Sample records for acoustically augmented heat

  1. Acoustically enhanced heat exchange and drying apparatus

    DOEpatents

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  2. Acoustically enhanced heat exchange and drying apparatus

    DOEpatents

    Bramlette, T. Tazwell; Keller, Jay O.

    1989-01-01

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  3. Compression Pad Cavity Heating Augmentation on Orion Heat Shield

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2011-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  4. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  5. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  6. Orion MPCV Continuum RCS Heating Augmentation Model Development

    NASA Technical Reports Server (NTRS)

    Hyatt, Andrew J.; White, Molly E.

    2014-01-01

    The reaction control system jets of the Orion Multi Purpose Crew Vehicle can have a significant impact on the magnitude and distribution of the surface heat flux on the leeside of the aft-body, when they are fired. Changes in surface heating are expressed in terms of augmentation factor over the baseline smooth body heating. Wind tunnel tests revealed heating augmentation factors as high as 13.0, 7.6, 2.8, and 5.8 for the roll, pitch down, pitch up, and yaw jets respectively. Heating augmentation factor models, based almost exclusively on data from a series of wind tunnel tests have been developed, for the purposes of thermal protection system design. The wind tunnel tests investigated several potential jet-to-freestream similarity parameters, and heating augmentation factors derived from the data showed correlation with the jet-to-freestream momentum ratio. However, this correlation was not utilized in the developed models. Instead augmentation factors were held constant throughout the potential trajectory space. This simplification was driven by the fact that ground to flight traceability and sting effects are not well understood. Given the sensitivity of the reaction control system jet heating augmentation to configuration, geometry, and orientation the focus in the present paper is on the methodology used to develop the models and the lessons learned from the data. The models that are outlined in the present work are specific to the aerothermal database used to design the thermal protection system for the Exploration Flight Test 1 vehicle.

  7. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  8. Heating Augmentation for Short Hypersonic Protuberances

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza R.; Wood, William A.

    2008-01-01

    Computational aeroheating analyses of the Space Shuttle Orbiter plug repair models are validated against data collected in the Calspan University of Buffalo Research Center (CUBRC) 48 inch shock tunnel. The comparison shows that the average difference between computed heat transfer results and the data is about 9:5%. Using CFD and Wind Tunnel (WT) data, an empirical correlation for estimating heating augmentation on short hyper- sonic protuberances (k/delta < 0.33) is proposed. This proposed correlation is compared with several computed flight simulation cases and good agreement is achieved. Accordingly, this correlation is proposed for further investigation on other short hypersonic protuberances for estimating heating augmentation.

  9. Heating Augmentation for Short Hypersonic Protuberances

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Wood, William A.

    2008-01-01

    Computational aeroheating analyses of the Space Shuttle Orbiter plug repair models are validated against data collected in the Calspan University of Buffalo Research Center (CUBRC) 48 inch shock tunnel. The comparison shows that the average difference between computed heat transfer results and the data is about 9.5%. Using CFD and Wind Tunnel (WT) data, an empirical correlation for estimating heating augmentation on short hypersonic protuberances (k/delta less than 0.3) is proposed. This proposed correlation is compared with several computed flight simulation cases and good agreement is achieved. Accordingly, this correlation is proposed for further investigation on other short hypersonic protuberances for estimating heating augmentation.

  10. Acoustic radiation force on a heated sphere including effects of heat transfer and acoustic streaming

    NASA Technical Reports Server (NTRS)

    Lee, Chun P.; Wang, Taylor G.

    1988-01-01

    A previous theoretical result on the subject of the acoustic radiation force on a heated sphere (Lee and Wang, 1984) is reexamined. For a more complete understanding, effects of heat transfer and acoustic streaming are taken into consideration. Essentially, it was found that, at high sound-pressure levels in a steady situation, the force is not affected significantly by the temperature profile, consistent with the result of an experimental work (Leung and Wang, 1985). This resolves the earlier apparent contradiction between the theory and the experiment. If excessive hot air is accumulated around the sphere, which can happen in transient situations, the force can be weakened or reversed in sign. A heat transfer model due to acoustic streaming was also found.

  11. Augmented longitudinal acoustic trap for scalable microparticle enrichment.

    PubMed

    Cui, M; Binkley, M M; Shekhani, H N; Berezin, M Y; Meacham, J M

    2018-05-01

    We introduce an acoustic microfluidic device architecture that locally augments the pressure field for separation and enrichment of targeted microparticles in a longitudinal acoustic trap. Pairs of pillar arrays comprise "pseudo walls" that are oriented perpendicular to the inflow direction. Though sample flow is unimpeded, pillar arrays support half-wave resonances that correspond to the array gap width. Positive acoustic contrast particles of supracritical diameter focus to nodal locations of the acoustic field and are held against drag from the bulk fluid motion. Thus, the longitudinal standing bulk acoustic wave (LSBAW) device achieves size-selective and material-specific separation and enrichment of microparticles from a continuous sample flow. A finite element analysis model is used to predict eigenfrequencies of LSBAW architectures with two pillar geometries, slanted and lamellar. Corresponding pressure fields are used to identify longitudinal resonances that are suitable for microparticle enrichment. Optimal operating conditions exhibit maxima in the ratio of acoustic energy density in the LSBAW trap to that in inlet and outlet regions of the microchannel. Model results guide fabrication and experimental evaluation of realized LSBAW assemblies regarding enrichment capability. We demonstrate separation and isolation of 20  μ m polystyrene and ∼10  μ m antibody-decorated glass beads within both pillar geometries. The results also establish several practical attributes of our approach. The LSBAW device is inherently scalable and enables continuous enrichment at a prescribed location. These features benefit separations applications while also allowing concurrent observation and analysis of trap contents.

  12. Investigation of Thrust Augmentation and Acoustic Performance by Ejectors on PDE

    NASA Astrophysics Data System (ADS)

    Xu, Gui-yang; Weng, Chun-sheng; Li, Ning; Huang, Xiao-long

    2016-04-01

    Thrust augmentation and acoustic performance of a Pulse Detonation Engine (PDE) with ejector system is experimentally investigated. For these tests the LEjector/DEjector is varied from 1.18 to 4 and the axial placement of the ejector relative to the PDE exhaust is varied from an x/DPDE of -3 to 3. Results from the tests show that the optimum LEjector/DEjector based on thrust augmentation and Overall Sound Pressure Level (OASPL) is found to be 2.61. The divergent ejector performed the best based on thrust augmentation, while the reduction effect for OASPL and Peak Sound Pressure Level (PSPL) at 60° is most prominent for the convergent ejector. The optimum axial position based on thrust augmentation is determined to be x/DPDE = 2, while, x/DPDE = 0 based on OASPL and PSPL.

  13. Heat-driven acoustic cooling engine having no moving parts

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert; Hofler, Thomas J.

    1989-01-01

    A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

  14. Bibliography on augmentation of convective heat and mass transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergles, A.E.; Webb, R.L.; Junkhan, G.H.

    1979-05-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation ofmore » passive techniques. Patents are not included as they will be the subject of a future topical report.« less

  15. Acoustic Levitator With Furnace And Laser Heating

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Stoneburner, James D.

    1991-01-01

    Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.

  16. Heating Augmentation Due to Compression Pad Cavities on the Project Orion CEV Heat Shield

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2009-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  17. Bibliography on augmentation of convective heat and mass transfer-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.

    1983-12-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performancemore » evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.« less

  18. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  19. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE PAGES

    Bowman, D. C.; Lees, J. M.

    2018-04-27

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  20. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, D. C.; Lees, J. M.

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  1. Acoustically enhanced boiling heat transfer on a heated surface containing open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas R.; Smith, Marc K.; Glezer, Ari

    2011-11-01

    Acoustic actuation is used to enhance boiling heat transfer on a submerged heated surface containing an array of open microchannels by controlling the formation and evolution of vapor bubbles and inhibiting the instability that leads to film boiling at the critical heat flux. The effect of actuation at millimeter and micrometer scales is investigated with emphasis on the behavior of bubble nucleation, growth, contact-line motion, condensation, and detachment. The results show that microchannels control the location of boiling and reduce the mean surface superheat. In addition, acoustic actuation increases the heat flux at a given surface temperature and leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. Supported by ONR.

  2. Performance of a solar augmented heat pump

    NASA Astrophysics Data System (ADS)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  3. Investigation of Hypersonic Laminar Heating Augmentation in the Stagnation Region

    NASA Technical Reports Server (NTRS)

    Marineau, Eric C.; Lewis, Daniel R.; Smith, Michael S.; Lafferty, John F.; White, Molly E.; Amar, Adam J.

    2012-01-01

    Laminar stagnation region heating augmentation is investigated in the AEDC Tunnel 9 at Mach 10 by performing high frequency surface pressure and heat transfer measurements on the Orion CEV capsule at zero degree angle-of-attack for unit Reynolds numbers between 0.5 and 15 million per foot. Heating augmentation increases with Reynolds number, but is also model size dependent as it is absent on a 1.25-inch diameter model at Reynolds numbers where it reaches up to 15% on a 7-inch model. Heat transfer space-time correlations on the 7-inch model show that disturbances convect at the boundary layer edge velocity and that the streamwise integral scale increases with distance. Therefore, vorticity amplification due to stretching and piling-up in the stagnation region appears to be responsible for the stagnation point heating augmentation on the larger model. This assumption is reinforced by the f(exp -11/3) dependence of the surface pressure spectrum compared to the f(exp -1) dependence in the free stream. Vorticity amplification does not occur on the 1.25- inch model because the disturbances are too large. Improved free stream fluctuation measurements will be required to determine if significant vorticity is present upstream or mostly generated behind the bow shock.

  4. Cooling Acoustic Transducer with Heat Pipes

    DTIC Science & Technology

    2009-07-29

    a heat sink. [0009] In Kan et al (United States Patent No. 6,528,909), a spindle motor assembly is disclosed which has a shaft with an integral...heat pipe. The shaft with the integral heat pipe improves the thermal conductively of the shaft and the spindle motor assembly. The shaft includes...Description of the Prior Art [0004] It is known in the art that transducers, designed to project acoustic power, are often limited by the build

  5. Cooling Acoustic Transcucer with Heat Pipes

    DTIC Science & Technology

    2009-07-19

    circuits to a heat sink. [0009] In Kan et al (United States Patent No. 6,528,909), a spindle motor assembly is disclosed which has a shaft with an...integral heat pipe. The shaft with the integral heat pipe improves the thermal conductively of the shaft and the spindle motor assembly. The shaft ...2) Description of the Prior Art [0004] It is known in the art that transducers, designed to project acoustic power, are often limited by the

  6. Supersonic/Hypersonic Correlations for In-Cavity Transition and Heating Augmentation

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    2011-01-01

    Laminar-entry cavity heating data with a non-laminar boundary layer exit flow have been retrieved from the database developed at Mach 6 and 10 in air on large flat plate models for the Space Shuttle Return-To-Flight Program. Building on previously published fully laminar and fully turbulent analysis methods, new descriptive correlations of the in-cavity floor-averaged heating and endwall maximum heating have been developed for transitional-to-turbulent exit flow. These new local-cavity correlations provide the expected flow and geometry conditions for transition onset; they provide the incremental heating augmentation induced by transitional flow; and, they provide the transitional-to-turbulent exit cavity length. Furthermore, they provide an upper application limit for the previously developed fully-laminar heating correlations. An example is provided that demonstrates simplicity of application. Heating augmentation factors of 12 and 3 above the fully laminar values are shown to exist on the cavity floor and endwall, respectively, if the flow exits in fully tripped-to-turbulent boundary layer state. Cavity floor heating data in geometries installed on the windward surface of 0.075-scale Shuttle wind tunnel models have also been retrieved from the boundary layer transition database developed for the Return-To-Flight Program. These data were independently acquired at Mach 6 and Mach 10 in air, and at Mach 6 in CF4. The correlation parameters for the floor-averaged heating have been developed and they offer an exceptionally positive comparison to previously developed laminar-cavity heating correlations. Non-laminar increments have been extracted from the Shuttle data and they fall on the newly developed transitional in-cavity correlations, and they are bounded by the 95% correlation prediction limits. Because the ratio of specific heats changes along the re-entry trajectory, turning angle into a cavity and boundary layer flow properties may be affected, raising

  7. Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, Forrest; Kingery, Joseph E.

    A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edgemore » test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass

  8. Augmentation of heat and mass transfer in laminar flow of suspensions: A correlation of data

    NASA Astrophysics Data System (ADS)

    Ahuja, Avtar S.

    1980-01-01

    The experimental data from literature on the augmentation of heat and gas transport in the laminar flow of suspensions of polystyrene spheres have been correlated on common coordinates. The correlation includes the influences of particle size, tube diameter and length, shear rate of flow, transport properties of diffusing species (heat or gas) in suspending liquids, and of the particle interactions on the augmentation of heat or gas transfer in flowing suspensions.

  9. Micro acoustic resonant chambers for heating/agitating/mixing (MARCHAM)

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita M.; Takano, Nobuyuki; Grunthaner, Frank

    2016-04-01

    A variety of applications require the mixing and/or heating of a slurry made from a powder/fluid mixture. One of these applications, Sub Critical Water Extraction (SCWE), is a process where water and an environmental powder sample (sieved soil, drill cuttings, etc.) are heated in a sealed chamber to temperatures greater than 200 degrees Celsius by allowing the pressure to increase, but without reaching the critical point of water. At these temperatures, the ability of water to extract organics from solid particulate increases drastically. This paper describes the modeling and experimentation on the use of an acoustic resonant chamber which is part of an amino acid detection instrument called Astrobionibbler [Noell et al. 2014, 2015]. In this instrument we use acoustics to excite a fluid- solid fines mixture in different frequency/amplitude regimes to accomplish a variety of sample processing tasks. Driving the acoustic resonant chamber at lower frequencies can create circulation patterns in the fluid and mixes the liquid and fines, while driving the chamber at higher frequencies one can agitate the fluid and powder and create a suspension. If one then drives the chamber at high amplitude at resonance heating of the slurry occurs. In the mixing and agitating cell the particle levitation force depends on the relative densities and compressibility's of the particulate and fluid and on the kinetic and potential energy densities associated with the velocity and pressure fields [Glynne-Jones, Boltryk and Hill 2012] in the cell. When heating, the piezoelectric transducer and chamber is driven at high power in resonance where the solid/fines region is modelled as an acoustic transmission line with a large loss component. In this regime, heat is pumped into the solution/fines mixture and rapidly heats the sample. We have modeled the piezoelectric transducer/chamber/ sample using Mason's equivalent circuit. In order to assess the validity of the model we have built and

  10. OSO 8 observational limits to the acoustic coronal heating mechanism

    NASA Technical Reports Server (NTRS)

    Bruner, E. C., Jr.

    1981-01-01

    An improved analysis of time-resolved line profiles of the C IV resonance line at 1548 A has been used to test the acoustic wave hypothesis of solar coronal heating. It is shown that the observed motions and brightness fluctuations are consistent with the existence of acoustic waves. Specific account is taken of the effect of photon statistics on the observed velocities, and a test is devised to determine whether the motions represent propagating or evanescent waves. It is found that on the average about as much energy is carried upward as downward such that the net acoustic flux density is statistically consistent with zero. The statistical uncertainty in this null result is three orders of magnitue lower than the flux level needed to heat the corona.

  11. CHROMOSPHERIC HEATING BY ACOUSTIC WAVES COMPARED TO RADIATIVE COOLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobotka, M.; Heinzel, P.; Švanda, M.

