, Zhichun; Zhou, Xiaoling

    2017-09-01

    The generalized Snell's law (GSL) with phase discontinuity proposed based on the concept of a metasurface, which can be used to control arbitrarily the reflection and refraction of waves, attracts a growing attention in these years. The concept of abnormally deflecting the incident wave has been applied to the elastic field very recently. However, most of the studies on metasurfaces are based on passive materials, which restricts the frequency or the deflected angles always working in a single state. Here, we steer elastic SH wave propagation in an electrorheological (ER) elastomer with a structured meta-slab composed of geometrically periodic wave guides by exposing the slab to the programmed electric fields. The dependence of phase velocities of SH waves on the applied electric fields can make the phase shift under the form of a special function along the slab, which will control the refraction angles of the transmitted SH waves by the GSL. Accordingly we design the meta-slab theoretically and conduct corresponding numerical simulations. The results demonstrate that the structured meta-slab under the programmed external electric fields can deflect SH wave flexibly with tunable refraction angles and working frequencies, and can focus SH wave with tunable focal lengths. The present study will broaden the scope of applying adaptive materials to design metasurfaces with tunability.

  2. Implementing wavelet inverse-transform processor with surface acoustic wave device.

    PubMed

    Lu, Wenke; Zhu, Changchun; Liu, Qinghong; Zhang, Jingduan

    2013-02-01

    The objective of this research was to investigate the implementation schemes of the wavelet inverse-transform processor using surface acoustic wave (SAW) device, the length function of defining the electrodes, and the possibility of solving the load resistance and the internal resistance for the wavelet inverse-transform processor using SAW device. In this paper, we investigate the implementation schemes of the wavelet inverse-transform processor using SAW device. In the implementation scheme that the input interdigital transducer (IDT) and output IDT stand in a line, because the electrode-overlap envelope of the input IDT is identical with the one of the output IDT (i.e. the two transducers are identical), the product of the input IDT's frequency response and the output IDT's frequency response can be implemented, so that the wavelet inverse-transform processor can be fabricated. X-112(0)Y LiTaO(3) is used as a substrate material to fabricate the wavelet inverse-transform processor. The size of the wavelet inverse-transform processor using this implementation scheme is small, so its cost is low. First, according to the envelope function of the wavelet function, the length function of the electrodes is defined, then, the lengths of the electrodes can be calculated from the length function of the electrodes, finally, the input IDT and output IDT can be designed according to the lengths and widths for the electrodes. In this paper, we also present the load resistance and the internal resistance as the two problems of the wavelet inverse-transform processor using SAW devices. The solutions to these problems are achieved in this study. When the amplifiers are subjected to the input end and output end for the wavelet inverse-transform processor, they can eliminate the influence of the load resistance and the internal resistance on the output voltage of the wavelet inverse-transform processor using SAW device. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  4. Development of a New Surface Acoustic Wave Based Gyroscope on a X-112°Y LiTaO3 Substrate

    PubMed Central

    Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang

    2011-01-01

    A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg−1 s at angular rates of up to 1,000 deg s−1 and good linearity are observed. PMID:22346678

  5. Development of a new surface acoustic wave based gyroscope on a X-112°Y LiTaO3 substrate.

    PubMed

    Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang

    2011-01-01

    A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg(-1) s at angular rates of up to 1,000 deg s(-1) and good linearity are observed.

  6. Imaging surface acoustic wave dynamics in semiconducting polymers by scanning ultrafast electron microscopy.

    PubMed

    Najafi, Ebrahim; Liao, Bolin; Scarborough, Timothy; Zewail, Ahmed

    2018-01-01

    Understanding the mechanical properties of organic semiconductors is essential to their electronic and photovoltaic applications. Despite a large volume of research directed toward elucidating the chemical, physical and electronic properties of these materials, little attention has been directed toward understanding their thermo-mechanical behavior. Here, we report the ultrafast imaging of surface acoustic waves (SAWs) on the surface of the Poly(3-hexylthiophene-2,5-diyl) (P3HT) thin film at the picosecond and nanosecond timescales. We then use these images to measure the propagation velocity of SAWs, which we then employ to determine the Young's modulus of P3HT. We further validate our experimental observation by performing a semi-empirical transient thermoelastic finite element analysis. Our findings demonstrate the potential of ultrafast electron microscopy to not only probe charge carrier dynamics in materials as previously reported, but also to measure their mechanical properties with great accuracy. This is particularly important when in situ characterization of stiffness for thin devices and nanomaterials is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Advances in SAW gas sensors based on the condensate-adsorption effect.

    PubMed

    Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang

    2011-01-01

    A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.

  8. Modal analysis and cut-off conditions of multichannel surface-acoustic-waveguide structures.

    PubMed

    Griffel, G; Golan, G; Ruschin, S; Seidman, A; Croitoru, N

    1988-01-01

    Multichannel guides for surface acoustic waves can improve the efficiency of SAW (surface acoustic-wave) devices significantly. Focusing, steering, and modulating the propagating acoustical modes can be achieved similarly to optical waveguided devices. A general formulation is presented for the analysis of the lateral waveguiding properties of Rayleigh modes in surfaces loaded with deposited strips of different materials. General expressions are obtained for the number of modes and cutoff conditions in these structures. As examples of applications, a simple directional coupler and an electrically controlled coupler are proposed.

  9. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn; Huang, Xian-Rong

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.« less

  10. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).

    PubMed

    Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian

    2017-10-11

    Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.

  11. Millimeter waves: acoustic and electromagnetic.

    PubMed

    Ziskin, Marvin C

    2013-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. Copyright © 2012 Wiley Periodicals, Inc.

  12. Quantitative Acoustic Model for Adhesion Evaluation of Pmma/silicon Film Structures

    NASA Astrophysics Data System (ADS)

    Ju, H. S.; Tittmann, B. R.

    2010-02-01

    A Poly-methyl-methacrylate (PMMA) film on a silicon substrate is a main structure for photolithography in semiconductor manufacturing processes. This paper presents a potential of scanning acoustic microscopy (SAM) for nondestructive evaluation of the PMMA/Si film structure, whose adhesion failure is commonly encountered during the fabrication and post-fabrication processes. A physical model employing a partial discontinuity in displacement is developed for rigorously quantitative evaluation of the interfacial weakness. The model is implanted to the matrix method for the surface acoustic wave (SAW) propagation in anisotropic media. Our results show that variations in the SAW velocity and reflectance are predicted to show their sensitivity to the adhesion condition. Experimental results by the v(z) technique and SAW velocity reconstruction verify the prediction.

  13. Investigation of shock-acoustic-wave interaction in transonic flow

    NASA Astrophysics Data System (ADS)

    Feldhusen-Hoffmann, Antje; Statnikov, Vladimir; Klaas, Michael; Schröder, Wolfgang

    2018-01-01

    The buffet flow field around supercritical airfoils is dominated by self-sustained shock wave oscillations on the suction side of the wing. Theories assume that this unsteadiness is driven by an acoustic feedback loop of disturbances in the flow field downstream of the shock wave whose upstream propagating part is generated by acoustic waves. Therefore, in this study, first variations in the sound pressure level of the airfoil's trailing-edge noise during a buffet cycle, which force the shock wave to move upstream and downstream, are detected, and then, the sensitivity of the shock wave oscillation during buffet to external acoustic forcing is analyzed. Time-resolved standard and tomographic particle-image velocimetry (PIV) measurements are applied to investigate the transonic buffet flow field over a supercritical DRA 2303 airfoil. The freestream Mach number is M_{∞} = 0.73, the angle of attack is α = {3.5}°, and the chord-based Reynolds number is Re_c = 1.9× 10^6. The perturbed Lamb vector field, which describes the major acoustic source term of trailing-edge noise, is determined from the tomographic PIV data. Subsequently, the buffet flow field is disturbed by an artificially generated acoustic field, the acoustic intensity of which is comparable to the Lamb vector that is determined from the PIV data. The results confirm the hypothesis that buffet is driven by an acoustic feedback loop and show the shock wave oscillation to directly respond to external acoustic forcing. That is, the amplitude modulation frequency of the artificial acoustic perturbation determines the shock oscillation.

  14. Frequency response improvement of a two-port surface acoustic wave device based on epitaxial AlN thin film

    NASA Astrophysics Data System (ADS)

    Gao, Junning; Hao, Zhibiao; Luo, Yi; Li, Guoqiang

    2018-01-01

    This paper presents an exploration on improving the frequency response of the symmetrical two-port AlN surface acoustic wave (SAW) device, using epitaxial AlN thin film on (0001) sapphire as the piezoelectric substrate. The devices were fabricated by lift-off processes with Ti/Al composite electrodes as interleaved digital transducers (IDT). The impact of DL and the number of the IDT finger pairs on the frequency response was carefully investigated. The overall properties of the device are found to be greatly improved with DL elongation, indicated by the reduced pass band ripple and increased stop band rejection ratio. The rejection increases by 8.3 dB when DL elongates from 15.5λ to 55.5λ and 4.4 dB further accompanying another 50λ elongation. This is because larger DL repels the stray acoustic energy out of the propagation path and provides a cleaner traveling channel for functional SAW, and at the same time restrains electromagnetic feedthrough. It is also found that proper addition of the IDT finger pairs is beneficial for the device response, indicated by the ripple reduction and the insertion loss drop.

  15. Acoustic waves in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison

    2013-09-01

    Seminal papers by Brutsaert (1964) and Brutsaert and Luthin (1964) provided the first rigorous theoretical framework for examining the poroelastic behavior of unsaturated soils, including an important application linking acoustic wave propagation to soil hydraulic properties. Theoretical developments during the 50 years that followed have led Lo et al., (2005) to a comprehensive model of these phenomena, but the relationship of its elasticity parameters to standard poroelasticity parameters measured in hydrogeology has not been established. In the present study, we develop this relationship for three key parameters, the Gassman modulus, Skempton coefficient, and Biot-Willis coefficient by generalizing them to an unsaturated porous medium. We demonstrate the remarkable result that well-known and widely applied relationships among these parameters for a porous medium saturated by a single fluid are also valid under very general conditions for unsaturated soils. We show further that measurement of the Biot-Willis coefficient along with three of the six elasticity coefficients in the model of Lo et al. (2005) is sufficient to characterize poroelastic behavior. The elasticity coefficients in the model of Lo et al. (2005) are sensitive to the dependence of capillary pressure on water saturation and its viscous-drag coefficients are functions of relative permeability, implying that hysteresis in the water retention curve and hydraulic conductivity function should affect acoustic wave behavior in unsaturated soils. To quantify these as-yet unknown effects, we performed numerical simulations for Dune sand at two representative wave excitation frequencies. Our results show that the acoustic wave investigated by Brutsaert and Luthin (1964) propagates at essentially the same speed during imbibition and drainage, but is attenuated more during drainage than imbibition. Overall, effects on acoustic wave behavior caused by hysteresis become more significant as the excitation

  16. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    PubMed Central

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  17. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    PubMed

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  18. Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment

    NASA Astrophysics Data System (ADS)

    Luo, Jing

    Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.

  19. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  20. Scattering Of Nonplanar Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Gillman, Judith M.; Farassat, F.; Myers, M. K.

    1995-01-01

    Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.

  1. Marble Ageing Characterization by Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Boudani, Mohamed El; Wilkie-Chancellier, Nicolas; Martinez, Loïc; Hébert, Ronan; Rolland, Olivier; Forst, Sébastien; Vergès-Belmin, Véronique; Serfaty, Stéphane

    In cultural heritage, statue marble characterization by acoustic waves is a well-known non-destructive method. Such investigations through the statues by time of flight method (TOF) point out sound speeds decrease with ageing. However for outdoor stored statues as the ones in the gardens of Chateau de Versailles, ageing affects mainly the surface of the Carrara marble. The present paper proposes an experimental study of the marble acoustic properties variations during accelerated laboratory ageing. The surface degradation of the marble is reproduced in laboratory for 29 mm thick marble samples by using heating/cooling thermal cycles on one face of a marble plate. Acoustic waves are generated by 1 MHz central frequency contact transducers excited by a voltage pulse placed on both sides of the plate. During the ageing and by using ad hoc transducers, the marble samples are characterized in transmission, along their volume by shear, compressional TOF measurements and along their surface by Rayleigh waves measurements. For Rayleigh waves, both TOF by transducers and laser vibrometry methods are used to detect the Rayleigh wave. The transmission measurements point out a deep decrease of the waves speeds in conjunction with a dramatic decrease of the maximum frequency transmitted. The marble acts as a low pass filter whose characteristic frequency cut decreases with ageing. This pattern occurs also for the Rayleigh wave surface measurements. The speed change in conjunction with the bandwidth translation is shown to be correlated to the material de-structuration during ageing. With a similar behavior but reversed in time, the same king of phenomena have been observed trough sol-gel materials during their structuration from liquid to solid state (Martinez, L. et all (2004). "Chirp-Z analysis for sol-gel transition monitoring". Ultrasonics, 42(1), 507-510.). A model is proposed to interpret the acoustical measurements

  2. Design and Fabrication of Ta filled microcavites in the delay paths of SAW devices for improved power transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Mandek; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.

    2015-03-01

    The authors report the design and fabrication of a surface acoustic wave (SAW) device with improved power transfer due to modification of its delay path. Typically, SAW delay-line devices suffer from relatively high insertion loss (IL) (similar to 10-30 dB). Our approach is to incorporate an array of microcavities, having square cross-sectional area (lambda/2 x lambda/2) and filled with tantalum, within the delay path to maximize acoustic confinement to the surface and reduce IL. To determine the effectiveness of the cavities without expending too many resources and to explain trends found in actual devices, a finite element model of amore » SAW device with tantalum filled cavities having various depths was utilized. For each depth simulated, IL was decreased compared to a standard SAW device. Microcavities 2.5 mu m deep filled with tantalum showed the best performance (Delta IL = 17.93 dB). To validate simulated results, the authors fabricated a SAW device on ST 90 degrees-X quartz with microcavities etched into its delay path using deep reactive ion etching and filled with tantalum. Measurement of fabricated devices showed inclusion of tantalum filled microcavities increased power transfer compared to a device without cavities. (C) 2015 American Vacuum Society.« less

  3. Development of a Hydrogen Gas Sensor Using a Double Saw Resonator System at Room Temperature

    PubMed Central

    Yunusa, Zainab; Hamidon, Mohd Nizar; Ismail, Alyani; Isa, Maryam Mohd; Yaacob, Mohd Hanif; Rahmanian, Saeed; Ibrahim, Siti Azlida; Shabaneh, Arafat A.A

    2015-01-01

    A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%. PMID:25730480

  4. Influence of electrode width of interdigital transducer on third-order nonlinearity of surface acoustic wave devices on 42°YX-LiTaO3 substrate

    NASA Astrophysics Data System (ADS)

    Nakagawa, Ryo; Hashimoto, Ken-ya

    2018-07-01

    In this paper, we discuss the influence of the electrode width of an interdigital transducer on the third-order nonlinearity of surface acoustic wave (SAW) devices. First, an estimation technique of third-order nonlinear signals based on the linear finite element method is proposed, and the variation of nonlinear signal level with electrode width is estimated. Then, several one-port SAW resonators with different electrode widths are fabricated, and measured nonlinear signal levels are compared with simulation. As predicted by the numerical simulation, nonlinear signal levels became large with electrode width. However, harmonics takes a minimum at a certain electrode width. This tendency disagrees with the simulation. The variation of nonlinear coefficients is evaluated by numerical fitting for the measured data using the nonlinear signal simulator proposed by the authors. As the result, it is concluded that the generation mechanism is not limited to the acoustic strain in electrodes.

  5. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...

    2015-07-30

    Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscalemore » convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.« less

  6. Laser Generated Leaky Acoustic Waves for Needle Visualization.

    PubMed

    Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi

    2018-04-01

    Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.

  7. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    NASA Astrophysics Data System (ADS)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  8. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  9. Improving the properties of zinc oxide thin-film surface acoustic wave device on glass substrate by introducing double alumina layers

    NASA Astrophysics Data System (ADS)

    Shih, Wen-Ching; Huang, Yi-Fan; Wu, Mu-Shiang

    2017-10-01

    ZnO films with c-axis (0002) orientation have been successfully grown by RF magnetron sputtering on Al2O3/glass substrates. The alumina films were firstly deposited on glass substrates, and then secondly deposited on interdigital transducer/ZnO film/alumina film/glass substrates by electron beam evaporation. The crystalline structure and surface roughness of the films were investigated by X-ray diffraction and atomic force microscopy, respectively. The phase velocity and coupling coefficient of the surface acoustic wave (SAW) device were both increased when we deposited the double alumina layers. On the other hand, the temperature coefficient of frequency becomes better if we increase the thickness of the lower alumina film. The experimental result is beneficial for improving the performance of the ZnO thin-film SAW devices on inexpensive glass substrates.

