Science.gov

Sample records for acoustic-based nondestructive methods

  1. Forty years with nondestructive methods

    NASA Astrophysics Data System (ADS)

    Teodoru, George

    1999-12-01

    The author takes the opportunity to strike the balance of his activity. He was the first establishing the qualitative and quantitative influence of curing conditions of concrete on the relations between nondestructively measured values, ultrasonic pulse velocity or attenuation and rebound indices (V,A,R) and its compressive strength. Since 1969 he had been behind a new approach for simultaneous use of concrete. The advantage of this multiple correlation concept (an off-spring of an original method for statistical quality analysis for the control of concrete quality) have been already well documented. The author established also a new criterium for the frost resistance of concrete, based on the variation of the logarithmic decrement of the vibrations (both free or forced). His activity as an expert led to the foundation of the "Engineering Society Cologne." He was entrusted with its presidency. Further examples shall inform about different field investigations carried out.

  2. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  3. Method for non-destructive testing

    DOEpatents

    Akers, Douglas W.

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  4. Emerging nondestructive inspection methods for aging aircraft

    SciTech Connect

    Beattie, A; Dahlke, L; Gieske, J

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  5. Nondestructive assay methods for solids containing plutonium

    SciTech Connect

    Macmurdo, K.W.; Gray, L.W.; Gibbs, A.

    1984-06-01

    Specific nondestructive assay (NDA) methods, e.g. calorimetry, coincidence neutron counting, singles neutron counting, and gamma ray spectrometry, were studied to provide the Savannah River Plant with an NDA method to measure the plutonium content of solid scrap (slag and crucible) generated in the JB-Line plutonium metal production process. Results indicate that calorimetry can be used to measure the plutonium content to within about 3% in 4 to 6 hours by using computerized equilibrium sample power predictive models. Calorimetry results confirm that a bias exists in the present indirect measurement method used to estimate the plutonium content of slag and crucible. Singles neutron counting of slag and crucible can measure plutonium to only +-30%, but coincidence neutron counting methods improve measurement precision to better than +-10% in less than ten minutes. Only four portions of a single slag and crucible sample were assayed, and further study is recommended.

  6. Nondestructive methods to assess dental implant stability

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Tabrizi, Aydin; Berhanu, Bruk; Ochs, Mark W.

    2012-04-01

    The robustness and reliability of two nondestructive evaluation methods to assess dental prostheses stability is presented. The study aims at addressing an increasing need in the biomedical area where robust, reliable, and noninvasive methods to assess the bone-interface of dental and orthopedic implants are increasingly demanded for clinical diagnosis and direct prognosis. The methods are based on the electromechanical impedance method and on the propagation of solitary waves. Nobel Biocare® 4.3 x 13 mm implants were entrenched inside bovine rib bones that were immersed inside Normal Saline for 24 hours before test in order to avoid dehydration and simulating physiologic osmolarity of the corticocancellous bone and plasma. Afterwards the bones were immersed in a solution of nitric acid to allow material degradation, inversely simulating a bone-healing process. This process was monitored by bonding a Piezoceramic Transducer (PZT) to the abutment and measuring the electrical admittance of the PZT over time. On the other hand the bones calcium loss was calculated after immersing in acid by Atomic Absorption Spectroscopy over time for comparison. Moreover a novel transducer based on the generation and detection of highly nonlinear solitary waves was used to assess the stiffness of the abutment-implant bone. In these experiments it was found that the PZT's conductance and some of the solitary waves parameters are sensitive to the degradation of the bones and was correlated to the bone calcium loss over time.

  7. A Nondestructive Method of Grain Microstructure Determination

    SciTech Connect

    Lai, J.

    2004-09-03

    Customarily, a material has been sectioned to study its internal grain microstructure and thus in the process is destroyed. Using x-rays, however, there are two nondestructive methods of determining the sources of diffraction spots and hence the internal grain microstructure of a sample. One technique consists of placing a wire in the path of a diffracted ray so that its image is prevented from appearing on the detector screen. Ray-tracing is then done to locate the source within the sample from whence the rays emanate. In this experiment, we investigate the other technique of determining source location by recording diffraction patterns at ten equally-spaced detector distances and then graphing the data with reasonable-fit lines using the least-squares fitting routine. We then perform a ray-tracing triangulation technique to pinpoint the location of the source from which the rays are coming. Cluster analyses are employed and plots of ray number versus pixel position of certain points at some particular detector distances are created. An error propagation analysis is then carried out as a check to the cluster analyses and graphs of error deviation along the detector path versus ray number are constructed. With statistical error analyses and construction of error boxes using chosen pixel error deviations and delta z error values, the best error measurement using the detector method was found to be plus/minus 100 microns. In this study, it was found that the detector method provided a much poorer resolution than the traditional wire technique of which there is a source size precision of within 1-5 microns. The detector method, though, is sufficient for large-grain material studies.

  8. Development of ultrasonic methods for the nondestructive inspection of concrete

    NASA Astrophysics Data System (ADS)

    Claytor, T. M.; Ellingson, W. A.

    1983-08-01

    Nondestructive inspection of Portland cement and refractory concrete is conducted to determine strength, thickness, presence of voids or foreign matter, presence of cracks, amount of degradation due to chemical attack, and other properties without the necessity of coring the structure (which is usually accomplished by destructively removing a sample). The state of the art of acoustic nondestructive testing methods for Portland cement and refractory concrete is reviewed. Most nondestructive work on concrete has concentrated on measuring acoustic velocity by through transmission methods. Development of a reliable pitch-catch or pulse-echo system would provide a method of measuring thickness with access from only one side of the concrete.

  9. Development of ultrasonic methods for the nondestructive inspection of concrete

    SciTech Connect

    Claytor, T.N.; Ellingson, W.A.

    1983-08-01

    Nondestructive inspection of Portland cement and refractory concrete is conducted to determine strength, thickness, presence of voids or foreign matter, presence of cracks, amount of degradation due to chemical attack, and other properties without the necessity of coring the structure (which is usually accomplished by destructively removing a sample). This paper reviews the state of the art of acoustic nondestructive testing methods for Portland cement and refractory concrete. Most nondestructive work on concrete has concentrated on measuring acoustic velocity by through transmission methods. Development of a reliable pitch-catch or pulse-echo system would provide a method of measuring thickness with access from only one side of the concrete.

  10. Nondestructive tests of regenerative chambers. [evaluating nondestructive methods of determining metal bond integrity

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Vecchies, L.; Wood, R.

    1974-01-01

    The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.

  11. NON-DESTRUCTIVE TESTING METHODS FOR GEOTHERMAL PIPING.

    SciTech Connect

    BERNDT,M.L.

    2001-03-23

    Non-destructive testing is a key component of optimized plant inspection and maintenance programs. Risk based inspection, condition based maintenance and reliability centered maintenance systems all require detection, location and sizing of defects or flaws by non-destructive methods. Internal damage of geothermal piping by corrosion and erosion-corrosion is an ongoing problem requiring inspection and subsequent maintenance decisions to ensure safe and reliable performance. Conventional manual ultrasonic testing to determine remaining wall thickness has major limitations, particularly when damage is of a random and localized nature. Therefore, it is necessary to explore alternative non-destructive methods that offer potential benefits in terms of accurate quantification of size, shape and location of damage, probability of detection, ability to use on-line over long ranges, and economics. A review of non-destructive methods and their applicability to geothermal piping was performed. Based on this, ongoing research will concentrate on long range guided wave and dynamic methods.

  12. Non-destructive testing method and apparatus

    DOEpatents

    Akers, Douglas W.

    2011-10-04

    Non-destructive testing apparatus may comprise a photon source and a source material that emits positrons in response to bombardment of the source material with photons. The source material is positionable adjacent the photon source and a specimen so that when the source material is positioned adjacent the photon source it is exposed to photons produced thereby. When the source material is positioned adjacent the specimen, the specimen is exposed to at least some of the positrons emitted by the source material. A detector system positioned adjacent the specimen detects annihilation gamma rays emitted by the specimen. Another embodiment comprises a neutron source and a source material that emits positrons in response to neutron bombardment.

  13. On-Line Nondestructive Methods for Examining Fuel Particles

    SciTech Connect

    Pardini, Allan F.; Bond, Leonard J.; Good, Morris S.; Bunch, Kyle J.; Sandness, Gerald A.; Hockey, Ronald L.; Saurwein, John J.; Gray, Joseph N.

    2007-09-15

    Tri-isotropic (TRISO) particle fuels, being considered for use in various advanced nuclear power reactors, consist of sub-millimeter diameter uranium oxide spheres uniformly coated to prevent the release of fission products into the reactor. About 15 billion of these spheres are needed to fuel a single reactor. Current quality control (QC) methods are manual, can destroy test specimens, and are not economically feasible. Replacing these methods with nondestructive evaluation (NDE) techniques, automated for higher speed, will make fuel production and reactor operation economically feasible, considering the requirement for extremely large fuel particle throughput rates. This paper reports a project to develop and demonstrate nondestructive examination methods to detect and reject defective particles, and in particular progress made in the final year of a Nuclear Energy Research Initiative (NERI) project . The work explored adapting, developing, and demonstrating innovative nondestructive test methods to cost-effectively assure the quality of large percentages of the fuel particles.

  14. Universal non-destructive testing method in the microwave range

    NASA Astrophysics Data System (ADS)

    Gerasimov, R. Yu; Fadeev, G. N.; Gerasimov, Yu V.; Kondrakova, E. A.

    2016-07-01

    Considered in this paper, a new method of nondestructive control based on the spectra of radio wave radiation of the microwave range wideband scanning receiver. It is experimentally shown that this method has a high accuracy in the determination of the frequency spectrum. This allows the method considered to reach a sensitivity of 5-6 Hz/nm.

  15. Method and apparatus for nondestructive in vivo measurement of photosynthesis

    DOEpatents

    Greenbaum, E.

    1988-02-22

    A device for in situ, nondestructive measurement of photosynthesis in live plants and photosynthetic microorganisms is disclosed which comprises a Clark-type oxygen electrode having a substantially transparent cathode comprised of an optical fiber having a metallic grid microetched onto its front face and sides, an anode, a substantially transparent electrolyte film, and a substantially transparent oxygen permeable membrane. The device is designed to be placed in direct contact with a photosynthetic portion of a living plant, and nondestructive, noninvasive measurement of photosynthetic oxygen production from the plant can be taken by passing light through the fiber-optic cathode, transparent electrolyte and transparent membrane, and onto the plant so that photosynthesis occurs. The oxygen thus produced by the plant is measured polarographically by the electrode. The present invention allows for rapid, nondestructive measurements of photosynthesis in living plants in a manner heretofore impossible using prior art methods. 6 figs.

  16. Method and apparatus for nondestructive in vivo measurement of photosynthesis

    DOEpatents

    Greenbaum, Elias

    1988-01-01

    A device for in situ, nondestructive measurement of photosynthesis in live plants and photosynthetic microorganisms is disclosed which comprises a Clark-type oxygen electrode having a substantially transparent cathode comprised of an optical fiber having a metallic grid microetched onto its front face and sides, an anode, a substantially transparent electrolyte film, and a substantially transparent oxygen permeable membrane. The device is designed to be placed in direct contact with a photosynthetic portion of a living plant, and nondestructive, noninvasive measurement of photosynthetic oxygen production from the plant can be taken by passing light through the fiber-optic cathode, transparent electroyte and transparent membrane, and onto the plant so that photosynthesis occurs. The oxygen thus produced by the plant is measured polargraphically by the electrode. The present invention allows for rapid, nondestructive measurements of photosynthesis in living plants in a manner heretofore impossible using prior art methods.

  17. A nondestructive method for continuously monitoring plant growth

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1985-01-01

    In the past, plant growth generally has been measured using destructive methods. This paper describes a nondestructive technique for continuously monitoring plant growth. The technique provides a means of directly and accurately measuring plant growth over both short and long time intervals. Application of this technique to the direct measurement of plant growth rates is illustrated using corn (Zea mays L.) as an example.

  18. Nondestructive method for measuring residual stresses in metals, a concept

    NASA Technical Reports Server (NTRS)

    Schwebel, C. D.

    1968-01-01

    Nondestructive direct measurement of residual surface stresses in metals can be made because metal under stress has a different electrochemical solution potential than in the unstressed condition. The method uses two matched electrolytic cells to cancel extraneous effects on the actual solution potential of the metal specimen.

  19. Evaluation of methods for nondestructive testing of brazed joints

    NASA Technical Reports Server (NTRS)

    Kanno, A.

    1968-01-01

    Evaluation of nondestructive methods of testing brazed joints reveals that ultrasonic testing is effective in the detection of nonbonds in diffusion bonded samples. Radiography provides excellent resolutions of void or inclusion defects, and the neutron radiographic technique shows particular advantage for brazing materials containing cadmium.

  20. Uranium holdup in concrete floors: a comparison of nondestructive methods

    SciTech Connect

    Hardt, T.L.; Dedo, M.P.

    1986-01-01

    In 1978, Babcock and Wilcox ceased operations at its high-enriched uranium conversion facility in Apollo, Pennsylvania. Incorporated in the Company's action was the responsibility to clean up, recover and/or identify any an all uranium that might be held up in processing equipment, piping, and the building. By 1980, most of the historical inventory difference had been recovered from the equipment and piping, which had been removed from the plant. It was anticipated that over the 20-yr history of this facility, some special nuclear material (SNM) would be embedded in the floors of the building. The objective of this work was to develop a method to measure this material nondestructively and as accurately as possible. This paper illustrates two nondestructive methods used at the Apollo facility and then presents a comparison of the NDA to the results of destructive recovery.

  1. Development of Nondestructive Inspection Methods for Composite Repair

    NASA Astrophysics Data System (ADS)

    Hsu, D. K.; Barnard, D. J.; Peters, J. J.; Dayal, V.

    2003-03-01

    This paper describes the development and implementation of two complementary nondestructive inspection methods for repairs made on aircraft composite honeycomb structures: computer aided tap testing (CATT) and air-coupled ultrasonic testing (AC-UT). The CATT, being a semi-automated and quantitative technique, is exploited to map out the interior conditions of a repaired part. The same repair is also imaged with air-coupled ultrasound and both compared with the results from destructive sectioning.

  2. Method for nondestructive fuel assay of laser fusion targets

    DOEpatents

    Farnum, Eugene H.; Fries, R. Jay

    1976-01-01

    A method for nondestructively determining the deuterium and tritium content of laser fusion targets by counting the x rays produced by the interaction of tritium beta particles with the walls of the microballoons used to contain the deuterium and tritium gas mixture under high pressure. The x rays provide a direct measure of the tritium content and a means for calculating the deuterium content using the initial known D-T ratio and the known deuterium and tritium diffusion rates.

  3. Nondestructive acoustic electric field probe apparatus and method

    DOEpatents

    Migliori, Albert

    1982-01-01

    The disclosure relates to a nondestructive acoustic electric field probe and its method of use. A source of acoustic pulses of arbitrary but selected shape is placed in an oil bath along with material to be tested across which a voltage is disposed and means for receiving acoustic pulses after they have passed through the material. The received pulses are compared with voltage changes across the material occurring while acoustic pulses pass through it and analysis is made thereof to determine preselected characteristics of the material.

  4. Laser heterodyne photothermal nondestructive method: extension to transparent probe

    NASA Astrophysics Data System (ADS)

    Pencheva, V.; Penchev, S.; Naboko, V.; Toyoda, K.; Donchev, T.

    2007-03-01

    We present a contribution to the development of the laser heterodyne method of nondestructive material analysis employing photothermal displacement (PTD) probe. PTD is a dominant factor of the photothermal effect in metals and semiconductors, where the derived linear dependence on absorbed energy exhibits a fingerprint of their physical properties. Theoretical consideration of the case of transparent probe is accomplished extending thermal diffusion model. Laser double heterodyne detection is verified for opaque and transparent probes, and in the exclusive case of silicon. The achieved resolution of photothermal displacement is less than 10 -12 m well above the limits of heterodyne measurement.

  5. Nondestructive testing methods for 55-gallon, waste storage drums

    SciTech Connect

    Ferris, R.H.; Hildebrand, B.P.; Hockey, R.L.; Riechers, D.M.; Spanner, J.C.; Duncan, D.R.

    1993-06-01

    The Westinghouse Hanford Company (WHC) authorized Pacific Northwest Laboratory (PNL) to conduct a feasibility study to identify promising nondestructive testing (NDT) methods for detecting general and localized (both pitting and pinhole) corrosion in the 55-gal drums that are used to store solid waste materials at the Hanford Site. This document presents results obtained during a literature survey, identifies the relevant reference materials that were reviewed, provides a technical description of the methods that were evaluated, describes the laboratory tests that were conducted and their results, identifies the most promising candidate methods along with the rationale for these selections, and includes a work plan for recommended follow-on activities. This report contains a brief overview and technical description for each of the following NDT methods: magnetic testing techniques; eddy current testing; shearography; ultrasonic testing; radiographic computed tomography; thermography; and leak testing with acoustic detection.

  6. Total Gamma Count Rate Analysis Method for Nondestructive Assay Characterization

    SciTech Connect

    Cecilia R. Hoffman; Yale D. Harker

    2006-03-01

    A new approach to nondestructively characterize waste for disposal, based on total gamma response, has been developed at the Idaho Cleanup Project by CH2M-WG Idaho, LLC and Idaho State University, and is called the total gamma count rate analysis method. The total gamma count rate analysis method measures gamma interactions that produce energetic electrons or positrons in a detector. Based on previous experience with waste assays, the radionuclide content of the waste container is then determined. This approach potentially can yield minimum detection limits of less than 10 nCi/g. The importance of this method is twofold. First, determination of transuranic activity can be made for waste containers that are below the traditional minimum detection limits. Second, waste above 10 nCi/g and below 100 nCi/g can be identified, and a potential path for disposal resolved.

  7. Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.

    1979-01-01

    The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.

  8. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  9. Infrared non-destructive evaluation method and apparatus

    DOEpatents

    Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

    2014-10-21

    A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

  10. NON-DESTRUCTIVE METHOD AND MEANS FOR FLAW DETECTION

    DOEpatents

    Hochschild, R.

    1959-03-10

    BS>An improved method is presented for the nondestructive detection of flaws in olectrictilly conductivc articles using magnetic field. According to thc method a homogoneous mignetic field is established in the test article;it right angle" to the artyicle. A probe is aligned with its axis transverse to the translates so hat th4 probe scans the surface of the test article while the axis of the robe is transverse to the direction of translation of the article. In this manner any output current obtained in thc probe is an indication of the size and location of a flaw in the article under test, with a miiiimum of signal pick- up in the probe from the established magnetic field.

  11. Nondestructive characterization methods for monolithic solid oxide fuel cells

    SciTech Connect

    Ellingson, W.A.

    1993-01-01

    Monolithic solid oxide fuel cells (MSOFCS) represent a potential breakthrough in fuel cell technology, provided that reliable fabrication methods can be developed. Fabrication difficulties arise in several steps of the processing: First is the fabrication of uniform thin (305 {mu}m) single-layer and trilayer green tapes (the trilayer tapes of anode/electrolyte/cathode and anode/interconnect/cathode must have similar coefficients of thermal expansion to sinter uniformly and to have the necessary electrochemical properties); Second is the development of fuel and oxidant channels in which residual stresses are likely to develop in the tapes; Third is the fabrication of a ``complete`` cell for which the bond quality between layers and the quality of the trilayers must be established; and Last, attachment of fuel and oxidant manifolds and verification of seal integrity. Purpose of this report is to assess nondestructive characterization methods that could be developed for application to laboratory, prototype, and full-scale MSOFCs.

  12. Development of nondestructive evaluation methods for ceramic coatings.

    SciTech Connect

    Sun, J. G.

    2007-01-01

    Various nondestructive evaluation (NDE) technologies are being developed to advance the knowledge of ceramic coatings for components in the hot gas-path of advanced, low-emission gas-fired turbine engines. The ceramic coating systems being studied by NDE include thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). TBCs are under development for vanes, blades and combustor liners to allow hotter gas path temperatures and EBCs are under development to reduce environmental damage to high temperature components made of ceramic matrix composites (CMCs). Data provided by NDE methods will be used to: (a) provide data to assess reliability of new coating application processes, (b) identify defective components that could cause unscheduled outages (c) track growth rates of defects during use in engines and (d) allow rational judgement for replace/repair/re-use decisions of components.

  13. Determine the Compressive Strength of Calcium Silicate Bricks by Combined Nondestructive Method

    PubMed Central

    2014-01-01

    The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration relationships are known for their close correlation and are applicable in practice. The highest correlation between parameters from nondestructive measurement and predicted compressive strength is obtained using the SonReb combined nondestructive method. Combined nondestructive SonReb method was proved applicable for determination of compressive strength of calcium silicate bricks at checking tests in a production plant and for evaluation of bricks built in existing masonry structures. PMID:25276864

  14. Determine the compressive strength of calcium silicate bricks by combined nondestructive method.

    PubMed

    Brozovsky, Jiri

    2014-01-01

    The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration relationships are known for their close correlation and are applicable in practice. The highest correlation between parameters from nondestructive measurement and predicted compressive strength is obtained using the SonReb combined nondestructive method. Combined nondestructive SonReb method was proved applicable for determination of compressive strength of calcium silicate bricks at checking tests in a production plant and for evaluation of bricks built in existing masonry structures. PMID:25276864

  15. Baited lines: An active nondestructive collection method for burrowing crayfish

    USGS Publications Warehouse

    Loughman, Zachary J.; Foltz, David A., II; Welsh, Stuart

    2013-01-01

    A new method (baited lines) is described for the collection of burrowing crayfishes, where fishing hooks baited with earthworms and tied to monofilament leaders are used to lure crayfishes from their burrow entrances. We estimated capture rates using baited lines at four locations across West Virginia for a total of four crayfish taxa; the taxa studied were orange, blue, and blue/orange morphs of Cambarus dubius (Upland Burrowing Catfish), and C. thomai (Little Brown Mudbug). Baited-line capture rates were lowest for C. thomai (81%; n = 21 attempts) and highest for the orange morph ofC. dubius (99%; n = 13 attempts). The pooled capture rate across all taxa was 91.5% (n = 50 attempts). Baited lines represent an environmentally nondestructive method to capture burrowing crayfishes without harm to individuals, and without disturbing burrows or the surrounding area. This novel method allows for repeat captures and long-term studies, providing a useful sampling method for ecological studies of burrowing crayfishes.

  16. Development of nondestructive evaluation methods for structural ceramics

    SciTech Connect

    Ellingson, W.A.; Koehl, R.D.; Wilson, J.A.; Stuckey, J.B.; Engel, H.P. |

    1996-04-01

    Nondestructive evaluation (NDE) methods using three-dimensional microfocus X-ray computed tomographic imaging (3DXCT) were employed to map axial and radial density variations in hot-gas filters and heat exchanger tubes. 3D XCT analysis was conducted on (a) two 38-mm-OD, 6.5-mm wall, SiC/SiC heat exchanger tubes infiltrated by CVI; (b) eight 10 cm diam. oxide/oxide heat exchanger tubes; and (c) one 26-cm-long Nextel fiber/SiC matrix hot-gas filter. The results show that radial and axial density uniformity as well as porosity, can be assessed by 3D XCT. NDE methods are also under development to assess thermal barrier coatings which are under development as methods to protect gas-turbine first-stage hot section metallic substrates. Further, because both shop and field joining of CFCC materials will be necessary, work is now beginning on development of NDE methods for joining.

  17. A non-destructive method for dating human remains

    USGS Publications Warehouse

    Lail, Warren K.; Sammeth, David; Mahan, Shannon; Nevins, Jason

    2013-01-01

    The skeletal remains of several Native Americans were recovered in an eroded state from a creek bank in northeastern New Mexico. Subsequently stored in a nearby museum, the remains became lost for almost 36 years. In a recent effort to repatriate the remains, it was necessary to fit them into a cultural chronology in order to determine the appropriate tribe(s) for consultation pursuant to the Native American Grave Protection and Repatriation Act (NAGPRA). Because the remains were found in an eroded context with no artifacts or funerary objects, their age was unknown. Having been asked to avoid destructive dating methods such as radiocarbon dating, the authors used Optically Stimulated Luminescence (OSL) to date the sediments embedded in the cranium. The OSL analyses yielded reliable dates between A.D. 1415 and A.D. 1495. Accordingly, we conclude that the remains were interred somewhat earlier than A.D. 1415, but no later than A.D. 1495. We believe the remains are from individuals ancestral to the Ute Mouache Band, which is now being contacted for repatriation efforts. Not only do our methods contribute to the immediate repatriation efforts, they provide archaeologists with a versatile, non-destructive, numerical dating method that can be used in many burial contexts.

  18. Nondestructive Method For Measuring The Scattering Coefficient Of Bulk Material

    NASA Astrophysics Data System (ADS)

    Groenhuis, R. A. J.; ten Bosch, J. J.

    1981-05-01

    During demineralization and remineralization of dental enamel its structure changes resulting in a change of the absorption and scattering coefficients of the enamel. By measuring these coefficients during demineralization and remineralization these processes can be monitored in a non-destructive way. For this purpose an experimental arrangement was made: a fibre illuminates a spot on the sample with monochromatic light with a wave-length between 400 nm and 700 nm; a photomultiplier measures the luminance of the light back-scattered by the sample as a function of the distance from the measuring snot to the spot of illumination. In a Monte Carlo-model this luminance is simulated using the same geometry given the scattering and absorption coefficients in a sample. Then the scattering and absorption coefficients in the sample are determined by selecting the theoretical curve fitting the experimental one. Scattering coefficients below 10 mm-1 and absorption coefficients obtained with this method on calibration samples correspond well with those obtained with another method. Scattering coefficients above 10 mm-1 (paper samples) were measured ton low. This perhaps is caused by the anisotropic structure of paper sheets. The method is very suitable to measure the scattering and absorption coefficients of bulk materials.