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra ofmore » Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.« less

  12. High Temperature Latent Heat Thermal Energy Storage to Augment Solar Thermal Propulsion for Microsatellites

    DTIC Science & Technology

    2014-03-01

    Charts 3. DATES COVERED (From - To) Mar 2014- May 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House High Temperature Latent Heat Thermal ...Energy Storage to Augment Solar Thermal Propulsion for Microsats 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...High Temperature Latent Heat Thermal Energy Storage to Augment Solar Thermal Propulsion for Microsatellites Presentation Subtitle Matthew R. Gilpin

  13. Heating Augmentation in Laminar Flow Due to Heat-Shield Cavities on the Project Orion CEV

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2008-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield at laminar conditions. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements on and around the compression pads using global phosphor thermography. Consistent trends in heating augmentation levels were observed in the data and correlations of average and maximum heating at the cavities were formulated in terms of the local boundary-layer parameters and cavity dimensions. Additional heating data from prior testing of Genesis and Mars Science Laboratory models were also examined to extend the parametric range of cavity heating correlations.

  14. Test of an Acoustic Mechanism for Atmospheric Heating in Dynamo-Deficient F Stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1996-01-01

    In a qualitative sense, the heating of chromospheres and coronae has long been ascribed to either acoustic or magnetic heating. However, quantitative discussions of the energy balance with detailed comparison to the fluxes of chromospheric emission lines have begun to appear only recently. The aim of this work is to observe F stars where magnetic effects might be expected to be rather small, thereby allowing us hopefully to access acoustically heated atmospheres.

  15. Acoustic sensor for real-time control for the inductive heating process

    DOEpatents

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  16. Coupling of an acoustic wave to shear motion due to viscous heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Goree, J.

    2016-07-15

    Viscous heating due to shear motion in a plasma can result in the excitation of a longitudinal acoustic wave, if the shear motion is modulated in time. The coupling mechanism is a thermal effect: time-dependent shear motion causes viscous heating, which leads to a rarefaction that can couple into a longitudinal wave, such as an acoustic wave. This coupling mechanism is demonstrated in an electrostatic three-dimensional (3D) simulation of a dusty plasma, in which a localized shear flow is initiated as a pulse, resulting in a delayed outward propagation of a longitudinal acoustic wave. This coupling effect can be profoundmore » in plasmas that exhibit localized viscous heating, such as the dusty plasma we simulated using parameters typical of the PK-4 experiment. We expect that a similar phenomenon can occur with other kinds of plasma waves.« less

  17. Roughness induced transition and heat transfer augmentation in hypersonic environments

    NASA Astrophysics Data System (ADS)

    Wassel, A. T.; Shih, W. C. L.; Courtney, J. F.

    Boundary layer transition and surface heating distributions on graphite, fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in hypersonic environments. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state-of-the-art methods.

  18. Cylindrical heat conduction and structural acoustic models for enclosed fiber array thermophones.

    PubMed

    Dzikowicz, Benjamin R; Tressler, James F; Baldwin, Jeffrey W

    2017-11-01

    Calculation of the heat loss for thermophone heating elements is a function of their geometry and the thermodynamics of their surroundings. Steady-state behavior is difficult to establish or evaluate as heat is only flowing in one direction in the device. However, for a heating element made from an array of carbon fibers in a planar enclosure, several assumptions can be made, leading to simple solutions of the heat equation. These solutions can be used to more carefully determine the efficiency of thermophones of this geometry. Acoustic response is predicted with the application of a Helmholtz resonator and thin plate structural acoustics models. A laboratory thermophone utilizing a sparse horizontal array of fine (6.7 μm diameter) carbon fibers is designed and tested. Experimental results are compared with the model. The model is also used to examine the optimal array density for maximal efficiency.

  19. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves

    NASA Technical Reports Server (NTRS)

    Baker, David (Inventor)

    1998-01-01

    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  20. Solar augmentation for process heat with central receiver technology

    NASA Astrophysics Data System (ADS)

    Kotzé, Johannes P.; du Toit, Philip; Bode, Sebastian J.; Larmuth, James N.; Landman, Willem A.; Gauché, Paul

    2016-05-01

    Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.

  1. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean

    2014-01-01

    Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.

  2. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  3. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  4. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  5. Numerical comparison of convective heat transfer augmentation devices used in cooling channels of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Maldonado, Jaime J.

    1994-04-01

    Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.

  6. Numerical comparison of convective heat transfer augmentation devices used in cooling channels of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Maldonado, Jaime J.

    1994-01-01

    Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.

  7. Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Flaherty, W.; Austin, J. M.

    2013-10-01

    We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.

  8. The role of electric field in microfluidic heating induced by standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Zheng, Tengfei; Wang, Chaohui; Hu, Qiao; Wei, Shoupeng

    2018-06-01

    The heating mechanism of standing surface acoustic waves (SSAWs) on a LiNbO3 substrate has been experimentally studied. Three devices with different substrates were used to heat the drops with NaCl concentrations ranging from 0 to 1 g/l, respectively. The device with a glass substrate was used to shield acoustic waves. The device with an Au layer between the LiNbO3 substrate and the droplet was used to shield the alternating current field. The results show that the thermal effect induced by SSAWs on the LiNbO3 substrate is composed of the acoustothermal effect due to SSAWs and the electric field thermal effect (Joule heat) due to the alternating current field. The electric field thermal effect which is ignored in SSAW devices previously plays an important role in the thermal effect induced by SSAWs. These results provide a meaningful insight into the mechanism of SSAW-based heating, which is of great help to guide the effective use of the SSAW-based heating technique for various applications.

  9. Series-parallel solar-augmented rock-bed heat pump. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.F.; Othmer, P.W.

    1979-12-31

    This report deals with a system representing an alternate arrangement of the components in an air-type, heat pump augmented solar heating system. In this system, referred to as Series-Parallel, the heat pump coils are at opposite ends of the rock bed, allowing heating and cooling of the air entering and leaving the bed. This allows a number of unique modes of operation, some of which allow off-peak use of the necessary utility power. Cooling modes are also available, including off-peak cooling-effect storage, night cooling, and free cooling (economizing). The system finds applications principally in single-family residences. The study examined themore » performance of this system at three locations (Sacramento, Albuquerque, and New York) by means of a simulation model. Seasonal heating and cooling performance factors of about 3 were obtained for Albuquerque for the system integrated into a 200 m/sup 2/ residence. Design integration studies suggest an installed cost of approximately $28,000 above a conventional heat pump system using commercially available components. This high cost is largely due to solar hardware, although system complexity also adds. Availability of low-cost air type collectors may make the system attractive. The study also addresses the general problem of predictive control necessary whenever off-peak storage is employed. An algorithm is presented, along with results.« less

  10. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  11. The augmentation of heat transfer in a pipe flow using a swirling perforated twisted (SPT) tape insert

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahrokh; Oishe, Sadia Noon; Rahman, Md. Lutfor

    2017-12-01

    The purpose of this research work is to increase the heat transfer coefficient by operating the heat exchangers at smaller revolution per minute. This signifies an achievement of reduction of pressure drop corresponding to less operating cost. This study has used two types of SPT tape insert to observe the various heat transfer coefficient, heat transfer rate and heat transfer augmentation efficiency. One tape was fully twisted and another tape was partially twisted. The shape of the SPT tape creates turbulence effect. The turbulence flow (swirl flow) generated by SPT tape promotes greater mixing and high heat transfer coefficients. An arrangement scheme has been developed for the experimental investigation. For remarking the rate of change of heat transfer, temperature has been measured numerically through the temperature sensors with various flow rates and RPM. The volume flow rate was varied from 10.3448276 LPM to 21.045574 LPM and the rotation of the perforated twisted tape was varied from 50 RPM to 400 RPM. Finally the research study demonstrates the effectiveness of the results of the proposed approaches. It is observed that the suggested method of heat transfer augmentations is much more effective than existing methods, since it results in an increase in heat transfer area and also an increase in the heat transfer coefficient and reduction of cost in the industrial sectors.

  12. High temperature acoustic and hybrid microwave/acoustic levitators for materials processing

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin

    1990-01-01

    The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.

  13. Effective Techniques for Augmenting Heat Transfer: An Application of Entropy Generation Minimization Principles.

    DTIC Science & Technology

    1980-12-01

    augmentation techniques, entropy generation, irreversibility, exergy . 20. ABSTRACT (Continue on rovers. side If necessary and Identify by block number...35 3.5 Internally finned tubes ...... ................. .. 37 3.6 Internally roughened tubes ..... ............... . 41 3.7 Other heat transfer...irreversibility and entropy generation as fundamental criterion for evaluating and, eventually, minimizing the waste of usable energy ( exergy ) in energy

  14. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Basu, Saptarshi

    2016-03-01

    Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70 % by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.

  15. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  16. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives are to simulate an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Calibration Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  17. Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.

    PubMed

    Dixit, Neerav; Stang, Pascal P; Pauly, John M; Scott, Greig C

    2018-02-01

    Patients who have implanted medical devices with long conductive leads are often restricted from receiving MRI scans due to the danger of RF-induced heating near the lead tips. Phantom studies have shown that this heating varies significantly on a case-by-case basis, indicating that many patients with implanted devices can receive clinically useful MRI scans without harm. However, the difficulty of predicting RF-induced lead tip heating prior to scanning prevents numerous implant recipients from being scanned. Here, we demonstrate that thermo-acoustic ultrasound (TAUS) has the potential to be utilized for a pre-scan procedure assessing the risk of RF-induced lead tip heating in MRI. A system was developed to detect TAUS signals by four different TAUS acquisition methods. We then integrated this system with an MRI scanner and detected a peak in RF power absorption near the tip of a model lead when transmitting from the scanner's body coil. We also developed and experimentally validated simulations to characterize the thermo-acoustic signal generated near lead tips. These results indicate that TAUS is a promising method for assessing RF implant safety, and with further development, a TAUS pre-scan could allow many more patients to have access to MRI scans of significant clinical value.

  18. Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound

    NASA Astrophysics Data System (ADS)

    Perelomova, Anna

    2006-08-01

    The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,ρ) and caloric e(p,ρ) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed.

  19. [Augmentation with PMMA cement].

    PubMed

    Kühn, K-D; Höntzsch, D

    2015-09-01

    Cements based on polymethyl methacrylate (PMMA) can be used without any problem in a variety of clinical augmentations. Cement-related complications in surgical procedures involving PMMA cements, such as embolism, thermal necrosis, toxicity and hypersensitivity, are often due to other causes. Knowledge about the properties of the cement helps the user to safely employ PMMA cements in augmentations. High radio-opacity is required in vertebral body augmentations and this is provided in particular by zirconium dioxide. In vertebral body augmentations, a low benzoyl peroxide (BPO) content can considerably prolong the liquid dough phase. In augmentations with cement fillings in the region of a tumor, a high BPO content can specifically increase the peak temperature of the PMMA cement. In osteosynthetic augmentations with PMMA, necrosis is rare because heat development in the presence of metallic implants is low due to heat conduction via the implant. Larger cement fillings where there is no heat conduction via metal implants can exhibit substantially higher peak temperatures. The flow properties of PMMA cements are of particular importance for the user to allow optimum handling of PMMA cements. In patients with hypersensitivity to antibiotics, there is no need to avoid the use of PMMA as there are sufficient PMMA-based alternatives. The PMMA cements are local drug delivery systems and antibiotics, antiseptics, antimycotics and also cytostatics can be mixed with the cement. Attention must be paid to antagonistic and synergistic effects.

  20. Conjugate heat transfer of a finned tube. Part B: Heat transfer augmentation and avoidance of heat transfer reversal by longitudinal vortex generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.

    1995-08-01

    Numerical investigations of three-dimensional flow and heat transfer in a finned tube with punched longitudinal vortex generators (LVG`s) are carried out for Reynolds number of 250 and 300. Air with a Prandtl number of 0.7 is used as the fluid. The flow is both thermally and hydrodynamically developing. The LVG is a delta winglet pair (DWP) punched out of the fin and is located directly behind the tube, symmetrically separated by one tube diameter. The DWP generates longitudinal vortices in the wake of the tube, defers flow separation on the tube, deflects the main stream into the tube wake, andmore » strong reduces the ``dead water zone.`` Heat transfer reversal is avoided by the DWP. Comparison of the span-averaged Nusselt numbers for the fin with and without DWP shows significant local heat transfer enhancement of several hundred percent in the tube wake. For Re = 300 and Fi = 200 the global heat transfer augmentation by a DWP, which amounts to only 2.5% of the fin area, is 31%.« less

  1. Review of Combustion-acoustic Instabilities

    NASA Technical Reports Server (NTRS)

    Oyediran, Ayo; Darling, Douglas; Radhakrishnan, Krishnan

    1995-01-01

    Combustion-acoustic instabilities occur when the acoustic energy increase due to the unsteady heat release of the flame is greater than the losses of acoustic energy from the system. The problem of combustion-acoustic instability is a concern in many devices for various reasons, as each device may have a unique mechanism causing unsteady heat release rates and many have unique boundary conditions. To accurately predict and quantify combustion-acoustic stabilities, the unsteady heat release rate and boundary conditions need to be accurately determined. The present review brings together work performed on a variety of practical combustion devices. Many theoretical and experimental investigations of the unsteady heat release rate have been performed, some based on perturbations in the fuel delivery system particularly for rocket instabilities, while others are based on hydrodynamic processes as in ramjet dump combustors. The boundary conditions for rocket engines have been analyzed and measured extensively. However, less work has been done to measure acoustic boundary conditions in many other combustion systems.

  2. Augmented Thermal Bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1996-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurality of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pumps to maintain isothermality in the source.

  3. Augmented thermal bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1993-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurity of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pump to maintain isothermality in the source.

  4. Aerodynamic and acoustic performance of ejectors for engine-under-the-wing concepts

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Goodykoontz, J. H.; Groesbeck, D.

    1974-01-01

    Subsonic thrust augmentation, exhaust plume velocity contours and acoustic characteristics of a small-scale, 6-tube mixer nozzle with ejector were obtained with and without a wing. Thrust augmentation up to 30 percent was achieved. Aerodynamic results showed that at a given location, greater downstream velocities are obtained with an ejector than with the baseline nozzle. Ejectors reduce high frequency noise; however, low frequency noise amplification also occurs. Acoustic reflections off the wing increase the noise level to a ground observer. With an ejector, the acoustic benefits of forward velocity may be significantly reduced compared with the baseline nozzle.

  5. Augmentation of Performance of a Monogroove Heat Pipe with Electrohydrodynamic Conduction Pumping

    NASA Astrophysics Data System (ADS)

    Jeong, S. I.; Seyed-Yagoobi, J.

    2002-11-01

    The electrohydrodynamic (EHD) phenomena involve the interaction of electric fields and flow fields in a dielectric fluid medium. There are three types of EHD pumps; induction, ion-drag, and conduction. EHD conduction pump is a new concept which has been explored only recently. Net pumping is achieved by properly utilizing the heterocharge layers present in the vicinity of the electrodes. Several innovative electrode designs have been investigated. This paper presents an electrode design that generates pressure heads on the order of 600 Pa per one electrode pair at 20 kV with less than 0.08 W of electric power. The working fluid is the Refrigerant R-123. An EHD conduction pump consisting of six pairs of electrodes is installed in the liquid line of a mono-grove heat pipe. The heat transport capacity of the heat pipe is measured in the absence and presence of the EHD conduction pump. Significant enhancements in the heat transport capacity of the heat pipe is achieved with the EHD conduction pump operating. Furthermore, the EHD conduction pump provides immediate recovery from the dry-out condition. The EHD conduction pump has many advantages, especially in the micro-gravity environment. It is simple in design, non-mechanical, and lightweight. It provides a rapid control of heat transfer in single-phase and two-phase flows. The electric power consumption is minimal with the very low acoustic noise level.

  6. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W.

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom ofmore » the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release

  7. The acoustic radiation force on a heated (or cooled) rigid sphere - Theory

    NASA Technical Reports Server (NTRS)

    Lee, C. P.; Wang, T. G.

