Sample records for acoustic wave speed

  1. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  2. Marble Ageing Characterization by Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Boudani, Mohamed El; Wilkie-Chancellier, Nicolas; Martinez, Loïc; Hébert, Ronan; Rolland, Olivier; Forst, Sébastien; Vergès-Belmin, Véronique; Serfaty, Stéphane

    In cultural heritage, statue marble characterization by acoustic waves is a well-known non-destructive method. Such investigations through the statues by time of flight method (TOF) point out sound speeds decrease with ageing. However for outdoor stored statues as the ones in the gardens of Chateau de Versailles, ageing affects mainly the surface of the Carrara marble. The present paper proposes an experimental study of the marble acoustic properties variations during accelerated laboratory ageing. The surface degradation of the marble is reproduced in laboratory for 29 mm thick marble samples by using heating/cooling thermal cycles on one face of a marble plate. Acoustic waves are generated by 1 MHz central frequency contact transducers excited by a voltage pulse placed on both sides of the plate. During the ageing and by using ad hoc transducers, the marble samples are characterized in transmission, along their volume by shear, compressional TOF measurements and along their surface by Rayleigh waves measurements. For Rayleigh waves, both TOF by transducers and laser vibrometry methods are used to detect the Rayleigh wave. The transmission measurements point out a deep decrease of the waves speeds in conjunction with a dramatic decrease of the maximum frequency transmitted. The marble acts as a low pass filter whose characteristic frequency cut decreases with ageing. This pattern occurs also for the Rayleigh wave surface measurements. The speed change in conjunction with the bandwidth translation is shown to be correlated to the material de-structuration during ageing. With a similar behavior but reversed in time, the same king of phenomena have been observed trough sol-gel materials during their structuration from liquid to solid state (Martinez, L. et all (2004). "Chirp-Z analysis for sol-gel transition monitoring". Ultrasonics, 42(1), 507-510.). A model is proposed to interpret the acoustical measurements

  3. High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Sherrit, Stewart; Badescu, Mircea; Lih, Shyh-shiuh

    2012-01-01

    A compact sampling tool mechanism that can operate at various temperatures, and transport and sieve particle sizes of powdered cuttings and soil grains with no moving parts, has been created using traveling surface acoustic waves (SAWs) that are emitted by an inter-digital transducer (IDT). The generated waves are driven at about 10 MHz, and it causes powder to move towards the IDT at high speed with different speeds for different sizes of particles, which enables these particles to be sieved. This design is based on the use of SAWs and their propelling effect on powder particles and fluids along the path of the waves. Generally, SAWs are elastic waves propagating in a shallow layer of about one wavelength beneath the surface of a solid substrate. To generate SAWs, a piezoelectric plate is used that is made of LiNbO3 crystal cut along the x-axis with rotation of 127.8 along the y-axis. On this plate are printed pairs of fingerlike electrodes in the form of a grating that are activated by subjecting the gap between the electrodes to electric field. This configuration of a surface wave transmitter is called IDT. The IDT that was used consists of 20 pairs of fingers with 0.4-mm spacing, a total length of 12.5 mm. The surface wave is produced by the nature of piezoelectric material to contract or expand when subjected to an electric field. Driving the IDT to generate wave at high amplitudes provides an actuation mechanism where the surface particles move elliptically, pulling powder particles on the surface toward the wavesource and pushing liquids in the opposite direction. This behavior allows the innovation to separate large particles and fluids that are mixed. Fluids are removed at speed (7.5 to 15 cm/s), enabling this innovation of acting as a bladeless wiper for raindrops. For the windshield design, the electrodes could be made transparent so that they do not disturb the driver or pilot. Multiple IDTs can be synchronized to transport water or powder over larger

  4. High-speed noncontact acoustic inspection method for civil engineering structure using multitone burst wave

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Sugimoto, Kazuko; Kosuge, Nobuaki; Utagawa, Noriyuki; Katakura, Kageyoshi

    2017-07-01

    The noncontact acoustic inspection method focuses on the resonance phenomenon, and the target surface is measured by being vibrated with an airborne sound. It is possible to detect internal defects near the surface layer of a concrete structure from a long distance. However, it requires a fairly long measurement time to achieve the signal-to-noise (S/N) ratio just to find some resonance frequencies. In our method using the conventional waveform “single-tone burst wave”, only one frequency was used for one-sound-wave emission to achieve a high S/N ratio using a laser Doppler vibrometer (LDV) at a safe low power (e.g., He-Ne 1 mW). On the other hand, in terms of the difference in propagation velocity between laser light and sound waves, the waveform that can be used for high-speed measurement was devised using plural frequencies for one-sound-wave emission (“multitone burst wave”). The measurement time at 35 measurement points has been dramatically decreased from 210 to 28 s when using this waveform. Accordingly, 7.5-fold high-speed measurement became possible. By some demonstration experiments, we confirmed the effectiveness of our measurement technique.

  5. Large-amplitude acoustic solitary waves in a Yukawa chain

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.; Gallagher, James C.

    2017-06-01

    We experimentally study the excitation and propagation of acoustic solitary waves in a one-dimensional dusty plasma (i.e. a Yukawa chain) with particles interacting through a screened Coulomb potential. The lattice constant mm. Waves are launched by applying a 100 mW laser pulse to one end of the chain for laser pulse durations from 0.10 to 2.0 s. We observe damped solitary waves which propagate for distances with an acoustic speed s=11.5\\pm 0.2~\\text{mm}~\\text{s}-1$ . The maximum velocity perturbation increases with laser pulse duration for durations s and then saturates at . The wave speed is found to be independent of the maximum amplitude, indicating that the formation of nonlinear solitons is prevented by neutral-gas damping.

  6. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    PubMed

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  7. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.

    PubMed

    Zhang, Yuning; Guo, Zhongyu; Gao, Yuhang; Du, Xiaoze

    2018-01-01

    Presence of bubbles in liquids could significantly alter the acoustic waves in terms of wave speed and attenuation. In the present paper, acoustic wave propagation in bubbly flows with gas, vapor and gas/vapor mixtures is theoretically investigated in a wide range of parameters (including frequency, bubble radius, void fraction, and vapor mass fraction). Our finding reveals two types of wave propagation behavior depending on the vapor mass fraction. Furthermore, the minimum wave speed (required for the closure of cavitation modelling in the sonochemical reactor design) is analyzed and the influences of paramount parameters on it are quantitatively discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn; Lomonosov, Alexey M.

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  9. Acoustic waves in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison

    2013-09-01

    Seminal papers by Brutsaert (1964) and Brutsaert and Luthin (1964) provided the first rigorous theoretical framework for examining the poroelastic behavior of unsaturated soils, including an important application linking acoustic wave propagation to soil hydraulic properties. Theoretical developments during the 50 years that followed have led Lo et al., (2005) to a comprehensive model of these phenomena, but the relationship of its elasticity parameters to standard poroelasticity parameters measured in hydrogeology has not been established. In the present study, we develop this relationship for three key parameters, the Gassman modulus, Skempton coefficient, and Biot-Willis coefficient by generalizing them to an unsaturated porous medium. We demonstrate the remarkable result that well-known and widely applied relationships among these parameters for a porous medium saturated by a single fluid are also valid under very general conditions for unsaturated soils. We show further that measurement of the Biot-Willis coefficient along with three of the six elasticity coefficients in the model of Lo et al. (2005) is sufficient to characterize poroelastic behavior. The elasticity coefficients in the model of Lo et al. (2005) are sensitive to the dependence of capillary pressure on water saturation and its viscous-drag coefficients are functions of relative permeability, implying that hysteresis in the water retention curve and hydraulic conductivity function should affect acoustic wave behavior in unsaturated soils. To quantify these as-yet unknown effects, we performed numerical simulations for Dune sand at two representative wave excitation frequencies. Our results show that the acoustic wave investigated by Brutsaert and Luthin (1964) propagates at essentially the same speed during imbibition and drainage, but is attenuated more during drainage than imbibition. Overall, effects on acoustic wave behavior caused by hysteresis become more significant as the excitation

  10. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  11. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  12. On resonant coupling of acoustic waves and gravity waves

    NASA Astrophysics Data System (ADS)

    Millet, Christophe

    2017-11-01

    Acoustic propagation in the atmosphere is often modeled using modes that are confined within waveguides causing the sound to propagate through multiple paths to the receiver. On the other hand, direct observations in the lower stratosphere show that the gravity wave field is intermittent, and is often dominated by rather well defined large-amplitude wave packets. In the present work, we use normal modes to describe both the gravity wave field and the acoustic field. The gravity wave spectrum is obtained by launching few monochromatic waves whose properties are chosen stochastically to mimic the intermittency. Owing to the disparity of the gravity and acoustic length scales, the interactions between the gravity wave field and each of the acoustic modes can be described using a multiple-scale analysis. The appropriate amplitude evolution equation for the acoustic field involves certain random terms that can be directly related to the gravity wave sources. We will show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the gravity wave parameterization can create or destroy specific acoustic features.

  13. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  14. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  15. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.

  16. Acoustic waves in polydispersed bubbly liquids

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Gubaidullina, D. D.; Fedorov, Yu V.

    2014-11-01

    The propagation of acoustic waves in polydispersed mixtures of liquid with two sorts of gas bubbles each of which has its own bubble size distribution function is studied. The system of the differential equations of the perturbed motion of a mixture is presented, the dispersion relation is obtained. Equilibrium speed of sound, low-frequency and high-frequency asymptotes of the attenuation coefficient are found. Comparison of the developed theory with known experimental data is presented.

  17. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.

    2015-09-01

    Recent measurements of GPS-derived total electron content (TEC) reveal acoustic wave periods of ˜1-4 min in the F region ionosphere following natural hazard events, such as earthquakes, severe weather, and volcanoes. Here we simulate the ionospheric responses to infrasonic-acoustic waves, generated by vertical accelerations at the Earth's surface or within the lower atmosphere, using a compressible atmospheric dynamics model to perturb a multifluid ionospheric model. Response dependencies on wave source geometry and spectrum are investigated at middle, low, and equatorial latitudes. Results suggest constraints on wave amplitudes that are consistent with observations and that provide insight on the geographical variability of TEC signatures and their dependence on the geometry of wave velocity field perturbations relative to the ambient geomagnetic field. Asymmetries of responses poleward and equatorward from the wave sources indicate that electron perturbations are enhanced on the equatorward side while field aligned currents are driven principally on the poleward side, due to alignments of acoustic wave velocities parallel and perpendicular to field lines, respectively. Acoustic-wave-driven TEC perturbations are shown to have periods of ˜3-4 min, which are consistent with the fraction of the spectrum that remains following strong dissipation throughout the thermosphere. Furthermore, thermospheric acoustic waves couple with ion sound waves throughout the F region and topside ionosphere, driving plasma disturbances with similar periods and faster phase speeds. The associated magnetic perturbations of the simulated waves are calculated to be observable and may provide new observational insight in addition to that provided by GPS TEC measurements.

  18. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  19. Acoustic waves in shock tunnels and expansion tubes

    NASA Technical Reports Server (NTRS)

    Paull, A.; Stalker, R. J.

    1992-01-01

    It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.

  20. Air-ground interface: Surface waves, surface impedance and acoustic-to-seismic coupling coefficient

    NASA Technical Reports Server (NTRS)

    Daigle, Gilles; Embleton, Tony

    1990-01-01

    In atmospheric acoustics, the subject of surface waves has been an area of discussion for many years. The existence of an acoustic surface wave is now well established theoretically. The mathematical solution for spherical wave propagation above an impedance boundary includes the possibility of a contribution that possesses all the standard properties for a surface wave. Surface waves exist when the surface is sufficiently porous, relative to its acoustical resistance, that it can influence the airborne particle velocity near the surface and reduce the phase velocity of sound waves in air at the surface. This traps some of the sound energy in the air to remain near the surface as it propagates. Above porous grounds, the existence of surface waves has eluded direct experimental confirmation (pulse experiments have failed to show a separate arrival expected from the reduced phase speed) and indirect evidence for its existence has appeared contradictory. The experimental evidence for the existence of an acoustical surface wave above porous boundaries is reviewed. Recent measurements including pulse experiments are also described. A few years ago the acoustic impedance of a grass-covered surface was measured in the frequency range 30 to 300 Hz. Here, further measurements on the same site are discussed. These measurements include core samples, a shallow refractive survey to determine the seismic velocities, and measurements of the acoustic-to-seismic coupling coefficient.

  1. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  2. Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates.

    PubMed

    Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2018-04-01

    Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios <16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  3. Distributed feedback acoustic surface wave oscillator

    NASA Technical Reports Server (NTRS)

    Elachi, C. (Inventor)

    1977-01-01

    An acoustic surface wave oscillator is constructed from a semiconductor piezoelectric acoustic surface wave amplifier by providing appropriate perturbations at the piezoelectric boundary. The perturbations cause Bragg order reflections that maintain acoustic wave oscillation under certain conditions of gain and feedback.

  4. Computation of Acoustic Waves Through Sliding-Zone Interfaces Using an Euler/Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    1996-01-01

    The effect of a patched sliding-zone interface on the transmission of acoustic waves is examined for two- and three-dimensional model problems. A simple but general interpolation scheme at the patched boundary passes acoustic waves without distortion, provided that a sufficiently small time step is taken. A guideline is provided for the maximum permissible time step or zone speed that gives an acceptable error introduced by the sliding-zone interface.

  5. Acoustic-gravity waves in atmospheric and oceanic waveguides.

    PubMed

    Godin, Oleg A

    2012-08-01

    A theory of guided propagation of sound in layered, moving fluids is extended to include acoustic-gravity waves (AGWs) in waveguides with piecewise continuous parameters. The orthogonality of AGW normal modes is established in moving and motionless media. A perturbation theory is developed to quantify the relative significance of the gravity and fluid compressibility as well as sensitivity of the normal modes to variations in sound speed, flow velocity, and density profiles and in boundary conditions. Phase and group speeds of the normal modes are found to have certain universal properties which are valid for waveguides with arbitrary stratification. The Lamb wave is shown to be the only AGW normal mode that can propagate without dispersion in a layered medium.

  6. On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes

    ERIC Educational Resources Information Center

    Chandran, Pallath

    2004-01-01

    The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…

  7. Surface acoustic wave solid-state rotational micromotor

    NASA Astrophysics Data System (ADS)

    Shilton, Richie J.; Langelier, Sean M.; Friend, James R.; Yeo, Leslie Y.

    2012-01-01

    Surface acoustic waves (SAWs) are used to drive a 1 mm diameter rotor at speeds exceeding 9000 rpm and torque of nearly 5 nNm. Unlike recent high-speed SAW rotary motors, however, the present design does not require a fluid coupling layer but interestingly exploits adhesive stiction as an internal preload, a force usually undesirable at these scales; with additional preloads, smaller rotors can be propelled to 15 000 rpm. This solid-state motor has no moving parts except for the rotor and is sufficiently simple to allow integration into miniaturized drive systems for potential use in microfluidic diagnostics, optical switching and microrobotics.

  8. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  9. Prediction of the Acoustic Field Associated with Instability Wave Source Model for a Compressible Jet

    NASA Technical Reports Server (NTRS)

    Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.

  10. Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media

    NASA Astrophysics Data System (ADS)

    Aver'yanov, M. V.; Khokhlova, V. A.; Sapozhnikov, O. A.; Blanc-Benon, Ph.; Cleveland, R. O.

    2006-12-01

    A new parabolic equation is derived to describe the propagation of nonlinear sound waves in inhomogeneous moving media. The equation accounts for diffraction, nonlinearity, absorption, scalar inhomogeneities (density and sound speed), and vectorial inhomogeneities (flow). A numerical algorithm employed earlier to solve the KZK equation is adapted to this more general case. A two-dimensional version of the algorithm is used to investigate the propagation of nonlinear periodic waves in media with random inhomogeneities. For the case of scalar inhomogeneities, including the case of a flow parallel to the wave propagation direction, a complex acoustic field structure with multiple caustics is obtained. Inclusion of the transverse component of vectorial random inhomogeneities has little effect on the acoustic field. However, when a uniform transverse flow is present, the field structure is shifted without changing its morphology. The impact of nonlinearity is twofold: it produces strong shock waves in focal regions, while, outside the caustics, it produces higher harmonics without any shocks. When the intensity is averaged across the beam propagating through a random medium, it evolves similarly to the intensity of a plane nonlinear wave, indicating that the transverse redistribution of acoustic energy gives no considerable contribution to nonlinear absorption.

  11. Superconducting Qubit (transmon) coupled to Surface Acoustic Waves (SAWs)

    NASA Astrophysics Data System (ADS)

    Guo, Lingzhen; Johansson, Göran

    We work on a hybrid system, which couples the transmon in circuit QED to the propagating mechanical modes of Surface Acoustic Waves (SAWs). This is an analogue of circuit QED system but replacing the microwave photons by SAW phonons. We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. We show that the giant atom can generate entangled phonon pairs, which may have applications in quantum communication. L.G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).

  12. Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials

    PubMed Central

    Ba, Abdoulaye; Kovalenko, Artem; Aristégui, Christophe; Mondain-Monval, Olivier; Brunet, Thomas

    2017-01-01

    Soft porous silicone rubbers are demonstrated to exhibit extremely low sound speeds of tens of m/s for these dense materials, even for low porosities of the order of a few percent. Our ultrasonic experiments show a sudden drop of the longitudinal sound speed with the porosity, while the transverse sound speed remains constant. For such porous elastomeric materials, we propose simple analytical expressions for these two sound speeds, derived in the framework of Kuster and Toksöz, revealing an excellent agreement between the theoretical predictions and the experimental results for both longitudinal and shear waves. Acoustic attenuation measurements also complete the characterization of these soft porous materials. PMID:28054661

  13. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  14. Impacts of short-time scale water column variability on broadband high-frequency acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Eickmeier, Justin

    signal propagation. It is determined that on a time scale of seconds, corresponding to typical periods of surface water waves, the arrival time of reflected acoustic signals from surface waves appear as striation patterns in measured data and can be accurately modelled by ray tracing. Second, changes in acoustic beam arrival angle and acoustic ray path influenced by isotherm depth oscillations are analyzed using an 8-element delay-sum beamformer. The results are compared with outputs from a two-dimensional (2-D) parabolic equation (PE) model using measured sound speed profiles (SSPs) in the water column. Using the method of beamforming on the received signal, the arrival time and angle of an acoustic beam was obtained for measured acoustic signals. It is determined that the acoustic ray path, acoustic beam intensity and angular spread are a function of vertical isotherm oscillations on a time scale of minutes and can be modeled accurately by a 2-D PE model. Third, a forward problem is introduced which uses acoustic wavefronts received on a vertical line array, 1.48 km from the source, in the lower part of the water column to infer range dependence or independence in the SSP. The matched filtering results of received acoustic wavefronts at all hydrophone depths are compared with a ray tracing routine augmented to calculate only direct path and bottom reflected signals. It is determined that the SSP range dependence can be inferred on a time scale of hours using an array of hydrophones spanning the water column. Sound speed profiles in the acoustic field were found to be range independent for 11 of the 23 hours in the measurements. A SSP cumulative reconstruction process, conducted from the seafloor to the sea surface, layer-by-layer, identifies critical segments in the SSP that define the ray path, arrival time and boundary interactions. Data-model comparison between matched filtered arrival time spread and arrival time output from the ray tracing was robust when the SSP

  15. Multidimensional nonlinear ion-acoustic waves in a plasma in view of relativistic effects

    NASA Astrophysics Data System (ADS)

    Belashov, V. Yu.

    2017-05-01

    The structure and dynamics of ion-acoustic waves in an unmagnetized plasma, including the case of weakly relativistic collisional plasma (when it is necessary to take into account the high energy particle flows which are observed in the magnetospheric plasma), are studied analytically and numerically on the basis of a model of the Kadomtsev-Petviashvili (KP) equation. It is shown that, if the velocity of plasma particles approaches the speed of light, the relativistic effects start to strongly influence on the wave characteristics, such as its phase velocity, amplitude, and characteristic wavelength, with the propagation of the twodimensional solitary ion-acoustic wave. The results can be used in the study of nonlinear wave processes in the magnetosphere and in laser and astrophysical plasma.

  16. Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms

    PubMed Central

    Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.

    2011-01-01

    Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828

  17. Is dust acoustic wave a new plasma acoustic mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, C.B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi {ital et al.} [J. Plasma Phys. {bold 41}, 219 (1989)]. It is suggested that both correct and more usable nomenclature of themore » ALM should be the so-called acoustic mode. {copyright} {ital 1997 American Institute of Physics.}« less

  18. Parametrics for Molecular Deuterium Concentrations in the Source Region of the UW-IEC Device Using an Ion Acoustic Wave Diagnostic

    NASA Astrophysics Data System (ADS)

    Boris, D. R.; Emmert, G. A.

    2007-11-01

    The ion source region of the UW-Inertial Electrostatic Confinement device is comprised of a filament assisted DC discharge plasma that exists between the wall of the IEC vacuum chamber and the grounded spherical steel grid that makes up the anode of the IEC device. A 0-dimensional rate equation calculation of the molecular deuterium ion species concentration has been applied utilizing varying primary electron energy, and neutral gas pressure. By propagating ion acoustic waves in the source region of the IEC device the concentrations of molecular deuterium ion species have been determined for these varying plasma conditions, and high D3^+ concentrations have been verified. This was done by utilizing the multi-species ion acoustic wave dispersion relation, which relates the phase speed of the multi-species ion acoustic wave, vph, to the sum in quadrature of the concentration weighted ion acoustic sound speeds of the individual ion species.

  19. Reflection and Refraction of Acoustic Waves by a Shock Wave

    NASA Technical Reports Server (NTRS)

    Brillouin, J.

    1957-01-01

    The presence of sound waves in one or the other of the fluid regions on either side of a shock wave is made apparent, in the region under superpressure, by acoustic waves (reflected or refracted according to whether the incident waves lie in the region of superpressure or of subpressure) and by thermal waves. The characteristics of these waves are calculated for a plane, progressive, and uniform incident wave. In the case of refraction, the refracted acoustic wave can, according to the incidence, be plane, progressive, and uniform or take the form of an 'accompanying wave' which remains attached to the front of the shock while sliding parallel to it. In all cases, geometrical constructions permit determination of the kinematic characteristics of the reflected or refractive acoustic waves. The dynamic relationships show that the amplitude of the reflected wave is always less than that of the incident wave. The amplitude of the refracted wave, whatever its type, may in certain cases be greater than that of the incident wave.

  20. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  1. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  2. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  3. Surface acoustic wave resonators

    NASA Astrophysics Data System (ADS)

    Avitabile, Gianfranco; Roselli, Luca; Atzeni, Carlo; Manes, Gianfranco

    1991-10-01

    The development of surface acoustic wave (SAW) resonators is reviewed with attention given to the design of a simulation package for CAD-assisted SAW resonator design. Basic design configurations and operation parameters are set forth for the SAW resonators including the phase of the reflection factor, evaluation of the stopband center frequency, stopband width, and the free propagation speed. The use of synchronous designs is shown to reduce device sensitivity to variations in the technological process but generate higher insertion losses. The existence of transverse modes and propagation losses is shown to affect the rejection of spurious modes and the achievement of low insertion losses. Several SAW resonators are designed and fabricated with the CAD process, and the resonators in the VHF-UHF bands perform in a manner predicted by simulated results.

  4. Apparatus for measurement of acoustic wave propagation under uniaxial loading with application to measurement of third-order elastic constants of piezoelectric single crystals.

    PubMed

    Zhang, Haifeng; Kosinski, J A; Karim, Md Afzalul

    2013-05-01

    We describe an apparatus for the measurement of acoustic wave propagation under uniaxial loading featuring a special mechanism designed to assure a uniform mechanical load on a cube-shaped sample of piezoelectric material. We demonstrate the utility of the apparatus by determining the effects of stresses on acoustic wave speed, which forms a foundation for the final determination of the third-order elastic constants of langasite and langatate single crystals. The transit time method is used to determine changes in acoustic wave velocity as the loading is varied. In order to minimize error and improve the accuracy of the wave speed measurements, the cross correlation method is used to determine the small changes in the time of flight. Typical experimental results are presented and discussed.

  5. Ion acoustic wave assisted laser beat wave terahertz generation in a plasma channel

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav; Garg, Deepak

    2018-04-01

    Resonant excitation of terahertz (THz) radiation by non-linear mixing of two lasers in the presence of an electrostatic wave is investigated. The electrostatic wave assists in k matching and contributes to non-linear coupling. In this plasma channel, the electron plasma frequency becomes minimum on the axis. The beat frequency ponderomotive force imparts an oscillating velocity to the electrons. In the presence of an ion-acoustic wave, density perturbation due to the ion-acoustic wave couples with the oscillating velocity of the electrons and give rise to non-linear current that gives rise to an ion-acoustic wave frequency assisted THz radiation field. The normalized field amplitude of ion acoustic wave assisted THz varies inversely for ω/ωp . The field amplitude of ion acoustic wave assisted THz decreases as ω/ωp increases.

  6. Ion acoustic waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Plasma wave measurements on the Helios 1 and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are shortwavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic wave turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered.

  7. Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data

    PubMed Central

    Lin, Kui; McLaughlin, Joyce R.; Thomas, Ashley; Parker, Kevin; Castaneda, Benjamin; Rubens, Deborah J.

    2011-01-01

    The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i.e., the crawling wave speed, is proportional to the shear wave speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling wave speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling wave speed and the shear wave speed using the phases of the crawling wave and the shear wave. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a wave moving in only one direction; and (2) an L1 minimization technique with physics inspired constraints is employed to calculate the phase of the crawling wave and to eliminate jump discontinuities from the phase of the shear wave. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear wave speed images can have less artifacts than the crawling wave images. Examples are presented where the shear wave speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands. PMID:21786924

  8. Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy.

    PubMed

    Chuong, C J; Zhong, P; Preminger, G M

    1993-12-01

    The acoustic and mechanical properties of renal calculi dictate how a stone interacts with the mechanical forces produced by shock wave lithotripsy; thus, these properties are directly related to the success of the treatment. Using an ultrasound pulse transmission technique, we measured both longitudinal and transverse (or shear) wave propagation speeds in nine groups of renal calculi with different chemical compositions. We also measured stone density using a pycnometer based on Archimedes' principle. From these measurements, we calculated wave impedance and dynamic mechanical properties of the renal stones. Calcium oxalate monohydrate and cystine stones had higher longitudinal and transverse wave speeds, wave impedances, and dynamic moduli (bulk modulus, Young's modulus, and shear modulus), suggesting that these stones are more difficult to fragment. Phosphate stones (carbonate apatite and magnesium ammonium phosphate hydrogen) were found to have lower values of these properties, suggesting they are more amenable to shock wave fragmentation. These data provide a physical explanation for the significant differences in stone fragility observed clinically.

  9. Acoustic parametric pumping of spin waves

    NASA Astrophysics Data System (ADS)

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2014-11-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  10. Distributed feedback acoustic surface wave oscillator

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1974-01-01

    Using a simple model, the feasibility of applying the distributed feedback concept to the generation of acoustic surface waves is evaluated. It is shown that surface corrugation of the piezoelectric boundary in a semiconductor-piezoelectric surface acoustic wave amplifier could lead to self-sustained oscillations.

  11. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  12. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    PubMed

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  13. Guidelines for Finite Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media

    PubMed Central

    Palmeri, Mark L.; Qiang, Bo; Chen, Shigao; Urban, Matthew W.

    2017-01-01

    Ultrasound shear wave elastography is emerging as an important imaging modality for evaluating tissue material properties. In its practice, some systematic biases have been associated with ultrasound frequencies, focal depths and configuration, transducer types (linear versus curvilinear), along with displacement estimation and shear wave speed estimation algorithms. Added to that, soft tissues are not purely elastic, so shear waves will travel at different speeds depending on their spectral content, which can be modulated by the acoustic radiation force excitation focusing, duration and the frequency-dependent stiffness of the tissue. To understand how these different acquisition and material property parameters may affect measurements of shear wave velocity, simulations of the propagation of shear waves generated by acoustic radiation force excitations in viscoelastic media are a very important tool. This article serves to provide an in-depth description of how these simulations are performed. The general scheme is broken into three components: (1) simulation of the three-dimensional acoustic radiation force push beam, (2) applying that force distribution to a finite element model, and (3) extraction of the motion data for post-processing. All three components will be described in detail and combined to create a simulation platform that is powerful for developing and testing algorithms for academic and industrial researchers involved in making quantitative shear wave-based measurements of tissue material properties. PMID:28026760

  14. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  15. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  16. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  17. Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments

    DTIC Science & Technology

    2015-09-30

    Elastic wave propagation mechanisms in underwater acoustic environments Scott D. Frank Marist College Department of Mathematics Poughkeepsie...conversion from elastic propagation to acoustic propagation, and intense interface waves on underwater acoustic environments with elastic bottoms...acoustic propagation will be considered as a means to predict the presence of elastic ice layers. APPROACH In a cylindrically symmetric environment

  18. Interacting Multiscale Acoustic Vortices as Coherent Excitations in Dust Acoustic Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2018-03-01

    In this work, using three-dimensional intermittent dust acoustic wave turbulence in a dusty plasma as a platform and multidimensional empirical mode decomposition into different-scale modes in the 2 +1 D spatiotemporal space, we demonstrate the experimental observation of the interacting multiscale acoustic vortices, winding around wormlike amplitude hole filaments coinciding with defect filaments, as the basic coherent excitations for acoustic-type wave turbulence. For different decomposed modes, the self-similar rescaled stretched exponential lifetime histograms of amplitude hole filaments, and the self-similar power spectra of dust density fluctuations, indicate that similar dynamical rules are followed over a wide range of scales. In addition to the intermode acoustic vortex pair generation, propagation, or annihilation, the intra- and intermode interactions of acoustic vortices with the same or opposite helicity, their entanglement and synchronization, are found to be the key dynamical processes in acoustic wave turbulence, akin to the interacting multiscale vortices around wormlike cores observed in hydrodynamic turbulence.

  19. Numerical Modeling of Footpoint-driven Magneto-acoustic Wave Propagation in a Localized Solar Flux Tube

    NASA Astrophysics Data System (ADS)

    Fedun, V.; Shelyag, S.; Erdélyi, R.

    2011-01-01

    In this paper, we present and discuss results of two-dimensional simulations of linear and nonlinear magneto-acoustic wave propagation through an open magnetic flux tube embedded in the solar atmosphere expanding from the photosphere through to the transition region and into the low corona. Our aim is to model and analyze the response of such a magnetic structure to vertical and horizontal periodic motions originating in the photosphere. To carry out the simulations, we employed our MHD code SAC (Sheffield Advanced Code). A combination of the VALIIIC and McWhirter solar atmospheres and coronal density profiles were used as the background equilibrium model in the simulations. Vertical and horizontal harmonic sources, located at the footpoint region of the open magnetic flux tube, are incorporated in the calculations, to excite oscillations in the domain of interest. To perform the analysis we have constructed a series of time-distance diagrams of the vertical and perpendicular components of the velocity with respect to the magnetic field lines at each height of the computational domain. These time-distance diagrams are subject to spatio-temporal Fourier transforms allowing us to build ω-k dispersion diagrams for all of the simulated regions in the solar atmosphere. This approach makes it possible to compute the phase speeds of waves propagating throughout the various regions of the solar atmosphere model. We demonstrate the transformation of linear slow and fast magneto-acoustic wave modes into nonlinear ones, i.e., shock waves, and also show that magneto-acoustic waves with a range of frequencies efficiently leak through the transition region into the solar corona. It is found that the waves interact with the transition region and excite horizontally propagating surface waves along the transition region for both types of drivers. Finally, we estimate the phase speed of the oscillations in the solar corona and compare it with the phase speed derived from

  20. Robust acoustic wave manipulation of bubbly liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumerov, N. A., E-mail: gumerov@umiacs.umd.edu; Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076; Akhatov, I. S.

    Experiments with water–air bubbly liquids when exposed to acoustic fields of frequency ∼100 kHz and intensity below the cavitation threshold demonstrate that bubbles ∼30 μm in diameter can be “pushed” away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  1. Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. V.; Devanandhan, S.; Lakhina, G. S.