  10. Theoretical studies on a TeO2/ZnO/diamond-layered structure for zero TCD SAW devices

    NASA Astrophysics Data System (ADS)

    Dewan, Namrata; Sreenivas, K.; Gupta, Vinay

    2008-08-01

    High-frequency surface acoustic wave (SAW) devices based on diamond substrate are useful because of their very high SAW velocity. In the present work, SAW propagation characteristics, such as phase velocity, coupling coefficient and temperature coefficient of delay (TCD) of a TeO2/ZnO/diamond-layered structure, are examined using theoretical calculations. The ZnO/diamond bi-layer structure is found to exhibit a high positive TCD value. A zero TCD device structure is obtained after integration with a TeO2 over layer having a negative TCD value. Introduction of a non-piezoelectric TeO2 over layer on the bi-layer structure (ZnO/diamond) increases the coupling coefficient. A relatively low thickness of TeO2 thin film (~(1.6-3.1) × 10-3λ) is required to achieve temperature-stable SAW devices based on diamond.

  11. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Treesearch

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  12. Development of chipless, wireless current sensor system based on giant magnetoimpedance magnetic sensor and surface acoustic wave transponder.

    PubMed

    Kondalkar, Vijay V; Li, Xiang; Park, Ikmo; Yang, Sang Sik; Lee, Keekeun

    2018-02-05

    A chipless, wireless current sensor system was developed using a giant magnetoimpedance (GMI) magnetic sensor and one-port surface acoustic wave (SAW) reflective delay line for real-time power monitoring in a current-carrying conductor. The GMI sensor has a high-quality crystalline structure in each layer, which contributes to a high sensitivity and good linearity in a magnetic field of 3-16 Oe. A 400 MHz RF energy generated from the interdigital transducer (IDT)-type reflector on the one-port SAW delay line was used as an activation source for the GMI magnetic sensor. The one-port SAW delay line replaces the presently existing transceiver system, which is composed of thousands of transistors, thus enabling chipless and wireless operation. We confirmed a large variation in the amplitude of the SAW reflection peak with a change in the impedance of the GMI sensor caused by the current flow through the conductor. Good linearity and sensitivity of ~0.691 dB/A were observed for currents in the range 1-12 A. Coupling of Mode (COM) modeling and impedance matching analysis were also performed to predict the device performance in advance and these were compared with the experimental results.

  13. Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness

    NASA Astrophysics Data System (ADS)

    Tumac, Deniz

    2014-03-01

    Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.

  14. Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael

    2005-03-21

    Based on an acoustic assumption (shear wave velocity is zero) and a dispersion relation, we derive an acoustic wave equation for P-waves in tilted transversely isotropic (TTI) media (transversely isotropic media with a tilted symmetry axis). This equation has fewer parameters than an elastic wave equation in TTI media and yields an accurate description of P-wave traveltimes and spreading-related attenuation. Our TTI acoustic wave equation is a fourth-order equation in time and space. We demonstrate that the acoustic approximation allows the presence of shear waves in the solution. The substantial differences in traveltime and amplitude between data created using VTImore » and TTI assumptions is illustrated in examples.« less

  15. Acoustic-gravity waves, theory and application

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  16. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Numerical emulation of Thru-Reflection-Line calibration for the de-embedding of Surface Acoustic Wave devices.

    PubMed

    Mencarelli, D; Djafari-Rouhani, B; Pennec, Y; Pitanti, A; Zanotto, S; Stocchi, M; Pierantoni, L

    2018-06-18

    In this contribution, a rigorous numerical calibration is proposed to characterize the excitation of propagating mechanical waves by interdigitated transducers (IDTs). The transition from IDT terminals to phonon waveguides is modeled by means of a general circuit representation that makes use of Scattering Matrix (SM) formalism. In particular, the three-step calibration approach called the Thru-Reflection-Line (TRL), that is a well-established technique in microwave engineering, has been successfully applied to emulate typical experimental conditions. The proposed procedure is suitable for the synthesis/optimization of surface-acoustic-wave (SAW) based devices: the TRL calibration allows to extract/de-embed the acoustic component, namely resonator or filter, from the outer IDT structure, regardless of complexity and size of the letter. We report, as a result, the hybrid scattering parameters of the IDT transition to a mechanical waveguide formed by a phononic crystal patterned on a piezoelectric AlN membrane, where the effect of a discontinuity from periodic to uniform mechanical waveguide is also characterized. In addition, to ensure the correctness of our numerical calculations, the proposed method has been validated by independent calculations.

  18. New piezoelectric materials for SAW filters

    NASA Astrophysics Data System (ADS)

    Anghelescu, Adrian; Nedelcu, Monica

    2010-11-01

    Scientific research of surface acoustic wave (SAW) devices had an early start by the end of 1960s and led to the development of high frequency and small size piezo devices. A sustained effort was dedicated for these components to be transformed into many more interesting applications for telecom market. Recently the employment of new piezo materials and crystallographic orientations open new opportunities for SAW filters. New piezoelectric crystals of gallium orthophosphate (GaPO4) provide higher electromechanical coupling than quartz, while maintaining temperature compensated characteristics similar to quartz. Based on this material phase transition of 970°C, development of new piezo devices to operate at higher temperatures up to 800°C can be done. SAW velocities about 30% lower than ST-X quartz, favors smaller and more compact devices. Other advantages of GaPO4 are: stability with high resistance to stress induced twinning, 3~4 times higher electromechanical coupling than quartz and existence of SAW temperature compensated orientations. Another family of new materials of the trigonal 32 class has received much attention recently because of their temperature behavior similar to quartz and the promise of higher electromechanical coupling coefficients. It is the family of langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (La3Ga5.5Nb0.5O14). Langasite crystals, easier to obtain and with the value of electromechanical coupling coefficient intermediate between quartz and lithium tantalate (k2=0.32% for 0°, 140°, 22.5° orientation and k2=0.38% for 0°, 140°, 25° orientation), enable us to design SAW filters with a relative pass band of 0.3% to 0.85%. Other piezoelectric materials are reviewed for comparison.

  19. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.

    PubMed

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-02-27

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  20. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    PubMed Central

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-01-01

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner. PMID:23447010

  1. Acoustic waves in gases with strong pressure gradients

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.

  2. Propagation Characteristics of Surface Acoustic Waves on K3Li2Nb5O15

    NASA Astrophysics Data System (ADS)

    Hasegawa, Koji; Ikeda, Yuki; Okano, Hiroshi

    2005-06-01

    The contour maps of the phase velocity vf, the temperature coefficient of delay (TCD), the electromechanical coupling coefficient K2, and the power flow angle (PFA) of surface acoustic waves (SAWs) on K3Li2Nb5O15 are presented for Euler angles (φ, θ, \\psi) with φ=0, 10°, 20°, 30°, and 40°, and -180° ≤ φ, θ < 180°. These maps computed by Campbell and Jonnes’ method reveal that SAWs on K3Li2Nb5O15 with Euler angles (4°, 49°, 92°), (33°, 76°, 126°), and (30°, 86°, 151°) have vf of 3255 m/s, 3383 m/s, and 3728 m/s, K2 of 0.0115, 0.0147, and 0.0045, the values of first-order TCD of 0.02 ppm/°C, 0.05 ppm/°C, and 0.04 ppm/°C, and PFAs of 0.005°, 4.7°, and 5.1°, respectively.

  3. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor

    PubMed Central

    Cheng, Chi-Yung; Huang, Shih-Shen; Yang, Chia-Min; Tang, Kea-Tiong

    2016-01-01

    Third-hand smoke (THS) is a new cigarette-related issue defined as the residual contamination from cigarette smoke after a cigarette is extinguished. To detect THS on three commonly used clothing fibers—wool, cotton, and polyester, we applied two methods to measure the adsorption of THS: one was the gain of mass with an analytical balance after exposure to cigarette smoke; and the other was to detect the THS chemical compounds such as nicotine and 3-ethenylpyridine with a surface acoustic wave (SAW) sensor composed of coated oxidized hollow mesoporous carbon nanospheres. In the mass measurement, the gain of mass decreased in the order wool, cotton, and polyester; the latter gain was about one tenth that of wool. In the SAW detection, the frequency shift decreased in the same order—wool, cotton, and polyester. The residence period of THS on natural fiber (wool and cotton) is greater than on synthetic polyester fiber. These two tests provide quantitative results of THS on varied clothing fibers, to assess their risk after exposure to cigarette smoke. PMID:26909119

  4. Resonance Frequency Readout Circuit for a 900 MHz SAW Device

    PubMed Central

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-01-01

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm2. In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time. PMID:28914799

  5. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    PubMed

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  6. Nonplanar dust-ion acoustic shock waves with transverse perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue Jukui

    2005-01-01

    The nonlinear dust-ion acoustic shock waves in dusty plasmas with the combined effects of bounded cylindrical/spherical geometry, the transverse perturbation, the dust charge fluctuation, and the nonthermal electrons are studied. Using the perturbation method, a cylindrical/spherical Kadomtsev-Petviashvili Burgers equation that describes the dust-ion acoustic shock waves is deduced. A particular solution of the cylindrical/spherical Kadomtsev-Petviashvili Burgers equation is also obtained. It is shown that the dust-ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be slightly deformed as time goes on.

  7. Chemical-free lysis and fractionation of cells by use of surface acoustic waves for sensitive protein assays.

    PubMed

    Salehi-Reyhani, Ali; Gesellchen, Frank; Mampallil, Dileep; Wilson, Rab; Reboud, Julien; Ces, Oscar; Willison, Keith R; Cooper, Jonathan M; Klug, David R

    2015-02-17

    We exploit the mechanical action of surface acoustic waves (SAW) to differentially lyse human cancer cells in a chemical-free manner. The extent to which cells were disrupted is reported for a range of SAW parameters, and we show that the presence of 10 μm polystyrene beads is required to fully rupture cells and their nuclei. We show that SAW is capable of subcellular fractionation through the chemical-free isolation of nuclei from whole cells. The concentration of protein was assessed in lysates with a sensitive microfluidic antibody capture (MAC) chip. An antibody-based sandwich assay in a microfluidic microarray format was used to detect unlabeled human tumor suppressor protein p53 in crude lysates, without any purification step, with single-molecule resolution. The results are digital, enabling sensitive quantification of proteins with a dynamic range >4 orders of magnitude. For the conditions used, the efficiency of SAW-induced mechanical lysis was determined to be 12.9% ± 0.7% of that for conventional detergent-based lysis in yielding detectable protein. A range of possible loss mechanisms that could lead to the drop in protein yield are discussed. Our results show that the methods described here are amenable to an integrated point-of-care device for the assessment of tumor protein expression in fine needle aspirate biopsies.

  8. Assessment of langatate material constants and temperature coefficients using SAW delay line measurements.

    PubMed

    Sturtevant, Blake T; Pereira da Cunha, Mauricio

    2010-03-01

    This paper reports on the assessment of langatate (LGT) acoustic material constants and temperature coefficients by surface acoustic wave (SAW) delay line measurements up to 130 degrees C. Based upon a full set of material constants recently reported by the authors, 7 orientations in the LGT plane with Euler angles (90 degrees, 23 degrees, Psi) were identified for testing. Each of the 7 selected orientations exhibited calculated coupling coefficients (K(2)) between 0.2% and 0.75% and also showed a large range of predicted temperature coefficient of delay (TCD) values around room temperature. Additionally, methods for estimating the uncertainty in predicted SAW propagation properties were developed and applied to SAW phase velocity and temperature coefficient of delay calculations. Starting from a purchased LGT boule, the SAW wafers used in this work were aligned, cut, ground, and polished at University of Maine facilities, followed by device fabrication and testing. Using repeated measurements of 2 devices on separate wafers for each of the 7 orientations, the room temperature SAW phase velocities were extracted with a precision of 0.1% and found to be in agreement with the predicted values. The normalized frequency change and the temperature coefficient of delay for all 7 orientations agreed with predictions within the uncertainty of the measurement and the predictions over the entire 120 degrees C temperature range measured. Two orientations, with Euler angles (90 degrees, 23 degrees, 123 degrees) and (90 degrees, 23 degrees, 119 degrees), were found to have high predicted coupling for LGT (K(2) > 0.5%) and were shown experimentally to exhibit temperature compensation in the vicinity of room temperature, with turnover temperatures at 50 and 60 degrees C, respectively.

  9. Acoustic wave generation by microwaves and applications to nondestructive evaluation.

    PubMed

    Hosten, Bernard; Bacon, Christophe; Guilliorit, Emmanuel

    2002-05-01

    Although acoustic wave generation by electromagnetic waves has been widely studied in the case of laser-generated ultrasounds, the literature on acoustic wave generation by thermal effects due to electromagnetic microwaves is very sparse. Several mechanisms have been suggested to explain the phenomenon of microwave generation, i.e. radiation pressure, electrostriction or thermal expansion. Now it is known that the main cause is the thermal expansion due to the microwave absorption. This paper will review the recent advances in the theory and experiments that introduce a new way to generate ultrasonic waves without contact for the purpose of nondestructive evaluation and control. The unidirectional theory based on Maxwell's equations, heat equation and thermoviscoelasticity predicts the generation of acoustic waves at interfaces and inside stratified materials. Acoustic waves are generated by a pulsed electromagnetic wave or a burst at a chosen frequency such that materials can be excited with a broad or narrow frequency range. Experiments show the generation of acoustic waves in water, viscoelastic polymers and composite materials shaped as rod and plates. From the computed and measured accelerations at interfaces, the viscoelastic and electromagnetic properties of materials such as polymers and composites can be evaluated (NDE). Preliminary examples of non-destructive testing applications are presented.

  10. Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics

    NASA Astrophysics Data System (ADS)

    Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.

    2018-01-01

    Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p , a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.

  11. Acoustic Wave Guiding by Reconfigurable Tessellated Arrays

    NASA Astrophysics Data System (ADS)

    Zou, Chengzhe; Lynd, Danielle T.; Harne, Ryan L.

    2018-01-01

    The reconfiguration of origami tessellations is a prime vehicle to harness for adapting system properties governed by a structural form. While the knowledge of mechanical property changes associated with origami tessellation folding has been extensively built up, the opportunities to integrate other physics into a framework of tessellated, adaptive structures remain to be fully exploited. Acoustics appears to be a prime domain to marry with origami science. Specifically, deep technical analogies are revealed between wave-guiding properties achieved via digital methods that virtually reposition array elements and the actual repositioning of facets by folding origami-inspired tessellations. Here we capitalize on this analogy to investigate acoustic arrays established upon facet layouts of origami-inspired tessellations. We show that a concept of reconfigurable tessellated arrays may guide waves more effectively than traditional digitally phased arrays using fewer transducer elements. Moreover, we show that the refinement of tessellated arrays trends to the ideal case of classical wave radiators or receivers grounded in principles of geometrical acoustics. By linear wave physics shared among myriad scientific disciplines and across orders of magnitude in length scale, these discoveries may cultivate numerous opportunities for wave-guiding adaptive structures inspired by low-dimensional origami tessellations.

  12. SH3BP1-induced Rac-Wave2 pathway activation regulates cervical cancer cell migration, invasion, and chemoresistance to cisplatin.

    PubMed

    Wang, Jingjing; Feng, Yeqian; Chen, Xishan; Du, Zheng; Jiang, Shaijun; Ma, Shuyun; Zou, Wen

    2018-02-01

    Cervical cancer still remains the fourth most common cancer, affecting women worldwide with large geographic variations in cervical cancer incidence and mortality rates. SH3-domain binding protein-1 (SH3BP1) specifically inactivating Rac1 and its target Wave2 is required for cell motility, thus regarded as an essential regulator of cancer cell metastasis. However, the exact effects and molecular mechanisms of SH3BP1 in cervical cancer progression are still unknown. The present study is aimed to investigate the mechanism of SH3BP1 in regulation of cervical cancer cell metastasis and chemoresistance. In the present study, we demonstrated a high SH3BP1 expression in cervical cancer tissues; a higher SH3BP1 expression is also correlated with a shorter overall survival of patients with cervical cancer. Further, we revealed that SH3BP1 overexpression promoted the invasion, migration, and chemoresistance of cervical cancer cell through increasing Rac1 activity and Wave2 protein level. The promotive effect of SH3BP1 could be partially reversed by a Rac1 inhibitor, NSC 23766. In cisplatin-resistant cervical cancer tissues, SH3BP1, Rac1, and Wave2 mRNA expression was significantly up-regulated compared to that of the cisplatin-sensitive cervical cancer tissues. Taken together, SH3BP1/Rac1/Wave2 pathway may potentially act as an effective therapeutic target combined with traditional cisplatin-based chemotherapy for cervical cancer. © 2017 Wiley Periodicals, Inc.