    1984-01-01

    A finite amplitude sound wave can exert a radiation force on an object due to second-order effect of the wave field. The radiation force on a rigid small sphere (i.e., in the long wavelength limit), which has a temperature different from that of the environment, is presently studied. This investigation assumes no thermally induced convection and is relevant to material processing in the absence of gravity. Both isotropic and nonisotropic temperature profiles are considered. In this calculation, the acoustic effect and heat transfer process are essentially decoupled because of the long wavelength limit. The heat transfer information required for determining the force is contained in the parameters, which are integrals over the temperature distribution.

  8. Acoustically excited heated jets. 2: In search of a better understanding

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The second part of a three-part report on the effects of acoustic excitation on jet mixing includes the results of an experimental investigation directed at resolving the question of poor excitability of some of the heated jets. The theoretical predictions discussed in Part 1 are examined to find explanations for the observed discrepancies between the measured and the predicted results. Additional testing was performed by studying the self excitation of the shock containing hot jets and also by exciting the jet by sound radiated through source tubes located externally around the periphery of the jet. The effects of nozzle-exit boundary layer conditions on jet excitability was also investigated. It is concluded that high-speed, heated jet mixing rates and consequently also the jet excitability strongly depends on nozzle exit boundary layer conditions.

  9. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    PubMed

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  10. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  11. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  12. Acoustic Streaming and Heat and Mass Transfer Enhancement

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Gopinath, A.

    1996-01-01

    A second order effect associated with high intensity sound field, acoustic streaming has been historically investigated to gain a fundamental understanding of its controlling mechanisms and to apply it to practical aspects of heat and mass transfer enhancement. The objectives of this new research project are to utilize a unique experimental technique implementing ultrasonic standing waves in closed cavities to study the details of the generation of the steady-state convective streaming flows and of their interaction with the boundary of ultrasonically levitated near-spherical solid objects. The goals are to further extend the existing theoretical studies of streaming flows and sample interactions to higher streaming Reynolds number values, for larger sample size relative to the wavelength, and for a Prandtl and Nusselt numbers parameter range characteristic of both gaseous and liquid host media. Experimental studies will be conducted in support to the theoretical developments, and the crucial impact of microgravity will be to allow the neglect of natural thermal buoyancy. The direct application to heat and mass transfer in the absence of gravity will be emphasized in order to investigate a space-based experiment, but both existing and novel ground-based scientific and technological relevance will also be pursued.

  13. Experimental Investigation of Turbojet Thrust Augmentation Using an Ejector

    DTIC Science & Technology

    2007-03-01

    mechanisms in which a particle can exchange energy. Thrust augmenting devices can be divided into two categories: ones that exchange net work or heat and...two categories from the energy equation discussion above. Thrust augmentation is achieved through turbulent entrainment where work and/or heat is...front sustained by compression waves from a trailing reaction zone. A deflagration wave is a subsonic flame front sustained by heat transfer

  14. A new method for the estimation of high temperature radiant heat emittance by means of aero-acoustic levitation

    NASA Astrophysics Data System (ADS)

    Greffrath, Fabian; Prieler, Robert; Telle, Rainer

    2014-11-01

    A new method for the experimental estimation of radiant heat emittance at high temperatures has been developed which involves aero-acoustic levitation of samples, laser heating and contactless temperature measurement. Radiant heat emittance values are determined from the time dependent development of the sample temperature which requires analysis of both the radiant and convective heat transfer towards the surroundings by means of fluid dynamics calculations. First results for the emittance of a corundum sample obtained with this method are presented in this article and found in good agreement with literature values.

  15. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  16. Flow visualization of acoustic levitation experiment

    NASA Technical Reports Server (NTRS)

    Baroth, ED

    1987-01-01

    Acoustic levitation experiments for space applications were performed. Holographic interferometry is being used to study the heat transfer rates on a heated rod enclosed in a 6 cu in chamber. Acoustic waves at levels up to 150 db increased the heating rates to the rod by factors of three to four. High speed real time holographic interferometry was used to measure the boundary layer on the heated rod. Data reduction and digitization of the interferograms are being implemented.

  17. Wearing graduated compression stockings augments cutaneous vasodilation in heat-stressed resting humans.

    PubMed

    Fujii, Naoto; Nikawa, Toshiya; Tsuji, Bun; Kondo, Narihiko; Kenny, Glen P; Nishiyasu, Takeshi

    2017-05-01

    We investigated whether graduated compression induced by stockings enhances cutaneous vasodilation in passively heated resting humans. Nine habitually active young men were heated at rest using water-perfusable suits, resulting in a 1.0 °C increase in body core temperature. Heating was repeated twice on separate occasions while wearing either (1) stockings that cause graduated compression (pressures of 26.4 ± 5.3, 17.5 ± 4.4, and 6.1 ± 2.0 mmHg at the ankle, calf, and thigh, respectively), or (2) loose-fitting stockings without causing compression (Control). Forearm vascular conductance during heating was evaluated by forearm blood flow (venous occlusion plethysmography) divided by mean arterial pressure to estimate heat-induced cutaneous vasodilation. Body core (esophageal), skin, and mean body temperatures were measured continuously. Compared to the Control, forearm vascular conductance during heating was higher with graduated compression stockings (e.g., 23.2 ± 5.5 vs. 28.6 ± 5.8 units at 45 min into heating, P = 0.001). In line with this, graduated compression stockings resulted in a greater sensitivity (27.5 ± 8.3 vs. 34.0 ± 9.4 units °C -1 , P = 0.02) and peak level (25.5 ± 5.8 vs. 29.7 ± 5.8 units, P = 0.004) of cutaneous vasodilation as evaluated from the relationship between forearm vascular conductance with mean body temperature. In contrast, the mean body temperature threshold for increases in forearm vascular conductance did not differ between the Control and graduated compression stockings (36.5 ± 0.1 vs. 36.5 ± 0.2 °C, P = 0.85). Our results show that graduated compression associated with the use of stockings augments cutaneous vasodilation by modulating sensitivity and peak level of cutaneous vasodilation in relation to mean body temperature. However, the effect of these changes on whole-body heat loss remains unclear.

  18. A computational study for investigating acoustic streaming and tissue heating during high intensity focused ultrasound through blood vessel with an obstacle

    NASA Astrophysics Data System (ADS)

    Parvin, Salma; Sultana, Aysha

    2017-06-01

    The influence of High Intensity Focused Ultrasound (HIFU) on the obstacle through blood vessel is studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field around the obstacle through blood vessel. The model construction is based on the linear Westervelt and conjugate heat transfer equations for the obstacle through blood vessel. The system of equations is solved using Finite Element Method (FEM). We found from this three-dimensional numerical study that the rate of heat transfer is increasing from the obstacle and both the convective cooling and acoustic streaming can considerably change the temperature field.

  19. Origin of acoustic emission produced during single point machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R,.; Carpenter, S.H.; Armentrout, D.L.

    1991-01-01

    Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emissionmore » produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent. 21 refs., 19 figs., 4 tabs.« less

  20. Origin of acoustic emission produced during single point machining

    NASA Astrophysics Data System (ADS)

    Heiple, C. R.; Carpenter, S. H.; Armentrout, D. L.

    1991-05-01

    Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emission produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent.

  1. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  2. Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method

    NASA Astrophysics Data System (ADS)

    Alekseev, G.; Tokhtina, A.; Soboleva, O.

    2017-10-01

    Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.

  3. Some limitations on processing materials in acoustic levitation devices

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Witherow, W. K.; Ross, B. B.; Rush, J. E.

    1979-01-01

    The spot heating of samples, suspended in an acoustic field, was investigated to determine if the technique could be used to process materials. A single axis resonance device operating in air at 25 C with an rms pressure maximum of 160 to 170 db was used in the experiments. The heat flow from a hot object suspended in a levitation node is dominated by the effects of the field, with the heat loss approximately 20 times larger than that due to natural convection. The acoustic forces which suspend the body at a node also serve to eject the heated air. The coupling between the locally heated region around the body and the acoustic field results in instabilities in both the pressure wave and force field. The investigations indicated the extreme difficulties in developing a materials processing device based on acoustic/spot heating for use in a terrestrial environment.

  4. Reducing Thermal Conduction In Acoustic Levitators

    NASA Technical Reports Server (NTRS)

    Lierke, Ernst G.; Leung, Emily W.; Bhat, Balakrishna T.

    1991-01-01

    Acoustic transducers containing piezoelectric driving elements made more resistant to heat by reduction of effective thermal-conductance cross sections of metal vibration-transmitting rods in them, according to proposal. Used to levitate small objects acoustically for noncontact processing in furnaces. Reductions in cross sections increase amplitudes of transmitted vibrations and reduce loss of heat from furnaces.

  5. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  6. Infrasonic acoustic waves generated by fast air heating in sprite cores

    NASA Astrophysics Data System (ADS)

    Silva, Caitano L.; Pasko, Victor P.

    2014-03-01

    Acceleration, expansion, and branching of sprite streamers can lead to concentration of high electrical currents in regions of space, that are observed in the form of bright sprite cores. Driven by this electrical current, a series of chemical processes take place in the sprite plasma. Excitation, followed by quenching of excited electronic states leads to energy transfer from charged to neutral species. The consequence is heating and expansion of air leading to emission of infrasonic acoustic waves. Results indicate that ≳0.01 Pa pressure perturbations on the ground, observed in association with sprites, can only be produced by exceptionally strong currents in sprite cores, exceeding 2 kA.

  7. Laser acoustic emission thermal technique (LAETT): a technique for generating acoustic emission in dental composites.

    PubMed

    Duray, S J; Lee, S Y; Menis, D L; Gilbert, J L; Lautenschlager, E P; Greener, E H

    1996-01-01

    This study was designed to investigate a new method for generating interfacial debonding between the resin matrix and filler particles of dental composites. A pilot study was conducted to evaluate laser-induced acoustic emission in dental resins filled with varying quantities of particles. Model systems of 50/50 BisGMA/TEGDMA resin reinforced with 0, 25, and 75 wt% 5-10 micrometers silanated BaSiO(6) were analyzed. The sample size was 3.5 mm diameter x 0.25-0.28 mm thick. A continuous wave CO2 laser (Synrad Infrared Gas Laser Model 48-1) was used to heat the composite samples. Acoustic events were detected, recorded and processed by a model 4610 Smart Acoustic Monitor (SAM) with a 1220A preamp (Physical Acoustic Corp.) as a function of laser power. Initially, the acoustic signal from the model composites produced a burst pattern characteristic of fracturing, about 3.7 watts laser power. Acoustic emission increased with laser power up to about 6 watts. At laser powers above 6 watts, the acoustic emission remained constant. The amount of acoustic emission followed the trend: unfilled resin > composite with 25 wt% BaSiO(6) > composite with 75 wt% BaSiO(6). Acoustic emission generated by laser thermal heating is dependent on the weight percent of filler particles in the composite and the amount of laser power. For this reason, laser thermal acoustic emission might be useful as a nondestructive form of analysis of dental composites.

  8. Assessment of Aerothermal Heating Augmentation Attributed to Surface Catalysis in High Enthalpy Shock Tunnel Flows

    NASA Astrophysics Data System (ADS)

    MacLean, M.; Holden, M.

    2009-01-01

    The effect of gas/surface interaction in making CFD predictions of convective heating has been considered with application to ground tests performed in high enthalpy shock tunnels where additional heating augmentation attributable to surface recombination has been observed for nitrogen, air and carbon dioxide flows. For test articles constructed of stainless steel and aluminum, measurements have been made with several types of heat transfer instrumentation including thin- film, calorimeter, and coaxial thermocouple sensors. These experiments have been modeled by computations made with the high quality, chemically reacting, Navier- Stokes solver, DPLR and the heating results compared. Some typical cases considered include results on an axisymmetric sphere-cone, axisymmetric spherical capsule, spherical capsule at angle of attack, and two- dimensional cylinder. In nitrogen flows, cases considered show a recombination probability on the order of 10-3, which agrees with published data. In many cases in air and CO2, measurements exceeding the predicted level of convective heating have been observed which are consistent with approximately complete recombination (to O2/N2 or CO2) on the surface of the model (sometimes called a super-catalytic wall). It has been recognized that the conclusion that this behavior is tied to an excessively high degree of catalytic efficiency is dependent on the current understanding of the freestream and shock-layer state of the gas.

  9. Heating of the lower thermosphere by the dissipation of acoustic waves

    NASA Technical Reports Server (NTRS)

    Rind, D.

    1977-01-01

    Infrasound of 0.2 Hz known as microbaroms, generated by interfering ocean waves, propagates into the lower thermosphere where it is dissipated between 110 and 140 km. It is shown here that under average conditions in winter the energy input into this region is of the order of 0.33 W/kg, the same as that estimated for gravity wave dissipation, and capable of producing a heating of at least 30 K/day. To arrive at this result different dissipation mechanisms are discussed, with the calculated attenuation compared to previously published observations and observations of natural infrasound at Palisades, N.Y. Increased acoustic attenuation due to the presence of turbulence is not, in general, in evidence.

  10. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  11. Modelling and Order of Acoustic Transfer Functions Due to Reflections from Augmented Objects

    NASA Astrophysics Data System (ADS)

    Kuster, Martin; de Vries, Diemer

    2006-12-01

    It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.

  12. Capabilities of the thermal acoustic fatigue apparatus

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Daniels, E. F.

    1992-01-01

    The Thermal Acoustic Fatigue Apparatus (TAFA) is a facility for applying intense noise and heat to small test panels. Modifications to TAFA have increased the heating capability to 44 BTU/(ft.-sec.), making it possible to heat test panels to 2000 F and concurrently apply 168 dB of noise. Results of acoustic and thermal surveys are shown. Two test items, a 0.09 in. steel panel and an insulated panel, were used in the thermal survey.

  13. Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor

    NASA Technical Reports Server (NTRS)

    VanFossen, G. James; Bunker, Ronald S.

    2000-01-01

    Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half scale model of a can-type combustor from a low NO(x), ground based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counter clockwise direction (facing downstream). A 5-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36' at the outer edges of the rectangular test section. Hot wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid generated turbulence.

  14. Acoustically Enhanced Electroplating Being Developed

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2002-01-01

    In cooperation with the NASA Glenn Research Center, Alchemitron Corp. is developing the Acoustically Enhanced Electroplating Process (AEEP), a new technique of employing nonlinear ultrasonics to enhance electroplating. The applications range from electroplating full-panel electronic circuit boards to electroplating microelectronics and microelectromechanical systems (MEMS) devices. In a conventional plating process, the surface area to be plated is separated from the nonplated areas by a temporary mask. The mask may take many forms, from a cured liquid coating to a simple tape. Generally, the mask is discarded when the plating is complete, creating a solid waste product that is often an environmental hazard. The labor and materials involved with the layout, fabrication, and tooling of masks is a primary source of recurring and nonrecurring production costs. The objective of this joint effort, therefore, is to reduce or eliminate the need for masks. AEEP improves selective plating processes by using directed beams of high-intensity acoustic waves to create nonlinear effects that alter the fluid dynamic and thermodynamic behavior of the plating process. It relies on two effects: acoustic streaming and acoustic heating. Acoustic streaming is observed when a high-intensity acoustic beam creates a liquid current within the beam. The liquid current can be directed as the beam is directed and, thus, users can move liquid around as desired without using pumps and nozzles. The current of the electroplating electrolyte, therefore, can be directed at distinct target areas where electroplating is desired. The current delivers fresh electrolyte to the target area while flushing away the spent electrolyte. This dramatically increases the plating rate in the target area. In addition, acoustic heating of both the liquid in the beam and the target surface increases the chemical reaction rate, which further increases the plating rate. The combined effects of acoustic streaming and

  15. Experimental Investigation of Roughness Effects on Transition Onset and Turbulent Heating Augmentation on a Hemisphere at Mach 6 and Mach 10

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2017-01-01

    An experimental investigation of the effects of distributed surface roughness on boundary-layer transition and turbulent heating has been conducted. Hypersonic wind tunnel testing was performed using hemispherical models with surface roughness patterns simulating those produced by heat shield ablation. Global aeroheating and transition onset data were obtained using phosphor thermography at Mach 6 and Mach 10 over a range of roughness heights and free stream Reynolds numbers sufficient to produce laminar, transitional and turbulent flow. Upstream movement of the transition onset location and increasing heating augmentation over predicted smooth-wall levels were observed with both increasing roughness heights and increasing free stream Reynolds numbers. The experimental heating data are presented herein, as are comparisons to smooth-wall heat transfer distributions from computational flow-field simulations. The transition onset data are also tabulated, and correlations of these data are presented.