  19. Development of nondestructive evaluation methods for structural ceramics.

    SciTech Connect

    Ellingson, W. A.

    1998-08-19

    During the past year, the focus of our work on nondestructive evaluation (NDE) methods was on the development and application of these methods to technologies such as ceramic matrix composite (CMC) hot-gas filters, CMC high-temperature heat exchangers, and CMC ceramic/ceramic joining. Such technologies are critical to the ''Vision 21 Energy-Plex Fleet'' of modular, high-efficiency, low-emission power systems. Specifically, our NDE work has continued toward faster, higher sensitivity, volumetric X-ray computed tomographic imaging with new amorphous silicon detectors to detect and measure axial and radial density variations in hot-gas filters and heat exchangers; explored the potential use of high-speed focal-plane-array infrared imaging technology to detect delaminations and variations in the thermal properties of SiC/SiC heat exchangers; and explored various NDE methods to characterize CMC joints in cooperation with various industrial partners. Work this year also addressed support of Southern Companies Services Inc., Power Systems Development Facility, where NDE is needed to assess the condition of hot-gas candle filters. This paper presents the results of these efforts.

  20. Nondestructive method for reconnecting aluminum metallization on integrated circuits.

    PubMed

    Zubatkin, A D

    1979-07-01

    A failure analysis technique for reconnecting aluminum metallization on planar IC devices is described. The technique, utilizing a conductive paint deposited on the device surface, is nondestructive and easily removable. PMID:18699636

  1. Nondestructive Evaluation Methods for the Ares I Common Bulkhead

    NASA Technical Reports Server (NTRS)

    Walker, James

    2010-01-01

    A large scale bonding demonstration test article was fabricated to prove out manufacturing techniques for the current design of the NASA Ares I Upper Stage common bulkhead. The common bulkhead serves as the single interface between the liquid hydrogen and liquid oxygen portions of the Upper Stage propellant tank. The bulkhead consists of spin-formed aluminum domes friction stir welded to Y-rings and bonded to a perforated phenolic honeycomb core. Nondestructive evaluation methods are being developed for assessing core integrity and the core-to-dome bond line of the common bulkhead. Detection of manufacturing defects such as delaminations between the core and face sheets as well as service life defects such as crushed or sheared core resulting from impact loading are all of interest. The focus of this work will be on the application of thermographic, shearographic, and phased array ultrasonic methods to the bonding demonstration article as well as various smaller test panels featuring design specific defect types and geometric features.

  2. Study Methods to Characterize and Implement Thermography Nondestructive Evaluation (NDE)

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    1998-01-01

    The limits and conditions under which an infrared thermographic nondestructive evaluation can be utilized to assess the quality of aerospace hardware is demonstrated in this research effort. The primary focus of this work is on applying thermography to the inspection of advanced composite structures such as would be found in the International Space Station Instrumentation Racks, Space Shuttle Cargo Bay Doors, Bantam RP-1 tank or RSRM Nose Cone. Here, the detection of delamination, disbond, inclusion and porosity type defects are of primary interest. In addition to composites, an extensive research effort has been initiated to determine how well a thermographic evaluation can detect leaks and disbonds in pressurized metallic systems "i.e. the Space Shuttle Main Engine Nozzles". In either case, research into developing practical inspection procedures was conducted and thermographic inspections were performed on a myriad of test samples, subscale demonstration articles and "simulated" flight hardware. All test samples were fabricated as close to their respective structural counterparts as possible except with intentional defects for NDE qualification. As an added benefit of this effort to create simulated defects, methods were devised for defect fabrication that may be useful in future NDE qualification ventures.

  3. Method of non-destructively inspecting a curved wall portion

    DOEpatents

    Fong, James T.

    1996-01-01

    A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.

  4. Development of nondestructive evaluation methods for structural ceramics

    SciTech Connect

    Ellingson, W.A.; Koehl, R.D.; Stuckey, J.B.; Sun, J.G.; Engel, H.P.; Smith, R.G.

    1997-06-01

    Development of nondestructive evaluation (NDE) methods for application to fossil energy systems continues in three areas: (a) mapping axial and radial density gradients in hot gas filters, (b) characterization of the quality of continuous fiber ceramic matrix composite (CFCC) joints and (c) characterization and detection of defects in thermal barrier coatings. In this work, X-ray computed tomographic imaging was further developed and used to map variations in the axial and radial density of two full length (2.3-m) hot gas filters. The two filters differed in through wall density because of the thickness of the coating on the continuous fibers. Differences in axial and through wall density were clearly detected. Through transmission infrared imaging with a highly sensitivity focal plane array camera was used to assess joint quality in two sets of SiC/SiC CFCC joints. High frame rate data capture suggests that the infrared imaging method holds potential for the characterization of CFCC joints. Work to develop NDE methods that can be used to evaluate electron beam physical vapor deposited coatings with platinum-aluminide (Pt-Al) bonds was undertaken. Coatings of Zirconia with thicknesses of 125 {micro}m (0.005 in.), 190 {micro}m (0.0075 in.), and 254 {micro}m (0.010 in.) with a Pt-Al bond coat on Rene N5 Ni-based superalloy were studied by infrared imaging. Currently, it appears that thickness variation, as well as thermal properties, can be assessed by infrared technology.

  5. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    NASA Astrophysics Data System (ADS)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  6. Non-destructive methods for food texture assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food texture is important to the successful marketing and profitability of food products. Non-destructive sensing would allow food producers and processors to inspect, sort, grade, or track individual product items, so that they can deliver consistent, superior food products to the marketplace. Over...

  7. Development of nondestructive evaluation methods for ceramic coatings.

    SciTech Connect

    Ellingson, W. A.; Deemer, C.; Sun, J. G.; Erdman, S.; Muliere, D.; Wheeler, B.

    2002-04-29

    Various nondestructive evaluation (NDE) technologies are being developed to study the use of ceramic coatings on components in the hot-gas path of advanced low-emission gas-fired turbines. The types of ceramic coatings include thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). TBCs are under development for vanes, blades, and combustor liners to allow hotter gas-path temperatures, and EBCs are under development to reduce environmental damage to high-temperature components made of ceramic matrix composites. The NDE methods will be used to (a) provide data to assess the reliability of new coating application processes, (b) identify defective components that could cause unscheduled outages, (c) track growth rates of defects during component use in engines, and (d) allow rational judgment for replace/repair/re-use decisions regarding components. Advances in TBC application, both electron beam-physical vapor deposition (EB-PVD) and air plasma spraying (APS), are allowing higher temperatures in the hot-gas path. However, as TBCs become ''prime reliant,'' their condition at scheduled or unscheduled outages must be known. NDE methods are under development to assess the condition of the TBC for pre-spall conditions. EB-PVD test samples with up to 70 thermal cycles have been studied by a newly developed method involving polarized laser back-scatter NDE. Results suggest a correlation between the NDE laser data and the TBC/bond-coat topography. This finding is important because several theories directed toward understanding the pre-spall condition suggest that the topography in the thermally grown oxide layer changes significantly as a function of the number of thermal cycles. Tests have also been conducted with this NDE method on APS TBCs. Results suggest that the pre-spall condition is detected for these coatings. One-sided, high-speed thermal imaging also has shown promise for NDE of APS coatings. Testing of SiC/SiC composites for combustor liners

  8. The detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Todd, P. H., Jr.; Frecska, S. A.; Rathke, R. A.

    1974-01-01

    X-radiographic penetrant, ultrasonic, eddy current, holographic, and acoustic emission techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens. One hundred eighteen specimens containing a total of 328 fatigue cracks were evaluated. The cracks ranged in length from 0.500 inch (1.27 cm) to 0.007 inch (0.018 cm) and in depth from 0.178 inch (0.451 cm) and 0.001 inch (0.003 cm). Specimen thicknesses were nominally 0.060 inch (0.152 cm) and 0.210 inch (0.532 cm) and surface finishes were nominally 32 and 125 rms and 64 and 200 rms respectively. Specimens were evaluated in the as-milled surface condition, in the chemically milled surface condition and, after proof loading, in a randomized inspection sequence. Results of the nondestructive test (NDT) evaluations were compared with actual crack size obtained by measurement of the fractured specimens. Inspection data was then analyzed to provide a statistical basis for determinating the threshold crack detection sensitivity (the largest crack size that would be missed) for each of the inspection techniques at a 95% probability and 95% confidence level.

  9. Development of non-destructive inspection method for the performance of thermal barrier coating.

    PubMed

    Morinaga, M; Takahashi, T

    2001-05-01

    This paper shows that our proprietary non-destructive inspection method can be used to effectively measure the thermal barrier performance of the thermal barrier coating used to coat gas turbine hot parts by the results of numerical analysis and laboratory experiments. PMID:11460665

  10. Optical methods for texture analyses: brief overview on approaches for nondestructive sensing of food texture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventionally food texture is measured using sensory panels or instrumentation which are destructive tests that are time consuming and potentially expensive. Ideally distributors of fresh produce and manufacturers of processed foods require a rapid method that can nondestructively measure the text...

  11. Failure analysis of electronic parts: Laboratory methods. [for destructive and nondestructive testing

    NASA Technical Reports Server (NTRS)

    Anstead, R. J. (Editor); Goldberg, E. (Editor)

    1975-01-01

    Failure analysis test methods are presented for use in analyzing candidate electronic parts and in improving future design reliability. Each test is classified as nondestructive, semidestructive, or destructive. The effects upon applicable part types (i.e. integrated circuit, transitor) are discussed. Methodology is given for performing the following: immersion tests, radio graphic tests, dewpoint tests, gas ambient analysis, cross sectioning, and ultraviolet examination.

  12. Research on non-destructive testing method of silkworm cocoons based on image processing technology

    NASA Astrophysics Data System (ADS)

    Gan, Yong; Kong, Qing-hua; Wei, Li-fu

    2008-03-01

    The major studied in this dissertation is the non-destructive testing method of silkworm cocoon's quality, based on the digital image processing and photoelectricity technology. Through the images collection and the data analysis, procession and calculation of the tested silkworm cocoons with the non-destructive testing technology, internet applications automatically reckon all items of the classification indexes. Finally we can conclude the classification result and the purchase price of the silkworm cocoons. According to the domestic classification standard of the silkworm cocoons, the author investigates various testing methods of silkworm cocoons which are used or have been explored at present, and devices a non-destructive testing scheme of the silkworm cocoons based on the digital image processing and photoelectricity technology. They are dissertated about the project design of the experiment. The precisions of all the implements are demonstrated. I establish Manifold mathematic models, compare them with each other and analyze the precision with technology of databank to get the best mathematic model to figure out the weight of the dried silkworm cocoon shells. The classification methods of all the complementary items are designed well and truly. The testing method has less error and reaches an advanced level of the present domestic non-destructive testing technology of the silkworm cocoons.

  13. Non-destructive method for inward leakage detection of a plate evaporator

    NASA Astrophysics Data System (ADS)

    Hribernik, Ales

    2007-05-01

    A new non-destructive method was developed for the detection of refrigerant leakage at an evaporator's inflow. Nitrogen and oxygen gas were successively blown through the evaporator. A gas analyser was applied at the outflow of the evaporator and the oxygen concentration measured. It was possible to detect any leakage by investigating the oxygen concentration-time history diagram.

  14. Evaluation of Damage in Steels Subjected to Exploitation Loading - Destructive and Non-Destructive Methods

    NASA Astrophysics Data System (ADS)

    Kowalewski, Zbigniew L.; Mackiewicz, Sławomir; Szelążek, Jacek; Pietrzak, Krystyna; Augustyniak, Bolesław

    Damage due to creep and plastic flow is assessed using destructive and non-destructive methods in steels (40HNMA and P91). In the destructive methods the standard tension tests were carried out after prestraining and variations of the selected tension parameters were taken into account for damage identification. In order to assess a damage development during the creep and plastic deformation the tests for both steels were interrupted for a range of the selected strain magnitudes. The ultrasonic and magnetic techniques were used as the non-destructive methods for damage evaluation. The last step of the experimental programme contained microscopic observations. A very promising correlation between parameters of methods for damage development evaluation was achieved. It is well proved for the ultimate tensile stress and birefringence coefficient.

  15. Determination of the critical loads of shells by nondestructive methods

    NASA Technical Reports Server (NTRS)

    Horton, W. H.; Nassar, E. M.; Singhal, M. K.

    1977-01-01

    Two methods for determining the location of and load level to produce instability of compressed cylindrical shells are presented. The first relates the variation in the wall normal stiffness as a function of applied compressive force to the critical load. It uses the distribution of stiffness over the surface of the shell as a guide to buckle location. The second method associates the local dynamic mass with instability behavior. The test data presented show that either method will give excellent prediction capability from low-load-level data for shells of orthodox form. Neither method appears to apply to spirally stiffened shells. This is thought to be due to the fact that there is a substantial difference between the buckle pattern under axial compression and the imperfection shape induced by the normal displacement which is used to ascertain the wall stiffness and the dynamic mass.

  16. Detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Anderson, R. T.; Delacy, T. J.; Stewart, R. C.

    1973-01-01

    The effectiveness was assessed of various NDT methods to detect small tight cracks by randomly introducing fatigue cracks into aluminum sheets. The study included optimizing NDT methods calibrating NDT equipment with fatigue cracked standards, and evaluating a number of cracked specimens by the optimized NDT methods. The evaluations were conducted by highly trained personnel, provided with detailed procedures, in order to minimize the effects of human variability. These personnel performed the NDT on the test specimens without knowledge of the flaw locations and reported on the flaws detected. The performance of these tests was measured by comparing the flaws detected against the flaws present. The principal NDT methods utilized were radiographic, ultrasonic, penetrant, and eddy current. Holographic interferometry, acoustic emission monitoring, and replication methods were also applied on a reduced number of specimens. Generally, the best performance was shown by eddy current, ultrasonic, penetrant and holographic tests. Etching provided no measurable improvement, while proof loading improved flaw detectability. Data are shown that quantify the performances of the NDT methods applied.

  17. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Johnston, Patrick H. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  18. Nondestructive testing of adhesive bonds by nuclear quadrupole resonance method

    NASA Technical Reports Server (NTRS)

    Hewitt, R. R.

    1971-01-01

    Inert, strain sensitive tracer, cuprous oxide, added to polymeric adhesive ensures sufficiently large signal to noise ratio in NQR system output. Method is successful, provided that RF-transparent structural materials are used between modified adhesive and probe of NQR spectrometer.

  19. New Acoustic Methods for Nondestructive Evaluation of Leather Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there is no on-line test method to monitor the physical properties of semi-products such as wet blue or crust during the leather-making processes. Inferior leather semi-products, such as wet blue, cannot be downgraded earlier or removed before going through many expensive processes (incl...

  20. Non-destructive optical methods for the study of soft tissues

    NASA Astrophysics Data System (ADS)

    Santiago-Lona, Cynthia V.; Hernández-Montes, María. del Socorro; Mendoza Santoyo, F.; Muñoz, Silvino; Mendoza, Fernando

    2015-08-01

    In optical metrology, non-destructive methods allow studying some mechanical properties of the samples to investigate by using light, which leads to non-contact testing. This paper shows recent results of the application of non-destructive optical methods based on Digital Holographic Interferometry to the study biological tissues; particularly vocal folds and the tympanic membrane. The displacements data and its corresponding patterns found generates information on its characteristics that can be correlated with their physiological state. These methods prove to be an alternative viable and appropriate to characterize these soft tissues so important for the proper function of the human body. The result shows a potential impact on its possible uses in the field of otorhinolaryngology.

  1. Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies

    NASA Astrophysics Data System (ADS)

    Savage, Kara A.

    Recent government initiatives and commercial activities have targeted asteroids for in situ material characterization, manipulation, and possible resource extraction. Most of these activities and missions have proposed significant robotic components, given the risks and costs associated with manned missions. To successfully execute these robotic activities, detailed mechanical characteristics of the target space bodies must be known prior to contact, in order to appropriately plan and direct the autonomous robotic protocols. Unfortunately, current estimates of asteroid mechanical properties are based on limited direct information, and significant uncertainty remains specifically concerning internal structures, strengths, and elastic properties of asteroids. One proposed method to elucidate this information is through in situ, nondestructive testing of asteroid material immediately after contact, but prior to any manipulation or resource extraction activities. While numerous nondestructive rock characterization techniques have been widely deployed for terrestrial applications, these methods must be adapted to account for unique properties of asteroid material and environmental conditions of space. For example, asteroid surface temperatures may range from -100°C to 30°C due to diurnal cycling, and these low temperatures are especially noteworthy due to their deleterious influence on non-destructive testing. As a result, this thesis investigates the effect of low temperature on the mechanical characteristics and nondestructive technique responses of rock material. Initially, a novel method to produce low temperature rock samples was developed. Dry ice and methanol cooling baths of specific formulations were used to decrease rock to temperatures ranging from -60°C to 0°C. At these temperatures, shale, chalk, and limestone rock samples were exposed to several nondestructive and conventional mechanical tests, including Schmidt hammer, ultrasonic pulse velocity, point

  2. Multimode nondestructive detecting method for high-speed rail defects

    NASA Astrophysics Data System (ADS)

    Sun, Mingjian; Cheng, Xingzhen; Wan, Guangnan; Liu, Ting; Fu, Ying; Wang, Yan

    2015-11-01

    It is very important to detect the surface defects of the high-speed rail for security concerns. A multimode detecting method, which integrates high resolution of optical image, high precision of photoacoustic detection and strong penetration of ultrasound detecting, is proposed for the rail defect detection. Utilizing the surface defect characteristics obtained from optical signal, the photoacoustic and ultrasound scanning region could be determined, and rail shallow and internal defect characteristics can be acquired subsequently. Eventually, fusing three modal signals mentioned above, the information of the entire rail defect, including type, extension trend and depth can be detected. It has been proved that the multimode method can improve the detecting efficiency, and enlarge the detection range in the meantime.

  3. Nondestructive spot test method for magnesium and magnesium alloys

    NASA Technical Reports Server (NTRS)

    Wilson, M. L. (Inventor)

    1973-01-01

    A method for spot test identification of magnesium and various magnesium alloys commonly used in aerospace applications is described. The spot test identification involves color codes obtained when several drops of 3 M hydrochloric acid are placed on the surface to be tested. After approximately thirty seconds, two drops of this reacted acid is transferred to each of two depressions in a spot plate for additions of other chemicals with subsequent color changes indicating magnesium or its alloy.

  4. Nondestructive methods for early detection of damage to living plants

    NASA Astrophysics Data System (ADS)

    Fateyeva, Natalya L.; Matvienko, Gennadii G.; Shul'gina, Lidia A.

    2004-10-01

    As a result of the accomplish experiments determine, that by a method of a laser-induced fluorescence of chlorophyll it is possible to spot for cedar an early stage of the stressful factor, bound with presence in ground <>. In our case the laboratory researches provided learning a quantitative contents chlorophyll for plants found in normal and stressful conditions on a basis spectrophotometrical of a method. Natural measurement the observations behind dynamics of a photosynthetic state means of wood plants in vivo enable. For an estimation of this state the fluorescence of chlorophyll on wavelength 685 and 740 nm was used. The optical model of a green leaf was developed for methods of a laser-induced fluorescence of chlorophyll. A experiments series on remote research of processes violation of mineral power supply and exchange in plants is carried spent. Was considered the change of the ratios of intensity of a fluorescence of chlorophyll and carotenoids at deficiency. Was designed technique for detection infringement processes of mineral nutrition and change surveyed acidity grounds on laser-induce fluorescent responses of deciduous plants.

  5. MONTE CARLO ERROR ESTIMATION APPLIED TO NONDESTRUCTIVE ASSAY METHODS

    SciTech Connect

    R. ESTEP; ET AL

    2000-06-01

    Monte Carlo randomization of nuclear counting data into N replicate sets is the basis of a simple and effective method for estimating error propagation through complex analysis algorithms such as those using neural networks or tomographic image reconstructions. The error distributions of properly simulated replicate data sets mimic those of actual replicate measurements and can be used to estimate the std. dev. for an assay along with other statistical quantities. We have used this technique to estimate the standard deviation in radionuclide masses determined using the tomographic gamma scanner (TGS) and combined thermal/epithermal neutron (CTEN) methods. The effectiveness of this approach is demonstrated by a comparison of our Monte Carlo error estimates with the error distributions in actual replicate measurements and simulations of measurements. We found that the std. dev. estimated this way quickly converges to an accurate value on average and has a predictable error distribution similar to N actual repeat measurements. The main drawback of the Monte Carlo method is that N additional analyses of the data are required, which may be prohibitively time consuming with slow analysis algorithms.

  6. An evaluation of nondestructive methods for ceramic heat exchanger applications

    NASA Astrophysics Data System (ADS)

    Bower, J. R.; Powers, T.

    For both seeded defects and naturally occurring defects, there is little correlation between test results for small defects. This is because X-ray is sensitive to density variations and ultrasonics and scanning laser acoustic microscopy (SLAM) are sensitive to acoustic impedance variations. The grain boundaries and microporosity of the material produce a high scattering background for the acoustic methods, masking small inclusions. X-ray is insensitive to grain boundary effects and the uniform microporosity averages out over the material thickness. If minor inclusions are to be detected, X-ray must be used. Ultrasonics and SLAM are sensitive only to the presence of an open crack, not its width. If cracks are to be detected, ultrasonics or SLAM must be used. SLAM is by far the fastest method of scanning for OD cracks, but only ultrasonics will find ID cracks. Results of this first phase study give four guidelines to tube design. First, surface irregularities are a major limitation to testing. The eventual tests will be much more sensitive if surface finish can be improved. Second, porosity is another major limit to testing. Pores are not generally strength limiting in this material, but pores scatter ultrasound very badly and produce irregular densities on X-ray film, in both cases obscuring more important defect indications. Third, the dimple shape of the closed end is essentially untestable. The fourth design guideline is provided by the fractography results. In some cases, failure was initiated in or near clusters of large grains. Defect sizing depends upon the detection methods.

  7. Synchronized Electronic Shutter System and Method for Thermal Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor)

    2004-01-01

    The invention is a synchronized electronic shutter system (SESS) and method for same side and through transmission thermal analysis and inspection of a material for finding defects, corrosion, disbond defects, integrity of a weld and determination of paint thickness. The system comprises an infrared detector that acquires background images of the sample. A shutter then covers the detector and lamps rapidly heat the sample above ambient temperature. Shutters cover all lamps at the same time the shutter over the infrared detector is opened. The infrared detector acquires a series of temperature images over time radiated from the sample a s the sample cools down. After collecting a series of temperature images taken by the SESS, a processed image is developed using one of the group comprising time derivative calculation, temperature normalization data reduction routine, thermal diffusivity curve fitting and averaging the series of temperature images.

  8. Development of a nondestructive evaluation method for FRP bridge decks

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Fox, Terra

    2010-05-01

    Open steel grids are typically used on bridges to minimize the weight of the bridge deck and wearing surface. These grids, however, require frequent maintenance and exhibit other durability concerns related to fatigue cracking and corrosion. Bridge decks constructed from composite materials, such as a Fiber-reinforced Polymer (FRP), are strong and lightweight; they also offer improved rideability, reduced noise levels, less maintenance, and are relatively easy to install compared to steel grids. This research is aimed at developing an inspection protocol for FRP bridge decks using Infrared thermography. The finite element method was used to simulate the heat transfer process and determine optimal heating and data acquisition parameters that will be used to inspect FRP bridge decks in the field. It was demonstrated that thermal imaging could successfully identify features of the FRP bridge deck to depths of 1.7 cm using a phase analysis process.

  9. Method and Apparatus for Non-Destructive Evaluation of Materials

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Lyons, Robert (Inventor); Thomas, Zachary (Inventor); Jablonski, David A. (Inventor); Martin, Christopher (Inventor)

    2015-01-01

    Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.

  10. Nondestructive methods of integrating energy harvesting systems for highway bridges

    NASA Astrophysics Data System (ADS)

    Inamdar, Sumedh; Zimowski, Krystian; Crawford, Richard; Wood, Kristin; Jensen, Dan

    2012-04-01

    Designing an attachment structure that is both novel and meets the system requirements can be a difficult task especially for inexperienced designers. This paper presents a design methodology for concept generation of a "parent/child" attachment system. The "child" is broadly defined as any device, part, or subsystem that will attach to any existing system, part, or device called the "parent." An inductive research process was used to study a variety of products, patents, and biological examples that exemplified the parent/child system. Common traits among these products were found and categorized as attachment principles in three different domains: mechanical, material, and field. The attachment principles within the mechanical domain and accompanying examples are the focus of this paper. As an example of the method, a case study of generating concepts for a bridge mounted wind energy harvester using the mechanical attachment principles derived from the methodology and TRIZ principles derived from Altshuller's matrix of contradictions is presented.

  11. Nondestructive methods of integrating energy harvesting systems with structures

    NASA Astrophysics Data System (ADS)

    Inamdar, Sumedh; Zimowski, Krystian; Crawford, Richard; Wood, Kristin; Jensen, Dan

    2012-04-01

    Designing an attachment structure that is both novel and meets the system requirements can be a difficult task especially for inexperienced designers. This paper presents a design methodology for concept generation of a "parent/child" attachment system. The "child" is broadly defined as any device, part, or subsystem that will attach to any existing system, part, or device called the "parent." An inductive research process was used to study a variety of products, patents, and biological examples that exemplified the parent/child system. Common traits among these products were found and categorized as attachment principles in three different domains: mechanical, material, and field. The attachment principles within the mechanical domain and accompanying examples are the focus of this paper. As an example of the method, a case study of generating concepts for a bridge mounted wind energy harvester using the mechanical attachment principles derived from the methodology and TRIZ principles derived from Altshuller's matrix of contradictions is presented.