    2013-01-15

    Obliquely propagating ion-acoustic soliatry waves are examined in a magnetized plasma composed of kappa distributed electrons and fluid ions with finite temperature. The Sagdeev potential approach is used to study the properties of finite amplitude solitary waves. Using a quasi-neutrality condition, it is possible to reduce the set of equations to a single equation (energy integral equation), which describes the evolution of ion-acoustic solitary waves in magnetized plasmas. The temperature of warm ions affects the speed, amplitude, width, and pulse duration of solitons. Both the critical and the upper Mach numbers are increased by an increase in the ion temperature.more » The ion-acoustic soliton amplitude increases with the increase in superthermality of electrons. For auroral plasma parameters, the model predicts the soliton speed, amplitude, width, and pulse duration, respectively, to be in the range of (28.7-31.8) km/s, (0.18-20.1) mV/m; (590-167) m, and (20.5-5.25) ms, which are in good agreement with Viking observations.« less

  2. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  3. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  4. Measurement of the open porosity of agricultural soils with acoustic waves

    NASA Astrophysics Data System (ADS)

    Luong, Jeanne; Mercatoris, Benoit; Destain, Marie-France

    2015-04-01

    soil, since there are more voids filled with air and water, increasing the viscous losses. Fellah et al. (2003) showed that porosity can be determined from phase speed and reflection coefficient. The propagation of acoustic waves in soil is investigated to develop a rapid method for the quantification of the porosity level of agricultural soils. In the present contribution, correlations are determined between the acoustic signatures of agricultural soil in function of its structural properties. In laboratory, compression tests are performed on unsaturated soil samples to reproduce different porosity levels. Ultrasonic pulses are sent through the considered samples. The propagated signals are treated in both time and frequency domains in order to determine the speed of the phase velocity and the reflection. Porosity is then determined and compared with water content measured by gravimetric method. Alaoui, A., Lipiec, J. & Gerke, H.H., 2011. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil and Tillage Research, 115-116, pp.1-15. Fellah Z.E.A., Berger S., Lauriks W., Depollier C., Aristegui C., Chapelon J.Y., 2003. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. The Journal of the Acoustical Society of America 113 (5), pp 2424-2433 Hamza, M.A. & Anderson, W.K., 2005. Soil compaction in cropping systems. Soil and Tillage Research, 82(2), pp.121-145. Lu, Z., 2005. Role of hysteresis in propagating acousitcs waves in soils. Geophysical Research Letter, pp.32:1-4. Lu, Z., Hickey, C.J. & Sabatier, J.M., 2004. Effects of compaction on the acoustic velocity in soils. Soil Science Society of America Journal, 68(1), pp.7-16. Lu, Z. & Sabatier, J.M., 2009. Effects of soil water potential and moisture content on sound speed. Soil Science Society of America Journal, 73(5), pp.1614-1625. Le Maitre, D.C., Kotzee, I.M. & O'Farrell, P.J., 2014. Impacts of land-cover change on

  5. The structure of ion-acoustic waves in a low-frequency three-component electron-ion space plasma with two-electron populations

    NASA Astrophysics Data System (ADS)

    Govender, G.; Moolla, S.

    2018-07-01

    Low-frequency ion-acoustic waves are analysed on the ion time-scale, in a three-component electron-ion space plasma. The solitary waves propagate in the positive x direction relative to an ambient magnetic field ěc {B}_0 which forms static background for a configuration consisting of cool fluid ions and both warm and hot Boltzmann-distributed electrons with temperatures T_{ic}, T_{ew} and T_{eh}, respectively. We derive linear dispersion relation for the waves by introducing first-order density, pressure and velocity perturbations into the ion fluid equations. Additionally, the variation in the nonlinear structure of the waves are investigated by carrying out a full parametric analysis utilising our numerical code. Our results reveal that ion-acoustic waves exhibit well-defined nonlinear spikes at speeds of M≥ 2.25 and an electric field amplitude of E_0=0.85. It is also shown that low wave speeds (M≤ 2), higher densities of the hot electrons, antiparallel drifting of the cool fluid ions, and increased ion temperatures all lead to significant dispersive effects. The ion-acoustic plasma waves featured in this paper have forms that are consistent with those classified as the type-A and type-B broadband electrostatic noise (BEN) observed in the data obtained from earlier satellite missions.

  6. Finite Element Analysis of the Propagation of Acoustic Waves Along Waveguides Immersed in Water

    NASA Astrophysics Data System (ADS)

    Hladky-Hennion, A.-C.; Langlet, P.; de Billy, M.

    1997-03-01

    The finite element approach has previously been used, with the help of the ATILA code, to model the propagation of acoustic waves in waveguides [A.-C. Hladky-Hennion, Journal of Sound and Vibration, 194,119-136 (1996)]. In this paper an extension of the technique to the analysis of the propagation of acoustic waves in immersed waveguides is presented. In the proposed approach, the problem is reduced to a bidimensional problem, in which only the cross-section of the guide and the surrounding fluid domain are meshed by using finite elements. Then, wedges the top angles of which vary, are studied and the finite element results of the wedge wave speed are compared with experimental results. Finally, the conclusion indicates a way to extend this approach to waveguides of any cross-section.

  7. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  8. Inhomogeneous Radiation Boundary Conditions Simulating Incoming Acoustic Waves for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Fang, Jun; Kurbatskii, Konstantin A.

    1996-01-01

    A set of nonhomogeneous radiation and outflow conditions which automatically generate prescribed incoming acoustic or vorticity waves and, at the same time, are transparent to outgoing sound waves produced internally in a finite computation domain is proposed. This type of boundary condition is needed for the numerical solution of many exterior aeroacoustics problems. In computational aeroacoustics, the computation scheme must be as nondispersive ans nondissipative as possible. It must also support waves with wave speeds which are nearly the same as those of the original linearized Euler equations. To meet these requirements, a high-order/large-stencil scheme is necessary The proposed nonhomogeneous radiation and outflow boundary conditions are designed primarily for use in conjunction with such high-order/large-stencil finite difference schemes.

  9. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  10. Low frequency acoustic waves from explosive sources in the atmosphere

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; Robinet, Jean-Christophe; Roblin, Camille; Gloerfelt, Xavier

    2006-11-01

    In this study, a perturbative formulation of non linear euler equations is used to compute the pressure variation for low frequency acoustic waves from explosive sources in real atmospheres. Based on a Dispersion-Relation-Preserving (DRP) finite difference scheme, the discretization provides good properties for both sound generation and long range sound propagation over a variety of spatial atmospheric scales. It also assures that there is no wave mode coupling in the numerical simulation The background flow is obtained by matching the comprehensive empirical global model of horizontal winds HWM-93 (and MSISE-90 for the temperature profile) with meteorological reanalysis of the lower atmosphere. Benchmark calculations representing cases where there is downward and upward refraction (including shadow zones), ducted propagation, and generation of acoustic waves from low speed shear layers are considered for validation. For all cases, results show a very good agreement with analytical solutions, when available, and with other standard approaches, such as the ray tracing and the normal mode technique. Comparison of calculations and experimental data from the high explosive ``Misty Picture'' test that provided the scaled equivalent airblast of an 8 kt nuclear device (on May 14, 1987), is also considered. It is found that instability waves develop less than one hour after the wavefront generated by the detonation passes.

  11. Acoustic results of supersonic tip speed fan blade modification

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Kazin, S. B.

    1974-01-01

    A supersonic tip speed single stage fan was modified with the intent of reducing multiple pure tone (MPT) or buzz saw noise. There were three modifications to the blades from the original design. The modifications to the blade resulted in an increase in cascade throat area causing the shock to start at a lower corrected fan speed. The acoustic results without acoustically absorbing liners showed substantial reduction in multiple pure tone levels. However, an increase in the blade passing frequency noise at takeoff fan speed accompanied the MPT reduction. The net result however, was a reduction in the maximum 1000-foot (304.8 m) altitude level flyover PNL. For the case with acoustic treatment in the inlet outer wall, the takeoff noise increased relative to an acoustically treated baseline. This was largely due to the increased blade passing frequency noise which was not effectively reduced by the liner.

  12. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  13. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  14. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A.

    2016-08-15

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger themore » onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.« less

  15. Short period sound speed oscillation measured by intensive XBT survey and its role on GNSS/acoustic positioning

    NASA Astrophysics Data System (ADS)

    Kido, M.; Matsui, R.; Imano, M.; Honsho, C.

    2017-12-01

    In the GNSS/acoustic measurement, sound speed in ocean plays a key role of accuracy of final positioning. We have shown than longer period sound speed undulation can be properly estimated from GNSS-A analysis itself in our previous work. In this work, we have carried out intensive XBT measurement to get temporal variation of sound speed in short period to be compared with GNSS-A derived one. In the individual temperature profile obtained by intensive XBT measurements (10 minutes interval up to 12 times of cast), clear vertical oscillation up to 20 m of amplitude in the shallow part were observed. These can be interpreted as gravitational internal wave with short-period and hence short wavelength anomaly. Kido et al. (2007) proposed that horizontal variation of the ocean structure can be considered employing five or more transponders at once if the structure is expressed by two quantities, i.e., horizontal gradient in x/y directions. However, this hypothesis requires that the variation must has a large spatial scale (> 2-5km) so that the horizontal variation can be regarded as linear within the extent of acoustic path to seafloor transponders. Therefore the wavelength of the above observed internal wave is getting important. The observed period of internal wave was 30-60 minute. However its wavelength cannot be directly measured. It must be estimate based on density profile of water column. In the comparison between sound speed change and positioning, the delay of their phases were 90 degree, which indicates that most steep horizontal slope of internal wave correspond to largest apparent positioning shift.

  16. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn; Huang, Xian-Rong

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.« less

  17. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).

    PubMed

    Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian

    2017-10-11

    Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.

  18. Experimental and theoretical studies on the movements of two bubbles in an acoustic standing wave field.

    PubMed

    Jiao, Junjie; He, Yong; Leong, Thomas; Kentish, Sandra E; Ashokkumar, Muthupandian; Manasseh, Richard; Lee, Judy

    2013-10-17

    When subjected to an ultrasonic standing-wave field, cavitation bubbles smaller than the resonance size migrate to the pressure antinodes. As bubbles approach the antinode, they also move toward each other and either form a cluster or coalesce. In this study, the translational trajectory of two bubbles moving toward each other in an ultrasonic standing wave at 22.4 kHz was observed using an imaging system with a high-speed video camera. This allowed the speed of the approaching bubbles to be measured for much closer distances than those reported in the prior literature. The trajectory of two approaching bubbles was modeled using coupled equations of radial and translational motions, showing similar trends with the experimental results. We also indirectly measured the secondary Bjerknes force by monitoring the acceleration when bubbles are close to each other under different acoustic pressure amplitudes. Bubbles begin to accelerate toward each other as the distance between them gets shorter, and this acceleration increases with increasing acoustic pressure. The current study provides experimental data that validates the theory on the movement of bubbles and forces acting between them in an acoustic field that will be useful in understanding bubble coalescence in an acoustic field.

  19. Millimeter waves: acoustic and electromagnetic.

    PubMed

    Ziskin, Marvin C

    2013-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. Copyright © 2012 Wiley Periodicals, Inc.

  20. Investigation of shock-acoustic-wave interaction in transonic flow

    NASA Astrophysics Data System (ADS)

    Feldhusen-Hoffmann, Antje; Statnikov, Vladimir; Klaas, Michael; Schröder, Wolfgang

    2018-01-01

    The buffet flow field around supercritical airfoils is dominated by self-sustained shock wave oscillations on the suction side of the wing. Theories assume that this unsteadiness is driven by an acoustic feedback loop of disturbances in the flow field downstream of the shock wave whose upstream propagating part is generated by acoustic waves. Therefore, in this study, first variations in the sound pressure level of the airfoil's trailing-edge noise during a buffet cycle, which force the shock wave to move upstream and downstream, are detected, and then, the sensitivity of the shock wave oscillation during buffet to external acoustic forcing is analyzed. Time-resolved standard and tomographic particle-image velocimetry (PIV) measurements are applied to investigate the transonic buffet flow field over a supercritical DRA 2303 airfoil. The freestream Mach number is M_{∞} = 0.73, the angle of attack is α = {3.5}°, and the chord-based Reynolds number is Re_c = 1.9× 10^6. The perturbed Lamb vector field, which describes the major acoustic source term of trailing-edge noise, is determined from the tomographic PIV data. Subsequently, the buffet flow field is disturbed by an artificially generated acoustic field, the acoustic intensity of which is comparable to the Lamb vector that is determined from the PIV data. The results confirm the hypothesis that buffet is driven by an acoustic feedback loop and show the shock wave oscillation to directly respond to external acoustic forcing. That is, the amplitude modulation frequency of the artificial acoustic perturbation determines the shock oscillation.

  1. Circuit quantum acoustodynamics with surface acoustic waves.

    PubMed

    Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J

    2017-10-17

    The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.

  2. Shear wave speed recovery in sonoelastography using crawling wave data.

    PubMed

    Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley

    2010-07-01

    The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane.

  3. Shear wave speed recovery in sonoelastography using crawling wave data

    PubMed Central

    Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley

    2010-01-01

    The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane. PMID:20649204

  4. Experimental investigation of starting characteristics and wave propagation from a shallow open cavity and its acoustic emission at supersonic speed

    NASA Astrophysics Data System (ADS)

    Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo

    2018-01-01

    Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.

  5. Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment

    NASA Astrophysics Data System (ADS)

    Luo, Jing

    Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.

  6. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  7. Phenomenological Study of Interaction between Solar Acoustic Waves and Sunspots from Measured Scattered Wavefunctions

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui; Liang, Zhi-Chao

    2012-08-01

    The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their

  8. Scattering Of Nonplanar Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Gillman, Judith M.; Farassat, F.; Myers, M. K.

    1995-01-01

    Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.

  9. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...

    2015-07-30

    Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscalemore » convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.« less

  10. Laser Generated Leaky Acoustic Waves for Needle Visualization.

    PubMed

    Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi

    2018-04-01

    Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.

  11. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.

    PubMed

    Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin

    2016-09-01

    Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.

  12. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    NASA Astrophysics Data System (ADS)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  13. Characterization of microchannel anechoic corners formed by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin

    2018-02-01

    Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).

  14. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  15. Experimental Investigation on Acoustic Control Droplet Transfer in Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Weifeng, Xie; Chenglei, Fan; Chunli, Yang; Sanbao, Lin

    2018-02-01

    Ultrasonic-wave-assisted gas metal arc welding (U-GMAW) is a new, advanced arc welding method that uses an ultrasonic wave emitted from an ultrasonic radiator above the arc. However, it remains unclear how the ultrasonic wave affects the metal droplet, hindering further application of U-GMAW. In this paper, an improved U-GMAW system was used and its superiority was experimentally demonstrated. Then a series of experiments were designed and performed to study how the ultrasonic wave affects droplet transfer, including droplet size, velocity, and motion trajectory. The behavior of droplet transfer was observed in high-speed images. The droplet transfer is closely related to the distribution of the acoustic field, determined by the ultrasonic current. Moreover, by analyzing the variably accelerated motion of the droplet, the acoustic control of the droplet transfer was intuitively demonstrated. Finally, U-GMAW was successfully used in vertical-up and overhead welding experiments, showing that U-GMAW is promising for use in welding in all positions.

  16. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy.

    PubMed

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  17. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  18. High speed propeller acoustics and aerodynamics - A boundary element approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.; Dunn, M. H.

    1989-01-01

    The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

  19. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Treesearch

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  20. Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael

    2005-03-21

    Based on an acoustic assumption (shear wave velocity is zero) and a dispersion relation, we derive an acoustic wave equation for P-waves in tilted transversely isotropic (TTI) media (transversely isotropic media with a tilted symmetry axis). This equation has fewer parameters than an elastic wave equation in TTI media and yields an accurate description of P-wave traveltimes and spreading-related attenuation. Our TTI acoustic wave equation is a fourth-order equation in time and space. We demonstrate that the acoustic approximation allows the presence of shear waves in the solution. The substantial differences in traveltime and amplitude between data created using VTImore » and TTI assumptions is illustrated in examples.« less

  1. Acoustic-gravity waves, theory and application

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  2. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.

    PubMed

    Koyama, Daisuke; Kotera, Hironori; Kitazawa, Natsuko; Yoshida, Kenji; Nakamura, Kentaro; Watanabe, Yoshiaki

    2011-04-01

    Observation techniques for measuring the small vibration of a single microcapsule of tens of nanometers in an acoustic standing wave field are discussed. First, simultaneous optical observation of a microbubble vibration by two methods is investigated, using a high-speed video camera, which permits two-dimensional observation of the bubble vibration, and a laser Doppler vibrometer (LDV), which can observe small bubble vibration amplitudes at high frequency. Bubbles of tens of micrometers size were trapped at the antinode of an acoustic standing wave generated in an observational cell. Bubble vibration at 27 kHz could be observed and the experimental results for the two methods showed good agreement. The radial vibration of microcapsules with a hard plastic shell was observed using the LDV and the measurement of the capsule vibration with radial oscillation amplitude of tens of nanometers was successful. The acoustic radiation force acting on microcapsules in the acoustic standing wave was measured from the trapped position of the standing wave and the radial oscillation amplitude of the capsules was estimated from the theoretical equation of the acoustic radiation force, giving results in good agreement with the LDV measurements. The radial oscillation amplitude of a capsule was found to be proportional to the amplitude of the driving sound pressure. A larger expansion ratio was observed for capsules closer to the resonance condition under the same driving sound pressure and frequency. © 2011 IEEE

  4. Wideband acoustic wave resonators composed of hetero acoustic layer structure

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Tanaka, Shuji

    2018-07-01

    “Hetero acoustic layer (HAL) surface acoustic wave (SAW) device” is a new type of SAW device using a single crystal piezoelectric thin plate supported by a substrate. In this study, a HAL SAW resonator using a LiNbO3 (LN) thin plate and a multi-layer acoustic film was designed by finite element method (FEM) and fabricated. The thickness of LN is 3.6 µm and the pitch of an interdigital transducer (IDT) (λ) is 5.24 µm for a resonance frequency of 600 MHz. The multi-layer acoustic film is composed of 3 layers of SiO2 and AlN for each, i.e., 6 layers in total, alternately deposited on a glass substrate. The HAL SAW resonator achieved a wide bandwidth of 20.3% and a high impedance ratio of 83 dB. Compared with a 0th shear horizontal (SH0) mode plate wave resonator, the performance is better and the thickness of LN is 7 times larger. The HAL SAW without a cavity is advantageous in terms of mechanical stability, thickness controllability and fabrication yield.

  5. Internal Wave Impact on the Performance of a Hypothetical Mine Hunting Sonar

    DTIC Science & Technology

    2014-10-01

    time steps) to simulate the propagation of the internal wave field through the mine field. Again the transmission loss and acoustic signal strength...dependent internal wave perturbed sound speed profile was evaluated by calculating the temporal variability of the signal excess (SE) of acoustic...internal wave perturbation of the sound speed profile, was calculated for a limited sound speed field time section. Acoustic signals were projected

  6. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.

    PubMed

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-02-27

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  7. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    PubMed Central

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-01-01

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner. PMID:23447010

  8. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-06-01

    It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.

  9. Acoustic waves in gases with strong pressure gradients

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.

  10. Nonplanar dust-ion acoustic shock waves with transverse perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue Jukui

    2005-01-01

    The nonlinear dust-ion acoustic shock waves in dusty plasmas with the combined effects of bounded cylindrical/spherical geometry, the transverse perturbation, the dust charge fluctuation, and the nonthermal electrons are studied. Using the perturbation method, a cylindrical/spherical Kadomtsev-Petviashvili Burgers equation that describes the dust-ion acoustic shock waves is deduced. A particular solution of the cylindrical/spherical Kadomtsev-Petviashvili Burgers equation is also obtained. It is shown that the dust-ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be slightly deformed as time goes on.

  11. Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.

    2004-01-01

    The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s-1 and currents up to 40 cm s-1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is -0.4 cm s-1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s-1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s-1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s-1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ??? 50 cm s-1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ??? 5 cm s-1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.

  12. Acoustic Wave Filter Technology-A Review.

    PubMed

    Ruppel, Clemens C W

    2017-09-01

    Today, acoustic filters are the filter technology to meet the requirements with respect to performance dictated by the cellular phone standards and their form factor. Around two billion cellular phones are sold every year, and smart phones are of a very high percentage of approximately two-thirds. Smart phones require a very high number of filter functions ranging from the low double-digit range up to almost triple digit numbers in the near future. In the frequency range up to 1 GHz, surface acoustic wave (SAW) filters are almost exclusively employed, while in the higher frequency range, bulk acoustic wave (BAW) and SAW filters are competing for their shares. Prerequisites for the success of acoustic filters were the availability of high-quality substrates, advanced and highly reproducible fabrication technologies, optimum filter techniques, precise simulation software, and advanced design tools that allow the fast and efficient design according to customer specifications. This paper will try to focus on innovations leading to high volume applications of intermediate frequency (IF) and radio frequency (RF) acoustic filters, e.g., TV IF filters, IF filters for cellular phones, and SAW/BAW RF filters for the RF front-end of cellular phones.

  13. Acoustic wave generation by microwaves and applications to nondestructive evaluation.

    PubMed

    Hosten, Bernard; Bacon, Christophe; Guilliorit, Emmanuel

    2002-05-01

    Although acoustic wave generation by electromagnetic waves has been widely studied in the case of laser-generated ultrasounds, the literature on acoustic wave generation by thermal effects due to electromagnetic microwaves is very sparse. Several mechanisms have been suggested to explain the phenomenon of microwave generation, i.e. radiation pressure, electrostriction or thermal expansion. Now it is known that the main cause is the thermal expansion due to the microwave absorption. This paper will review the recent advances in the theory and experiments that introduce a new way to generate ultrasonic waves without contact for the purpose of nondestructive evaluation and control. The unidirectional theory based on Maxwell's equations, heat equation and thermoviscoelasticity predicts the generation of acoustic waves at interfaces and inside stratified materials. Acoustic waves are generated by a pulsed electromagnetic wave or a burst at a chosen frequency such that materials can be excited with a broad or narrow frequency range. Experiments show the generation of acoustic waves in water, viscoelastic polymers and composite materials shaped as rod and plates. From the computed and measured accelerations at interfaces, the viscoelastic and electromagnetic properties of materials such as polymers and composites can be evaluated (NDE). Preliminary examples of non-destructive testing applications are presented.

  14. Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics

    NASA Astrophysics Data System (ADS)

    Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.

    2018-01-01

    Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p , a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.

  15. Acoustic Wave Guiding by Reconfigurable Tessellated Arrays

    NASA Astrophysics Data System (ADS)

    Zou, Chengzhe; Lynd, Danielle T.; Harne, Ryan L.

    2018-01-01

    The reconfiguration of origami tessellations is a prime vehicle to harness for adapting system properties governed by a structural form. While the knowledge of mechanical property changes associated with origami tessellation folding has been extensively built up, the opportunities to integrate other physics into a framework of tessellated, adaptive structures remain to be fully exploited. Acoustics appears to be a prime domain to marry with origami science. Specifically, deep technical analogies are revealed between wave-guiding properties achieved via digital methods that virtually reposition array elements and the actual repositioning of facets by folding origami-inspired tessellations. Here we capitalize on this analogy to investigate acoustic arrays established upon facet layouts of origami-inspired tessellations. We show that a concept of reconfigurable tessellated arrays may guide waves more effectively than traditional digitally phased arrays using fewer transducer elements. Moreover, we show that the refinement of tessellated arrays trends to the ideal case of classical wave radiators or receivers grounded in principles of geometrical acoustics. By linear wave physics shared among myriad scientific disciplines and across orders of magnitude in length scale, these discoveries may cultivate numerous opportunities for wave-guiding adaptive structures inspired by low-dimensional origami tessellations.

  16. Observation and Modeling of Storm Generated Acoustic Waves in the Ionosphere Revealed in a Dense Network of GPS Receivers

    NASA Astrophysics Data System (ADS)

    Walterscheid, R. L.; Azeem, S. I.

    2017-12-01

    Acoustic waves generated in the lower atmosphere may become an important source of variably in the upper atmosphere. Although they are excited with small amplitudes they are minimally subject to viscous dissipation and may reach significant amplitudes at F-region altitudes. A number of studies in the 1970s showed clear signatures in ionosonde data in the infrasonic period range attributable to thunder storm activity. We have examined Total Electron Content data from a dense network of over 4000 ground-based GPS receivers over the continental United States during an outbreak of severe weather, including tornados, over Kansas in May 2015. A sequence of GPS TEC images showed clear Traveling Ionospheric Disturbances (TIDs) in the form of concentric rings moving outward from the center of the storm region. The characteristics of the disturbance (phase speed and frequency) were consistent with acoustic waves in the infrasonic range. We have modeled the disturbance by including a tropospheric heat source representing latent heat release from a large thunderstorm. The disturbance at ionospheric altitudes resembles the observed disturbance in terms of phase speed, frequency and horizontal wavelength. We conclude that the observed TIDs in TEC were caused by an acoustic wave generated by deep convection.

  17. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determinedmore » by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.« less

  18. Numerical simulation of single bubble dynamics under acoustic travelling waves.

    PubMed

    Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu

    2018-04-01

    The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  20. A comparison of solar wind and ionospheric ion acoustic waves

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Kelley, M. C.

    1980-01-01

    Ion acoustic waves produced during the Trigger experiment are compared to ion acoustic waves observed in the solar wind. After normalizing to the Debye length the spectra are nearly identical, although the ionospheric wave relative energy density is 100 times larger than the solar wind case.

  1. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.

    PubMed

    Colosi, John A

    2008-09-01

    While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.

  2. Frequency modulation at a moving material interface and a conservation law for wave number. [acoustic wave reflection and transmission

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1976-01-01

    An integral conservation law for wave numbers is considered. In order to test the validity of the proposed conservation law, a complete solution for the reflection and transmission of an acoustic wave impinging normally on a material interface moving at a constant speed is derived. The agreement between the frequency condition thus deduced from the dynamic equations of motion and the frequency condition derived from the jump condition associated with the integral equation supports the proposed law as a true conservation law. Additional comparisons such as amplitude discontinuities and Snells' law in a moving media further confirm the stated proposition. Results are stated concerning frequency and wave number relations across a shock front as predicted by the proposed conservation law.

  3. Particle separation by phase modulated surface acoustic waves.

    PubMed

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  4. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    NASA Astrophysics Data System (ADS)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  5. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong

    2015-07-01

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies.« less

  6. Nonplanar ion acoustic waves with kappa-distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Biswajit

    2011-06-15

    Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with kappa distributed electrons and warm ions. The influence of kappa-distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that increase in the kappa distributed electrons (i.e., decreasing {kappa}) decreases the amplitude of the solitary electrostatic potential structures. The numerical results are presented to understand the formation of ion acoustic solitary waves with kappa-distributed electrons in nonplanar geometry. Themore » present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.« less

  7. Effects of upper ocean sound-speed structure on deep acoustic shadow-zone arrivals at 500- and 1000-km range.

    PubMed

    Van Uffelen, Lora J; Worcester, Peter F; Dzieciuch, Matthew A; Rudnick, Daniel L; Colosi, John A

    2010-04-01

    Deep acoustic shadow-zone arrivals observed in the late 1990s in the North Pacific Ocean reveal significant acoustic energy penetrating the geometric shadow. Comparisons of acoustic data obtained from vertical line arrays deployed in conjunction with 250-Hz acoustic sources at ranges of 500 and 1000 km from June to November 2004 in the North Pacific, with simulations incorporating scattering consistent with the Garrett-Munk internal-wave spectrum, are able to describe both the energy contained in and vertical extent of deep shadow-zone arrivals. Incoherent monthly averages of acoustic timefronts indicate that lower cusps associated with acoustic rays with shallow upper turning points (UTPs), where sound-speed structure is most variable and seasonally dependent, deepen from June to October as the summer thermocline develops. Surface-reflected rays, or those with near-surface UTPs, exhibit less scattering due to internal waves than in later months when the UTP deepens. Data collected in November exhibit dramatically more vertical extension than previous months. The depth to which timefronts extend is a complex combination of deterministic changes in the depths of the lower cusps as the range-average profiles evolve with seasonal change and of the amount of scattering, which depends on the mean vertical gradients at the depths of the UTPs.

  8. Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Erin Hoffmann

    In this report, we study the correlation between thunderstorm activity and ionospheric gravity and acoustic waves in the low-latitude ionosphere. We use ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World- Wide Lightning Location Network (WWLLN). We find that ionospheric acoustic waves show a strong diurnal pattern in summer, peaking in the pre-midnight time period. However, the peak magnitude does not correspond to thunderstorm area, and the peak time is significantly after the peak in thunderstorm activity. Wintertime acoustic wave activity has no discernable pattern in these data. Themore » coverage area of ionospheric gravity waves in the summer was found to increase with increasing thunderstorm activity. Wintertime gravity wave activity has an observable diurnal pattern unrelated to thunderstorm activity. These findings show that while thunderstorms are not the only, or dominant source of ionospheric perturbations at low-latitudes, they do have an observable effect on gravity wave activity and could be influential in acoustic wave activity.« less

  9. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.

    PubMed

    El-Shamy, E F

    2015-03-01

    The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.

  10. Shear wave speed and dispersion measurements using crawling wave chirps.

    PubMed

    Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J

    2014-10-01

    This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented. © The Author(s) 2014.

  11. Determination of wave speed and wave separation in the arteries.

    PubMed

    Khir, A W; O'Brien, A; Gibbs, J S; Parker, K H

    2001-09-01

    Considering waves in the arteries as infinitesimal wave fronts rather than sinusoidal wavetrains, the change in pressure across the wave front, dP, is related to the change in velocity, dU, that it induces by the "water hammer" equation, dP=+/-rhocdU, where rho is the density of blood and c is the local wave speed. When only unidirectional waves are present, this relationship corresponds to a straight line when P is plotted against U with slope rhoc. When both forward and backward waves are present, the PU-loop is no longer linear. Measurements in latex tubes and systemic and pulmonary arteries exhibit a linear range during early systole and this provides a way of determining the local wave speed from the slope of the linear portion of the loop. Once the wave speed is known, it is also possible to separate the measured P and U into their forward and backward components. In cases where reflected waves are prominent, this separation of waves can help clarify the pattern of waves in the arteries throughout the cardiac cycle.

  12. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  13. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE PAGES

    Bowman, D. C.; Lees, J. M.

    2018-04-27

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  14. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, D. C.; Lees, J. M.

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  15. Application of the wavenumber jump condition to the normal and oblique interaction of a plane acoustic wave and a plane shock

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1977-01-01

    The kinematics of normal and oblique interactions between a plane acoustic wave and a plane shock wave are investigated separately using an approach whereby the shock is considered as a sharp discontinuity surface separating two half-spaces, so that the dispersion relation on either side of the shock and the wavenumber jump condition across a discontinuity surface completely specify the kinematics of the problem in the whole space independently of the acoustic-field dynamics. The normal interaction is analyzed for a stationary shock, and the spectral change of the incident wave is investigated. The normal interaction is then examined for the case of a shock wave traveling into an ambient region where an acoustic disturbance is propagating in the opposite direction. Detailed attention is given to the consequences of the existence of a critical shock speed above which the frequency of the transmitted wave becomes negative. Finally, the oblique interaction with a fixed shock is considered, and the existence and nature of the transmitted wave is investigated, particularly as a function of the angle of incidence.

  16. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2013-09-30

    of predictive models that can account for the all of the physical processes and variability of acoustic propagation and scattering in ocean...collaboration with Dr. Nicholas Chotiros, particularly for theoretical development of bulk acoustic /sediment modeling and laser roughness measurements...G. Potty and J. Miller. Measurement and modeling of Scholte wave dispersion in coastal waters. In Proc. of Third Int. Conf. on Ocean Acoustics

  17. Acoustic Structure Quantification Versus Point Shear Wave Speed Measurement for the Assessment of Liver Fibrosis in Viral Hepatitis B.

    PubMed

    Liu, Jianxue; Ren, Wei; Ai, Hong; Dun, Guoliang; Ji, Yonghao; Zhang, Yaoren; Wan, Qinyun; Lin, Shumei

    2018-06-01

    This study was conducted to evaluate the value of acoustic structure quantification (ASQ) technology versus that of point shear wave speed measurement (PSWSM) imaging technology for the assessment of liver fibrosis stage. A total of 104 patients with chronic hepatitis B (CHB) and 30 healthy control patients underwent ASQ and PSWSM examinations. Seven quantitative parameters were obtained from ASQ, and a principal component analysis was used to establish the integrative indicators. A quantitative parameter, known as the shear wave speed (SWS, m/s), was obtained from the PSWSM. The METAVIR scores for the assessment of pathologic liver fibrosis were used as a benchmark. Liver fibrosis stages exhibited a good correlation with the integrative indicators and SWS (r = 0.682, p <0.001; r = 0.651, p <0.001). The areas under the receiver operating characteristic curves for ASQ and PSWSM were 0.705 and 0.854 for mild liver fibrosis (F ≥ 1, p = 0.045), 0.813 and 0.743 for significant liver fibrosis (F ≥ 2, p = 0.115), 0.839 and 0.857 for severe liver fibrosis (F ≥ 3, p = 0.417) and 0.874 and 0.971 for liver cirrhosis (F = 4, p = 0.016), respectively. In conclusion, both ASQ and PSWSM were promising ultrasonic methods for assessing liver fibrosis in patients with CHB; however, PSWSM was more valuable for identifying mild liver fibrosis (F ≥ 1) and cirrhosis (F = 4) than ASQ, and the combination of PSWSM and ASQ improved the accuracy of diagnosing severe liver fibrosis (F ≥ 3). Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  18. Nano-optomechanical system based on microwave frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tadesse, Semere Ayalew

    Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic

  19. Acoustic and elastic waves in metamaterials for underwater applications

    NASA Astrophysics Data System (ADS)

    Titovich, Alexey S.

    Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson

  20. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  1. Acoustic Waves in a Three-Dimensional Stratified Atmosphere

    NASA Astrophysics Data System (ADS)

    Kalkofen, W.; Massaglia, S.; Bodo, G.; Rossi, P.

    2000-05-01

    We investigate the propagation of acoustic waves in a three-dimensional, nonmagnetic, isothermal atmosphere stratified in plane-parallel layers in a study of oscillations in chromospheric calcium bright points. We present analytic results for the linear and numerical results for the nonlinear evolution of a disturbance. An impulsively excited acoustic disturbance emanates from a point source and propagates outward as a spherical acoustic wave, amplifying exponentially in the upward direction. A significant wave amplitude is found only in a relatively narrow cone about the vertical. The amplitude of the wave and the opening angle of the cone decrease with time. Because of the lateral spread of the upward-propagating energy, the decay is faster in 2D and 3D simulations than in 1D. We discuss observational consequences of this scenario, some of which are not anticipated from 1D calculations. We acknowledge support from NASA, NSF and the Ministero per l'Università e la Ricerca Scientifica e Tecnologica.

  2. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  3. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe.

    PubMed

    Hindmarsh, Mark

    2018-02-16

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  4. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark

    2018-02-01

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  5. Strong wave/mean-flow coupling in baroclinic acoustic streaming

    NASA Astrophysics Data System (ADS)

    Chini, Greg; Michel, Guillaume

    2017-11-01

    Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.

  6. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  7. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  8. Three-dimensional manipulation of single cells using surface acoustic waves

    PubMed Central

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-01-01

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444

  9. Three-dimensional manipulation of single cells using surface acoustic waves.

    PubMed

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-02-09

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

  10. High-speed imaging of traveling waves in a granular material during silo discharge.

    PubMed

    Börzsönyi, Tamás; Kovács, Zsolt

    2011-03-01

    We report experimental observations of sound waves in a granular material during resonant silo discharge called silo music. The grain motion was tracked by high-speed imaging while the resonance of the silo was detected by accelerometers and acoustic methods. The grains do not oscillate in phase at neighboring vertical locations, but information propagates upward in this system in the form of sound waves. We show that the wave velocity is not constant throughout the silo but considerably increases toward the lower end of the system, suggesting increased pressure in this region, where the flow changes from cylindrical to converging flow. In the upper part of the silo the wave velocity matches the sound velocity measured in the same material when standing (in the absence of flow). Grain oscillations show a stick-slip character only in the upper part of the silo.

  11. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  12. Study of bubble behavior in weightlessness (effects of thermal gradient and acoustic stationary wave) (M-16)

    NASA Technical Reports Server (NTRS)

    Azuma, H.

    1993-01-01

    The aim of this experiment is to understand how bubbles behave in a thermal gradient and acoustic stationary wave under microgravity. In microgravity, bubble or bubbles in a liquid will not rise upward as they do on Earth but will rest where they are formed because there exists no gravity-induced buoyancy. We are interested in how bubbles move and in the mechanisms which support the movement. We will try two ways to make bubbles migrate. The first experiment concerns behavior of bubbles in a thermal gradient. It is well known than an effect of surface tension which is masked by gravity on the ground becomes dominant in microgravity. The surface tension on the side of the bubble at a lower temperature is stronger than at a higher temperature. The bubble migrates toward the higher temperature side due to the surface tension difference. The migration speed depends on the so-called Marangoni number, which is a function of the temperature difference, the bubble diameter, liquid viscosity, and thermal diffusivity. At present, some experimental data about migration speeds in liquids with very small Marangoni numbers were obtained in space experiments, but cases of large Marangoni number are rarely obtained. In our experiment a couple of bubbles are to be injected into a cell filled with silicon oil, and the temperature gradient is to be made gradually in the cell by a heater and a cooler. We will be able to determine migration speeds in a very wide range of Marangoni numbers, as well as study interactions between the bubbles. We will observe bubble movements affected by hydrodynamical and thermal interactions, the two kinds of interactions which occur simultaneously. These observation data will be useful for analyzing the interactions as well as understanding the behavior of particles or drops in materials processing. The second experiment concerns bubble movement in an acoustic stationary wave. It is known that a bubble in a stationary wave moves toward the node or the

  13. Interference Fringes of Solar Acoustic Waves around Sunspots

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Zhao, Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-01

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  14. Spherical ion acoustic waves in pair ion plasmas with nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-04-01

    Propagation of nonplanar ion acoustic waves in a plasma composed of negative and positive ions and nonthermally distributed electrons is investigated using reductive perturbation theory. The spherical Kadomtsev-Petviashvili (SKP) equation which describes the dynamics of the nonlinear spherical ion acoustic waves is derived. It is found that compressive and rarefactive ion-acoustic solitary wave characteristics significantly depend on the density and mass ratios of the positive to negative ions, the nonthermal electron parameter, and the geometry factor. The possible regions for the existence of spherical ion acoustic waves are defined precisely for typical parameters of (H+, O2 -) and (H+, H-) plasmas in the D and F-regions of the Earth's ionosphere, as well as for laboratory plasma (Ar+, F-).

  15. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.

    PubMed

    Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa

    2013-10-15

    The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.

  16. Separation of acoustic waves in isentropic flow perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henke, Christian, E-mail: christian.henke@atlas-elektronik.com

    2015-04-15

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfilsmore » Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given.« less

  17. Surface spin-electron acoustic waves in magnetically ordered metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz'menkov, L. S., E-mail: lsk@phys.msu.ru

    2016-05-09

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuirmore » waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.« less

  18. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    PubMed

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  19. Soliton wave-speed management: Slowing, stopping, or reversing a solitary wave

    NASA Astrophysics Data System (ADS)

    Baines, Luke W. S.; Van Gorder, Robert A.

    2018-06-01

    While dispersion management is a well-known tool to control soliton properties such as shape or amplitude, far less effort has been directed toward the theoretical control of the soliton wave speed. However, recent experiments concerning the stopping or slowing of light demonstrate that the control of the soliton wave speed is of experimental interest. Motivated by these and other studies, we propose a management approach for modifying the wave speed of a soliton (or of other nonlinear wave solutions, such as periodic cnoidal waves) under the nonlinear Schrödinger equation. Making use of this approach, we are able to slow, stop, or even reverse a solitary wave, and we give several examples to bright solitons, dark solitons, and periodic wave trains, to demonstrate the method. An extension of the approach to spatially heterogeneous media, for which the wave may propagate differently at different spatial locations, is also discussed.

  20. Broadband metamaterial for nonresonant matching of acoustic waves

    PubMed Central

    D’Aguanno, G.; Le, K. Q.; Trimm, R.; Alù, A.; Mattiucci, N.; Mathias, A. D.; Aközbek, N.; Bloemer, M. J.

    2012-01-01

    Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle, but it is rarely observed for sound waves at any angle of incidence. In the following, we theoretically and experimentally demonstrate an acoustic metamaterial possessing a Brewster-like angle that is completely transparent to sound waves over an ultra-broadband frequency range with >100% bandwidth. The metamaterial, consisting of a hard metal with subwavelength apertures, provides a surface impedance matching mechanism that can be arbitrarily tailored to specific media. The nonresonant nature of the impedance matching effectively decouples the front and back surfaces of the metamaterial allowing one to independently tailor the acoustic impedance at each interface. On the contrary, traditional methods for acoustic impedance matching, for example in medical imaging, rely on resonant tunneling through a thin antireflection layer, which is inherently narrowband and angle specific. PMID:22468227

  1. Surface acoustic wave devices for harsh environment wireless sensing

    DOE PAGES

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; ...

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  2. Flow profiling of a surface-acoustic-wave nanopump.

    PubMed

    Guttenberg, Z; Rathgeber, A; Keller, S; Rädler, J O; Wixforth, A; Kostur, M; Schindler, M; Talkner, P

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  3. Flow profiling of a surface-acoustic-wave nanopump

    NASA Astrophysics Data System (ADS)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  4. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  5. Waveform inversion of acoustic waves for explosion yield estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Rodgers, A. J.

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  6. The acoustic and instability waves of jets confined inside an acoustically lined rectangular duct

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1993-01-01

    An analysis of linear wave modes associated with supersonic jets confined inside an acoustically lined rectangular duct is presented. Mathematical formulations are given for the vortex-sheet model and continuous mean flow model of the jet flow profiles. Detailed dispersion relations of these waves in a two-dimensional confined jet as well as an unconfined free jet are computed. Effects of the confining duct and the liners on the jet instability and acoustic waves are studied numerically. It is found that the effect of the liners is to attenuate waves that have supersonic phase velocities relative to the ambient flow. Numerical results also show that the growth rates of the instability waves could be reduced significantly by the use of liners. In addition, it is found that the upstream propagating neutral waves of an unconfined jet could become attenuated when the jet is confined.

  7. Acoustic metasurface for refracted wave manipulation

    NASA Astrophysics Data System (ADS)

    Han, Li-Xiang; Yao, Yuan-Wei; Zhang, Xin; Wu, Fu-Gen; Dong, Hua-Feng; Mu, Zhong-Fei; Li, Jing-bo

    2018-02-01

    Here we present a design of a transmitted acoustic metasurface based on a single row of Helmholtz resonators with varying geometric parameters. The proposed metasurface can not only steer an acoustic beam as expected from the generalized Snell's law of refraction, but also exhibits various interesting properties and potential applications such as insulation of two quasi-intersecting transmitted sound waves, ultrasonic Bessel beam generator, frequency broadening effect of anomalous refraction and focusing.

  8. Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Collins, David J.; Ai, Ye; Neild, Adrian

    2017-04-01

    Periodic pattern generation using time-averaged acoustic forces conventionally requires the intersection of counterpropagating wave fields, where suspended micro-objects in a microfluidic system collect along force potential minimizing nodal or antinodal lines. Whereas this effect typically requires either multiple transducer elements or whole channel resonance, we report the generation of scalable periodic patterning positions without either of these conditions. A single propagating surface acoustic wave interacts with the proximal channel wall to produce a knife-edge effect according to the Huygens-Fresnel principle, where these cylindrically propagating waves interfere with classical wave fronts emanating from the substrate. We simulate these conditions and describe a model that accurately predicts the lateral spacing of these positions in a robust and novel approach to acoustic patterning.

  9. Kinetic study of ion acoustic twisted waves with kappa distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arshad, Kashif, E-mail: kashif.arshad.butt@gmail.com; Aman-ur-Rehman, E-mail: amansadiq@gmail.com; Mahmood, Shahzad, E-mail: shahzadm100@gmail.com

    2016-05-15

    The kinetic theory of Landau damping of ion acoustic twisted modes is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons and Maxwellian ions. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the ion acoustic twisted waves in a non-thermal plasma. The strong damping effects of ion acoustic twisted waves at low values of temperature ratio of electrons and ions aremore » also obtained by using exact numerical method and illustrated graphically, where the weak damping wave theory fails to explain the phenomenon properly. The obtained results of Landau damping rates of the twisted ion acoustic wave are discussed at different values of azimuthal wave number and non-thermal parameter kappa for electrons.« less

  10. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  11. Diffraction of three-colour radiation on an acoustic wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotov, V M

    We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)

  12. Electrokinetic Transduction of Acoustic Waves In Ocean Sediments

    DTIC Science & Technology

    2002-09-30

    acoustic —motion in ocean sediments. The Biot theory of poroelastic media captures much of the sediment physics left out by other models [2]. It fits...in subsurface acoustical imaging, Mine Counter- Measures, and Anti-Submarine Warfare. To obtain essential experimental data to support the modeling ...Electrokinetic Transduction of Acoustic Waves In Ocean Sediments Gareth I. Block Applied Research Laboratories, U.T. Austin P.O. Box 8029

  13. Acoustic waves in M dwarfs: Maintaining a corona

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Cheng, Q. Q.

    1994-01-01

    We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.

  14. Emergence of acoustic waves from vorticity fluctuations: impact of non-normality.

    PubMed

    George, Joseph; Sujith, R I

    2009-10-01

    Chagelishvili et al. [Phys. Rev. Lett. 79, 3178 (1997)] discovered a linear mechanism of acoustic wave emergence from vorticity fluctuations in shear flows. This paper illustrates how this "nonresonant" phenomenon is related to the non-normality of the operator governing the linear dynamics of disturbances in shear flows. The non-self-adjoint nature of the governing operator causes the emergent acoustic wave to interact strongly with the vorticity disturbance. Analytical expressions are obtained for the nondivergent vorticity perturbation. A discontinuity in the x component of the velocity field corresponding to the vorticity disturbance was originally identified to be the cause of acoustic wave emergence. However, a different mechanism is proposed in this paper. The correct "acoustic source" is identified and the reason for the abrupt nature of wave emergence is explained. The impact of viscous damping is also discussed.

  15. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.

    PubMed

    Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei

    2018-01-24

    An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.

  16. Reflected wave manipulation by inhomogeneous impedance via varying-depth acoustic liners

    NASA Astrophysics Data System (ADS)

    Guo, Jingwen; Zhang, Xin; Fang, Yi; Fattah, Ryu

    2018-05-01

    Acoustic liners, consisting of a perforated panel affixed to a honeycomb core with a rigid back plate, are widely used for noise attenuation purpose. In this study, by exploiting inhomogeneous impedance properties, we report an experimental and numerical study on a liner-type acoustic metasurface, which possesses the functionality of both reflected wave manipulation and sound energy attenuation simultaneously. To realize the inhomogeneous acoustic impedance, an acoustic metasurface constructed by varying-depth acoustic liners is designed and fabricated. The reflected sound pressure fields induced by the metasurface are obtained in both experiments and simulations. A complete characterization of this metasurface is performed, including the effects of depth gradient, incident angle, and incident frequency. Anomalous reflection, apparent negative reflection, and conversion from an incident wave to a surface wave with strong energy dissipation are achieved by the structure. Moreover, our proposed structure can overcome the single frequency performance limitation that exists in conventional metasurfaces and performs well in a broadband frequency range. The proposed acoustic metasurface offers flexibility in controlling the direction of sound wave propagation with energy dissipation property and holds promise for various applications of noise reduction.

  17. Effect of magnetic quantization on ion acoustic waves ultra-relativistic dense plasma

    NASA Astrophysics Data System (ADS)

    Javed, Asif; Rasheed, A.; Jamil, M.; Siddique, M.; Tsintsadze, N. L.

    2017-11-01

    In this paper, we have studied the influence of magnetic quantization of orbital motion of the electrons on the profile of linear and nonlinear ion-acoustic waves, which are propagating in the ultra-relativistic dense magneto quantum plasmas. We have employed both Thomas Fermi and Quantum Magneto Hydrodynamic models (along with the Poisson equation) of quantum plasmas. To investigate the large amplitude nonlinear structure of the acoustic wave, Sagdeev-Pseudo-Potential approach has been adopted. The numerical analysis of the linear dispersion relation and the nonlinear acoustic waves has been presented by drawing their graphs that highlight the effects of plasma parameters on these waves in both the linear and the nonlinear regimes. It has been noticed that only supersonic ion acoustic solitary waves can be excited in the above mentioned quantum plasma even when the value of the critical Mach number is less than unity. Both width and depth of Sagdeev potential reduces on increasing the magnetic quantization parameter η. Whereas the amplitude of the ion acoustic soliton reduces on increasing η, its width appears to be directly proportional to η. The present work would be helpful to understand the excitation of nonlinear ion-acoustic waves in the dense astrophysical environments such as magnetars and in intense-laser plasma interactions.

  18. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    NASA Astrophysics Data System (ADS)

    Xie, Sujun; Ouyang, Shiliang; He, Zhaojian; Wang, Xiaoyun; Deng, Ke; Zhao, Heping

    2018-03-01

    In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC), which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect), the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  19. Electron beam-plasma interaction and electron-acoustic solitary waves in a plasma with suprathermal electrons

    NASA Astrophysics Data System (ADS)

    Danehkar, A.

    2018-06-01

    Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.

  20. Observation of low-frequency acoustic surface waves in the nocturnal boundary layer.

    PubMed

    Talmadge, Carrick L; Waxler, Roger; Di, Xiao; Gilbert, Kenneth E; Kulichkov, Sergey

    2008-10-01

    A natural terrain surface, because of its porosity, can support an acoustic surface wave that is a mechanical analog of the familiar vertically polarized surface wave in AM radio transmission. At frequencies of several hundred hertz, the acoustic surface wave is attenuated over distances of a few hundred meters. At lower frequencies (e.g., below approximately 200 Hz) the attenuation is much less, allowing surface waves to propagate thousands of meters. At night, a low-frequency surface wave is generally present at long ranges even when downward refraction is weak. Thus, surface waves represent a ubiquitous nighttime transmission mode that exists even when other transmission modes are weak or absent. Data from recent nighttime field experiments and theoretical calculations are presented, demonstrating the persistence of the surface wave under different meteorological conditions. The low-frequency surface wave described here is the "quasiharmonical" tail observed previously in nighttime measurements but not identified by S. Kulichkov and his colleagues (Chunchuzov, I. P. et al. 1990. "On acoustical impulse propagation in a moving inhomogeneous atmospheric layer," J. Acoust. Soc. Am. 88, 455-461).

  1. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  2. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    PubMed

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Scattering of acoustic evanescent waves by circular cylinders: Partial wave series solution

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    Evanescent acoustical waves occur in a variety of situations such as when sound is incident on a fluid interface beyond the critical angle and when flexural waves on a plate are subsonic with respect to the surrounding fluid. The scattering by circular cylinders at normal incidence was calculated to give insight into the consequences on the scattering of the evanescence of the incident wave. To analyze the scattering, it is necessary to express the incident wave using a modified expansion involving cylindrical functions. For plane evanescent waves, the expansion becomes a double summation with products of modified and ordinary Bessel functions. The resulting modified series is found for the scattering by a fluid cylinder in an unbounded medium. The perfectly soft and rigid cases are also examined. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on the transverse coordinate. The associated exponential dependence of the scattering on the location of a scatterer was previously demonstrated [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  4. Electrostatic waves driven by electron beam in lunar wake plasma

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2018-05-01

    A linear analysis of electrostatic waves propagating parallel to the ambient field in a four component homogeneous, collisionless, magnetised plasma comprising fluid protons, fluid He++, electron beam, and suprathermal electrons following kappa distribution is presented. In the absence of electron beam streaming, numerical analysis of the dispersion relation shows six modes: two electron acoustic modes (modes 1 and 6), two fast ion acoustic modes (modes 2 and 5), and two slow ion acoustic modes (modes 3 and 4). The modes 1, 2 and 3 and modes 4, 5, and 6 have positive and negative phase speeds, respectively. With an increase in electron beam speed, the mode 6 gets affected the most and the phase speed turns positive from negative. The mode 6 thus starts to merge with modes 2 and 3 and generates the electron beam driven fast and slow ion acoustic waves unstable with a finite growth. The electron beam driven slow ion-acoustic waves occur at lower wavenumbers, whereas fast ion-acoustic waves occur at a large value of wavenumbers. The effect of various other parameters has also been studied. We have applied this analysis to the electrostatic waves observed in lunar wake during the first flyby of the ARTEMIS mission. The analysis shows that the low (high) frequency waves observed in the lunar wake could be the electron beam driven slow (fast) ion-acoustic modes.

  5. Excitation of Ion Acoustic Waves in Plasmas with Electron Emission from Walls

    NASA Astrophysics Data System (ADS)

    Khrabrov, A. V.; Wang, H.; Kaganovich, I. D.; Raitses, Y.; Sydorenko, D.

    2015-11-01

    Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand details of electron kinetics in plasmas with strong emission, we have performed kinetic simulations of such plasmas using EDIPIC code. We show that excitation of ion acoustic waves is ubiquitous phenomena in many different plasma configurations with strong electron emission from walls. Ion acoustic waves were observed to be generated near sheath if the secondary electron emission from the walls is strong. Ion acoustic waves were also observed to be generated in the plasma bulk due to presence of an intense electron beam propagating from the cathode. This intense electron beam can excite strong plasma waves, which in turn drive the ion acoustic waves. Research supported by the U.S. Air Force Office of Scientific Research.

  6. Injection locking of optomechanical oscillators via acoustic waves

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-01

    Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  7. Funneled focusing of planar acoustic waves utilizing the metamaterial properties of an acoustic lens

    NASA Astrophysics Data System (ADS)

    Walker, E.; Reyes, D.; Rojas, M. M.; Krokhin, A.; Neogi, A.

    2014-02-01

    Metamaterial acoustic lenses are acoustic devices based on phononic crystal structures that take advantage of negative or near-zero indices of refraction. These unique properties arise due to either the antiparallel direction of the phase and group velocity or strongly anisotropic dispersion characteristics, usually above the first transmission band. In this study, we utilize an FDTD program to examine two phononic lenses that utilize anisotropic effects available in their second band to collimate and focus acoustic waves from a plane-wave source with a k00 wavevector. The phononic crystals consist of stainless steel rods arranged in a square lattice with water as the ambient material. Results show collimation and focusing in the second band for select frequencies, fc ± 0.005𝑓𝑐.

  8. Capacitive acoustic wave detector and method of using same

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor)

    1994-01-01

    A capacitor having two substantially parallel conductive faces is acoustically coupled to a conductive sample end such that the sample face is one end of the capacitor. A non-contacting dielectric may serve as a spacer between the two conductive plates. The formed capacitor is connected to an LC oscillator circuit such as a Hartley oscillator circuit producing an output frequency which is a function of the capacitor spacing. This capacitance oscillates as the sample end coating is oscillated by an acoustic wave generated in the sample by a transmitting transducer. The electrical output can serve as an absolute indicator of acoustic wave displacement.

  9. Linear and nonlinear acoustic wave propagation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Yu, Ping

    1988-01-01

    The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.

  10. Nonlinear Electron Acoustic Waves in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Dillard, C. S.; Vasko, I.; Mozer, F.; Agapitov, O. V.

    2017-12-01

    The Van Allen Probes observe intense broad-band electrostatic wave activity in the inner magnetosphere. The high-resolution electric field measurements show that these broad-band wave activity is made of large-amplitude electrostatic solitary waves propagating generally along the background magnetic field with velocities of a few thousands km/s. There are generally two types of the observed solitary waves. The solitary waves with the bipolar parallel electric field are interpreted as electron phase space holes, while the nature of solitary waves with asymmetric parallel electric field has remained puzzling. In the present work we show that asymmetric solitary waves propagate with velocities (1000-5000 km/s) and have spatial scales (100 m-1 km) similar to those for electron-acoustic waves existing due to two temperature electron population. Through the numerical fluid simulation we show that the spikes are produced from the initially harmonic electron-acoustic perturbation due to the nonlinear steepening. Through the analysis of the modified KdV equation we show that the steepening is arrested at some moment by the collisionless Landau dissipation and results in formation of the observed asymmetric spikes (shocklets).

  11. The effects of a hot outer atmosphere on acoustic-gravity waves

    NASA Technical Reports Server (NTRS)

    Hindman, Bradley W.; Zweibel, Ellen G.

    1994-01-01

    We examine the effects of a hot chromosphere and corona on acoustic-gravity waves in the Sun. We use a simple solar model consisting of a neutrally stable polytrope smoothly matched to an isothermal chromosphere or corona. The temperature of the isothermal region is higher than the minimum temperature of the model. We ignore sphericity, magnetic fields, changes in the gravitational potential, and nonadiabatic effects. We find a family of atmospheric g-modes whose cavity is formed by the extremum in the buoyancy frequency at the transition region. The f-mode is the zero-order member of this family. For large values of the harmonic degree l, f-mode frequencies are below the classic f-mode frequency, mu=(gk)(exp 1/2), whereas at small values of l, the f-mode is identical to the classical f-mode solution. We also find a family of g-modes residing in the low chromosphere. Frequency shifts of p-modes can be positive or negative. When the frequency is less than the acoustic cutoff frequency of the upper isothermal atmsophere, the frequency of the upper isothermal atmosphere, the frequency shift is negative, but when the frequency is above this cutoff, the shifts can be positive. High-frequency acoustic waves which are not reflected by the photospheric cutoff are reflected at the corona by the high sound speed for moderate values of l and v. This result is independent of the solar model as long as the corona is very hot. The data are inconsistent with this result, and reasons for this discrepancy are discussed.

  12. Liquid-assisted tunable metasurface for simultaneous manipulation of surface elastic and acoustic waves

    NASA Astrophysics Data System (ADS)

    Yuan, Si-Min; Ma, Tian-Xue; Chen, A.-Li; Wang, Yue-Sheng

    2018-03-01

    A tunable and multi-functional one-dimensional metasurface, which is formed by engraving periodic semi-ellipse grooves on the surface of an aluminum half-space, is proposed in this paper. One characteristic of the metasurface is the manipulation of multi-physical fields, i.e. it could be utilized to manipulate surface elastic and acoustic waves simultaneously. The dispersion curves of the elastic and acoustic waves can be effectively tuned by adding liquids into the grooves. Based on the tunability different applications can be realized by adding different volumes of different liquids into the grooves. As an example, simultaneous rainbow trapping of the surface elastic and acoustic waves is demonstrated in the metasurface. Moreover, a resonant cavity where the elastic and acoustic waves are highly confined is reported. The proposed metasurface paves the way to the design of multi-functional devices for simultaneous control of elastic and acoustic waves.

  13. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  14. On-line surveillance of lubricants in bearings by means of surface acoustic waves.

    PubMed

    Lindner, Gerhard; Schmitt, Martin; Schubert, Josephine; Krempel, Sandro; Faustmann, Hendrik

    2010-01-01

    The acoustic wave propagation in bearings filled with lubricants and driven by pulsed excitation of surface acoustic waves has been investigated with respect to the presence and the distribution of different lubricants. Experimental setups, which are based on the mode conversion between surface acoustic waves and compression waves at the interface between a solid substrate of the bearing and a lubricant are described. The results of preliminary measurements at linear friction bearings, rotation ball bearings and axial cylinder roller bearings are presented.

  15. Standing wave acoustic levitation on an annular plate

    NASA Astrophysics Data System (ADS)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  16. Radiation dominated acoustophoresis driven by surface acoustic waves.

    PubMed

    Guo, Jinhong; Kang, Yuejun; Ai, Ye

    2015-10-01

    Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Dispersion of acoustic surface waves by velocity gradients

    NASA Astrophysics Data System (ADS)

    Kwon, S. D.; Kim, H. C.

    1987-10-01

    The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.

  18. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  19. False Paradoxes of Superposition in Electric and Acoustic Waves.

    ERIC Educational Resources Information Center

    Levine, Richard C.

    1980-01-01

    Corrected are several misconceptions concerning the apparently "missing" energy that results when acoustic or electromagnetic waves cancel by destructive interference and the wave impedance reflected to the sources of the wave energy changes so that the input power is reduced. (Author/CS)

  20. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  1. 9x15 Low Speed Wind Tunnel Acoustic Improvements

    NASA Technical Reports Server (NTRS)

    Stark, David; Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of VSTOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel has been used principally for acoustic and performance testing of aircraft propulsions systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  2. An Investigation of Acoustic Wave Propagation in Mach 2 Flow

    NASA Astrophysics Data System (ADS)

    Nieberding, Zachary J.

    Hypersonic technology is the next advancement to enter the aerospace community; it is defined as the study of flight at speeds Mach 5 and higher where intense aerodynamic heating is prevalent. Hypersonic flight is achieved through use of scramjet engines, which intake air and compress it by means of shock waves and geometry design. The airflow is then directed through an isolator where it is further compressed, it is then delivered to the combustor at supersonic speeds. The combusted airflow and fuel mixture is then accelerated through a nozzle to achieve the hypersonic speeds. Unfortunately, scramjet engines can experience a phenomenon known as an inlet unstart, where the combustor produces pressures large enough to force the incoming airflow out of the inlet of the engine, resulting in a loss of acceleration and power. There have been several government-funded programs that look to prove the concept of the scramjet engine and also tackle this inlet unstart issue. The research conducted in this thesis is a fundamental approach towards controlling the unstart problem: it looks at the basic concept of sending a signal upstream through the boundary layer of a supersonic flow and being able to detect a characterizeable signal. Since conditions within and near the combustor are very harsh, hardware is unable to be installed in that area, so this testing will determine if a signal can be sent and if so, how far upstream can the signal be detected. This experimental approach utilizes several acoustic and mass injection sources to be evaluated over three test series in a Mach 2 continuous flow wind tunnel that will determine the success of the objective. The test series vary in that the conditions of the flow and the test objectives change. The research shows that a characterizeable signal can be transmitted upstream roughly 12 inches through the subsonic boundary layer of a supersonic cross flow. It is also shown that the signal attenuates as the distance between the

  3. Injection locking of optomechanical oscillators via acoustic waves.

    PubMed

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-02

    Injection locking is an effective technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators. As such, exploring new mechanisms for injection locking of emerging oscillators is important for their usage in various systems. Here, we present the first demonstration of injection locking of a radiation pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can be easily implemented on various platforms to lock different types of OMOs independent of their size and structure. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance, matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity, and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology, and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  4. Crack detection in fastener holes using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-Qi; Varadan, Vasundara V.; Varadan, Vijay K.

    1995-05-01

    This paper presents an investigation of the monitoring of cracks at the edge of fastener holes on plates using an ultrasonic pulse-echo technique. Our studies show that, if the surface of the plate surrounding the hold is free, an acoustic wave on the surface of the plate is able to detect the cracks located in an arc of 60 degree(s). When the inner surface of the hole is free, surface acoustic waves on the inner surface are alternate choices. For the case when all these surfaces are in tight contact with other parts, hence unavailable for mounting transducers, a particular type of Lamb wave mode is presented.

  5. Acoustic waves in the solar atmosphere at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.

    2009-12-01

    Aims. The energy supply for the radiative losses of the quiet solar chromosphere is studied. On the basis of high spatial resolution data, we investigate the amount of energy flux carried by acoustic waves in the solar photosphere. Methods: Time sequences from quiet Sun disc centre were obtained with the “Göttingen” Fabry-Perot spectrometer at the Vacuum Tower Telescope, Observatorio del Teide/Tenerife, in the non-magnetic Fe i 5576 Å line. The data were reconstructed with speckle methods. The velocity and intensity fluctuations at line minimum were subjected to Fourier and wavelet analyses. The energy fluxes at frequencies higher than the acoustic cutoff frequency (period U ≈ 190 s) were corrected for the transmission of the solar atmosphere, which reduces the signal from short-period waves. Results: Both Fourier and wavelet analysis give an amount of energy flux of ~3000 W m-2 at a height h = 250 km. Approximately 2/3 of it is carried by waves in the 5-10 mHz range, and 1/3 in the 10-20 mHz band. Extrapolation of the flux spectra gives an energy flux of 230-400 W m-2 at frequencies ν > 20 mHz. We find that the waves occur predominantly above inter-granular areas. Conclusions: We conclude that the acoustic flux in waves with periods shorter than the acoustic cutoff period can contribute to the basal heating of the solar chromosphere, in addition to the atmospheric gravity waves found recently.

  6. Observation of dust acoustic shock wave in a strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sumita K., E-mail: sumita-sharma82@yahoo.com; Boruah, A.; Nakamura, Y.

    2016-05-15

    Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and themore » spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.« less

  7. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  8. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-12-01

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.

  9. The first radial-mode Lorentzian Landau damping of dust acoustic space-charge waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    2016-05-15

    The dispersion properties and the first radial-mode Lorentzian Landau damping of a dust acoustic space-charge wave propagating in a cylindrical waveguide dusty plasma which contains nonthermal electrons and ions are investigated by employing the normal mode analysis and the method of separation of variables. It is found that the frequency of dust acoustic space-charge wave increases as the wave number increases as well as the radius of cylindrical plasma does. However, the nonthermal property of the Lorentzian plasma is found to suppress the wave frequency of the dust acoustic space-charge wave. The Landau damping rate of the dust acoustic space-chargemore » wave is derived in a cylindrical waveguide dusty plasma. The damping of the space-charge wave is found to be enhanced as the radius of cylindrical plasma and the nonthermal property increase. The maximum Lorentzian Landau damping rate is also found in a cylindrical waveguide dusty plasma. The variation of the wave frequency and the Landau damping rate due to the nonthermal character and geometric effects are also discussed.« less

  10. Observation of frequency cutoff for self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.

    2009-11-01

    Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.

  11. Time-resolved measurement of global synchronization in the dust acoustic wave

    NASA Astrophysics Data System (ADS)

    Williams, J. D.