  16. Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble.

    PubMed

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-03-01

    The scientific interest toward the study of acoustic bubble is mainly explained by its practical benefit in providing a reactional media favorable to the rapid evolution of chemical mechanism. The evolution of this mechanism is related to the simultaneous and dependent variation of the volume, temperature and pressure within the bubble, retrieved by the resolution of a differential equations system, including among others the thermal balance. This last one is subject to different assumptions, some authors deem simply that the temperature varies adiabatically during the collapsing phase, without considering the reactions heat of the studied mechanism. This paper aims to evaluate the pertinence of neglecting reactions heats in the thermal balance, by analyzing their effect on the variation of radius, temperature, pressure and chemical species amounts. The results show that the introduction of reactions heats conducts to a decrease of the temperature, an increase of the pressure and a reduction of the bubble volume. As a consequence, this leads to a drop of the quantities of free radicals produced by the chemical mechanism evolving within the bubble. This paper also proved that the impact of the consideration of reactions heats is dependent of the frequency and the acoustic amplitude of the ultrasonic wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Physics holo.lab learning experience: using smartglasses for augmented reality labwork to foster the concepts of heat conduction

    NASA Astrophysics Data System (ADS)

    Strzys, M. P.; Kapp, S.; Thees, M.; Klein, P.; Lukowicz, P.; Knierim, P.; Schmidt, A.; Kuhn, J.

    2018-05-01

    Fundamental concepts of thermodynamics rely on abstract physical quantities such as energy, heat and entropy, which play an important role in the process of interpreting thermal phenomena and statistical mechanics. However, these quantities are not covered by human visual perception, and since heat sensation is purely qualitative and easy to deceive, an intuitive understanding often is lacking. Today immersive technologies like head-mounted displays of the newest generation, especially HoloLens, allow for high-quality augmented reality learning experiences, which can overcome this gap in human perception by presenting different representations of otherwise invisible quantities directly in the field of view of the user on the experimental apparatus, which simultaneously avoids a split-attention effect. In a mixed reality (MR) scenario as presented in this paper—which we call a holo.lab—human perception can be extended to the thermal regime by presenting false-color representations of the temperature of objects as a virtual augmentation directly on the real object itself in real-time. Direct feedback to experimental actions of the users in the form of different representations allows for immediate comparison to theoretical principles and predictions and therefore is supposed to intensify the theory–experiment interactions and to increase students’ conceptual understanding. We tested this technology for an experiment on thermal conduction of metals in the framework of undergraduate laboratories. A pilot study with treatment and control groups (N = 59) showed a small positive effect of MR on students’ performance measured with a standardized concept test for thermodynamics, pointing to an improvement of the understanding of the underlying physical concepts. These findings indicate that complex experiments could benefit even more from augmentation. This motivates us to enrich further experiments with MR.

  18. Heat Transfer in a Thermoacoustic Process

    ERIC Educational Resources Information Center

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  19. High-temperature acoustic test facilities and methods

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome

    1994-09-01

    The Wright Laboratory is the Air Force center for air vehicles, responsible for developing advanced technology and incorporating it into new flight vehicles and for continuous technological improvement of operational air vehicles. Part of that responsibility is the problem of acoustic fatigue. With the advent of jet aircraft in the 1950's, acoustic fatigue of aircraft structure became a significant problem. In the 1960's the Wright Laboratory constructed the first large acoustic fatigue test facilities in the United States, and the laboratory has been a dominant factor in high-intensity acoustic testing since that time. This paper discusses some of the intense environments encountered by new and planned Air Force flight vehicles, and describes three new acoustic test facilities of the Wright Laboratory designed for testing structures in these dynamic environments. These new test facilities represent the state of the art in high-temperature, high-intensity acoustic testing and random fatigue testing. They will allow the laboratory scientists and engineers to test the new structures and materials required to withstand the severe environments of captive-carry missiles, augmented lift wings and flaps, exhaust structures of stealth aircraft, and hypersonic vehicle structures well into the twenty-first century.

  20. Pattern-formation under acoustic driving forces

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  1. Benefit assessment of solar-augmented natural gas systems

    NASA Technical Reports Server (NTRS)

    Davis, E. S.; French, R. L.; Sohn, R. L.

    1980-01-01

    Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.

  2. Hybrid Contactless Heating and Levitation

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1985-01-01

    Acoustic and electromagnetic fields applied. In contactless processing apparatus, acoustic and electromagnetic levitating fields employed alternately or simultaneously with amplitude of each controlled to produce various combinations of heating, cooling, and levitation. Apparatus provides rapid heating and cooling or slow heating and cooling for such processes as nucleation, crystallization, incubation, deep undercooling, and heterogeneity control.

  3. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  4. A Parametric Study of the Acoustic Mechanism for Core-collapse Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, A.; Nagakura, H.; Iwakami, W.

    We investigate the criterion for the acoustic mechanism to work successfully in core-collapse supernovae. The acoustic mechanism is an alternative to the neutrino-heating mechanism. It was proposed by Burrows et al., who claimed that acoustic waves emitted by g -mode oscillations in proto-neutron stars (PNS) energize a stalled shock wave and eventually induce an explosion. Previous works mainly studied to which extent the g -modes are excited in the PNS. In this paper, on the other hand, we investigate how strong the acoustic wave needs to be if it were to revive a stalled shock wave. By adding the acousticmore » power as a new axis, we draw a critical surface, which is an extension of the critical curve commonly employed in the context of neutrino heating. We perform both 1D and 2D parametrized simulations, in which we inject acoustic waves from the inner boundary. In order to quantify the power of acoustic waves, we use the extended Myers theory to take neutrino reactions into proper account. We find for the 1D simulations that rather large acoustic powers are required to relaunch the shock wave, since the additional heating provided by the secondary shocks developed from acoustic waves is partially canceled by the neutrino cooling that is also enhanced. In 2D, the required acoustic powers are consistent with those of Burrows et al. Our results seem to imply, however, that it is the sum of neutrino heating and acoustic powers that matters for shock revival.« less

  5. Acoustic field modulation in regenerators

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  6. Generation of Artificial Acoustic-Gravity Waves and Traveling Ionospheric Disturbances in HF Heating Experiments

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.; Cohen, J. A.; Watkins, B. J.

    2015-10-01

    We report the results of our ionospheric HF heating experiments to generate artificial acoustic-gravity waves (AGW) and traveling ionospheric disturbances (TID), which were conducted at the High-frequency Active Auroral Research Program facility in Gakona, Alaska. Based on the data from UHF radar, GPS total electron content, and ionosonde measurements, we found that artificial AGW/TID can be generated in ionospheric modification experiments by sinusoidally modulating the power envelope of the transmitted O-mode HF heater waves. In this case, the modulation frequency needs to be set below the characteristic Brunt-Vaisala frequency at the relevant altitudes. We avoided potential contamination from naturally-occurring AGW/TID of auroral origin by conducting the experiments during geomagnetically quiet time period. We determine that these artificial AGW/TID propagate away from the edge of the heated region with a horizontal speed of approximately 160 m/s.

  7. Two Heat-Transfer Improvements for Gas Liquefiers

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.

    2005-01-01

    Two improvements in heat-transfer design have been investigated with a view toward increasing the efficiency of refrigerators used to liquefy gases. The improvements could contribute to the development of relatively inexpensive, portable oxygen liquefiers for medical use. A description of the heat-transfer problem in a pulse-tube refrigerator is prerequisite to a meaningful description of the first improvement. In a pulse-tube refrigerator in particular, one of in-line configuration heat must be rejected from two locations: an aftercooler (where most of the heat is rejected) and a warm heat exchanger (where a small fraction of the total input power must be rejected as heat). Rejection of heat from the warm heat exchanger can be problematic because this heat exchanger is usually inside a vacuum vessel. When an acoustic-inertance tube is used to provide a phase shift needed in the pulse-tube cooling cycle, another problem arises: Inasmuch as the acoustic power in the acoustic-inertance tube is dissipated over the entire length of the tube, the gas in the tube must be warmer than the warm heat exchanger in order to reject heat at the warm heat exchanger. This is disadvantageous because the increase in viscosity with temperature causes an undesired increase in dissipation of acoustic energy and an undesired decrease in the achievable phase shift. Consequently, the overall performance of the pulse-tube refrigerator decreases with increasing temperature in the acoustic-inertance tube. In the first improvement, the acoustic-inertance tube is made to serve as the warm heat exchanger and to operate in an approximately isothermal condition at a lower temperature, thereby increasing the achievable phase shift and the overall performance of the refrigerator. This is accomplished by placing the acoustic-inertance tube inside another tube and pumping a cooling fluid (e.g., water) in the annular space between the tubes. Another benefit of this improvement is added flexibility of

  8. Research and development of asymmetrical heat transfer augmentation method in radial channels of blades for high temperature gas turbines

    NASA Astrophysics Data System (ADS)

    Shevchenko, I. V.; Rogalev, A. N.; Garanin, I. V.; Vegera, A. N.; Kindra, V. O.

    2017-11-01

    The serpentine-like one and half-pass cooling channel systems are primarily used in blades fabricated by the lost-wax casting process. The heat transfer turbulators like cross-sectional or angled ribs used in channels of the midchord region failed to eliminate the temperature irregularity from the suction and pressure sides, which is reaching 200°C for a first stage blade of the high-pressure turbine for an aircraft engine. This paper presents the results of a numerical and experimental test of an advanced heat transfer augmentation system in radial channels developed for alignment of the temperature field from the suction and pressure sides. A numerical simulation of three-dimensional coolant flow for a wide range of Reynolds numbers was carried out using ANSYS CFX software. Effect of geometrical parameters on the heat removal asymmetry was determined. The test results of a blade with the proposed intensification system conducted in a liquid-metal thermostat confirmed the accuracy of calculations. Based on the experimental data, the dependencies for calculation of heat transfer coefficients to the cooling air in the blade studied were obtained.

  9. Acoustical power amplification and damping by temperature gradients.

    PubMed

    Biwa, Tetsushi; Komatsu, Ryo; Yazaki, Taichi

    2011-01-01

    Ceperley proposed a concept of a traveling wave heat engine ["A pistonless Stirling engine-The traveling wave heat engine," J. Acoust. Soc. Am. 66, 1508-1513 (1979).] that provided a starting point of thermoacoustics today. This paper verifies experimentally his idea through observation of amplification and strong damping of a plane acoustic traveling wave as it passes through axial temperature gradients. The acoustic power gain is shown to obey a universal curve specified by a dimensionless parameter ωτα; ω is the angular frequency and τα is the relaxation time for the gas to thermally equilibrate with channel walls. As an application of his idea, a three-stage acoustic power amplifier is developed, which attains the gain up to 10 with a moderate temperature ratio of 2.3.

  10. Acoustic transducer apparatus with reduced thermal conduction

    NASA Technical Reports Server (NTRS)

    Lierke, Ernst G. (Inventor); Leung, Emily W. (Inventor); Bhat, Balakrishna T. (Inventor)

    1990-01-01

    A horn is described for transmitting sound from a transducer to a heated chamber containing an object which is levitated by acoustic energy while it is heated to a molten state, which minimizes heat transfer to thereby minimize heating of the transducer, minimize temperature variation in the chamber, and minimize loss of heat from the chamber. The forward portion of the horn, which is the portion closest to the chamber, has holes that reduce its cross-sectional area to minimize the conduction of heat along the length of the horn, with the entire front portion of the horn being rigid and having an even front face to efficiently transfer high frequency acoustic energy to fluid in the chamber. In one arrangement, the horn has numerous rows of holes extending perpendicular to the length of horn, with alternate rows extending perpendicular to one another to form a sinuous path for the conduction of heat along the length of the horn.

  11. Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei

    2016-04-01

    Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.

  12. Experimental and numerical investigation of Acoustic streaming (Eckart streaming)

    NASA Astrophysics Data System (ADS)

    Dridi, Walid; Botton, Valery; Henry, Daniel; Ben Hadid, Hamda

    The application of sound waves in the bulk of a fluid can generate steady or quasi-steady flows reffered to as Acoustic streaming flows. We can distinguish two kind of acoustic streaming: The Rayleigh Streaming is generated when a standing acoustic waves interfere with solid walls to give birth to an acoustic boundary layer. Steady recirculations are then driven out of the boundary layer and can be used in micro-gravity, where the free convection is too weak or absent, to enhance the convective heat or mass transfer and cooling the electronic devises [1]. The second kind is the Eckart streaming, which is a flow generated far from the solid boundaries, it can be used to mix a chemical solutions [2], and to drive a viscous liquids in channels [3-4], in micro-gravity area. Our study focuses on the Eckart streaming configuration, which is investigated both numerical and experimental means. The experimental configuration is restricted to the case of a cylindrical non-heated cavity full of water or of a water+glycerol mixture. At the middle of one side of the cavity, a plane ultrasonic transducer generates a 2MHz wave; an absorber is set at the opposite side of the cavity to avoid any reflections. The velocity field is measured with a standard PIV system. [1] P. Vainshtein, M. Fichman and C. Gutfinger, "Acoustic enhancement of heat transfer between two parallel plates", International Journal of Heat and Mass Transfert, 1995, 38(10), 1893. [2] C. Suri, K. Tekenaka, H. Yanagida, Y. Kojima and K. Koyama, "Chaotic mixing generated by acoustic streaming", Ultrasonics, 2002, 40, 393 [3] O.V. Rudenko and A.A. Sukhorukov, "Nonstationnary Eckart streaming and pumping of liquid in ultrasonic field", Acoustical Physics, 1998, 44, 653. [4] Kenneth D. Frampton, Shawn E. Martin and Keith Minor, "The scaling of acoustic streaming for application in micro-fluidic devices", Applied Acoustics, 2003, 64,681

  13. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production.

    PubMed

    Sun, F; Zuo, Y-Z; Ge, J; Xia, J; Li, X-N; Lin, J; Zhang, C; Xu, H-L; Li, J-L

    2018-04-20

    Transport stress affects the animal's metabolism and psychological state. As a pro-survival pathway, the heat shock response (HSR) protects healthy cells from stressors. However, it is unclear whether the HSR plays a role in transport stress-induced heart damage. To evaluate the effects of transport stress on heart damage and HSR protection, newly hatched chicks were treated with transport stress for 2 h, 4 h and 8 h. Transport stress caused decreases in body weight and increases in serum creatine kinase (CK) activity, nitric oxide (NO) content in heart tissue, cardiac nitric oxide syntheses (NOS) activity and NOS isoforms transcription. The mRNA expression of heat shock factors (HSFs, including HSF1-3) and heat shock proteins (HSPs, including HSP25, HSP40, HSP47, HSP60, HSP70, HSP90 and HSP110) in the heart of 2 h transport-treated chicks was upregulated. After 8 h of transport stress in chicks, the transcription levels of the same HSPs and HSF2 were reduced in the heart. It was also found that the changes in the HSP60, HSP70 and HSP90 protein levels had similar tendencies. These results suggested that transport stress augmented NO generation through enhancing the activity of NOS and the transcription of NOS isoforms. Therefore, this study provides new evidence that transport stress induces heart damage in the newly hatched chicks by blocking the cytoprotective HSR and augmenting NO production.