  12. Development of a Nondestructive Method for Sexing Live Adult Sternoplax souvorowiana (Coleoptera: Tenebrionidae)

    PubMed Central

    Wang, Yan; Ma, Ji; Mao, Xinfang

    2015-01-01

    The darkling beetle, Sternoplax souvorowiana (Reitter) (Coleoptera: Tenebrionidae), is flightless and lives in the Guerbantonggut desert in northwestern China. Its special eggshell structure, day-active habit, large body size, short life cycle, and ease of rearing under laboratory conditions make it an excellent model for advanced studies on desert adaptation. Determining the sex of this beetle is usually complicated by the lack of a discreet, externally visible gender-specific character. To date, dissection has been used for sex identification in this species, whereas a nondestructive means is needed for further studies of sexual dimorphism. Here, a new method based on the difference of the pigmentation pattern on the eighth tergite of each sex is described and illustrated. This method can be quickly learned, is nondestructive, is 100% accurate, and is fast enough for most applications in both the field and the laboratory. Experienced users in our laboratory routinely sex 8–10 beetles per minute. PMID:25934924

  13. A non-destructive dental method for age estimation.

    PubMed

    Kvaal, S; Solheim, T

    1994-06-01

    Dental radiographs have rarely been used in dental age estimation methods for adults and the aim of this investigation was to derive formulae for age calculation based on measurements of teeth and their radiographs. Age-related changes were studied in 452 extracted, unsectioned incisors, canines and premolars. The length of the apical translucent zone and extent of the periodontal retraction were measured on the teeth while the pulp length and width as well as root length and width were measured on the radiographs and the ratios between the root and pulp measurements calculated. For all types of teeth significant, negative Pearson's correlation coefficients were found between age and the ratios between the pulp and the root width. In this study also, the correlation between age and the length of the apical translucent zone was weaker than expected. The periodontal retraction was significantly correlated with age in maxillary premolars alone. Multiple regression analyses showed inclusion of the ratio between the measurements of the pulp and the root on the radiographs for all teeth; the length of the apical translucency in five types; and periodontal retraction in only three types of teeth. The correlation coefficients ranged from r = 0.48 to r = 0.90 between the chronological and the calculated age using the formulae from this multiple regression study. The strongest coefficients were for premolars. These formulae may be recommended for use in odontological age estimations in forensic and archaeological cases where teeth are loose or can be extracted and where it is important that the teeth are not sectioned. PMID:9227083

  14. Method and apparatus for non-destructive evaluation of composite materials with cloth surface impressions

    NASA Technical Reports Server (NTRS)

    Madras, Eric I. (Inventor)

    1995-01-01

    A method and related apparatus for nondestructive evaluation of composite materials by determination of the quantity known as Integrated Polar Backscatter, which avoids errors caused by surface texture left by cloth impressions by identifying frequency ranges associated with peaks in a power spectrum for the backscattered signal, and removing such frequency ranges from the calculation of Integrated Polar Backscatter for all scan sites on the composite material is presented.

  15. Application of Non-destructive Methods of Stress-strain State at Hazardous Production Facilities

    NASA Astrophysics Data System (ADS)

    Shram, V.; Kravtsova, Ye; Selsky, A.; Bezborodov, Yu; Lysyannikova, N.; Lysyannikov, A.

    2016-06-01

    The paper deals with the sources of accidents in distillation columns, on the basis of which the most dangerous defects are detected. The analysis of the currently existing methods of non-destructive testing of the stress-strain state is performed. It is proposed to apply strain and acoustic emission techniques to continuously monitor dangerous objects, which helps prevent the possibility of accidents, as well as reduce the work.

  16. A modified positron lifetime spectrometer as method of non-destructive testing in materials

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Shi, J. J.; Jiang, J.; Liu, X. B.; Wang, R. S.; Wu, Y. C.

    2015-02-01

    This paper aims to develop a new non-destructive testing (NDT) method using positron annihilation spectroscopy, a powerful tool to detect vacancy-type defects and defect's chemical environment. A positron NDT system was designed and constructed by modifying the "sandwich" structure of sample-source-sample in the conventional positron lifetime spectrometer. The positron lifetime spectra of one single sample can be measured and analyzed by subtracting the contribution of a reference sample. The feasibility and reliability of the positron NDT system have been tested by analyzing nondestructively deformation damage caused by mechanical treatment in metals and steels. This system can be used for detecting defects and damage in thick or large-size samples without cutting off the sample materials, as well as for detecting two-dimensional distribution of defects.

  17. A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation.

    PubMed

    Peressotti, Elisa; Duchêne, Eric; Merdinoglu, Didier; Mestre, Pere

    2011-02-01

    The availability of fast, reliable and non-destructive methods for the analysis of pathogen development contributes to a better understanding of plant-pathogen interactions. This is particularly true for the genetic analysis of quantitative resistance to plant pathogens, where the availability of a method allowing a precise quantification of pathogen development allows the reliable detection of different genomic regions involved in the resistance. Grapevine downy mildew, caused by the biotrophic Oomycete Plasmopara viticola, is one of the most important diseases affecting viticulture. Here we report the development of a simple image analysis-based semi-automatic method for the quantification of grapevine downy mildew sporulation, requiring just a compact digital camera and the open source software ImageJ. We confirm the suitability of the method for the analysis of the interaction between grapevine and downy mildew by performing QTL analysis of resistance to downy mildew as well as analysis of the kinetics of downy mildew infection. The non-destructive nature of the method will enable comparison between the phenotypic and molecular data obtained from the very same sample, resulting in a more accurate description of the interaction, while its simplicity makes it easily adaptable to other plant-pathogen interactions, in particular those involving downy mildews. PMID:21167874

  18. Non-destructive method for determining neutron exposure and constituent concentrations of a body

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1986-01-01

    A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentration at regions of interest within the object.

  19. A novel method for non-destructive Compton scatter imaging based on the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ashrafi, Saleh; Jahanbakhsh, Okhtay; Alizadeh, Davood; Salehpour, Behrooz

    2013-05-01

    Compton scattering tomography is widely used in numerous applications such as biomedical imaging, nondestructive industrial testing and environmental survey, etc. This paper proposes the use of the genetic algorithm (GA), which utilizes bio-inspired mathematical models, to construct an image of the insides of a test object via the scattered photons, from a voxel within the object. A NaI(Tl) scintillation detector and a 185 MBq 137Cs gamma ray source were used in the experimental measurements. The obtained results show that the proposed GA based method performs well in constructing images of objects.

  20. Non-Destructive Evaluation Method and Apparatus for Measuring Acoustic Material Nonlinearity

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    2002-01-01

    An acoustic non-linearity parameter (beta) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members obviates the need for electronic calibration of the measuring equipment. Unlike known substitutional measuring techniques requiring elaborate calibration procedures, the electrical outputs of the capacitive detector of a sample with known beta and the test sample of unknown beta are compared to determine the unknown beta. In order to provide the necessary stability of the present-inventive reference-based approach, the bandpass filters of the measurement system are maintained in a temperature-controlled environment, and the line voltage supplied to said amplifiers is well-regulated.

  1. Residual Detergent Detection Method for Nondestructive Cytocompatibility Evaluation of Decellularized Whole Lung Scaffolds.

    PubMed

    Zvarova, Barbora; Uhl, Franziska E; Uriarte, Juan J; Borg, Zachary D; Coffey, Amy L; Bonenfant, Nicholas R; Weiss, Daniel J; Wagner, Darcy E

    2016-05-01

    The development of reliable tissue engineering methods using decellularized cadaveric or donor lungs could potentially provide a new source of lung tissue. The vast majority of current lung decellularization protocols are detergent based and incompletely removed residual detergents may have a deleterious impact on subsequent scaffold recellularization. Detergent removal and quality control measures that rigorously and reliably confirm removal, ideally utilizing nondestructive methods, are thus critical for generating optimal acellular scaffolds suitable for potential clinical translation. Using a modified and optimized version of a methylene blue-based detergent assay, we developed a straightforward, noninvasive method for easily and reliably detecting two of the most commonly utilized anionic detergents, sodium deoxycholate (SDC) and sodium dodecyl sulfate (SDS), in lung decellularization effluents. In parallel studies, we sought to determine the threshold of detergent concentration that was cytotoxic using four different representative human cell types utilized in the study of lung recellularization: human bronchial epithelial cells, human pulmonary vascular endothelial cells (CBF12), human lung fibroblasts, and human mesenchymal stem cells. Notably, different cells have varying thresholds for either SDC or SDS-based detergent-induced cytotoxicity. These studies demonstrate the importance of reliably removing residual detergents and argue that multiple cell lines should be tested in cytocompatibility-based assessments of acellular scaffolds. The detergent detection assay presented here is a useful nondestructive tool for assessing detergent removal in potential decellularization schemes or for use as a potential endpoint in future clinical schemes, generating acellular lungs using anionic detergent-based decellularization protocols. PMID:26905643

  2. RF impedance method for nondestructive moisture content determination for in-shell peanuts

    NASA Astrophysics Data System (ADS)

    Kandala, C. V. K.; Nelson, S. O.

    2007-04-01

    A method was developed earlier for estimating the moisture content (mc) in samples of wheat, corn and peanut kernels, nondestructively, by measuring their complex impedance values. In this method, capacitance (C), phase angle (θ) and dissipation factor (D) were measured with an impedance analyser at 1 and 5 MHz on a parallel-plate capacitor holding a few kernels of a particular commodity between the plates. These values were then used in an empirical equation based on the parameters C, θ and D, and the moisture content was calculated. The calculated mc values were within 1% of the air-oven values for about 85% of the kernel samples tested in the moisture range from 6% to 20% for wheat, corn and peanuts. However, it would be useful during drying and processing of peanuts, if the mc could be determined without shelling them. In this work, the feasibility of determining the moisture content of in-shell peanuts (pods) by similar impedance measurements was investigated. Values of capacitance, phase angle and dissipation factor measured at 24 °C and at three frequencies were used in a modified prediction equation and the moisture content was estimated within 1% of the air-oven values for over 90% of the pod samples tested in the moisture range from 6% to 25%. The method is rapid and nondestructive and may be used in the development of a commercial instrument.

  3. An accurate and nondestructive GC method for determination of cocaine on US paper currency.

    PubMed

    Zuo, Yuegang; Zhang, Kai; Wu, Jingping; Rego, Christopher; Fritz, John

    2008-07-01

    The presence of cocaine on US paper currency has been known for a long time. Banknotes become contaminated during the exchange, storage, and abuse of cocaine. The analysis of cocaine on various denominations of US banknotes in the general circulation can provide law enforcement circles and forensic epidemiologists objective and timely information on epidemiology of illicit drug use and on how to differentiate money contaminated in the general circulation from banknotes used in drug transaction. A simple, nondestructive, and accurate capillary gas chromatographic method has been developed for the determination of cocaine on various denominations of US banknotes in this study. The method comprises a fast ultrasonic extraction using water as a solvent followed by a SPE cleanup process with a C(18) cartridge and capillary GC separation, identification, and quantification. This nondestructive analytical method has been successfully applied to determine the cocaine contamination in US paper currency of all denominations. Standard calibration curve was linear over the concentration range from the LOQ (2.00 ng/mL) to 100 microg/mL and the RSD less than 2.0%. Cocaine was detected in 67% of the circulated banknotes collected in Southeastern Massachusetts in amounts ranging from approximately 2 ng to 49.4 microg per note. On average, $5, 10, 20, and 50 denominations contain higher amounts of cocaine than $1 and 100 denominations of US banknotes. PMID:18646272

  4. Acoustically based fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Baker, Donald A.; Zuckerwar, Allan J.

    1991-01-01

    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.

  5. The Evolution of Nondestructive Evaluation Methods for the Space Shuttle External Tank Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Three nondestructive evaluation methods are being developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Shearography is being developed to identify shallow delaminations, shallow voids and crush damage in the foam while terahertz imaging and backscatter radiography are being developed to identify voids and cracks in thick foam regions. The basic theory of operation along with factors affecting the results of these methods will be described. Also, the evolution of these methods from lab tools to implementation on the ET will be discussed. Results from both test panels and flight tank inspections will be provided to show the range in defect sizes and types that can be readily detected.

  6. Photonic non-destructive measurement methods for investigating the evolution of polar firn and ice

    NASA Astrophysics Data System (ADS)

    Breton, Daniel James

    When snow falls on glaciers or ice sheets, it persists for many tens, hundreds and sometimes thousands of years before becoming ice. The granular material in between fresh snow and glacial ice is known as firn and is generally 50 to 100 m thick over polar ice sheets. The compaction mechanism of firn into ice (called densification) has important glaciological ramifications in determination of ice sheet stability and related sea level rise effects via remote sensing altimetry. Firn densification is also important for correctly interpreting ice core paleoclimate records, especially those analyzing gases trapped in air bubbles within the glacial ice. Densification is thought to depend strongly on microstructure: the sizes, shapes, orientations and inter-particle bonds of the ice grains that make up polar firn. Microstructure-dependent densification is poorly understood and occurs in the region where two-thirds of the overall densification takes place. This work focuses on developing non-destructive methods for simultaneously evaluating changes in both the bulk density and microstructure of polar firn to better understand structure- dependent densification processes. The first method is an automated density gauge which uses gamma-ray transmission methods to non-destructively produce high resolution (3.3 mm) and high precision (+/-4 kg m-3) density profiles of firn and ice cores. This instrument was used to collect a density profile for the first 160 m of the West Antarctic Ice Sheet Divide WDCO6A deep ice core. The second method involves optical scattering measurements on firn and ice cores to determine the important microstructural parameters of ice grain and air bubble size and air-ice interface surface area. These measurements are modeled using both Monte Carlo radiative transfer and ray-tracing geometric optics methods, and are then tested against experiment using digital photography of the WDC06A core. Combining the results of both bulk density and optical

  7. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    PubMed

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained. PMID:23351273

  8. Non-destructive infrared analyses: a method for provenance analyses of sandstones

    NASA Astrophysics Data System (ADS)

    Bowitz, Jörg; Ehling, Angela

    2008-12-01

    Infrared spectroscopy (IR spectroscopy) is commonly applied in the laboratory for mineral analyses in addition to XRD. Because such technical efforts are time and cost consuming, we present an infrared-based mobile method for non-destructive mineral and provenance analyses of sandstones. IR spectroscopy is based on activating chemical bonds. By irradiating a mineral mixture, special bonds are activated to vibrate depending on the bond energy (resonance vibration). Accordingly, the energy of the IR spectrum will be reduced thereby generating an absorption spectrum. The positions of the absorption maxima within the spectral region indicate the type of the bonds and in many cases identify minerals containing these bonds. The non-destructive reflection spectroscopy operates in the near infrared region (NIR) and can detect all common clay minerals as well as sulfates, hydroxides and carbonates. The spectra produced have been interpreted by computer using digital mineral libraries that have been especially collected for sandstones. The comparison of all results with XRD, RFA and interpretations of thin sections demonstrates impressively the accuracy and reliability of this method. Not only are different minerals detectable, but also differently ordered kaolinites and varieties of illites can be identified by the shape and size of the absorption bands. Especially clay minerals and their varieties in combination with their relative contents form the characteristic spectra of sandstones. Other components such as limonite, hematite and amorphous silica also influence the spectra. Sandstones, similar in colour and texture, often can be identified by their characteristic reflectance spectra. Reference libraries with more than 60 spectra of important German sandstones have been created to enable entirely computerized interpretations and identifications of these dimension stones. The analysis of infrared spectroscopy results is demonstrated with examples of different sandstones

  9. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    DOEpatents

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  10. Non-destructive research methods applied on materials for the new generation of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Bartošová, I.; Slugeň, V.; Veterníková, J.; Sojak, S.; Petriska, M.; Bouhaddane, A.

    2014-06-01

    The paper is aimed on non-destructive experimental techniques applied on materials for the new generation of nuclear reactors (GEN IV). With the development of these reactors, also materials have to be developed in order to guarantee high standard properties needed for construction. These properties are high temperature resistance, radiation resistance and resistance to other negative effects. Nevertheless the changes in their mechanical properties should be only minimal. Materials, that fulfil these requirements, are analysed in this work. The ferritic-martensitic (FM) steels and ODS steels are studied in details. Microstructural defects, which can occur in structural materials and can be also accumulated during irradiation due to neutron flux or alpha, beta and gamma radiation, were analysed using different spectroscopic methods as positron annihilation spectroscopy and Barkhausen noise, which were applied for measurements of three different FM steels (T91, P91 and E97) as well as one ODS steel (ODS Eurofer).

  11. Computed Tomography (CT) as a nondestructive test method used for composite helicopter components

    NASA Astrophysics Data System (ADS)

    Oster, Reinhold

    The first components of primary helicopter structures to be made of glass fiber reinforced plastics were the main and tail rotor blades of the Bo105 and BK117 helicopters. These blades are now successfully produced in series. New developments in rotor components, e.g. the rotor blade technology of the Bo108 and PAH2 programs, make use of very complex fiber reinforced structures to achieve simplicity and strength. Computer tomography was found to be an outstanding nondestructive test method for examining the internal structure of components. A CT scanner generates x-ray attenuation measurements which are used to produce computer reconstructed images of any desired part of an object. The system images a range of flaws in composites in a number of views and planes. Several CT investigations and their results are reported taking composite helicopter components as an example.

  12. Computed tomography (CT) as a nondestructive test method used for composite helicopter components

    NASA Astrophysics Data System (ADS)

    Oster, Reinhold

    1991-09-01

    The first components of primary helicopter structures to be made of glass fiber reinforced plastics were the main and tail rotor blades of the Bo105 and BK 117 helicopters. These blades are now successfully produced in series. New developments in rotor components, e.g., the rotor blade technology of the Bo108 and PAH2 programs, make use of very complex fiber reinforced structures to achieve simplicity and strength. Computer tomography was found to be an outstanding nondestructive test method for examining the internal structure of components. A CT scanner generates x-ray attenuation measurements which are used to produce computer reconstructed images of any desired part of an object. The system images a range of flaws in composites in a number of views and planes. Several CT investigations and their results are reported taking composite helicopter components as an example.

  13. NON-DESTRUCTIVE TBC SPALLATION DETECTION BY A MICRO-INDENTATION METHOD

    SciTech Connect

    J. M. Tannenbaum; B.S.-J. Kang; M.A. Alvin

    2010-06-18

    In this research, a load-based depth-sensing micro-indentation method for spallation detection and damage assessment of thermal barrier coating (TBC) materials is presented. A non-destructive multiple loading/partial unloading testing methodology was developed where in stiffness responses of TBC coupons subjected to various thermal cyclic loading conditions were analyzed to predict the spallation site and assess TBC degradation state. The measured stiffness responses at various thermal loading cycles were used to generate time-series color maps for correlation with accumulation of TBC residual stress states. The regions with higher stiffness responses can be linked to a rise in out-of-plane residual stress located near or at the yttria stabilized zirconia (YSZ)/thermally grown oxide (TGO) interface, which is ultimately responsible for initiating TBC spallation failure. A TBC thermal exposure testing plan was carried out where time-series cross-sectional microstructural analyses of damage accumulation and spallation failure associated with the evolution of bond coat/TGO/top coat composite (e.g. thickness, ratcheting, localized oxidations, etc.) of air plasma sprayed (APS) TBCs were evaluated and correlated to the measured stiffness responses at various thermal cycles. The results show that the load-based micro-indentation test methodology is capable of identifying the spallation site(s) before actual occurrence. This micro-indentation technique can be viewed as a viable non-destructive evaluation (NDE) technique for determining as-manufactured and process-exposed TBCs. This technique also shows promise for the development of a portable instrument for on-line, in-situ spallation detection/prediction of industrial-size TBC turbine components.

  14. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    SciTech Connect

    Kiefel, Denis E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  15. X-ray based methods for non-destructive testing and material characterization

    NASA Astrophysics Data System (ADS)

    Hanke, Randolf; Fuchs, Theobald; Uhlmann, Norman

    2008-06-01

    The increasing complexity and miniaturization in the field of new materials as well as in micro-production requires in the same way improvements and technical advances in the field of micro-NDT to provide better quality data and more detailed knowledge about the internal structures of micro-components. Therefore, non-destructive methods like radioscopy, ultrasound, optical or thermal imaging increasingly gain in importance with respect to ongoing product and material development in the different phases like material characterization, production control or module reliability testing. Because of the manifold different application fields, i.e., certain physical NDT methods applied to material inspection, characterization or reliability testing, this contribution will focus on the radioscopic-based methods related to their most important applications. Today, in modern industrial quality control, X-ray transmission is used in two different ways: Two-dimensional radioscopic transmission imaging (projection technique), usually applied to inline inspection tasks in application fields like lightweight material production, electronic component soldering or food production. Computed tomography (CT) for generation of three-dimensional data, representing spatial information and density distribution of objects. CT application fields are on the one hand the understanding of production process failure or component and module inspection (completeness) and on the other hand the dimensional measuring of hidden geometrical outlines (metrology). This paper demonstrates the methods including technical set-ups (X-ray source and detector), imaging and reconstruction results and the methods for high speed and high-resolution volume data generation and evaluation.

  16. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-03-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  17. Microwave dielectric method for the rapid, non-destructive determination of bulk density and moisture content of peanut hull pellets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dielectric-based method was used to determine rapidly and nondestructively moisture content and bulk density of peanut-hull pellets from free-space measurement of their dielectric properties at microwave frequencies. For moisture content determination, a permittivity-based function which allows mo...

  18. Development of vibrational spectroscopic methods to rapidly and non-destructively assess quality of chicken breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of Vibrational Spectroscopic Methods to Rapidly and Non-Destructively Assess Quality of Chicken Breast Meat H. Zhuang1, M. Sohn2, S. Trabelsi1 and K. Lawrence1 1Quality and Safety Assessment Research Unit, ARS-USDA, 950 College Station Road, Athens, GA 30605 2University of Georgia, De...

  19. A time-domain finite element boundary integration method for ultrasonic nondestructive evaluation.

    PubMed

    Shi, Fan; Choi, Wonjae; Skelton, Elizabeth A; Lowe, Michael J S; Craster, Richard V

    2014-12-01

    A 2-D and 3-D numerical modeling approach for calculating the elastic wave scattering signals from complex stress-free defects is evaluated. In this method, efficient boundary integration across the complex boundary of the defect is coupled with a time-domain finite element (FE) solver. The model is designed to simulate time-domain ultrasonic nondestructive evaluation in bulk media. This approach makes use of the hybrid concept of linking a local numerical model to compute the near-field scattering behavior and theoretical mathematical formulas for postprocessing to calculate the received signals. It minimizes the number of monitoring signals from the FE calculation so that the computation effort in postprocessing decreases significantly. In addition, by neglecting the conventional regular monitoring box, the region for FE calculation can be made smaller. In this paper, the boundary integral method is implemented in a commercial FE code, and it is validated by comparing the scattering signals with results from corresponding full FE models. The coupled method is then implemented in real inspection scenarios in both 2-D and 3-D, and the accuracy and the efficiency are demonstrated. The limitations of the proposed model and future works are also discussed. PMID:25474780

  20. On the performance of nondestructive testing methods in the hydroelectric turbine industry

    NASA Astrophysics Data System (ADS)

    Habibzadeh Boukani, H.; Viens, M.; Tahan, S. A.; Gagnon, M.

    2014-03-01

    Welded joints of turbine runners are one of the most critical parts of Francis turbines due to the presence of welding discontinuity and high stress. Because of thermal cycles, solidification, cooling distortion and residual stresses, welded joints always include discontinuities of different types and sizes. Some specific parameters will limit welding flaw dimensions in some or all direction based on the joint geometry, material and welding procedure. If discontinuities of critical size remain undetected, fatigue cracks might initiate and propagate in these zones because of dynamic in-service stresses leading to high repair costs and long down times. Therefore, reliable NDT methods and good knowledge of the probability of occurrence of welding flaws is important for fatigue life estimations. Every NDT method has its weaknesses; therefore, even after meticulous inspections it is likely for some discontinuities of critical sizes to remain in the welded joint. Our objective is to clarify the probability of detection and occurrence of different types of welding flaws in hydroelectric turbine runners. Furthermore, an overview of current nondestructive inspection methods and their capability in characterizing flaw dimensions will be discussed. Finally, advanced NDT techniques, for the characterization of welded joints integrity, will be proposed.

  1. Method and apparatus for enhancing surface absorption and emissivity in optical pulsed infrared nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Duan, Yuxia; Zhang, Cunlin; Jin, Wanping; Wu, Naiming

    2009-07-01

    In the application of optical pulsed infrared NDE, the visible light absorption and IR emissivity of the detected object must be considered. One of the simple methods is spraying paint on the highly reflective and low IR emissivity surface before testing. However, for some materials such as with pore space in the surface or easily to be corrupted have to be pretreated by other method and apparatus. Two kinds of apparatus for surface pretreating are designed according to the dimension of the detected object and the testing conditions. One apparatus is independent of the former detecting system, and the other is an improvement of the former system. The basic principle of the two apparatus is covering a flexible membrane of high light absorption and IR emissivity on the specimen surface by vacuum pumping. The paper also present the applications of the method, including the detection of the metal mesh material and the honeycomb structures with aluminum coating. The experimental results show that the technique of covering thin film by vacuum pump is effective for enhancing surface absorption and emissivity; moreover, it does not pollute or damage the sample. The application of the technique has practical significance, because it extends the scope of the application of the optical pulsed thermography nondestructive evaluation.