  13. A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure.

    PubMed

    Luo, Jingting; Luo, Pingxiang; Xie, Min; Du, Ke; Zhao, Bixia; Pan, Feng; Fan, Ping; Zeng, Fei; Zhang, Dongping; Zheng, Zhuanghao; Liang, Guangxing

    2013-11-15

    This work reports a high-performance Mn-doped ZnO multilayer structure Love mode surface acoustic wave (SAW) biosensor for the detection of blood sugar. The biosensor was functionalized via immobilizing glucose oxidase onto a pH-sensitive polymer which was attached on Mn-doped ZnO biosensor. The fabricated SAW glucose biosensor is highly sensitive, accurate and fast with good anti-interference. The sensitivity of the SAW glucose biosensor is 7.184 MHz/mM and the accuracy is 6.96 × 10(-3)mM, which is sensitive and accurate enough for glucose monitoring. A good degree of reversibility and stability of the glucose sensor is also demonstrated, which keeps a constant differential frequency shift up to 32 days. Concerning the time response to human serum, the glucose sensor shows a value of 4.6 ± 0.4 min when increasing glucose concentrations and 7.1 ± 0.6 min when decreasing, which is less than 10 min and reach the fast response requirement for medical applications. The Mn-doped ZnO Love mode SAW biosensor can be fully integrated with CMOS Si chips and developed as a portable, passive and wireless real time detection system for blood sugar monitoring in human serum. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determinedmore » by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.« less

  15. Numerical simulation of single bubble dynamics under acoustic travelling waves.

    PubMed

    Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu

    2018-04-01

    The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A comparison of solar wind and ionospheric ion acoustic waves

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Kelley, M. C.

    1980-01-01

    Ion acoustic waves produced during the Trigger experiment are compared to ion acoustic waves observed in the solar wind. After normalizing to the Debye length the spectra are nearly identical, although the ionospheric wave relative energy density is 100 times larger than the solar wind case.

  17. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite

    NASA Astrophysics Data System (ADS)

    Chou, Min-Yang; Shen, Ming-Hsueh; Lin, Charles C. H.; Yue, Jia; Chen, Chia-Hung; Liu, Jann-Yenq; Lin, Jia-Ting

    2018-02-01

    The launch of SpaceX Falcon 9 rocket delivered Taiwan's FORMOSAT-5 satellite to orbit from Vandenberg Air Force Base in California at 18:51:00 UT on 24 August 2017. To facilitate the delivery of FORMOSAT-5 to its mission orbit altitude of 720 km, the Falcon 9 made a steep initial ascent. During the launch, the supersonic rocket induced gigantic circular shock acoustic waves (SAWs) in total electron content (TEC) over the western United States beginning approximately 5 min after the liftoff. The circular SAWs emanated outward with 20 min duration, horizontal phase velocities of 629-726 m/s, horizontal wavelengths of 390-450 km, and period of 10.28 ± 1 min. This is the largest rocket-induced circular SAWs on record, extending approximately 114-128°W in longitude and 26-39°N in latitude ( 1,500 km in diameter), and was due to the unique, nearly vertical attitude of the rocket during orbit insertion. The rocket-exhaust plume subsequently created a large-scale ionospheric plasma hole ( 900 km in diameter) with 10-70% TEC depletions in comparison with the reference days. While the circular SAWs, with a relatively small amplitude of TEC fluctuations, likely did not introduce range errors into the Global Navigation Satellite Systems navigation and positioning system, the subsequent ionospheric plasma hole, on the other hand, could have caused spatial gradients in the ionospheric plasma potentially leading to a range error of 1 m.

  18. Particle separation by phase modulated surface acoustic waves.

    PubMed

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  19. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  20. SAW parameters on Y-cut langasite structured materials.

    PubMed

    Puccio, Derek; Malocha, Donald C; Saldanha, Nancy; da Cunha, Mauricio Pereira

    2007-09-01

    This paper presents results and investigations of several new, man-made piezoelectric single crystal, Czochralski-grown substrate materials for surface acoustic waves (SAW) applications. These materials, langanite (LGN), langatate (LGT), Sr3TaGa3Si2O14 (STGS), Sr3NbGa3Si2O14 (SNGS), Ca3TaGa3Si2O14 (CTGS), and Ca3NbGa3Si2O14 (CNGS), have the same structure as langasite (LGS) and are of the same crystal class as quartz. These compounds are denser than quartz, resulting in lower phase velocities. They also have higher coupling. Unlike quartz and lithium niobate, there is no degradation of material properties below the material melting points resulting in the possibility of extreme high-temperature operation (> 1000 degrees C). This paper gives a summary of extracted SAW material parameters for various propagation angles on Y-cut substrates of the six materials. Parameters included are electromechanical coupling, phase velocity, transducer capacitance, metal strip reflectivity, and temperature coefficient of frequency. Using previously published fundamental material constants, extracted parameters are compared with predictions for LGT and LGN. In addition, power flow angle and fractional frequency curvature data are reported for propagation angles on CTGS and CNGS Y-cut substrates that exhibit temperature compensation near room temperature. Detailed descriptions of the SAW parameter extraction techniques are given. A discussion of the results is provided, including a comparison of extracted parameters and an overview of possible SAW applications.

  1. TECHNICAL NOTE: Direct finite-element analysis of the frequency response of a Y-Z lithium niobate SAW filter

    NASA Astrophysics Data System (ADS)

    Xu, Guanshui

    2000-12-01

    A direct finite-element model is developed for the full-scale analysis of the electromechanical phenomena involved in surface acoustic wave (SAW) devices. The equations of wave propagation in piezoelectric materials are discretized using the Galerkin method, in which an implicit algorithm of the Newmark family with unconditional stability is implemented. The Rayleigh damping coefficients are included in the elements near the boundary to reduce the influence of the reflection of waves. The performance of the model is demonstrated by the analysis of the frequency response of a Y-Z lithium niobate filter with two uniform ports, with emphasis on the influence of the number of electrodes. The frequency response of the filter is obtained through the Fourier transform of the impulse response, which is solved directly from the finite-element simulation. It shows that the finite-element results are in good agreement with the characteristic frequency response of the filter predicted by the simple phase-matching argument. The ability of the method to evaluate the influence of the bulk waves at the high-frequency end of the filter passband and the influence of the number of electrodes on insertion loss is noteworthy. We conclude that the direct finite-element analysis of SAW devices can be used as an effective tool for the design of high-performance SAW devices. Some practical computational challenges of finite-element modeling of SAW devices are discussed.

  2. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong

    2015-07-01

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies.« less

  3. Driving morphological changes in magnetic nanoparticle structures through the application of acoustic waves and magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Ann; Miansari, Morteza; Friend, James

    The growing interest in acoustic manipulation of particles in micro to nanofluidics using surface acoustic waves (SAW), together with the many applications of magnetic nanoparticles-whether individual or in arrays-underpins our discovery of how these forces can be used to rapidly, easily, and irreversibly form 1D chains and 2D films. These films and chains are currently difficult to produce yet offer many advantages over individual nanoparticles in suspension. Making use of the scale of the structures formed, 10-9 to 10-5 m, and by taking a balance of the relevant external and interparticle forces, the underlying mechanisms responsible for the phenomena become apparent. For 1D chains, the magnetic field alone is sufficient, though applying an acoustic field drives a topology change from loosely connected chains to loops of 10 -100 particles. Adding the acoustic field drives a transition from these looped structures to dense 2D arrays via interparticle Bjerknes forces. Inter-particle drainage of the surrounding fluid leaves these structures intact after removal of the externally applied forces. Clear morphology transitions are present and depend on the relative amplitude of the incident Brownian, Bjerknes, and magnetic forces. UCSD: Frontiers of Innovation Scholars Program (U-1024).

  4. Nonplanar ion acoustic waves with kappa-distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Biswajit

    2011-06-15

    Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with kappa distributed electrons and warm ions. The influence of kappa-distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that increase in the kappa distributed electrons (i.e., decreasing {kappa}) decreases the amplitude of the solitary electrostatic potential structures. The numerical results are presented to understand the formation of ion acoustic solitary waves with kappa-distributed electrons in nonplanar geometry. Themore » present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.« less

  5. Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Erin Hoffmann

    In this report, we study the correlation between thunderstorm activity and ionospheric gravity and acoustic waves in the low-latitude ionosphere. We use ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World- Wide Lightning Location Network (WWLLN). We find that ionospheric acoustic waves show a strong diurnal pattern in summer, peaking in the pre-midnight time period. However, the peak magnitude does not correspond to thunderstorm area, and the peak time is significantly after the peak in thunderstorm activity. Wintertime acoustic wave activity has no discernable pattern in these data. Themore » coverage area of ionospheric gravity waves in the summer was found to increase with increasing thunderstorm activity. Wintertime gravity wave activity has an observable diurnal pattern unrelated to thunderstorm activity. These findings show that while thunderstorms are not the only, or dominant source of ionospheric perturbations at low-latitudes, they do have an observable effect on gravity wave activity and could be influential in acoustic wave activity.« less

  6. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.

    PubMed

    El-Shamy, E F

    2015-03-01

    The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.

  7. SH-wave reflection seismic and VSP as tools for the investigation of sinkhole areas in Germany

    NASA Astrophysics Data System (ADS)

    Wadas, Sonja; Tschache, Saskia; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes can lead to damage of buildings and infrastructure and they can cause life-threatening situations, if they occur in urban areas. The process behind this phenomenon is called subrosion. Subrosion is the underground leaching of soluble rocks, e.g. anhydrite and gypsum, due to the contact with ground- and meteoric water. Depending on the leached material, and especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. For a better understanding of the subrosion processes a detailed characterization of the resulting structures is necessary. In Germany sinkholes are a problem in many areas. In northern Germany salt and in central and southern Germany sulfate and carbonate deposits are affected by subrosion. The study areas described here are located in Thuringia in central Germany and the underground is characterized by soluble Permian deposits. The occurrence of 20 to 50 sinkholes is reported per year. Two regions, Bad Frankenhausen and Schmalkalden, are investigated, showing a leaning church tower and a sinkhole of 30 m diameter and 20 m depth, respectively. In Bad Frankenhausen four P-wave and 16 SH-wave reflection seismic profiles were carried out, supplemented by three zero-offset VSPs. In Schmalkalden five SH-wave reflection seismic profiles and one zero-offset VSP were acquired. The 2-D seismic sections, in particular the SH-wave profiles, showed known and unknown near-surface faults in the vicinity of sinkholes and depressions. For imaging the near-surface (< 100 m depth) high-resolution SH-waves are advantageous in order to detect subrosion structures at different stages. The reflection patterns of the 2-D seismic sections indicate a heterogeneous underground with lateral and vertical variations in forms of discontinuous reflectors, depressions, small-scale fractures and near-surface faults. Probably the faults and fractures serve as pathways for

  8. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE PAGES

    Bowman, D. C.; Lees, J. M.

    2018-04-27

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  9. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, D. C.; Lees, J. M.

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  10. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2013-09-30

    of predictive models that can account for the all of the physical processes and variability of acoustic propagation and scattering in ocean...collaboration with Dr. Nicholas Chotiros, particularly for theoretical development of bulk acoustic /sediment modeling and laser roughness measurements...G. Potty and J. Miller. Measurement and modeling of Scholte wave dispersion in coastal waters. In Proc. of Third Int. Conf. on Ocean Acoustics

  11. Nano-optomechanical system based on microwave frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tadesse, Semere Ayalew

    Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic

  12. Acoustic and elastic waves in metamaterials for underwater applications

    NASA Astrophysics Data System (ADS)

    Titovich, Alexey S.

    Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson

  13. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  14. Acoustic Waves in a Three-Dimensional Stratified Atmosphere

    NASA Astrophysics Data System (ADS)

    Kalkofen, W.; Massaglia, S.; Bodo, G.; Rossi, P.

    2000-05-01

    We investigate the propagation of acoustic waves in a three-dimensional, nonmagnetic, isothermal atmosphere stratified in plane-parallel layers in a study of oscillations in chromospheric calcium bright points. We present analytic results for the linear and numerical results for the nonlinear evolution of a disturbance. An impulsively excited acoustic disturbance emanates from a point source and propagates outward as a spherical acoustic wave, amplifying exponentially in the upward direction. A significant wave amplitude is found only in a relatively narrow cone about the vertical. The amplitude of the wave and the opening angle of the cone decrease with time. Because of the lateral spread of the upward-propagating energy, the decay is faster in 2D and 3D simulations than in 1D. We discuss observational consequences of this scenario, some of which are not anticipated from 1D calculations. We acknowledge support from NASA, NSF and the Ministero per l'Università e la Ricerca Scientifica e Tecnologica.

  15. Strong wave/mean-flow coupling in baroclinic acoustic streaming

    NASA Astrophysics Data System (ADS)

    Chini, Greg; Michel, Guillaume

    2017-11-01

    Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.

  16. Quantitative evaluation of thickness reduction in corroded steel plates using surface SH waves

    NASA Astrophysics Data System (ADS)

    Suzuki, Keigo; Ha, Nguyen Phuong; Otobe, Yuichi; Tamura, Hiroshi; Sasaki, Eiichi

    2018-04-01

    This study evaluates the effect of reduction in plate thickness for a steel plate existing in concrete on guided ultrasonic SH (g-SH) waves. It has been found that the time of flight (TOF) increases if the plate thickness is reduced. The parameter investigated in this study is a delay time obtained from a TOF comparison between a healthy and a damaged plate. The wave propagation is simulated by dynamic Finite Element Analysis (FEA). The resulting data are then used to propose a theoretical equation for predicting TOF. The prediction of delay time obtained from the proposed equation is found to be in general agreement, with an error of 10% (or less), when compared with the experiment results, if the thickness reduction is over 3.65mm.

  17. Three-dimensional manipulation of single cells using surface acoustic waves

    PubMed Central

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-01-01

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444

  18. Three-dimensional manipulation of single cells using surface acoustic waves.

    PubMed

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-02-09

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

  19. Surface acoustic wave devices as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Rétornaz, T.; Alzuaga, S.; Baron, T.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2011-02-01

    Surface acoustic wave (SAW) devices are currently used as passive remote-controlled sensors for measuring various physical quantities through a wireless link. Among the two main classes of designs—resonator and delay line—the former has the advantage of providing narrow-band spectrum informations and hence appears compatible with an interrogation strategy complying with Industry-Scientific-Medical regulations in radio-frequency (rf) bands centered around 434, 866, or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a few interdigitated electrodes excited by short rf pulses with large instantaneous energy and short response delays but is compatible with existing equipment such as ground penetrating radar (GPR). We here demonstrate the measurement of temperature using the two configurations, particularly for long term monitoring using sensors buried in soil. Although we have demonstrated long term stability and robustness of packaged resonators and signal to noise ratio compatible with the expected application, the interrogation range (maximum 80 cm) is insufficient for most geology or geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation method is similar to the one used by GPR which allows for rf penetration distances ranging from a few meters to tens of meters and which operates in the lower rf range, depending on soil water content, permittivity, and conductivity. Assuming propagation losses in a pure dielectric medium with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted, which overcomes the observed limits met when using interrogation methods specifically developed for wireless SAW sensors, and could partly comply with the above-mentioned applications. Although quite optimistic, this estimate is consistent with the signal to noise ratio observed during an experimental demonstration of the interrogation of a delay line buried at a depth of 5

  20. Interference Fringes of Solar Acoustic Waves around Sunspots

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Zhao, Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-01

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  1. Spherical ion acoustic waves in pair ion plasmas with nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-04-01

    Propagation of nonplanar ion acoustic waves in a plasma composed of negative and positive ions and nonthermally distributed electrons is investigated using reductive perturbation theory. The spherical Kadomtsev-Petviashvili (SKP) equation which describes the dynamics of the nonlinear spherical ion acoustic waves is derived. It is found that compressive and rarefactive ion-acoustic solitary wave characteristics significantly depend on the density and mass ratios of the positive to negative ions, the nonthermal electron parameter, and the geometry factor. The possible regions for the existence of spherical ion acoustic waves are defined precisely for typical parameters of (H+, O2 -) and (H+, H-) plasmas in the D and F-regions of the Earth's ionosphere, as well as for laboratory plasma (Ar+, F-).

  2. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.

    PubMed

    Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa

    2013-10-15

    The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.

  3. Separation of acoustic waves in isentropic flow perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henke, Christian, E-mail: christian.henke@atlas-elektronik.com

    2015-04-15

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfilsmore » Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given.« less

  4. Surface spin-electron acoustic waves in magnetically ordered metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz'menkov, L. S., E-mail: lsk@phys.msu.ru

    2016-05-09

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuirmore » waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.« less

  5. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    PubMed

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  6. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.

    2015-09-01

    Recent measurements of GPS-derived total electron content (TEC) reveal acoustic wave periods of ˜1-4 min in the F region ionosphere following natural hazard events, such as earthquakes, severe weather, and volcanoes. Here we simulate the ionospheric responses to infrasonic-acoustic waves, generated by vertical accelerations at the Earth's surface or within the lower atmosphere, using a compressible atmospheric dynamics model to perturb a multifluid ionospheric model. Response dependencies on wave source geometry and spectrum are investigated at middle, low, and equatorial latitudes. Results suggest constraints on wave amplitudes that are consistent with observations and that provide insight on the geographical variability of TEC signatures and their dependence on the geometry of wave velocity field perturbations relative to the ambient geomagnetic field. Asymmetries of responses poleward and equatorward from the wave sources indicate that electron perturbations are enhanced on the equatorward side while field aligned currents are driven principally on the poleward side, due to alignments of acoustic wave velocities parallel and perpendicular to field lines, respectively. Acoustic-wave-driven TEC perturbations are shown to have periods of ˜3-4 min, which are consistent with the fraction of the spectrum that remains following strong dissipation throughout the thermosphere. Furthermore, thermospheric acoustic waves couple with ion sound waves throughout the F region and topside ionosphere, driving plasma disturbances with similar periods and faster phase speeds. The associated magnetic perturbations of the simulated waves are calculated to be observable and may provide new observational insight in addition to that provided by GPS TEC measurements.