  14. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  15. Underwater Acoustic Carbon Nanotube Thermophone

    DTIC Science & Technology

    2016-09-23

    temperature radiation by the carbon nanotube material chip. [0033] Furthermore, the wooden spacers 20 provide heat insulation between the carbon nanotube...based on an energy conversion of heat to sound. (2) Description of the Prior Art [0004] The principle of thermal acoustic transduction is that when...alternating current is passed through a comparatively thin transducer; periodic heating takes place in the conductor following variations in current

  16. Non-invasive photo acoustic approach for human bone diagnosis.

    PubMed

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via

  17. Numerical Modeling of Electroacoustic Logging Including Joule Heating

    NASA Astrophysics Data System (ADS)

    Plyushchenkov, Boris D.; Nikitin, Anatoly A.; Turchaninov, Victor I.

    It is well known that electromagnetic field excites acoustic wave in a porous elastic medium saturated with fluid electrolyte due to electrokinetic conversion effect. Pride's equations describing this process are written in isothermal approximation. Update of these equations, which allows to take influence of Joule heating on acoustic waves propagation into account, is proposed here. This update includes terms describing the initiation of additional acoustic waves excited by thermoelastic stresses and the heat conduction equation with right side defined by Joule heating. Results of numerical modeling of several problems of propagation of acoustic waves excited by an electric field source with and without consideration of Joule heating effect in their statements are presented. From these results, it follows that influence of Joule heating should be taken into account at the numerical simulation of electroacoustic logging and at the interpretation of its log data.

  18. Acoustic streaming related to minor loss phenomenon in differentially heated elements of thermoacoustic devices

    NASA Astrophysics Data System (ADS)

    Mironov, Mikhail; Gusev, Vitalyi; Auregan, Yves; Lotton, Pierrick; Bruneau, Michel; Piatakov, Pavel

    2002-08-01

    It is demonstrated that the differentially heated stack, the heart of all thermoacoustic devices, provides a source of streaming additional to those associated with Reynolds stresses in quasi-unidirectional gas flow. This source of streaming is related to temperature-induced asymmetry in the generation of vortices and turbulence near the stack ends. The asymmetry of the hydrodynamic effects in an otherwise geometrically symmetric stack is due to the temperature difference between stack ends. The proposed mechanism of streaming excitation in annular thermoacoustic devices operates even in the absence of thermo-viscous interaction of sound waves with resonator walls. copyright 2002 Acoustical Society of America.

  19. Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling

    NASA Technical Reports Server (NTRS)

    Lee, M. C. (Inventor)

    1985-01-01

    Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.

  20. Effects and modeling of phonetic and acoustic confusions in accented speech.

    PubMed

    Fung, Pascale; Liu, Yi

    2005-11-01

    Accented speech recognition is more challenging than standard speech recognition due to the effects of phonetic and acoustic confusions. Phonetic confusion in accented speech occurs when an expected phone is pronounced as a different one, which leads to erroneous recognition. Acoustic confusion occurs when the pronounced phone is found to lie acoustically between two baseform models and can be equally recognized as either one. We propose that it is necessary to analyze and model these confusions separately in order to improve accented speech recognition without degrading standard speech recognition. Since low phonetic confusion units in accented speech do not give rise to automatic speech recognition errors, we focus on analyzing and reducing phonetic and acoustic confusability under high phonetic confusion conditions. We propose using likelihood ratio test to measure phonetic confusion, and asymmetric acoustic distance to measure acoustic confusion. Only accent-specific phonetic units with low acoustic confusion are used in an augmented pronunciation dictionary, while phonetic units with high acoustic confusion are reconstructed using decision tree merging. Experimental results show that our approach is effective and superior to methods modeling phonetic confusion or acoustic confusion alone in accented speech, with a significant 5.7% absolute WER reduction, without degrading standard speech recognition.

  1. Heat treatment versus properties studies associated with the Inconel 718 PBF acoustic filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolik, G.R.; Reuter, W.G.

    PBF acoustic filter Unit No. 1 cracked when heat treatment was attempted. The effects of prior thermal cycling, solution anneal temperature, and cooling rate from solution anneals were investigated. The investigations concerned influences of the above variables upon both 1400$sup 0$F stress rupture solution- annealed properties and room temperature age-hardened properties. 1400$sup 0$F stress rupture properties were of interest to assist the prevention of cracking during heat treatments. Room temperature age-hardened properties were needed to ensure that design requirement would be provided. Prior thermal cycling was investigated to determine if extra thermal cycles would be detrimental to the repaired filter.more » Slow furnace cools were considered as a means of reducing thermal stresses. Effects of solution annealing at 2000 and 1900$sup 0$F were also determined. Test results showed that slow cooling rates would not only reduce thermal stresses but also improve 1400$sup 0$F ductility. A modified aging treatment was established which provided the required 145 ksi room temperature yield strength for the slowly cooled material. Prior cooling did not degrade final age-hardened room temperature tensile or impact properties. (auth)« less

  2. Turbulent resistivity, diffusion and heating

    NASA Technical Reports Server (NTRS)

    Fried, B. D.; Kennel, C. F.; Mackenzie, K.; Coroniti, F. V.; Kindel, J. M.; Stenzel, R.; Taylor, R. J.; White, R.; Wong, A. Y.; Bernstein, W.

    1971-01-01

    Experimental and theoretical studies are reported on ion acoustic and ion cyclotron turbulence and their roles in anomalous resistivity, viscosity, diffusion and heating and in the structure of collisionless electrostatic shocks. Resistance due to ion acoustic turbulence has been observed in experiments with a streaming cesium plasma in which electron current, potential rise due to turbulent resistivity, spectrum of unstable ion acoustic waves, and associated electron heating were all measured directly. Kinetic theory calculations for an expanding, unstable plasma, give results in agreement with the experiment. In a strong magnetic field, with T sub e/T sub i approximately 1 and current densities typical for present Tokomaks, the plasma is stable to ion acoustic but unstable to current driven electrostatic ion cyclotron waves. Relevant characteristics of these waves are calculated and it is shown that for ion, beta greater than m sub e/m sub i, the electromagnetic ion cyclotron wave has a lower instability threshold than the electrostatic one. However, when ion acoustic turbulence is present experiments with double plasma devices show rapid anomalous heating of an ion beam streaming through a plasma.

  3. Acoustic measurement of bubble size in an inkjet printhead.

    PubMed

    Jeurissen, Roger; van der Bos, Arjan; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; de Jong, Jos; Versluis, Michel; Lohse, Detlef

    2009-11-01

    The volume of a bubble in a piezoinkjet printhead is measured acoustically. The method is based on a numerical model of the investigated system. The piezo not only drives the system but it is also used as a sensor by measuring the current it generates. The numerical model is used to predict this current for a given bubble volume. The inverse problem is to infer the bubble volume from an experimentally obtained piezocurrent. By solving this inverse problem, the size and position of the bubble can thus be measured acoustically. The method is experimentally validated with an inkjet printhead that is augmented with a glass connection channel, through which the bubble was observed optically, while at the same time the piezocurrent was measured. The results from the acoustical measurement method correspond closely to the results from the optical measurement.

  4. Numerical study of droplet evaporation in an acoustic levitator

    NASA Astrophysics Data System (ADS)

    Bänsch, Eberhard; Götz, Michael

    2018-03-01

    We present a finite element method for the simulation of all relevant processes of the evaporation of a liquid droplet suspended in an acoustic levitation device. The mathematical model and the numerical implementation take into account heat and mass transfer across the interface between the liquid and gaseous phase and the influence of acoustic streaming on this process, as well as the displacement and deformation of the droplet due to acoustic radiation pressure. We apply this numerical method to several theoretical and experimental examples and compare our results with the well-known d2-law for the evaporation of spherical droplets and with theoretical predictions for the acoustic streaming velocity. We study the influence of acoustic streaming on the distribution of water vapor and temperature in the levitation device, with special attention to the vapor distribution in the emerging toroidal vortices. We also compare the evaporation rate of a droplet with and without acoustic streaming, as well as the evaporation rates in dependence of different temperatures and sound pressure levels. Finally, a simple model of protein inactivation due to heat damage is considered and studied for different evaporation settings and their respective influence on protein damage.

  5. Acoustical-Levitation Chamber for Metallurgy

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E.; Wang, T. G.; Elleman, D. D.; Jacobi, N.

    1983-01-01

    Sample moved to different positions for heating and quenching. Acoustical levitation chamber selectively excited in fundamental and second-harmonic longitudinal modes to hold sample at one of three stable postions: A, B, or C. Levitated object quickly moved from one of these positions to another by changing modes. Object rapidly quenched at A or C after heating in furnace region at B.

  6. Acoustic Disturbances in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Zweibel, Ellen G.; Mirnov, Vladimir V.; Ruszkowski, Mateusz; Reynolds, Christopher S.; Yang, H.-Y. Karen; Fabian, Andrew C.

    2018-05-01

    Galaxy cluster cores are pervaded by hot gas which radiates at far too high a rate to maintain any semblance of a steady state; this is referred to as the cooling flow problem. Of the many heating mechanisms that have been proposed to balance radiative cooling, one of the most attractive is the dissipation of acoustic waves generated by active galactic nuclei. Fabian et al. showed that if the waves are nearly adiabatic, wave damping due to heat conduction and viscosity must be well below standard Coulomb rates in order to allow the waves to propagate throughout the core. Because of the importance of this result, we have revisited wave dissipation under galaxy cluster conditions in a way that accounts for the self-limiting nature of dissipation by electron thermal conduction, allows the electron and ion temperature perturbations in the waves to evolve separately, and estimates kinetic effects by comparing to a semicollisionless theory. While these effects considerably enlarge the toolkit for analyzing observations of wavelike structures and developing a quantitative theory for wave heating, the drastic reduction of transport coefficients proposed in Fabian et al. remains the most viable path to acoustic wave heating of galaxy cluster cores.

  7. Dynamics of acoustic-convective drying of sunflower cake

    NASA Astrophysics Data System (ADS)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  8. Application of scanning acoustic microscopy to advanced structural ceramics

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1987-01-01

    A review is presentod of research investigations of several acoustic microscopy techniques for application to structural ceramics for advanced heat engines. Results obtained with scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM) are compared. The techniques were evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described with emphasis on statistics of detectability of flaws that constitute potential fracture origins.

  9. Gas-Generator Augmented Expander Cycle Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2011-01-01

    An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.

  10. An augmented Young-Laplace model of an evaporating meniscus in a micro-channel with high heat flux

    NASA Technical Reports Server (NTRS)

    Wayner, P. C., Jr.; Plawsky, J.; Schonberg, J. A.; Dasgupta, S.

    1993-01-01

    High flux evaporations from a steady meniscus formed in a 2 micron channel is modeled using the augmented Young-Laplace equation. The heat flux is found to be a function of the long range van der Waals dispersion force which represents interfacial conditions between heptane and various substrates. Heat fluxes of (1.3-1.6) x 10(exp 6) W/m(exp 2) based on the width of the channel are obtained for heptane completely wetting the substrate at 100 C. Small channels are used to obtain these large fluxes. Even though the real contact angle is 0 deg, the apparent contact angle is found to vary between 24.8 deg and 25.6 deg. The apparent contact angle, which represents viscous losses near the contact line, has a large effect on the heat flow rate because of its effect on capillary suction and the area of the meniscus. The interfacial heat flux is modeled using kinetic theory for the evaporation rate. The superheated state depends on the temperature and the pressure of the liquid phase. The liquid pressure differs from the pressure of the vapor phase due to capillarity and long range van der Waals dispersion forces which are relevant in the ultra think film formed at the leading edge of the meniscus. Important pressure gradients in the thin film cause a substantial apparent contact angle for a complete wetting system. The temperature of the liquid is related to the evaporation rate and to the substrate temperature through the steady heat conduction equation. Conduction in the liquid phase is calculated using finite element analysis except in the vicinity of the thin film. A lubrication theory solution for the thin film is combined with the finite element analysis by the method of matched asymptotic expansions.

  11. Analysis of Aeroheating Augmentation due to Reaction Control System Jets on Orion Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Buck, Gregory M.; Decaro, Anthony D.

    2009-01-01

    The analysis of effects of the reaction control system jet plumes on aftbody heating of Orion entry capsule is presented. The analysis covered hypersonic continuum part of the entry trajectory. Aerothermal environments at flight conditions were evaluated using Langley Aerothermal Upwind Relaxation Algorithm (LAURA) code and Data Parallel Line Relaxation (DPLR) algorithm code. Results show a marked augmentation of aftbody heating due to roll, yaw and aft pitch thrusters. No significant augmentation is expected due to forward pitch thrusters. Of the conditions surveyed the maximum heat rate on the aftshell is expected when firing a pair of roll thrusters at a maximum deceleration condition.

  12. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.

    PubMed

    Trujillo, Francisco Javier; Knoerzer, Kai

    2011-11-01

    High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  13. Contrast Enhancement for Thermal Acoustic Breast Cancer Imaging via Resonant Stimulation

    DTIC Science & Technology

    2010-03-01

    thermal acoustic signals tend to be weak. However, when the tumor is excited into resonance via EM stimulation, the effective acoustic scattering...the effective acoustic scattering cross-section may increase by a factor in excess of 100 based on predic tions for microsphere-based ultrasound...not apply, the heat conduction effects should be taken into consideration in calculating the pre ssure wave generated by electrom agnetic illum

  14. Behaviour of a Premixed Flame Subjected to Acoustic Oscillations

    PubMed Central

    Qureshi, Shafiq R.; Khan, Waqar A.; Prosser, Robert

    2013-01-01

    In this paper, a one dimensional premixed laminar methane flame is subjected to acoustic oscillations and studied. The purpose of this analysis is to investigate the effects of acoustic perturbations on the reaction rates of different species, with a view to their respective contribution to thermoacoustic instabilities. Acoustically transparent non reflecting boundary conditions are employed. The flame response has been studied with acoustic waves of different frequencies and amplitudes. The integral values of the reaction rates, the burning velocities and the heat release of the acoustically perturbed flame are compared with the unperturbed case. We found that the flame's sensitivity to acoustic perturbations is greatest when the wavelength is comparable to the flame thickness. Even in this case, the perturbations are stable with time. We conclude that acoustic fields acting on the chemistry do not contribute significantly to the emergence of large amplitude pressure oscillations. PMID:24376501

  15. Acoustical Modifications for the Classroom.

    ERIC Educational Resources Information Center

    Crandell, Carl C.; Smaldino, Joseph J.

    1999-01-01

    This article reviews procedures for evaluating, measuring, and modifying noise and reverberation levels in the classroom environment. Recommendations include: relocating children away from high noise sources, such as fans, air conditioners, heating ducts, and faulty lighting fixtures, using sound-absorbing materials, using acoustical ceiling tile…

  16. Human Augmentics: augmenting human evolution.

    PubMed

    Kenyon, Robert V; Leigh, Jason

    2011-01-01

    Human Augmentics (HA) refers to technologies for expanding the capabilities, and characteristics of humans. One can think of Human Augmentics as the driving force in the non-biological evolution of humans. HA devices will provide technology to compensate for human biological limitations either natural or acquired. The strengths of HA lie in its applicability to all humans. Its interoperability enables the formation of ecosystems whereby augmented humans can draw from other realms such as "the Cloud" and other augmented humans for strength. The exponential growth in new technologies portends such a system but must be designed for interaction through the use of open-standards and open-APIs for system development. We discuss the conditions needed for HA to flourish with an emphasis on devices that provide non-biological rehabilitation.

  17. Acoustic system for material transport

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E. H.; Wang, T. G.; Elleman, D. D.; Jacobi, N. (Inventor)

    1983-01-01

    An object within a chamber is acoustically moved by applying wavelengths of different modes to the chamber to move the object between pressure wells formed by the modes. In one system, the object is placed in one end of the chamber while a resonant mode, applied along the length of the chamber, produces a pressure well at the location. The frequency is then switched to a second mode that produces a pressure well at the center of the chamber, to draw the object. When the object reaches the second pressure well and is still traveling towards the second end of the chamber, the acoustic frequency is again shifted to a third mode (which may equal the first model) that has a pressure well in the second end portion of the chamber, to draw the object. A heat source may be located near the second end of the chamber to heat the sample, and after the sample is heated it can be cooled by moving it in a corresponding manner back to the first end of the chamber. The transducers for levitating and moving the object may be all located at the cool first end of the chamber.