  2. Quantitative electromechanical impedance method for nondestructive testing based on a piezoelectric bimorph cantilever

    NASA Astrophysics Data System (ADS)

    Fu, Ji; Tan, Chi; Li, Faxin

    2015-06-01

    The electromechanical impedance (EMI) method, which holds great promise in structural health monitoring (SHM), is usually treated as a qualitative method. In this work, we proposed a quantitative EMI method based on a piezoelectric bimorph cantilever using the sample’s local contact stiffness (LCS) as the identification parameter for nondestructive testing (NDT). Firstly, the equivalent circuit of the contact vibration system was established and the analytical relationship between the cantilever’s contact resonance frequency and the LCS was obtained. As the LCS is sensitive to typical defects such as voids and delamination, the proposed EMI method can then be used for NDT. To verify the equivalent circuit model, two piezoelectric bimorph cantilevers were fabricated and their free resonance frequencies were measured and compared with theoretical predictions. It was found that the stiff cantilever’s EMI can be well predicted by the equivalent circuit model while the soft cantilever’s cannot. Then, both cantilevers were assembled into a homemade NDT system using a three-axis motorized stage for LCS scanning. Testing results on a specimen with a prefabricated defect showed that the defect could be clearly reproduced in the LCS image, indicating the validity of the quantitative EMI method for NDT. It was found that the single-frequency mode of the EMI method can also be used for NDT, which is faster but not quantitative. Finally, several issues relating to the practical application of the NDT method were discussed. The proposed EMI-based NDT method offers a simple and rapid solution for damage evaluation in engineering structures and may also shed some light on EMI-based SHM.

  3. Automated nondestructive evaluation method for characterizing ceramic and metallic hot gas filters.

    SciTech Connect

    Ellingson, W. A.; Koehl, E. R.; Deemer, C.; Pastilla, P.; Wheeler, B.; Forster, G. A.

    2002-06-03

    In advanced coal-fired power generation, one technology under development to clean up hot gases before their use as fuel for gas turbines is rigid ceramic candle filters. These porous filters are typically 1.5 m long and 60 mm in diameter and are made of various ceramic materials, including clay-bonded SiC. The high costs of downtime in a large utility demands that nondestructive evaluation/characterization (NDE/C) methods be available. At shutdowns, data from such analysis are needed to decide which filters are still usable and which need to be replaced, and if possible, to estimate the remaining lifetimes. Thus our objective was to develop reliable low-cost NDE technology for these filters. Our approach was to develop NDE/C technology, referred to as acousto-ultrasonics (AU), for application to hot gas filters. Lamb waves generated by the AU method were analyzed to derive a stress wave factor (SWF). This technology was tested by comparing SWF data with the measured strength for a variety of rigid ceramic filters and was shown to work on iron-aluminide filters as well but no strength data have been obtained on the iron-aluminides at this time.

  4. Laser optoacoustic method for quantitative nondestructive evaluation of the subsurface damage depth in ground silicon wafers

    NASA Astrophysics Data System (ADS)

    Podymova, N. B.; Karabutov, A. A.; Cherepetskaya, E. B.

    2014-08-01

    This paper is a report on the novel laser optoacoustic method for nondestructive evaluation of the depth of the subsurface damage in ground single-crystal silicon wafers. It is based on different mechanisms of laser excitation of ultrasound by absorption of Q-switched Nd:YAG laser pulses at the fundamental wavelength: the concentration-deformation mechanism in the undamaged single-crystal silicon and the thermoelastic one in the subsurface damaged layer. Due to the uniform heating of the whole damaged layer during the laser pulse action the amplitude of the compression phase of the laser-induced ultrasonic signal is proportional to the damaged depth. The rarefaction phase of this signal arises by absorption of the remaining laser energy in the single-crystal silicon beneath the damaged layer. The empirical relation between the depth of the subsurface damage and the ratio of the amplitudes of compression and rarefaction phases of the laser-induced ultrasonic signal can be fitted by a linear function within the depth variation and the corresponding spread of the signal amplitudes. The proposed method attracts some interest for in situ control of the solid surface condition that is important in different tasks of linear and nonlinear optics.

  5. Non-Destructive Lichen Biomass Estimation in Northwestern Alaska: A Comparison of Methods

    PubMed Central

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J.

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa “community” samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m−2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  6. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    PubMed

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  7. Spatial distribution pattern analysis of subtidal macroalgae assemblages by a non-destructive rapid assessment method

    NASA Astrophysics Data System (ADS)

    Guinda, Xabier; Juanes, José Antonio; Puente, Araceli; Echavarri-Erasun, Beatriz

    2012-01-01

    The extensive field work carried out over the last century has allowed the worldwide description of general distribution patterns and specific composition of rocky intertidal communities. However, the information concerning subtidal communities on hard substrates is more recent and scarce due to the difficulties associated with working in such environments. In this work, a non-destructive method is applied to the study and mapping of subtidal rocky bottom macroalgae assemblages on the coast of Cantabria (N Spain) which is quick, easy and economical. Gelidium corneum and Cystoseira baccata were the dominant species, however, the composition and coverage of macroalgae assemblages varied significantly at different locations and depth ranges. The high presence of Laminaria ochroleuca and Saccorhiza polyschides, characteristic of colder waters, shows the transitional character of this coastal area. The results obtained throughout this study have been very useful to the application of the European Water Framework Directive (WFD 2000/60/EC) and could be of great interest for the future conservation and management of these ecosystems (e.g. Habitats Directive 92/43/EEC).

  8. Non-destructive in-situ method and apparatus for determining radionuclide depth in media

    DOEpatents

    Xu, X. George; Naessens, Edward P.

    2003-01-01

    A non-destructive method and apparatus which is based on in-situ gamma spectroscopy is used to determine the depth of radiological contamination in media such as concrete. An algorithm, Gamma Penetration Depth Unfolding Algorithm (GPDUA), uses point kernel techniques to predict the depth of contamination based on the results of uncollided peak information from the in-situ gamma spectroscopy. The invention is better, faster, safer, and/cheaper than the current practice in decontamination and decommissioning of facilities that are slow, rough and unsafe. The invention uses a priori knowledge of the contaminant source distribution. The applicable radiological contaminants of interest are any isotopes that emit two or more gamma rays per disintegration or isotopes that emit a single gamma ray but have gamma-emitting progeny in secular equilibrium with its parent (e.g., .sup.60 Co, .sup.235 U, and .sup.137 Cs to name a few). The predicted depths from the GPDUA algorithm using Monte Carlo N-Particle Transport Code (MCNP) simulations and laboratory experiments using .sup.60 Co have consistently produced predicted depths within 20% of the actual or known depth.

  9. [A path-length correction method on biochemical parameter nondestructive measuring of folium].

    PubMed

    Zhang, Qian-Xuan; Zhang, Guang-Jun; Li, Qing-Bo

    2010-05-01

    Vis/NIR spectroscopy technology is capable of analyzing the content of biochemical parameter in folium rapidly and nondestructively. In the process of spectrum analysis, the variations in path-length between different samples exist, with the random light scattering and leaf thickness perturbations, which influence the precision of quantitative analysis model. In order to resolve this problem, an improved path-length correction method based on Extended Multiplicative Scattering Correction is presented. In this paper, firstly the theory of EMSC algorithm is deduced. EMSC method incorporates both chemical terms and wavelength functions to help realize the efficient separation of path-length and interest concentration. Secondly two experiments were implemented to demonstrate the validity of the method. In Experiment 1, sixteen samples of different thickness but almost the same chlorophyll content were selected, and how the path-length affects the spectrum was compared, after EMSC preprocessing, the variable coefficient of spectrum could approach the repeatability error of spectrometer. In Experiment 2, thirty-two samples of different thickness and chlorophyll content were selected. PLS model established using cross validation was employed to evaluate the efficiency of the presented algorithm. Before the preprocessing, the root mean squared error of prediction is 3.9 SPAD with 5 principal components. After preprocessing, the predicted root mean squared error is 2.2 SPAD with 12 principal components. The results indicate that the improved EMSC preprocessing method could exactly eliminate the spectrum difference caused by the path-length variations between different foliums, enhance the sensitivity of concentration and spectral data, and increase the precision of calibrated model. PMID:20672624

  10. Automatic method for synchronizing workpiece frames in twin-robot nondestructive testing system

    NASA Astrophysics Data System (ADS)

    Lu, Zongxing; Xu, Chunguang; Pan, Qinxue; Meng, Fanwu; Li, Xinliang

    2015-07-01

    The workpiece frames relative to each robot base frame should be known in advance for the proper operation of twin-robot nondestructive testing system. However, when two robots are separated from the workpieces, the twin robots cannot reach the same point to complete the process of workpiece frame positioning. Thus, a new method is proposed to solve the problem of coincidence between workpiece frames. Transformation between two robot base frames is initiated by measuring the coordinate values of three non-collinear calibration points. The relationship between the workpiece frame and that of the slave robot base frame is then determined according to the known transformation of two robot base frames, as well as the relationship between the workpiece frame and that of the master robot base frame. Only one robot is required to actually measure the coordinate values of the calibration points on the workpiece. This requirement is beneficial when one of the robots cannot reach and measure the calibration points. The coordinate values of the calibration points are derived by driving the robot hand to the points and recording the values of top center point(TCP) coordinates. The translation and rotation matrices relate either the two robot base frames or the workpiece and master robot. The coordinated are solved using the measured values of the calibration points according to the Cartesian transformation principle. An optimal method is developed based on exponential mapping of Lie algebra to ensure that the rotation matrix is orthogonal. Experimental results show that this method involves fewer steps, offers significant advantages in terms of operation and time-saving. A method used to synchronize workpiece frames in twin-robot system automatically is presented.

  11. Development of Natural Flaw Samples for Evaluating Nondestructive Testing Methods for Foam Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Davis, Jason; Farrington, Seth; Walker, James

    2007-01-01

    Low density polyurethane foam has been an important insulation material for space launch vehicles for several decades. The potential for damage from foam breaking away from the NASA External Tank was not realized until the foam impacts on the Columbia Orbiter vehicle caused damage to its Leading Edge thermal protection systems (TPS). Development of improved inspection techniques on the foam TPS is necessary to prevent similar occurrences in the future. Foamed panels with drilled holes for volumetric flaws and Teflon inserts to simulate debonded conditions have been used to evaluate and calibrate nondestructive testing (NDT) methods. Unfortunately the symmetric edges and dissimilar materials used in the preparation of these simulated flaws provide an artificially large signal while very little signal is generated from the actual defects themselves. In other words, the same signal are not generated from the artificial defects in the foam test panels as produced when inspecting natural defect in the ET foam TPS. A project to create more realistic voids similar to what actually occurs during manufacturing operations was began in order to improve detection of critical voids during inspections. This presentation describes approaches taken to create more natural voids in foam TPS in order to provide a more realistic evaluation of what the NDT methods can detect. These flaw creation techniques were developed with both sprayed foam and poured foam used for insulation on the External Tank. Test panels with simulated defects have been used to evaluate NDT methods for the inspection of the External Tank. A comparison of images between natural flaws and machined flaws generated from backscatter x-ray radiography, x-ray laminography, terahertz imaging and millimeter wave imaging show significant differences in identifying defect regions.

  12. Theoretical detection ranges for acoustic based manatee avoidance technology.

    PubMed

    Phillips, Richard; Niezrecki, Christopher; Beusse, Diedrich O

    2006-07-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. To reduce the number of collisions, warning systems based upon detecting manatee vocalizations have been proposed. One aspect of the feasibility of an acoustically based warning system relies upon the distance at which a manatee vocalization is detectable. Assuming a mixed spreading model, this paper presents a theoretical analysis of the system detection capabilities operating within various background and watercraft noise conditions. This study combines measured source levels of manatee vocalizations with the modeled acoustic properties of manatee habitats to develop a method for determining the detection range and hydrophone spacing requirements for acoustic based manatee avoidance technologies. In quiet environments (background noise approximately 70 dB) it was estimated that manatee vocalizations are detectable at approximately 250 m, with a 6 dB detection threshold, In louder environments (background noise approximately 100dB) the detection range drops to 2.5 m. In a habitat with 90 dB of background noise, a passing boat with a maximum noise floor of 120 dB would be the limiting factor when it is within approximately 100 m of a hydrophone. The detection range was also found to be strongly dependent on the manatee vocalization source level. PMID:16875213

  13. Application Research on Nondestructive Testing Technology for Quality of Anchor Based on Elastic Wave Reflection Method

    NASA Astrophysics Data System (ADS)

    Xiao, G.; Zhou, L.

    2014-12-01

    deconvolution, which enabled us to obtain improved signal to noise ratio and sensing precision. Through the above mentioned systematical studies, we developed a reliable nondestructive test method for both short and long anchors based on elastic wave reflection. This research is funded by National Natural Science Foundation of China (Grant No. 41202223)

  14. Determining the Stability of Asphalt Concrete at Varying Temperatures and Exposure Times Using Destructive and Non-Destructive Methods

    NASA Astrophysics Data System (ADS)

    Ozgan, Ercan

    This study examined the effect of varying temperatures and varying exposure times on the stability of asphalt concrete using destructive and non-destructive methods. The study also looked at the relationship between destructive and non-destructive methods. In order to investigate the stability according to exposure time and environment temperature, exposure times of 1.5, 3, 4.5 and 6 h and temperatures of 30, 40 and 50°C were selected. The results showed that at the environment temperature of 17°C the stability of the asphalt core samples decreased by 40.16% at 30°C after 1.5 h and 62.39% after 6 h. At 40°C the decrease was 74.31% after 1.5 and 78.10% after 6 h. At 50°C the stability of the asphalt decreased by 83.22% after 1.5 h and 88.66% after 6 h. The results also pointed to a moderate negative relationship (R = -0.533) between second ultrasound and stability indicating that non-destructive ultrasound method can be used to predict stability.

  15. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    NASA Astrophysics Data System (ADS)

    Vourna, P.

    2016-03-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones.

  16. The use of non-destructive passive neutron measurement methods in dismantling and radioactive waste characterization

    SciTech Connect

    Jallu, F.; Allinei, P. G.; Bernard, P.; Loridon, J.; Soyer, P.; Pouyat, D.; Torreblanca, L.; Reneleau, A.

    2011-07-01

    The cleaning up and dismantling of nuclear facilities lead to a great volume of technological radioactive wastes which need to be characterized in order to be sent to the adequate final disposal or interim storage. The control and characterization can be performed with non-destructive nuclear measurements such as gamma-ray spectrometry. Passive neutron counting is an alternative when the alpha-gamma emitters cannot be detected due to the presence of a high gamma emission resulting from fission or activation products, or when the waste matrix is too absorbing for the gamma rays of interest (too dense and/or made of high atomic number elements). It can also be a complement to gamma-ray spectrometry when two measurement results must be confronted to improve the confidence in the activity assessment. Passive neutron assays involve the detection of spontaneous fission neutrons emitted by even nuclides ({sup 238}Pu, {sup 240}Pu, {sup 242}Pu, {sup 242}Cm, {sup 244}Cm...) and neutrons resulting from ({alpha}, n) reactions with light nuclides (O, F, Be...). The latter is conditioned by the presence of high {alpha}-activity radionuclides ({sup 234}U, {sup 238}Pu, {sup 240}Pu, {sup 241}Am...) and low-Z elements, which depends on the chemical form (metallic, oxide or fluorine) of the plutonium or uranium contaminant. This paper presents the recent application of passive neutron methods to the cleaning up of a nuclear facility located at CEA Cadarache (France), which concerns the Pu mass assessment of 2714 historic, 100 litre radioactive waste drums produced between 1980 and 1997. Another application is the dismantling and decommissioning of an uranium enrichment facility for military purposes, which involves the {sup 235}U and total uranium quantifications in about a thousand, large compressors employed in the gaseous diffusion enrichment process. (authors)

  17. Nondestructive testing and characterization of residual stress field using an ultrasonic method

    NASA Astrophysics Data System (ADS)

    Song, Wentao; Xu, Chunguang; Pan, Qinxue; Song, Jianfeng

    2016-03-01

    To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.

  18. Development of nondestructive evaluation methods to characterize anomalous microstructures in titanium-6aluminum-4vanadium

    NASA Astrophysics Data System (ADS)

    Blodgett, Mark Patrick

    The main objective of this dissertation is to confirm through research the following hypothesis: "The use of nondestructive evaluation tools allows the detection of different microstructure types and allows the identification of microstructure anomalies (interior and surface) in metals and alloys." The work was conducted on Ti-6A1-4V forged bar stock, presenting a case study for a high performance structural alloy. Ti-6A1-4V is a good model material, which cannot tolerate microstructure anomalies in demanding applications. The alloy is well established with extensive documentation on physical, chemical, and mechanical properties. It is also available in many different microstructures, readily generated by heat treating. This dissertation addresses issues concerning microstructure characterization and the identification of microstructural anomalies. Specifically, this work includes (i) background research on the identification of ultrasonic and electrical characteristics of five different TP6A1-4V microstructures; (ii) an application of ultrasonic backscattering measurements to detect diffusion bonded Ti-6A1-4V microstructure changes, to simulate locally isolated remnant cast structure for billet NDI; (iii) original research on laser interferometric detection for ultrasonic phase mapping to characterize macroscopic texture in Ti-6A1-4V; and (iv) original research on eddy current electrical conductivity mapping in titanium alloys. Three original NDE methods were developed to evaluate microstructure and microstructure anomalies in Ti-6A1-4V. First, a forward scattering measurement technique was developed to spatially map the incoherent grain scattering in the forward propagation direction. These results showed, for the first time, that mapping of the forward scatter provides a basis for characterization of texture in polycrystalline titanium alloys. Second, a laser interferometric system was developed to map the signal amplitude and phase of the transmitted acoustic

  19. Mild-Vectolysis: A nondestructive DNA extraction method for vouchering sand flies and mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nondestructive techniques allow the isolation of genomic DNA, without damaging the morphological features of the specimens. Though such techniques are available for numerous insect groups, they have not been applied to any member of the medically important families of mosquitoes (Diptera: Culicidae)...

  20. Nondestructive evaluation

    SciTech Connect

    Martz, H.E.

    1997-02-01

    Research reported in the thrust area of nondestructive evaluation includes: advanced 3-D imaging technologies; new techniques in laser ultrasonic testing; infrared computed tomography for thermal NDE of materials, structures, sources, and processes; automated defect detection for large laser optics; multistatic micropower impulse radar imaging for nondestructive evaluation; and multi-modal NDE for AVLIS pod shielding components.

  1. Litchi freshness rapid non-destructive evaluating method using electronic nose and non-linear dynamics stochastic resonance model

    PubMed Central

    Ying, Xiaoguo; Liu, Wei; Hui, Guohua

    2015-01-01

    In this paper, litchi freshness rapid non-destructive evaluating method using electronic nose (e-nose) and non-linear stochastic resonance (SR) was proposed. EN responses to litchi samples were continuously detected for 6 d Principal component analysis (PCA) and non-linear stochastic resonance (SR) methods were utilized to analyze EN detection data. PCA method could not totally discriminate litchi samples, while SR signal-to-noise ratio (SNR) eigen spectrum successfully discriminated all litchi samples. Litchi freshness predictive model developed using SNR eigen values shows high predictive accuracy with regression coefficients R2 = 0 .99396. PMID:25920547

  2. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation

  3. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality By Eddy Current Method

    SciTech Connect

    B. Mi; G. Zhao; R. Bayles

    2006-08-10

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with various surface preparation conditions or spray process parameters. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that different surface preparation conditions and varied process parameters can be successfully differentiated by the impedance value observed from the eddy current probe. The measurement is fairly robust and consistent. This non-contact, nondestructive, easy-to-use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  4. Evaluation of non-destructive methods for estimating biomass in marshes of the upper Texas, USA coast

    USGS Publications Warehouse

    Whitbeck, M.; Grace, J.B.

    2006-01-01

    The estimation of aboveground biomass is important in the management of natural resources. Direct measurements by clipping, drying, and weighing of herbaceous vegetation are time-consuming and costly. Therefore, non-destructive methods for efficiently and accurately estimating biomass are of interest. We compared two non-destructive methods, visual obstruction and light penetration, for estimating aboveground biomass in marshes of the upper Texas, USA coast. Visual obstruction was estimated using the Robel pole method, which primarily measures the density and height of the canopy. Light penetration through the canopy was measured using a Decagon light wand, with readings taken above the vegetation and at the ground surface. Clip plots were also taken to provide direct estimates of total aboveground biomass. Regression relationships between estimated and clipped biomass were significant using both methods. However, the light penetration method was much more strongly correlated with clipped biomass under these conditions (R2 value 0.65 compared to 0.35 for the visual obstruction approach). The primary difference between the two methods in this situation was the ability of the light-penetration method to account for variations in plant litter. These results indicate that light-penetration measurements may be better for estimating biomass in marshes when plant litter is an important component. We advise that, in all cases, investigators should calibrate their methods against clip plots to evaluate applicability to their situation. ?? 2006, The Society of Wetland Scientists.

  5. A Rapid Ultrasonic Method for Nondestructive Thickness Mapping of Bronze Liner in Steel-Backed Bearing Sleeves

    NASA Astrophysics Data System (ADS)

    Fei, Dong; Rebinsky, Douglas A.

    2004-02-01

    In this paper a nondestructive, automatic, ultrasonic scanning method was developed to permit rapid thickness mapping of the bronze liner in a steel-backed bearing sleeve. Because the sound velocity in bronze was unknown, an indirect two-step approach was used: the first step utilized a simultaneous velocity and thickness mapping method to measure the total wall thickness while the second step measured the thickness of the steel backing. The difference of the two obtained thickness maps yielded the thickness map of the bronze liner. Comparison to destructive examination results showed a measurement accuracy of approximately 20 μm or 2%.

  6. A non-destructive method for measuring the mechanical properties of ultrathin films prepared by atomic layer deposition

    SciTech Connect

    Zhang, Qinglin; Xiao, Xingcheng Verbrugge, Mark W.; Cheng, Yang-Tse

    2014-08-11

    The mechanical properties of ultrathin films synthesized by atomic layer deposition (ALD) are critical for the liability of their coated devices. However, it has been a challenge to reliably measure critical properties of ALD films due to the influence from the substrate. In this work, we use the laser acoustic wave (LAW) technique, a non-destructive method, to measure the elastic properties of ultrathin Al{sub 2}O{sub 3} films by ALD. The measured properties are consistent with previous work using other approaches. The LAW method can be easily applied to measure the mechanical properties of various ALD thin films for multiple applications.

  7. A Rapid Ultrasonic Method for Nondestructive Thickness Mapping of Bronze Liner in Steel-Backed Bearing Sleeves

    SciTech Connect

    Fei Dong; Rebinsky, Douglas A.

    2004-02-26

    In this paper a nondestructive, automatic, ultrasonic scanning method was developed to permit rapid thickness mapping of the bronze liner in a steel-backed bearing sleeve. Because the sound velocity in bronze was unknown, an indirect two-step approach was used: the first step utilized a simultaneous velocity and thickness mapping method to measure the total wall thickness while the second step measured the thickness of the steel backing. The difference of the two obtained thickness maps yielded the thickness map of the bronze liner. Comparison to destructive examination results showed a measurement accuracy of approximately 20 {mu}m or 2%.

  8. A non-destructive n-doping method for graphene with precise control of electronic properties via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Han, Kyu Seok; Kalode, Pranav Y.; Koo Lee, Yong-Eun; Kim, Hongbum; Lee, Lynn; Sung, Myung Mo

    2016-02-01

    Graphene applications require high precision control of the Fermi level and carrier concentration via a nondestructive doping method. Here, we develop an effective n-doping technique using atomic layer deposition (ALD) of ZnO thin films on graphene through a reactive molecular layer. This ALD doping method is nondestructive, simple, and precise. The ZnO thin films on graphene are uniform, conformal, of good quality with a low density of pinholes, and finely tunable in thickness with 1 Å resolution. We demonstrate graphene transistor control in terms of the Dirac point, carrier density, and doping state as a function of the ZnO thickness. Moreover, ZnO functions as an effective thin-film barrier against air-borne water and oxygen on the graphene, resulting in extraordinary stability in air for graphene devices. ZnO ALD was also applied to other two-dimensional materials including MoS2 and WSe2, which substantially enhanced electron mobility.Graphene applications require high precision control of the Fermi level and carrier concentration via a nondestructive doping method. Here, we develop an effective n-doping technique using atomic layer deposition (ALD) of ZnO thin films on graphene through a reactive molecular layer. This ALD doping method is nondestructive, simple, and precise. The ZnO thin films on graphene are uniform, conformal, of good quality with a low density of pinholes, and finely tunable in thickness with 1 Å resolution. We demonstrate graphene transistor control in terms of the Dirac point, carrier density, and doping state as a function of the ZnO thickness. Moreover, ZnO functions as an effective thin-film barrier against air-borne water and oxygen on the graphene, resulting in extraordinary stability in air for graphene devices. ZnO ALD was also applied to other two-dimensional materials including MoS2 and WSe2, which substantially enhanced electron mobility. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08016a

  9. Non-destructive high-throughput DNA extraction and genotyping methods for cotton seeds and seedlings.

    PubMed

    Zheng, Xiuting; Hoegenauer, Kevin A; Maeda, Andrea B V; Wang, Fei; Stelly, David M; Nichols, Robert L; Jones, Don C

    2015-05-01

    Extensive use of targeted PCR-based genotyping is precluded for many plant research laboratories by the cost and time required for DNA extraction. Using cotton (Gossypium hirsutum) as a model for plants with medium-sized seeds, we report here manual procedures for inexpensive non-destructive high-throughput extraction of DNA suitable for PCR-based genotyping of large numbers of individual seeds and seedlings. By sampling only small amounts of cotyledon tissue of ungerminated seed or young seedlings, damage is minimized, and viability is not discernibly affected. The yield of DNA from each seed or seedling is typically sufficient for 1000 or 500 PCR reactions, respectively. For seeds, the tissue sampling procedure relies on a modified 96-well plate that is used subsequently for seed storage. For seeds and seedlings, the DNA is extracted in a strongly basic DNA buffer that is later neutralized and diluted. Extracts can be used directly for high-throughput PCR-based genotyping. Any laboratory can thus extract DNA from thousands of individual seeds/seedlings per person-day at a very modest cost for consumables (~$0.05 per sample). Being non-destructive, our approach enables a wide variety of time- and resource-saving applications, such as marker-assisted selection (MAS), before planting, transplanting, and flowering. PMID:25967902

  10. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality by Eddy Current Method

    SciTech Connect

    B.Mi; X. Zhao; R. Bayles

    2006-05-26

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with different surface preparation conditions before applying the coating, e.g., grit-blasted surface, wire-brush cleaned surface, and a dirty surface. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that the three surface preparation conditions can be successfully differentiated by looking into the impedance difference observed from the eddy current probe. The measurement is fairly robust and consistent. More specimens are also prepared with variations of process parameters, such as spray angle, stand-off distance, and application of corrosion protective sealant, etc. They are blindly tested to evaluate the reliability of the eddy current system. Quantitative relations between the coating bond strength and the eddy current response are also established with the support of destructive testing. This non-contact, non-destructive, easy to use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  11. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  12. A non-destructive n-doping method for graphene with precise control of electronic properties via atomic layer deposition.