  7. Broadband metamaterial for nonresonant matching of acoustic waves

    PubMed Central

    D’Aguanno, G.; Le, K. Q.; Trimm, R.; Alù, A.; Mattiucci, N.; Mathias, A. D.; Aközbek, N.; Bloemer, M. J.

    2012-01-01

    Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle, but it is rarely observed for sound waves at any angle of incidence. In the following, we theoretically and experimentally demonstrate an acoustic metamaterial possessing a Brewster-like angle that is completely transparent to sound waves over an ultra-broadband frequency range with >100% bandwidth. The metamaterial, consisting of a hard metal with subwavelength apertures, provides a surface impedance matching mechanism that can be arbitrarily tailored to specific media. The nonresonant nature of the impedance matching effectively decouples the front and back surfaces of the metamaterial allowing one to independently tailor the acoustic impedance at each interface. On the contrary, traditional methods for acoustic impedance matching, for example in medical imaging, rely on resonant tunneling through a thin antireflection layer, which is inherently narrowband and angle specific. PMID:22468227

  8. Surface acoustic wave devices for harsh environment wireless sensing

    DOE PAGES

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; ...

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  9. Development of ball surface acoustic wave trace moisture analyzer using burst waveform undersampling circuit

    NASA Astrophysics Data System (ADS)

    Tsuji, Toshihiro; Oizumi, Toru; Fukushi, Hideyuki; Takeda, Nobuo; Akao, Shingo; Tsukahara, Yusuke; Yamanaka, Kazushi

    2018-05-01

    The measurement and control of trace moisture, where the water concentration is lower than 1 ppmv [-76.2 °C for the frost point (°CFP)], are essential for improving the yield rate of semiconductor devices and for ensuring their reliability. A ball surface acoustic wave (SAW) sensor with a sol-gel silica coating exhibited useful characteristics for a trace moisture analyzer (TMA) when the temperature drift of the delay time output was precisely compensated using two-frequency measurement (TFM), where the temperature-compensated relative delay time change (RDTC) was obtained by subtracting the RDTC at the fundamental frequency from that at the third harmonic frequency on an identical propagation path. However, the cost of the measurement circuit was a problem. In this study, a burst waveform undersampling (BUS) circuit based on the theory of undersampling measurement was developed as a practical means. The BUS circuit was useful for precise temperature compensation of the RDTC, and the ball SAW TMA was prototyped by calibrating the RDTC using a TMA based on cavity ring-down spectroscopy (CRDS), which is the most reliable method for trace moisture measurement. The ball SAW TMA outputted a similar concentration to that obtained by the CRDS TMA, and its response time at a set concentration in N2 with a flow rate of 1 l/min was about half that of the CRDS TMA, suggesting that moisture of -80 °CFP was measured within only 1 min. The detection limit at a signal-to-noise ratio of 3 was estimated to be 0.05 ppbv, comparable with that of the CRDS TMA. From these results, it was demonstrated that a practical ball SAW TMA can be realized using the developed BUS circuit.

  10. Kinetic assay of antitrypsin in human serum by a surface acoustic wave(SAW)-impedance sensor.

    PubMed

    Cai, Q; Wei, W; Wang, R; Nie, L; Yao, S

    1996-08-01

    Antitrypsin in human serum was determined by using both the SAW-impedance sensor system and spectrophotometry, indicating that the mean value for women was significantly higher than the mean value for men; the value for acute pancreasis patients is about 2-folds of the normal values, and there is no significant difference between the acute pancreasis patients and the pancreatic cancer patients.

  11. Flow profiling of a surface-acoustic-wave nanopump.

    PubMed

    Guttenberg, Z; Rathgeber, A; Keller, S; Rädler, J O; Wixforth, A; Kostur, M; Schindler, M; Talkner, P

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  12. Flow profiling of a surface-acoustic-wave nanopump

    NASA Astrophysics Data System (ADS)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  13. Atomization off thin water films generated by high-frequency substrate wave vibrations.

    PubMed

    Collins, David J; Manor, Ofer; Winkler, Andreas; Schmidt, Hagen; Friend, James R; Yeo, Leslie Y

    2012-11-01

    Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-μm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).

  14. Frequency hopping due to acousto-electric interaction in ZnO based surface acoustic wave oscillator

    NASA Astrophysics Data System (ADS)

    Dasgupta, Daipayan; Sreenivas, K.

    2011-08-01

    A 36 MHz surface acoustic wave delay line based oscillator has been used to study the effect of acousto-electric interaction due to photo generated charge carriers in rf sputtered ZnO film under UV illumination (λ = 365 nm, 20-100 μW/cm2). Design aspects for developing a delay line based SAW oscillator are specified. The observed linear downshift in frequency (2.2 to 19.0 kHz) with varying UV intensity (20-100 μW/cm2) is related to the fractional velocity change due to acousto-electric interaction. UV illumination level of 100 μW/cm2 leads to a characteristic frequency hopping behavior arising due to a change in the oscillation criteria, and is attributed to the complex interplay between the increased attenuation and velocity shift.

  15. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  16. Waveform inversion of acoustic waves for explosion yield estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Rodgers, A. J.

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  17. The acoustic and instability waves of jets confined inside an acoustically lined rectangular duct

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1993-01-01

    An analysis of linear wave modes associated with supersonic jets confined inside an acoustically lined rectangular duct is presented. Mathematical formulations are given for the vortex-sheet model and continuous mean flow model of the jet flow profiles. Detailed dispersion relations of these waves in a two-dimensional confined jet as well as an unconfined free jet are computed. Effects of the confining duct and the liners on the jet instability and acoustic waves are studied numerically. It is found that the effect of the liners is to attenuate waves that have supersonic phase velocities relative to the ambient flow. Numerical results also show that the growth rates of the instability waves could be reduced significantly by the use of liners. In addition, it is found that the upstream propagating neutral waves of an unconfined jet could become attenuated when the jet is confined.

  18. Acoustic metasurface for refracted wave manipulation

    NASA Astrophysics Data System (ADS)

    Han, Li-Xiang; Yao, Yuan-Wei; Zhang, Xin; Wu, Fu-Gen; Dong, Hua-Feng; Mu, Zhong-Fei; Li, Jing-bo

    2018-02-01

    Here we present a design of a transmitted acoustic metasurface based on a single row of Helmholtz resonators with varying geometric parameters. The proposed metasurface can not only steer an acoustic beam as expected from the generalized Snell's law of refraction, but also exhibits various interesting properties and potential applications such as insulation of two quasi-intersecting transmitted sound waves, ultrasonic Bessel beam generator, frequency broadening effect of anomalous refraction and focusing.

  19. Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Collins, David J.; Ai, Ye; Neild, Adrian

    2017-04-01

    Periodic pattern generation using time-averaged acoustic forces conventionally requires the intersection of counterpropagating wave fields, where suspended micro-objects in a microfluidic system collect along force potential minimizing nodal or antinodal lines. Whereas this effect typically requires either multiple transducer elements or whole channel resonance, we report the generation of scalable periodic patterning positions without either of these conditions. A single propagating surface acoustic wave interacts with the proximal channel wall to produce a knife-edge effect according to the Huygens-Fresnel principle, where these cylindrically propagating waves interfere with classical wave fronts emanating from the substrate. We simulate these conditions and describe a model that accurately predicts the lateral spacing of these positions in a robust and novel approach to acoustic patterning.

  20. Kinetic study of ion acoustic twisted waves with kappa distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arshad, Kashif, E-mail: kashif.arshad.butt@gmail.com; Aman-ur-Rehman, E-mail: amansadiq@gmail.com; Mahmood, Shahzad, E-mail: shahzadm100@gmail.com

    2016-05-15

    The kinetic theory of Landau damping of ion acoustic twisted modes is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons and Maxwellian ions. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the ion acoustic twisted waves in a non-thermal plasma. The strong damping effects of ion acoustic twisted waves at low values of temperature ratio of electrons and ions aremore » also obtained by using exact numerical method and illustrated graphically, where the weak damping wave theory fails to explain the phenomenon properly. The obtained results of Landau damping rates of the twisted ion acoustic wave are discussed at different values of azimuthal wave number and non-thermal parameter kappa for electrons.« less

  1. Calibrated acoustic emission system records M -3.5 to M -8 events generated on a saw-cut granite sample

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.

    2016-01-01

    Acoustic emission (AE) analyses have been used for decades for rock mechanics testing, but because AE systems are not typically calibrated, the absolute sizes of dynamic microcrack growth and other physical processes responsible for the generation of AEs are poorly constrained. We describe a calibration technique for the AE recording system as a whole (transducers + amplifiers + digitizers + sample + loading frame) that uses the impact of a 4.76-mm free-falling steel ball bearing as a reference source. We demonstrate the technique on a 76-mm diameter cylinder of westerly granite loaded in a triaxial deformation apparatus at 40 MPa confining pressure. The ball bearing is dropped inside a cavity within the sample while inside the pressure vessel. We compare this reference source to conventional AEs generated during loading of a saw-cut fault in a second granite sample. All located AEs occur on the saw-cut surface and have moment magnitudes ranging from M −5.7 down to at least M −8. Dynamic events rupturing the entire simulated fault surface (stick–slip events) have measurable stress drop and macroscopic slip and radiate seismic waves similar to those from a M −3.5 earthquake. The largest AE events that do not rupture the entire fault are M −5.7. For these events, we also estimate the corner frequency (200–300 kHz), and we assume the Brune model to estimate source dimensions of 4–6 mm. These AE sources are larger than the 0.2 mm grain size and smaller than the 76 × 152 mm fault surface.

  2. Diffraction of three-colour radiation on an acoustic wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotov, V M

    We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)

  3. Electrokinetic Transduction of Acoustic Waves In Ocean Sediments

    DTIC Science & Technology

    2002-09-30

    acoustic —motion in ocean sediments. The Biot theory of poroelastic media captures much of the sediment physics left out by other models [2]. It fits...in subsurface acoustical imaging, Mine Counter- Measures, and Anti-Submarine Warfare. To obtain essential experimental data to support the modeling ...Electrokinetic Transduction of Acoustic Waves In Ocean Sediments Gareth I. Block Applied Research Laboratories, U.T. Austin P.O. Box 8029

  4. Nonlinear Acoustic Waves Generated by Surface Disturbances and Their Effects on Lower Thermospheric Composition

    NASA Astrophysics Data System (ADS)

    Pineyro, B.; Snively, J. B.

    2017-12-01

    Recent 1D and 2D nonlinear atmospheric models have provided important insight into acoustic waves generated by seismic events, which may steepen into shocks or saw-tooth trains while also dissipating strongly in the thermosphere [e.g., Chum et al., JGR, 121, 2016; Zettergren et al., JGR, 122, 2017]. Although they have yield results that agree with with observations of ionospheric perturbations, dynamical models for the diffusive and stratified lower thermosphere [e.g., Snively and Pasko, JGR, 113, 2008] often use single gas approximations with height-dependent physical properties (e.g. mean molecular weight, specific heats) that do not vary with time (fixed composition). This approximation is simpler and less computationally expensive than a true multi-fluid model, yet captures the important physical transition between molecular and atomic gases in the lower thermosphere. Models with time-dependent composition and properties have been shown to outperform commonly used models with fixed properties; these time-dependent effects have been included in a one-gas model by adding an advection equation for the molecular weight, finding closer agreement to a true binary-gas model [Walterscheid and Hickey, JGR, 106, 2001 and JGR, 117, 2012]. Here, a one-dimensional nonlinear mass fraction approach to multi-constituent gas modeling, motivated by the results of Walterscheid and Hickey [2001, 2012], is presented. The finite volume method of Bale et al. [SIAM JSC, 24, 2002] is implemented in Clawpack [http://www.clawpack.org; LeVeque, 2002] with a Riemann Solver to solve the Euler Equations including multiple species, defined by their mass fractions, as they undergo advection. Viscous dissipation and thermal conduction are applied via a fractional step method. The model is validated with shock tube problems for two species, and then applied to investigate propagating nonlinear acoustic waves from ground to thermosphere, such as following the 2011 Tohoku Earthquake [e

  5. Acoustic waves in M dwarfs: Maintaining a corona

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Cheng, Q. Q.

    1994-01-01

    We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.

  6. Emergence of acoustic waves from vorticity fluctuations: impact of non-normality.

    PubMed

    George, Joseph; Sujith, R I

    2009-10-01

    Chagelishvili et al. [Phys. Rev. Lett. 79, 3178 (1997)] discovered a linear mechanism of acoustic wave emergence from vorticity fluctuations in shear flows. This paper illustrates how this "nonresonant" phenomenon is related to the non-normality of the operator governing the linear dynamics of disturbances in shear flows. The non-self-adjoint nature of the governing operator causes the emergent acoustic wave to interact strongly with the vorticity disturbance. Analytical expressions are obtained for the nondivergent vorticity perturbation. A discontinuity in the x component of the velocity field corresponding to the vorticity disturbance was originally identified to be the cause of acoustic wave emergence. However, a different mechanism is proposed in this paper. The correct "acoustic source" is identified and the reason for the abrupt nature of wave emergence is explained. The impact of viscous damping is also discussed.

  7. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.

    PubMed

    Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei

    2018-01-24

    An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.

  8. In Situ Guided Wave Structural Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Zhao, George; Tittmann, Bernhard R.

    2011-01-01

    Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.

  9. Reflected wave manipulation by inhomogeneous impedance via varying-depth acoustic liners

    NASA Astrophysics Data System (ADS)

    Guo, Jingwen; Zhang, Xin; Fang, Yi; Fattah, Ryu

    2018-05-01

    Acoustic liners, consisting of a perforated panel affixed to a honeycomb core with a rigid back plate, are widely used for noise attenuation purpose. In this study, by exploiting inhomogeneous impedance properties, we report an experimental and numerical study on a liner-type acoustic metasurface, which possesses the functionality of both reflected wave manipulation and sound energy attenuation simultaneously. To realize the inhomogeneous acoustic impedance, an acoustic metasurface constructed by varying-depth acoustic liners is designed and fabricated. The reflected sound pressure fields induced by the metasurface are obtained in both experiments and simulations. A complete characterization of this metasurface is performed, including the effects of depth gradient, incident angle, and incident frequency. Anomalous reflection, apparent negative reflection, and conversion from an incident wave to a surface wave with strong energy dissipation are achieved by the structure. Moreover, our proposed structure can overcome the single frequency performance limitation that exists in conventional metasurfaces and performs well in a broadband frequency range. The proposed acoustic metasurface offers flexibility in controlling the direction of sound wave propagation with energy dissipation property and holds promise for various applications of noise reduction.

  10. Effect of magnetic quantization on ion acoustic waves ultra-relativistic dense plasma

    NASA Astrophysics Data System (ADS)

    Javed, Asif; Rasheed, A.; Jamil, M.; Siddique, M.; Tsintsadze, N. L.

    2017-11-01

    In this paper, we have studied the influence of magnetic quantization of orbital motion of the electrons on the profile of linear and nonlinear ion-acoustic waves, which are propagating in the ultra-relativistic dense magneto quantum plasmas. We have employed both Thomas Fermi and Quantum Magneto Hydrodynamic models (along with the Poisson equation) of quantum plasmas. To investigate the large amplitude nonlinear structure of the acoustic wave, Sagdeev-Pseudo-Potential approach has been adopted. The numerical analysis of the linear dispersion relation and the nonlinear acoustic waves has been presented by drawing their graphs that highlight the effects of plasma parameters on these waves in both the linear and the nonlinear regimes. It has been noticed that only supersonic ion acoustic solitary waves can be excited in the above mentioned quantum plasma even when the value of the critical Mach number is less than unity. Both width and depth of Sagdeev potential reduces on increasing the magnetic quantization parameter η. Whereas the amplitude of the ion acoustic soliton reduces on increasing η, its width appears to be directly proportional to η. The present work would be helpful to understand the excitation of nonlinear ion-acoustic waves in the dense astrophysical environments such as magnetars and in intense-laser plasma interactions.

  11. Investigation of layered structure SAW devices fabricated using low temperature grown AlN thin film on GaN/sapphire.

    PubMed

    Lin, Hui-Feng; Wu, Chun-Te; Chien, Wei-Cheng; Chen, Sheng-Wen; Kao, Hui-Ling; Chyi, Jen-Inn; Chen, Jyh-Shin

    2005-05-01

    Epitaxial AlN films have been grown on GaN/sapphire using helicon sputtering at 300 degrees C. The surface acoustic wave (SAW) filters fabricated on AlN/GaN/sapphire exhibit more superior characteristics than those made on GaN/sapphire. This composite structure of AlN on GaN may bring about the development of high-frequency components, which integrate and use their semiconducting, optoelectronic, and piezoelectric properties.