    2014-10-01

    A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.

  12. Nonlinear properties of small amplitude dust ion acoustic solitary waves

    NASA Astrophysics Data System (ADS)

    Ghosh, Samiran; Sarkar, S.; Khan, Manoranjan; Gupta, M. R.

    2000-09-01

    In this paper some nonlinear characteristics of small amplitude dust ion acoustic solitary wave in three component dusty plasma consisting of electrons, ions, and dust grains have been studied. Simultaneously, the charge fluctuation dynamics of the dust grains under the assumption that the dust charging time scale is much smaller than the dust hydrodynamic time scale has been considered here. The ion dust collision has also been incorporated. It has been seen that a damped Korteweg-de Vries (KdV) equation governs the nonlinear dust ion acoustic wave. The damping arises due to ion dust collision, under the assumption that the ion hydrodynamical time scale is much smaller than that of the ion dust collision. Numerical investigations reveal that the dust ion acoustic wave admits only a positive potential, i.e., compressive soliton.

  13. An arbitrary-order staggered time integrator for the linear acoustic wave equation

    NASA Astrophysics Data System (ADS)

    Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo

    2018-02-01

    We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.

  14. Eulerian Simulation of Acoustic Waves Over Long Range in Realistic Environments

    NASA Astrophysics Data System (ADS)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    In this paper, we describe a new method for computation of long-range acoustics. The approach is a hybrid of near and far-field methods, and is unique in its Eulerian treatment of the far-field propagation. The near-field generated by any existing method to project an acoustic solution onto a spherical surface that surrounds a source. The acoustic field on this source surface is then extended to an arbitrarily large distance in an inhomogeneous far-field. This would normally require an Eulerian solution of the wave equation. However, conventional Eulerian methods have prohibitive grid requirements. This problem is overcome by using a new method, ``Wave Confinement'' (WC) that propagates wave-identifying phase fronts as nonlinear solitary waves that live on grid indefinitely. This involves modification of wave equation by the addition of a nonlinear term without changing the basic conservation properties of the equation. These solitary waves can then be used to ``carry'' the essential integrals of the acoustic wave. For example, arrival time, centroid position and other properties that are invariant as the wave passes a grid point. Because of this property the grid can be made as coarse as necessary, consistent with overall accuracy to resolve atmospheric/ground variations. This work is being funded by the U.S. Army under a Small Business Innovation Research (SBIR) program (contract number: # W911W6-12-C-0036). The authors would like to thank Dr. Frank Caradonna and Dr. Ben W. Sim for this support.

  15. Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Vogt, C.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; IceCube Collaboration

    2010-06-01

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at ˜5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  16. Dust Acoustic Wave Excitation in a Plasma with Warm Dust

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.

    2008-11-01

    Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).

  17. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  18. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    PubMed

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  19. Modification of wave propagation and wave travel-time by the presence of magnetic fields in the solar network atmosphere

    NASA Astrophysics Data System (ADS)

    Nutto, C.; Steiner, O.; Schaffenberger, W.; Roth, M.

    2012-02-01

    Context. Observations of waves at frequencies above the acoustic cut-off frequency have revealed vanishing wave travel-times in the vicinity of strong magnetic fields. This detection of apparently evanescent waves, instead of the expected propagating waves, has remained a riddle. Aims: We investigate the influence of a strong magnetic field on the propagation of magneto-acoustic waves in the atmosphere of the solar network. We test whether mode conversion effects can account for the shortening in wave travel-times between different heights in the solar atmosphere. Methods: We carry out numerical simulations of the complex magneto-atmosphere representing the solar magnetic network. In the simulation domain, we artificially excite high frequency waves whose wave travel-times between different height levels we then analyze. Results: The simulations demonstrate that the wave travel-time in the solar magneto-atmosphere is strongly influenced by mode conversion. In a layer enclosing the surface sheet defined by the set of points where the Alfvén speed and the sound speed are equal, called the equipartition level, energy is partially transferred from the fast acoustic mode to the fast magnetic mode. Above the equipartition level, the fast magnetic mode is refracted due to the large gradient of the Alfvén speed. The refractive wave path and the increasing phase speed of the fast mode inside the magnetic canopy significantly reduce the wave travel-time, provided that both observing levels are above the equipartition level. Conclusions: Mode conversion and the resulting excitation and propagation of fast magneto-acoustic waves is responsible for the observation of vanishing wave travel-times in the vicinity of strong magnetic fields. In particular, the wave propagation behavior of the fast mode above the equipartition level may mimic evanescent behavior. The present wave propagation experiments provide an explanation of vanishing wave travel-times as observed with multi

  20. Surface acoustic wave actuated cell sorting (SAWACS).

    PubMed

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  1. Sound Speed and Attenuation in Multiphase Media

    DTIC Science & Technology

    2012-03-15

    wave speeds between 100 to 300 m/s for sandy sediments with porosities of 40-50%. Hastrup [21:121-127] reports empirical relationships that 12...4, pp. 689-692, 1955. [20] R.D. Stoll, Sediment Acoustics, Springer-Verlag, New York, 1989. [21] O. F. Hastrup , Acoustic Bottom Reflectivity

  2. Numerical study of nonlinear full wave acoustic propagation

    NASA Astrophysics Data System (ADS)

    Velasco-Segura, Roberto; Rendon, Pablo L.

    2013-11-01

    With the aim of describing nonlinear acoustic phenomena, a form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite-volume method using Roe's linearization has been implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a HIFU system, both with satisfactory results. The code is written for parallel execution on a GPU and improves performance by a factor of over 50 when compared to the standard CLAWPACK Fortran code. This code can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from modest models of diagnostic and therapeutic HIFU, parametric acoustic arrays, to acoustic wave guides. A couple of examples will be presented showing shock formation and oblique interaction. DGAPA PAPIIT IN110411, PAEP UNAM 2013.

  3. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.

  4. Cylindrical ion-acoustic solitary waves in electronegative plasmas with superthermal electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslami, Parvin; Mottaghizadeh, Marzieh

    2012-06-15

    By using the standard reductive perturbation technique, a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE), which governs the dynamics of ion acoustic solitary waves (IASWs), is derived for small but finite amplitude ion-acoustic waves in cylindrical geometry in a collisionless unmagnetized plasma with kappa distributed electrons, thermal positrons, and cold ions. The generalized expansion method is used to solve analytically the CKPE. The existence regions of localized pulses are investigated. It is found that the solution of the CKPE supports only compressive solitary waves. Furthermore, the effects of superthermal electrons, the ratio of the electron temperature to positron temperature, the ratio ofmore » the positron density to electron density and direction cosine of the wave propagation on the profiles of the amplitudes, and widths of the solitary structures are examined numerically. It is shown these parameters play a vital role in the formation of ion acoustic solitary waves.« less

  5. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, L.-W.; Chang, M.-C.; Tseng, Y.-P.

    2009-12-11

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation tomore » the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.« less

  6. On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator.

    PubMed

    Hickling, Susannah; Leger, Pierre; El Naqa, Issam

    2016-02-11

    Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.

  7. Sheathless focusing and separation of microparticles using tilted angle travelling surface acoustic waves.

    PubMed

    Ahmed, Husnain; Destgeer, Ghulam; Park, Jinsoo; Afzal, Muhammad; Sung, Hyung Jin

    2018-06-18

    The sheathless focusing and separation of microparticles is an important pre-processing step in various biochemical assays in which enriched sample isolation is critical. Most previous microfluidic particle separation techniques have used a sheath flow to achieve efficient sample focusing. The sheath flow diluted the analyte, and required additional microchannels and accurate flow control. We demonstrated a tilted angle travelling surface acoustic wave (taTSAW)-based sheathless focusing and separation of particles in a continuous flow. The proposed device consisted of a piezoelectric substrate with a pair of interdigitated transducers (IDTs) deposited at two different angles relative to the flow direction. A Y-shaped polydimethylsiloxane (PDMS) microchannel having one inlet and two outlet ports was positioned on top of the IDTs such that the acoustic energy coupling into the fluid was maximized and wave attenuation by the PDMS walls was minimized. The two IDTs independently produced high-frequency taTSAWs, which propagated at ±30° with respect to the flow direction and imparted a direct acoustic radiation force onto the target particles. A sample mixture containing 4.8 and 3.2 µm particles was focused and then separated by the actuation of the IDTs at 194 and 136 MHz frequencies, respectively, without using an additional sheath flow. The proposed taTSAW-based particle separation device offered a high purity > 99% at the both outlets over a wide range of flow speeds (up to 83.3 mm/s).

  8. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    PubMed

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  9. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre

    PubMed Central

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  10. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.

    PubMed

    Erpelding, Todd N; Hollman, Kyle W; O'Donnell, Matthew

    2007-02-01

    Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young's modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200 and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size.

  11. High-speed acoustic communication by multiplexing orbital angular momentum

    PubMed Central

    Shi, Chengzhi; Dubois, Marc; Wang, Yuan

    2017-01-01

    Long-range acoustic communication is crucial to underwater applications such as collection of scientific data from benthic stations, ocean geology, and remote control of off-shore industrial activities. However, the transmission rate of acoustic communication is always limited by the narrow-frequency bandwidth of the acoustic waves because of the large attenuation for high-frequency sound in water. Here, we demonstrate a high-throughput communication approach using the orbital angular momentum (OAM) of acoustic vortex beams with one order enhancement of the data transmission rate at a single frequency. The topological charges of OAM provide intrinsically orthogonal channels, offering a unique ability to multiplex data transmission within a single acoustic beam generated by a transducer array, drastically increasing the information channels and capacity of acoustic communication. A high spectral efficiency of 8.0 ± 0.4 (bit/s)/Hz in acoustic communication has been achieved using topological charges between −4 and +4 without applying other communication modulation techniques. Such OAM is a completely independent degree of freedom which can be readily integrated with other state-of-the-art communication modulation techniques like quadrature amplitude modulation (QAM) and phase-shift keying (PSK). Information multiplexing through OAM opens a dimension for acoustic communication, providing a data transmission rate that is critical for underwater applications. PMID:28652341

  12. A Fluid Dynamic Approach to the Dust-Acoustic Soliton

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Doyle, T. B.

    2002-12-01

    The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave.

  13. Acoustic testing of a supersonic tip speed fan with acoustic treatment and rotor casting slots. Quiet engine program scale model fan C

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.

    1973-01-01

    Acoustic tests were conducted on a high tip speed (1550 ft/sec, 472.44 m/sec) single stage fan with varying amounts of wall acoustic treatment and with circumferential slots over the rotor blade tips. The slots were also tested with acoustic treatment placed behind the slots. The wall treatment results show that the inlet treatment is more effective at high fan speeds and aft duct treatment is more effective at low fan speeds. Maximum PNL's on a 200-foot (60.96 m) sideline show the untreated slots to have increased the rear radiated noise at approach. However, when the treatment was added to the slots inlet radiated noise was decreased, resulting in little change relative to the solid casing on an EPNL basis.

  14. Experimental investigation of the local wave speed in a draft tube with cavitation vortex rope

    NASA Astrophysics Data System (ADS)

    Landry, C.; Favrel, A.; Müller, A.; Nicolet, C.; Yamamoto, K.; Avellan, F.

    2014-03-01

    Hydraulic machines operating in a wider range are subjected to cavitation developments inducing undesirable pressure pulsations which could lead to potential instability of the power plant. The occurrence of pulsating cavitation volumes in the runner and the draft tube is considered as a mass source of the system and is depending on the cavitation compliance. This dynamic parameter represents the cavitation volume variation with the respect to a variation of pressure and defines implicitly the local wave speed in the draft tube. This parameter is also decisive for an accurate prediction of system eigen frequencies. Therefore, the local wave speed in the draft tube is intrinsically linked to the eigen frequencies of the hydraulic system. Thus, if the natural frequency of a hydraulic system can be determined experimentally, it also becomes possible to estimate a local wave speed in the draft tube with a numerical model. In the present study, the reduced scale model of a Francis turbine (v=0.29) was investigated at off-design conditions. In order to measure the first eigenmode of the hydraulic test rig, an additional discharge was injected at the inlet of the hydraulic turbine at a variable frequency and amplitude to excite the system. Thus, with different pressure sensors installed on the test rig, the first eigenmode was determined. Then, a hydro-acoustic test rig model was developed with the In-house EPFL SIMSEN software and the local wave speed in the draft tube was adjusted to obtain the same first eigen frequency as that measured experimentally. Finally, this method was applied for different Thoma and Froude numbers at part load conditions.

  15. Surface acoustic waves voltage controlled directional coupler

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.

    1988-10-01

    An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.

  16. Investigations of High Pressure Acoustic Waves in Resonators with Seal-Like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh

    2004-01-01

    1) Standing waves with maximum pressures of 188 kPa have been produced in resonators containing ambient pressure air; 2) Addition of structures inside the resonator shifts the fundamental frequency and decreases the amplitude of the generated pressure waves; 3) Addition of holes to the resonator does reduce the magnitude of the acoustic waves produced, but their addition does not prohibit the generation of large magnitude non-linear standing waves; 4) The feasibility of reducing leakage using non-linear acoustics has been confirmed.

  17. Detection of acoustic waves by NMR using a radiofrequency field gradient.

    PubMed

    Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J; Franconi, Jean Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D

    2003-03-01

    A B(1) field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 13;31; RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.

  18. Applications of acoustic-gravity waves numerical modeling to tsunami signals observed by gravimetry satellites in very low orbit

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.

    2016-12-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.

  19. Prediction and near-field observation of skull-guided acoustic waves

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  20. Prediction and near-field observation of skull-guided acoustic waves.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  1. A Feasibility Study on Generation of Acoustic Waves Utilizing Evanescent Light

    NASA Astrophysics Data System (ADS)

    Matsuya, I.; Matozaki, K.; Kosugi, A.; Ihara, I.

    2014-06-01

    A new approach of generating acoustic waves utilizing evanescent light is presented. The evanescent light is a non-propagating electromagnetic wave that exhibits exponential decay with distance from the surface at which the total internal reflection of light is formed. In this research, the evanescent light during total internal reflection at prism surface is utilized for generating acoustic waves in aluminium and the feasibility for ultrasonic measurements is discussed. Pulsed Nd:YAG laser with 0.36 J/cm2 power density is used and the incident angle during the total internal reflection is arranged to be 69.0° for generating the evanescent light. It has been demonstrated that the amplitude of the acoustic waves by means of evanescent light is about 1/14 as large as the one generated by the conventional pulsed laser. This reveals the possibility of using a laser ultrasonic technique with near-field optics.

  2. Numerical modelling of nonlinear full-wave acoustic propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on amore » GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.« less

  3. Bubble-Based Acoustic Radiation Force Using Chirp Insonation to Reduce Standing Wave Effects

    PubMed Central

    Erpelding, Todd N.; Hollman, Kyle W.; O’Donnell, Matthew

    2007-01-01

    Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young’s modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200, and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size. PMID:17306697

  4. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  5. Cylindrical dust acoustic solitary waves with transverse perturbations in quantum dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushtaq, A.

    2007-11-15

    The nonlinear quantum dust acoustic waves with effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the perturbation method, a cylindrical Kadomtsev-Petviashvili equation for dust acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics, and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave, are studied both analytically and numerically.

  6. Electron acoustic-Langmuir solitons in a two-component electron plasma

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.

    2003-04-01

    We investigate the conditions under which ‘high-frequency’ electron acoustic Langmuir solitons can be constructed in a plasma consisting of protons and two electron populations: one ‘cold’ and the other ‘hot’. Conservation of total momentum can be cast as a structure equation either for the ‘cold’ or ‘hot’ electron flow speed in a stationary wave using the Bernoulli energy equations for each species. The linearized version of the governing equations gives the dispersion equation for the stationary waves of the system, from which follows the necessary but not sufficient conditions for the existence of soliton structures; namely that the wave speed must be less than the acoustic speed of the ‘hot’ electron component and greater than the low-frequency compound acoustic speed of the two electron populations. In this wave speed regime linear waves are ‘evanescent’, giving rise to the exponential growth or decay, which readily can give rise to non-linear effects that may balance dispersion and allow soliton formation. In general the ‘hot’ component must be more abundant than the ‘cold’ one and the wave is characterized by a compression of the ‘cold’ component and an expansion in the ‘hot’ component necessitating a potential dip. Both components are driven towards their sonic points; the ‘cold’ from above and the ‘hot’ from below. It is this transonic feature which limits the amplitude of the soliton. If the ‘hot’ component is not sufficiently abundant the window for soliton formation shrinks to a narrow speed regime which is quasi-transonic relative to the ‘hot’ electron acoustic speed, and it is shown that smooth solitons cannot be constructed. In the special case of a very cold electron population (i.e. ‘highly supersonic’) and the other population being very hot (i.e. ‘highly subsonic’) with adiabatic index 2, the structure equation simplifies and can be integrated in terms of elementary

  7. Surface acoustic wave diffraction driven mechanisms in microfluidic systems.

    PubMed

    Fakhfouri, Armaghan; Devendran, Citsabehsan; Albrecht, Thomas; Collins, David J; Winkler, Andreas; Schmidt, Hagen; Neild, Adrian

    2018-06-26

    Acoustic forces arising from high-frequency surface acoustic waves (SAW) underpin an exciting range of promising techniques for non-contact manipulation of fluid and objects at micron scale. Despite increasing significance of SAW-driven technologies in microfluidics, the understanding of a broad range of phenomena occurring within an individual SAW system is limited. Acoustic effects including streaming and radiation force fields are often assumed to result from wave propagation in a simple planar fashion. The propagation patterns of a single SAW emanating from a finite-width source, however, cause a far richer range of physical effects. In this work, we seek a better understanding of the various effects arising from the incidence of a finite-width SAW beam propagating into a quiescent fluid. Through numerical and experimental verification, we present five distinct mechanisms within an individual system. These cause fluid swirling in two orthogonal planes, and particle trapping in two directions, as well as migration of particles in the direction of wave propagation. For a range of IDT aperture and channel dimensions, the relative importance of these mechanisms is evaluated.

  8. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  9. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  10. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.

    PubMed

    Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe

    2018-07-01

    A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  12. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.

    1997-01-01

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  13. Magneto-acoustic imaging by continuous-wave excitation.

    PubMed

    Shunqi, Zhang; Zhou, Xiaoqing; Tao, Yin; Zhipeng, Liu

    2017-04-01

    The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10 -7  Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.

  14. High quality factor surface Fabry-Perot cavity of acoustic waves

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Fu, Wei; Zou, Chang-ling; Shen, Zhen; Tang, Hong X.

    2018-02-01

    Surface acoustic wave (SAW) resonators are critical components in wireless communications and many sensing applications. They have also recently emerged as a subject of study in quantum acoustics at the single phonon level. Acoustic loss reduction and mode confinement are key performance factors in SAW resonators. Here, we report the design and experimental realization of high quality factor Fabry-Perot SAW resonators formed in between the tapered phononic crystal mirrors patterned on a GaN-on-sapphire material platform. The fabricated SAW resonators are characterized by both an electrical network analyzer and an optical heterodyne vibrometer. We observed standing Rayleigh waves inside the cavity, with an intrinsic quality factor exceeding 1.3 × 104 at ambient conditions.

  15. Coupling of an acoustic wave to shear motion due to viscous heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Goree, J.

    2016-07-15

    Viscous heating due to shear motion in a plasma can result in the excitation of a longitudinal acoustic wave, if the shear motion is modulated in time. The coupling mechanism is a thermal effect: time-dependent shear motion causes viscous heating, which leads to a rarefaction that can couple into a longitudinal wave, such as an acoustic wave. This coupling mechanism is demonstrated in an electrostatic three-dimensional (3D) simulation of a dusty plasma, in which a localized shear flow is initiated as a pulse, resulting in a delayed outward propagation of a longitudinal acoustic wave. This coupling effect can be profoundmore » in plasmas that exhibit localized viscous heating, such as the dusty plasma we simulated using parameters typical of the PK-4 experiment. We expect that a similar phenomenon can occur with other kinds of plasma waves.« less

  16. The power flow angle of acoustic waves in thin piezoelectric plates.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Teplykh, Andrei A; Joshi, Shrinivas G; Kuznetsova, Anastasia S

    2008-09-01

    The curves of slowness and power flow angle (PFA) of quasi-antisymmetric (A(0)) and quasi-symmetric (S(0)) Lamb waves as well as quasi-shear-horizontal (SH(0)) acoustic waves in thin plates of lithium niobate and potassium niobate of X-,Y-, and Z-cuts for various propagation directions and the influence of electrical shorting of one plate surface on these curves and PFA have been theoretically investigated. It has been found that the group velocity of such waves does not coincide with the phase velocity for the most directions of propagation. It has been also shown that S(0) and SH(0) wave are characterized by record high values of PFA and its change due to electrical shorting of the plate surface in comparison with surface and bulk acoustic waves in the same material. The most interesting results have been verified by experiment. As a whole, the results obtained may be useful for development of various devices for signal processing, for example, electrically controlled acoustic switchers.

  17. Ultrasound acoustic wave energy transfer and harvesting

    NASA Astrophysics Data System (ADS)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  18. Characterization of Viscoelastic Materials Using Group Shear Wave Speeds.

    PubMed

    Rouze, Ned C; Deng, Yufeng; Trutna, Courtney A; Palmeri, Mark L; Nightingale, Kathryn R

    2018-05-01

    Recent investigations of viscoelastic properties of materials have been performed by observing shear wave propagation following localized, impulsive excitations, and Fourier decomposing the shear wave signal to parameterize the frequency-dependent phase velocity using a material model. This paper describes a new method to characterize viscoelastic materials using group shear wave speeds , , and determined from the shear wave displacement, velocity, and acceleration signals, respectively. Materials are modeled using a two-parameter linear attenuation model with phase velocity and dispersion slope at a reference frequency of 200 Hz. Analytically calculated lookup tables are used to determine the two material parameters from pairs of measured group shear wave speeds. Green's function calculations are used to validate the analytic model. Results are reported for measurements in viscoelastic and approximately elastic phantoms and demonstrate good agreement with phase velocities measured using Fourier analysis of the measured shear wave signals. The calculated lookup tables are relatively insensitive to the excitation configuration. While many commercial shear wave elasticity imaging systems report group shear wave speeds as the measures of material stiffness, this paper demonstrates that differences , , and of group speeds are first-order measures of the viscous properties of materials.

  19. A study of the acoustic-optic effect in nematics

    NASA Astrophysics Data System (ADS)

    Hayes, C. F.

    1980-12-01

    The program of this contract has been to study the acousto-optic effect which occurs in nematic liquid crystals when excited by acoustic waves. Both theory and practical application are presented. Hydrodynamic equations were solved which govern the streaming and obtained a solution for the magnitude of the fluid speed and flow pattern for a small disc shaped liquid crystal. A sample, doped with grains, was used to test the solution experimentally. A series of cells was constructed and tested which, in fact, showed that an acoustic wavefront pattern can be visualized with this technique. During the second year of the contract we developed and tested a mathematical model which prescribes how a cell should be constructed in terms of: the densities of the cell walls, liquid crystal, and surrounding fluids; the thickness of the cell walls and liquid crystal layer; the acoustic speeds in cell wall (shear and longitudinal), liquid crystal, and surrounding fluids; acoustic frequency; and the incident acoustic bean angle. Cells were also constructed and tested in which an electric field could be applied simultaneously with the acoustic wave in such a way that the sensitivity of the cell to the acoustic field could be adjusted.

  20. Detection of acoustic waves by NMR using a radiofrequency field gradient

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J.; Franconi, Jean-Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D.

    2003-03-01

    A B1 field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 1 3¯3 1¯ RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.

  1. Acoustic wave-driven oxidized liquid metal-based energy harvester

    NASA Astrophysics Data System (ADS)

    Jeon, Jinpyo; Chung, Sang Kug; Lee, Jeong-Bong; Doo, Seok Joo; Kim, Daeyoung

    2018-06-01

    We report an oxidized liquid metal droplet-based energy harvester that converts acoustic energy into electrical energy by modulating an electrical double layer that originates from the deformation of the oxidized liquid metal droplet. Gallium-based liquid metal alloy has been developed for various applications owing to the outstanding material properties, such as its high electrical conductivity (metallic property) and unlimited deformability (liquid property). In this study, we demonstrated energy harvesting using an electrical double layer between the acoustic wave-modulated liquid metal droplet and two electrodes. The proposed energy harvester consisted of top and bottom electrodes covered with the dielectric layer and a Gallium-based liquid metal droplet placed between the electrodes. When we applied an external bias voltage and acoustic wave to the proposed device, the contact area between the liquid metal droplet and the electrodes changed, leading to the variation of the capacitance in the electrical double layer and the generation of electrical output current. Using the proposed energy harvester, the maximum output current of 41.2 nA was generated with an applied acoustic wave of 30 Hz. In addition, we studied the relationships between the maximum output current and a variety of factors, such as the size of the liquid metal droplet, the thickness of the hydrophobic layer, and the distance between the top and bottom electrode plates.

  2. Distributed feedback guided surface acoustic wave microresonator

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1989-08-01

    Surface acoustic wave resonators have been used in a number of applications: high-Q frequency filtering, very accurate frequency sources, etc. A major disadvantage of conventional resonators is their large dimensions, which makes them inadequate for integrated acoustics applications. In order to overcome these size limitations a new type of microresonator was designed, developed, and tested. In this paper, theoretical calculations and measurements on two kinds of such devices (a corrugated waveguide filter and a microresonator structure) are presented and their possible applications are discussed.

  3. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  4. A unified view of acoustic-electrostatic solitons in complex plasmas

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Doyle, T. B.

    2003-03-01

    A fluid dynamic approach is used in a unified fully nonlinear treatment of the properties of the dust-acoustic, ion-acoustic and Langmuir-acoustic solitons. The analysis, which is carried out in the wave frame of the soliton, is based on total momentum conservation and Bernoulli-like energy equations for each of the particle species in each wave type, and yields the structure equation for the `heavy' species flow speed in each case. The heavy (cold or supersonic) species is always compressed in the soliton, requiring concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave. The treatment clearly elucidates the crucial role played by the heavy species sonic point in limiting the collective species Mach number, which determines the upper limit for the existence of the soliton and its amplitude, and also shows the essentially similar nature of each soliton type. An exact solution, which highlights these characteristic properties, shows that the three acoustic solitons are in fact the same mathematical entity in different physical disguises.

  5. Switchable and Tunable Bulk Acoustic Wave Devices Based on Ferroelectric Material

    NASA Astrophysics Data System (ADS)

    Mansour, Almonir

    The explosive development of personal communications systems, navigation, satellite communications as well as personal computer and data processing systems together with the constant demand for higher speeds and larger bandwidths has driven fabrication technology to its limits. This, in turn, necessitates the development of novel functional materials for the fabrication of devices with superior performance and higher capacity at reduced manufacturing costs. Ferroelectric materials such as barium strontium titanate (BST) and strontium titanium oxide (STO) have received more attention by researchers and industry because of their field-induced piezoelectric property. This property gives these types of ferroelectric materials the ability to be switchable and tunable in the presence of an electric field. These features have allowed the ferroelectric materials to be used in many applications such as non-volatile memory and DRAMs, sensors, pyroelectric detectors, and tunable microwave devices. Therefore, with the ever increasing complexity in RF front-end receivers, and the demand for services (which in turn requires more functionalities), ferroelectric bulk acoustic wave (BAW) resonators and filters that are intrinsically switchable and tunable promise to reduce the size and complexity of component parts. In this work, we present the design, fabrication and experimental evaluation of switchable and tunable thin film bulk acoustic wave (BAW) resonators, filters and duplexers for radio frequency (RF) applications. The switchability and tunability of these devices come from utilizing the electrostrictive effect of ferroelectric materials such as barium strontium titanate (BST) with the application of an external DC-bias voltage. The BAW resonators, filters and duplexers in this work were fabricated on different substrates as solidly mounted resonator (SMR) structure with number of periodic layers of silicon dioxide and tantalum oxide as a Bragg reflector in order to

  6. Influence of Tissue Microstructure on Shear Wave Speed Measurements in Plane Shear Wave Elastography: A Computational Study in Lossless Fibrotic Liver Media.

    PubMed

    Wang, Yu; Jiang, Jingfeng

    2018-01-01

    Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.

  7. Nonlinear ionospheric responses to large-amplitude infrasonic-acoustic waves generated by undersea earthquakes

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.

    2017-02-01

    Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.

  8. Acoustic Wave Propagation in Snow Based on a Biot-Type Porous Model

    NASA Astrophysics Data System (ADS)

    Sidler, R.

    2014-12-01

    Despite the fact that acoustic methods are inexpensive, robust and simple, the application of seismic waves to snow has been sparse. This might be due to the strong attenuation inherent to snow that prevents large scale seismic applications or due to the somewhat counterintuitive acoustic behavior of snow as a porous material. Such materials support a second kind of compressional wave that can be measured in fresh snow and which has a decreasing wave velocity with increasing density of snow. To investigate wave propagation in snow we construct a Biot-type porous model of snow as a function of porosity based on the assumptions that the solid frame is build of ice, the pore space is filled with a mix of air, or air and water, and empirical relationships for the tortuosity, the permeability, the bulk, and the shear modulus.We use this reduced model to investigate compressional and shear wave velocities of snow as a function of porosity and to asses the consequences of liquid water in the snowpack on acoustic wave propagation by solving Biot's differential equations with plain wave solutions. We find that the fast compressional wave velocity increases significantly with increasing density, but also that the fast compressional wave velocity might be even lower than the slow compressional wave velocity for very light snow. By using compressional and shear strength criteria and solving Biot's differential equations with a pseudo-spectral approach we evaluate snow failure due to acoustic waves in a heterogeneous snowpack, which we think is an important mechanism in triggering avalanches by explosives as well as by skiers. Finally, we developed a low cost seismic acquisition device to assess the theoretically obtained wave velocities in the field and to explore the possibility of an inexpensive tool to remotely gather snow water equivalent.

  9. Evanescent acoustic waves: Production and scattering by resonant targets

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.

    Small targets with acoustic resonances which may be excited by incident acoustic planewaves are shown to possess high-Q modes ("organ-pipe" modes) which may be suitable for ocean-based calibration and ranging purposes. The modes are modeled using a double point-source model; this, along with acoustic reciprocity and inversion symmetry, is shown to adequately model the backscattering form functions of the modes at low frequencies. The backscattering form-functions are extended to apply to any bistatic acoustic experiment using the targets when the target response is dominated by the modes in question. An interface between two fluids which each approximate an unbounded half-space has been produced in the laboratory. The fluids have different sound speeds. When sound is incident on this interface at beyond the critical angle from within the first fluid, the second fluid is made to evince a region dominated by evanescent acoustic energy. Such a system is shown to be an possible laboratory-based proxy for a flat sediment bottom in the ocean, or sloped (unrippled) bottom in littoral environments. The evanescent sound field is characterized and shown to have complicated features despite the simplicity of its production. Notable among these features is the presence of dips in the soundfield amplitude, or "quasi-nulls". These are proposed to be extremely important when considering the return from ocean-based experiments. The soundfield features are also shown to be accurately predicted and characterized by wavenumber-integration software. The targets which exhibit organ-pipe modes in the free-field are shown to also be excited by the evanescent waves, and may be used as soundfield probes when the target returns are well characterized. Alternately, if the soundfield is well-known, the target parameters may be extracted from back- or bistatic-scattering experiments in evanescent fields. It is shown that the spatial decay rate as measured by a probe directly in the evanescent

  10. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  11. Twisted electron-acoustic waves in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman-ur-Rehman, E-mail: amansadiq@gmail.com; Department of Physics and Applied Mathematics; Ali, S.

    2016-08-15

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q{sub eff} accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping ratemore » of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.« less

  12. Re-radiation of acoustic waves from the A0 wave on a submerged elastic shell

    NASA Astrophysics Data System (ADS)

    Ahyi, A. C.; Cao, Hui; Raju, P. K.; Überall, Herbert

    2005-07-01

    We consider evacuated thin semi-infinite shells immersed in a fluid, which may be either of cylindrical shape with a hemispherical shell endcap, or formed two-dimensionally by semi-infinite parallel plates joined together by a semi-cylinder. The connected shell portions are joined in a manner to satisfy continuity but with a discontinuous radius of curvature. Acoustic waves are considered incident along the axis of symmetry (say the z axis) onto the curved portion of the shell, where they, at the critical angle of coincidence, generate Lamb and Stoneley-type waves in the shell. Computations were carried out using a code developed by Cao et al. [Chinese J. Acoust. 14, 317 (1995)] and was used in order to computationally visualize the waves in the fluid that have been re-radiated by the shell waves a the critical angle. The frequency range was below that of the lowest Lamb wave, and only the A0 wave (and partly the S0 wave) was observed to re-radiate into the fluid under our assumptions. The results will be compared to experimental results in which the re-radiated waves are optically visualized by the Schardin-Cranz schlieren method. .