    PubMed

    Han, Kyu Seok; Kalode, Pranav Y; Koo Lee, Yong-Eun; Kim, Hongbum; Lee, Lynn; Sung, Myung Mo

    2016-02-25

    Graphene applications require high precision control of the Fermi level and carrier concentration via a nondestructive doping method. Here, we develop an effective n-doping technique using atomic layer deposition (ALD) of ZnO thin films on graphene through a reactive molecular layer. This ALD doping method is nondestructive, simple, and precise. The ZnO thin films on graphene are uniform, conformal, of good quality with a low density of pinholes, and finely tunable in thickness with 1 Å resolution. We demonstrate graphene transistor control in terms of the Dirac point, carrier density, and doping state as a function of the ZnO thickness. Moreover, ZnO functions as an effective thin-film barrier against air-borne water and oxygen on the graphene, resulting in extraordinary stability in air for graphene devices. ZnO ALD was also applied to other two-dimensional materials including MoS2 and WSe2, which substantially enhanced electron mobility. PMID:26864992

  13. Quantitative nondestructive in-service evaluation of stay cables of cable-stayed bridges: methods and practical experience

    NASA Astrophysics Data System (ADS)

    Weischedel, Herbert R.; Hoehle, Hans-Werner

    1995-05-01

    Stay cables of cable-stayed bridges have corrosion protection systems that can be elaborate. For example, such a system may simply consist of one or several coats of paint, or--more complex--of plastic pipes that are wrapped with tape and filled with grout. Frequently, these corrosion protection systems prevent visual inspections. Therefore, alternative nondestructive examination methods are called for. For example, modern dual-function electromagnetic (EM) instruments allow the simultaneous detection of external and internal localized flaws (such as external and internal broken wires and corrosion piting) and the measurement of loss of metallic cross-sectional area (typically caused by external or internal corrosion or wear). Initially developed for mining and skiing applications, these instruments have been successfully used for the inspection of stays of cable-stayed bridges, and for the inspection of guys of smoke stacks, flare stacks, broadcast towers, suspended roofs, etc. As a rule, guys and bridge cables are not subjected to wear and bending stresses. However, their safety can be compromised by corrosion caused by the failure of corrosion protection systems. Furthermore, live loads and wind forces create intermittent tensile stresses that can cause fatigue breaks of wires. This paper discusses the use of dual-function EM instruments for the detection and the nondestructive quantitative evaluation of cable deterioration. It explains the underlying principles. Experiences with this method together with field inspection results will be presented.

  14. Prediction of Service Life of Cordierite-Mullite Refractory Materials by Non-Destructive Methods

    SciTech Connect

    Boccaccini, D. N.; Kamseu, Elie; Cannio, M.; Romagnoli, M.; Veronesi, P.; Leonelli, C.; Volkov-Husoviae, T. D.; Dlouhy, I.; Boccaccini, A. R.

    2008-02-15

    Ultrasonic pulse velocity testing was used to perform non-destructive quality control of refractory plates used as substrates in fast firing of porcelain whitewares. The measurement of the ultrasonic velocity was used to asses the presence of internal voids or cracks originated from the manufacturing procedure. Image analysis was used to predict thermal stability of the refractory materials. Two cordierite-mullite compositions were investigated that are characterized by different microstructure morphologies and crack propagation behaviour. A brief discussion about the correlation between microstructure, crack propagation behaviour and thermal shock resistance is presented. Moreover, empirical models were developed to predict the service life of refractory plates from measured values of ultrasonic velocities in plates in the as-received state.

  15. Prediction of Service Life of Cordierite-Mullite Refractory Materials by Non-Destructive Methods

    NASA Astrophysics Data System (ADS)

    Boccaccini, D. N.; Kamseu, Elie; Volkov-Husoviæ, T. D.; Cannio, M.; Romagnoli, M.; Veronesi, P.; Dlouhy, I.; Boccaccini, A. R.; Leonelli, C.

    2008-02-01

    Ultrasonic pulse velocity testing was used to perform non-destructive quality control of refractory plates used as substrates in fast firing of porcelain whitewares. The measurement of the ultrasonic velocity was used to asses the presence of internal voids or cracks originated from the manufacturing procedure. Image analysis was used to predict thermal stability of the refractory materials. Two cordierite-mullite compositions were investigated that are characterized by different microstructure morphologies and crack propagation behaviour. A brief discussion about the correlation between microstructure, crack propagation behaviour and thermal shock resistance is presented. Moreover, empirical models were developed to predict the service life of refractory plates from measured values of ultrasonic velocities in plates in the as-received state.

  16. Electrooptical remote sensing methods as nondestructive testing and measuring techniques in agriculture.

    PubMed

    Myers, V I; Allen, W A

    1968-09-01

    Characteristics of plants that influence reflectance and emission of electromagnetic energy are discussed. Four main spectral regions are influenced by plants. These wavelength bands include the visible region of chlorophyll absorption, very near ir wavelengths, where plant structure is of major importance, the near and middle ir wavelengths, where water and CO(2) absorption predominate, and the far ir region of thermal ir emission. Soil characteristics that influence reflectance and emission of energy are discussed. Nondestructive testing techniques described include laboratory spectrophotometry, field spectrometry, color photography, radiometry, and generation of line scan imagery. Spectrophotometer and spectrometer reflectance data obtained in the laboratory and field are related to interpretation of remote sensing imagery. Model studies that permit predictions of reflectance from plant canopies are described. The principle of multispectral sensing which permits utilization of multiple wavelength channels for establishing unique plant and soil signature is reviewed. PMID:20068888

  17. Challenges in Integrating Nondestructive Evaluation and Finite Element Methods for Realistic Structural Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Zagidulin, Dmitri; Rauser, Richard W.

    2000-01-01

    Capabilities and expertise related to the development of links between nondestructive evaluation (NDE) and finite element analysis (FEA) at Glenn Research Center (GRC) are demonstrated. Current tools to analyze data produced by computed tomography (CT) scans are exercised to help assess the damage state in high temperature structural composite materials. A utility translator was written to convert velocity (an image processing software) STL data file to a suitable CAD-FEA type file. Finite element analyses are carried out with MARC, a commercial nonlinear finite element code, and the analytical results are discussed. Modeling was established by building MSC/Patran (a pre and post processing finite element package) generated model and comparing it to a model generated by Velocity in conjunction with MSC/Patran Graphics. Modeling issues and results are discussed in this paper. The entire process that outlines the tie between the data extracted via NDE and the finite element modeling and analysis is fully described.

  18. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    NASA Astrophysics Data System (ADS)

    Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.

    2012-10-01

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  19. Evaluation of damage evolution and material behavior in a sigma/Ti-6242 composite using nondestructive methods

    SciTech Connect

    Benson, D.; Karpur, P.; Stubbs, D.A.; Matikas, T.E.

    1997-12-31

    Correlations between damage, as it evolves under simulated service conditions, and the results produced from nondestructive evaluation (NDE) techniques are useful in establishing successful life prediction methodologies in metal-matrix composites. Traditional characterization techniques provide limited information on the failure mechanisms in metal-matrix composites because of the complexities caused by the inhomogeneous, anisotropic nature of these materials. In addition, the currently used destructive techniques yield only qualitative information on the internal damage of composites. Very little quantitative information exists correlating the internal damage with property changes in the material such as stiffness, elongation, and residual strength. This research effort correlated NDE results with the residual tensile strength of a six-ply, unidirectional BP Sigma-1240 SiC/Ti-6Al-2Sn-4Zr-2Mo composite after being isothermally fatigued. Information obtained from these tests was used to pinpoint load levels and interruption points for subsequent interrupted fatigue tests. The following nondestructive evaluation techniques were used to evaluate the test specimens before and after fatigue testing: (1) scanning acoustic microscopy, (2) oblique incidence shear wave scanning, (3) reflector plate ultrasonic scanning, (4) immersion surface wave scanning, (5) in situ surface and longitudinal waves and, (6) X-ray radiography. This paper presents the results from each of the NDE techniques and examines the correlation among the techniques, other destructive methods, and the residual tensile strength.

  20. Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales.

    PubMed

    Wasko, Adriane P; Martins, Cesar; Oliveira, Claudio; Foresti, Fausto

    2003-01-01

    DNA-based studies have been one of the major interests in conservation biology of endangered species and in population genetics. As species and population genetic assessment requires a source of biological material, the sampling strategy can be overcome by non-destructive procedures for DNA isolation. An improved method for obtaining DNA from fish fins and scales with the use of an extraction buffer containing urea and further DNA purification with phenol-chloroform is described. The methodology combines the benefits of a non-destructive DNA sampling and its high efficiency. In addition, comparisons with other methodologies for isolating DNA from fish demonstrated that the present procedure also becomes a very attractive alternative to obtain large amounts of high-quality DNA for use in different molecular analyses. The DNA samples, isolated from different fish species, have been successfully used on random amplified polymorphic DNA (RAPD) experiments, as well as on amplification of specific ribosomal and mitochondrial DNA sequences. The present DNA extraction procedure represents an alternative for population approaches and genetic studies on rare or endangered taxa. PMID:14641478

  1. Neutron radiography as a non-destructive method for diagnosing neutron converters for advanced thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Muraro, A.; Albani, G.; Perelli Cippo, E.; Croci, G.; Angella, G.; Birch, J.; Cazzaniga, C.; Caniello, R.; Dell'Era, F.; Ghezzi, F.; Grosso, G.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Schimdt, S.; Robinson, L.; Rebai, M.; Salvato, G.; Tresoldi, D.; Vasi, C.; Tardocchi, M.

    2016-03-01

    Due to the well-known problem of 3He shortage, a series of different thermal neutron detectors alternative to helium tubes are being developed, with the goal to find valid candidates for detection systems for the future spallation neutron sources such as the European Spallation Source (ESS). A possible 3He-free detector candidate is a charged particle detector equipped with a three dimensional neutron converter cathode (3D-C). The 3D-C currently under development is composed by a series of alumina (Al2O3) lamellas coated by 1 μ m of 10B enriched boron carbide (B4C). In order to obtain a good characterization in terms of detector efficiency and uniformity it is crucial to know the thickness, the uniformity and the atomic composition of the B4C neutron converter coating. In this work a non-destructive technique for the characterization of the lamellas that will compose the 3D-C was performed using neutron radiography. The results of these measurements show that the lamellas that will be used have coating uniformity suitable for detector applications. This technique (compared with SEM, EDX, ERDA, XPS) has the advantage of being global (i.e. non point-like) and non-destructive, thus it is suitable as a check method for mass production of the 3D-C elements.

  2. A nondestructive method for estimation of the fracture toughness of CrMoV rotor steels based on ultrasonic nonlinearity.

    PubMed

    Jeong, Hyunjo; Nahm, Seung-Hoon; Jhang, Kyung-Young; Nam, Young-Hyun

    2003-09-01

    The objective of this paper is to develop a nondestructive method for estimating the fracture toughness (K(IC)) of CrMoV steels used as the rotor material of steam turbines in power plants. To achieve this objective, a number of CrMoV steel samples were heat-treated, and the fracture appearance transition temperature (FATT) was determined as a function of aging time. Nonlinear ultrasonics was employed as the theoretical basis to explain the harmonic generation in a damaged material, and the nonlinearity parameter of the second harmonic wave was the experimental measure used to be correlated to the fracture toughness of the rotor steel. The nondestructive procedure for estimating the K(IC) consists of two steps. First, the correlations between the nonlinearity parameter and the FATT are sought. The FATT values are then used to estimate K(IC) using the K(IC) versus excess temperature (i.e., T-FATT) correlation that is available in the literature for CrMoV rotor steel. PMID:12919690

  3. A multi-inspection non-destructive testing method for quality evaluation of composite riveted structure

    NASA Astrophysics Data System (ADS)

    Wang, Weihan; He, Jingjing; Yang, Jingsong; Liu, Shengwang; Zhang, Weifang

    2015-03-01

    Carbon fiber composites have excellent mechanical properties, which are widely used in aerospace industry. However, 60% to 80% damages in composite occur in riveted structures. This research focuses on the quality evaluation of three major riveted structures used in mechanical connection: pressure riveted connection, hammer riveted connection and pull riveted connection. The non-destructive testing results show that the pull riveting technology introduces minimal damage to the composite, but the hammer riveted structure can be seriously damaged by the riveting technology. The pull riveted structure is an interference fit, which makes the composite plate firmly fixed. However, the fix is weak in the pressure riveted structure and the hammer riveted structure, due to the small gap between the rivets and plate. The results show that the pull riveted structure has a higher tensile strength compared with the pressure riveted structure and hammer riveted structure. The hammer riveted structure has a large dispersion in mechanical properties caused by the impact loading used in the hammer riveting technology.

  4. Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Greene, Nathanael; Cameron, Ken; Madaras, Eric; Grimes-Ledesma, Lorie; Thesken, John; Phoenix, Leigh; Murthy, Pappu; Revilock, Duane

    2007-01-01

    Many aging composite overwrapped pressure vessels (COPVs), being used by the National Aeronautics and Space Administration (NASA) are currently under evaluation to better quantify their reliability and clarify their likelihood of failure due to stress rupture and age-dependent issues. As a result, some test and analysis programs have been successfully accomplished and other related programs are still in progress at the NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) and other NASA centers, with assistance from the commercial sector. To support this effort, a group of Nondestructive Evaluation (NDE) experts was assembled to provide NDE competence for pretest evaluation of test articles and for application of NDE technology to real-time testing. Techniques were required to provide assurance that the test article had adequate structural integrity and manufacturing consistency to be considered acceptable for testing and these techniques were successfully applied. Destructive testing is also being accomplished to better understand the physical and chemical property changes associated with progression toward "stress rupture" (SR) failure, and it is being associated with NDE response, so it can potentially be used to help with life prediction. Destructive work also includes the evaluation of residual stresses during dissection of the overwrap, laboratory evaluation of specimens extracted from the overwrap to evaluate physical property changes, and quantitative microscopy to inform the theoretical micromechanics.

  5. Non-Destructive Measurement of Vascular Tissue Development in Stems of Miniature Tomato Using Acoustic Method

    NASA Astrophysics Data System (ADS)

    Kageyama, Kensuke; Watanabe, Eiko; Kato, Hiroshi

    The guided wave effect resembling that of annual rings found in woods and the cortical region of bones is believed to be observable in vascular tissues of herbaceous plants. The properties of acoustic waves traveling through the vascular tissue in the stem of a miniature tomato were measured using a piezoelectric pulser and receiver. The thickness of the vascular tissues and the stem's water content were measured. The detected acoustic waves showed a guided wave effect. The apparent sound velocity, va, was related to the vascular tissue thickness, tv. These results reveal that the detected acoustic waves traveled along the vascular tissues in stems. The maximum peak intensity of the detected acoustic waves, Imax was also related to t. Furthermore, wilting of the examined plants decreased the Imax, although va was not changed. The decrease in Imax might result from cavitations and embolisms with a subsequent increase in air pores in xylem tissues. These results demonstrate that the measurement of acoustic waves traveling through vascular tissue is a useful tool for the non-destructive evaluation of vascular tissue development and embolism density in xylem tissues.

  6. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    SciTech Connect

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  7. Non-destructive Testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    NASA Technical Reports Server (NTRS)

    Lu, D. F.; Fan, Chang-Xin; Ruan, J. Z.; Han, S. G.; Wong, K. W.; Sun, G. F.

    1995-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A nondestructive testing (NDT) device using high temperature SQUID's and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUID's. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  8. Assessment of the probability of failure for EC nondestructive testing based on intrusive spectral stochastic finite element method

    NASA Astrophysics Data System (ADS)

    Oudni, Zehor; Féliachi, Mouloud; Mohellebi, Hassane

    2014-06-01

    This work is undertaken to study the reliability of eddy current nondestructive testing (ED-NDT) when the defect concerns a change of physical property of the material. So, an intrusive spectral stochastic finite element method (SSFEM) is developed in the case of 2D electromagnetic harmonic equation. The electrical conductivity is considered as random variable and is developed in series of Hermite polynomials. The developed model is validated from measurements on NDT device and is applied to the assessment of the reliability of failure in steam generator tubing of nuclear power plants. The exploitation of the model concerns the impedance calculation of the sensor and the assessment of the reliability of failure. The random defect geometry is also considered and results are given.

  9. 29 CFR 1919.78 - Nondestructive examinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Nondestructive examinations. 1919.78 Section 1919.78 Labor... Nondestructive examinations. (a) Wherever it is considered necessary by the accredited person or his authorized...., examination of structure or parts by electronic, ultrasonic, or other nondestructive methods may be...

  10. Potential applicability of stress wave velocity method on pavement base materials as a non-destructive testing technique

    NASA Astrophysics Data System (ADS)

    Mahedi, Masrur

    Aggregates derived from natural sources have been used traditionally as the pavement base materials. But in recent times, the extraction of these natural aggregates has become more labor intensive and costly due to resource depletion and environmental concerns. Thus, the uses of recycled aggregates as the supplementary of natural aggregates are increasing considerably in pavement construction. Use of recycled aggregates such as recycled crushed concrete (RCA) and recycled asphalt pavement (RAP) reduces the rate of natural resource depletion, construction debris and cost. Although recycled aggregates could be used as a viable alternative of conventional base materials, strength characteristics and product variability limit their utility to a great extent. Hence, their applicability is needed to be evaluated extensively based on strength, stiffness and cost factors. But for extensive evaluation, traditionally practiced test methods are proven to be unreasonable in terms of time, cost, reliability and applicability. On the other hand, rapid non-destructive methods have the potential to be less time consuming and inexpensive along with the low variability of test results; therefore improving the reliability of estimated performance of the pavement. In this research work, the experimental program was designed to assess the potential application of stress wave velocity method as a non-destructive test in evaluating recycled base materials. Different combinations of cement treated recycled concrete aggregate (RAP) and recycled crushed concrete (RCA) were used to evaluate the applicability of stress wave velocity method. It was found that, stress wave velocity method is excellent in characterizing the strength and stiffness properties of cement treated base materials. Statistical models, based on P-wave velocity were derived for predicting the modulus of elasticity and compressive strength of different combinations of cement treated RAP, Grade-1 and Grade-2 materials. Two

  11. An Innovative Non-Destructive and Computational Method for Uranium Activity and Enrichment Verification of UF{sub 6} Cylinder

    SciTech Connect

    El-Mongy, Sayed A.; Allam, K.M.; Farid, Osama M.

    2006-07-01

    Verification of {sup 235}U enrichment in uranium hexafluoride (UF{sub 6}) cylinders is often achieved by destructive and non-destructive assay techniques. These techniques are time consuming, need suitable and similar standard, in addition to loss of the nuclear material in the case of destructive analysis. This paper introduce an innovative approach for verifying of {sup 235}U enrichment in UF{sub 6} cylinder. The approach is based on measuring dose rate ({mu}Sv/h) resulted from the emitted gamma rays of {sup 235}U at the surface of the cylinder and then calculating the activity of uranium and enrichment percentage inside the cylinder by a three dimensional model. Attenuation of the main {sup 235}U gamma transitions due to the cylinder wall (5A Type of Ni alloy) was also calculated and corrected for. The method was applied on UF{sub 6} cylinders enriched with 19.75% of {sup 235}U. The calculated enrichment was found to be 18% with 9% uncertainty. By the suggested method, the calculated total uranium activity inside one of the investigated UF{sub 6} cylinder was found close to the target (certified) value (5.6 GBq) with 9% uncertainty. The method is being developed by taking into consideration other parameters. (authors)

  12. Method Developed for the High-Temperature Nondestructive Evaluation of Fiber-Reinforced Silicon Carbide Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    1998-01-01

    Ceramic matrix composites have emerged as candidate materials to allow higher operating temperatures (1000 to 1400 C) in gas turbine engines. A need, therefore, exists to develop nondestructive methods to evaluate material integrity at the material operating temperature by monitoring thermal and mechanical fatigue. These methods would also have potential as quality inspection tools. The goal of this investigation at the NASA Lewis Research Center is to survey and correlate the temperature-dependent damping and stiffness of advanced ceramic composite materials with imposed thermal and stress histories that simulate in-service turbine engine conditions. A typical sample size of 100 by 4 by 2 cubic millimeters, along with the specified stiffness and density, placed the fundamental vibration frequencies between 100 and 2000 Hz. A modified Forster apparatus seemed most applicable to simultaneously measure both damping and stiffness. Testing in vacuum reduced the effects of air on the measurements. In this method, a single composite sample is vibrated at its fundamental tone; then suddenly, the mechanical excitation is removed so that the sample's motion freely decays with time. Typical results are illlustrated in this paper.

  13. Applications of Non-destructive methods (GPR and 3D Laser Scanner) in Historic Masonry Arch Bridge Assessment

    NASA Astrophysics Data System (ADS)

    Alani, Amir; Banks, Kevin

    2014-05-01

    There exist approximately 70,000 masonry arch bridge spans (brick and stone) in the UK with tens of thousands more throughout Europe. A significant number of these bridges are still in operation and form part of the road and rail network systems in many countries. A great majority of these bridges are in desperate need of repair and maintenance. Applications of non-destructive testing methods such as ground penetrating radar (GPR), 3D laser scanning, accelerometer sensors and vibration detecting sensors amongst many others have been used to assess and monitor such structures in the past few years. This presentation provides results of the applications of a 2GHz GPR antenna system and a 3D laser scanner on a historic masonry arch bridge (the Old Bridge, Aylesford) located in Kent, in the south east of England. The older part of the bridge (the mid-span) is 860 years old. The bridge was the subject of a major alteration in 1811. This presentation forms part of a larger ongoing study which is using the two above mentioned non-destructive methods for long-term monitoring of the bridge. The adopted survey planning strategy and technique, data acquisition and processing as well as challenges encountered during actual survey and fieldworks have been discussed in this presentation. As a result of this study the position of different layers of the deck structure has been established with the identification of the original stone base of the bridge. This information in addition to the location of a number of structural ties (anchors - remedial work carried out previously) in the absence of reliable and accurate design details proved to be extremely useful for the modelling of the bridge using the finite element method. Results of the 3D laser scanning of the bridge have also been presented which have provided invaluable data essential for the accurate modelling of the bridge as well as the long term monitoring of the bridge. 2014 EGU-GA GI3.1 Session, organised by COST Action

  14. Innovative non-destructive evaluation methods on HTR fuel at AREVA NP: towards a 100% non invasive control strategy

    SciTech Connect

    Banchet, J.; Tisseur, D.; Hermosilla Lara, S.; Piriou, M.; Bargain, R.; Guillermier, P.

    2007-07-01

    High Temperature Reactor (HTR) fuel consists in millimetric multilayered particles called TRISO, embedded, depending on the reactor design, in a pebble or cylinder-shaped graphite matrix called compact. Particles are typically composed of a 500 {mu}m fissile material kernel, a 95 {mu}m porous carbon layer called buffer, a 40 {mu}m dense pyrolytic carbon layer, a 35 {mu}m silicon carbide layer and another 40 {mu}m dense pyrolytic carbon layer. In order to ensure fuel qualification, as well as reactor safety, particles and compacts need to satisfy specifications concerning their physical characteristics and their integrity. In particular, geometrical parameters such as particle diameter and sphericity as well as layers thickness, but also layers density and the absence of structural defects such as cracks or de-cohesions need to be detected and characterized. In the past, a huge R and D work was carried out to build a TRISO particle characterization quality control plan, mainly based on particle sampling as well as destructive characterization methods. However, since then, development of industrial non-destructive evaluation techniques and devices contributed to envisage not only a non invasive control of HTR fuel, but also a 100% production control strategy. Since 2004, AREVA NP is engaged in a R and D program aiming at the development of innovative industrial nondestructive evaluation methods for HTR fuel. After investigating a number of potential techniques, some of them were selected based on their performances and/or their industrial potential. In particular, development has been carried out on high resolution X-Ray imaging allowing accurate layer thickness, layer density and structural defects characterization, X-Ray tomography offering the possibility to characterize fuel element homogeneity and determine the number of in-contact particles contained in a fuel element, infrared thermal imaging (ITI) allowing cracks detection, eddy currents (EC) enabling

  15. Nondestructive evaluation

    SciTech Connect

    Martz, H E

    1998-01-01

    The Nondestructive Evaluation (NDE) thrust area at Lawrence Livermore National Laboratory (LLNL) supports initiatives that advance inspection science and technology. The goal is to provide cutting-edge technologies, that show promise for quantitative inspection and characterization tools two to three years into the future. The NDE thrust area supports a multidisciplinary team, consisting of mechanical and electronics engineers, physicists, materials and computer scientists, chemists, technicians, and radiographers. These team members include personnel that cross departments within LLNL, and some are from academia and industry, within the US and abroad. This collaboration brings together the necessary and diver disciplines to provide the key scientific and technological advancements required to meet LLNL programmatic and industrial NDE challenges. The primary contributions of the NDE thrust area this year are described in these five reports: (1) Image Recovery Techniques for X-Ray Computed Tomography for Limited-Data Environments; (2) Techniques for Enhancing Laser Ultrasonic Nondestructive Evaluation; (3) Optical Inspection of Glass-Epoxy Bonds; (4) Miniature X-Ray Source Development; and (5) Improving Computed Tomography Design and Operation Using Simulation Tools.