  18. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1998-01-01

    This report contains two independent sections. Part one is titled "Terrestrial and Microgravity Pool Boiling Heat Transfer and Critical heat flux phenomenon in an acoustic standing wave." Terrestrial and microgravity pool boiling heat transfer experiments were performed in the presence of a standing acoustic wave from a platinum wire resistance heater using degassed FC-72 Fluorinert liquid. The sound wave was created by driving a half wavelength resonator at a frequency of 10.15 kHz. Microgravity conditions were created using the 2.1 second drop tower on the campus of Washington State University. Burnout of the heater wire, often encountered with heat flux controlled systems, was avoided by using a constant temperature controller to regulate the heater wire temperature. The amplitude of the acoustic standing wave was increased from 28 kPa to over 70 kPa and these pressure measurements were made using a hydrophone fabricated with a small piezoelectric ceramic. Cavitation incurred during experiments at higher acoustic amplitudes contributed to the vapor bubble dynamics and heat transfer. The heater wire was positioned at three different locations within the acoustic field: the acoustic node, antinode, and halfway between these locations. Complete boiling curves are presented to show how the applied acoustic field enhanced boiling heat transfer and increased critical heat flux in microgravity and terrestrial environments. Video images provide information on the interaction between the vapor bubbles and the acoustic field. Part two is titled, "Design and qualification of a microscale heater array for use in boiling heat transfer." This part is summarized herein. Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of

  19. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    NASA Astrophysics Data System (ADS)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  20. Air Coupled Acoustic Thermography (ACAT) Inspection Technique

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph; Winfree, William P.; Yost, William T.

    2007-01-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of plus or minus 6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  1. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. High-temperature self-circulating thermoacoustic heat exchanger

    NASA Astrophysics Data System (ADS)

    Backhaus, S.; Swift, G. W.; Reid, R. S.

    2005-07-01

    Thermoacoustic and Stirling engines and refrigerators use heat exchangers to transfer heat between the oscillating flow of their thermodynamic working fluids and external heat sources and sinks. An acoustically driven heat-exchange loop uses an engine's own pressure oscillations to steadily circulate its own thermodynamic working fluid through a physically remote high-temperature heat source without using moving parts, allowing for a significant reduction in the cost and complexity of thermoacoustic and Stirling heat exchangers. The simplicity and flexibility of such heat-exchanger loops will allow thermoacoustic and Stirling machines to access diverse heat sources and sinks. Measurements of the temperatures at the interface between such a heat-exchange loop and the hot end of a thermoacoustic-Stirling engine are presented. When the steady flow is too small to flush out the mixing chamber in one acoustic cycle, the heat transfer to the regenerator is excellent, with important implications for practical use.

  3. Speech evaluation after palatal augmentation in patients undergoing glossectomy.

    PubMed

    de Carvalho-Teles, Viviane; Sennes, Luiz Ubirajara; Gielow, Ingrid

    2008-10-01

    To assess, in patients undergoing glossectomy, the influence of the palatal augmentation prosthesis on the speech intelligibility and acoustic spectrographic characteristics of the formants of oral vowels in Brazilian Portuguese, specifically the first 3 formants (F1 [/a,e,u/], F2 [/o,ó,u/], and F3 [/a,ó/]). Speech evaluation with and without a palatal augmentation prosthesis using blinded randomized listener judgments. Tertiary referral center. Thirty-six patients (33 men and 3 women) aged 30 to 80 (mean [SD], 53.9 [10.5]) years underwent glossectomy (14, total glossectomy; 12, total glossectomy and partial mandibulectomy; 6, hemiglossectomy; and 4, subtotal glossectomy) with use of the augmentation prosthesis for at least 3 months before inclusion in the study. Spontaneous speech intelligibility (assessed by expert listeners using a 4-category scale) and spectrographic formants assessment. We found a statistically significant improvement of spontaneous speech intelligibility and the average number of correctly identified syllables with the use of the prosthesis (P < .05). Statistically significant differences occurred for the F1 values of the vowels /a,e,u/; for F2 values, there was a significant difference of the vowels /o,ó,u/; and for F3 values, there was a significant difference of the vowels /a,ó/ (P < .001). The palatal augmentation prosthesis improved the intelligibility of spontaneous speech and syllables for patients who underwent glossectomy. It also increased the F2 and F3 values for all vowels and the F1 values for the vowels /o,ó,u/. This effect brought the values of many vowel formants closer to normal.

  4. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  5. Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth's surface and influence of this heating on the wave propagation conditions

    NASA Astrophysics Data System (ADS)

    Karpov, I. V.; Kshevetskii, S. P.

    2017-11-01

    The propagation of acoustic-gravity waves (AGW) from a source on the Earth's surface to the upper atmosphere is investigated with methods of mathematical modeling. The applied non-linear model of wave propagation in the atmosphere is based on numerical integration of a complete set of two-dimensional hydrodynamic equations. The source on the Earth's surface generates waves with frequencies near to the Brunt-Vaisala frequency. The results of simulation have revealed that some region of heating the atmosphere by propagated upward and dissipated AGWs arises above the source at altitudes nearby of 200 km. The horizontal scale of this heated region is about 1000 km in the case of the source that radiates AGWs during approximately 1 h. The appearing of the heated region has changed the conditions of AGW propagation in the atmosphere. When the heated region in the upper atmosphere has been formed, further a waveguide regime of propagation of waves with the periods shorter the Brunt-Vaisala period is realized. The upper boundary of the wave-guide coincides with the arisen heated region in the upper atmosphere. The considered mechanism of formation of large-scale disturbances in the upper atmosphere may be useful for explanation of connections of processes in the upper and lower atmospheric layers.

  6. Water augmented indirectly-fired gas turbine systems and method

    DOEpatents

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  7. Acoustically and Electrokinetically Driven Transport in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin

    Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the

  8. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  9. Towards Pervasive Augmented Reality: Context-Awareness in Augmented Reality.

    PubMed

    Grubert, Jens; Langlotz, Tobias; Zollmann, Stefanie; Regenbrecht, Holger

    2017-06-01

    Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience. Therefore, in this paper, we present the concept of Pervasive Augmented Reality, aiming to provide such an experience by sensing the user's current context and adapting the AR system based on the changing requirements and constraints. We present a taxonomy for Pervasive Augmented Reality and context-aware Augmented Reality, which classifies context sources and context targets relevant for implementing such a context-aware, continuous Augmented Reality experience. We further summarize existing approaches that contribute towards Pervasive Augmented Reality. Based our taxonomy and survey, we identify challenges for future research directions in Pervasive Augmented Reality.

  10. Acoustical experiment of yogurt fermentation process.

    PubMed

    Ogasawara, H; Mizutani, K; Ohbuchi, T; Nakamura, T

    2006-12-22

    One of the important factors through food manufacturing is hygienic management. Thus, food manufactures prove their hygienic activities by taking certifications like a Hazard Analysis and Critical Control Point (HACCP). This concept also applies to food monitoring. Acoustical measurements have advantage for other measurement in food monitoring because they make it possible to measure with noncontact and nondestructive. We tried to monitor lactic fermentation of yogurt by a probing sensor using a pair of acoustic transducers. Temperature of the solution changes by the reaction heat of fermentation. Consequently the sound velocity propagated through the solution also changes depending on the temperature. At the same time, the solution change its phase from liquid to gel. The transducers usage in the solution indicates the change of the temperature as the change of the phase difference between two transducers. The acoustic method has advantages of nondestructive measurement that reduces contamination of food product by measuring instrument. The sensor was inserted into milk with lactic acid bacterial stain of 19 degrees C and monitored phase retardation of propagated acoustic wave and its temperature with thermocouples in the mild. The monitoring result of fermentation from milk to Caspian Sea yogurt by the acoustic transducers with the frequency of 3.7 MHz started to show gradient change in temperature caused by reaction heat of fermentation but stop the gradient change at the end although the temperature still change. The gradient change stopped its change because of phase change from liquid to gel. The present method will be able to measure indirectly by setting transducers outside of the measuring object. This noncontact sensing method will have great advantage of reduces risk of food contamination from measuring instrument because the measurement probes are set out of fermentation reactor or food containers. Our proposed method will contribute to the

  11. The behavior of vapor bubbles during boiling enhanced with acoustics and open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc K.; Glezer, Ari

    2012-11-01

    Boiling heat transfer on a submerged heated surface is enhanced by combining a grid of surface micromachined open channels and ultrasonic acoustic actuation to control the formation and evolution of vapor bubbles and to inhibit the instability that leads to film boiling at the critical heat flux (CHF). The microchannels provide nucleation sites for vapor bubble formation and enable the entrainment of bulk subcooled fluid to these sites for sustained evaporation. Acoustic actuation excites interfacial oscillations of the detached bubbles and leads to accelerated condensation in the bulk fluid, thereby limiting the formation of vapor columns that precede the CHF instability. The combined effects of microchannels and acoustic actuation are investigated experimentally with emphasis on bubble nucleation, growth, detachment, and condensation. It is shown that this hybrid approach leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. A large-scale model of the microchannel grid reveals details of the flow near the nucleation site and shows that the presence of the microchannels decreases the surface superheat at a given heat flux. Supported by ONR.

  12. Electrohydrodynamic convective heat transfer in a square duct.

    PubMed

    Grassi, Walter; Testi, Daniele

    2009-04-01

    Laminar to weakly turbulent forced convection in a square duct heated from the bottom is strengthened by ion injection from an array of high-voltage points opposite the heated strip. Both positive and negative ion injection are activated within the working liquid HFE-7100 (C(4)F(9)OCH(3)), with transiting electrical currents on the order of 0.1 mA. Local temperatures on the heated wall are measured by liquid crystal thermography. The tests are conducted in a Reynolds number range from 510 to 12,100. In any case, heat transfer is dramatically augmented, almost independently from the flow rate. The pressure drop increase caused by the electrohydrodynamically induced flow is also measured. A profitable implementation of the technique in the design of heat sinks and heat exchangers is foreseen; possible benefits are pumping power reduction, size reduction, and heat exchange capability augmentation.

  13. Combustion-acoustic stability analysis for premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth

    1995-01-01

    Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.

  14. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy.

    PubMed

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-06-27

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction.

  15. Nonlinear Acoustical Assessment of Precipitate Nucleation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    2004-01-01

    The purpose of the present work is to show that measurements of the acoustic nonlinearity parameter in heat treatable alloys as a function of heat treatment time can provide quantitative information about the kinetics of precipitate nucleation and growth in such alloys. Generally, information on the kinetics of phase transformations is obtained from time-sequenced electron microscopical examination and differential scanning microcalorimetry. The present nonlinear acoustical assessment of precipitation kinetics is based on the development of a multiparameter analytical model of the effects on the nonlinearity parameter of precipitate nucleation and growth in the alloy system. A nonlinear curve fit of the model equation to the experimental data is then used to extract the kinetic parameters related to the nucleation and growth of the targeted precipitate. The analytical model and curve fit is applied to the assessment of S' precipitation in aluminum alloy 2024 during artificial aging from the T4 to the T6 temper.

  16. Tunable two-dimensional acoustic meta-structure composed of funnel-shaped unit cells with multi-band negative acoustic property

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin; Kim, Boseung; Min, Dongki; Park, Junhong

    2015-10-01

    This paper presents a two-dimensional heat-exhaust and sound-proof acoustic meta-structure exhibiting tunable multi-band negative effective mass density. The meta-structure was composed of periodic funnel-shaped units in a square lattice. Each unit cell operates simultaneously as a Helmholtz resonator (HR) and an extended pipe chamber resonator (EPCR), leading to a negative effective mass density creating bandgaps for incident sound energy dissipation without transmission. This structure allowed large heat-flow through the cross-sectional area of the extended pipe since the resonance was generated by acoustic elements without using solid membranes. The pipes were horizontally directed to a flow source to enable small flow resistance for cooling. Measurements of the sound transmission were performed using a two-load, four-microphone method for a unit cell and small reverberation chamber for two-dimensional panel to characterize the acoustic performance. The effective mass density showed significant frequency dependent variation exhibiting negative values at the specific bandgaps, while the effective bulk modulus was not affected by the resonator. Theoretical models incorporating local resonances in the multiple resonator units were proposed to analyze the noise reduction mechanism. The acoustic meta-structure parameters to create broader frequency bandgaps were investigated using the theoretical model. The negative effective mass density was calculated to investigate the creation of the bandgaps. The effects of design parameters such as length, cross-sectional area, and volume of the HR; length and cross-sectional area of the EPCR were analyzed. To maximize the frequency band gap, the suggested acoustic meta-structure panel, small neck length, and cross-sectional area of the HR, large EPCR length was advantageous. The bandgaps became broader when the two resonant frequencies were similar.

  17. Drop evaporation in a single-axis acoustic levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Croonquist, A. P.

    1990-01-01

    A 20 kHz single-axis acoustic positioner is used to levitate aqueous-solution drops (volumes less than or approximately equal to 100 micro-liters). Drop evaporation rates are measured under ambient, isothermal conditions for different relative humidities. Acoustic convection around the levitated sample enhances the mass loss over that due to natural convection and diffusion. A theoretical treatment of the mass flow is developed in analogy to previous studies of the heat transfer from a sphere in an acoustic field. Predictions of the enhanced mass loss, in the form of Nusselt (Sherwood) numbers, are compared with observed rages of drop shrinking. The work is part of an ESA crystal growth from levitated solution drops.

  18. Modeling of Oil Output Intensification in Porous Permeable Medium at Acoustical Stimulation from a Well

    NASA Astrophysics Data System (ADS)

    Maksimov, German A.; Radchenko, Aleksei V.

    2006-05-01

    Acoustical stimulation (AS) of oil production rate from a well is perspective technology for oil industry but physical mechanisms of acoustical action are not understood clear due to complex character of the phenomena. In practice the role of these mechanisms is appeared non-directly in the form of additional oil output. Thus the validity examination of any physical model has to be carried out as with account of mechanism of acoustic action by itself as well with account of previous and consequent stages dealt with fluid filtration into a well. The advanced model of physical processes taking place at acoustical stimulation is considered in the framework of heating mechanism of acoustical action, but for two-component fluid in porous permeable media. The porous fluid is considered as consisted of light and heavy hydrocarbonaceous phases, which are in a thermodynamic equilibrium. Filtration or acoustical stimulation can change equilibrium balance between phases so the heavy phase can be precipitated on pores walls or dissolved. The set of acoustical, heat and filtration tasks were solved numerically to describe oil output from a well — the final result of acoustical action, which can be compared with experimental data. It is shown that the suggested numerical model allows us to reproduce the basic features of fluid filtration in a well before during and after acoustical stimulation.

  19. A thermoacoustic-Stirling heat engine: detailed study

    PubMed

    Backhaus; Swift

    2000-06-01

    A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood.

  20. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    PubMed

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  1. Effect of acoustic streaming on the mass transfer from a sublimating sphere

    NASA Astrophysics Data System (ADS)

    Kawahara, N.; Yarin, A. L.; Brenn, G.; Kastner, O.; Durst, F.