  13. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces.

    PubMed

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-15

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A_{0}) either when using a symmetric (S_{0}) or antisymmetric (A_{0}) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  14. Transition radiation on a superlattice in finite thickness plate generated by two acoustic waves

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, A. R.; Parazian, V. V.; Saharian, A. A.

    2018-01-01

    Forward transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate by two acoustic waves. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. Zone structures appear in the plate, which makes it possible (by an appropriate choice of the frequencies of the two acoustic waves) to control the spectral-angular distribution of the radiation through changes in the parameters of the medium. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic waves. Numerical examples are presented for a plate of fused quartz.

  15. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    PubMed

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  16. Novel types of surface acoustic wave microreflectors - Performance analysis and simulations

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1990-06-01

    Surface acoustic waves for micrograting reflectors have been characterized. Based on the perturbation theory, eight different types of structures on an acoustic waveguide were analyzed. Results of simulations of all eight types of corrugation structures were evaluated in order to find the least leaky waveguide, the most efficient reflector (with minimum necessary perturbations), and the optimal mode shape for improved performances. General design curves are presented in order to illustrate the behavior of the incident and reflected waves under a variety of structural conditions. Analytic expressions for the calculations of the mode amplitude and mode shape, and for general acoustic corrugations are derived and then the simulations results are presented.

  17. Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report.

    PubMed

    Larsson, H; Hertegård, S; Lindestad, P A; Hammarberg, B

    2000-12-01

    To evaluate a new analysis system, High-Speed Tool Box (H. Larsson, custom-made program for image analysis, version 1.1, Department of Logopedics and Phoniatrics, Huddinge University Hospital, Huddinge, Sweden, 1998) for studying vocal fold vibrations using a high-speed camera and to relate findings from these analyses to sound characteristics. A Weinberger Speedcam + 500 system (Weinberger AG, Dietikon, Switzerland) was used with a frame rate of 1,904 frames per second. Images were stored and analyzed digitally. Analysis included automatic glottal edge detection and calculation of glottal area variations, as well as kymography. These signals were compared with acoustic waveforms using the Soundswell program (Hitech Development AB, Stockholm, Sweden). The High-Speed Tool Box was applied on two types of high-speed recordings: a diplophonic phonation and a tremor voice. Relations between glottal vibratory patterns and the sound waveform were analyzed. In the diplophonic phonation, the glottal area waveform, as well as the kymogram, showed a specific pattern of repetitive glottal closures, which was also seen in the acoustic waveform. In the tremor voice, fundamental frequency (F0) fluctuations in the acoustic waveform were reflected in slow variations in amplitude in the glottal area waveform. For studying details of mucosal movements during these kinds of abnormal vibrations, the glottal area waveform was particularly useful. Our results suggest that this combined high-speed acoustic-kymographic analysis package is a promising aid for separating and specifying different voice qualities such as diplophonia and voice tremor. Apart from clinical use, this finding should be of help for specification of the terminology of different voice qualities.

  18. Spherical nonlinear ion-acoustic solitary waves in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-03-01

    Propagation of spherical nonlinear ion-acoustic solitary waves in positive and negative ion plasmas with superthermal electrons is investigated. The effects of perturbations of the azimuthal and zenith-angle as well as the radial coordinate on the solitary wave profile are reported. The existence domains and the characteristics of the spherical solitary pulses are examined. The solitary excitations are found to be strongly dependent on the plasma parameters; the mass ratio of the positive-to-negative ions, electrons superthermality, and the spherical geometry. The role of superthermal electrons in formation of the spherical nonlinear ion-acoustic solitary excitations for two ion mass groups in Titan's upper atmosphere is investigated.

  19. Acoustic Guided Wave Testing of Pipes of Small Diameters

    NASA Astrophysics Data System (ADS)

    Muravev, V. V.; Muraveva, O. V.; Strizhak, V. A.; Myshkin, Y. V.

    2017-10-01

    Acoustic path is analyzed and main parameters of guided wave testing are substanti- ated applied to pipes of small diameters. The method is implemented using longitudinal L(0,1) and torsional T(0,1) waves based on electromagnetic-acoustic (EMA) transducers. The method of multiple reflections (MMR) combines echo-through, amplitude-shadow and time-shadow methods. Due to the effect of coherent amplification of echo-pulses from defects the sensitivity to the defects of small sizes at the signal analysis on the far reflections is increased. An oppor- tunity of detection of both local defects (dents, corrosion damages, rolling features, pitting, cracks) and defects extended along the pipe is shown.

  20. Are ion acoustic waves supported by high-density plasmas in the Large Plasma Device (LaPD)?

    NASA Astrophysics Data System (ADS)

    Roycroft, Rebecca; Dorfman, Seth; Carter, Troy A.; Gekelman, Walter; Tripathi, Shreekrishna

    2012-10-01

    Ion acoustic waves are a type of longitudinal wave in a plasma, propagating though the motion of the ions. The wave plays a key role in a parametric decay process thought to be responsible for the spectrum of turbulence observed in the solar wind. In recent LaPD experiments aimed at studying this process, modes thought to be ion acoustic waves are strongly damped when the pump Alfven waves are turned off. This observation motivates an experiment focused on directly launching ion acoustic waves under similar conditions. Our first attempt to launch ion acoustic waves using a metal grid in the plasma was unsuccessful at high magnetic fields and densities due to electrons shorting out the bias applied between the grid and the wall. Results from a new device based on [1] to launch ion acoustic waves will be presented; this device will consist of a small chamber with a plasma source separated from the main chamber by two biased grids. The plasma created inside the small device will be held at a different potential from the main plasma; modulation of this difference should affect the ions, allowing ion acoustic waves to be launched and their properties compared to the prior LaPD experiments.[4pt] [1] W. Gekelman and R. L. Stenzel, Phys. Fluids 21, 2014 (1978).

  1. Wave propagation model of heat conduction and group speed

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Zhang, Xiaomin; Peng, Song

    2018-03-01

    In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.

  2. CHROMOSPHERIC HEATING BY ACOUSTIC WAVES COMPARED TO RADIATIVE COOLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobotka, M.; Heinzel, P.; Švanda, M.

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra ofmore » Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.« less

  3. A Shock-Refracted Acoustic Wave Model for Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fully expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on the directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength).

  4. Degenerate pressure driven modified nucleus-acoustic waves in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.

    2018-02-01

    The existence of degenerate pressure driven modified nucleus-acoustic (DPDMNA) waves propagating in a cold degenerate quantum plasma (DQP) system [containing cold inertialess degenerate electron species (DES), cold inertial non-degenerate light nucleus species (LNS), and stationary heavy nucleus species (HNS)] is predicted for the first time. The DPDMNA waves (in which the mass density of the cold LNS provides the inertia and the cold inertialess DES gives rise to the restoring force) are new since they completely disappear if the degenerate pressure of the cold DES is neglected. It is found that the phase speed (Vp) of the DPDMNA waves decreases with the rise of the charge number density of the stationary HNS for both non-relativistic and ultra-relativistic DES, and that the ultra-relativistic DES does not have any effect on Vp when β = 1, where β = Λc/Λe with Λ e = ne 0 - 1 / 3 being the average inter-electron distance in the DQP system and Λc being the constant (˜10-10 cm) for the DES. However, the ultra-relativistic DES does have quite a significant effect on Vp for β ≫ 1 and β ≪ 1, and the ultra-relativistic effect significantly enhances (reduces) Vp for β ≫ 1 (β ≪ 1). The DPDMNA waves and their dispersion properties are expected to be useful in understanding the basic features of the electrostatic perturbation mode in space and laboratory DQP systems.

  5. Nonlinear acoustic wave equations with fractional loss operators.

    PubMed

    Prieur, Fabrice; Holm, Sverre

    2011-09-01

    Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations. © 2011 Acoustical Society of America

  6. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  7. GPS-Acoustic Seafloor Geodesy using a Wave Glider

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.

    2013-12-01

    The conventional approach to implement the GPS-Acoustic technique uses a ship or buoy for the interface between GPS and Acoustics. The high cost and limited availability of ships restricts occupations to infrequent campaign-style measurements. A new approach to address this problem uses a remote controlled, wave-powered sea surface vehicle, the Wave Glider. The Wave Glider uses sea-surface wave action for forward propulsion with both upward and downward motions producing forward thrust. It uses solar energy for power with solar panels charging the onboard 660 W-h battery for near continuous operation. It uses Iridium for communication providing command and control from shore plus status and user data via the satellite link. Given both the sea-surface wave action and solar energy are renewable, the vehicle can operate for extended periods (months) remotely. The vehicle can be launched from a small boat and can travel at ~ 1 kt to locations offshore. We have adapted a Wave Glider for seafloor geodesy by adding a dual frequency GPS receiver embedded in an Inertial Navigation Unit, a second GPS antenna/receiver to align the INU, and a high precision acoustic ranging system. We will report results of initial testing of the system conducted at SIO. In 2014, the new approach will be used for seafloor geodetic measurements of plate motion in the Cascadia Subduction Zone. The project is for a three-year effort to measure plate motion at three sites along an East-West profile at latitude 44.6 N, offshore Newport Oregon. One site will be located on the incoming plate to measure the present day convergence between the Juan de Fuca and North American plates and two additional sites will be located on the continental slope of NA to measure the elastic deformation due to stick-slip behavior on the mega-thrust fault. These new seafloor data will constrain existing models of slip behavior that presently are poorly constrained by land geodetic data 100 km from the deformation front.

  8. Mode-coupling and wave-particle interactions for unstable ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasilinear and mode-coupling effects are treated in a self-consistent manner. Steady-state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through terms of second order in the wave amplitude, but without the usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion-acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasilinear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  9. Mode coupling and wave particle interactions for unstable ion acoustic waves

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasi-linear and mode coupling effects are treated in a self-consistent manner. Steady state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through second order terms in the wave amplitude, but without usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasi-linear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found, even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  10. Characterization of Acoustic Streaming Beyond 100 MHz

    NASA Astrophysics Data System (ADS)

    Eisener, J.; Lippert, A.; Nowak, T.; Cairós, C.; Reuter, F.; Mettin, R.

    The aim of this study is to investigate acoustic streaming in water at very high ultrasonic frequencies, namely beyond 100 MHz. At such high frequencies, the dissipation length of acoustic waves shrinks considerably, and the acoustic streaming transforms from the well-known Eckart type into a Stuart-Lighthill type: While Eckart streaming is driven by a small momentum transfer along the path of a weakly damped travelling sound wave, Stuart-Lighthill streaming is generated by rather local and strong momentum transfer of a highly damped and therefore rapidly decaying wave. Then the inertia of the induced flow cannot be neglected anymore, and a potentially turbulent jet flow emerges. Here we report on streaming velocity measurements for the case where the sound is completely absorbed within a region much smaller than the generated jet. In contrast to previous work in this frequency range, where mainly surface acoustic wave transducers have been employed, we use piston-type transducers that emit vertically to the transducer surface. The acoustic streaming effects are characterized by ink front tracking and particle tracking velocimetry, and by numerical studies. The results show narrow high-speed jet flows that extend much farther into the liquid than the acoustic field. Velocities of several m/s are observed.

  11. The characters of ion acoustic rogue waves in nonextensive plasma

    NASA Astrophysics Data System (ADS)

    Du, Hai-su; Lin, Mai-mai; Gong, Xue; Duan, Wen-shan

    2017-10-01

    Several well-known nonlinear waves in the rational solutions of the nonlinear Schrödinger equation are studied in two-component plasmas consisting of ions fluid and nonextensive electrons, such as Kuznetsov-Ma breather (K-M), bright soliton, rogue wave (RW), Akhmediev breather (AB) and dark soliton, and so on. In this paper, we have investigated the characteristics of K-M, AB, and RW's propagation in plasma with nonextensive electron distribution, and the dependence of amplitude and width for ion acoustic rogue waves in this system. It is found that K-M' triplet is appearance-disappearance-appearance-disappearance. AB solitons only appear once and RW is a single wave that appears from nowhere and then disappears. It is also noted that the wave number and nonextensive parameter of electrons have a significant influence on the maximum envelope amplitude, but, the influence of the width was not significant. At the same time, the effects of the small parameter, which represent the nonlinear strength, on the amplitude and width of ion acoustic rogue waves are also being highlighted.

  12. Energy scavenging system by acoustic wave and integrated wireless communication

    NASA Astrophysics Data System (ADS)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  13. Acoustic waves in tilted fiber Bragg gratings for sensing applications

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Alberto, Nélia J.; Domingues, Fátima; Leitão, Cátia; Antunes, Paulo; Pinto, João. L.; André, Paulo

    2017-05-01

    Tilted fiber Bragg gratings (TFBGs) are one of the most attractive kind of optical fiber sensor technology due to their intrinsic properties. On the other hand, the acousto-optic effect is an important, fast and accurate mechanism that can be used to change and control several properties of fiber gratings in silica and polymer optical fiber. Several all-optical devices for optical communications and sensing have been successfully designed and constructed using this effect. In this work, we present the recent results regarding the production of optical sensors, through the acousto-optic effect in TFBGs. The cladding and core modes amplitude of a TFBG can be controlled by means of the power levels from acoustic wave source. Also, the cladding modes of a TFBG can be coupled back to the core mode by launching acoustic waves. Induced bands are created on the left side of the original Bragg wavelength due to phase matching to be satisfied. The refractive index (RI) is analyzed in detail when acoustic waves are turned on using saccharose solutions with different RI from 1.33 to 1.43.

  14. Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Volosevich, A.-V.; Meister, C.-V.

    2003-04-01

    In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.

  15. Static shape of an acoustically levitated drop with wave-drop interaction

    NASA Astrophysics Data System (ADS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1994-11-01

    The static shape of a drop levitated and flattened by an acoustic standing wave field in air is calculated, requiring self-consistency between the drop shape and the wave. The wave is calculated for a given shape using the boundary integral method. From the resulting radiation stress on the drop surface, the shape is determined by solving the Young-Laplace equation, completing an iteration cycle. The iteration is continued until both the shape and the wave converge. Of particular interest are the shapes of large drops that sustain equilibrium, beyond a certain degree of flattening, by becoming more flattened at a decreasing sound pressure level. The predictions for flattening versus acoustic radiation stress, for drops of different sizes, compare favorably with experimental data.

  16. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2015-01-01

    Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).

  17. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    PubMed Central

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew

    2015-01-01

    Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970

  18. Transport Powder and Liquid Samples by Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Louyeh, Sahar

    2009-01-01

    Sample transport is an important requirement for In-situ analysis of samples in NASA planetary exploration missions. Tests have shown that powders or liquid drops on a surface can be transported by surface acoustic waves (SAW) that are generated on the surface using interdigital transducers. The phenomena were investigated experimentally and to generate SAWs interdigital electrodes were deposited on wafers of 128 deg rotated Y-cut LiNbO?. Transporting capability of the SAW device was tested using particles of various sizes and drops of various viscosities liquids. Because of different interaction mechanisms with the SAWs, the powders and the liquid drops were observed to move in opposite directions. In the preliminary tests, a speed of 180 mm/s was achieved for powder transportation. The detailed experimental setup and results are presented in this paper. The transporting mechanism can potentially be applied to miniaturize sample analysis system or " lab-on-chip" devices.

  19. Surface acoustic wave micromotor with arbitrary axis rotational capability

    NASA Astrophysics Data System (ADS)

    Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.

    2011-11-01

    A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

  20. Statistical Analysis of Acoustic Wave Power and Flows around Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2018-05-01

    We analyze the effect of a sunspot in its quiet surroundings applying a helioseismic technique on almost three years of Helioseismic and Magnetic Imager (HMI) observations obtained during solar cycle 24 to further study the sunspot structure below the solar surface. The attenuation of acoustic waves with frequencies lower than 4.2 mHz depends more strongly on the wave direction at a distance of 6°–7° from the sunspot center. The amplification of higher frequency waves is highest 6° away from the active region and is largely independent of the wave’s direction. We observe a mean clockwise flow around active regions, the angular speed of which decreases exponentially with distance and has a coefficient close to ‑0.7 degree‑1. The observed horizontal flow in the direction of the nearby active region agrees with a large-scale circulation around the sunspot in the shape of cylindrical shell. The center of the shell seems to be centered around 7° from the sunspot center, where we observe an inflow close to the surface down to ∼2 Mm, followed by an outflow at deeper layers until at least 7 Mm.

  1. Generation and Radiation of Acoustic Waves from a 2D Shear Layer

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2000-01-01

    A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable. Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the downstream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic. Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of noise. The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness is constant. With the source amplitude small enough, the problem is governed by the following set of linear equations given in dimensional form.

  2. System and method for sonic wave measurements using an acoustic beam source

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  3. Ion acoustic shock wave in collisional equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipationmore » that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less

  4. Numerical Investigation of the Acoustic Damping of Plane Acoustic Waves by Perforated Liners with Bias Flow

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Zhong, Zhi Yuan

    Perforated liners are extensively used in aero-engines and gas turbine combustors to suppress combustion instabilities. These liners, typically subjected to a low Mach number bias flow (a cooling flow through perforated holes), are fitted along the bounding walls of a combustor to convert acoustic energy into flow energy by generating vorticity at the rims of the perforated apertures. To investigate the acoustic damping of such liners with bias flow on plane acoustic waves, a time-domain numerical model is developed to compute acoustic wave propagation in a cylindrical duct with a single-layer liner attached. The damping mechanism of the liner is characterized in real-time by using a 'compliance', developed especially for this work. It is a rational function representation of the frequency-domain homogeneous compliance adapted from the Rayleigh conductivity of a single aperture with mean bias flow in the z-domain. The liner 'compliance' model is then incorporated into partial differential equations of the duct system, which are solved by using the method of lines. The numerical results are then evaluated by comparing with the numerical results of Eldredge and Dowling's frequency-domain model. Good agreement is observed. This confirms that the model and the approach developed are suitable for real-time characterizing the acoustic damping of perforated liners.

  5. Thomson-Scattering Study of the Subharmonic Decay of Ion-Acoustic Waves Driven by the Brillouin Instability

    NASA Astrophysics Data System (ADS)

    Bandulet, H. C.; Labaune, C.; Lewis, K.; Depierreux, S.

    2004-07-01

    Thomson scattering (TS) has been used to investigate the two-ion decay instability of ion acoustic waves generated by stimulated Brillouin scattering in an underdense CH plasma. Two complementary TS diagnostics, spectrally and spatially resolved, demonstrate the occurrence of the subharmonic decay of the primary ion acoustic wave into two secondary waves. The study of the laser intensity dependence shows that the secondary ion acoustic waves are correlated with the SBS reflectivity saturation, at a level of a few percent.

  6. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    PubMed Central

    Rocha-Gaso, María-Isabel; March-Iborra, Carmen; Montoya-Baides, Ángel; Arnau-Vives, Antonio

    2009-01-01

    This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW) technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW), Surface Transverse Wave (STW), Love Wave (LW), Flexural Plate Wave (FPW), Shear Horizontal Acoustic Plate Mode (SH-APM) and Layered Guided Acoustic Plate Mode (LG-APM) - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications. PMID:22346725

  7. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1988-01-01

    Acoustic propagation in an atmosphere with a specific form of a temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solutions have been considered, the primary emphasis has been on solutions of the acoustic wave equation with point source where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  8. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1987-01-01

    Acoustic propagation in an atmosphere with a specific form of temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solution have been considered the primary emphasis has been on solutions of the acoustic wave equation with point force where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  9. Development and Application of a Three-dimensional Seismo-acoustic Coupled-mode Model

    DTIC Science & Technology

    2014-09-30

    of coral reef fish need to locate a reef , and sound emanating from reefs may act as a cue to guide them. Using acoustic data collected from Bahia...approximate the solution to the wave equation. RELATED PROJECTS Geoacoustic inversion in three-dimensional environments The goal of this project is...shear wave speed Under this project an laboratory measurements the compressional and shear wave speeds and attenuations in coarse and fine grained

  10. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.

    PubMed

    Collins, David J; Ma, Zhichao; Han, Jongyoon; Ai, Ye

    2016-12-20

    Despite increasing demand in the manipulation of nanoscale objects for next generation biological and industrial processes, there is a lack of methods for reliable separation, concentration and purification of nanoscale objects. Acoustic methods have proven their utility in contactless manipulation of microscale objects mainly relying on the acoustic radiation effect, though the influence of acoustic streaming has typically prevented manipulation at smaller length scales. In this work, however, we explicitly take advantage of the strong acoustic streaming in the vicinity of a highly focused, high frequency surface acoustic wave (SAW) beam emanating from a series of focused 6 μm substrate wavelength interdigital transducers patterned on a piezoelectric lithium niobate substrate and actuated with a 633 MHz sinusoidal signal. This streaming field serves to focus fluid streamlines such that incoming particles interact with the acoustic field similarly regardless of their initial starting positions, and results in particle displacements that would not be possible with a travelling acoustic wave force alone. This streaming-induced manipulation of nanoscale particles is maximized with the formation of micro-vortices that extend the width of the microfluidic channel even with the imposition of a lateral flow, occurring when the streaming-induced flow velocities are an order of magnitude larger than the lateral one. We make use of this acoustic streaming to demonstrate the continuous and differential focusing of 100 nm, 300 nm and 500 nm particles.

  11. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.

    PubMed

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-04-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La 3 Ga 5 SiO 14 ) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.

  12. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    DOEpatents

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  13. Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies.

    PubMed

    Ormachea, Juvenal; Castaneda, Benjamin; Parker, Kevin J

    2018-05-01

    Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  14. An Acoustic-Instrumented Mine for Studying Subsequent Burial

    DTIC Science & Technology

    2007-01-01

    seawater . A strong reflection from the transducer face therefore indicates sediment flush with the mine surface (i.e., the mine surface is buried...variations in seawater sound speed and urethane sound speed that create a slight acoustic impedance mismatch at the water-urethane in- terface. The water...following was used: w. = \\//,„/2f/« TTH, U, T;Sinh( kh ) /„• = 0.237 0.52 /„, is the wave friction factor, Uw is the wave orbital velocity

  15. Integrated immunoassay using tuneable surface acoustic waves and lensfree detection.

    PubMed

    Bourquin, Yannyk; Reboud, Julien; Wilson, Rab; Zhang, Yi; Cooper, Jonathan M

    2011-08-21

    The diagnosis of infectious diseases in the Developing World is technologically challenging requiring complex biological assays with a high analytical performance, at minimal cost. By using an opto-acoustic immunoassay technology, integrating components commonly used in mobile phone technologies, including surface acoustic wave (SAW) transducers to provide pressure driven flow and a CMOS camera to enable lensfree detection technique, we demonstrate the potential to produce such an assay. To achieve this, antibody functionalised microparticles were manipulated on a low-cost disposable cartridge using the surface acoustic waves and were then detected optically. Our results show that the biomarker, interferon-γ, used for the diagnosis of diseases such as latent tuberculosis, can be detected at pM concentrations, within a few minutes (giving high sensitivity at a minimal cost). This journal is © The Royal Society of Chemistry 2011

  16. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Hongxiang; Faculty of Science, Jiangsu University, Zhenjiang 212013; Zhang Shuyi

    2011-04-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coatingmore » on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.« less

  17. Detection of acoustic-gravity waves in lower ionosphere by VLF radio waves

    NASA Astrophysics Data System (ADS)

    Nina, A.; Čadež, V. M.

    2013-09-01

    We present a new method to study harmonic waves in the low ionosphere (60 - 90 km) by detecting their effects on reflection of very low frequency (VLF) radio waves. Our procedure is based on amplitude analysis of reflected VLF radio waves recorded in real time, which yields an insight into the dynamics of the ionosphere at heights where VLF radio waves are being reflected. The method was applied to perturbations induced by the solar terminator motions at sunrises and sunsets. The obtained results show that typical perturbation frequencies found to exist in higher regions of the atmosphere are also present in the lower ionosphere, which indicates a global nature of the considered oscillations. In our model atmosphere, they turn out to be the acoustic and gravity waves with comparatively short and long periods, respectively.

  18. Characteristics of fundamental acoustic wave modes in thin piezoelectric plates.

    PubMed

    Joshi, S G; Zaitsev, B D; Kuznetsova, I E; Teplykh, A A; Pasachhe, A

    2006-12-22

    The characteristics of the three lowest order plate waves (A(0), S(0), and SH(0)) propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength lambda are theoretically analyzed. It is found that these waves can provide much higher values of electromechanical coupling coefficient K(2) and lower values of temperature coefficient of delay (TCD) than is possible with surface acoustic waves (SAWs). For example, in 30Y-X lithium niobate, the SH(0) mode has K(2)=0.46 and TCD=55 ppm/degrees C. The corresponding values for SAW in the widely used, strong coupling material of 128Y-X lithium niobate are K(2)=0.053 and TCD=75 ppm/degrees C. Another important advantage of plate waves is that, unlike the case of SAWs, they can operate satisfactorily in contact with a liquid medium, thus making possible their use in liquid phase sensors.

  19. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    PubMed

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  20. Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.

    2009-12-01

    The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.

  1. Porous medium acoustics of wave-induced vorticity diffusion

    NASA Astrophysics Data System (ADS)

    Müller, T. M.; Sahay, P. N.

    2011-02-01

    A theory for attenuation and dispersion of elastic waves due to wave-induced generation of vorticity at pore-scale heterogeneities in a macroscopically homogeneous porous medium is developed. The diffusive part of the vorticity field associated with a viscous wave in the pore space—the so-called slow shear wave—is linked to the porous medium acoustics through incorporation of the fluid strain rate tensor of a Newtonian fluid in the poroelastic constitutive relations. The method of statistical smoothing is then used to derive dynamic-equivalent elastic wave velocities accounting for the conversion scattering process into the diffusive slow shear wave in the presence of randomly distributed pore-scale heterogeneities. The result is a simple model for wave attenuation and dispersion associated with the transition from viscosity- to inertia-dominated flow regime.

  2. Taking advantage of acoustic inhomogeneities in photoacoustic measurements

    NASA Astrophysics Data System (ADS)

    Da Silva, Anabela; Handschin, Charles; Riedinger, Christophe; Piasecki, Julien; Mensah, Serge; Litman, Amélie; Akhouayri, Hassan

    2016-03-01

    Photoacoustic offers promising perspectives in probing and imaging subsurface optically absorbing structures in biological tissues. The optical uence absorbed is partly dissipated into heat accompanied with microdilatations that generate acoustic pressure waves, the intensity which is related to the amount of fluuence absorbed. Hence the photoacoustic signal measured offers access, at least potentially, to a local monitoring of the absorption coefficient, in 3D if tomographic measurements are considered. However, due to both the diffusing and absorbing nature of the surrounding tissues, the major part of the uence is deposited locally at the periphery of the tissue, generating an intense acoustic pressure wave that may hide relevant photoacoustic signals. Experimental strategies have been developed in order to measure exclusively the photoacoustic waves generated by the structure of interest (orthogonal illumination and detection). Temporal or more sophisticated filters (wavelets) can also be applied. However, the measurement of this primary acoustic wave carries a lot of information about the acoustically inhomogeneous nature of the medium. We propose a protocol that includes the processing of this primary intense acoustic wave, leading to the quantification of the surrounding medium sound speed, and, if appropriate to an acoustical parametric image of the heterogeneities. This information is then included as prior knowledge in the photoacoustic reconstruction scheme to improve the localization and quantification.

  3. Generation of Artificial Acoustic-Gravity Waves and Traveling Ionospheric Disturbances in HF Heating Experiments

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.; Cohen, J. A.; Watkins, B. J.

    2015-10-01

    We report the results of our ionospheric HF heating experiments to generate artificial acoustic-gravity waves (AGW) and traveling ionospheric disturbances (TID), which were conducted at the High-frequency Active Auroral Research Program facility in Gakona, Alaska. Based on the data from UHF radar, GPS total electron content, and ionosonde measurements, we found that artificial AGW/TID can be generated in ionospheric modification experiments by sinusoidally modulating the power envelope of the transmitted O-mode HF heater waves. In this case, the modulation frequency needs to be set below the characteristic Brunt-Vaisala frequency at the relevant altitudes. We avoided potential contamination from naturally-occurring AGW/TID of auroral origin by conducting the experiments during geomagnetically quiet time period. We determine that these artificial AGW/TID propagate away from the edge of the heated region with a horizontal speed of approximately 160 m/s.

  4. Acoustic measurements on aerofoils moving in a circle at high speed

    NASA Technical Reports Server (NTRS)

    Wright, S. E.; Crosby, W.; Lee, D. L.

    1982-01-01

    Features of the test apparatus, research objectives and sample test results at the Stanford University rotor aerodynamics and noise facility are described. A steel frame equipped to receive lead shot for damping vibrations supports the drive shaft for rotor blade elements. Sleeve bearings are employed to assure quietness, and a variable speed ac motor produces the rotations. The test stand can be configured for horizontal or vertical orientation of the drive shaft. The entire assembly is housed in an acoustically sealed room. Rotation conditions for hover and large angles of attack can be studied, together with rotational and blade element noises. Research is possible on broad band, discrete frequency, and high speed noise, with measurements taken 3 m from the center of the rotor. Acoustic signatures from Mach 0.3-0.93 trials with a NACA 0012 airfoil are provided.

  5. Identification of acoustic waves in ZnO materials by Brillouin light scattering for SAW device applications

    NASA Astrophysics Data System (ADS)

    Zerdali, M.; Bechiri, F.; Hamzaoui, S.; Teherani, F. H.; Rogers, D. J.; Sandana, V. E.; Bove, P.; Djemia, P.; Roussigné, Y.

    2017-03-01

    Brillouin light scattering (BLS) was conducted on melt-grown ZnO bulk crystals and ZnO thin films grown by pulsed laser deposition. The bulk ZnO crystals presented both longitudinal and transverse bulk acoustic waves. Theoretical calculations agreed well with there being one piezoelectric longitudinal branch and two transverse branches. BLS measurements conducted on ZnO thin films also revealed Rayleigh surface acoustic waves (R-SAW) guided by only the surface of the layer and Sezawa modes, guided by the film thickness. Measurements were conducted for three incidence angles in order to investigate different SAW wave numbers. Higher frequency features were identified as being related to a new class of guided longitudinal (LG) SAW modes which are not usually detected for ZnO thin films. The LG-SAW modes were observed for two incidence angles (θ=45° and 55°) corresponding to frequencies of 17.88 and 20.75 GHz, respectively. BLS measurements enable us to estimate the LG-SAW velocity as 6500 m/s. This value is three times higher than that of the currently used R-SAW. Theoretical simulations were coherent with the presence of LG modes in the ZnO layers. Such LG-SAW modes are promising for the development of novel, higher-speed SAW devices operating in the GHz-band and which could be readily incorporated in Si-based integrated circuitry.

  6. Acoustic wave simulation using an overset grid for the global monitoring system

    NASA Astrophysics Data System (ADS)

    Kushida, N.; Le Bras, R.

    2017-12-01

    The International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been monitoring hydro-acoustic and infrasound waves over the globe. Because of the complex natures of the oceans and the atmosphere, computer simulation can play an important role in understanding the observed signals. In this regard, methods which depend on partial differential equations and require minimum modelling, are preferable. So far, to our best knowledge, acoustic wave propagation simulations based on partial differential equations on such a large scale have not been performed (pp 147 - 161 of ref [1], [2]). The main difficulties in building such simulation codes are: (1) considering the inhomogeneity of medium including background flows, (2) high aspect ratio of computational domain, (3) stability during long time integration. To overcome these difficulties, we employ a two-dimensional finite different (FDM) scheme on spherical coordinates with the Yin-Yang overset grid[3] solving the governing equation of acoustic waves introduces by Ostashev et. al.[4]. The comparison with real recording examples in hydro-acoustic will be presented at the conference. [1] Paul C. Etter: Underwater Acoustic Modeling and Simulation, Fourth Edition, CRC Press, 2013. [2] LIAN WANG et. al.: REVIEW OF UNDERWATER ACOUSTIC PROPAGATION MODELS, NPL Report AC 12, 2014. [3] A. Kageyama and T. Sato: "Yin-Yang grid": An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5, Q09005, 2004. [4] Vladimir E. Ostashev et. al: Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, Acoustical Society of America. DOI: 10.1121/1.1841531, 2005.

  7. Acoustic Source Modeling for High Speed Air Jets

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Khavaran, Abbas

    2005-01-01

    The far field acoustic spectra at 90deg to the downstream axis of some typical high speed jets are calculated from two different forms of Lilley s equation combined with some recent measurements of the relevant turbulent source function. These measurements, which were limited to a single point in a low Mach number flow, were extended to other conditions with the aid of a highly developed RANS calculation. The results are compared with experimental data over a range of Mach numbers. Both forms of the analogy lead to predictions that are in excellent agreement with the experimental data at subsonic Mach numbers. The agreement is also fairly good at supersonic speeds, but the data appears to be slightly contaminated by shock-associated noise in this case.