  16. The Role of Mathematical Methods in Efficiency Calibration and Uncertainty Estimation in Gamma Based Non-Destructive Assay - 12311

    SciTech Connect

    Venkataraman, R.; Nakazawa, D.

    2012-07-01

    Mathematical methods are being increasingly employed in the efficiency calibration of gamma based systems for non-destructive assay (NDA) of radioactive waste and for the estimation of the Total Measurement Uncertainty (TMU). Recently, ASTM (American Society for Testing and Materials) released a standard guide for use of modeling passive gamma measurements. This is a testimony to the common use and increasing acceptance of mathematical techniques in the calibration and characterization of NDA systems. Mathematical methods offer flexibility and cost savings in terms of rapidly incorporating calibrations for multiple container types, geometries, and matrix types in a new waste assay system or a system that may already be operational. Mathematical methods are also useful in modeling heterogeneous matrices and non-uniform activity distributions. In compliance with good practice, if a computational method is used in waste assay (or in any other radiological application), it must be validated or benchmarked using representative measurements. In this paper, applications involving mathematical methods in gamma based NDA systems are discussed with several examples. The application examples are from NDA systems that were recently calibrated and performance tested. Measurement based verification results are presented. Mathematical methods play an important role in the efficiency calibration of gamma based NDA systems. This is especially true when the measurement program involves a wide variety of complex item geometries and matrix combinations for which the development of physical standards may be impractical. Mathematical methods offer a cost effective means to perform TMU campaigns. Good practice demands that all mathematical estimates be benchmarked and validated using representative sets of measurements. (authors)

  17. A Non-destructive method to assess freshness of raw bovine milk using FT-NIR spectroscopy.

    PubMed

    Wang, Yanwen; Ding, Wu; Kou, Liping; Li, Liang; Wang, Chen; Jurick, Wayne M

    2015-08-01

    A non-destructive method to analyze the freshness of raw milk was developed using a FT-NIR spectrometer and a fiber optic probe. Diffuse transmittance spectra were acquired in the spectral range 833 ~ 2,500 nm from raw milk samples collected from Northwest A&F University Animal Husbandry Station. After each spectral acquisition, quality parameters such as acidity, pH, and lactose content were measured by traditional detection methods. For all milk samples, PLS (partial least square regression), MLR (multiple linear regression), and ANN (artificial neural networks) analyses were carried out in order to develop models to predict parameters that were indicative of freshness. Predictive models showed R(2) values up to 0.9647, 0.9876 and 0.8772 for acidity, pH, and lactose content, respectively (validation set validations). The similarity analysis and classification between raw milk freshness during storage was also conducted by means of hierarchical cluster analysis. Over an 8 day storage period, the highest heterogeneity was evident between days 1 and 2. PMID:26243957

  18. A non-destructive method for quantification the irradiation doses of irradiated sucrose using Vis/NIR spectroscopy.

    PubMed

    Gong, Aiping; Qiu, Zhengjun; He, Yong; Wang, Zhiping

    2012-12-01

    This article proposes a new method for fast discrimination of irradiation doses of sucrose based on visible-near infrared (Vis/NIR) spectroscopy technology. 250 sucrose samples were categorized into five groups to be irradiated at 0, 1.5, 3.0, 4.5, 6.0 kGy respectively and prepared for the discrimination analysis. The 50 samples of each group were randomly divided into a calibration set containing 40 samples, and a validation set containing the remaining 10 samples. Principal component clustering analysis (PCCA) was applied for the extraction of principal components (PCs) and for clustering analysis. The first five PCs were regarded as the inputs to develop the back propagation neural network (BPNN) model. The performance of the model was validated by the 50 unknown samples and the BPNN achieved an excellent precision and recognition ration of 100%. The results indicated that Vis/NIR spectroscopy could be utilized as a rapid and non-destructive method for the classification of different irradiation doses of irradiated sucrose. PMID:23041915

  19. Non-Destructive Evaluation of Fatigue Damage for SUS316 by Using Electromagnetic Methods

    NASA Astrophysics Data System (ADS)

    Oka, M.; Tsuchida, Y.; Yakushiji, T.; Enokizono, M.

    2009-03-01

    There are some fatigue damage estimation methods for an austenitic stainless steel that uses martensitic transformation. For instance, those are the remanent magnetization method, the excitation method using the differential pick-up coil, and so on. We are researching also those two methods in our laboratory now. In the remanent magnetization method, it is well known that the relationship between fatigue damage and the remanent magnetization is simple, clear, and reproducible. In addition, the excitation method can be easily used at the job site because the special magnetizer is unnecessary. But, these methods have some disadvantages shown as follows. For instance, the former needs a special magnetizer and the latter's output signal is small. On the other hand, it is well known that the inductance of a pancake type coil put on the metallic specimen changes according to the electromagnetic properties of the metallic specimen. In this paper, the assessment method of fatigue of an austenitic stainless steel (SUS316) that uses the change by fatigue of the inductance of the pancake type coil measured with the LCR meter is shown. In addition, the fatigue evaluation performance of this method is described.

  20. Ball tonometry: a rapid, nondestructive method for measuring cell turgor pressure in thin-walled plant cells

    NASA Technical Reports Server (NTRS)

    Lintilhac, P. M.; Wei, C.; Tanguay, J. J.; Outwater, J. O.

    2000-01-01

    In this article we describe a new method for the determination of turgor pressures in living plant cells. Based on the treatment of growing plant cells as thin-walled pressure vessels, we find that pressures can be accurately determined by observing and measuring the area of the contact patch formed when a spherical glass probe is lowered onto the cell surface with a known force. Within the limits we have described, we can show that the load (determined by precalibration of the device) divided by the projected area of the contact patch (determined by video microscopy) provides a direct, rapid, and accurate measure of the internal turgor pressure of the cell. We demonstrate, by parallel measurements with the pressure probe, that our method yields pressure data that are consistent with those from the pressure probe. Also, by incubating target tissues in stepped concentrations of mannitol to incrementally reduce the turgor pressure, we show that the pressures measured by tonometry accurately reflect the predicted changes from the osmotic potential of the bathing medium. The advantages of this new method over the pressure probe are considerable, however, in that we can move rapidly from cell to cell, taking measurements every 20 s. In addition, the nondestructive nature of the method means that we can return to the same cell repeatedly for periodic pressure measurements. The limitations of the method lie in the fact that it is suitable only for superficial cells that are directly accessible to the probe and to cells that are relatively thin walled and not heavily decorated with surface features. It is also not suitable for measuring pressures in flaccid cells.

  1. Synergistic effect of combining two nondestructive analytical methods for multielemental analysis.

    PubMed

    Toh, Yosuke; Ebihara, Mitsuru; Kimura, Atsushi; Nakamura, Shoji; Harada, Hideo; Hara, Kaoru Y; Koizumi, Mitsuo; Kitatani, Fumito; Furutaka, Kazuyoshi

    2014-12-16

    We developed a new analytical technique that combines prompt gamma-ray analysis (PGA) and time-of-flight elemental analysis (TOF) by using an intense pulsed neutron beam at the Japan Proton Accelerator Research Complex. It allows us to obtain the results from both methods at the same time. Moreover, it can be used to quantify elemental concentrations in the sample, to which neither of these methods can be applied independently, if a new analytical spectrum (TOF-PGA) is used. To assess the effectiveness of the developed method, a mixed sample of Ag, Au, Cd, Co, and Ta, and the Gibeon meteorite were analyzed. The analytical capabilities were compared based on the gamma-ray peak selectivity and signal-to-noise ratios. TOF-PGA method showed high merits, although the capability may differ based on the target and coexisting elements. PMID:25371049

  2. Endoscopic Shearography and Thermography Methods for Nondestructive Evaluation of Lined Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Lansing, M. D.

    1997-01-01

    The goal of this research effort was the development of methods for shearographic and thermographic inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities that are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

  3. Endoscopic Shearography and Thermography Methods for Nondestructive Evaluation of Lined Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Bullock, Michael W.

    1996-01-01

    The goal of this research effort was the development of methods for shearography and thermography inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities which are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

  4. Nondestructive method for detecting defects in photodetector and solar cell devices

    DOEpatents

    Not Available

    The invention described herein is a method for locating semiconductor device defects and for measuring the internal resistance of such devices by making use of the intrinsic distributed resistance nature of the devices. The method provides for forward-biasing a solar cell or other device while it is scanning with an optical spot. The forward-biasing is achieved with either an illuminator light source or an external current source.

  5. Nondestructive method for detecting defects in photodetector and solar cell devices

    DOEpatents

    Sawyer, David E.

    1981-01-01

    The invention described herein is a method for locating semiconductor device defects and for measuring the internal resistance of such devices by making use of the intrinsic distributed resistance nature of the devices. The method provides for forward-biasing a solar cell or other device while it is scanning with an optical spot. The forward-biasing is achieved with either an illuminator light source or an external current source.

  6. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components

    NASA Astrophysics Data System (ADS)

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L.; Cowin, James P.; Jung, Kyung-hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P.; Kinney, Patrick L.; Chillrud, Steven N.

    2011-12-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM 2.5 filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R2 = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  7. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components

    PubMed Central

    Yan, Beizhan; Kennedy, Daniel; Miller, Rachel L.; Cowin, James P.; Jung, Kyung-hwa; Perzanowski, Matt; Balletta, Marco; Perera, Federica P.; Kinney, Patrick L.; Chillrud, Steven N.

    2011-01-01

    Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM2.5 filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R2 = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at

  8. Case study of a non-destructive treatment method for the remediation of military structures containing polychlorinated biphenyl contaminated paint.

    PubMed

    Saitta, Erin K H; Gittings, Michael J; Novaes-Card, Simone; Quinn, Jacqueline; Clausen, Christian; O'Hara, Suzanne; Yestrebsky, Cherie L

    2015-08-01

    Restricted by federal regulations and limited remediation options, buildings contaminated with paint laden with polychlorinated biphenyls (PCBs) have high costs associated with the disposal of hazardous materials. As opposed to current remediation methods which are often destructive and a risk to the surrounding environment, this study suggests a non-metal treatment system (NMTS) and a bimetallic treatment system (BTS) as versatile remediation options for painted industrial structures including concrete buildings, and metal machine parts. In this field study, four areas of a discontinued Department of Defense site were treated and monitored over 3 weeks. PCB levels in paint and treatment system samples were analyzed through gas chromatography/electron capture detection (GC-ECD). PCB concentrations were reduced by 95 percent on painted concrete and by 60-97 percent on painted metal with the majority of the PCB removal occurring within the first week of application. Post treatment laboratory studies including the utilization of an activated metal treatment system (AMTS) further degraded PCBs in BTS and NMTS by up to 82 percent and 99 percent, respectively, indicating that a two-step remediation option is viable. These findings demonstrate that the NMTS and BTS can be an effective, nondestructive, remediation process for large painted structures, allowing for the reuse or sale of remediated materials that otherwise may have been disposed. PMID:25950836

  9. Quantitative nondestructive methods for the determination of ticlopidine in tablets using reflectance near-infrared and Fourier transform Raman spectroscopy.

    PubMed

    Markopoulou, C K; Koundourellis, J E; Orkoula, M G; Kontoyannis, C G

    2008-02-01

    Two different nondestructive spectroscopy methods based on near-infrared (NIR) and Fourier transform (FT) Raman spectroscopy were developed for the determination of ticlopidine-hydrochloride (TCL) in pharmaceutical formulations and the results were compared to those obtained by high-performance liquid chromatography (HPLC). An NIR assay was performed by reflectance over the 850-1700 nm region using a partial least squares (PLS) prediction model, while the absolute FT-Raman intensity of TCL's most intense vibration was used for constructing the calibration curve. For both methodologies the spectra were obtained from the as-received film-coated tablets of TCL. The two quantitative techniques were built using five "manual compressed" tablets containing different concentrations and validated by evaluating the calibration model as well as the accuracy and precision. The models were applied to commercial preparations (Ticlid). The results were compared to those obtained from the application of HPLC using the methodology described by "Sanofi Research Department" and were found to be in excellent agreement, proving that NIR, using fiber-optic probes, and FT-Raman spectroscopy can be used for the fast and reliable determination of the major component in pharmaceutical analysis. PMID:18284803

  10. Application of nondestructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments

    NASA Astrophysics Data System (ADS)

    Moser, Dorothee; Poelchau, Michael H.; Stark, Florian; Grosse, Christian

    2013-01-01

    Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) research group, the damage zones underneath two experimentally produced impact craters in sandstone targets were investigated using several nondestructive testing (NDT) methods. The 20 × 20 × 20 cm sandstones were impacted by steel projectiles with a radius of 1.25 mm at approximately 5 km s-1, resulting in craters with approximately 6 cm diameter and approximately 1 cm depth. Ultrasound (US) tomography and vibrational analysis were applied before and after the impact experiments to characterize the damage zone, and micro-computer tomography (μ-CT) measurements were performed to visualize subsurface fractures. The newly obtained experimental data can help to quantify the extent of the damage zone, which extends to about 8 cm depth in the target. The impacted sandstone shows a local p-wave reduction of 18% below the crater floor, and a general reduction in elastic moduli by between approximately 9 and approximately 18%, depending on the type of elastic modulus. The results contribute to a better empirical and theoretical understanding of hypervelocity events and simulations of cratering processes.

  11. Verification of recursive probabilistic integration (RPI) method for fatigue life management using non-destructive inspections

    NASA Astrophysics Data System (ADS)

    Chen, Tzikang J.; Shiao, Michael

    2016-04-01

    This paper verified a generic and efficient assessment concept for probabilistic fatigue life management. The concept is developed based on an integration of damage tolerance methodology, simulations methods1, 2, and a probabilistic algorithm RPI (recursive probability integration)3-9 considering maintenance for damage tolerance and risk-based fatigue life management. RPI is an efficient semi-analytical probabilistic method for risk assessment subjected to various uncertainties such as the variability in material properties including crack growth rate, initial flaw size, repair quality, random process modeling of flight loads for failure analysis, and inspection reliability represented by probability of detection (POD). In addition, unlike traditional Monte Carlo simulations (MCS) which requires a rerun of MCS when maintenance plan is changed, RPI can repeatedly use a small set of baseline random crack growth histories excluding maintenance related parameters from a single MCS for various maintenance plans. In order to fully appreciate the RPI method, a verification procedure was performed. In this study, MC simulations in the orders of several hundred billions were conducted for various flight conditions, material properties, and inspection scheduling, POD and repair/replacement strategies. Since the MC simulations are time-consuming methods, the simulations were conducted parallelly on DoD High Performance Computers (HPC) using a specialized random number generator for parallel computing. The study has shown that RPI method is several orders of magnitude more efficient than traditional Monte Carlo simulations.

  12. Method for in-situ nondestructive measurement of Young's modulus of plate structures

    NASA Technical Reports Server (NTRS)

    Huang, Jerry Qixin (Inventor); Perez, Robert J. (Inventor); DeLangis, Leo M. (Inventor)

    2003-01-01

    A method for determining stiffness of a composite laminate plate entails disposing a device for generating an acoustical pulse against a surface of the plate and disposing a detecting device against the same surface spaced a known distance from the pulse-generating device, and using the pulse-generating device to emit a pulse so as to create an extensional wave in the plate. The detecting device is used to determine a time of flight of the wave over the known distance, and the wave velocity is calculated. A Young's modulus of the plate is determined based on the wave velocity. Methods for both anisotropic and quasi-isotropic laminates are disclosed.

  13. Non-destructive testing method and apparatus utilizing phase multiplication holography

    DOEpatents

    Collins, H. Dale; Prince, James M.; Davis, Thomas J.

    1984-01-01

    An apparatus and method for imaging of structural characteristics in test objects using radiation amenable to coherent signal processing methods. Frequency and phase multiplication of received flaw signals is used to simulate a test wavelength at least one to two orders of magnitude smaller than the actual wavelength. The apparent reduction in wavelength between the illumination and recording radiation performs a frequency translation hologram. The hologram constructed with a high synthetic frequency and flaw phase multiplication is similar to a conventional acoustic hologram construction at the high frequency.

  14. Nondestructive analysis of three-dimensional objects using a fluid displacement method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of three-dimensional (3-D) objects has been a real challenge in agricultural, hydrological and environmental studies. We designed and tested a method that is capable of quantifying 3-D objects using measurements of fluid displacement. The device consists of a stand that supports a mov...

  15. Device and nondestructive method to determine subsurface micro-structure in dense materials

    DOEpatents

    Sun, Jiangang

    2006-05-09

    A method and a device to detect subsurface three-dimensional micro-structure in a sample by illuminating the sample with light of a given polarization and detecting light emanating from the sample that has a different direction of polarization by means of a confocal optical system.

  16. A nondestructive method for diagnostic of insulated building walls using infrared thermography

    NASA Astrophysics Data System (ADS)

    Larbi Youcef, Mohamed H. A.; Mazioud, Atef; Bremond, Pierre; Ibos, Laurent; Candau, Yves; Piro, Michel; Filloux, Alain

    2007-04-01

    This work deals with the development of an experimental protocol for the diagnostic of multi-layered insulated building walls. First, a test bench is set up in order to measure front and back sides temperatures of standard panels. The panels considered have insulation thicknesses of 2, 6 and 10cm. The front side is heated by two halogen lamps of 500W. A CEDIP Jade Long wave infrared camera and thermocouples are used to carry out temperature measurements. In a second time, a one dimensional model based on thermal quadruples and Laplace transforms was developped under Matlab environment. Also, we developped a three dimensional model based on finite volumes using Fluent computational code. Finally, a method of identification of physical parameters is implemented by performing least square minimization based on Levenberg-Marquardt method. The experimental measurements are compared to theoretical results and by minimization we obtain thermal conductivity and diffusivity as well as thickness of the two layers.

  17. Damage detection of carbon reinforced composites using nondestructive evaluation with ultrasound and electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Savin, A.; Barsanescu, P. D.; Vizureanu, P.; Stanciu, M. D.; Curtu, I.; Iftimie, N.; Steigmann, R.

    2016-06-01

    CFRP have applications among most different domains due their low density, high elastic modulus and high ultimate strength along the carbon fibers direction, no fatigue and the expansion coefficient is small. This paper presents the behavior of carbon fiber woven-PPS composites at low velocity impacts. The transversal electrical conductivity is modified due to the plastic deformation following the impacts, and thus electromagnetic procedures can be used for assessment of CFRP using a high resolution sensor with metamaterials lens and comparing the results with those obtained from ultrasound testing with phased array sensor. The area of the delamination is overestimated when the method of phased array ultrasound is used and substantially underestimated by the electromagnetic testing. There were a good agreement between the simulations with finite element method and experimental measurements.

  18. Nondestructive Evaluation of Irradiation Embrittlement of SQV2A Steel by Using Magnetic Method

    SciTech Connect

    Shiwa, Mitsuharu; Cheng Weiying; Nakahigashi, Shigeo; Komura, Ichiro; Fujiwara, Koji; Takahashi, Norio

    2006-03-06

    Irradiation embrittlement of SQV2A steel was evaluated by magnetic methods. Thermal aging (TA) and electron irradiation (EI) specimens were prepared to evaluate the thermal aging and the irradiation damage effects separately. B-H loops changed with TA and EI. Higher harmonics of AC magnetization signals were sensitive to micro-structure changing of specimens. The intensity of the 3rd harmonics increased linearly with over 100 years of equivalent operation time by Larson-Miller parameter of nuclear power plants.

  19. 3D Ultrasonic Non-destructive Evaluation of Spot Welds Using an Enhanced Total Focusing Method

    NASA Astrophysics Data System (ADS)

    Jasiuniene, Elena; Samaitis, Vykintas; Mazeika, Liudas; Sanderson, Ruth

    2015-02-01

    Spot welds are used to join sheets of metals in the automotive industry. When spot weld quality is evaluated using conventional ultrasonic manual pulse-echo method, the reliability of the inspection is affected by selection of the probe diameter and the positioning of the probe in the weld center. The application of a 2D matrix array is a potential solution to the aforementioned problems. The objective of this work was to develop a signal processing algorithm to reconstruct the 3D spot weld volume showing the size of the nugget and the defects in it. In order to achieve this, the conventional total focusing method was enhanced by taking into account the directivities of the single elements of the array and the divergence of the ultrasonic beam due to the propagation distance. Enhancements enabled a reduction in the background noise and uniform sensitivity at different depths to be obtained. The proposed algorithm was verified using a finite element model of ultrasonic wave propagation simulating three common spot weld conditions: a good weld, an undersized weld, and a weld containing a pore. The investigations have demonstrated that proposed method enables the determination of the size of the nugget and detection of discontinuities.

  20. Non-destructive tree root detection with geophysical methods in urban soils

    NASA Astrophysics Data System (ADS)

    Vianden, Mitja Johannes; Weihs, Ulrich; Kuhnke, Falko; Rust, Steffen

    2010-05-01

    To assess the safety of roadside trees or as part of ecophysiological research it is often important to investigate the spatial distribution and development of tree roots. Conventionally this is done by laborious excavations or by the application of root drills which in many cases do not allow a comprehensive data collection. An indirect method for the investigation of subsurface features is ground penetrating radar (GPR). Its ability to detect tree roots has been shown by several studies (for example Hruska et al. 1999; Butnor et al. 2001; Barton et al. 2004). Another geophysical method which has been successful applied to study different aspects of tree roots is electrical resistivity tomography (ERT) (for example Hagrey 2007; Amato et al. 2008). These former studies by other authors mainly concentrated on a correlation between the measured parameters (signal amplitude and resistivity) and root-biomass on forest sites or controlled conditions. Results of Cermak et al. (2000), studying tree roots in urban areas with GPR, indicated that this method may also be useful for anthropogenic influenced areas. As a continuation of these approaches the authors have been using both techniques to study the spatial root architecture of urban trees. This research is designed to elicit the possibilities and limitations of the methods in urban areas. Reference sites have been established to quantify the methods' resolution and assess possible fields of application. These test site measurements are the basis for the interpretation of results at urban tree sites. Their results highlight the importance of 3D-measurements in urban areas because in inhomogeneous soil other reflectors (like rocks, cables, pipes, etc.) cause similar signals and bear a risk of misinterpretation. This can be minimized if detected objects have a spatial continuation and are connected to a tree. Here we present preliminary results from a combined application of both methods at the river bank of the

  1. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method

    PubMed Central

    Skic, Anna; Szymańska-Chargot, Monika; Kruk, Beata; Chylińska, Monika; Pieczywek, Piotr Mariusz; Kurenda, Andrzej; Zdunek, Artur; Rutkowski, Krzysztof P.

    2016-01-01

    Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1), FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW) of the “Ligol” and “Szampion” apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index) and physiological parameters (respiration and ethylene emission) of both apple cultivars. Changes of biospeckle activity (BA) over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson’s correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of BA during pre

  2. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method.

    PubMed

    Skic, Anna; Szymańska-Chargot, Monika; Kruk, Beata; Chylińska, Monika; Pieczywek, Piotr Mariusz; Kurenda, Andrzej; Zdunek, Artur; Rutkowski, Krzysztof P

    2016-01-01

    Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1), FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW) of the "Ligol" and "Szampion" apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index) and physiological parameters (respiration and ethylene emission) of both apple cultivars. Changes of biospeckle activity (BA) over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson's correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of BA during pre

  3. Apparatus and method for non-destructive testing using multi-frequency eddy currents

    SciTech Connect

    Hedengren, K.H.V.

    1993-08-17

    A method is described of improving eddy current flaw detection and resolution comprising the steps of: providing a plurality of probe elements; providing an alternating source of current capable of oscillating at a multiplicity of discrete frequencies; simultaneously driving said plurality of probe elements with said multiplicity of frequencies to excite discrete frequency responsive signals therefrom; scanning to acquire a corresponding multiplicity of discrete frequency responsive signals from each probe element of said plurality of probe elements; and resolving a corresponding multiplicity of eddy current images from said scan responsive multiplicity of frequency responsive signals.

  4. Bone structure studies with holographic interferometric nondestructive testing and x-ray methods

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo; Nygren, Kaarlo; Rouvinen, Juha; Petrova, Valentina V.

    1994-02-01

    Changes in the biomechanics and in the molecular texture and structure of isolated radioulnar bones of subadult European moose (Alces alces L.) collected in various environmentally polluted areas of Finland were investigated by means of holographic interferometric non- destructive testing (HNDT), radiological, morphometrical, and x-ray diffraction methods. By means of small caudal-cranial bending forces, the surface movements of the lower end (distal epiphysis) of the radial bone were recorded with the HNDT method. To study bone molecular texture and structure changes under external compressing forces, the samples for x-ray diffraction analysis were taken from the upper end of the ulnar bone (olecranon tip). Results showed that the bones obtained from the Harjavalta area and those of North Karelian moose showing malnutrition and healing femoral fractures produced different HNDT pictures compared with the four normally developed North Karelian moose. In the x-ray diffraction, the Harjavalta samples showed changes in molecular texture and structure compared with the samples from the apparently normal North Karelian animals.