    2000-04-01

    The effect of the acoustic streaming on the mass transfer from the surface of a sphere positioned in an ultrasonic acoustic levitator is studied both experimentally and theoretically. Acoustic levitation using standing ultrasonic waves is an experimental tool for studying the heat and mass transfer from small solid or liquid samples, because it allows an almost steady positioning of a sample at a fixed location in space. However, the levitator introduces some difficulties. One of the main problems with acoustic levitation is that an acoustic streaming is induced near the sample surface, which affects the heat and mass transfer rates, as characterized by increased Nusselt and Sherwood numbers. The transfer rates are not uniform along the sample surface, and the aim of the present study is to quantify the spatial Sherwood number distribution over the surface of a sphere. The experiments are based on the measurement of the surface shape of a sphere layered with a solid substance as a function of time using a charge-coupled device (CCD) camera with backlighting. The sphere used in this research is a glass sphere layered with a volatile solid substance (naphthalene or camphor). The local mass transfer from the surface both with and without an ultrasonic acoustic field is investigated in order to evaluate the effect of the acoustic streaming. The experimental results are compared with predictions following from the theory outlined [A. L. Yarin, M. Pfaffenlehner, and C. Tropea, J. Fluid Mech. 356, 65 (1998); A. L. Yarin, G. Brenn, O. Kastner, D. Rensink, and C. Tropea, ibid. 399, 151 (1999)] which describes the acoustic field and the resulting acoustic streaming, and the mass transfer at the surface of particles and droplets located in an acoustic levitator. The results are also compared with the experimental data and with the theoretical predictions of Burdukov and Nakoryakov [J. Appl. Mech. Tech. Phys. 6, 51 (1965)], which are valid only in the case of spherical

  2. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    A two-year study of noise production in a long tubular burner is described. The research was motivated by an interest in understanding and eventually reducing core noise in gas turbine engines. The general approach is to employ an acoustic source/propagation model to interpret the sound pressure spectrum in the acoustic far field of the burner in terms of the source spectrum that must have produced it. In the model the sources are assumed to be due uniquely to the unsteady component of combustion heat release; thus only direct combustion-noise is considered. The source spectrum is then the variation with frequency of the thermal-acoustic efficiency, defined as the fraction of combustion heat release which is converted into acoustic energy at a given frequency. The thrust of the research was to study the variation of the source spectrum with the design and operating parameters of the burner.

  3. Ion acoustic waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Plasma wave measurements on the Helios 1 and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are shortwavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic wave turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered.

  4. Determining Transmission Loss from Measured External and Internal Acoustic Environments

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler; Smith, A. M.

    2012-01-01

    An estimate of the internal acoustic environment in each internal cavity of a launch vehicle is needed to ensure survivability of Space Launch System (SLS) avionics. Currently, this is achieved by using the noise reduction database of heritage flight vehicles such as the Space Shuttle and Saturn V for liftoff and ascent flight conditions. Marshall Space Flight Center (MSFC) is conducting a series of transmission loss tests to verify and augment this method. For this test setup, an aluminum orthogrid curved panel representing 1/8th of the circumference of a section of the SLS main structure was mounted in between a reverberation chamber and an anechoic chamber. Transmission loss was measured across the panel using microphones. Data measured during this test will be used to estimate the internal acoustic environments for several of the SLS launch vehicle internal spaces.

  5. Acoustic waves in M dwarfs: Maintaining a corona

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Cheng, Q. Q.

    1994-01-01

    We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.

  6. Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites.

    PubMed

    Guo, Peijun; Stoumpos, Constantinos C; Mao, Lingling; Sadasivam, Sridhar; Ketterson, John B; Darancet, Pierre; Kanatzidis, Mercouri G; Schaller, Richard D

    2018-05-22

    Two-dimensional Ruddlesden-Popper organic-inorganic hybrid layered perovskites (2D RPs) are solution-grown semiconductors with prospective applications in next-generation optoelectronics. The heat-carrying, low-energy acoustic phonons, which are important for heat management of 2D RP-based devices, have remained unexplored. Here we report on the generation and propagation of coherent longitudinal acoustic phonons along the cross-plane direction of 2D RPs, following separate characterizations of below-bandgap refractive indices. Through experiments on single crystals of systematically varied perovskite layer thickness, we demonstrate significant reduction in both group velocity and propagation length of acoustic phonons in 2D RPs as compared to the three-dimensional methylammonium lead iodide counterpart. As borne out by a minimal coarse-grained model, these vibrational properties arise from a large acoustic impedance mismatch between the alternating layers of perovskite sheets and bulky organic cations. Our results inform on thermal transport in highly impedance-mismatched crystal sub-lattices and provide insights towards design of materials that exhibit highly anisotropic thermal dissipation properties.

  7. Analysis of Heat Transfers inside Counterflow Plate Heat Exchanger Augmented by an Auxiliary Fluid Flow

    PubMed Central

    Khaled, A.-R. A.

    2014-01-01

    Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572

  8. Analysis of heat transfers inside counterflow plate heat exchanger augmented by an auxiliary fluid flow.

    PubMed

    Khaled, A-R A

    2014-01-01

    Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.

  9. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    PubMed

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.

  10. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    An acoustic source/propagation model is used to interpret measured noise spectra from a long turbulent burner. The acoustic model is based on the perturbation solution of the equations describing the unsteady one-dimensional flow of an inviscid ideal gas with a distributed heat source. The model assumes that the measured noise spectra are due uniquely to the unsteady component of combustion heat release. The model was applied to a long cylindrical hydrogen burner operating over a range of power levels between 4.5 kW and 22.3 kW. Acoustic impedances at the inlet to the burner and at the exit of the tube downstream of the burner were measured and are used as boundary conditions for the model. These measured impedances are also presented.

  11. Capabilities, Design, Construction and Commissioning of New Vibration, Acoustic, and Electromagnetic Capabilities Added to the World's Largest Thermal Vacuum Chamber at NASA's Space Power Facility

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Ludwiczak, Damian R.; Carek, Gerald A.; Sorge, Richard N.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    NASA s human space exploration plans developed under the Exploration System Architecture Studies in 2005 included a Crew Exploration Vehicle launched on an Ares I launch vehicle. The mass of the Crew Exploration Vehicle and trajectory of the Ares I coupled with the need to be able to abort across a large percentage of the trajectory generated unprecedented testing requirements. A future lunar lander added to projected test requirements. In 2006, the basic test plan for Orion was developed. It included several types of environment tests typical of spacecraft development programs. These included thermal-vacuum, electromagnetic interference, mechanical vibration, and acoustic tests. Because of the size of the vehicle and unprecedented acoustics, NASA conducted an extensive assessment of options for testing, and as result, chose to augment the Space Power Facility at NASA Plum Brook Station, of the John H. Glenn Research Center to provide the needed test capabilities. The augmentation included designing and building the World s highest mass capable vibration table, the highest power large acoustic chamber, and adaptation of the existing World s largest thermal vacuum chamber as a reverberant electromagnetic interference test chamber. These augmentations were accomplished from 2007 through early 2011. Acceptance testing began in Spring 2011 and will be completed in the Fall of 2011. This paper provides an overview of the capabilities, design, construction and acceptance of this extraordinary facility.

  12. On the axisymmetric stability of heated supersonic round jets

    PubMed Central

    2016-01-01

    We perform an inviscid, spatial stability analysis of supersonic, heated round jets with the mean properties assumed uniform on either side of the jet shear layer, modelled here via a cylindrical vortex sheet. Apart from the hydrodynamic Kelvin–Helmholtz (K–H) wave, the spatial growth rates of the acoustically coupled supersonic and subsonic instability waves are computed for axisymmetric conditions (m=0) to analyse their role on the jet stability, under increased heating and compressibility. With the ambient stationary, supersonic instability waves may exist for any jet Mach number Mj≥2, whereas the subsonic instability waves, in addition, require the core-to-ambient flow temperature ratio Tj/To>1. We show, for moderately heated jets at Tj/To>2, the acoustically coupled instability modes, once cut on, to govern the overall jet stability with the K–H wave having disappeared into the cluster of acoustic modes. Sufficiently high heating makes the subsonic modes dominate the jet near-field dynamics, whereas the supersonic instability modes form the primary Mach radiation at far field. PMID:27274691

  13. Application of Air Coupled Acoustic Thermography (ACAT) for Inspection of Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Pergantis, Charles; Flanagan, David; Deschepper, Daniel

    2009-01-01

    The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.

  14. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko

    2016-02-01

    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  15. Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes

    PubMed Central

    Lumbera, Wenchie Marie L.; dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu

    2016-01-01

    shock amelioration among 3T3-L1 preadipocytes through heat shock factor and proteins augmentation and enhanced adipogenic marker expression. PMID:26950875

  16. Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes.

    PubMed

    Lumbera, Wenchie Marie L; Dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu

    2016-03-01

    shock amelioration among 3T3-L1 preadipocytes through heat shock factor and proteins augmentation and enhanced adipogenic marker expression.

  17. Study on acoustic-electric-heat effect of coal and rock failure processes under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Hui; Lou, Quan; Wang, En-Yuan; Liu, Shuai-Jie; Niu, Yue

    2018-02-01

    In recent years, coal and rock dynamic disasters are becoming more and more severe, which seriously threatens the safety of coal mining. It is necessary to carry out an depth study on the various geophysical precursor information in the process of coal and rock failure. In this paper, with the established acoustic-electric-heat multi-parameter experimental system of coal and rock, the acoustic emission (AE), surface potential and thermal infrared radiation (TIR) signals were tested and analyzed in the failure processes of coal and rock under the uniaxial compression. The results show that: (1) AE, surface potential and TIR have different response characteristics to the failure process of the sample. AE and surface potential signals have the obvious responses to the occurrence, extension and coalescence of cracks. The abnormal TIR signals occur at the peak and valley points of the TIR temperature curve, and are coincident with the abnormities of AE and surface potential to a certain extent. (2) The damage precursor points and the critical precursor points were defined to analyze the precursor characteristics reflected by AE, surface potential and TIR signals, and the different signals have the different precursor characteristics. (3) The increment of the maximum TIR temperature after the main rupture of the sample is significantly higher than that of the average TIR temperature. Compared with the maximum TIR temperature, the average TIR temperature has significant hysteresis in reaching the first peak value after the main rapture. (4) The TIR temperature contour plots at different times well show the evolution process of the surface temperature field of the sample, and indicate that the sample failure originates from the local destruction.

  18. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    NASA Astrophysics Data System (ADS)

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.

    2014-02-01

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  19. Stagnation Region Heat Transfer: The Influence of Turbulence Parameters, Reynolds Number and Body Shape

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Simoneau, Robert J.

    1994-01-01

    The effect of velocity gradient on stagnation region heat transfer augmentation by free stream turbulence was investigated. Heat transfer was measured in the stagnation region of four models with elliptical leading edges with ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Four geometrically similar, square bar, square mesh, biplane grids were used to generate free stream turbulence with different intensities and length. Heat transfer measurements were made for the following ranges of parameters: Reynolds number, based on leading edge diameter, 37,000 to 228,000; dimensionless leading edge velocity gradient, 1.20 to 1.80; turbulence intensity, 1.1 to 15.9%; and length scale to leading edge diameter ratio, 0.05 to 0.30. Stagnation point heat transfer augmentation by free stream turbulence can be predicted using a modified version of a previously developed correlation for a circular leading edge. Heat transfer augmentation was independent of body shape at the stagnation point. The heat transfer distribution down-stream from the stagnation point can be predicted using the normalized laminar heat transfer distribution.

  20. The role of simulated small-scale ocean variability in inverse computations for ocean acoustic tomography.

    PubMed

    Dushaw, Brian D; Sagen, Hanne

    2017-12-01

    Ocean acoustic tomography depends on a suitable reference ocean environment with which to set the basic parameters of the inverse problem. Some inverse problems may require a reference ocean that includes the small-scale variations from internal waves, small mesoscale, or spice. Tomographic inversions that employ data of stable shadow zone arrivals, such as those that have been observed in the North Pacific and Canary Basin, are an example. Estimating temperature from the unique acoustic data that have been obtained in Fram Strait is another example. The addition of small-scale variability to augment a smooth reference ocean is essential to understanding the acoustic forward problem in these cases. Rather than a hindrance, the stochastic influences of the small scale can be exploited to obtain accurate inverse estimates. Inverse solutions are readily obtained, and they give computed arrival patterns that matched the observations. The approach is not ad hoc, but universal, and it has allowed inverse estimates for ocean temperature variations in Fram Strait to be readily computed on several acoustic paths for which tomographic data were obtained.

  1. Space shuttle heat pipe thermal control systems

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1973-01-01

    Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.

  2. Characteristic of Secondary Flow Caused by Local Density Change in Standing Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Tonsho, Kazuyuki; Hirosawa, Takuya; Kusakawa, Hiroshi; Kuwahara, Takuo; Tanabe, Mitsuaki

    Secondary flow is a flow which is caused by the interference between standing acoustic fields and local density change. The behavior of the secondary flow depends on the location of the given local density change in the standing acoustic fields. When the density change is given at the middle of a velocity node and the neighboring velocity anti-node (middle point) or when it is given at the velocity anti-node in standing acoustic fields, the secondary flow shows particular behavior. Characteristic of the secondary flow at the two positions was predicted by numerical simulations. It was examined from these simulations whether the driving mechanism of the flow can be explained by the kind of acoustic radiation force that has been proposed so far. The predicted secondary flow was verified by experiments. For both the simulations and experiments, the standing acoustic fields generated in a cylinder are employed. In the experiments, the acoustic fields are generated by two loud speakers that are vibrated in same phase in a chamber. The employed resonance frequency is about 1000 Hz. The chamber is filled with air of room temperature and atmospheric pressure. In the numerical simulations and experiments, the local density change is given by heating or cooling. Because the secondary flow is influenced by buoyancy, the numerical simulations were done without taking gravity force into account and a part of the experiments were done by the microgravity condition using a drop tower. As a result of the simulations, at the middle point, the heated air was blown toward the node and the cooled air was blown toward the anti-node. It is clarified that the secondary flow is driven by the expected kind of acoustic radiation force. At the anti-node, both the heated and cooled air expands perpendicular to the traveling direction of the sound wave. The driving mechanism of the secondary flow can not be explained by the acoustic radiation force, and a detailed analysis is done. Through the

  3. An investigation of the use of transmission ultrasound to measure acoustic attenuation changes in thermal therapy.

    PubMed

    Parmar, Neeta; Kolios, Michael C

    2006-07-01

    The potential of using a commercial ultrasound transmission imaging system to quantitatively monitor tissue attenuation changes after thermal therapy was investigated. The ultrasound transmission imaging system used, the AcoustoCam (Imperium Inc., MD) allows ultrasonic images to be captured using principles similar to that of a CCD-type camera that collects light. Ultrasound energy is focused onto a piezoelectric array by an acoustic lens system, creating a gray scale acoustic image. In this work, the pixel values from the acoustic images were assigned acoustic attenuation values by imaging polyacrylamide phantoms of varying known attenuation. After the calibration procedure, data from heated polyacrylamide/bovine serum albumin (BSA) based tissue-mimicking (TM) phantoms and porcine livers were acquired. Samples were heated in water at temperatures of 35, 45, 55, 65, and 75 degrees C for 1 h. Regions of interest were chosen in the images and acoustic attenuation values before and after heating were compared. An increase in ultrasound attenuation was found in phantoms containing BSA and in porcine liver. In the presence of BSA, attenuation in the TM phantom increased by a factor of 1.5, while without BSA no significant changes were observed. The attenuation of the porcine liver increased by up to a factor of 2.4, consistent with previously reported studies. The study demonstrates the feasibility of using a quantitative ultrasound transmission imaging system for monitoring thermal therapy.

  4. Secondary Breast Augmentation.

    PubMed

    Brown, Mitchell H; Somogyi, Ron B; Aggarwal, Shagun

    2016-07-01

    After studying this article, the participant should be able to: 1. Assess common clinical problems in the secondary breast augmentation patient. 2. Describe a treatment plan to correct the most common complications of breast augmentation. 3. Provide surgical and nonsurgical options for managing complications of breast augmentation. 4. Decrease the incidence of future complications through accurate assessment, preoperative planning, and precise surgical technique. Breast augmentation has been increasing steadily in popularity over the past three decades. Many of these patients present with secondary problems or complications following their primary breast augmentation. Two of the most common complications are capsular contracture and implant malposition. Familiarity and comfort with the assessment and management of these complications is necessary for all plastic surgeons. An up-to-date understanding of current devices and techniques may decrease the need to manage future complications from the current cohort of breast augmentation patients.