  8. Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions.

    PubMed

    Badiey, Mohsen; Song, Aijun; Smith, Kevin B

    2012-10-01

    During a recent experiment in Kauai, Hawaii, reciprocal transmissions were conducted between two acoustic transceivers mounted on the seafloor at a depth of 100 m. The passage of moving surface wave crests was shown to generate focused and intense coherent acoustic returns, which had increasing or decreasing delay depending on the direction of propagation relative to the direction of surface wave crests. It is shown that a rough surface two-dimensional parabolic equation model with an evolving sea surface can produce qualitative agreement with data for the dynamic surface returns.

  9. Multi-wavelength Observations of Solar Acoustic Waves Near Active Regions

    NASA Astrophysics Data System (ADS)

    Monsue, Teresa; Pesnell, Dean; Hill, Frank

    2018-01-01

    Active region areas on the Sun are abundant with a variety of waves that are both acoustically helioseismic and magnetohydrodynamic in nature. The occurrence of a solar flare can disrupt these waves, through MHD mode-mixing or scattering by the excitation of these waves. We take a multi-wavelength observational approach to understand the source of theses waves by studying active regions where flaring activity occurs. Our approach is to search for signals within a time series of images using a Fast Fourier Transform (FFT) algorithm, by producing multi-frequency power map movies. We study active regions both spatially and temporally and correlate this method over multiple wavelengths using data from NASA’s Solar Dynamics Observatory. By surveying the active regions on multiple wavelengths we are able to observe the behavior of these waves within the Solar atmosphere, from the photosphere up through the corona. We are able to detect enhancements of power around active regions, which could be acoustic power halos and of an MHD-wave propagating outward by the flaring event. We are in the initial stages of this study understanding the behaviors of these waves and could one day contribute to understanding the mechanism responsible for their formation; that has not yet been explained.

  10. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    PubMed

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  11. Acoustic wavefield and Mach wave radiation of flashing arcs in strombolian explosion measured by image luminance

    NASA Astrophysics Data System (ADS)

    Genco, Riccardo; Ripepe, Maurizio; Marchetti, Emanuele; Bonadonna, Costanza; Biass, Sebastien

    2014-10-01

    Explosive activity often generates visible flashing arcs in the volcanic plume considered as the evidence of the shock-front propagation induced by supersonic dynamics. High-speed image processing is used to visualize the pressure wavefield associated with flashing arcs observed in strombolian explosions. Image luminance is converted in virtual acoustic signal compatible with the signal recorded by pressure transducer. Luminance variations are moving with a spherical front at a 344.7 m/s velocity. Flashing arcs travel at the sound speed already 14 m above the vent and are not necessarily the evidence of a supersonic explosive dynamics. However, seconds later, the velocity of small fragments increases, and the spherical acousto-luminance wavefront becomes planar recalling the Mach wave radiation generated by large scale turbulence in high-speed jet. This planar wavefront forms a Mach angle of 55° with the explosive jet axis, suggesting an explosive dynamics moving at Mo = 1.22 Mach number.

  12. Modulated heavy nucleus-acoustic waves and associated rogue waves in a degenerate relativistic quantum plasma system

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Islam, S.; Mamun, A. A.; Schlickeiser, R.

    2018-01-01

    A theoretical and numerical investigation has been carried out on amplitude modulated heavy nucleus-acoustic envelope solitons (HNAESs) in a degenerate relativistic quantum plasma (DRQP) system containing relativistically degenerate electrons and light nuclei, and non-degenerate mobile heavy nuclei. The cubic nonlinear Schrödinger equation, describing the nonlinear dynamics of the heavy nucleus-acoustic waves (HNAWs), is derived by employing a multi-scale perturbation technique. The dispersion relation for the HNAWs is derived, and the criteria for the occurrence of modulational instability of the HNAESs are analyzed. The localized structures (viz., envelope solitons and associated rogue waves) are found to be formed in the DRQP system under consideration. The basic features of the amplitude modulated HNAESs and associated rogue waves formed in realistic DRQP systems are briefly discussed.

  13. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Lin, Sz-Chin Steven; Kiraly, Brian; Yue, Hongjun; Li, Sixing; Chiang, I-Kao; Shi, Jinjie; Benkovic, Stephen J; Huang, Tony Jun

    2012-07-10

    Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based "acoustic tweezers" that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers' compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering.

  14. A differential optical interferometer for measuring short pulses of surface acoustic waves.

    PubMed

    Shaw, Anurupa; Teyssieux, Damien; Laude, Vincent

    2017-09-01

    The measurement of the displacements caused by the propagation of a short pulse of surface acoustic waves on a solid substrate is investigated. A stabilized time-domain differential interferometer is proposed, with the surface acoustic wave (SAW) sample placed outside the interferometer. Experiments are conducted with surface acoustic waves excited by a chirped interdigital transducer on a piezoelectric lithium niobate substrate having an operational bandwidth covering the 200-400MHz frequency range and producing 10-ns pulses with 36nm maximum out-of-plane displacement. The interferometric response is compared with a direct electrical measurement obtained with a receiving wide bandwidth interdigital transducer and good correspondence is observed. The effects of varying the path difference of the interferometer and the measurement position on the surface are discussed. Pulse compression along the chirped interdigital transducer is observed experimentally. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system

    NASA Astrophysics Data System (ADS)

    Nguendon Kenhagho, Hervé K.; Rauter, Georg; Guzman, Raphael; C. Cattin, Philippe; Zam, Azhar

    2018-02-01

    Characterization of acoustic shock wave will guarantee efficient tissue differentiation as feedback to reduce the probability of undesirable damaging (i.e. cutting) of tissues in laser surgery applications. We ablated hard (bone) and soft (muscle) tissues using a nanosecond pulsed Nd:YAG laser at 532 nm and a microsecond pulsed Er:YAG laser at 2.94 μm. When the intense short ns-pulsed laser is applied to material, the energy gain causes locally a plasma at the ablated spot that expands and propagates as an acoustic shock wave with a rarefaction wave behind the shock front. However, when using a μs-pulsed Er:YAG laser for material ablation, the acoustic shock wave is generated during the explosion of the ablated material. We measured and compared the emitted acoustic shock wave generated by a ns-pulsed Nd:YAG laser and a μs-pulsed Er:YAG laser measured by a calibrated microphone. As the acoustic shock wave attenuates as it propagates through air, the distance between ablation spots and a calibrated microphone was at 5 cm. We present the measurements on the propagation characteristics of the laser generated acoustic shock wave by measuring the arrival time-of-flight with a calibrated microphone and the energy-dependent evolution of acoustic parameters such as peak-topeak pressure, the ratio of the peak-to-peak pressures for the laser induced breakdown in air, the ablated muscle and the bone, and the spectral energy.

  16. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjouy, C., E-mail: cyril.desjouy@gmail.com; Ollivier, S.; Dragna, D.

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – alsomore » called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.« less

  17. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  18. High-frequency modulation of ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.

    1972-01-01

    A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.

  19. Simulations of acoustic waves in channels and phonation in glottal ducts

    NASA Astrophysics Data System (ADS)

    Yang, Jubiao; Krane, Michael; Zhang, Lucy

    2014-11-01

    Numerical simulations of acoustic wave propagation were performed by solving compressible Navier-Stokes equations using finite element method. To avoid numerical contamination of acoustic field induced by non-physical reflections at computational boundaries, a Perfectly Matched Layer (PML) scheme was implemented to attenuate the acoustic waves and their reflections near these boundaries. The acoustic simulation was further combined with the simulation of interaction of vocal fold vibration and glottal flow, using our fully-coupled Immersed Finite Element Method (IFEM) approach, to study phonation in the glottal channel. In order to decouple the aeroelastic and aeroacoustic aspects of phonation, the airway duct used has a uniform cross section with PML properly applied. The dynamics of phonation were then studied by computing the terms of the equations of motion for a control volume comprised of the fluid in the vicinity of the vocal folds. It is shown that the principal dynamics is comprised of the near cancellation of the pressure force driving the flow through the glottis, and the aerodynamic drag on the vocal folds. Aeroacoustic source strengths are also presented, estimated from integral quantities computed in the source region, as well as from the radiated acoustic field.

  20. Ion acoustic waves in pair-ion plasma: Linear and nonlinear analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeed, R.; Mushtaq, A.

    2009-03-15

    Linear and nonlinear properties of low frequency ion acoustic wave (IAW) in pair-ion plasma in the presence of electrons are investigated. The dispersion relation and Kadomtsev-Petviashvili equation for linear/nonlinear IAW are derived from sets of hydrodynamic equations where the ion pairs are inertial while electrons are Boltzmannian. The dispersion curves for various concentrations of electrons are discussed and compared with experimental results. The predicted linear IAW propagates at the same frequencies as those of the experimentally observed IAW if n{sub e0}{approx}10{sup 4} cm{sup -3}. It is found that nonlinear profile of the ion acoustic solitary waves is significantly affected bymore » the percentage ratio of electron number density and temperature. It is also determined that rarefactive solitary waves can propagate in this system. It is hoped that the results presented in this study would be helpful in understanding the salient features of the finite amplitude localized ion acoustic solitary pulses in a laboratory fullerene plasma.« less

  1. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    NASA Astrophysics Data System (ADS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  2. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1

    PubMed Central

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-01-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976

  3. Coherent Generation of Photo-Thermo-Acoustic Wave from Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Tian, Yichao; Tian, He; Wu, Yanling; Zhu, Leilei; Tao, Luqi; Zhang, Wei; Shu, Yi; Xie, Dan; Yang, Yi; Wei, Zhiyi; Lu, Xinghua; Ren, Tian-Ling; Shih, Chih-Kang; Zhao, Jimin

    Many remarkable properties of graphene are derived from its large energy window for Dirac-like electronic states and have been explored for applications in electronics and photonics. In addition, strong electron-phonon interaction in graphene has led to efficient photo-thermo energy conversions, which has been harnessed for energy applications. By combining the wavelength independent absorption property and the efficient photo-thermo energy conversion, here we report a new type of applications in sound wave generation underlined by a photo-thermo-acoustic energy conversion mechanism. Most significantly, by utilizing ultrafast optical pulses, we demonstrate the ability to control the phase of sound waves generated by the photo-thermal-acoustic process. Our finding paves the way for new types of applications for graphene, such as remote non-contact speakers, optical-switching acoustic devices, etc. National Basic Research Program of China MOST (2012CB821402), External Cooperation Program of Chinese Academy of Sciences (GJHZ1403), and National Natural Science Foundation of China (11274372).

  4. Search for acoustic signals from high energy cascades

    NASA Technical Reports Server (NTRS)

    Bell, R.; Bowen, T.

    1985-01-01

    High energy cosmic ray secondaries can be detected by means of the cascades they produce when they pass through matter. When the charged particles of these cascades ionize the matter they are traveling through, the heat produced and resulting thermal expansion causes a thermoacoustic wave. These sound waves travel at about one hundred-thousandth the speed of light, and should allow an array of acoustic transducers to resolve structure in the cascade to about 1 cm without high speed electronics or segmentation of the detector.

  5. A new point contact surface acoustic wave transducer for measurement of acoustoelastic effect of polymethylmethacrylate.

    PubMed

    Lee, Yung-Chun; Kuo, Shi Hoa

    2004-01-01

    A new acoustic transducer and measurement method have been developed for precise measurement of surface wave velocity. This measurement method is used to investigate the acoustoelastic effects for waves propagating on the surface of a polymethylmethacrylate (PMMA) sample. The transducer uses two miniature conical PZT elements for acoustic wave transmitter and receiver on the sample surface; hence, it can be viewed as a point-source/point-receiver transducer. Acoustic waves are excited and detected with the PZT elements, and the wave velocity can be accurately determined with a cross-correlation waveform comparison method. The transducer and its measurement method are particularly sensitive and accurate in determining small changes in wave velocity; therefore, they are applied to the measurement of acoustoelastic effects in PMMA materials. Both the surface skimming longitudinal wave and Rayleigh surface wave can be simultaneously excited and measured. With a uniaxial-loaded PMMA sample, both acoustoelastic effects for surface skimming longitudinal wave and Rayleigh waves of PMMA are measured. The acoustoelastic coefficients for both types of surface wave motions are simultaneously determined. The transducer and its measurement method provide a practical way for measuring surface stresses nondestructively.

  6. Effect of Internal Solitary Waves on Underwater Acoustic Propagation

    DTIC Science & Technology

    2010-01-01

    and 760 m from an expendable bathyther- mograph and one temperature profile below 760 m from the Navy’s Gen- eralized Digital Environment Model ( GDEM ...To calculate sound speed, the GDEM (average of July and August) salinity profile (nearest to CMB) was used. The sound speeds calculated from the GDEM ...from the GDEM sa- linity profile and 424 temperature pro- files generated the range-dependent SSPs (Figure 6). Comparison of the acoustic propagation

  7. Flow visualization of acoustic levitation experiment

    NASA Technical Reports Server (NTRS)

    Baroth, ED

    1987-01-01

    Acoustic levitation experiments for space applications were performed. Holographic interferometry is being used to study the heat transfer rates on a heated rod enclosed in a 6 cu in chamber. Acoustic waves at levels up to 150 db increased the heating rates to the rod by factors of three to four. High speed real time holographic interferometry was used to measure the boundary layer on the heated rod. Data reduction and digitization of the interferograms are being implemented.

  8. 9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  9. Range-dependence of acoustic channel with traveling sinusoidal surface wave.

    PubMed

    Choo, Youngmin; Seong, Woojae; Lee, Keunhwa

    2014-04-01

    Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.

  10. Picosecond ultrasonic study of surface acoustic waves on periodically patterned layered nanostructures.

    PubMed

    Colletta, Michael; Gachuhi, Wanjiru; Gartenstein, Samuel A; James, Molly M; Szwed, Erik A; Daly, Brian C; Cui, Weili; Antonelli, George A

    2018-07-01

    We have used the ultrafast pump-probe technique known as picosecond ultrasonics to generate and detect surface acoustic waves on a structure consisting of nanoscale Al lines on SiO 2 on Si. We report results from ten samples with varying pitch (1000-140 nm) and SiO 2 film thickness (112 nm or 60 nm), and compare our results to an isotropic elastic calculation and a coarse-grained molecular dynamics simulation. In all cases we are able to detect and identify a Rayleigh-like surface acoustic wave with wavelength equal to the pitch of the lines and frequency in the range of 5-24 GHz. In some samples, we are able to detect additional, higher frequency surface acoustic waves or independent modes of the Al lines with frequencies close to 50 GHz. We also describe the effects of probe beam polarization on the measurement's sensitivity to the different surface modes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.

    PubMed

    Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W

    2012-07-01

    Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Helicopter far-field acoustic levels as a function of reduced rotor speeds

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Lemasurier, Philip; Smith, Charles D.

    1990-01-01

    This paper will present far-field measured noise levels relative to tests conducted with a model S-76A helicopter. The project was designed to provide supplemental experimental flight data which may be used to further study reduced helicopter rotor speeds (and thus, advancing blade-tip Mach number) effects on far-field acoustic levels. The aircraft was flown in straight and level flight while operating with both the rotor speed and flight speed as test variables. The rotor speed was varied over the range of 107 percent of the main-rotor speed (NR) to 90 percent NR and with the forward flight speed varied over the range of 155 to 35 knots indicated air speed. These conditions produced a wide range of advancing blade-tip Mach numbers to which the noise data are related.

  13. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for

  14. Diffraction of dust acoustic waves by a circular cylinder

    NASA Astrophysics Data System (ADS)

    Kim, S.-H.; Heinrich, J. R.; Merlino, R. L.

    2008-09-01

    The diffraction of dust acoustic (DA) waves around a long dielectric rod is observed using video imaging methods. The DA waves are spontaneously excited in a dusty plasma produced in a direct current glow discharge plasma. The rod acquires a negative charge that produces a coaxial dust void around it. The diameter of the void is the effective size of the "obstacle" encountered by the waves. The wavelength of the DA waves is approximately the size of the void. The observations are considered in relation to the classical problem of the diffraction of sound waves from a circular cylinder, a problem first analyzed by Lord Rayleigh [Theory of Sound, 2nd ed. (MacMillan, London, 1896)].

  15. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    PubMed

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  16. A millisecond micromixer via single-bubble-based acoustic streaming.

    PubMed

    Ahmed, Daniel; Mao, Xiaole; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun

    2009-09-21

    We present ultra-fast homogeneous mixing inside a microfluidic channel via single-bubble-based acoustic streaming. The device operates by trapping an air bubble within a "horse-shoe" structure located between two laminar flows inside a microchannel. Acoustic waves excite the trapped air bubble at its resonance frequency, resulting in acoustic streaming, which disrupts the laminar flows and triggers the two fluids to mix. Due to this technique's simple design, excellent mixing performance, and fast mixing speed (a few milliseconds), our single-bubble-based acoustic micromixer may prove useful for many biochemical studies and applications.

  17. A metasurface carpet cloak for electromagnetic, acoustic and water waves.

    PubMed

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-29

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.

  18. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.

    PubMed

    Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F

    2018-05-01

    The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Propagation and dispersion of shock waves in magnetoelastic materials

    NASA Astrophysics Data System (ADS)

    Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.

    2017-12-01

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.

  20. An SU-8 liquid cell for surface acoustic wave biosensors

    NASA Astrophysics Data System (ADS)

    Francis, Laurent A.; Friedt, Jean-Michel; Bartic, Carmen; Campitelli, Andrew

    2004-08-01

    One significant challenge facing biosensor development is packaging. For surface acoustic wave based biosensors, packaging influences the general sensing performance. The acoustic wave is generated and received thanks to interdigital transducers and the separation between the transducers defines the sensing area. Liquids used in biosensing experiments lead to an attenuation of the acoustic signal while in contact with the transducers. We have developed a liquid cell based on photodefinable epoxy SU-8 that prevents the presence of liquid on the transducers, has a small disturbance effect on the propagation of the acoustic wave, does not interfere with the biochemical sensing event, and leads to an integrated sensor system with reproducible properties. The liquid cell is achieved in two steps. In a first step, the SU-8 is precisely patterned around the transducers to define 120 μm thick walls. In a second step and after the dicing of the sensors, a glass capping is placed manually and glued on top of the SU-8 walls. This design approach is an improvement compared to the more classical solution consisting of a pre-molded cell that must be pressed against the device in order to avoid leaks, with negative consequences on the reproducibility of the experimental results. We demonstrate the effectiveness of our approach by protein adsorption monitoring. The packaging materials do not interfere with the biomolecules and have a high chemical resistance. For future developments, wafer level bonding of the quartz capping onto the SU-8 walls is envisioned.

  1. Helicopter main-rotor speed effects on far-field acoustic levels

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Childress, Otis S.; Hardesty, Mark

    1987-01-01

    The design of a helicopter is based on an understanding of many parameters and their interactions. For example, in the design stage of a helicopter, the weight, engine, and rotor speed must be considered along with the rotor geometry when considering helicopter operations. However, the relationship between the noise radiated from the helicopter and these parameters is not well understood, with only limited model and full-scale test data to study. In general, these data have shown that reduced rotor speeds result in reduced far-field noise levels. This paper reviews the status of a recent helicopter noise research project designed to provide experimental flight data to be used to better understand helicopter rotor-speed effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a McDonnell Douglas model 500E helicopter operating with the rotor speed as the control variable over the range of 103% of the main-rotor speed (NR) to 75% NR, and with the forward speed maintained at a constant value of 80 knots.

  2. Nonlinear response and bistability of driven ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  3. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agreemore » well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.« less

  4. Acoustic wave transmission through piezoelectric structured materials.

    PubMed

    Lam, M; Le Clézio, E; Amorín, H; Algueró, M; Holc, Janez; Kosec, Marija; Hladky-Hennion, A C; Feuillard, G

    2009-05-01

    This paper deals with the transmission of acoustic waves through multilayered piezoelectric materials. It is modeled in an octet formalism via the hybrid matrix of the structure. The theoretical evolution with the angle and frequency of the transmission coefficients of ultrasonic plane waves propagating through a partially depoled PZT plate is compared to finite element calculations showing that both methods are in very good agreement. The model is then used to study a periodic stack of 0.65 PMN-0.35 PT/0.90 PMN-0.10 PT layers. The transmission spectra are interpreted in terms of a dispersive behavior of the critical angles of longitudinal and transverse waves, and band gap structures are analysed. Transmission measurements confirm the theoretical calculations and deliver an experimental validation of the model.

  5. Optical generation and detection of gigahertz-frequency longitudinal and shear acoustic waves in liquids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Klieber, Christoph; Pezeril, Thomas; Andrieu, Stéphane; Nelson, Keith A.

    2012-07-01

    We describe an adaptation of picosecond laser ultrasonics tailored for study of GHz-frequency longitudinal and shear acoustic waves in liquids. Time-domain coherent Brillouin scattering is used to detect multicycle acoustic waves after their propagation through variable thickness liquid layers into a solid substrate. A specialized optical pulse shaping method is used to generate sequences of pulses whose repetition rate determines the acoustic frequency. The measurements reveal the viscoelastic liquid properties and also include signatures of the optical and acoustic cavities formed by the multilayer sample assembly. Modeling of the signals allows their features to be distinguished so that liquid properties can be extracted reliably. Longitudinal and shear acoustic wave data from glycerol and from the silicon oil DC704 are presented.

  6. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  7. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.

    PubMed

    Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2014-04-01

    The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.

  8. Experiments on stress dependent borehole acoustic waves.

    PubMed

    Hsu, Chaur-Jian; Kane, Michael R; Winkler, Kenneth; Wang, Canyun; Johnson, David Linton

    2011-10-01

    In the laboratory setup, a borehole traverses a dry sandstone formation, which is subjected to a controlled uniaxial stress in the direction perpendicular to the borehole axis. Measurements are made in a single loading-unloading stress cycle from zero to 10 MPa and then back down to zero stress. The applied stress and the presence of the borehole induce anisotropy in the bulk of the material and stress concentration around the borehole, both azimuthally and radially. Acoustic waves are generated and detected in the water-filled borehole, including compressional and shear headwaves, as well as modes of monopole, dipole, quadrupole, and higher order azimuthal symmetries. The linear and non-linear elastic parameters of the formation material are independently quantified, and utilized in conjunction with elastic theories to predict the characteristics of various borehole waves at zero and finite stress conditions. For example, an analytic theory is developed which is successfully used to estimate the changes of monopole tube mode at low frequency resulted from uniaxial stress, utilizing the measured material third order elasticity parameters. Comparisons between various measurements as well as that between experiments and theories are also presented. © 2011 Acoustical Society of America

  9. High Speed Research Program Structural Acoustics Multi-Year Summary Report

    NASA Technical Reports Server (NTRS)

    Beier, Theodor H.; Bhat, Waman V.; Rizzi, Stephen A.; Silcox, Richard J.; Simpson, Myles A.

    2005-01-01

    This report summarizes the work conducted by the Structural Acoustics Integrated Technology Development (ITD) Team under NASA's High Speed Research (HSR) Phase II program from 1993 to 1999. It is intended to serve as a reference for future researchers by documenting the results of the interior noise and sonic fatigue technology development activities conducted during this period. For interior noise, these activities included excitation modeling, structural acoustic response modeling, development of passive treatments and active controls, and prediction of interior noise. For sonic fatigue, these activities included loads prediction, materials characterization, sonic fatigue code development, development of response reduction techniques, and generation of sonic fatigue design requirements. Also included are lessons learned and recommendations for future work.

  10. Directional Acoustic Wave Manipulation by a Porpoise via Multiphase Forehead Structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Song, Zhongchang; Wang, Xianyan; Cao, Wenwu; Au, Whitlow W. L.

    2017-12-01

    Porpoises are small-toothed whales, and they can produce directional acoustic waves to detect and track prey with high resolution and a wide field of view. Their sound-source sizes are rather small in comparison with the wavelength so that beam control should be difficult according to textbook sonar theories. Here, we demonstrate that the multiphase material structure in a porpoise's forehead is the key to manipulating the directional acoustic field. Computed tomography (CT) derives the multiphase (bone-air-tissue) complex, tissue experiments obtain the density and sound-velocity multiphase gradient distributions, and acoustic fields and beam formation are numerically simulated. The results suggest the control of wave propagations and sound-beam formations is realized by cooperation of the whole forehead's tissues and structures. The melon size significantly impacts the side lobes of the beam and slightly influences the main beams, while the orientation of the vestibular sac mainly adjusts the main beams. By compressing the forehead complex, the sound beam can be expanded for near view. The porpoise's biosonar allows effective wave manipulations for its omnidirectional sound source, which can help the future development of miniaturized biomimetic projectors in underwater sonar, medical ultrasonography, and other ultrasonic imaging applications.

  11. Ion acoustic waves at comet 67P/Churyumov-Gerasimenko. Observations and computations

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Nilsson, H.; Hamrin, M.; Eriksson, A.; Odelstad, E.; Maggiolo, R.; Henri, P.; Vallieres, X.; Altwegg, K.; Tzou, C.-Y.; Rubin, M.; Glassmeier, K.-H.; Stenberg Wieser, G.; Simon Wedlund, C.; De Keyser, J.; Dhooghe, F.; Cessateur, G.; Gibbons, A.

    2017-04-01

    Context. On 20 January 2015 the Rosetta spacecraft was at a heliocentric distance of 2.5 AU, accompanying comet 67P/Churyumov-Gerasimenko on its journey toward the Sun. The Ion Composition Analyser (RPC-ICA), other instruments of the Rosetta Plasma Consortium, and the ROSINA instrument made observations relevant to the generation of plasma waves in the cometary environment. Aims: Observations of plasma waves by the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) can be explained by dispersion relations calculated based on measurements of ions by the Rosetta Plasma Consortium Ion Composition Analyser (RPC-ICA), and this gives insight into the relationship between plasma phenomena and the neutral coma, which is observed by the Comet Pressure Sensor of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument (ROSINA-COPS). Methods: We use the simple pole expansion technique to compute dispersion relations for waves on ion timescales based on the observed ion distribution functions. These dispersion relations are then compared to the waves that are observed. Data from the instruments RPC-LAP, RPC-ICA and the mutual impedance probe (RPC-MIP) are compared to find the best estimate of the plasma density. Results: We find that ion acoustic waves are present in the plasma at comet 67P/Churyumov-Gerasimenko, where the major ion species is H2O+. The bulk of the ion distribution is cold, kBTI = 0.01 eV when the ion acoustic waves are observed. At times when the neutral density is high, ions are heated through acceleration by the solar wind electric field and scattered in collisions with the neutrals. This process heats the ions to about 1 eV, which leads to significant damping of the ion acoustic waves. Conclusions: In conclusion, we show that ion acoustic waves appear in the H2O+ plasmas at comet 67P/Churyumov-Gerasimenko and how the interaction between the neutral and ion populations affects the wave properties. Computer code for the dispersion analysis is

  12. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-11-01

    Electron Acoustic Waves (EAW) are the low frequency branch of electrostatic plasma waves. These waves exist in neutralized plasmas, pure electron plasmas and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing mθ= 0 mz= 1 EAWs in a pure ion plasma column. At small amplitude, the EAWs have a phase velocity vph ˜1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v <=vph <=2.1 v. This frequency variability comes from the plasma adjusting its velocity distribution so as to make the EAW resonant with the drive frequency. Our wave-coherent laser-induced fluorescence diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.

  13. Rapid calculation of acoustic fields from arbitrary continuous-wave sources.

    PubMed

    Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T

    2018-01-01

    A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.

  14. Propagation of acoustic waves in a stratified atmosphere, 1

    NASA Technical Reports Server (NTRS)

    Kalkofen, W.; Rossi, P.; Bodo, G.; Massaglia, S.

    1994-01-01

    This work is motivated by the chromospheric 3 minute oscillations observed in the K(sub 2v) bright points. We study acoustic gravity waves in a one-dimensional, gravitationally stratified, isothermal atmosphere. The oscillations are excited either by a velocity pulse imparted to a layer in an atmosphere of infinite vertical extent, or by a piston forming the lower boundary of a semi-infinite medium. We consider both linear and non-linear waves.

  15. Load Measurement in Structural Members Using Guided Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Wilcox, Paul D.

    2006-03-01

    A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.

  16. High frequency acoustic propagation under variable sea surfaces

    NASA Astrophysics Data System (ADS)

    Senne, Joseph

    This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are

  17. Negative refraction of acoustic waves using a foam-like metallic structure

    NASA Astrophysics Data System (ADS)

    Hladky-Hennion, A.-C.; Vasseur, J. O.; Haw, G.; Croënne, C.; Haumesser, L.; Norris, A. N.

    2013-04-01

    A phononic crystal (PC) slab made of a single metallic phase is shown, theoretically and experimentally, to display perfect negative index matching and focusing capability when surrounded with water. The proposed PC slab is a centimeter scale hollow metallic foam-like structure in which acoustic energy is mediated via the metal lattice. The negative index property arises from an isolated branch of the dispersion curves corresponding to a mode that can be coupled to incident acoustic waves in surrounding water. This band also intercepts the water sound line at a frequency in the ultrasonic range. The metallic structure is consequently a candidate for the negative refraction of incident longitudinal waves.

  18. Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics

    DTIC Science & Technology

    2016-08-01

    APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...mechanism on which to base on-chip nonlinear optical devices compatible with a rapidly growing silicon photonics toolbox.3–9 While silicon on insulator

  19. Resonant surface acoustic wave chemical detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acousticmore » cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.« less

  20. Characterization of low-frequency acoustic wave propagation through a periodic corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Jiang, Changyong; Huang, Lixi

    2018-03-01

    In this paper, a periodic corrugated waveguide structure is proposed, and its unit-cell is analyzed by the wave finite element method. In low-frequency range, the unit-cell is treated as an equivalent fluid through a homogenization process, and the equivalent acoustic parameters are obtained, which are validated by finite structure simulations and experiments. The proposed structure is shown to add tortuosity to the waveguide, hence higher equivalent fluid density is achieved, while the system elastic modulus remains unchanged. As a result, the equivalent speed of sound is smaller than normal air. The application of such change of speed of sound is demonstrated in the classic quarter-wavelength resonator based on the corrugated waveguide, which gives a lower resonance frequency with the same side branch length. When the waveguide is filled with porous materials, the added tortuosity enhances the broadband, low-frequency sound absorption by increasing the equivalent mass without bringing in excess damping, the latter being partly responsible for the poor performance of usual porous materials in the low-frequency region. Therefore, the proposed structure provides another dimension for the design and optimization of porous sound absorption materials.

  1. Simulation the Effect of Internal Wave on the Acoustic Propagation

    NASA Astrophysics Data System (ADS)

    Ko, D. S.

    2005-05-01

    An acoustic radiation transport model with the Monte Carlo solution has been developed and applied to study the effect of internal wave induced random oceanic fluctuations on the deep ocean acoustic propagation. Refraction in the ocean sound channel is performed by means of bi-cubic spline interpolation of discrete deterministic ray paths in the angle(energy)-range-depth coordinates. Scattering by random internal wave fluctuations is accomplished by sampling a power law scattering kernel applying the rejection method. Results from numerical experiments show that the mean positions of acoustic rays are significantly displaced tending toward the sound channel axis due to the asymmetry of the scattering kernel. The spreading of ray depths and angles about the means depends strongly on frequency. The envelope of the ray displacement spreading is found to be proportional to the square root of range which is different from "3/2 law" found in the non-channel case. Suppression of the spreading is due to the anisotropy of fluctuations and especially due to the presence of sound channel itself.

  2. Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Leiph

    Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fractionmore » of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.« less

  3. Generation of waves in the Venus mantle by the ion acoustic beam instability

    NASA Technical Reports Server (NTRS)

    Huba, J. D.

    1993-01-01

    The ion acoustic beam instability is suggested as a mechanism to produce wave turbulence observed in the Venus mantle at frequencies 100 Hz and 730 Hz. The plasma is assumed to consist of a stationary cold O(+) ion plasma and a flowing, shocked solar wind plasma. The O(+) ions appear as a beam relative to the flowing ionosheath plasma which provides the free energy to drive the instability. The plasma is driven unstable by inverse electron Landau damping of an ion acoustic wave associated with the cold ionospheric O(+) ions. The instability can directly generate the observed 100 Hz waves in the Venus mantle as well as the observed 730 Hz waves through the Doppler shift of the frequency caused by the satellite motion.

  4. Numerical Investigations of High Pressure Acoustic Waves in Resonators

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Pindera, Maciej; Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    This presentation presents work on numerical investigations of nonlinear acoustic phenomena in resonators that can generate high-pressure waves using acoustic forcing of the flow. Time-accurate simulations of the flow in a closed cone resonator were performed at different oscillation frequencies and amplitudes, and the numerical results for the resonance frequency and fluid pressure increase match the GRC experimental data well. Work on cone resonator assembly simulations has started and will involve calculations of the flow through the resonator assembly with and without acoustic excitation. A new technique for direct calculation of resonance frequency of complex shaped resonators is also being investigated. Script-driven command procedures will also be developed for optimization of the resonator shape for maximum pressure increase.