  5. Rapid and nondestructive method for evaluation of embryo culture media using drop coating deposition Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zufang; Sun, Yan; Wang, Jing; Du, Shengrong; Li, Yongzeng; Lin, Juqiang; Feng, Shangyuan; Lei, Jinping; Lin, Hongxin; Chen, Rong; Zeng, Haishan

    2013-12-01

    In this study, a rapid and simple method which combines drop coating deposition and Raman spectroscopy (DCDR) was developed to characterize the dry embryo culture media (ECM) droplet. We demonstrated that Raman spectra obtained from the droplet edge presented useful and characteristic signatures for protein and amino acids assessment. Using a different analytical method, scanning electron microscopy coupled with energy dispersive X-ray analysis, we further confirmed that Na, K, and Cl were mainly detected in the central area of the dry ECM droplet while sulphur, an indicative of the presence of macromolecules such as proteins, was mainly found at the periphery of the droplet. In addition, to reduce sample preparation time, different temperatures for drying the droplets were tested. The results showed that drying temperature at 50°C can effectively reduce the sample preparation time to 6 min (as compared to 50 min for drying at room temperature, ˜25°C) without inducing thermal damage to the proteins. This work demonstrated that DCDR has potential for rapid and reliable metabolomic profiling of ECM in clinical applications.

  6. Nondestructive testing techniques

    NASA Astrophysics Data System (ADS)

    Bray, Don E.; McBride, Don

    A comprehensive reference covering a broad range of techniques in nondestructive testing is presented. Based on years of extensive research and application at NASA and other government research facilities, the book provides practical guidelines for selecting the appropriate testing methods and equipment. Topics discussed include visual inspection, penetrant and chemical testing, nuclear radiation, sonic and ultrasonic, thermal and microwave, magnetic and electromagnetic techniques, and training and human factors. (No individual items are abstracted in this volume)

  7. Nondestructive method for chemically machining crucibles or molds from their enclosed ingots and castings

    DOEpatents

    Stout, Norman D.; Newkirk, Herbert W.

    1991-01-01

    An inventive method is described for chemically machining rhenium, rhenium and tungsten alloy, and group 5b and 6b crucibles or molds from included ingots and castings comprised of oxide crystals including YAG and YAG based crystals, garnets, corundum crystals, and ceramic oxides. A mixture of potassium hydroxide and 15 to 90 weight percent of potassium nitrate is prepared and maintained at a temperature above melting and below the lower of 500 degrees centigrade or the temperature of decomposition of the mixture. The enveloping metal container together with its included oxide crystal object is rotated within the heated KOH-KNO.sub.3 mixture, until the container is safely chemically machined away from the included oxide crystal object.

  8. Distributive, Non-destructive Real-time System and Method for Snowpack Monitoring

    NASA Technical Reports Server (NTRS)

    Frolik, Jeff (Inventor); Skalka, Christian (Inventor)

    2013-01-01

    A ground-based system that provides quasi real-time measurement and collection of snow-water equivalent (SWE) data in remote settings is provided. The disclosed invention is significantly less expensive and easier to deploy than current methods and less susceptible to terrain and snow bridging effects. Embodiments of the invention include remote data recovery solutions. Compared to current infrastructure using existing SWE technology, the disclosed invention allows more SWE sites to be installed for similar cost and effort, in a greater variety of terrain; thus, enabling data collection at improved spatial resolutions. The invention integrates a novel computational architecture with new sensor technologies. The invention's computational architecture is based on wireless sensor networks, comprised of programmable, low-cost, low-powered nodes capable of sophisticated sensor control and remote data communication. The invention also includes measuring attenuation of electromagnetic radiation, an approach that is immune to snow bridging and significantly reduces sensor footprints.

  9. Nondestructive evaluations

    SciTech Connect

    Kulkarni, S.

    1993-03-01

    This report discusses Nondestructive Evaluation (NDE) thrust area which supports initiatives that advance inspection science and technology. The goal of the NDE thrust area is to provide cutting-edge technologies that have promise of inspection tools three to five years in the future. In selecting projects, the thrust area anticipates the needs of existing and future Lawrence Livermore National Laboratory (LLNL) programs. NDE provides materials characterization inspections, finished parts, and complex objects to find flaws and fabrication defects and to determine their physical and chemical characteristics. NDE also encompasses process monitoring and control sensors and the monitoring of in-service damage. For concurrent engineering, NDE becomes a frontline technology and strongly impacts issues of certification and of life prediction and extension. In FY-92, in addition to supporting LLNL programs and the activities of nuclear weapons contractors, NDE has initiated several projects with government agencies and private industries to study aging infrastructures and to advance manufacturing processes. Examples of these projects are (1) the Aging Airplanes Inspection Program for the Federal Aviation Administration, (2) Signal Processing of Acoustic Signatures of Heart Valves for Shiley, Inc.; and (3) Turbine Blade Inspection for the Air Force, jointly with Southwest Research Institute and Garrett. In FY-92, the primary contributions of the NDE thrust area, described in this report were in fieldable chemical sensor systems, computed tomography, and laser generation and detection of ultrasonic energy.

  10. Identifying cryptotephra units using correlated rapid, nondestructive methods: VSWIR spectroscopy, X-ray fluorescence, and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    McCanta, Molly C.; Hatfield, Robert G.; Thomson, Bradley J.; Hook, Simon J.; Fisher, Elizabeth

    2015-12-01

    Understanding the frequency, magnitude, and nature of explosive volcanic eruptions is essential for hazard planning and risk mitigation. Terrestrial stratigraphic tephra records can be patchy and incomplete due to subsequent erosion and burial processes. In contrast, the marine sedimentary record commonly preserves a more complete historical record of volcanic activity as individual events are archived within continually accumulating background sediments. While larger tephra layers are often identifiable by changes in sediment color and/or texture, smaller fallout layers may also be present that are not visible to the naked eye. These cryptotephra are commonly more difficult to identify and often require time-consuming and destructive point counting, petrography, and microscopy work. Here we present several rapid, nondestructive, and quantitative core scanning methodologies (magnetic susceptibility, visible to shortwave infrared spectroscopy, and XRF core scanning) which, when combined, can be used to identify the presence of increased volcaniclastic components (interpreted to be cryptotephra) in the sedimentary record. We develop a new spectral parameter (BDI1000VIS) that exploits the absorption of the 1 µm near-infrared band in tephra. Using predetermined mixtures, BDI1000VIS can accurately identify tephra layers in concentrations >15-20%. When applied to the upper ˜270 kyr record of IODP core U1396C from the Caribbean Sea, and verified by traditional point counting, 29 potential cryptotephra layers were identified as originating from eruptions of the Lesser Antilles Volcanic Arc. Application of these methods in future coring endeavors can be used to minimize the need for physical disaggregation of valuable drill core material and allow for near-real-time recognition of tephra units, both visible and cryptotephra. This article was corrected on 23 DEC 2015. See the end of the full text for details.

  11. Evaluation of Midwater Trawl Selectivity and its Influence on Acoustic-Based Fish Population Surveys

    NASA Astrophysics Data System (ADS)

    Williams, Kresimir

    Trawls are used extensively during fisheries abundance surveys to derive estimates of fish density and, in the case of acoustic-based surveys, to identify acoustically sampled fish populations. However, trawls are selective in what fish they retain, resulting in biased estimates of density, species, and size compositions. Selectivity of the midwater trawl used in acoustic-based surveys of walleye pollock (Theragra chalcogramma) was evaluated using multiple methods. The effects of trawl selectivity on the acoustic-based survey abundance estimates and the stock assessment were evaluated for the Gulf of Alaska walleye pollock population. Selectivity was quantified using recapture, or pocket, nets attached to the outside of the trawl. Pocket net catches were modeled using a hierarchical Bayesian model to provide uncertainty in selectivity parameter estimates. Significant under-sampling of juvenile pollock by the midwater trawl was found, with lengths at 50% retention ranging from 14--26 cm over three experiments. Escapement was found to be light dependent, with more fish escaping in dark conditions. Highest escapement rates were observed in the aft of the trawl near to the codend though the bottom panel of the trawl. The behavioral mechanisms involved in the process of herding and escapement were evaluated using stereo-cameras, a DIDSON high frequency imaging sonar, and pocket nets. Fish maintained greater distances from the trawl panel during daylight, suggesting trawl modifications such as increased visibility of netting materials may evoke stronger herding responses and increased retention of fish. Selectivity and catchability of pollock by the midwater trawl was also investigated using acoustic density as an independent estimate of fish abundance to compare with trawl catches. A modeling framework was developed to evaluate potential explanatory factors for selectivity and catchability. Selectivity estimates were dependent on which vessel was used for the survey

  12. Shake and stew: a non-destructive PCR-ready DNA isolation method from a single preserved fish larva.

    PubMed

    Alvarado Bremer, J R; Smith, B L; Moulton, D L; Lu, C-P; Cornic, M

    2014-01-01

    A rapid non-destructive alternative to isolate DNA from an individual fish larva is presented, based on the suspension of epithelial cells through vortex forces, and the release of DNA in a heated alkaline solution. DNA from >6056 fish larvae isolated using this protocol has yielded a high PCR amplification success rate (>93%), suggesting its applicability to other taxonomic groups or sources when tissue amount is the limiting factor. PMID:24383811

  13. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  14. In situ nondestructive imaging of functional pigments in Micro-Tom tomato fruits by multi spectral imaging based on Wiener estimation method

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Ooe, Shintaro; Todoroki, Shinsuke; Asamizu, Erika

    2013-05-01

    To evaluate the functional pigments in the tomato fruits nondestructively, we propose a method based on the multispectral diffuse reflectance images estimated by the Wiener estimation for a digital RGB image. Each pixel of the multispectral image is converted to the absorbance spectrum and then analyzed by the multiple regression analysis to visualize the contents of chlorophyll a, lycopene and β-carotene. The result confirms the feasibility of the method for in situ imaging of chlorophyll a, β-carotene and lycopene in the tomato fruits.

  15. Nondestructive material characterization

    DOEpatents

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  16. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  17. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  18. Development of a nondestructive method for underglaze painted tiles--demonstrated by the analysis of Persian objects from the nineteenth century.

    PubMed

    Reiche, Ina; Röhrs, Stefan; Salomon, Joseph; Kanngiesser, Birgit; Höhn, Yvonne; Malzer, Wolfgang; Voigt, Friederike

    2009-02-01

    The paper presents an analytical method developed for the nondestructive study of nineteenth-century Persian polychrome underglaze painted tiles. As an example, 9 tiles from French and German museum collections were investigated. Before this work was undertaken little was known about the materials used in pottery at that time, although the broad range of colors and shades, together with their brilliant glazes, made these objects stand out when compared with Iranian ceramics of the preceding periods and suggested the use of new pigments, colorants, and glaze compositions. These materials are thought to be related to provenance and as such appropriate criteria for art-historical attribution. The analytical method is based on the combination of different nondestructive spectroscopic techniques using microfocused beams such as proton-induced X-ray emission/proton-induced gamma-ray emission, X-ray fluorescence, 3D X-ray absorption near edge structure, and confocal Raman spectroscopy and also visible spectroscopy. It was established to address the specific difficulties these objects and the technique of underglaze painting raise. The exact definition of the colors observed on the tiles using the Natural Color System helped to attribute them to different colorants. It was possible to establish the presence of Cr- and U-based colorants as new materials in nineteenth-century Persian tilemaking. The difference in glaze composition (Pb, Sn, Na, and K contents) as well as the use of B and Sn were identified as a potential marker for different workshops. PMID:19030848

  19. Non-destructive evaluation means and method of flaw reconstruction utilizing an ultrasonic multi-viewing transducer data acquistion system

    DOEpatents

    Thompson, Donald O.; Wormley, Samuel J.

    1989-03-28

    A multi-viewing ultrasound transducer acquisition system for non-destructive evaluation, flaw detection and flaw reconstruction in materials. A multiple transducer assembly includes a central transducer surrounded by a plurality of perimeter transducers, each perimeter transducer having an axis of transmission which can be angularly oriented with respect to the axis of transmission of the central transducer to intersect the axis of transmission of the central transducer. A control apparatus automatically and remotely positions the transducer assembly with respect to the material by a positioning apparatus and adjusts the pe GRANT REFERENCE This invention was conceived and reduced to practice at least in part under a grant from the Department of Energy under Contract No. W-7407-ENG-82.

  20. Low frequency electrical and magnetic methods for non-destructive analysis of fiber dispersion in fiber reinforced cementitious composites: an overview.

    PubMed

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-01

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective. PMID:23337334

  1. Low Frequency Electrical and Magnetic Methods for Non-Destructive Analysis of Fiber Dispersion in Fiber Reinforced Cementitious Composites: An Overview

    PubMed Central

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-01

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective. PMID:23337334

  2. Nondestructive biomarkers in ecotoxicology.

    PubMed Central

    Fossi, M C

    1994-01-01

    The aim of this article is to attempt a concise review of the state of the art of the nondestructive biomarkers approach in vertebrates, establishing a consensus on the most useful and sensitive nondestructive biomarker techniques, and proposing research priorities for the development and validation of this promising methodology. The following topics are discussed: the advantages of the use of nondestructive strategies in biomonitoring programs and the research fields in which nondestructive biomarkers can be applied; the biological materials suitable for nondestructive biomarkers and residue analysis in vertebrates; which biomarkers lend themselves to noninvasive techniques; and the validation and implementation strategy of the nondestructive biomarker approach. Examples of applications of this methodology in the hazard assessment of endangered species are also presented. Images Figure 1. C PMID:7713034

  3. Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of anthocyanins in petals using a reflectance-based method.

    PubMed

    Iriel, Analia; Lagorio, María Gabriela

    2009-03-01

    Reflectance spectra from pink petals of Rhododendron indicum flowers showed absorption in the NIR (1470, 1930 and 2500 nm) due to water, in the visible (533 nm, due to anthocyanins) and in the UV (broad absorption due to phenolic compounds other than anthocyanins). A linear correlation between the remission function at 533 nm and the anthocyanin content in micromol per g fresh weight has been found, allowing non-destructive quantification of anthocyanins. The remission function could be obtained either from reflectance of a group of stacked petals (Kubelka-Munk theory) or through determination of the absorption and scattering coefficients following the Pile of Plates model. The intact petals have shown fluorescence emission in the blue (400-500 nm) and in the visible around 624 nm under UV excitation. The red emission was attributed to anthocyanins whereas blue emission was assigned to other phenolic compounds. On the basis of absorption and fluorescence measurements of crude and purified extracts from the petals, the last compounds could possibly be a mixture of flavonoids and hydroxycinnamic-type plant phenolics such as ferulic acid, chlorogenic acid or others. PMID:19255674

  4. A Nondestructive Method for Measuring the RMS Length of Charge Bunches Using the Wake Field Radiation Spectrum

    SciTech Connect

    Shchelkunov, S.V.; Marshall, T.C.; Hirshfield, J.L.; LaPointe, M.A.

    2004-12-07

    We report progress in the development of a nondestructive technique to measure bunch rms-length in the psec range and below, and eventually in the fsec range, by measuring the high-frequency spectrum of wake field radiation which is caused by the passage of a relativistic electron bunch through a channel surrounded by a dielectric. We demonstrate both experimentally and numerically that the generated spectrum is determined by the bunch rms-length, while the choice of the axial and longitudinal charge distribution is not important. Measurement of the millimeter-wave spectrum will determine the bunch rms-length in the psec range. This has been done using a series of calibrated mesh filters and the charge bunches produced by the 50MeV rf linac system at ATF, Brookhaven. We have developed the analysis of the factors crucial for achieving good accuracy in this measurement, and find the experimental data are fully understood by the theory. We point out that this technique also may be used for measuring fsec bunch lengths, using a prepared planar wake field microstructure.

  5. A model-based method for the characterisation of stress in magnetic materials using eddy current non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Dahia, Abla; Berthelot, Eric; Le Bihan and, Yann; Daniel, Laurent

    2015-03-01

    A precise knowledge of the distribution of internal stresses in materials is key to the prediction of magnetic and mechanical performance and lifetime of many industrial devices. This is the reason why many efforts have been made to develop and enhance the techniques for the non-destructive evaluation of stress. In the case of magnetic materials, the use of eddy current (EC) techniques is a promising pathway to stress evaluation. The principle is based on the significant changes in magnetic permeability of magnetic materials subjected to mechanical stress. These modifications of magnetic permeability affect in turn the signal obtained from an EC probe inspecting the material. From this principle, a numerical tool is proposed in this paper to predict the EC signal obtained from a material subjected to stress. This numerical tool is a combination of a 3D finite element approach with a magneto-mechanical constitutive law describing the effect of stress on the magnetic permeability. The model provides the variations of impedance of an EC probe as a function of stress. An experimental setup in which a magnetic material subjected to a tension stress is inspected using EC techniques is tailored in order to validate the model. A very good agreement is found between experimental and modelling results. For the Iron-Cobalt alloy tested in this study, it is shown that a uniaxial tensile stress can be detected with an error lower than 3 MPa in the range from 0 to 100 MPa.

  6. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  7. A Non-Destructive Method for Distinguishing Reindeer Antler (Rangifer tarandus) from Red Deer Antler (Cervus elaphus) Using X-Ray Micro-Tomography Coupled with SVM Classifiers

    PubMed Central

    Lefebvre, Alexandre; Rochefort, Gael Y.; Santos, Frédéric; Le Denmat, Dominique; Salmon, Benjamin; Pétillon, Jean-Marc

    2016-01-01

    Over the last decade, biomedical 3D-imaging tools have gained widespread use in the analysis of prehistoric bone artefacts. While initial attempts to characterise the major categories used in osseous industry (i.e. bone, antler, and dentine/ivory) have been successful, the taxonomic determination of prehistoric artefacts remains to be investigated. The distinction between reindeer and red deer antler can be challenging, particularly in cases of anthropic and/or taphonomic modifications. In addition to the range of destructive physicochemical identification methods available (mass spectrometry, isotopic ratio, and DNA analysis), X-ray micro-tomography (micro-CT) provides convincing non-destructive 3D images and analyses. This paper presents the experimental protocol (sample scans, image processing, and statistical analysis) we have developed in order to identify modern and archaeological antler collections (from Isturitz, France). This original method is based on bone microstructure analysis combined with advanced statistical support vector machine (SVM) classifiers. A combination of six microarchitecture biomarkers (bone volume fraction, trabecular number, trabecular separation, trabecular thickness, trabecular bone pattern factor, and structure model index) were screened using micro-CT in order to characterise internal alveolar structure. Overall, reindeer alveoli presented a tighter mesh than red deer alveoli, and statistical analysis allowed us to distinguish archaeological antler by species with an accuracy of 96%, regardless of anatomical location on the antler. In conclusion, micro-CT combined with SVM classifiers proves to be a promising additional non-destructive method for antler identification, suitable for archaeological artefacts whose degree of human modification and cultural heritage or scientific value has previously made it impossible (tools, ornaments, etc.). PMID:26901355

  8. A Non-Destructive Method for Distinguishing Reindeer Antler (Rangifer tarandus) from Red Deer Antler (Cervus elaphus) Using X-Ray Micro-Tomography Coupled with SVM Classifiers.

    PubMed

    Lefebvre, Alexandre; Rochefort, Gael Y; Santos, Frédéric; Le Denmat, Dominique; Salmon, Benjamin; Pétillon, Jean-Marc

    2016-01-01

    Over the last decade, biomedical 3D-imaging tools have gained widespread use in the analysis of prehistoric bone artefacts. While initial attempts to characterise the major categories used in osseous industry (i.e. bone, antler, and dentine/ivory) have been successful, the taxonomic determination of prehistoric artefacts remains to be investigated. The distinction between reindeer and red deer antler can be challenging, particularly in cases of anthropic and/or taphonomic modifications. In addition to the range of destructive physicochemical identification methods available (mass spectrometry, isotopic ratio, and DNA analysis), X-ray micro-tomography (micro-CT) provides convincing non-destructive 3D images and analyses. This paper presents the experimental protocol (sample scans, image processing, and statistical analysis) we have developed in order to identify modern and archaeological antler collections (from Isturitz, France). This original method is based on bone microstructure analysis combined with advanced statistical support vector machine (SVM) classifiers. A combination of six microarchitecture biomarkers (bone volume fraction, trabecular number, trabecular separation, trabecular thickness, trabecular bone pattern factor, and structure model index) were screened using micro-CT in order to characterise internal alveolar structure. Overall, reindeer alveoli presented a tighter mesh than red deer alveoli, and statistical analysis allowed us to distinguish archaeological antler by species with an accuracy of 96%, regardless of anatomical location on the antler. In conclusion, micro-CT combined with SVM classifiers proves to be a promising additional non-destructive method for antler identification, suitable for archaeological artefacts whose degree of human modification and cultural heritage or scientific value has previously made it impossible (tools, ornaments, etc.). PMID:26901355

  9. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  10. Figure of Merit for Chlorine Measurement in Reinforced Concrete Using {sup 252}Cf-Based Nondestructive Testing Method

    SciTech Connect

    Habeeb H. Saleh; Richard A. Livington

    2000-11-12

    The objective of this study is to design, fabricate, and evaluate a portable system for nondestructive determination of chloride concentration in reinforced portland cement concrete (PCC) structures. The need for such an instrument arises from the massive deterioration of the reinforced PCC, which has been used to construct a major part of the highway infrastructure. This deterioration of PCC is due to corrosion of the reinforcing steel, which is greatly promoted by the chloride ions. The sources of chloride include deicing salts, set accelerator, and seawater, either in the form of concrete-mixing water or as airborne droplets from ocean spray. The system consists of a high-purity germanium detector for gamma-ray detection and a portable {sup 252}Cf neutron source. Tradeoffs in the design of the neutron source include data quality, operational efficiency, and radiation safety. The number of photons detected in the germanium detector is directly proportional to the neutron source strength and the chloride nuclei concentration in the sample under testing. Therefore, assuming a uniform distribution of chloride, the figure of merit of the number of photons detected in the detector can be expressed as F = C/SN, where C = number of (6111) keV gamma rays detected per second, N = concentration of chloride nuclei, and S = neutron source strength (n/s). Under the assumption that the neutron source strength is fixed, the figure of merit in this case can have at least two uses. One is to optimize the thermalization efficiency of the neutron moderator. The second is to evaluate how effective the detector configuration is in detecting the gamma rays generated in the concrete. Using the figure-of-merit approach, it is possible to find an optimum size of moderator. This is important for a portable system. Other variables such as source/detector separation or detector gamma-ray shielding can also be evaluated.

  11. Non-destructive identification of twisted light.

    PubMed

    Li, Pengyun; Wang, Bo; Song, Xinbing; Zhang, Xiangdong

    2016-04-01

    The non-destructive identification of the orbital angular momentum (OAM) is essential to various applications in the optical information processing. Here, we propose and demonstrate experimentally an efficient method to identify non-destructively the OAM by using a modified Mach-Zehnder interferometer. Our schemes are applicable not only to the case with integer charges, but also to optical vortices with noninteger charges. Our Letter presents the first experimental demonstration of the non-destructive identification of twisted light with integer or noninteger topological charges, which has potential applications in the OAM-based data transmission for optical communications. PMID:27192290

  12. Nuclear Energy Research Initiative Annual Report-Innovative Approaches to Automating QA/QC of Fuel Particle Production Using On-Line Nondestructive Methods for Higher Reliability.

    SciTech Connect

    Hockey, Ronald L.; Bond, Leonard J.; Ahmed, Salahuddin; Sandness, Gerald A.; Gray, Joseph N.; Batishko, Charles R.; Flake, Matthew; Panetta, Paul D.; Saurwein, John J.; Lowden, Richard A.; Good, Morris S.

    2004-04-20

    This document summarizes the activities performed and progress made in FY-03. Various approaches for automating the particle fuel production QC process using on-line nondestructive methods for higher reliability were evaluated. In this first-year of a three-year project, surrogate fuel particles made available for testing included leftovers from initial coater development runs. These particles had a high defect fraction and the particle properties spanned a wide range, providing the opportunity to examine worst-case conditions before refining the inspection methods to detect more subtle coating features. Particles specifically designed to evaluate the NDE methods being investigated under this project will be specified and fabricated at ORNL early next reporting period. The literature was reviewed for existing inspection technology and to identify many of the fuel particle conditions thought to degrade its performance. A modeling study, including the electromagnetic and techniques, showed that the in-line electromagnetic methods should provide measurable responses to missing layers, kernel diameter, and changes in coating layer thickness, with reasonable assumptions made for material conductivities. The modeling study for the ultrasonic methods provided the resonant frequencies that should be measured using the resonant ultrasound technique, and the results from these calculations were published in the proceedings for two conferences. The notion of a particle quality index to relate coating properties to fabrication process parameters was explored. Progress was made in understanding the fabrication process. GA identified key literature in this area and Saurwein (2003a) provided a literature review/summary. This literature has been reviewed. An approach previously applied to flexible manufacturing was adopted and the modification and development of the concepts to meet TRISO particle fuel manufacturing and QA/QC needs initiated. This approach establishes

  13. The RAMANITA method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts.

    PubMed

    Smith, David C

    2005-08-01

    The "RAMANITA" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is quite different. PMID:16029851

  14. Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report

    SciTech Connect

    Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

    2006-02-28

    This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle “quality” qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

  15. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    NASA Technical Reports Server (NTRS)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  16. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    PubMed

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology. PMID:25312472

  17. A demonstration of the gross count tomographic gamma scanner (GC-TGS) method for the nondestructive assay of transuranic waste

    SciTech Connect

    Estep, R.J.; Miko, D.; Melton, S.; Rawool-Sullivan, M.W.

    1998-12-31

    The authors examined the accuracy and sensitivity levels for three variations on the TGS method: the original TGS method using a high-purity germanium (HPGe) detector to measure net areas of full-energy gamma-ray peaks; a modified HPGe-detector method that uses net areas for the transmission analysis and the gross count TGS (GC-TGS) method for the emission analysis; and a NaI-detector method that uses the GC-TGS method exclusively. They found that while the accuracies of the methods were comparable, the GC-TGS method boosted the sensitivity per detector by a factor of approximately two for the HPGe GC variation and four for the NaI method. The implications for improved TGS scanner design are discussed.