  12. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    NASA Astrophysics Data System (ADS)

    Xie, Sujun; Ouyang, Shiliang; He, Zhaojian; Wang, Xiaoyun; Deng, Ke; Zhao, Heping

    2018-03-01

    In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC), which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect), the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  13. Observation of low-frequency acoustic surface waves in the nocturnal boundary layer.

    PubMed

    Talmadge, Carrick L; Waxler, Roger; Di, Xiao; Gilbert, Kenneth E; Kulichkov, Sergey

    2008-10-01

    A natural terrain surface, because of its porosity, can support an acoustic surface wave that is a mechanical analog of the familiar vertically polarized surface wave in AM radio transmission. At frequencies of several hundred hertz, the acoustic surface wave is attenuated over distances of a few hundred meters. At lower frequencies (e.g., below approximately 200 Hz) the attenuation is much less, allowing surface waves to propagate thousands of meters. At night, a low-frequency surface wave is generally present at long ranges even when downward refraction is weak. Thus, surface waves represent a ubiquitous nighttime transmission mode that exists even when other transmission modes are weak or absent. Data from recent nighttime field experiments and theoretical calculations are presented, demonstrating the persistence of the surface wave under different meteorological conditions. The low-frequency surface wave described here is the "quasiharmonical" tail observed previously in nighttime measurements but not identified by S. Kulichkov and his colleagues (Chunchuzov, I. P. et al. 1990. "On acoustical impulse propagation in a moving inhomogeneous atmospheric layer," J. Acoust. Soc. Am. 88, 455-461).

  14. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  15. Modeling, design, packing and experimental analysis of liquid-phase shear-horizontal surface acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Pollard, Thomas B

    Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity

  16. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.

  17. Scattering of acoustic evanescent waves by circular cylinders: Partial wave series solution

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    Evanescent acoustical waves occur in a variety of situations such as when sound is incident on a fluid interface beyond the critical angle and when flexural waves on a plate are subsonic with respect to the surrounding fluid. The scattering by circular cylinders at normal incidence was calculated to give insight into the consequences on the scattering of the evanescence of the incident wave. To analyze the scattering, it is necessary to express the incident wave using a modified expansion involving cylindrical functions. For plane evanescent waves, the expansion becomes a double summation with products of modified and ordinary Bessel functions. The resulting modified series is found for the scattering by a fluid cylinder in an unbounded medium. The perfectly soft and rigid cases are also examined. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on the transverse coordinate. The associated exponential dependence of the scattering on the location of a scatterer was previously demonstrated [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  18. Excitation of Ion Acoustic Waves in Plasmas with Electron Emission from Walls

    NASA Astrophysics Data System (ADS)

    Khrabrov, A. V.; Wang, H.; Kaganovich, I. D.; Raitses, Y.; Sydorenko, D.

    2015-11-01

    Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand details of electron kinetics in plasmas with strong emission, we have performed kinetic simulations of such plasmas using EDIPIC code. We show that excitation of ion acoustic waves is ubiquitous phenomena in many different plasma configurations with strong electron emission from walls. Ion acoustic waves were observed to be generated near sheath if the secondary electron emission from the walls is strong. Ion acoustic waves were also observed to be generated in the plasma bulk due to presence of an intense electron beam propagating from the cathode. This intense electron beam can excite strong plasma waves, which in turn drive the ion acoustic waves. Research supported by the U.S. Air Force Office of Scientific Research.

  19. Injection locking of optomechanical oscillators via acoustic waves

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-01

    Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  20. Funneled focusing of planar acoustic waves utilizing the metamaterial properties of an acoustic lens

    NASA Astrophysics Data System (ADS)

    Walker, E.; Reyes, D.; Rojas, M. M.; Krokhin, A.; Neogi, A.

    2014-02-01

    Metamaterial acoustic lenses are acoustic devices based on phononic crystal structures that take advantage of negative or near-zero indices of refraction. These unique properties arise due to either the antiparallel direction of the phase and group velocity or strongly anisotropic dispersion characteristics, usually above the first transmission band. In this study, we utilize an FDTD program to examine two phononic lenses that utilize anisotropic effects available in their second band to collimate and focus acoustic waves from a plane-wave source with a k00 wavevector. The phononic crystals consist of stainless steel rods arranged in a square lattice with water as the ambient material. Results show collimation and focusing in the second band for select frequencies, fc ± 0.005𝑓𝑐.

  1. Near-surface mapping using SH-wave and P-wave seismic land-streamer data acquisition in Illinois, U.S

    USGS Publications Warehouse

    Pugin, Andre J.M.; Larson, T.H.; Sargent, S.L.; McBride, J.H.; Bexfield, C.E.

    2004-01-01

    SH-wave and P-wave high-resolution seismic reflection combined with land-streamer technology provide 3D regional maps of geologic formations that can be associated with aquifers and aquitards. Examples for three study areas are considered to demonstrate this. In these areas, reflection profiling detected near-surface faulting and mapped a buried glacial valley and its aquifers in two settings. The resulting seismic data can be used directly to constrain hydrogeologic modeling of shallow aquifers.

  2. Capacitive acoustic wave detector and method of using same

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor)

    1994-01-01

    A capacitor having two substantially parallel conductive faces is acoustically coupled to a conductive sample end such that the sample face is one end of the capacitor. A non-contacting dielectric may serve as a spacer between the two conductive plates. The formed capacitor is connected to an LC oscillator circuit such as a Hartley oscillator circuit producing an output frequency which is a function of the capacitor spacing. This capacitance oscillates as the sample end coating is oscillated by an acoustic wave generated in the sample by a transmitting transducer. The electrical output can serve as an absolute indicator of acoustic wave displacement.

  3. Linear and nonlinear acoustic wave propagation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Yu, Ping

    1988-01-01

    The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.

  4. Nonlinear Electron Acoustic Waves in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Dillard, C. S.; Vasko, I.; Mozer, F.; Agapitov, O. V.

    2017-12-01

    The Van Allen Probes observe intense broad-band electrostatic wave activity in the inner magnetosphere. The high-resolution electric field measurements show that these broad-band wave activity is made of large-amplitude electrostatic solitary waves propagating generally along the background magnetic field with velocities of a few thousands km/s. There are generally two types of the observed solitary waves. The solitary waves with the bipolar parallel electric field are interpreted as electron phase space holes, while the nature of solitary waves with asymmetric parallel electric field has remained puzzling. In the present work we show that asymmetric solitary waves propagate with velocities (1000-5000 km/s) and have spatial scales (100 m-1 km) similar to those for electron-acoustic waves existing due to two temperature electron population. Through the numerical fluid simulation we show that the spikes are produced from the initially harmonic electron-acoustic perturbation due to the nonlinear steepening. Through the analysis of the modified KdV equation we show that the steepening is arrested at some moment by the collisionless Landau dissipation and results in formation of the observed asymmetric spikes (shocklets).

  5. Liquid-assisted tunable metasurface for simultaneous manipulation of surface elastic and acoustic waves

    NASA Astrophysics Data System (ADS)

    Yuan, Si-Min; Ma, Tian-Xue; Chen, A.-Li; Wang, Yue-Sheng

    2018-03-01

    A tunable and multi-functional one-dimensional metasurface, which is formed by engraving periodic semi-ellipse grooves on the surface of an aluminum half-space, is proposed in this paper. One characteristic of the metasurface is the manipulation of multi-physical fields, i.e. it could be utilized to manipulate surface elastic and acoustic waves simultaneously. The dispersion curves of the elastic and acoustic waves can be effectively tuned by adding liquids into the grooves. Based on the tunability different applications can be realized by adding different volumes of different liquids into the grooves. As an example, simultaneous rainbow trapping of the surface elastic and acoustic waves is demonstrated in the metasurface. Moreover, a resonant cavity where the elastic and acoustic waves are highly confined is reported. The proposed metasurface paves the way to the design of multi-functional devices for simultaneous control of elastic and acoustic waves.

  6. Air-ground interface: Surface waves, surface impedance and acoustic-to-seismic coupling coefficient

    NASA Technical Reports Server (NTRS)

    Daigle, Gilles; Embleton, Tony

    1990-01-01

    In atmospheric acoustics, the subject of surface waves has been an area of discussion for many years. The existence of an acoustic surface wave is now well established theoretically. The mathematical solution for spherical wave propagation above an impedance boundary includes the possibility of a contribution that possesses all the standard properties for a surface wave. Surface waves exist when the surface is sufficiently porous, relative to its acoustical resistance, that it can influence the airborne particle velocity near the surface and reduce the phase velocity of sound waves in air at the surface. This traps some of the sound energy in the air to remain near the surface as it propagates. Above porous grounds, the existence of surface waves has eluded direct experimental confirmation (pulse experiments have failed to show a separate arrival expected from the reduced phase speed) and indirect evidence for its existence has appeared contradictory. The experimental evidence for the existence of an acoustical surface wave above porous boundaries is reviewed. Recent measurements including pulse experiments are also described. A few years ago the acoustic impedance of a grass-covered surface was measured in the frequency range 30 to 300 Hz. Here, further measurements on the same site are discussed. These measurements include core samples, a shallow refractive survey to determine the seismic velocities, and measurements of the acoustic-to-seismic coupling coefficient.

  7. Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boev, M. V.; Kovalev, V. M., E-mail: vadimkovalev@isp.nsc.ru

    We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocitymore » renormalization are strongly different below and above the critical temperature.« less

  8. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  9. On-line surveillance of lubricants in bearings by means of surface acoustic waves.

    PubMed

    Lindner, Gerhard; Schmitt, Martin; Schubert, Josephine; Krempel, Sandro; Faustmann, Hendrik

    2010-01-01

    The acoustic wave propagation in bearings filled with lubricants and driven by pulsed excitation of surface acoustic waves has been investigated with respect to the presence and the distribution of different lubricants. Experimental setups, which are based on the mode conversion between surface acoustic waves and compression waves at the interface between a solid substrate of the bearing and a lubricant are described. The results of preliminary measurements at linear friction bearings, rotation ball bearings and axial cylinder roller bearings are presented.

  10. Standing wave acoustic levitation on an annular plate

    NASA Astrophysics Data System (ADS)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  11. Dispersion of acoustic surface waves by velocity gradients

    NASA Astrophysics Data System (ADS)

    Kwon, S. D.; Kim, H. C.

    1987-10-01

    The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.

  12. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  13. False Paradoxes of Superposition in Electric and Acoustic Waves.

    ERIC Educational Resources Information Center

    Levine, Richard C.

    1980-01-01

    Corrected are several misconceptions concerning the apparently "missing" energy that results when acoustic or electromagnetic waves cancel by destructive interference and the wave impedance reflected to the sources of the wave energy changes so that the input power is reduced. (Author/CS)

  14. Continuous tuneable droplet ejection via pulsed surface acoustic wave jetting.

    PubMed

    Castro, Jasmine O; Ramesan, Shwathy; Rezk, Amgad R; Yeo, Leslie Y

    2018-05-30

    We report a miniaturised platform for continuous production of single or multiple liquid droplets with diameters between 60 and 500 μm by interfacing a capillary-driven self-replenishing liquid feed with pulsed excitation of focussed surface acoustic waves (SAWs). The orifice-free operation circumvents the disadvantages of conventional jetting systems, which are often prone to clogging that eventuates in rapid degradation of the operational performance. Additionally, we show the possibility for flexibly tuning the ejected droplet size through the pulse width duration, thus avoiding the need for a separate device for every different droplet size required, as is the case for systems in which the droplet size is set by nozzles and orifices, as well as preceding ultrasonic jetting platforms where the droplet size is controlled by the operating frequency. Further, we demonstrate that cells can be jetted and hence printed onto substrates with control over the cell density within the droplets down to single cells. Given that the jetting does not lead to significant loss to the cell's viability or ability to proliferate, we envisage that this versatile jetting method can potentially be exploited with further development for cell encapsulation, dispensing and 3D bioprinting applications.

  15. A surface acoustic wave ICP sensor with good temperature stability.

    PubMed

    Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng

    2017-07-20

    Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.

  16. Multifrequency characterization of viscoelastic polymers and vapor sensing based on SAW oscillators.

    PubMed

    Yadava, R D S; Kshetrimayum, Roshan; Khaneja, Mamta

    2009-12-01

    Simplified relations for the changes in SAW velocity and attenuation due to thin polymer coatings and vapor sorption are presented by making analytic approximations to the complex theoretical model developed earlier by Martin et al. [Anal. Chem. 66 (14) (1994) 2201-2219]. The approximate velocity relation is accurate within 4% for the film thicknesses up to 20% of the acoustic wavelength in the polymer film, and is useful for analyzing the mass loading, swelling and viscoelastic effects in SAW vapor sensors. The approximate attenuation relation is accurate within 20% for very thin films, (less than 2% of the acoustic wavelength in the film). Based on these relations, a new procedure for determination of polymer viscoelastic properties is described that exploits the frequency dependence of the velocity and attenuation perturbations, and employs multifrequency measurement on the same SAW platform. Expressions for individual contributions from the mass loading, film swelling and viscoelastic effects in SAW vapor sensors are derived, and their implications for the sensor design and operation are discussed. Also, a new SAW comb filter design is proposed that offers possibility for multimode SAW oscillator operation over a decade of frequency variation, and illustrates feasibility for experimental realization of wide bandwidth multifrequency SAW platforms.

  17. Large-amplitude acoustic solitary waves in a Yukawa chain

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.; Gallagher, James C.

    2017-06-01

    We experimentally study the excitation and propagation of acoustic solitary waves in a one-dimensional dusty plasma (i.e. a Yukawa chain) with particles interacting through a screened Coulomb potential. The lattice constant mm. Waves are launched by applying a 100 mW laser pulse to one end of the chain for laser pulse durations from 0.10 to 2.0 s. We observe damped solitary waves which propagate for distances with an acoustic speed s=11.5\\pm 0.2~\\text{mm}~\\text{s}-1$ . The maximum velocity perturbation increases with laser pulse duration for durations s and then saturates at . The wave speed is found to be independent of the maximum amplitude, indicating that the formation of nonlinear solitons is prevented by neutral-gas damping.

  18. An Effective Quality Control of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by Fast Gas Chromatography-Surface Acoustic Wave Sensor.

    PubMed

    Oh, Se Yeon

    2015-06-03

    Fast gas chromatography-surface acoustic wave sensor (GC/SAW) has been applied for the detection of the pharmacological volatiles emanated from Houttuynia cordata Thunb which is from South Korea. H. cordata Thunb with unpleasant and fishy odors shows a variety of pharmacological activities such as anti-microbial, anti-inflammatory, anti-cancer, and insect repellent. The aim of this study is to show a novel quality control by GC/SAW methodology for the discrimination of the three different parts of the plant such as leaves, aerial stems, and underground stems for H. cordata Thunb. Sixteen compounds were identified. β-Myrcene, cis-ocimene and decanal are the dominant volatiles for leaves (71.0%) and aerial stems (50.1%). While, monoterpenes (74.6%) are the dominant volatiles for underground stems. 2-Undecanone (1.3%) and lauraldehyde (3.5%) were found to be the characteristic components for leaves. Each part of the plant has its own characteristic fragrance pattern owing to its individual chemical compositions. Moreover, its individual characteristic fragrance patterns are conducive to discrimination of the three different parts of the plant. Consequently, fast GC/SAW can be a useful analytical method for quality control of the different parts of the plant with pharmacological volatiles as it provides second unit analysis, a simple and fragrant pattern recognition.

  19. SAW propagation characteristics of TeO3/3C-SiC/LiNbO3 layered structure

    NASA Astrophysics Data System (ADS)

    Soni, Namrata D.

    2018-04-01

    Surface acoustic wave (SAW) devices based on Lithium Niobate (LiNbO3) single crystal are advantageous because of its high SAW phase velocity, electromechanical coupling coefficient and cost effectiveness. In the present work a new multi-layered TeO3/3C-SiC/128° Y-X LiNbO3 SAW device has been proposed. SAW propagation properties such as phase velocity, coupling coefficient and temperature coefficient of delay (TCD) of the TeO3/SiC/128° Y-X LiNbO3 multi layered structure is examined using theoretical calculations. It is found that the integration of 0.09λ thick 3C-SiC over layer on 128° Y-X LiNbO3 increases its electromechanical coupling coefficient from 5.3% to 9.77% and SAW velocity from 3800 ms‑1 to 4394 ms‑1. The SiC/128° Y-X LiNbO3 bilayer SAW structure exhibits a high positive TCD value. A temperature stable layered SAW device could be obtained with introduction of 0.007λ TeO3 over layer on SiC/128° Y-X LiNbO3 bilayer structure without sacrificing the efficiency of the device. The proposed TeO3/3C-SiC/128° Y-X LiNbO3 multi-layered SAW structure is found to be cost effective, efficient, temperature stable and suitable for high frequency application in harsh environment.