  5. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    PubMed

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  7. P- and S-Wave Speeds of the Very Upper Crust Estimated by a New Technique Based Upon Body-Wave Polarization

    NASA Astrophysics Data System (ADS)

    Park, S.; Ishii, M.

    2017-12-01

    Various seismic imaging methods have been developed, such as traveltime, waveform, and noise tomography, improving our knowledge of the subsurface structure and evolution. Near-surface structure, in particular, is crucial in understanding earthquake and volcano hazards. Seismic speed is directly related to the level of ground shaking, and monitoring its temporal change is valuable in volcanic hazard assessment. Here, we introduce a novel technique to constrain seismic wave speed of the very upper crust based upon the polarization measurements of teleseismic body-wave arrivals. The technique relates the orientation of recorded body waves to the wave speed immediately beneath a seismic instrument. We develop a counter-intuitive relationship that the P-wave polarization direction is only sensitive to subsurface shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. This approach is applied to the High-Sensitivity Seismograph Network in Japan, where the results are benchmarked against the borehole well data available at most stations. There is a good agreement between polarization-based estimates and the well measurements at as shallow as 100 m, confirming the efficacy of the new method in resolving the shallow structure. The lateral variation of wave speeds shows that sedimentary basins and mountainous regions are characterized by low and high wave speeds, respectively. It also correlates with volcano locations and geological units of different ages. Moreover, the analysis is expanded into 3D by examining the frequency dependence, where some preliminary results using broadband data are presented. These 2D and 3D wave speed estimates can be used to identify zones of high seismic risk by comparison with population distribution. This technique requires minimal computation resources and can be applied to any single three-component seismograph. It opens a new path to a reliable, non-invasive, and

  8. Coupled High Speed Imaging and Seismo-Acoustic Recordings of Strombolian Explosions at Etna, July 2014: Implications for Source Processes and Signal Inversions.

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Del Bello, E.; Scarlato, P.; Ricci, T.; Andronico, D.; Kueppers, U.; Cannata, A.; Sesterhenn, J.; Spina, L.

    2015-12-01

    Seismic and acoustic surveillance is routinely performed at several persistent activity volcanoes worldwide. However, interpretation of the signals associated with explosive activity is still equivocal, due to both source variability and the intrinsically limited information carried by the waves. Comparison and cross-correlation of the geophysical quantities with other information in general and visual recording in particular is therefore actively sought. At Etna (Italy) in July 2014, short-lived Strombolian explosions ejected bomb- to lapilli-sized, molten pyroclasts at a remarkably repeatable time interval of about two seconds, offering a rare occasion to systematically investigate the seismic and acoustic fields radiated by this common volcanic source. We deployed FAMoUS (FAst, MUltiparametric Setup for the study of explosive activity) at 260 meters from the vents, recording more than 60 explosions in thermal and visible high-speed videos (50 to 500 frames per second) and broadband seismic and acoustic instruments (1 to 10000 Hz for the acoustic and from 0.01 to 30 Hz for the seismic). Analysis of this dataset highlights nonlinear relationships between the exit velocity and mass of ejecta and the amplitude and frequency of the acoustic signals. It also allows comparing different methods to estimate source depth, and to validate existing theory on the coupling of airwaves with ground motion.

  9. Wake wash waves produced by High Speed Crafts:measurements vs prediction

    NASA Astrophysics Data System (ADS)

    Benassai, Guido

    2010-05-01

    The subject of this study refers to the wake wash waves generated by High Speed Crafts observed at some distance away (typically one or multiple of ship lengths) from the line of travel of the vessel. The ratio of the vessel speed divided by the maximum wave celerity in shallow water (depth-based Froude number) or to the square root of the gravity by the vessel length (length-based Froude number) is often used to classify the wash. In fact the wash waves produced by vessels that travel at sub-critical Froude numbers are different in patterns (and hence applicable theory) from that produced by vessels which operate at the critical Froude number of 1 or at supercritical Froude numbers. High Speed Crafts generally operate at Fr>1, even if in some cases for safety of navigation they operate at Fr<1. In the study supercritical speed conditions were considered. The predicted wake wash was a result of a desk-top study and relied on the subject matter presented in numerous technical papers and publications, while the measured wake wash is a result of the first field measurements of wake wash produced by HSC operating in the Bay of Naples. The measurements were operated by a pressure gauge in three critical points where the distance from the coastline was less than 700m. These measurements were taken in shallow water (depth ranging from 4 to 5 meters) in calm weather conditions. The output of the tests were wave-elevation time histories upon which the maximum wave height Hm from the wave record was extracted. The wave height reported was therefore the highest wave, peak to through, which occurred in a wave train. The wave period is defined as double the related half period for the defined maximum wave height. For each wake wash measurement the vessel route was monitored aboard the crossing HSC and exact speed, distance and water obtained depth was determined. The obtained values of the wake wash were compared with predictions of wake wash obtained by similar vessels in

  10. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE PAGES

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  11. Ion acoustic solitary wave with weakly transverse perturbations in quantum electron-positron-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushtaq, A.; Khan, S. A.; Department of Physics, COMSATS Institute of Information Technology, Islamabad

    2007-05-15

    The characteristics and stability of ion acoustic solitary wave with transverse perturbations are examined in ultracold quantum magnetospheric plasma consisting of electrons, positrons, and ions. Using the quantum hydrodynamic model, a dispersion relation in the linear regime, and the Kadomtsev-Petviashvili equation in the nonlinear regime are derived. The quantum corrections are studied through quantum statistics and diffraction effects. It is found that compressive solitary wave can propagate in this system. The quantum effects are also studied graphically for both linear and nonlinear profiles of ion acoustic wave. Using energy consideration method, conditions for existence of stable solitary waves are obtained.more » It is found that stable solitary waves depend on quantum corrections, positron concentration, and direction cosine of the wave vector k along the x axis.« less

  12. Measuring the speed of light with baryon acoustic oscillations.

    PubMed

    Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth

    2015-03-13

    In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.

  13. All-optical in-depth detection of the acoustic wave emitted by a single gold nanorod

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Guillet, Yannick; Ravaine, Serge; Audoin, Bertrand

    2018-04-01

    A single gold nanorod dropped on the surface of a silica substrate is used as a transient optoacoustic source of gigahertz hypersounds. We demonstrate the all-optical detection of the as-generated acoustic wave front propagating in the silica substrate. For this purpose, time-resolved femtosecond pump-probe experiments are performed in a reflection configuration. The fundamental breathing mode of the nanorod is detected at 23 GHz by interferometry, and the longitudinal acoustic wave radiated in the silica substrate is detected by time-resolved Brillouin scattering. By tuning the optical probe wavelength from 750 to 900 nm, hypersounds with wavelengths of 260-315 nm are detected in the silica substrate, with corresponding acoustic frequencies in the range of 19-23 GHz. To confirm the origin of these hypersounds, we theoretically analyze the influence of the acoustic excitation spectrum on the temporal envelope of the transient reflectivity. This analysis proves that the acoustic wave detected in the silica substrate results from the excitation of the breathing mode of the nanorod. These results pave the way for performing local in-depth elastic nanoscopy.

  14. Rossby Wave Propagation into the Northern Hemisphere Stratosphere: The Role of Zonal Phase Speed

    NASA Astrophysics Data System (ADS)

    Domeisen, Daniela I. V.; Martius, Olivia; Jiménez-Esteve, Bernat

    2018-02-01

    Sudden stratospheric warming (SSW) events are to a dominant part induced by upward propagating planetary waves. While theory predicts that the zonal phase speed of a tropospheric wave forcing affects wave propagation into the stratosphere, its relevance for SSW events has so far not been considered. This study shows in a linear wave diagnostic and in reanalysis data that phase speeds tend eastward as waves propagate upward, indicating that the stratosphere preselects eastward phase speeds for propagation, especially for zonal wave number 2. This also affects SSW events: Split SSW events tend to be preceded by anomalously eastward zonal phase speeds. Zonal phase speed may indeed explain part of the increased wave flux observed during the preconditioning of SSW events, as, for example, for the record 2009 SSW event.

  15. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  16. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Frankel, M. S.; Peterson, A. M.

    1977-01-01

    This paper considers the interaction of electromagnetic and acoustic waves where a Radio Acoustic Sounding System (RASS) is operated in a stochastic environment characterized by turbulence, winds and mean-temperature gradients. It has been shown that for a RASS operating at acoustic frequencies below a few kilohertz propagating under typical atmospheric conditions, turbulence has little effect on the strength of the received radio signal scattered from the pulse at heights up to a few kilometers. This result implies that the received RF signal level (power) is primarily a function of sound intensity which decreases as x exp minus 2 where x is the altitude.

  17. Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouzit, Omar; Tribeche, Mouloud

    2015-10-15

    The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ∼ 1, i.e., as the polarization force becomes close to the electrostatic onemore » (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.« less

  18. Acoustic and Acousto-Optic Characteristics of Silicon Nanofoam

    NASA Astrophysics Data System (ADS)

    Iino, Takeshi; Nakamura, Kentaro

    2009-07-01

    Silicon nanofoam is a porous material with a nanometer structure produced through a sol-gel process, and is used as a heat insulator. It is expected that the nanofoam may work as a good acoustic matching layer of an airborne ultrasonic transducer for highly sensitive and wideband ultrasound transmission/detection since the nanofoam has an extremely low acoustic impedance. The nanofoam may also have a possibility as an acousto-optic device because of its very low sound speed and optical transparency. In this study, we have estimated the fundamental acoustic characteristics of the nanofoam through acousto-optic measurements. Sound speed and acoustic attenuation were measured in the frequency range from 130 to 444 kHz using rectangular samples attached to a piezoelectric transducer. The sound speed and acoustic attenuation constant were approximately in the 140-150 m/s range and 4.3 ×10-11f1.9 dB/(mm·Hz1.9), respectively. It was observed that the change rate in the optical refractive index of the nanofoam owing to sound pressure was approximately in the range of (1.2-1.6) ×10-8 1/Pa. Raman-Nath diffraction occurred at a relatively low frequency since the sound speed is low. We also observed modulation in the polarization of the transmitted light owing to ultrasonic waves.

  19. Spectral element method for elastic and acoustic waves in frequency domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the usemore » of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.« less

  20. Tunable Nanowire Patterning Using Standing Surface Acoustic Waves

    PubMed Central

    Chen, Yuchao; Ding, Xiaoyun; Lin, Sz-Chin Steven; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E.; Huang, Tony Jun

    2014-01-01

    Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 seconds. In this approach, SSAWs were generated by interdigital transducers (IDTs), which induced a periodic alternating current (AC) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shape nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications. PMID:23540330

  1. Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves.

    PubMed

    Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J

    2011-04-13

    We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.

  2. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less

  3. Two-dimensional numerical simulation of acoustic wave phase conjugation in magnetostrictive elastic media.

    PubMed

    Voinovich, Peter; Merlen, Alain

    2005-12-01

    The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.

  4. Two-dimensional numerical simulation of acoustic wave phase conjugation in magnetostrictive elastic media

    NASA Astrophysics Data System (ADS)

    Voinovich, Peter; Merlen, Alain

    2005-12-01

    The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.

  5. The quality of our drinking water: aluminium determination with an acoustic wave sensor.

    PubMed

    Veríssimo, Marta I S; Gomes, M Teresa S R

    2008-06-09

    A new methodology based on an inexpensive aluminium acoustic wave sensor is presented. Although the aluminium sensor has already been reported, and the composition of the selective membrane is known, the low detection limits required for the analysis of drinking water, demanded the inclusion of a preconcentration stage, as well as an optimization of the sensor. The necessary coating amount was established, as well as the best preconcentration protocol, in terms of oxidation of organic matter and aluminium elution from the Chelex-100. The methodology developed with the acoustic wave sensor allowed aluminium quantitation above 0.07 mg L(-1). Several water samples from Portugal were analysed using the acoustic wave sensor, as well as by UV-vis spectrophotometry. Results obtained with both methodologies were not statistically different (alpha=0.05), both in terms of accuracy and precision. This new methodology proved to be adequate for aluminium quantitation in drinking water and showed to be faster and less reagent consuming than the UV spectrophotometric methodology.

  6. Solitary Waves, Periodic Peakons and Pseudo-Peakons of the Nonlinear Acoustic Wave Model in Rotating Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Li, Jibin

    The dynamical model of the nonlinear acoustic wave in rotating magnetized plasma is governed by a partial differential equation system. Its traveling system is a singular traveling wave system of first class depending on two parameters. By using the bifurcation theory and method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as different solitary wave solutions.

  7. Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source.

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Price, Colin

    2015-04-01

    Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source. G. Averbuch, C. Price Department of Geosciences, Tel Aviv University, Israel Infrasound is one of the four Comprehensive Nuclear-Test Ban Treaty technologies for monitoring nuclear explosions. This technology measures the acoustic waves generated by the explosions followed by their propagation through the atmosphere. There are also natural phenomena that can act as an infrasound sources like sprites, volcanic eruptions and earthquakes. The infrasound waves generated from theses phenomena can also be detected by the infrasound arrays. In order to study the behavior of these waves, i.e. the physics of wave propagation in the atmosphere, their evolution and their trajectories, numerical methods are required. This presentation will deal with the evolution of acoustic waves generated by underground sources (earthquakes and underground explosions). A 2D Spectral elements formulation for lithosphere-atmosphere coupling will be presented. The formulation includes the elastic wave equation for the seismic waves and the momentum, mass and state equations for the acoustic waves in a moving stratified atmosphere. The coupling of the two media is made by boundary conditions that ensures the continuity of traction and velocity (displacement) in the normal component to the interface. This work has several objectives. The first is to study the evolution of acoustic waves in the atmosphere from an underground source. The second is to derive transmission coefficients for the energy flux with respect to the seismic magnitude and earth density. The third will be the generation of seismic waves from acoustic waves in the atmosphere. Is it possible?

  8. Visualization of stress wave propagation via air-coupled acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan

    2017-02-01

    We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.

  9. Study and application of acoustic emission testing in fault diagnosis of low-speed heavy-duty gears.

    PubMed

    Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei

    2011-01-01

    Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis.

  10. Study and Application of Acoustic Emission Testing in Fault Diagnosis of Low-Speed Heavy-Duty Gears

    PubMed Central

    Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei

    2011-01-01

    Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis. PMID:22346592

  11. Polarization speed meter for gravitational-wave detection

    NASA Astrophysics Data System (ADS)

    Wade, Andrew R.; McKenzie, Kirk; Chen, Yanbei; Shaddock, Daniel A.; Chow, Jong H.; McClelland, David E.

    2012-09-01

    We propose a modified configuration of an advanced gravitational-wave detector that is a speed-meter-type interferometer with improved sensitivity with respect to quantum noise. With the addition of polarization-controlling components to the output of an arm cavity Michelson interferometer, an orthogonal polarization state of the interferometer can be used to store signal, returning it later with opposite phase to cancel position information below the storage bandwidth of the opposite mode. This modification provides an alternative to an external kilometer-scale Fabry-Pérot cavity, as presented in earlier work of Purdue and Chen [Phys. Rev. D 66, 122004 (2002)]. The new configuration requires significantly less physical infrastructure to achieve speed meter operation. The quantity of length and alignment degrees of freedom is also reduced. We present theoretical calculations to show that such a speed meter detector is capable of beating the strain sensitivity imposed by the standard quantum limit over a broad range of frequencies for Advanced Laser Interferometer Gravitational-wave Observatory-like parameters. The benefits and possible difficulties of implementing such a scheme are outlined. We also present results for tuning of the speed meter by adjusting the degree of polarization coupling, a novel possibility that does not exist in previously proposed designs, showing that there is a smooth transition from speed meter operation to that of a signal-recycling Michelson behavior.

  12. Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors

    NASA Technical Reports Server (NTRS)

    Dhawan, R.; Gunther, M. F.; Claus, R. O.

    1991-01-01

    Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.

  13. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-12-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  14. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numericalmore » simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.« less

  15. On the energy flux in acoustic waves in the solar atmosphere .

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.

    The energy supply for the radiative losses of the quiet solar chromosphere is studied. Time sequences from quiet Sun disc centre were obtained with the ``Göttingen'' Fabry-Pérot spectrometer at the Vacuum Tower Telescope, Observatorio del Teide/Tenerife, in the non-magnetic Fe I 5576 Å line. The data were reconstructed with speckle methods. The velocities as measured at the line minimum were subjected to Fourier and wavelet analysis. The energy fluxes were corrected for the transmission of the solar atmosphere. We find an energy flux of ˜ 3 000 W m-2 at a height of h=250 km. Approximately 2/3 of it is carried by waves in the 5-10 mHz range, and 1/3 in the 10-20 mHz band. The waves occur predominantly above inter-granular areas. We speculate that the acoustic flux in waves with periods shorter than the acoustic cutoff period (U≈190 s) can contribute to the basal heating of the solar chromosphere, in addition to atmospheric gravity waves.

  16. A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength

  17. Nucleus-acoustic shock waves in white dwarfs

    NASA Astrophysics Data System (ADS)

    Jannat, S.; Mamun, A. A.

    2018-04-01

    The nucleus-acoustic shock waves (NASWs) propagating in a white dwarf plasma system, which contain non-relativistically or ultrarelativistically degenerate electrons, non-relativistically degenerate, viscous fluid of light nuclei, and immobile nuclei of heavy elements, have been theoretically investigated. We have used the reductive perturbation method, which is valid for small but finite-amplitude NASWs to derive the Burgers equation. The NASWs are, in fact, associated with the nucleus-acoustic (NA) waves in which the inertia is provided by the light nuclei, and restoring force is provided by the degenerate pressure of electrons. On the other hand, the stationary heavy nuclei participate only in maintaining the background charge neutrality condition at equilibrium. It is found that the viscous force acting in the fluid of light nuclei is a source of dissipation, and is responsible for the formation of NASWs. It is also observed that the basic features (polarity, amplitude, width, etc.) of the NASWs are significantly modified by the presence of heavy nuclei, and that NASWs are formed with either positive or negative potential depending on the values of the charge density of the heavy nuclei. The basic properties are also found to be significantly modified by the effects of ultrarelativistically degenerate electrons. The implications of our results in white dwarfs are briefly discussed.

  18. The Effects of Internal Waves on Acoustic Normal Modes.

    DTIC Science & Technology

    1984-12-01

    amplitudes derived by suppressing azimuthal acoustic fluctuations are still valid as long as each range function is interpreted as a sum over all the...thatp HTp HTv + CvS(!!)(..)(25 The hydrodynamic equations appropriate to an ocean are Du p b + p(fxuL) + Vp - = V-A + F (2.6a) Do + pv.u 0(2.6b) pT Ln+ V... interpreted their scattering coefficients as representing contributions from the internal wave field with hori- zontal wave numbers equal to the

  19. Propagation and dispersion of shock waves in magnetoelastic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, R. S.; Domann, J. P.; Carman, G. P.

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less

  20. Propagation and dispersion of shock waves in magnetoelastic materials

    DOE PAGES

    Crum, R. S.; Domann, J. P.; Carman, G. P.; ...

    2017-11-15

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less

  1. Far-Field Acoustic Characteristics of Multiple Blade-Vane Configurations for a High Tip Speed Fan

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Gazzaniga, John A.; Hughes, Christopher

    2004-01-01

    The acoustic characteristics of a model high-speed fan stage were measured in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel at takeoff and approach flight conditions. The fan was designed for a corrected rotor tip speed of 442 m/s (1450 ft/s), and had a powered core, or booster stage, giving the model a nominal bypass ratio of 5. A simulated engine pylon and nozzle bifurcation was contained within the bypass duct. The fan stage consisted of all combinations of 3 possible rotors, and 3 stator vane sets. The 3 rotors were (1) wide chord, (2) forward swept, and (3) shrouded. The 3 stator sets were (1) baseline, moderately swept, (2) swept and leaned, and (3) swept integral vane/frame which incorporated some of the swept and leaned features as well as eliminated the downstream support structure. The baseline configuration is considered to be the wide chord rotor with the radial vane stator. A flyover Effective Perceived Noise Level (EPNL) code was used to generate relative EPNL values for the various configurations. The swept and leaned stator showed a 3 EPNdB reduction at lower fan speeds relative to the baseline stator; while the swept integral vane/frame stator showed lowest noise levels at high fan speeds. The baseline, wide chord rotor was typically the quietest of the three rotors. A tone removal study was performed to assess the acoustic benefits of removing the fundamental rotor interaction tone and its harmonics. Reprocessing the acoustic results with the bypass tone removed had the most impact on reducing fan noise at transonic rotor speeds. Removal of the bypass rotor interaction tones (BPF and nBPF) showed up to a 6 EPNdB noise reduction at transonic rotor speeds relative to noise levels for the baseline (wide chord rotor and radial stator; all tones present) configuration.

  2. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  3. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-09

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.

  4. Sound Speed and Attenuation in Multiphase Media

    DTIC Science & Technology

    2008-09-20

    Stoll [2] report shear wave speeds between 100 to 300 m/s for sandy sediments with porosities of 40-50%. Hastrup [12:121-127] reports empirical...by a factor of 64. The importance of shear wave conversion in bottom reflection has been treated by Hastrup [12] while the depth dependent...843, 1962 [12] O. F. Hastrup , Acoustic Bottom Reflectivity, Technical Report SR-115 SACLANT Undersea Research Centre, La Spezia, Italy, 1986. [13

  5. Glimpses of Kolmogorov's spectral energy dynamics in nonlinear acoustic waves

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek; Scalo, Carlo

    2017-11-01

    Gupta, Lodato, and Scalo (AIAA 2017) have demonstrated the existence of an equilibrium spectral energy cascade in shock waves formed as a result of continued modal thermoacoustic amplification consistent with Kolmogorov's theory for high-Reynolds-number hydrodynamic turbulence. In this talk we discuss the derivation of a perturbation energy density norm that guarantees energy conservation during the nonlinear wave steepening process, analogous to inertial subrange turbulent energy cascade dynamics. The energy cascade is investigated via a bi-spectral analysis limited to wave-numbers and frequencies lower than the ones associated with the shock, analogous to the viscous dissipation length scale in turbulence. The proposed norm is derived by recombining second-order nonlinear acoustic equations and is positive definite; moreover, it decays to zero in the presence of viscous dissipation and is hence classifiable as a Lyapunov function of acoustic perturbation variables. The cumulative energy spectrum wavenumber distribution demonstrates a -3/2 decay law in the inertial range. The governing equation for the thus-derived energy norm highlights terms responsible for energy cascade towards higher harmonics, analogous to vortex stretching terms in hydrodynamic turbulence.

  6. A novel five-wire micro anemometer with 3D directionality for low speed air flow detection and acoustic particle velocity detecting capability

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Chang, Wenhan; Gao, Chengchen; Hao, Yilong

    2018-04-01

    In this paper, a novel five-wire micro-fabricated anemometer with 3D directionality based on calorimetric principle is proposed, which is capable of measuring low speed airflow. This structure is realized by vertically bonding two different dies, which can be fabricated on the same wafer resulting in a simple fabrication process. Experiments on speed lower than 200 mm s-1 are conducted, showing good repeatability and directionality. The speed of airflow is controlled by the volumetric flow rate. The measured velocity sensitivity is 9.4 mV · s m-1, with relative direction sensitivity of 37.1 dB. The deviation between the expected and the measured directivity is analyzed by both theories and simulations. A correction procedure is proposed and turns out to be useful to eliminate this deviation. To further explore the potential of our device, we expose it to acoustic plane waves in a standing wave tube, showing consistent planar directivity of figure of eight. The measured velocity sensitivity at 1 kHz and 120 dBC is 4.4 mV · s m-1, with relative direction sensitivity of 27.0 dB. By using the correction method proposed above, the maximum angle error is about  ±2°, showing its good directionality accuracy.

  7. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  8. APL - North Pacific Acoustic Laboratory

    DTIC Science & Technology

    2011-09-01

    including marine mammals ) measurements in the NE Pacific Ocean. The Laboratory consists of the legacy SOSUS hydrophone receiver network in the...exposure in the marine environment. Philippine Sea- Ambient noise levels measured during the 2010-2011 Philippine Sea experiment on the Scripps...sound speed perturbations and the characteristics of the ambient acoustic noise field. Scattering and diffraction resulting from internal waves and

  9. Emission and detection of surface acoustic waves by AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Zhang, Meng; Banerjee, Animesh; Bhattacharya, Pallab; Pipe, Kevin P.

    2011-12-01

    Using integrated interdigital transducers (IDTs), we demonstrate the emission of surface acoustic waves (SAWs) by AlGaN/GaN high electron mobility transistors (HEMTs) under certain bias conditions through dynamic screening of the HEMTs vertical field by modulation of its two-dimensional electron gas. We show that a strong SAW signal can be detected if the IDT geometry replicates the HEMT electrode geometry at which RF bias is applied. In addition to characterizing SAW emission during both gate-source and drain-source modulation, we demonstrate SAW detection by HEMTs. Integrated HEMT-IDT structures could enable real-time evaluation of epitaxial degradation as well as high-speed, amplified detection of SAWs.

  10. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves.

    PubMed

    Johnson, Kennita A; Vormohr, Hannah R; Doinikov, Alexander A; Bouakaz, Ayache; Shields, C Wyatt; López, Gabriel P; Dayton, Paul A

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  11. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves

    NASA Astrophysics Data System (ADS)

    Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  12. Brillouin-scattering measurements of surface-acoustic-wave velocities in silicon at high temperatures

    NASA Astrophysics Data System (ADS)

    Stoddart, P. R.; Comins, J. D.; Every, A. G.

    1995-06-01

    Brillouin-scattering measurements of the angular dependence of surface-acoustic-wave velociites at high temperatures are reported. The measurements have been performed on the (001) surface of a silicon single crystal at temperatures up to 800 °C, allowing comparison of the results with calculated velocities based on existing data for the elastic constants and thermal expansion of silicon in this temperature range. The change in surface-acoustic-wave velocity with temperature is reproduced well, demonstrating the value of this technique for the characterization of the high-temperature elastic properties of opaque materials.

  13. Speed of Transverse Waves in a String Revisited

    ERIC Educational Resources Information Center

    Rizcallah, Joseph A.

    2017-01-01

    In many introductory-level physics textbooks, the derivation of the formula for the speed of transverse waves in a string is either omitted altogether or presented under physically overly idealized assumptions about the shape of the considered wave pulse and the related velocity and acceleration distributions. In this paper, we derive the named…

  14. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Graczykowski, B.; Alzina, F.; Gomis-Bresco, J.; Sotomayor Torres, C. M.

    2016-01-01

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.

  15. HF Doppler observations of acoustic waves excited by the earthquake

    NASA Technical Reports Server (NTRS)

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  16. Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals

    PubMed Central

    2011-01-01

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  17. Specific Features of Destabilization of the Wave Profile During Reflection of an Intense Acoustic Beam from a Soft Boundary

    NASA Astrophysics Data System (ADS)

    Deryabin, M. S.; Kasyanov, D. A.; Kurin, V. V.; Garasyov, M. A.

    2016-05-01

    We show that a significant energy redistribution occurs in the spectrum of reflected nonlinear waves, when an intense acoustic beam is reflected from an acoustically soft boundary, which manifests itself at short wave distances from a reflecting boundary. This effect leads to the appearance of extrema in the distributions of the amplitude and intensity of the field of the reflected acoustic beam near the reflecting boundary. The results of physical experiments are confirmed by numerical modeling of the process of transformation of nonlinear waves reflected from an acoustically soft boundary. Numerical modeling was performed by means of the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation.

  18. A comparison of time domain boundary conditions for acoustic waves in wave guides

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Propst, G.; Silcox, R. J.

    1991-01-01

    Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.

  19. Acoustic waves in the atmosphere and ground generated by volcanic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichihara, Mie; Lyons, John; Oikawa, Jun

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted alsomore » to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.« less

  20. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    PubMed

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  1. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    PubMed

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  2. Characterization of compressed earth blocks using low frequency guided acoustic waves.

    PubMed

    Ben Mansour, Mohamed; Ogam, Erick; Fellah, Z E A; Soukaina Cherif, Amel; Jelidi, Ahmed; Ben Jabrallah, Sadok

    2016-05-01

    The objective of this work was to analyze the influence of compaction pressure on the intrinsic acoustic parameters (porosity, tortuosity, air-flow resistivity, viscous, and thermal characteristic lengths) of compressed earth blocks through their identification by solving an inverse acoustic wave transmission problem. A low frequency acoustic pipe (60-6000 Hz of length 22 m, internal diameter 3.4 cm) was used for the experimental characterization of the samples. The parameters were identified by the minimization of the difference between the transmissions coefficients data obtained in the pipe with that from an analytical interaction model in which the compressed earth blocks were considered as having rigid frames. The viscous and thermal effects in the pores were accounted for by employing the Johnson-Champoux-Allard-Lafarge model. The results obtained by inversion for high-density compressed earth blocks showed some discordance between the model and experiment especially for the high frequency limit of the acoustic characteristics studied. This was as a consequence of applying high compaction pressure rendering them very highly resistive therefore degrading the signal-to-noise ratios of the transmitted waves. The results showed that the airflow resistivity was very sensitive to the degree of the applied compaction pressure used to form the blocks.

  3. Quantum Analogies in the Interaction between Acoustic Waves and Bubble Clouds

    NASA Astrophysics Data System (ADS)

    Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Analogies between quantum mechanical and acoustical propagation phenomena have a great interest in academic research due to their ability to shed light on some complex quantum effects, which are impossible to visualize directly in the macroscopic world. In this talk, we describe a number of these analogies concerning the acoustic behavior of bubble clouds. Firstly, we show that the structure of the collective oscillation modes of a spherical bubble cloud resembles that of the atomic orbitals of a hydrogen atom. Secondly, we present an analogy between some perturbation methods used in quantum-electrodynamics and the computation of the acoustic response of the randomly distributed bubble cloud by considering the contribution to the total scattered pressure of the multiple scattering paths that take place inside the clouds. As an application of this analogy, we obtain the scattering cross-section of a diluted cloud, which remarkably mimics the quantum scattering of an neutron wave when passing through an atomic nucleus. Finally, we numerically reproduce the behavior of an electron in a covalent bond between two hydrogen atoms by simulating the acoustic wave propagation through two neighboring spherical bubble assemblages. Funded by the Spanish Ministry of Economy and Competitiveness through Grants DPI2011-28356-C03-01 and DPI2011-28356-C03-02.

  4. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  5. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    PubMed

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  6. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.

    PubMed

    Zhang, Yuning; Du, Xiaoze

    2015-09-01

    Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com; Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235; Pal, Nikhil

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, usingmore » the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.« less

  8. Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael F.; Brissaud, Quentin; Rolland, Lucie; Martin, Roland; Komatitsch, Dimitri; Spiga, Aymeric; Lognonné, Philippe; Banerdt, Bruce

    2017-10-01

    The propagation of acoustic and gravity waves in planetary atmospheres is strongly dependent on both wind conditions and attenuation properties. This study presents a finite-difference modeling tool tailored for acoustic-gravity wave applications that takes into account the effect of background winds, attenuation phenomena (including relaxation effects specific to carbon dioxide atmospheres) and wave amplification by exponential density decrease with height. The simulation tool is implemented in 2D Cartesian coordinates and first validated by comparison with analytical solutions for benchmark problems. It is then applied to surface explosions simulating meteor impacts on Mars in various Martian atmospheric conditions inferred from global climate models. The acoustic wave travel times are validated by comparison with 2D ray tracing in a windy atmosphere. Our simulations predict that acoustic waves generated by impacts can refract back to the surface on wind ducts at high altitude. In addition, due to the strong nighttime near-surface temperature gradient on Mars, the acoustic waves are trapped in a waveguide close to the surface, which allows a night-side detection of impacts at large distances in Mars plains. Such theoretical predictions are directly applicable to future measurements by the INSIGHT NASA Discovery mission.

  9. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  10. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  11. Spin-wave-driven high-speed domain-wall motions in soft magnetic nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jaehak; Yoo, Myoung-Woo; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr

    We report on a micromagnetic simulation study of interactions between propagating spin waves and a head-to-head domain wall in geometrically confined magnetic nanotubes. We found that incident spin waves of specific frequencies can lead to sufficiently high-speed (on the order of a few hundreds of m/s or higher) domain-wall motions in the same direction as that of the incident spin-waves. The domain-wall motions and their speed vary remarkably with the frequency and the amplitude of the incident spin-waves. High-speed domain-wall motions originate from the transfer torque of spin waves' linear momentum to the domain wall, through the partial or completemore » reflection of the incident spin waves from the domain wall. This work provides a fundamental understanding of the interaction of the spin waves with a domain wall in the magnetic nanotubes as well as a route to all-magnetic control of domain-wall motions in the magnetic nanoelements.« less

  12. Quantitative shear wave optical coherence elastography (SW-OCE) with acoustic radiation force impulses (ARFI) induced by phase array transducer

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.