  18. State-of-the-art of non-destructive testing methods and technologies for application to nuclear power plant safety-related concrete structures

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, Herbert; Naus, Dan J.

    2014-02-01

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: •locating steel reinforcement and identification of its cover depth •locating tendon ducts and identification of the condition of the grout materials •detection of cracking, voids, delamination, and honeycombing in concrete structures •detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner •methods capable of identification of corrosion occurrence on the concrete side of the containment liner

  19. State-of-the-art of non-destructive testing methods and technologies for application to nuclear power plant safety-related concrete structures

    SciTech Connect

    Wiggenhauser, Herbert; Naus, Dan J.

    2014-02-18

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: •locating steel reinforcement and identification of its cover depth •locating tendon ducts and identification of the condition of the grout materials •detection of cracking, voids, delamination, and honeycombing in concrete structures •detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner •methods capable of identification of corrosion occurrence on the concrete side of the containment liner.

  20. State-of-the-Art of Non-Destructive Testing Methods and Technologies for Application to Nuclear Power Plant Safety-Related Concrete Structures

    SciTech Connect

    Wiggenhauser, Dr. Herbert; Naus, Dan J

    2014-01-01

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: locating steel reinforcement and identification of its cover depth locating tendon ducts and identification of the condition of the grout materials detection of cracking, voids, delamination, and honeycombing in concrete structures detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner methods capable of identification of corrosion occurrence on the concrete side of the containment liner

  1. Overview of nondestructive evaluation technologies

    SciTech Connect

    Thomas, G.

    1995-04-01

    The infrastructure in the US and the world is aging. There is an increasing awareness of the need to assess the severity of the damage occurring to the infrastructure. Limited resources preclude the replacement of all structures that need repairs or have exceeded their life times. Methods to assess the amount and severity of damage are crucial to implementing a systematic, cost effective approach to repair and/or replace the damaged structures. The challenges of inspecting aging structures without impairing their usefulness rely on a variety of technologies and techniques for nondestructive evaluation (NDE). This paper will briefly describe several nondestructive evaluation technologies that are required for inspecting a variety of systems and structures.

  2. A Nondestructive Method to Distinguish the Internal Constituent Architecture of the Intervertebral Discs Using 9.4 Tesla Magnetic Resonance Imaging

    PubMed Central

    Wijayathunga, Vithanage N.; Ridgway, John P.; Ingham, Eileen; Treanor, Darren; Carey, Duane; Bulpitt, Andy; Magee, Derek; Damion, Robin; Wilcox, Ruth K.

    2015-01-01

    Study Design. An in vitro study of the intervertebral disc (IVD) structure using 9.4T magnetic resonance imaging (MRI). Objective. Investigate the potential of ultrahigh-field strength MRI for higher quality 3-dimensional (3D) volumetric MRI datasets of the IVD to better distinguish structural details. Summary of Background Data. MRI has the advantages of being nondestructive and 3D in comparison to most techniques used to obtain the structural details of biological tissues, however, its poor image quality at higher resolution is a limiting factor. Ultrahigh-field MRI could improve the imaging of biological tissues but the current understanding of its application for spinal tissue is limited. Methods. 2 ovine spinal segments (C7–T1, T2–T3) containing the IVD were separately imaged using 2 sequences; 3D spin echo (multislice-multiecho) pulse sequence for the C7–T1 sample and 3D gradient echo (fast-low-angle-shot) pulse sequence for the T2–T3 sample. The C7–T1 sample was subsequently decalcified and imaged again using the same scanning parameters. Histological sections obtained from the decalcified sample were stained followed by digital scanning. Observations from corresponding MRI slices and histological sections were compared as a method of confirmation of morphology captured under MRI. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative-contrast values were calculated for quantitative evaluation of image quality. Results. Measurements from histology sections and corresponding MRI slices matched well. Both sequences revealed finer details of the IVD structure. Under the spin echo sequence, the annulus lamellae architecture was distinguishable and the SNR and CNR values were higher. The relative contrast was considerably higher between high (nucleus) and low (bone) signal constituents, but between the nucleus and the annulus the relative contrast was low. Under the gradient echo sequence, although the relative contrasts between

  3. Performance monitoring of large-scale autonomously healed concrete beams under four-point bending through multiple non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Karaiskos, G.; Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.

    2016-05-01

    Concrete is still the leading structural material due to its low production cost and great structural design flexibility. Although it is distinguished by such a high durability and compressive strength, it is vulnerable in a series of ambient and operational degradation factors which all too frequently result in crack formation that can adversely affect its mechanical performance. The autonomous healing system, using encapsulated polyurethane-based, expansive, healing agent embedded in concrete, is triggered by the crack formation and propagation and promises material repair and operational service life extension. As shown in our previous studies, the formed cracks on small-scale concrete beams are sealed and repaired by filling them with the healing agent. In the present study, the crack formation and propagation in autonomously healed, large-scale concrete beams are thoroughly monitored through a combination of non-destructive testing (NDT) methods. The ultrasonic pulse velocity (UPV), using embedded low-cost and aggregate-size piezoelectric transducers, the acoustic emission (AE) and the digital image correlation (DIC) are the NDT methods which are comprehensively used. The integrated ultrasonic, acoustic and optical monitoring system introduces an experimental configuration that detects and locates the four-point bending mode fracture on large-scale concrete beams, detects the healing activation process and evaluates the subsequent concrete repair.

  4. Development and validation of a direct, non-destructive quantitative method for medroxyprogesterone acetate in a pharmaceutical suspension using FT-Raman spectroscopy.

    PubMed

    De Beer, T R M; Vergote, G J; Baeyens, W R G; Remon, J P; Vervaet, C; Verpoort, F

    2004-12-01

    A simple linear regression method was developed and statistically validated for the direct and non-destructive quantitative analysis--without sample preparation--of the active pharmaceutical ingredient (API) medroxyprogesterone acetate (MPA) in an aqueous pharmaceutical suspension (150 mg in 1.0 ml) using FT-Raman spectroscopy. The linear regression was modelled by plotting the highest peak intensity of the vector normalized spectral band between 1630 and 1590 cm-1 against different MPA standard suspension concentrations. At this band, no spectral interferences from additives in the suspension are observed. The validated model was used for the quantification of a commercial suspension (150 mg in 1.0 ml) of the commercialized preparations. The same standards and samples were used, respectively, for the development and validation of a simple linear regression model and for the quantitative determination by means of HPLC-with sample preparation-as described for the related substances of MPA in the Ph. Eur. IV. The quantification results obtained by the FT-Raman method corresponded with the claimed label concentration (150.01+/-0.96 mg/ml (n=6)). Applying the HPLC method, however, a systematic error was observed (157.77+/-0.94 mg/ml (n=6)). The direct FT-Raman method hence appears the most reliable for the quantification of the MPA component in suspension, compared to the HPLC method that requires sample preparation. The latter method provides a systematic error because the exact volume or density of a suspension sample is unknown. A precise isolation of fixed volumes from a suspension is rather unfeasible because of the continuous sagging of the suspended particles and their sticking to the used materials in the isolation process. PMID:15567288

  5. Visible and near-infrared light transmission: A hybrid imaging method for non-destructive meat quality evaluation

    NASA Astrophysics Data System (ADS)

    Ziadi, A.; Maldague, X.; Saucier, L.; Duchesne, C.; Gosselin, R.

    2012-09-01

    Visual inspection of the amount of external marbling (intramuscular fat) on the meat surface is the official method used to assign the quality grading level of meat. However, this method is based exclusively on the analysis of the meat surface without any information about the internal content of the meat sample. In this paper, a new method using visible (VIS) and near-infrared (NIR) light transmission is used to evaluate the quality of beef meat based on the marbling detection. It is demonstrated that using NIR light in transmission mode, it is possible to detect the fat not only on the surface, as in traditional methods, but also under the surface. Moreover, in combining the analysis of the two sides of the meat simple, it is possible to estimate the volumetric marbling which is not accessible by visual methods commonly proposed in computer vision. To the best of our knowledge, no similar work or method has been published or developed. The experimental results confirm the expected properties of the proposed method and illustrate the quality of the results obtained.

  6. The RAMANITA © method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts

    NASA Astrophysics Data System (ADS)

    Smith, David C.

    2005-08-01

    The "RAMANITA ©" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, by M. Pinet and D.C. Smith in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA ©, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA © method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. from gemstones or other crystalline artworks of the cultural heritage (especially by Mobile Raman Microscopy (MRM)) in situ in museums or at archaeological sites, including under water for subaquatic archaeometry; from scientifically precious mineral microinclusions (such as garnet or pyroxene within diamond); from minerals in rocks analysed in situ on planetary bodies by a rover (especially "at distance" by telescopy). Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is

  7. Traceable Quantitative Raman Microscopy and X-ray Fluorescence Analysis as Nondestructive Methods for the Characterization of Cu(In,Ga)Se2 Absorber Films.

    PubMed

    Zakel, Sabine; Pollakowski, Beatrix; Streeck, Cornelia; Wundrack, Stefan; Weber, Alfons; Brunken, Stefan; Mainz, Roland; Beckhoff, Burckhardt; Stosch, Rainer

    2016-02-01

    The traceability of measured quantities is an essential condition when linking process control parameters to guaranteed physical properties of a product. Using Raman spectroscopy as an analytical tool for monitoring the production of Cu(In1-xGax)Se2 thin-film solar cells, proper calibration with regard to chemical composition and lateral dimensions is a key prerequisite. This study shows how the multiple requirements of calibration in Raman microscopy might be addressed. The surface elemental composition as well as the integral elemental composition of the samples is traced back by reference-free X-ray fluorescence analysis. Reference Raman spectra are then generated for the relevant Cu(In1-xGax)Se2 related compounds. The lateral dimensions are calibrated with the help of a novel dimensional standard whose regular structures have been traced back to the International System of Units by metrological scanning force microscopy. On this basis, an approach for the quantitative determination of surface coverage values from lateral Raman mappings is developed together with a complete uncertainty budget. Raman and X-ray spectrometry have here been proven as complementary nondestructive methods combining surface sensitivity and in-depth information on elemental and species distribution for the reliable quality control of Cu(In1-xGax)Se2 absorbers and Cu(In1-xGax)3Se5 surface layer formation. PMID:26903563

  8. Infrared densitometry: a fast and non-destructive method for exact stratum corneum depth calculation for in vitro tape-stripping.

    PubMed

    Hahn, T; Hansen, S; Neumann, D; Kostka, K-H; Lehr, C-M; Muys, L; Schaefer, U F

    2010-01-01

    The investigation of drug penetration into the stratum corneum (SC) by tape-stripping requires an accurate measure of the amount of SC on each tape-strip in order to determine the depth inside the SC. This study applies infrared densitometry (IR-D) to in vitro tape-stripping using the novel Squame Scan(R) 850A. The device had recently been shown to provide accurate measurements of the SC depth for tape-stripping in vivo. Furthermore, the suitability of IR-D for determining the endpoint of tape-stripping, i.e. complete SC removal, was tested. The SC depth was computed from the IR-D data of sequential tape-strips and compared to the results of a protein assay as gold standard. IR-D provided accurate depth results both for freshly excised skin and for skin stored frozen for up to 3 months. In addition, the lower limit of quantification of IR-D indicates the complete removal of the SC (less than 5% of the total SC remaining) and can be used for adjusting the number of tapes applied in situ. Therefore, IR-D is an accurate, fast and non-destructive method for SC depth determination. PMID:20173360

  9. A NEW NON-DESTRUCTIVE METHOD FOR CHEMICAL ANALYSIS OF PARTICULATE MATTER FILTERS: THE CASE OF MANGANESE AIR POLLUTION IN VALLECAMONICA (ITALY)

    PubMed Central

    Borgese, Laura; Zacco, Annalisa; Pal, Sudipto; Bontempi, Elza; Lucchini, Roberto; Zimmerman, Neil; Depero, Laura E.

    2011-01-01

    Total Reflection X-ray Fluorescence (TXRF) is a well-established technique for chemical analysis, but it is mainly employed for quality control in the electronics semiconductor industry. The capability to analyze liquid and uniformly thin solid samples makes this technique suitable for other applications, and especially in the very critical field of environmental analysis. Comparison with standard methods like Inductively Coupled Plasma (ICP) and Atomic Absorption Spectroscopy (AAS) show that TXRF is a practical, accurate, and reliable technique in occupational settings. Due to the greater sensitivity necessary in trace heavy metal detection, TXRF is also suitable for environmental chemical analysis. In this paper we show that based on appropriate standards, TXRF can be considered for non-destructive routine quantitative analysis of environmental matrices such as air filters. This work has been developed in the frame of the EU-FP6 PHIME (Public Health Impact of long-term, low-level Mixed element Exposure in susceptible population strata) Integrated Project (www.phime.org). The aim of this work was to investigate Mn air pollution in the area of Vallecamonica (Italy). PMID:21315919

  10. A rapid, non-invasive and non-destructive method for studying swelling behavior and microstructure variations of hydrogels.

    PubMed

    Li, Yaqiong; Li, Xiunan; Chen, Chao; Zhao, Dawei; Su, Zhiguo; Ma, Guanghui; Yu, Rong

    2016-10-20

    A new method for studying swelling behavior of hydrogels was developed based on low field NMR (LF-NMR). This method is established on these facts: firstly, internal water (water trapped in hydrogel) and external water (water outside of hydrogel) correspond to different components of transverse relaxation time (T2); secondly, T2 component amplitude is proportional to relative water content; and finally, T2 value is closely related to mesh size of hydrogel network, the main effect being due to the overall concentration (degree of swelling). This method was successfully applied to swelling ratio determination of chitosan/glutaraldehyde (CS/GA) hydrogels in situ, and the results had better accuracy and repeatability compared with that of weighing method. Furthermore, swelling kinetics at different pH and microstructure of CS/GA hydrogels was well elucidated based on T2. It is clearly showed that LF-NMR provides a powerful tool for probing processes related to water transport and microstructure variation of hydrogels. PMID:27474678

  11. Nondestructive Testing Eddy Current Equipment, Methods and Applications RQA/M1-5330.12 (V-II).

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of programmed instruction handbooks, prepared by the U. S. space program, home study material is presented in this volume concerning familiarization and orientation on eddy current testing. The subject is presented under the following headings: Test Coils, Methods and Indications, and Applications. High product quality and…

  12. Neutrons and Photons in Nondestructive Detection

    NASA Astrophysics Data System (ADS)

    Harmon, J. F.; Wells, D. P.; Hunt, A. W.

    2011-02-01

    Active, nondestructive interrogation with neutrons and photons has seen a renaissance in recent years, owing to a broad spectrum of important applications in security, nuclear nonproliferation, contraband detection and materials analysis. Active methods are of high interest for such applications because they provide at least an order of magnitude greater sensitivity than passive methods. Accelerator-based neutron and photon active methods exploit two important factors to attain greater sensitivity: these are (i) the control of interrogating beam properties such as directionality, energy, intensity, polarization and the temporal distribution of radiation; (ii) well-founded, low energy nuclear physics that yields distinct "signatures" for elemental and isotopic content. This review addresses accelerator-based neutron and photon nondestructive testing methods and issues when applied to modern and emerging wide-ranging challenges in nondestructive detection.

  13. Summary of nondestructive testing theory and practice

    NASA Technical Reports Server (NTRS)

    Meister, R. P.; Randall, M. D.; Mitchell, D. K.; Williams, L. P.; Pattee, H. E.

    1972-01-01

    The ability to fabricate design critical and man-rated aerospace structures using materials near the limits of their capabilities requires a comprehensive and dependable assurance program. The quality assurance program must rely heavily on nondestructive testing methods for thorough inspection to assess properties and quality of hardware items. A survey of nondestructive testing methods is presented to provide space program managers, supervisors and engineers who are unfamiliar with this technical area with appropriate insight into the commonly accepted nondestructive testing methods available, their interrelationships, used, advantages and limitations. Primary emphasis is placed on the most common methods: liquid penetrant, magnetic particle, radiography, ultrasonics and eddy current. A number of the newer test techniques including thermal, acoustic emission, holography, microwaves, eddy-sonic and exo-electron emission, which are beginning to be used in applications of interest to NASA, are also discussed briefly.

  14. Sensitivity and Calibration of Non-Destructive Evaluation Method That Uses Neural-Net Processing of Characteristic Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  15. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  16. Nondestructive decontamination of mortar and concrete by electro-kinetic methods: application to the extraction of radioactive heavy metals.

    PubMed

    Castellote, Marta; Andrade, Carmen; Alonso, Cruz

    2002-05-15

    Because the service lives of nuclear power plants are limited to a certain number of years, the need for the management of quite a large volume of radioactive contaminated concrete arises, which, in most cases, was not taken into account when the capacities of the low and medium activity repositories were designed. Therefore, the decontamination of these structures would be of great interest in order to declassify the wastes as radioactive and manage them as conventional ones. This research studies the reliability of the application of electrical fields to decontaminate radioactive contaminated concrete. Three series of decontamination experiments have been carried out, using Cs+, Sr2-, Co2+, and Fe3+ ions added during casting and that have penetrated from the outside, testing carbonated and uncarbonated matrixes, and using laboratory devices as well as the homemade device for in situ application named "honeycomb device". As a result, the application of electrical fields to concrete-contaminated structures has been developed as a new technique to extract radioactive ionic species from concrete. This method of decontamination has been patented by ENRESA (Spanish Company for the Management of Radioactive Wastes) in association with the IETcc. PMID:12038838

  17. Technology Review of Nondestructive Methods for Examination of Water Intrusion Areas on Hanford’s Double-Shell Waste Tanks

    SciTech Connect

    Watkins, Michael L.; Pardini, Allan F.

    2008-05-09

    Under a contract with CH2M Hill Hanford Group, Inc., PNNL has performed a review of the NDE technology and methods for examination of the concrete dome structure of Hanford’s double-shell tanks. The objective was to provide a matrix of methodologies that could be evaluated based on applicability, ease of deployment, and results that could provide information that could be used in the ongoing structural analysis of the tank dome. PNNL performed a technology evaluation with the objective of providing a critical literature review for all applicable technologies based on constraints provided by CH2M HILL. These constraints were not mandatory, but were desired. These constraints included performing the evaluation without removing any soil from the top of the tank, or if necessary, requesting that the hole diameter needed to gain access to evaluate the top of the tank structure to be no greater than approximately 12-in. in diameter. PNNL did not address the details of statistical sampling requirements as they depend on an unspecified risk tolerance. PNNL considered these during the technology evaluation and have reported the results in the remainder of this document. Many of the basic approaches to concrete inspection that were reviewed in previous efforts are still in use. These include electromagnetic, acoustic, radiographic, etc. The primary improvements in these tools have focused on providing quantitative image reconstruction, thus providing inspectors and analysts with three-dimensional data sets that allow for operator visualization of relevant abnormalities and analytical integration into structural performance models. Available instruments, such as radar used for bridge deck inspections, rely on post-processing algorithms and do not provide real-time visualization. Commercially available equipment only provides qualitative indications of relative concrete damage. It cannot be used as direct input for structural analysis to assess fitness for use and if

  18. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    SciTech Connect

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C.; Santos, A. D.; Moraes, J. C. S.

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  19. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    NASA Astrophysics Data System (ADS)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  20. [Nondestructive Evaluation (NDE) Capabilities

    NASA Technical Reports Server (NTRS)

    Born, Martin

    2010-01-01

    These poster boards display the United Space Alliance's (USA) systems and equipment used for Nondestructive Evaluation. These include: (1) the Robotic Inspection Facility, (2) CAT-Scan and Laminography, (3) Laser Surface Profilometry, (4) Remote Eddy Current, (5) Ultrasonic Phased Array, (7) Infrared Flash Thermography, and (8) Backscatter X-Ray (BSX)

  1. Nondestructive testing of brazed rocket engine components

    NASA Technical Reports Server (NTRS)

    Adams, C. J.; Hagemaier, D. J.; Meyer, J. A.

    1968-01-01

    Report details study made of nondestructive radiographic, ultrasonic, thermographic, and leak test methods used to inspect and evaluate the quality of the various brazed joints in liquid-propellant rocket engine components and assemblies. Descriptions of some of the unique equipment and methods developed are included.

  2. The Assess-and-Fix Approach: Using Non-Destructive Evaluations to Help Select Pipe Renewal Methods (WaterRF Report 4473)

    EPA Science Inventory

    Nondestructive examinations (NDE) can be easily performed as part of a typical water main rehabilitation project. Once a bypass water system has been installed and the water main has been cleaned, pulling a scanning tool through the main is very straightforward. An engineer can t...

  3. NONDESTRUCTIVE EVALUATION (NDE) OF DAMAGED STRUCTURAL CERAMICS

    SciTech Connect

    Brennan, R. E.; Green, W. H.; Sands, J. M.; Yu, J. H.

    2009-03-03

    A combination of destructive and nondestructive testing methods was utilized to evaluate the impact velocity and energy conditions that caused fracture in alumina structural ceramics. Drop tower testing was used for low velocity impact with a high mass indenter and fragment simulating projectile testing was used for high velocity impact with a low mass projectile. The damaged samples were nondestructively evaluated using digital radiography and ultrasound C-scan imaging. The bulk damage detected by these techniques was compared to surface damage observed by visual inspection.

  4. Nondestructive analysis and development

    NASA Technical Reports Server (NTRS)

    Moslehy, Faissal A.

    1993-01-01

    This final report summarizes the achievements of project #4 of the NASA/UCF Cooperative Agreement from January 1990 to December 1992. The objectives of this project are to review NASA's NDE program at Kennedy Space Center (KSC) and recommend means for enhancing the present testing capabilities through the use of improved or new technologies. During the period of the project, extensive development of a reliable nondestructive, non-contact vibration technique to determine and quantify the bond condition of the thermal protection system (TPS) tiles of the Space Shuttle Orbiter was undertaken. Experimental modal analysis (EMA) is used as a non-destructive technique for the evaluation of Space Shuttle thermal protection system (TPS) tile bond integrity. Finite element (FE) models for tile systems were developed and were used to generate their vibration characteristics (i.e. natural frequencies and mode shapes). Various TPS tile assembly configurations as well as different bond conditions were analyzed. Results of finite element analyses demonstrated a drop in natural frequencies and a change in mode shapes which correlate with both size and location of disbond. Results of experimental testing of tile panels correlated with FE results and demonstrated the feasibility of EMA as a viable technique for tile bond verification. Finally, testing performed on the Space Shuttle Columbia using a laser doppler velocimeter demonstrated the application of EMA, when combined with FE modeling, as a non-contact, non-destructive bond evaluation technique.

  5. Handbooks for nondestructive testing using ultrasonics

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Four handbooks have been prepared for use in teaching metal parts inspectors and quality assurance technicians the fundamentals of nondestructive testing using ultrasonic detection methods. The handbooks may be used in the shop or laboratory, or as study texts in technical schools and in the home.

  6. Nondestructive examination development and demonstration plan

    SciTech Connect

    Weber, J.R.

    1991-08-21

    Nondestructive examination (NDE) of waste matrices using penetrating radiation is by nature very subjective. Two candidate systems of examination have been identified for use in WRAP 1. This test plan describes a method for a comparative evaluation of different x-ray examination systems and techniques.

  7. Nondestructive Evaluation Quality Procedure: Personnel Qualification and Certification Radiographic Testing-Levels I& II

    SciTech Connect

    Dolan, K; Rikard, R D; Rodriquez, J

    2003-07-01

    This Operational Procedure establishes the minimum requirements for the qualification and certification/recertification of Nondestructive Evaluation (NDE) personnel in the nondestructive testing (NDT) radiographic testing (RT) method. This document is in accordance with the American Society for Nondestructive Testing Recommended Practice SNT-TC-1A, 1996, except as amended herein.

  8. Nondestructive testing with thermography

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Tarpani, José Ricardo; Maldague, Xavier P. V.

    2013-11-01

    Thermography is a nondestructive testing (NDT) technique based on the principle that two dissimilar materials, i.e., possessing different thermo-physical properties, would produce two distinctive thermal signatures that can be revealed by an infrared sensor, such as a thermal camera. The fields of NDT applications are expanding from classical building or electronic components monitoring to more recent ones such as inspection of artworks or composite materials. Furthermore, thermography can be conveniently used as a didactic tool for physics education in universities given that it provides the possibility of visualizing fundamental principles, such as thermal physics and mechanics among others.

  9. Nondestructive evaluation technique guide

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    A total of 70 individual nondestructive evaluation (NDE) techniques are described. Information is presented that permits ease of comparison of the merits and limitations of each technique with respect to various NDE problems. An NDE technique classification system is presented. It is based on the system that was adopted by the National Materials Advisory Board (NMAB). The classification system presented follows the NMAB system closely with the exception of additional categories that have been added to cover more advanced techniques presently in use. The rationale of the technique is explained. The format provides for a concise description of each technique, the physical principles involved, objectives of interrogation, example applications, limitations of each technique, a schematic illustration, and key reference material. Cross-index tabulations are also provided so that particular NDE problems can be referred to appropriate techniques.

  10. Nondestructive Test Probe

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under the Aircraft Structural Integrity program, Langley Research Center invented a device to detect fatigue cracks in aluminum alloy plates. Krautkramer Branson obtained an exclusive license and commercialized a hand-held device, the "CrackFinder," an electromagnetic probe for nondestructive evaluation, used to scan aircraft skins for surface breaks. The technology involves an eddy current, which is an electrical current induced by an alternating magnetic field. The CrackFinder also employs an innovative self-nulling feature, where the device automatically recalibrates to zero so that each flaw detected produces a reading. Compared to conventional testing systems, the CrackFinder is affordable, small, simple to use, and needs no calibration.