  20. Injection locking of optomechanical oscillators via acoustic waves.

    PubMed

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-02

    Injection locking is an effective technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators. As such, exploring new mechanisms for injection locking of emerging oscillators is important for their usage in various systems. Here, we present the first demonstration of injection locking of a radiation pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can be easily implemented on various platforms to lock different types of OMOs independent of their size and structure. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance, matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity, and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology, and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  1. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    PubMed

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  2. Crack detection in fastener holes using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-Qi; Varadan, Vasundara V.; Varadan, Vijay K.

    1995-05-01

    This paper presents an investigation of the monitoring of cracks at the edge of fastener holes on plates using an ultrasonic pulse-echo technique. Our studies show that, if the surface of the plate surrounding the hold is free, an acoustic wave on the surface of the plate is able to detect the cracks located in an arc of 60 degree(s). When the inner surface of the hole is free, surface acoustic waves on the inner surface are alternate choices. For the case when all these surfaces are in tight contact with other parts, hence unavailable for mounting transducers, a particular type of Lamb wave mode is presented.

  3. Acoustic waves in the solar atmosphere at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.

    2009-12-01

    Aims. The energy supply for the radiative losses of the quiet solar chromosphere is studied. On the basis of high spatial resolution data, we investigate the amount of energy flux carried by acoustic waves in the solar photosphere. Methods: Time sequences from quiet Sun disc centre were obtained with the “Göttingen” Fabry-Perot spectrometer at the Vacuum Tower Telescope, Observatorio del Teide/Tenerife, in the non-magnetic Fe i 5576 Å line. The data were reconstructed with speckle methods. The velocity and intensity fluctuations at line minimum were subjected to Fourier and wavelet analyses. The energy fluxes at frequencies higher than the acoustic cutoff frequency (period U ≈ 190 s) were corrected for the transmission of the solar atmosphere, which reduces the signal from short-period waves. Results: Both Fourier and wavelet analysis give an amount of energy flux of ~3000 W m-2 at a height h = 250 km. Approximately 2/3 of it is carried by waves in the 5-10 mHz range, and 1/3 in the 10-20 mHz band. Extrapolation of the flux spectra gives an energy flux of 230-400 W m-2 at frequencies ν > 20 mHz. We find that the waves occur predominantly above inter-granular areas. Conclusions: We conclude that the acoustic flux in waves with periods shorter than the acoustic cutoff period can contribute to the basal heating of the solar chromosphere, in addition to the atmospheric gravity waves found recently.

  4. Observation of dust acoustic shock wave in a strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sumita K., E-mail: sumita-sharma82@yahoo.com; Boruah, A.; Nakamura, Y.

    2016-05-15

    Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and themore » spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.« less

  5. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  6. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-12-01

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.

  7. The first radial-mode Lorentzian Landau damping of dust acoustic space-charge waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    2016-05-15

    The dispersion properties and the first radial-mode Lorentzian Landau damping of a dust acoustic space-charge wave propagating in a cylindrical waveguide dusty plasma which contains nonthermal electrons and ions are investigated by employing the normal mode analysis and the method of separation of variables. It is found that the frequency of dust acoustic space-charge wave increases as the wave number increases as well as the radius of cylindrical plasma does. However, the nonthermal property of the Lorentzian plasma is found to suppress the wave frequency of the dust acoustic space-charge wave. The Landau damping rate of the dust acoustic space-chargemore » wave is derived in a cylindrical waveguide dusty plasma. The damping of the space-charge wave is found to be enhanced as the radius of cylindrical plasma and the nonthermal property increase. The maximum Lorentzian Landau damping rate is also found in a cylindrical waveguide dusty plasma. The variation of the wave frequency and the Landau damping rate due to the nonthermal character and geometric effects are also discussed.« less

  8. Observation of frequency cutoff for self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.

    2009-11-01

    Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.

  9. Time-resolved measurement of global synchronization in the dust acoustic wave

    NASA Astrophysics Data System (ADS)

    Williams, J. D.

    2014-10-01

    A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.

  10. Nonlinear properties of small amplitude dust ion acoustic solitary waves

    NASA Astrophysics Data System (ADS)

    Ghosh, Samiran; Sarkar, S.; Khan, Manoranjan; Gupta, M. R.

    2000-09-01

    In this paper some nonlinear characteristics of small amplitude dust ion acoustic solitary wave in three component dusty plasma consisting of electrons, ions, and dust grains have been studied. Simultaneously, the charge fluctuation dynamics of the dust grains under the assumption that the dust charging time scale is much smaller than the dust hydrodynamic time scale has been considered here. The ion dust collision has also been incorporated. It has been seen that a damped Korteweg-de Vries (KdV) equation governs the nonlinear dust ion acoustic wave. The damping arises due to ion dust collision, under the assumption that the ion hydrodynamical time scale is much smaller than that of the ion dust collision. Numerical investigations reveal that the dust ion acoustic wave admits only a positive potential, i.e., compressive soliton.

  11. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.

    PubMed

    Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo

    2016-10-19

    To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.

  12. Eulerian Simulation of Acoustic Waves Over Long Range in Realistic Environments

    NASA Astrophysics Data System (ADS)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    In this paper, we describe a new method for computation of long-range acoustics. The approach is a hybrid of near and far-field methods, and is unique in its Eulerian treatment of the far-field propagation. The near-field generated by any existing method to project an acoustic solution onto a spherical surface that surrounds a source. The acoustic field on this source surface is then extended to an arbitrarily large distance in an inhomogeneous far-field. This would normally require an Eulerian solution of the wave equation. However, conventional Eulerian methods have prohibitive grid requirements. This problem is overcome by using a new method, ``Wave Confinement'' (WC) that propagates wave-identifying phase fronts as nonlinear solitary waves that live on grid indefinitely. This involves modification of wave equation by the addition of a nonlinear term without changing the basic conservation properties of the equation. These solitary waves can then be used to ``carry'' the essential integrals of the acoustic wave. For example, arrival time, centroid position and other properties that are invariant as the wave passes a grid point. Because of this property the grid can be made as coarse as necessary, consistent with overall accuracy to resolve atmospheric/ground variations. This work is being funded by the U.S. Army under a Small Business Innovation Research (SBIR) program (contract number: # W911W6-12-C-0036). The authors would like to thank Dr. Frank Caradonna and Dr. Ben W. Sim for this support.

  13. Modelling based on Spatial Impulse Response Model for Optimization of Inter Digital Transducers (SAW Sensors) for Non Destructive Testing

    NASA Astrophysics Data System (ADS)

    Fall, D.; Duquennoy, M.; Ouaftouh, M.; Piwakowski, B.; Jenot, F.

    This study deals with modelling SAW-IDT transducers for their optimization. These sensors are specifically developed to characterize properties of thin layers, coatings and functional surfaces. Among the methods of characterization, the ultrasonic methods using Rayleigh surface waves are particularly interesting because the propagation of these waves is close to the surface of material and the energy is concentrated within a layer under the surface of about one wavelength thick. In order to characterize these coatings and structures, it is necessary to work in high frequencies, this is why in this study, SAW-IDT sensors are realized for surface acoustic wave generation. For optimization of these SAW-IDT sensors, particularly their band-width, it is necessary to study various IDT configurations by varying the number of electrodes, dimensions of the electrodes, their shapes and spacings. Thus it is necessary to implement effective and rapid technique for modelling. The originality of this study is to develop simulation tools based on Spatial Impulse Response model. Therefore it will be possible to reduce considerably computing time and results are obtained in a few seconds, instead of several hours (or days) by using finite element method. In order to validate this method, theoretical and experimental results are compared with finite element method and Interferometric measurements. The results obtained show a good overall concordance and confirm effectiveness of suggested method.

  14. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  15. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  16. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    PubMed

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  17. Surface acoustic wave actuated cell sorting (SAWACS).

    PubMed

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  18. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn; Lomonosov, Alexey M.

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  19. Surface Acoustic Wave Study of Exciton Condensation in Bilayer Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Pollanen, J.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    In bilayer two-dimensional electron systems (2DES) in GaAs a strongly correlated many-electron state forms at low temperature and high magnetic field when the total electron density nT becomes equal to the degeneracy of a single spin split Landau level. This state corresponds to a total filling factor νT = 1 and can be described in terms of pseudospin ferromagnetism, or equivalently, Bose condensation of bilayer excitons. We have simultaneously measured magneto-transport and the propagation of pulsed surface acoustic waves (SAWs) at a frequency of 747 MHz to explore the phase transition between two independent layers at νT = 1 / 2 + 1 / 2 and the correlated state at νT = 1 in a high quality double quantum well device. We tune through this transition by varying the total electron density in our device with front and backside electrostatic gates. We acknowledge funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (NFS Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-12500028).

  20. Numerical study of nonlinear full wave acoustic propagation

    NASA Astrophysics Data System (ADS)

    Velasco-Segura, Roberto; Rendon, Pablo L.

    2013-11-01

    With the aim of describing nonlinear acoustic phenomena, a form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite-volume method using Roe's linearization has been implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a HIFU system, both with satisfactory results. The code is written for parallel execution on a GPU and improves performance by a factor of over 50 when compared to the standard CLAWPACK Fortran code. This code can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from modest models of diagnostic and therapeutic HIFU, parametric acoustic arrays, to acoustic wave guides. A couple of examples will be presented showing shock formation and oblique interaction. DGAPA PAPIIT IN110411, PAEP UNAM 2013.

  1. Source and listener directivity for interactive wave-based sound propagation.

    PubMed

    Mehra, Ravish; Antani, Lakulish; Kim, Sujeong; Manocha, Dinesh

    2014-04-01

    We present an approach to model dynamic, data-driven source and listener directivity for interactive wave-based sound propagation in virtual environments and computer games. Our directional source representation is expressed as a linear combination of elementary spherical harmonic (SH) sources. In the preprocessing stage, we precompute and encode the propagated sound fields due to each SH source. At runtime, we perform the SH decomposition of the varying source directivity interactively and compute the total sound field at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave decomposition approach based on higher-order derivatives of the sound field that enables dynamic HRTF-based listener directivity at runtime. We provide a generic framework to incorporate our source and listener directivity in any offline or online frequency-domain wave-based sound propagation algorithm. We have integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization, externalization, and spatial sound, generated by wave-based propagation of directional sources and listener in complex scenarios. We also present results from our preliminary user study.

  2. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.

  3. Cylindrical ion-acoustic solitary waves in electronegative plasmas with superthermal electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslami, Parvin; Mottaghizadeh, Marzieh

    2012-06-15

    By using the standard reductive perturbation technique, a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE), which governs the dynamics of ion acoustic solitary waves (IASWs), is derived for small but finite amplitude ion-acoustic waves in cylindrical geometry in a collisionless unmagnetized plasma with kappa distributed electrons, thermal positrons, and cold ions. The generalized expansion method is used to solve analytically the CKPE. The existence regions of localized pulses are investigated. It is found that the solution of the CKPE supports only compressive solitary waves. Furthermore, the effects of superthermal electrons, the ratio of the electron temperature to positron temperature, the ratio ofmore » the positron density to electron density and direction cosine of the wave propagation on the profiles of the amplitudes, and widths of the solitary structures are examined numerically. It is shown these parameters play a vital role in the formation of ion acoustic solitary waves.« less

  4. Development of wireless, chipless neural stimulator by using one-port surface acoustic wave delay line and diode-capacitor interface

    NASA Astrophysics Data System (ADS)

    Kim, Jisung; Kim, Saehan; Lee, Keekeun

    2017-06-01

    For the first time, a wireless and chipless neuron stimulator was developed by utilizing a surface acoustic wave (SAW) delay line, a diode-capacitor interface, a sharp metal tip, and antennas for the stimulation of neurons in the brain. The SAW delay line supersedes presently existing complex wireless transmission systems composed of a few thousands of transistors, enabling the fabrication of wireless and chipless transceiver systems. The diode-capacitor interface was used to convert AC signals to DC signals and induce stimulus pulses at a sharp metal probe. A 400 MHz RF energy was wirelessly radiated from antennas and then stimulation pulses were observed at a sharp gold probe. A ˜5 m reading distance was obtained using a 1 mW power from a network analyzer. The cycles of electromagnetic (EM) radiation from an antenna were controlled by shielding the antenna with an EM absorber. Stimulation pulses with different amplitudes and durations were successfully observed at the probe. The obtained pulses were ˜0.08 mV in amplitude and 3-10 Hz in frequency. Coupling-of-mode (COM) and SPICE modeling simulations were also used to determine the optimal structural parameters for SAW delay line and the values of passive elements. On the basis of the extracted parameters, the entire system was experimentally implemented and characterized.

  5. Horizontal shear wave scattering from a nonwelded interface observed by magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Papazoglou, S.; Hamhaber, U.; Braun, J.; Sack, I.

    2007-02-01

    A method based on magnetic resonance elastography is presented that allows measuring the weldedness of interfaces between soft tissue layers. The technique exploits the dependence of shear wave scattering at elastic interfaces on the frequency of vibration. Experiments were performed on gel phantoms including differently welded interfaces. Plane wave excitation parallel to the planar interface with corresponding motion sensitization enabled the observation of only shear-horizontal (SH) wave scattering. Spatio-temporal filtering was applied to calculate scattering coefficients from the amplitudes of the incident, transmitted and reflected SH-waves in the vicinity of the interface. The results illustrate that acoustic wave scattering in soft tissues is largely dependent on the connectivity of interfaces, which is potentially interesting for imaging tissue mechanics in medicine and biology.

  6. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation.

    PubMed

    Soliman, Ahmed M; Eldosoky, Mohamed A; Taha, Taha E

    2017-03-29

    The separation of blood components (WBCs, RBCs, and platelets) is important for medical applications. Recently, standing surface acoustic wave (SSAW) microfluidic devices are used for the separation of particles. In this paper, the design analysis of SSAW microfluidics is presented. Also, the analysis of SSAW force with Rayleigh angle effect and its attenuation in liquid-loaded substrate, viscous drag force, hydrodynamic force, and diffusion force are explained and analyzed. The analyses are provided for selecting the piezoelectric material, width of the main microchannel, working area of SAW, wavelength, minimum input power required for the separation process, and widths of outlet collecting microchannels. The design analysis of SSAW microfluidics is provided for determining the minimum input power required for the separation process with appropriated the displacement contrast of the particles.The analyses are applied for simulation the separation of blood components. The piezoelectric material, width of the main microchannel, working area of SAW, wavelength, and minimum input power required for the separation process are selected as LiNbO₃, 120 μm, 1.08 mm², 300 μm, 371 mW. The results are compared to other published results. The results of these simulations achieve minimum power consumption, less complicated setup, and high collecting efficiency. All simulation programs are built by MATLAB.

  7. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation

    PubMed Central

    Soliman, Ahmed M.; Eldosoky, Mohamed A.; Taha, Taha E.

    2017-01-01

    The separation of blood components (WBCs, RBCs, and platelets) is important for medical applications. Recently, standing surface acoustic wave (SSAW) microfluidic devices are used for the separation of particles. In this paper, the design analysis of SSAW microfluidics is presented. Also, the analysis of SSAW force with Rayleigh angle effect and its attenuation in liquid-loaded substrate, viscous drag force, hydrodynamic force, and diffusion force are explained and analyzed. The analyses are provided for selecting the piezoelectric material, width of the main microchannel, working area of SAW, wavelength, minimum input power required for the separation process, and widths of outlet collecting microchannels. The design analysis of SSAW microfluidics is provided for determining the minimum input power required for the separation process with appropriated the displacement contrast of the particles.The analyses are applied for simulation the separation of blood components. The piezoelectric material, width of the main microchannel, working area of SAW, wavelength, and minimum input power required for the separation process are selected as LiNbO3, 120 μm, 1.08 mm2, 300 μm, 371 mW. The results are compared to other published results. The results of these simulations achieve minimum power consumption, less complicated setup, and high collecting efficiency. All simulation programs are built by MATLAB. PMID:28952506

  8. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, L.-W.; Chang, M.-C.; Tseng, Y.-P.

    2009-12-11

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation tomore » the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.« less

  9. On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator.

    PubMed

    Hickling, Susannah; Leger, Pierre; El Naqa, Issam

    2016-02-11

    Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.

  10. Influence of bias electric field on elastic waves propagation in piezoelectric layered structures.

    PubMed

    Burkov, S I; Zolotova, O P; Sorokin, B P

    2013-08-01

    Theoretical and computer investigations of acoustic wave propagation in piezoelectric layered structures, subjected to the dc electric field influence have been fulfilled. Analysis of the dispersive parameters of elastic waves propagation in the BGO/fused silica and fused silica/LiNbO3 piezoelectric layered structures for a number of variants of dc electric field application has been executed. Transformation of bulk acoustic wave into SAW type mode under the dc electric field influence has been found. Possibility to control the permission or prohibition of the wave propagation by the dc electric field application and the appropriate choice of the layer and substrate materials has been discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    PubMed

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  12. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre

    PubMed Central

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  13. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.