  13. Comment on "Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus" [J. Acoust. Soc. Am. 132, 2887-2895 (2012)].

    PubMed

    Marston, Philip L

    2014-03-01

    The phase and group velocities of elastic guided waves are important in the physical interpretation of high frequency scattering by fluid-loaded elastic shells. Outside the context of scattering, those properties are also important for understanding the energy flow in acoustic metamaterials. In a recent investigation of acoustic metamaterials exhibiting anomalous wave propagation [J. Acoust. Soc. Am. 132, 2887-2895 (2012)] criticism of negative group velocity terminology was generalized to elastic waves guided on ordinary materials. Some context and justification for retaining the identification of negative group velocities associated with a type of backscattering enhancement for shells are explained here. The phase evolution direction is determined by the boundary conditions.

  14. Artificial cochlea and acoustic black hole travelling waves observation: Model and experimental results

    NASA Astrophysics Data System (ADS)

    Foucaud, Simon; Michon, Guilhem; Gourinat, Yves; Pelat, Adrien; Gautier, François

    2014-07-01

    An inhomogeneous fluid structure waveguide reproducing passive behaviour of the inner ear is modelled with the help of the Wentzel-Kramers-Brillouin method. A physical setup is designed and built. Experimental results are compared with a good correlation to theoretical ones. The experimental setup is a varying width plate immersed in fluid and terminated with an acoustic black hole. The varying width plate provides a spatial repartition of the vibration depending on the excitation frequency. The acoustic black hole is made by decreasing the plate's thickness with a quadratic profile and by covering this region with a thin film of viscoelastic material. Such a termination attenuates the flexural wave reflection at the end of the waveguide, turning standing waves into travelling waves.

  15. Infragravity waves in the ocean as a source of acoustic-gravity waves in the atmosphere

    NASA Astrophysics Data System (ADS)

    Zabotin, Nikolay A.; Godin, Oleg A.

    2013-04-01

    Infragravity waves (IGWs) are surface gravity waves in the ocean with periods longer than the longest periods (~30s) of wind-generated waves. IGWs propagate transoceanic distances with very little attenuation in deep water and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, ice shelves, the atmosphere, and the solid Earth. Here, we build on recent advances in understanding spectral and spatial variability of background infragravity waves in deep ocean to evaluate the IGW manifestations in the atmosphere. Water compressibility has a minor effect on IGWs. On the contrary, much larger compressibility and vertical extent of the atmosphere makes it necessary to treat IGW extension into the atmosphere as acoustic-gravity waves. There exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has surface waves in the atmosphere propagating horizontally along the ocean surface and prominent up to heights of the order of the wavelength. At lower frequencies, IGWs are leaky waves, which continuously radiate their energy into the upper atmosphere. The transition between the two regimes occurs at a frequency of the order of 3 mHz, with the exact value of the transition frequency being a function of the ocean depth, the direction of IGW propagation and the vertical profiles of temperature and wind velocity. The transition frequency decreases with increasing ocean depth. Using recently obtained semi-empirical model of power spectra the IGWs over varying bathymetry [Godin O. A., Zabotin N. A., Sheehan A. F., Yang Z., and Collins J. A. Power spectra of infragravity waves in a deep ocean, Geophys. Res. Lett., under review (2012)], we derive an estimate of the flux of the mechanical energy from the deep ocean into the atmosphere due to IGWs. Significance will be discussed of the IGW contributions into the field of acoustic-gravity waves in the atmosphere.

  16. Near Field Ocean Surface Waves Acoustic Radiation Observation and Modeling

    NASA Astrophysics Data System (ADS)

    Ardhuin, F.; Peureux, C.; Royer, J. Y.

    2016-12-01

    The acoustic noise generation by nonlinearly interacting surface gravity waves has been studied for a long time both theoretically and experimentally [Longuet-Higgins 1951]. The associated far field noise is continuously measured by a vast network of seismometers at the ocean bottom and on the continents. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean.The pressure field at depths less than an acoustic wave length to the surface is made of evanescent modes which vanish away from their sources (near field) [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, where pressure measurements are performed at the ocean bottom (ca. 100 m) and at 300 m water depth respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modeling framework help assessing its performances and can be used to help future model improvements.References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.

  17. Coupling modes between liquid/gas coaxial jets and transverse acoustic waves

    NASA Astrophysics Data System (ADS)

    Helland, Chad; Hilliker, Cullen; Forliti, David; University of St. Thomas Team

    2017-11-01

    The interactions between shear flows and acoustic disturbances plays a very important role in many propulsion and energy applications. Liquid jets, either independent or air assisted, respond to acoustic disturbances in a manner that alters the primary and secondary atomization processes. The current study focused on the response of an air-assisted liquid jet to disturbances associated with a transverse acoustic wave. The jet is placed in the pressure node (velocity antinode) region of the resonant mode shape. It has been shown in previous studies, under certain conditions, that the acoustic forces can cause the jet flow to distort and atomize. Both liquid and coaxial gas/ liquid jet flows have been shown to distort via acoustic forces. The purpose of the current study is to understand the predictive characteristics that cause the distortion behaviors of a liquid and coaxial jet flow, and how a how a coaxial flow affects the behavior.

  18. A Semi-implicit Method for Resolution of Acoustic Waves in Low Mach Number Flows

    NASA Astrophysics Data System (ADS)

    Wall, Clifton; Pierce, Charles D.; Moin, Parviz

    2002-09-01

    A semi-implicit numerical method for time accurate simulation of compressible flow is presented. By extending the low Mach number pressure correction method, a Helmholtz equation for pressure is obtained in the case of compressible flow. The method avoids the acoustic CFL limitation, allowing a time step restricted only by the convective velocity, resulting in significant efficiency gains. Use of a discretization that is centered in both time and space results in zero artificial damping of acoustic waves. The method is attractive for problems in which Mach numbers are low, and the acoustic waves of most interest are those having low frequency, such as acoustic combustion instabilities. Both of these characteristics suggest the use of time steps larger than those allowable by an acoustic CFL limitation. In some cases it may be desirable to include a small amount of numerical dissipation to eliminate oscillations due to small-wavelength, high-frequency, acoustic modes, which are not of interest; therefore, a provision for doing this in a controlled manner is included in the method. Results of the method for several model problems are presented, and the performance of the method in a large eddy simulation is examined.

  19. Surface acoustic wave unidirectional transducers for quantum applications

    NASA Astrophysics Data System (ADS)

    Ekström, Maria K.; Aref, Thomas; Runeson, Johan; Björck, Johan; Boström, Isac; Delsing, Per

    2017-02-01

    The conversion efficiency of electric microwave signals into surface acoustic waves in different types of superconducting transducers is studied with the aim of quantum applications. We compare delay lines containing either conventional symmetric transducers (IDTs) or unidirectional transducers (UDTs) at 2.3 GHz and 10 mK. The UDT delay lines improve the insertion loss with 4.7 dB and a directivity of 22 dB is found for each UDT, indicating that 99.4% of the acoustic power goes in the desired direction. The power lost in the undesired direction accounts for more than 90% of the total loss in IDT delay lines, but only ˜3% of the total loss in the floating electrode unidirectional transducer delay lines.

  20. Analysis of Measured and Simulated Supraglottal Acoustic Waves.

    PubMed

    Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A

    2016-09-01

    To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Microfluidic integrated acoustic waving for manipulation of cells and molecules.

    PubMed

    Barani, Alireza; Paktinat, Hossein; Janmaleki, Mohsen; Mohammadi, Aminollah; Mosaddegh, Peiman; Fadaei-Tehrani, Alireza; Sanati-Nezhad, Amir

    2016-11-15

    Acoustophoresis with its simple and low-cost fabrication, rapid and localized fluid actuation, compatibility with microfluidic components, and biocompatibility for cellular studies, has been extensively integrated into microfluidics to provide on-chip microdevices for a variety of applications in biology, bioengineering and chemistry. Among different applications, noninvasive manipulation of cells and biomolecules are significantly important, which are addressed by acoustic-based microfluidics. Here in this paper, we briefly explain the principles and different configurations of acoustic wave and acoustic streaming for the manipulation of cells and molecules and overview its applications for single cell isolation, cell focusing and sorting, cell washing and patterning, cell-cell fusion and communication, and tissue engineering. We further discuss the application of acoustic-based microfluidic systems for the mixing and transport of liquids, manipulation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules, followed by explanation on the present challenges of acoustic-based microfluidics for the handling of cells and molecules, and highlighting the future directions. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  2. Spatio-Temporal Evolution of Sound Speed Channels on the Chukchi Shelf

    NASA Astrophysics Data System (ADS)

    Eickmeier, J.; Badiey, M.; Wan, L.

    2017-12-01

    The physics of an acoustic waveguide are influenced by various boundary conditions as well as spatial and temporal fluctuations in temperature and salinity profiles the water column. The shallow water Canadian Basin Acoustic Propagation Experiment (CANAPE) experiment was designed to study the effect of oceanographic variability on the acoustic field. A pilot study was conducted in the summer of 2015, full deployment of acoustic and environmental moorings took place in 2016, and recovery will occur in late 2017. An example of strong oceanographic variability in the SW region is depicted in Figure 1. Over the course of 7 days, warm Bering Sea water arrived on the Chukchi Shelf and sank in the water column to between 25 m and 125 m depth. This warm water spread to a range of 10 km and a potential eddy of warm water formed causing an increase in sound speed between 15 km and 20 km range in Fig. 1(b). Due to the increased sound speed, a strong sound channel evolved between 100 m and 200 m for acoustic waves arriving from off the shelf, deep water sources. In Fig. 1(a), the initial formation of the acoustic channel is only evident in 50 m to 100 m of water out to a range of 5 km. Recorded environmental data will be used to study fluctuations in sound speed channel formation on the Chukchi Shelf. Data collected in 2015 and 2016 have shown sound duct evolution over 7 days and over a one-month period. Analysis is projected to show sound channel formation over a new range of spatio-temporal scales. This analysis will show a cycle of sound channels opening and closing on the shelf, where this cycle strongly influences the propagation path, range and attenuation of acoustic waves.

  3. A linear acoustic model for intake wave dynamics in IC engines

    NASA Astrophysics Data System (ADS)

    Harrison, M. F.; Stanev, P. T.

    2004-01-01

    In this paper, a linear acoustic model is described that has proven useful in obtaining a better understanding of the nature of acoustic wave dynamics in the intake system of an internal combustion (IC) engine. The model described has been developed alongside a set of measurements made on a Ricardo E6 single cylinder research engine. The simplified linear acoustic model reported here produces a calculation of the pressure time-history in the port of an IC engine that agrees fairly well with measured data obtained on the engine fitted with a simple intake system. The model has proved useful in identifying the role of pipe resonance in the intake process and has led to the development of a simple hypothesis to explain the structure of the intake pressure time history: the early stages of the intake process are governed by the instantaneous values of the piston velocity and the open area under the valve. Thereafter, resonant wave action dominates the process. The depth of the early depression caused by the moving piston governs the intensity of the wave action that follows. A pressure ratio across the valve that is favourable to inflow is maintained and maximized when the open period of the valve is such to allow at least, but no more than, one complete oscillation of the pressure at its resonant frequency to occur while the valve is open.

  4. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinton, Gianmarco

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost.more » Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally

  5. Analysis of coiled stator ultrasound motor: Fundamental study on analysis of wave propagation on acoustic waveguide for coiled stator

    NASA Astrophysics Data System (ADS)

    Ozeki, Seiya; Kurita, Keisuke; Uehara, Choyu; Nakane, Noriaki; Sato, Toshio; Takeuchi, Shinichi

    2018-07-01

    In our research group, we previously developed a coiled stator ultrasound motor (CS-USM) for medical applications such as intravascular ultrasound (IVUS) devices. However, wave propagation on acoustic waveguides has not been investigated sufficiently in previous studies. In this study, we analyze the propagation velocity of elastic waves from the simulated the vibration displacement mode profile along a straight line acoustic waveguide via three-dimensional finite element method (FEM). Concerning results, elastic waves with vibration displacement along the thickness direction show dispersion characteristics corresponding to the a0 and a1 mode plate waves (Lamb waves) in the acoustic waveguide. Our theoretical hypotheses of the propagation velocities were closely borne out by experimental results. We further find that the dispersion characteristic is affected by the width of the acoustic waveguide. We believe that our findings can contribute to improved CS-USM designs for practical application.

  6. Head-on collision between two dust acoustic solitary waves and study of rogue waves in multicomponent dusty plasma

    NASA Astrophysics Data System (ADS)

    Singh, Kuldeep; Kaur, Nimardeep; Saini, N. S.

    2017-06-01

    In this investigation, the study of head-on collision between two dust acoustic solitary waves (DASWs) and characteristics of rogue waves in a dusty plasma composed of dust fluid, kappa distributed ions, electrons, and positrons has been presented. Two Korteweg-de Vries equations are derived by employing the extended Poincaré-Lighthill-Kuo reductive perturbation method. The analytical phase shifts and trajectories after head-on collision of two DA solitary waves have been studied numerically. It is found that the presence of superthermal ions, electrons, as well as positrons; concentrations of electrons and positrons; and temperature of electrons and dust have an emphatic influence on the phase shifts after the head-on collision of two rarefactive DA solitary waves. The time evolution of two rarefactive DASWs has also been presented. Further, the generation of dust acoustic rogue waves (DARWs) has been studied in the framework of rational solution of nonlinear Schrödinger equation. The dependence of the rogue wave profile on the relevant physical parameters has been discussed in detail. It is emphasized that the real implementation of our present results may be of great importance in different regions of space and astrophysical environments, especially in the interstellar medium and Jupiter rings.

  7. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  8. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-07

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  9. Analysis of laryngeal amyloidosis using high speed digital phonoscopy and acoustics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Blanco, Matthew; Cruz, Raul M.; Izdebski, Krzysztof; Yan, Yuling

    2017-02-01

    Amyloidosis is an unknown pathogenic process in which abnormally folded proteins are deposited in the extracellular space as macroscopic aggregates. Laryngeal deposits of these proteins are extremely rare, but primarily cause dysphonia in patients. High Speed Digital Phonoscopy (HSDP) was used to capture the kinematics of vocal folds in a patient with laryngeal amyloidosis. Acoustic data was also recorded and both HSDP and acoustics were processed using custom Vocalizer® software to help elucidate the physiological impact of amyloids in the larynx, especially in regards to effects on the voice.

  10. Analysis of the effect of a rectangular cavity resonator on acoustic wave transmission in a waveguide

    NASA Astrophysics Data System (ADS)

    Porter, R.; Evans, D. V.

    2017-11-01

    The transmission of acoustic waves along a two-dimensional waveguide which is coupled through an opening in its wall to a rectangular cavity resonator is considered. The resonator acts as a classical band-stop filter, significantly reducing acoustic transmission across a range of frequencies. Assuming wave frequencies below the first waveguide cut-off, the solution for the reflected and transmitted wave amplitudes is formulated exactly within the framework of inviscid linear acoustics. The main aim of the paper is to develop an approximation in closed form for reflected and transmitted amplitudes when the gap in the thin wall separating the waveguide and the cavity resonator is assumed to be small. This approximation is shown to accurately capture the effect of all cavities resonances, not just the fundamental Helmholtz resonance. It is envisaged this formula (and more generally the mathematical approach adopted) could be used in the development of acoustic metamaterial devices containing resonator arrays.

  11. High-Efficiency Photovoltaic Energy Conversion using Surface Acoustic Waves in Piezoelectric Semiconductors

    NASA Astrophysics Data System (ADS)

    Yakovenko, Victor

    2010-03-01

    We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).

  12. Landau quantization effects on hole-acoustic instability in semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Sumera, P.; Rasheed, A.; Jamil, M.; Siddique, M.; Areeb, F.

    2017-12-01

    The growth rate of the hole acoustic waves (HAWs) exciting in magnetized semiconductor quantum plasma pumped by the electron beam has been investigated. The instability of the waves contains quantum effects including the exchange and correlation potential, Bohm potential, Fermi-degenerate pressure, and the magnetic quantization of semiconductor plasma species. The effects of various plasma parameters, which include relative concentration of plasma particles, beam electron temperature, beam speed, plasma temperature (temperature of electrons/holes), and Landau electron orbital magnetic quantization parameter η, on the growth rate of HAWs, have been discussed. The numerical study of our model of acoustic waves has been applied, as an example, to the GaAs semiconductor exposed to electron beam in the magnetic field environment. An increment in either the concentration of the semiconductor electrons or the speed of beam electrons, in the presence of magnetic quantization of fermion orbital motion, enhances remarkably the growth rate of the HAWs. Although the growth rate of the waves reduces with a rise in the thermal temperature of plasma species, at a particular temperature, we receive a higher instability due to the contribution of magnetic quantization of fermions to it.

  13. Surface acoustic wave oxygen pressure sensor

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  14. Neural rotational speed control for wave energy converters

    NASA Astrophysics Data System (ADS)

    Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.

    2011-02-01

    Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.

  15. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons

    NASA Astrophysics Data System (ADS)

    Ahmadi, Abrishami S.; Nouri, Kadijani M.

    2014-06-01

    In this work, the effects of superthermal and trapped electrons on the oblique propagation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are simulated by hydrodynamic equations. Using the standard reductive perturbation technique (RPT) a nonlinear modified Korteweg-de Vries (mKdV) equation is derived. Two types of solitary waves; fast and slow dust acoustic solitons, exist in this plasma. Calculations reveal that compressive solitary structures are likely to propagate in this plasma where dust grains are negatively (or positively) charged. The properties of dust acoustic solitons (DASs) are also investigated numerically.

  16. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczykowski, B., E-mail: bartlomiej.graczykowski@icn.cat; Alzina, F.; Gomis-Bresco, J.

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection,more » and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.« less

  17. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer

    NASA Astrophysics Data System (ADS)

    Yang, G. Y.; Du, J. K.; Huang, B.; Jin, Y. A.; Xu, M. H.

    2017-04-01

    The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE) is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM). The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.

  18. Ion-Acoustic Wave-Particle Energy Flow Rates

    NASA Astrophysics Data System (ADS)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Skiff, Fred

    2017-10-01

    We present an experimental characterization of the energy flow rates for ion acoustic waves. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon, inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n 109cm-3 Te 9 eV and B 660 kG. A 4 ring antenna with diameter similar to the plasma diameter is used for launching the waves. A survey of the zeroth and first order ion velocity distribution functions (IVDF) is done using Laser-Induced Fluorescence (LIF) as the main diagnostics method. Using these IVDFs along with Vlasov's equation the different energy rates are measured for different values of ion velocity and separation from the antenna. We would like to acknowledge DOE DE-FG02-99ER54543 for their financial support throughout this research.

  19. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  20. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  1. Finite-element analysis of scattering parameters of surface acoustic wave bandpass filter formed on barium titanate thin film

    NASA Astrophysics Data System (ADS)

    Timoshenko; Kalinchuk; Shirokov

    2018-04-01

    The frequency dependence of scattering parameters of interdigital surface acoustic wave transducers placed on ferroelectric barium titanate (BaTiO3) epitaxial film in c-phase coated over magnesium oxide has been studied using the finite-element method (FEM) approach along with the perfectly matched layer (PML) technique. The interdigital transducer which has a comb-like structure with aluminum electrodes excites the mechanical wave. The distance between the fingers allows tuning the frequency properties of the wave propagation. The magnesium oxide is taken as the substrate. The two-dimensional model of two-port surface acoustic wave filter is created to calculate scattering parameters and to show how to design the fixture in COMSOLTM. Some practical computational challenges of finite element modeling of SAW devices in COMSOLTM are shown. The effect of lattice misfit strain on acoustic properties of heterostructures of BaTiO3 epitaxial film in c-phase at room temperature is discussed in present article for two low-frequency surface acoustic resonances.

  2. Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie

    2018-03-01

    Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.

  3. 3.5 GHz longitudinal leaky surface acoustic wave resonator using a multilayered waveguide structure for high acoustic energy confinement

    NASA Astrophysics Data System (ADS)

    Kimura, Tetsuya; Kishimoto, Yutaka; Omura, Masashi; Hashimoto, Ken-ya

    2018-07-01

    In this paper, the use of a structure comprising a thin LiNbO3 plate and a multilayered acoustic mirror composed of SiO2 and Pt for high-performance longitudinal leaky surface acoustic wave (LLSAW) device is proposed. The mirror is expected to offer a much higher reflectivity than that composed of SiO2 and AlN, which the authors proposed previously. The field distribution of these structures is calculated by using a finite element method. It is shown that the acoustic wave energy of the proposed structure is well confined in the vicinity of the top surface, and that leakage to the substrate is reduced. A one-port resonator is fabricated on the structure and its performance characteristics are evaluated. Owing to a high phase velocity of 6,035 m/s, which is about 1.5 times higher than that of conventional SAWs, a large impedance ratio of 71 dB was achieved at 3.5 GHz in addition to a large fractional bandwidth of 9.5%.

  4. Differentiation of red wines using an electronic nose based on surface acoustic wave devices.

    PubMed

    García, M; Fernández, M J; Fontecha, J L; Lozano, J; Santos, J P; Aleixandre, M; Sayago, I; Gutiérrez, J; Horrillo, M C

    2006-02-15

    An electronic nose, utilizing the principle of surface acoustic waves (SAW), was used to differentiate among different wines of the same variety of grapes which come from the same cellar. The electronic nose is based on eight surface acoustic wave sensors, one is a reference sensor and the others are coated by different polymers by spray coating technique. Data analysis was performed by two pattern recognition methods; principal component analysis (PCA) and probabilistic neuronal network (PNN). The results showed that electronic nose was able to identify the tested wines.

  5. Surface Acoustic Waves to Drive Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-03-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  6. Surface Acoustic Waves to Drive Plant Transpiration.

    PubMed

    Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T

    2017-03-31

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  7. Algorithms for highway-speed acoustic impact-echo evaluation of concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Mazzeo, Brian A.; Guthrie, W. Spencer

    2018-04-01

    A new acoustic impact-echo testing device has been developed for detecting and mapping delaminations in concrete bridge decks at highway speeds. The apparatus produces nearly continuous acoustic excitation of concrete bridge decks through rolling mats of chains that are placed around six wheels mounted to a hinged trailer. The wheels approximately span the width of a traffic lane, and the ability to remotely lower and raise the apparatus using a winch system allows continuous data collection without stationary traffic control or exposure of personnel to traffic. Microphones near the wheels are used to record the acoustic response of the bridge deck during testing. In conjunction with the development of this new apparatus, advances in the algorithms required for data analysis were needed. This paper describes the general framework of the algorithms developed for converting differential global positioning system data and multi-channel audio data into maps that can be used in support of engineering decisions about bridge deck maintenance, rehabilitation, and replacement (MR&R). Acquisition of position and audio data is coordinated on a laptop computer through a custom graphical user interface. All of the streams of data are synchronized with the universal computer time so that audio data can be associated with interpolated position information through data post-processing. The audio segments are individually processed according to particular detection algorithms that can adapt to variations in microphone sensitivity or particular chain excitations. Features that are greater than a predetermined threshold, which is held constant throughout the analysis, are then subjected to further analysis and included in a map that shows the results of the testing. Maps of data collected on a bridge deck using the new acoustic impact-echo testing device at different speeds ranging from approximately 10 km/h to 55 km/h indicate that the collected data are reasonably repeatable. Use

  8. Using ion flows parallel and perpendicular to gravity to modify dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Fisher, R.

    2008-11-01

    Recent studies of dust acoustic waves have shown that the dust kinetic temperature can play an important role in determining the resulting dispersion relation [M. Rosenberg, et al., Phys. Plasmas, 15, 073701 (2008)]. In these studies, it is believed that ion flows play a dominant role in determining both the kinetic temperature of the charged microparticles as well as providing the source of energy for triggering the waves. In this presentation, results will be presented on the effects of ion flow on spatial structure and velocity distribution of dust acoustic waves. Here, the waves will be formed in dusty plasmas consisting of 3 ± 1 micron diameter silica microspheres. Two separate electrodes will be used to modify the ion flow in the plasma -- one parallel to the direction of gravity and one perpendicular to the direction of gravity. Particle image velocimetry (PIV) techniques will be used to observe the particles and to measure their velocity distributions.

  9. Optimal determination of the elastic constants of composite materials from ultrasonic wave-speed measurements

    NASA Astrophysics Data System (ADS)

    Castagnède, Bernard; Jenkins, James T.; Sachse, Wolfgang; Baste, Stéphane

    1990-03-01

    A method is described to optimally determine the elastic constants of anisotropic solids from wave-speeds measurements in arbitrary nonprincipal planes. For such a problem, the characteristic equation is a degree-three polynomial which generally does not factorize. By developing and rearranging this polynomial, a nonlinear system of equations is obtained. The elastic constants are then recovered by minimizing a functional derived from this overdetermined system of equations. Calculations of the functional are given for two specific cases, i.e., the orthorhombic and the hexagonal symmetries. Some numerical results showing the efficiency of the algorithm are presented. A numerical method is also described for the recovery of the orientation of the principal acoustical axes. This problem is solved through a double-iterative numerical scheme. Numerical as well as experimental results are presented for a unidirectional composite material.

  10. Tsunami and acoustic-gravity waves in water of constant depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendin, Gali; Stiassnie, Michael

    2013-08-15

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami.

  11. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassindale, P. G.; Drinkwater, B. W.; Phillips, D. B.

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces aremore » separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.« less

  12. Using Shock Waves to Improve the Acoustic Properties of Closed-Cell Foams

    NASA Astrophysics Data System (ADS)

    Brouillette, M.; Hébert, C.; Atalla, N.; Doutres, O.

    Foam microstructure can be seen as a collection of interlinked struts forming a packing of cells interconnected to others through pores. Materials with a totality of pores closed by thin membranes are called closed-cell foams. The filtration and acoustic efficiency of closed-cell foams is poor compared to open-cell foams since it is very difficult for the fluid or the acoustic waves to penetrate inside the material.

  13. Ion Acoustic Waves Observed at Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Nilsson, H.; Hamrin, M.; Eriksson, A.; Maggiolo, R.; Pierre, H.; Altwegg, K.; Tzou, C. Y.; Rubin, M.; Glassmeier, K. H.; Stenberg Wieser, G.; Wedlund, C. S.; De Keyser, J.; Dhooghe, F.; Cessateur, G.; Gibbons, A.

    2016-12-01

    We present observations of ion acoustic waves at Comet 67P/Churyumov-Gerasimenko performed on 20 January 2015 when the Rosetta spacecraft was located near the terminator, 28 km from the nucleus of the comet. At the time of the observations the activity of the comet was still low. We use distribution functions obtained by the Ion Composition Analyser of the Rosetta Plasma Consortium (RPC-ICA) and electron temperature estimatesfrom the Langmuir Probes (RPC-LAP) to compute dispersion relations for waves on the ion timescale, and compare the results to spectra obtained by RPC-LAP. The peaks of the wave spectra appear at frequencies near 500 Hz. We perform cross-calibrations between RPC-ICA, RPC-LAP, and the Mutual Impedance Probe (RPC-MIP). Matching the dispersion relations to the wave observations helps us to form an estimate of the plasma density. At times when there is significant wave activity the water ion distribution is constituted by a cold (0.01 eV) population of locally produced ions and a thin tail of ions that have been accelerated by an electric field. The tail is approximately unidirectional, covering a wide velocity range, and centred at 20km/s in the spacecraft frame. At other times a warm (approximately 1 eV), mainly isotropic, ion population renders the ion acoustic mode heavily damped, and no waves are observed. Observations of the neutral density by the ROSINA COPS instrument indicate that frictional heating by the radial neutral flow contributes to this warm ion population. This work was supported by the Belgian Science Policy Office through the Solar-Terrestrial Centre of Excellence and by PRODEX/ROSETTA/ROSINA PEA 4000107705.

  14. In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments: Eel River shelf, California

    USGS Publications Warehouse

    Gorgas, T.J.; Wilkens, R.H.; Fu, S.S.; Neil, Frazer L.; Richardson, M.D.; Briggs, K.B.; Lee, H.

    2002-01-01

    We compared in situ and laboratory velocity and attenuation values measured in seafloor sediments from the shallow water delta of the Eel River, California. This region receives a substantial volume of fluvial sediment that is discharged annually onto the shelf. Additionally, a high input of fluvial sediments during storms generates flood deposits that are characterized by thin beds of variable grain-sizes between the 40- and 90-m isobaths. The main objectives of this study were (1) to investigate signatures of seafloor processes on geoacoustic and physical properties, and (2) to evaluate differences between geoacoustic parameters measured in situ at acoustic (7.5 kHz) and in the laboratory at ultrasonic (400 kHz) frequencies. The in situ acoustic measurements were conducted between 60 and 100 m of water depth. Wet-bulk density and porosity profiles were obtained to 1.15 m below seafloor (m bsf) using gravity cores of the mostly cohesive fine-grained sediments across- and along-shelf. Physical and geoacoustic properties from six selected sites obtained on the Eel margin revealed the following. (1) Sound speed and wet-bulk density strongly correlated in most cases. (2) Sediment compaction with depth generally led to increased sound speed and density, while porosity and in situ attenuation values decreased. (3) Sound speed was higher in coarser- than in finer-grained sediments, on a maximum average by 80 m s-1. (4) In coarse-grained sediments sound speed was higher in the laboratory (1560 m s-1) than in situ (1520 m s-1). In contrast, average ultrasonic and in situ sound speed in fine-grained sediments showed only little differences (both approximately 1480 m s-1). (5) Greater attenuation was commonly measured in the laboratory (0.4 and 0.8 dB m-1 kHz-1) than in situ (0.02 and 0.65 dB m-1 kHz-1), and remained almost constant below 0.4 m bsf. We attributed discrepancies between laboratory ultrasonic and in situ acoustic measurements to a frequency dependence of

  15. Acoustic waves in the solar atmosphere. VII - Non-grey, non-LTE H(-) models

    NASA Technical Reports Server (NTRS)

    Schmitz, F.; Ulmschneider, P.; Kalkofen, W.

    1985-01-01

    The propagation and shock formation of radiatively damped acoustic waves in the solar chromosphere are studied under the assumption that H(-) is the only absorber; the opacity is non-grey. Deviations from local thermodynamic equilibrium (LTE) are permitted. The results of numerical simulations show the depth dependence of the heating by the acoustic waves to be insensitive to the mean state of the atmosphere. After the waves have developed into shocks, their energy flux decays exponentially with a constant damping length of about 1.4 times the pressure scale height, independent of initial flux and wave period. Departures from LTE have a strong influence on the mean temperature structure in dynamical chromosphere models; this is even more pronounced in models with reduced particle density - simulating conditions in magnetic flux tubes - which show significantly increased temperatures in response to mechanical heating. When the energy dissipation of the waves is sufficiently large to dissociate most of the H(-) ions, a strong temperature rise is found that is reminiscent of the temperature structure in the transition zone between chromosphere and corona; the energy flux remaining in the waves then drives mass motions.

  16. Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bing; Tan, K. T., E-mail: ktan@uakron.edu

    2016-08-21

    Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted andmore » mathematically controlled, which extends the design concept of unidirectional transmission devices.« less

  17. Arbitrary electron acoustic waves in degenerate dense plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  18. Examination of nanosecond laser melting thresholds in refractory metals by shear wave acoustics

    NASA Astrophysics Data System (ADS)

    Abdullaev, A.; Muminov, B.; Rakhymzhanov, A.; Mynbayev, N.; Utegulov, Z. N.

    2017-07-01

    Nanosecond laser pulse-induced melting thresholds in refractory (Nb, Mo, Ta and W) metals are measured using detected laser-generated acoustic shear waves. Obtained melting threshold values were found to be scaled with corresponding melting point temperatures of investigated materials displaying dissimilar shearing behavior. The experiments were conducted with motorized control of the incident laser pulse energies with small and uniform energy increments to reach high measurement accuracy and real-time monitoring of the epicentral acoustic waveforms from the opposite side of irradiated sample plates. Measured results were found to be in good agreement with numerical finite element model solving coupled elastodynamic and thermal conduction governing equations on structured quadrilateral mesh. Solid-melt phase transition was handled by means of apparent heat capacity method. The onset of melting was attributed to vanished shear modulus and rapid radial molten pool propagation within laser-heated metal leading to preferential generation of transverse acoustic waves from sources surrounding the molten mass resulting in the delay of shear wave transit times. Developed laser-based technique aims for applications involving remote examination of rapid melting processes of materials present in harsh environment (e.g. spent nuclear fuels) with high spatio-temporal resolution.

  19. Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons

    NASA Astrophysics Data System (ADS)

    El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.

    2018-02-01

    The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.

  20. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.