    PubMed

    Erpelding, Todd N; Hollman, Kyle W; O'Donnell, Matthew

    2007-02-01

    Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young's modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200 and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size.

  14. Real-time Monitoring Of Damage Evolution In Aerospace Materials Using Nonlinear Acoustics

    NASA Astrophysics Data System (ADS)

    Matikas, T. E.; Paipetis, A.; Kostopoulos, V.

    2008-06-01

    This work deals with the development of a novel non-destructive technique based on nonlinear acoustics, enabling real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonlinear or an-harmonic solid, the fundamental wave distorts as it propagates, so that the second and higher harmonics of the fundamental frequency are generated. The measurement of the amplitude of these harmonics provides information on the coefficient of the second and higher order terms of the stress-strain relation for a nonlinear solid. It is demonstrated here that the material bulk nonlinear parameter for titanium alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters such as velocity and attenuation. However, the use of bulk ultrasonic waves has serious disadvantages for the health monitoring of aerospace structures since it requires the placement of ultrasonic transducers on two, perfectly parallel, opposite sides of the samples. Such a setup is hardly feasible in real field conditions. For this reason, surface acoustic waves (SAW) were used in this study enabling the in-situ characterization of fatigue damage. The experimental setup for measuring the material nonlinear parameter using SAW was realised and the feasibility of the technique for health monitoring of aerospace structures was evaluated.

  15. Mobile patient monitoring based on impedance-loaded SAW-sensors.

    PubMed

    Karilainen, Anna; Finnberg, Thomas; Uelzen, Thorsten; Dembowski, Klaus; Müller, Jörg

    2004-11-01

    A remotely requestable, passive, short-range sensor network for measuring small voltages is presented. The sensor system is able to simultaneously monitor six small voltages in millivolt-range, and it can be used for Holter-electrocardiogram (ECG) and other biopotential monitoring, or in industrial applications. The sensors are based on a surface acoustic wave (SAW) delay line with voltage-dependent, impedance loading on a reflector interdigital transducer (IDT). The load circuit impedance is varied by the capacitance of the voltage-controlled varactor. High resolution is achieved by developing a MOS-capacitor with a thin oxide, low flat-band voltage, and zero-voltage capacitance in the space-charge region, as well as a high-Q-microcoil by thick metal electroplating. Simultaneous monitoring of multiple potentials is realized by time-division-multiplexing of different sensor signals.

  16. Study of low insertion loss and miniaturization wavelet transform and inverse transform processor using SAW devices.

    PubMed

    Jiang, Hua; Lu, Wenke; Zhang, Guoan

    2013-07-01

    In this paper, we propose a low insertion loss and miniaturization wavelet transform and inverse transform processor using surface acoustic wave (SAW) devices. The new SAW wavelet transform devices (WTDs) use the structure with two electrode-widths-controlled (EWC) single phase unidirectional transducers (SPUDT-SPUDT). This structure consists of the input withdrawal weighting interdigital transducer (IDT) and the output overlap weighting IDT. Three experimental devices for different scales 2(-1), 2(-2), and 2(-3) are designed and measured. The minimum insertion loss of the three devices reaches 5.49dB, 4.81dB, and 5.38dB respectively which are lower than the early results. Both the electrode width and the number of electrode pairs are reduced, thus making the three devices much smaller than the early devices. Therefore, the method described in this paper is suitable for implementing an arbitrary multi-scale low insertion loss and miniaturization wavelet transform and inverse transform processor using SAW devices. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Ultrafast optical measurements of surface waves on a patterned layered nanostructure

    NASA Astrophysics Data System (ADS)

    Daly, Brian; Bjornsson, Matteo; Connolly, Aine; Mahat, Sushant; Rachmilowitz, Bryan; Antonelli, George; Myers, Alan; Yoo, Hui-Jae; Singh, Kanwal; King, Sean

    2015-03-01

    We report ultrafast optical pump-probe measurements of 12 - 54 GHz surface acoustic waves (SAWs) on patterned layered nanostructures. These very high frequency SAWs were generated and detected on the following patterned film stack: 25 nm physically vapor deposited TiN / 180 nm porous PECVD-grown a-SiOC:H dielectric / 12 nm non-porous PECVD-grown a-SiOC:H etch-stop / 100 nm CVD-grown a-SiO2 / Si (100) substrate. The TiN layer was dry plasma etched to form lines of rectangular cross section with pitches of 420 nm, 250 nm, 180 nm, and 168 nm and the lines were oriented parallel to the [110] direction on the wafer surface. The absorption of ultrafast pulses from a Ti:sapphire oscillator operating at 800 nm generated SAWs that were detected by time-delayed probe pulses from the same oscillator via a reflectivity change (ΔR) . In each of the four cases the SAW frequency increased with decreasing pitch, but not in a linear way as had been seen in previous experiments of this sort. By comparing the results with mechanical simulations, we present evidence for the detection of different types of SAWs in each case, including Rayleigh-like waves, Sezawa waves, and leaky or radiative waves. This work was supported by NSF Award DMR1206681.

  18. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  19. Surface acoustic waves voltage controlled directional coupler

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.

    1988-10-01

    An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.

  20. Investigations of High Pressure Acoustic Waves in Resonators with Seal-Like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh

    2004-01-01

    1) Standing waves with maximum pressures of 188 kPa have been produced in resonators containing ambient pressure air; 2) Addition of structures inside the resonator shifts the fundamental frequency and decreases the amplitude of the generated pressure waves; 3) Addition of holes to the resonator does reduce the magnitude of the acoustic waves produced, but their addition does not prohibit the generation of large magnitude non-linear standing waves; 4) The feasibility of reducing leakage using non-linear acoustics has been confirmed.

  1. Detection of acoustic waves by NMR using a radiofrequency field gradient.

    PubMed

    Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J; Franconi, Jean Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D

    2003-03-01

    A B(1) field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 13;31; RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.

  2. Prediction and near-field observation of skull-guided acoustic waves

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  3. Prediction and near-field observation of skull-guided acoustic waves.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  4. A Feasibility Study on Generation of Acoustic Waves Utilizing Evanescent Light

    NASA Astrophysics Data System (ADS)

    Matsuya, I.; Matozaki, K.; Kosugi, A.; Ihara, I.

    2014-06-01

    A new approach of generating acoustic waves utilizing evanescent light is presented. The evanescent light is a non-propagating electromagnetic wave that exhibits exponential decay with distance from the surface at which the total internal reflection of light is formed. In this research, the evanescent light during total internal reflection at prism surface is utilized for generating acoustic waves in aluminium and the feasibility for ultrasonic measurements is discussed. Pulsed Nd:YAG laser with 0.36 J/cm2 power density is used and the incident angle during the total internal reflection is arranged to be 69.0° for generating the evanescent light. It has been demonstrated that the amplitude of the acoustic waves by means of evanescent light is about 1/14 as large as the one generated by the conventional pulsed laser. This reveals the possibility of using a laser ultrasonic technique with near-field optics.

  5. Numerical modelling of nonlinear full-wave acoustic propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on amore » GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.« less

  6. Bubble-Based Acoustic Radiation Force Using Chirp Insonation to Reduce Standing Wave Effects

    PubMed Central

    Erpelding, Todd N.; Hollman, Kyle W.; O’Donnell, Matthew

    2007-01-01

    Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young’s modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200, and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size. PMID:17306697

  7. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  8. Cylindrical dust acoustic solitary waves with transverse perturbations in quantum dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushtaq, A.

    2007-11-15

    The nonlinear quantum dust acoustic waves with effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the perturbation method, a cylindrical Kadomtsev-Petviashvili equation for dust acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics, and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave, are studied both analytically and numerically.

  9. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  10. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  11. Wide Band Low Noise Love Wave Magnetic Field Sensor System.

    PubMed

    Kittmann, Anne; Durdaut, Phillip; Zabel, Sebastian; Reermann, Jens; Schmalz, Julius; Spetzler, Benjamin; Meyners, Dirk; Sun, Nian X; McCord, Jeffrey; Gerken, Martina; Schmidt, Gerhard; Höft, Michael; Knöchel, Reinhard; Faupel, Franz; Quandt, Eckhard

    2018-01-10

    We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.

  12. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.

    PubMed

    Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe

    2018-07-01

    A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    PubMed

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  15. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.

    1997-01-01

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  16. Magneto-acoustic imaging by continuous-wave excitation.

    PubMed

    Shunqi, Zhang; Zhou, Xiaoqing; Tao, Yin; Zhipeng, Liu

    2017-04-01

    The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10 -7  Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.

  17. Mechanically robust microfluidics and bulk wave acoustics to sort microparticles

    NASA Astrophysics Data System (ADS)

    Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.

    2016-04-01

    Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.

  18. Coupling of an acoustic wave to shear motion due to viscous heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Goree, J.

    2016-07-15

    Viscous heating due to shear motion in a plasma can result in the excitation of a longitudinal acoustic wave, if the shear motion is modulated in time. The coupling mechanism is a thermal effect: time-dependent shear motion causes viscous heating, which leads to a rarefaction that can couple into a longitudinal wave, such as an acoustic wave. This coupling mechanism is demonstrated in an electrostatic three-dimensional (3D) simulation of a dusty plasma, in which a localized shear flow is initiated as a pulse, resulting in a delayed outward propagation of a longitudinal acoustic wave. This coupling effect can be profoundmore » in plasmas that exhibit localized viscous heating, such as the dusty plasma we simulated using parameters typical of the PK-4 experiment. We expect that a similar phenomenon can occur with other kinds of plasma waves.« less

  19. Ultrasound acoustic wave energy transfer and harvesting

    NASA Astrophysics Data System (ADS)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  20. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose

    PubMed Central

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-01-01

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal–oxide–semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm2. The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively. PMID:27792131

  1. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose.

    PubMed

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-10-25

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal-oxide-semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm². The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively.

  2. Detection of acoustic waves by NMR using a radiofrequency field gradient

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J.; Franconi, Jean-Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D.

    2003-03-01

    A B1 field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 1 3¯3 1¯ RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.

  3. Acoustic wave-driven oxidized liquid metal-based energy harvester

    NASA Astrophysics Data System (ADS)

    Jeon, Jinpyo; Chung, Sang Kug; Lee, Jeong-Bong; Doo, Seok Joo; Kim, Daeyoung

    2018-06-01

    We report an oxidized liquid metal droplet-based energy harvester that converts acoustic energy into electrical energy by modulating an electrical double layer that originates from the deformation of the oxidized liquid metal droplet. Gallium-based liquid metal alloy has been developed for various applications owing to the outstanding material properties, such as its high electrical conductivity (metallic property) and unlimited deformability (liquid property). In this study, we demonstrated energy harvesting using an electrical double layer between the acoustic wave-modulated liquid metal droplet and two electrodes. The proposed energy harvester consisted of top and bottom electrodes covered with the dielectric layer and a Gallium-based liquid metal droplet placed between the electrodes. When we applied an external bias voltage and acoustic wave to the proposed device, the contact area between the liquid metal droplet and the electrodes changed, leading to the variation of the capacitance in the electrical double layer and the generation of electrical output current. Using the proposed energy harvester, the maximum output current of 41.2 nA was generated with an applied acoustic wave of 30 Hz. In addition, we studied the relationships between the maximum output current and a variety of factors, such as the size of the liquid metal droplet, the thickness of the hydrophobic layer, and the distance between the top and bottom electrode plates.

  4. Distributed feedback guided surface acoustic wave microresonator

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1989-08-01

    Surface acoustic wave resonators have been used in a number of applications: high-Q frequency filtering, very accurate frequency sources, etc. A major disadvantage of conventional resonators is their large dimensions, which makes them inadequate for integrated acoustics applications. In order to overcome these size limitations a new type of microresonator was designed, developed, and tested. In this paper, theoretical calculations and measurements on two kinds of such devices (a corrugated waveguide filter and a microresonator structure) are presented and their possible applications are discussed.

  5. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  6. Single crystal substrates for surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Barsch, G. R.; Spear, K. E.

    1981-01-01

    In order to search for new temperature compensated materials for surface acoustic wave (SAW) devices with low ultrasonic attenuation and high electromechanical coupling, the following experimental and theoretical investigations were carried out: (1) Crystal growth research centered around: designing, constructing, and writing the software for a computer controlled constant-diameter attachment for our Czochralski crystal pullers; a major experimental effort on the growth of lead potassium niobate (PKN); Pb2KNb5O15, and lead bismuth niobate (PBN) PbBi2Nb2O9, and a minor experimental effort on the growth of lithium metasilicate, Li2SiO3; and bismuth molybdate, Bi2MoO6. (2) The dielectric constants and the associated loss tangents of alpha-berlinite were measured at eleven frequencies from 100 to 10,000 Hz between -150 and 200 C. The temperature dependence of the dielectric constants and the relaxation behavior are similar to the results obtained earlier, but the absolute values are 20 to 30 percent smaller than reported previously. (3) The temperature dependence of the two shear modes propagating in (001) has been measured from 10 to 315K for Bi4Ti3O12. A monotonical decrease of the associated shear moduli has been found. (4) Considerable effort was devoted to specimen preparation of lead bismuth niobate which was hampered by the easy cleavage of this material perpendicular to 001 .

  7. Nonlinear ionospheric responses to large-amplitude infrasonic-acoustic waves generated by undersea earthquakes

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.

    2017-02-01

    Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.

  8. Acoustic Wave Propagation in Snow Based on a Biot-Type Porous Model

    NASA Astrophysics Data System (ADS)

    Sidler, R.

    2014-12-01

    Despite the fact that acoustic methods are inexpensive, robust and simple, the application of seismic waves to snow has been sparse. This might be due to the strong attenuation inherent to snow that prevents large scale seismic applications or due to the somewhat counterintuitive acoustic behavior of snow as a porous material. Such materials support a second kind of compressional wave that can be measured in fresh snow and which has a decreasing wave velocity with increasing density of snow. To investigate wave propagation in snow we construct a Biot-type porous model of snow as a function of porosity based on the assumptions that the solid frame is build of ice, the pore space is filled with a mix of air, or air and water, and empirical relationships for the tortuosity, the permeability, the bulk, and the shear modulus.We use this reduced model to investigate compressional and shear wave velocities of snow as a function of porosity and to asses the consequences of liquid water in the snowpack on acoustic wave propagation by solving Biot's differential equations with plain wave solutions. We find that the fast compressional wave velocity increases significantly with increasing density, but also that the fast compressional wave velocity might be even lower than the slow compressional wave velocity for very light snow. By using compressional and shear strength criteria and solving Biot's differential equations with a pseudo-spectral approach we evaluate snow failure due to acoustic waves in a heterogeneous snowpack, which we think is an important mechanism in triggering avalanches by explosives as well as by skiers. Finally, we developed a low cost seismic acquisition device to assess the theoretically obtained wave velocities in the field and to explore the possibility of an inexpensive tool to remotely gather snow water equivalent.

  9. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  10. Twisted electron-acoustic waves in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman-ur-Rehman, E-mail: amansadiq@gmail.com; Department of Physics and Applied Mathematics; Ali, S.

    2016-08-15

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q{sub eff} accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping ratemore » of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.« less

  11. Re-radiation of acoustic waves from the A0 wave on a submerged elastic shell

    NASA Astrophysics Data System (ADS)

    Ahyi, A. C.; Cao, Hui; Raju, P. K.; Überall, Herbert

    2005-07-01

    We consider evacuated thin semi-infinite shells immersed in a fluid, which may be either of cylindrical shape with a hemispherical shell endcap, or formed two-dimensionally by semi-infinite parallel plates joined together by a semi-cylinder. The connected shell portions are joined in a manner to satisfy continuity but with a discontinuous radius of curvature. Acoustic waves are considered incident along the axis of symmetry (say the z axis) onto the curved portion of the shell, where they, at the critical angle of coincidence, generate Lamb and Stoneley-type waves in the shell. Computations were carried out using a code developed by Cao et al. [Chinese J. Acoust. 14, 317 (1995)] and was used in order to computationally visualize the waves in the fluid that have been re-radiated by the shell waves a the critical angle. The frequency range was below that of the lowest Lamb wave, and only the A0 wave (and partly the S0 wave) was observed to re-radiate into the fluid under our assumptions. The results will be compared to experimental results in which the re-radiated waves are optically visualized by the Schardin-Cranz schlieren method. .

  12. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces.

    PubMed

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-15

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A_{0}) either when using a symmetric (S_{0}) or antisymmetric (A_{0}) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  13. Transition radiation on a superlattice in finite thickness plate generated by two acoustic waves

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, A. R.; Parazian, V. V.; Saharian, A. A.

    2018-01-01

    Forward transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate by two acoustic waves. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. Zone structures appear in the plate, which makes it possible (by an appropriate choice of the frequencies of the two acoustic waves) to control the spectral-angular distribution of the radiation through changes in the parameters of the medium. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic waves. Numerical examples are presented for a plate of fused quartz.

  14. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.

    PubMed

    Zhang, Yuning; Guo, Zhongyu; Gao, Yuhang; Du, Xiaoze

    2018-01-01

    Presence of bubbles in liquids could significantly alter the acoustic waves in terms of wave speed and attenuation. In the present paper, acoustic wave propagation in bubbly flows with gas, vapor and gas/vapor mixtures is theoretically investigated in a wide range of parameters (including frequency, bubble radius, void fraction, and vapor mass fraction). Our finding reveals two types of wave propagation behavior depending on the vapor mass fraction. Furthermore, the minimum wave speed (required for the closure of cavitation modelling in the sonochemical reactor design) is analyzed and the influences of paramount parameters on it are quantitatively discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Analysis of SAW properties in ZnO/AlxGa1-xN/c-Al2O3 structures.

    PubMed

    Chen, Ying; Emanetoglu, Nuri William; Saraf, Gaurav; Wu, Pan; Lu, Yicheng; Parekh, Aniruddh; Merai, Vinod; Udovich, Eric; Lu, Dong; Lee, Dong S; Armour, Eric A; Pophristic, Milan

    2005-07-01

    Piezoelectric thin films on high acoustic velocity nonpiezoelectric substrates, such as ZnO, AlN, or GaN deposited on diamond or sapphire substrates, are attractive for high frequency and low-loss surface acoustic wave devices. In this work, ZnO films are deposited on AlxGa1-xN/c-Al2O3 (0 < or = chi < or = 1) substrates using the radio frequency (RF) sputtering technique. In comparison with a single AlxGa1-xN layer deposited on c-Al2O3 with the same total film thickness, a ZnO/AlxGa1-xN/c-Al2O3 multilayer structure provides several advantages, including higher order wave modes with higher velocity and larger electromechanical coupling coefficient (K2). The surface acoustic wave (SAW) velocities and coupling coefficients of the ZnO/AlxGa1-xN/c-Al2O3 structure are tailored as a function of the Al mole percentage in AlxGa1-xN films, and as a function of the ZnO (h1) to AlxGa1-xN (h2) thickness ratio. It is found that a wide thickness-frequency product (hf) region in which coupling is close to its maximum value, K(2)max, can be obtained. The K(2)max of the second order wave mode (h1 = h2) is estimated to be 4.3% for ZnO/GaN/c-Al2O3, and 3.8% for ZnO/AlN/c-Al2O3. The bandwidth of second and third order wave modes, in which the coupling coefficient is within +/- 0.3% of K(2)max, is calculated to be 820 hf for ZnO/GaN/c-Al2O3, and 3620 hf for ZnO/AlN/c-Al2O3. Thus, the hf region in which the coupling coefficient is close to the maximum value broadens with increasing Al content, while K(2)max decreases slightly. When the thickness ratio of AlN to ZnO increases, the K(2)max and hf bandwidth of the second and third higher wave modes increases. The SAW test devices are fabricated and tested. The theoretical and experimental results of velocity dispersion in the ZnO/AlxGa1-xN/c-Al2O3 structures are found to be well matched.

  16. Acoustically assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid writing scheme for non-volatile memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Ayan K.; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    We show that the energy dissipated to write bits in spin-transfer-torque random access memory can be reduced by an order of magnitude if a surface acoustic wave (SAW) is launched underneath the magneto-tunneling junctions (MTJs) storing the bits. The SAW-generated strain rotates the magnetization of every MTJs' soft magnet from the easy towards the hard axis, whereupon passage of a small spin-polarized current through a target MTJ selectively switches it to the desired state with > 99.99% probability at room temperature, thereby writing the bit. The other MTJs return to their original states at the completion of the SAW cycle.

  17. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    PubMed

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  18. Novel types of surface acoustic wave microreflectors - Performance analysis and simulations

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1990-06-01

    Surface acoustic waves for micrograting reflectors have been characterized. Based on the perturbation theory, eight different types of structures on an acoustic waveguide were analyzed. Results of simulations of all eight types of corrugation structures were evaluated in order to find the least leaky waveguide, the most efficient reflector (with minimum necessary perturbations), and the optimal mode shape for improved performances. General design curves are presented in order to illustrate the behavior of the incident and reflected waves under a variety of structural conditions. Analytic expressions for the calculations of the mode amplitude and mode shape, and for general acoustic corrugations are derived and then the simulations results are presented.

  19. Spherical nonlinear ion-acoustic solitary waves in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-03-01

    Propagation of spherical nonlinear ion-acoustic solitary waves in positive and negative ion plasmas with superthermal electrons is investigated. The effects of perturbations of the azimuthal and zenith-angle as well as the radial coordinate on the solitary wave profile are reported. The existence domains and the characteristics of the spherical solitary pulses are examined. The solitary excitations are found to be strongly dependent on the plasma parameters; the mass ratio of the positive-to-negative ions, electrons superthermality, and the spherical geometry. The role of superthermal electrons in formation of the spherical nonlinear ion-acoustic solitary excitations for two ion mass groups in Titan's upper atmosphere is investigated.

  20. Acoustic Guided Wave Testing of Pipes of Small Diameters

    NASA Astrophysics Data System (ADS)

    Muravev, V. V.; Muraveva, O. V.; Strizhak, V. A.; Myshkin, Y. V.

    2017-10-01

    Acoustic path is analyzed and main parameters of guided wave testing are substanti- ated applied to pipes of small diameters. The method is implemented using longitudinal L(0,1) and torsional T(0,1) waves based on electromagnetic-acoustic (EMA) transducers. The method of multiple reflections (MMR) combines echo-through, amplitude-shadow and time-shadow methods. Due to the effect of coherent amplification of echo-pulses from defects the sensitivity to the defects of small sizes at the signal analysis on the far reflections is increased. An oppor- tunity of detection of both local defects (dents, corrosion damages, rolling features, pitting, cracks) and defects extended along the pipe is shown.

  1. Impacts of short-time scale water column variability on broadband high-frequency acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Eickmeier, Justin

    Acoustical oceanography is one way to study the ocean, its internal layers, boundaries and all processes occurring within using underwater acoustics. Acoustical sensing techniques allows for the measurement of ocean processes from within that logistically or financially preclude traditional in-situ measurements. Acoustic signals propagate as pressure wavefronts from a source to a receiver through an ocean medium with variable physical parameters. The water column physical parameters that change acoustic wave propagation in the ocean include temperature, salinity, current, surface roughness, seafloor bathymetry, and vertical stratification over variable time scales. The impacts of short-time scale water column variability on acoustic wave propagation include coherent and incoherent surface reflections, wavefront arrival time delay, focusing or defocusing of the intensity of acoustic beams and refraction of acoustic rays. This study focuses on high-frequency broadband acoustic waves, and examines the influence of short-time scale water column variability on broadband high-frequency acoustics, wavefronts, from 7 to 28 kHz, in shallow water. Short-time scale variability is on the order of seconds to hours and the short-spatial scale variability is on the order of few centimeters. Experimental results were collected during an acoustic experiment along 100 m isobaths and data analysis was conducted using available acoustic wave propagation models. Three main topics are studied to show that acoustic waves are viable as a remote sensing tool to measure oceanographic parameters in shallow water. First, coherent surface reflections forming striation patterns, from multipath receptions, through rough surface interaction of broadband acoustic signals with the dynamic sea surface are analyzed. Matched filtered results of received acoustic waves are compared with a ray tracing numerical model using a sea surface boundary generated from measured water wave spectra at the time of

  2. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-04

    Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM

  3. Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media

    NASA Astrophysics Data System (ADS)

    Aver'yanov, M. V.; Khokhlova, V. A.; Sapozhnikov, O. A.; Blanc-Benon, Ph.; Cleveland, R. O.

    2006-12-01

    A new parabolic equation is derived to describe the propagation of nonlinear sound waves in inhomogeneous moving media. The equation accounts for diffraction, nonlinearity, absorption, scalar inhomogeneities (density and sound speed), and vectorial inhomogeneities (flow). A numerical algorithm employed earlier to solve the KZK equation is adapted to this more general case. A two-dimensional version of the algorithm is used to investigate the propagation of nonlinear periodic waves in media with random inhomogeneities. For the case of scalar inhomogeneities, including the case of a flow parallel to the wave propagation direction, a complex acoustic field structure with multiple caustics is obtained. Inclusion of the transverse component of vectorial random inhomogeneities has little effect on the acoustic field. However, when a uniform transverse flow is present, the field structure is shifted without changing its morphology. The impact of nonlinearity is twofold: it produces strong shock waves in focal regions, while, outside the caustics, it produces higher harmonics without any shocks. When the intensity is averaged across the beam propagating through a random medium, it evolves similarly to the intensity of a plane nonlinear wave, indicating that the transverse redistribution of acoustic energy gives no considerable contribution to nonlinear absorption.

  4. Are ion acoustic waves supported by high-density plasmas in the Large Plasma Device (LaPD)?

    NASA Astrophysics Data System (ADS)

    Roycroft, Rebecca; Dorfman, Seth; Carter, Troy A.; Gekelman, Walter; Tripathi, Shreekrishna

    2012-10-01

    Ion acoustic waves are a type of longitudinal wave in a plasma, propagating though the motion of the ions. The wave plays a key role in a parametric decay process thought to be responsible for the spectrum of turbulence observed in the solar wind. In recent LaPD experiments aimed at studying this process, modes thought to be ion acoustic waves are strongly damped when the pump Alfven waves are turned off. This observation motivates an experiment focused on directly launching ion acoustic waves under similar conditions. Our first attempt to launch ion acoustic waves using a metal grid in the plasma was unsuccessful at high magnetic fields and densities due to electrons shorting out the bias applied between the grid and the wall. Results from a new device based on [1] to launch ion acoustic waves will be presented; this device will consist of a small chamber with a plasma source separated from the main chamber by two biased grids. The plasma created inside the small device will be held at a different potential from the main plasma; modulation of this difference should affect the ions, allowing ion acoustic waves to be launched and their properties compared to the prior LaPD experiments.[4pt] [1] W. Gekelman and R. L. Stenzel, Phys. Fluids 21, 2014 (1978).

  5. Quasi-Rayleigh waves in butt-welded thick steel plate

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin

    2015-03-01

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  6. Quasi-Rayleigh waves in butt-welded thick steel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamas, Tuncay, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Giurgiutiu, Victor, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Lin, Bin, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu

    2015-03-31

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as wellmore » as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.« less

  7. CHROMOSPHERIC HEATING BY ACOUSTIC WAVES COMPARED TO RADIATIVE COOLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobotka, M.; Heinzel, P.; Švanda, M.

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra ofmore » Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.« less

  8. A Shock-Refracted Acoustic Wave Model for Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fully expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on the directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength).

  9. Nonlinear acoustic wave equations with fractional loss operators.

    PubMed

    Prieur, Fabrice; Holm, Sverre

    2011-09-01

    Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations. © 2011 Acoustical Society of America

  10. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  11. GPS-Acoustic Seafloor Geodesy using a Wave Glider

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.

    2013-12-01

    The conventional approach to implement the GPS-Acoustic technique uses a ship or buoy for the interface between GPS and Acoustics. The high cost and limited availability of ships restricts occupations to infrequent campaign-style measurements. A new approach to address this problem uses a remote controlled, wave-powered sea surface vehicle, the Wave Glider. The Wave Glider uses sea-surface wave action for forward propulsion with both upward and downward motions producing forward thrust. It uses solar energy for power with solar panels charging the onboard 660 W-h battery for near continuous operation. It uses Iridium for communication providing command and control from shore plus status and user data via the satellite link. Given both the sea-surface wave action and solar energy are renewable, the vehicle can operate for extended periods (months) remotely. The vehicle can be launched from a small boat and can travel at ~ 1 kt to locations offshore. We have adapted a Wave Glider for seafloor geodesy by adding a dual frequency GPS receiver embedded in an Inertial Navigation Unit, a second GPS antenna/receiver to align the INU, and a high precision acoustic ranging system. We will report results of initial testing of the system conducted at SIO. In 2014, the new approach will be used for seafloor geodetic measurements of plate motion in the Cascadia Subduction Zone. The project is for a three-year effort to measure plate motion at three sites along an East-West profile at latitude 44.6 N, offshore Newport Oregon. One site will be located on the incoming plate to measure the present day convergence between the Juan de Fuca and North American plates and two additional sites will be located on the continental slope of NA to measure the elastic deformation due to stick-slip behavior on the mega-thrust fault. These new seafloor data will constrain existing models of slip behavior that presently are poorly constrained by land geodetic data 100 km from the deformation front.

  12. Mode-coupling and wave-particle interactions for unstable ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasilinear and mode-coupling effects are treated in a self-consistent manner. Steady-state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through terms of second order in the wave amplitude, but without the usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion-acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasilinear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  13. Mode coupling and wave particle interactions for unstable ion acoustic waves

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasi-linear and mode coupling effects are treated in a self-consistent manner. Steady state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through second order terms in the wave amplitude, but without usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasi-linear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found, even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  14. The characters of ion acoustic rogue waves in nonextensive plasma

    NASA Astrophysics Data System (ADS)

    Du, Hai-su; Lin, Mai-mai; Gong, Xue; Duan, Wen-shan

    2017-10-01

    Several well-known nonlinear waves in the rational solutions of the nonlinear Schrödinger equation are studied in two-component plasmas consisting of ions fluid and nonextensive electrons, such as Kuznetsov-Ma breather (K-M), bright soliton, rogue wave (RW), Akhmediev breather (AB) and dark soliton, and so on. In this paper, we have investigated the characteristics of K-M, AB, and RW's propagation in plasma with nonextensive electron distribution, and the dependence of amplitude and width for ion acoustic rogue waves in this system. It is found that K-M' triplet is appearance-disappearance-appearance-disappearance. AB solitons only appear once and RW is a single wave that appears from nowhere and then disappears. It is also noted that the wave number and nonextensive parameter of electrons have a significant influence on the maximum envelope amplitude, but, the influence of the width was not significant. At the same time, the effects of the small parameter, which represent the nonlinear strength, on the amplitude and width of ion acoustic rogue waves are also being highlighted.

  15. Energy scavenging system by acoustic wave and integrated wireless communication

    NASA Astrophysics Data System (ADS)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  16. Acoustic waves in tilted fiber Bragg gratings for sensing applications

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Alberto, Nélia J.; Domingues, Fátima; Leitão, Cátia; Antunes, Paulo; Pinto, João. L.; André, Paulo

    2017-05-01

    Tilted fiber Bragg gratings (TFBGs) are one of the most attractive kind of optical fiber sensor technology due to their intrinsic properties. On the other hand, the acousto-optic effect is an important, fast and accurate mechanism that can be used to change and control several properties of fiber gratings in silica and polymer optical fiber. Several all-optical devices for optical communications and sensing have been successfully designed and constructed using this effect. In this work, we present the recent results regarding the production of optical sensors, through the acousto-optic effect in TFBGs. The cladding and core modes amplitude of a TFBG can be controlled by means of the power levels from acoustic wave source. Also, the cladding modes of a TFBG can be coupled back to the core mode by launching acoustic waves. Induced bands are created on the left side of the original Bragg wavelength due to phase matching to be satisfied. The refractive index (RI) is analyzed in detail when acoustic waves are turned on using saccharose solutions with different RI from 1.33 to 1.43.

  17. Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Volosevich, A.-V.; Meister, C.-V.

    2003-04-01

    In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.

  18. Static shape of an acoustically levitated drop with wave-drop interaction

    NASA Astrophysics Data System (ADS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1994-11-01

    The static shape of a drop levitated and flattened by an acoustic standing wave field in air is calculated, requiring self-consistency between the drop shape and the wave. The wave is calculated for a given shape using the boundary integral method. From the resulting radiation stress on the drop surface, the shape is determined by solving the Young-Laplace equation, completing an iteration cycle. The iteration is continued until both the shape and the wave converge. Of particular interest are the shapes of large drops that sustain equilibrium, beyond a certain degree of flattening, by becoming more flattened at a decreasing sound pressure level. The predictions for flattening versus acoustic radiation stress, for drops of different sizes, compare favorably with experimental data.

  19. The effective propagation constants of SH wave in composites reinforced by dispersive parallel nanofibers

    NASA Astrophysics Data System (ADS)

    Qiang, FangWei; Wei, PeiJun; Li, Li

    2012-07-01

    In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the surface elasticity theory and non-classical interfacial conditions between the nanofiber and the host are derived. The scattering waves from individual nanofibers embedded in an infinite elastic host are obtained by the plane wave expansion method. The scattering waves from all fibers are summed up to obtain the multiple scattering waves. The interactions among random dispersive nanofibers are taken into account by the effective field approximation. The effective propagation constants are obtained by the configurational average of the multiple scattering waves. The effective speed and attenuation of the averaged wave and the associated dynamical effective shear modulus of composites are numerically calculated. Based on the numerical results, the size effects of the nanofibers on the effective propagation constants and the effective modulus are discussed.

  20. System and method for sonic wave measurements using an acoustic beam source

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.