  5. Chin augmentation

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002986.htm Chin augmentation To use the sharing features on this page, please enable JavaScript. Chin augmentation is surgery to reshape or enhance the size ...

  6. Scaling and dimensional analysis of acoustic streaming jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moudjed, B.; Botton, V.; Henry, D.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with amore » review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.« less

  7. Application of an ultrasonic focusing radiator for acoustic levitation of submillimeter samples

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1981-01-01

    An acoustic apparatus has been specifically developed to handle samples of submillimeter size in a gaseous medium. This apparatus consists of an acoustic levitation device, deployment devices for small liquid and solid samples, heat sources for sample heat treatment, acoustic alignment devices, a cooling system and data-acquisition instrumentation. The levitation device includes a spherical aluminum dish of 12 in. diameter and 0.6 in. thickness, 130 pieces of PZT transducers attached to the back side of the dish and a spherical concave reflector situated in the vicinity of the center of curvature of the dish. The three lowest operating frequencies for the focusing-radiator levitation device are 75, 105 and 163 kHz, respectively. In comparison with other levitation apparatus, it possesses a large radiation pressure and a high lateral positional stability. This apparatus can be used most advantageously in the study of droplets and spherical shell systems, for instance, for fusion target applications.

  8. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  9. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  10. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  11. Acoustic emission during tensile deformation of M250 grade maraging steel

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Chandan Kumar; Rajkumar, Kesavan Vadivelu; Chandra Rao, Bhaghi Purna; Jayakumar, Tamanna

    2012-05-01

    Acoustic emission (AE) generated during room temperature tensile deformation of varyingly heat treated (solution annealed and thermally aged) M250 grade maraging steel specimens have been studied. Deformation of microstructure corresponding to different heat treated conditions in this steel could be distinctly characterized using the AE parameters such as RMS voltage, counts and peak amplitude of AE hits (events).

  12. Heat transfer augmentation of a car radiator using nanofluids

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.

    2014-05-01

    The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.

  13. Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump

    NASA Astrophysics Data System (ADS)

    Song, Yulong; Ye, Zuliang; Cao, Feng

    2017-08-01

    In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.

  14. Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation-Region Heat Transfer

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Simoneau, Robert J.; Ching, Chan Y.

    1994-01-01

    The purpose of the present work was threefold: (1) to determine if a free-stream turbulence length scale existed that would cause the greatest augmentation in stagnation-region heat transfer over laminar levels; (2) to investigate the effect of velocity gradient on stagnation-region heat transfer augmentation by free-stream turbulence; and (3) to develop a prediction tool for stagnation heat transfer in the presence of free-stream turbulence. Heat transfer was measured in the stagnation region of four models with elliptical leading edges that had ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Five turbulence-generating grids were fabricated; four were square mesh, biplane grids made from square bars. The fifth grid was an array of fine parallel wires that were perpendicular to the model spanwise direction. Heat transfer data were taken at Reynolds numbers ranging from 37 000 to 228 000. Turbulence intensities were in the range of 1.1 to 15.9% while the ratio of integral length scale to leading-edge diameter ranged from 0.05 to 0.30. Stagnation-point velocity gradient was varied by nearly 50%. Stagnation-region heat transfer augmentation was found to increase with decreasing length scale but no optimum length scale was found. Heat transfer augmentation due to turbulence was found to be unaffected by the velocity gradient near the leading edge. A correlation was developed that fit heat transfer data for the square-bar grids to within +/- 4%.

  15. Exploratory Environmental Tests of Several Heat Shields

    NASA Technical Reports Server (NTRS)

    Goodman, George P.; Betts, John, Jr.

    1961-01-01

    Exploratory tests have been conducted with several conceptual radiative heat shields of composite construction. Measured transient temperature distributions were obtained for a graphite heat shield without insulation and with three types of insulating materials, and for a metal multipost heat shield, at surface temperatures of approximately 2,000 F and 1,450 F, respectively, by use of a radiant-heat facility. The graphite configurations suffered loss of surface material under repeated irradiation. Temperature distribution calculated for the metal heat shield by a numerical procedure was in good agreement with measured data. Environmental survival tests of the graphite heat shield without insulation, an insulated multipost heat shield, and a stainless-steel-tile heat shield were made at temperatures of 2,000 F and dynamic pressures of approximately 6,000 lb/sq ft, provided by an ethylene-heated jet operating at a Mach number of 2.0 and sea-level conditions. The graphite heat shield survived the simulated aerodynamic heating and pressure loading. A problem area exists in the design and materials for heat-resistant fasteners between the graphite shield and the base structure. The insulated multipost heat shield was found to be superior to the stainless-steel-tile heat shield in retarding heat flow. Over-lapped face-plate joints and surface smoothness of the insulated multi- post heat shield were not adversely affected by the test environment. The graphite heat shield without insulation survived tests made in the acoustic environment of a large air jet. This acoustic environment is random in frequency and has an overall noise level of 160 decibels.

  16. Experimental Study of Vane Heat Transfer and Aerodynamics at Elevated Levels of Turbulence

    NASA Technical Reports Server (NTRS)

    Ames, Forrest E.

    1994-01-01

    A four vane subsonic cascade was used to investigate how free stream turbulence influences pressure surface heat transfer. A simulated combustor turbulence generator was built to generate high level (13 percent) large scale (Lu approximately 44 percent inlet span) turbulence. The mock combustor was also moved upstream to generate a moderate level (8.3 percent) of turbulence for comparison to smaller scale grid generated turbulence (7.8 percent). The high level combustor turbulence caused an average pressure surface heat transfer augmentation of 56 percent above the low turbulence baseline. The smaller scale grid turbulence produced the next greatest effect on heat transfer and demonstrated the importance of scale on heat transfer augmentation. In general, the heat transfer scaling parameter U(sub infinity) TU(sub infinity) LU(sub infinity)(exp -1/3) was found to hold for the turbulence. Heat transfer augmentation was also found to scale approximately on Re(sub ex)(exp 1/3) at constant turbulence conditions. Some evidence of turbulence intensification in terms of elevated dissipation rates was found along the pressure surface outside the boundary layer. However, based on the level of dissipation and the resulting heat transfer augmentation, the amplification of turbulence has only a moderate effect on pressure surface heat transfer. The flow field turbulence does drive turbulent production within the boundary layer which in turn causes the high levels of heat transfer augmentation. Unlike heat transfer, the flow field straining was found to have a significant effect on turbulence isotropy. On examination of the one dimensional spectra for u' and v', the effect to isotropy was largely limited to lower wavenumber spectra. The higher wavenumber spectra showed little or no change. The high level large scale turbulence was found to have a strong influence on wake development. The free stream turbulence significantly enhanced mixing resulting in broader and shallower

  17. Taking advantage of acoustic inhomogeneities in photoacoustic measurements

    NASA Astrophysics Data System (ADS)

    Da Silva, Anabela; Handschin, Charles; Riedinger, Christophe; Piasecki, Julien; Mensah, Serge; Litman, Amélie; Akhouayri, Hassan

    2016-03-01

    Photoacoustic offers promising perspectives in probing and imaging subsurface optically absorbing structures in biological tissues. The optical uence absorbed is partly dissipated into heat accompanied with microdilatations that generate acoustic pressure waves, the intensity which is related to the amount of fluuence absorbed. Hence the photoacoustic signal measured offers access, at least potentially, to a local monitoring of the absorption coefficient, in 3D if tomographic measurements are considered. However, due to both the diffusing and absorbing nature of the surrounding tissues, the major part of the uence is deposited locally at the periphery of the tissue, generating an intense acoustic pressure wave that may hide relevant photoacoustic signals. Experimental strategies have been developed in order to measure exclusively the photoacoustic waves generated by the structure of interest (orthogonal illumination and detection). Temporal or more sophisticated filters (wavelets) can also be applied. However, the measurement of this primary acoustic wave carries a lot of information about the acoustically inhomogeneous nature of the medium. We propose a protocol that includes the processing of this primary intense acoustic wave, leading to the quantification of the surrounding medium sound speed, and, if appropriate to an acoustical parametric image of the heterogeneities. This information is then included as prior knowledge in the photoacoustic reconstruction scheme to improve the localization and quantification.

  18. Major uncertainties influencing entry probe heat shield design

    NASA Technical Reports Server (NTRS)

    Congdon, W.

    1974-01-01

    Factors influencing the design of an outer planet probe heat shield are discussed. Major factors included are: uncertainties in composition and scale height of the planet atmospheres; the augmentation/attenuation of entry heating by ablation products requires more computer study and testing; carbon heat shields, especially carbon phenolic, possessing improved resistance to spallation need developing; and white silica reflecting heat shields with improved resistance to bulk vitrification need further developing.

  19. Dietary supplementation of curcumin augments heat stress tolerance through upregulation of nrf-2-mediated antioxidative enzymes and hsps in Puntius sophore.

    PubMed

    Mahanty, Arabinda; Mohanty, Sasmita; Mohanty, Bimal P

    2017-08-01

    Heat stress is one of the major environmental concerns in global warming regime and rising temperature has resulted in mass mortalities of animals including fishes. Therefore, strategies for high temperature stress tolerance and ameliorating the effects of heat stress are being looked for. In an earlier study, we reported that Nrf-2 (nuclear factor E2-related factor 2) mediated upregulation of antioxidative enzymes and heat shock proteins (Hsps) provide survivability to fish under heat stress. In this study, we have evaluated the ameliorative potential of dietary curcumin, a potential Nrf-2 inducer in heat stressed cyprinid Puntius sophore. Fishes were fed with diet supplemented with 0.5, 1.0, and 1.5% curcumin at the rate 2% of body weight daily in three separate groups (n = 40 in each group) for 60 days. Fishes fed with basal diet (without curcumin) served as the control (n = 40). Critical thermal maxima (CTmax) was determined for all the groups (n = 10, in duplicates) after the feeding trial. Significant increase in the CTmax was observed in the group fed with 1.5% curcumin- supplemented fishes whereas it remained similar in groups fed with 0.5%, and 1% curcumin-supplemented diet, as compared to control. To understand the molecular mechanism of elevated thermotolerance in the 1.5% curcumin supplemented group, fishes were given a sub-lethal heat shock treatment (36 °C) for 6 h and expression analysis of nrf-2, keap-1, sod, catalase, gpx, and hsp27, hsp60, hsp70, hsp90, and hsp110 was carried out using RT-PCR. In the gill, expression of nrf-2, sod, catalase, gpx, and hsp60, hsp70, hsp90, and hsp110 was found to be elevated in the 1.5% curcumin-fed heat-shocked group compared to control and the basal diet-fed, heat-shocked fishes. Similarly, in the liver, upregulation in expression of nrf-2, sod, catalase, and hsp70 and hsp110 was observed in 1.5% curcumin supplemented and heat shocked group. Thus, this study showed that supplementation of curcumin

  20. [The acoustics of the open mastoid cavity (so-called "radical cavity") and its modification by surgical measures. II. Clinical studies].

    PubMed

    Hartwein, J

    1992-09-01

    The acoustic resonance of a severely altered outer ear channel (radical mastoid cavity) is investigated in a series of 18 patients who underwent revision surgery by means of in-situ measurements of the sound-pressure-level near the tympanic membrane. While the average volume of the open cavity differs from the normal ear channel for the factor 2.5, the size of the external meatus is--in average--only 20% larger. This leads to an average frequency in patients with open cavity of 1939 Hz, more than 1000 Hz less than in a series (n = 20) of normal ears (average resonance frequency: 2942 Hz). The altered acoustic behaviour of the open cavity leads to partial extensive discrepancies of the resonance-caused sound-pressure augmentation in the frequencies of 3 and 4 kHz, which are important for speech perception. The average difference is more than 10 dB (SPL). Proved surgical techniques of cavity obliteration and meatoplasty can lead to a nearly normalized acoustic behaviour of the outer ear in a statistic significant way. Due to these surgical procedures, an average postoperative resonance frequency of 2421 Hz could be reached in our patients. Especially, the resonance-caused sound-pressure augmentation in 3-4 kHz could nearly be equalized to such of a normal outer ear. Differences in the acoustic behaviour of the outer ear as can be found between patients with an open mastoid cavity and normal ears can almost be eliminated surgically.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Acoustic surface perception from naturally occurring step sounds of a dexterous hexapod robot

    NASA Astrophysics Data System (ADS)

    Cuneyitoglu Ozkul, Mine; Saranli, Afsar; Yazicioglu, Yigit

    2013-10-01

    Legged robots that exhibit dynamic dexterity naturally interact with the surface to generate complex acoustic signals carrying rich information on the surface as well as the robot platform itself. However, the nature of a legged robot, which is a complex, hybrid dynamic system, renders the more common approach of model-based system identification impractical. The present paper focuses on acoustic surface identification and proposes a non-model-based analysis and classification approach adopted from the speech processing literature. A novel feature set composed of spectral band energies augmented by their vector time derivatives and time-domain averaged zero crossing rate is proposed. Using a multi-dimensional vector classifier, these features carry enough information to accurately classify a range of commonly occurring indoor and outdoor surfaces without using of any mechanical system model. A comparative experimental study is carried out and classification performance and computational complexity are characterized. Different feature combinations, classifiers and changes in critical design parameters are investigated. A realistic and representative acoustic data set is collected with the robot moving at different speeds on a number of surfaces. The study demonstrates promising performance of this non-model-based approach, even in an acoustically uncontrolled environment. The approach also has good chance of performing in real-time.

  2. Solar Energy School Heating Augmentation Experiment. Sections I, II, and III.

    ERIC Educational Resources Information Center

    InterTechnology Corp., Warrenton, VA.

    An experimental solar heating system heats five modular classrooms at the Fauquier County High School in Warrenton, Virginia. The present report covers the operation, maintenance, and modifications to the system over the 1974-75 and 1975-76 heating seasons. The solar system has shown the capability of providing essentially 100 percent of the…

  3. Titanium honeycomb acoustic lining structural and thermal test report. [for acoustic tailpipe for JT8D engine

    NASA Technical Reports Server (NTRS)

    Joynes, D.; Balut, J. P.

    1974-01-01

    The results are presented of static, fatigue and thermal testing of titanium honeycomb acoustic panels representing the acoustic tailpipe for the Pratt and Whitney Aircraft JT8D Refan engine which is being studied for use on the Boeing 727-200 airplane. Test specimens represented the engine and tailpipe flange joints, the rail to which the thrust reverser is attached and shear specimens of the tailpipe honeycomb. Specimens were made in four different batches with variations in configuration, materials and processes in each. Static strength of all test specimens exceeded the design ultimate load requirements. Fatigue test results confirmed that aluminum brazed titanium, as used in the Refan tailpipe design, meets the fatigue durability objectives. Quality of welding was found to be critical to life, with substandard welding failing prematurely, whereas welding within the process specification exceeded the panel skin life. Initial fatigue testing used short grip length bolts which failed prematurely. These were replaced with longer bolts and subsequent testing demonstrated the required life. Thermal tests indicate that perforated skin acoustic honeycomb has approximately twice the heat transfer of solid skin honeycomb.

  4. Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, R. J.; Hartwig, J. W.

    2014-01-01

    Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.

  5. Chromospheric heating

    NASA Technical Reports Server (NTRS)

    Kalkofen, Wolfgang

    1989-01-01

    The solar chromosphere is identified with the atmosphere inside magnetic flux tubes. Between the temperature minimum and the 7000 K level, the chromosphere in the bright points of the quiet sun is heated by large-amplitude, long-period, compressive waves with periods mainly between 2 and 4 minutes. These waves do not observe the cutoff condition according to which acoustic waves with periods longer than 3 minutes do not propagate vertically in the upper solar photosphere. It is concluded that the long-period waves probably supply all the energy required for the heating of the bright points in the quiet solar chromosphere.

  6. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  7. Thermally induced secondary atomization of droplet in an acoustic field

    NASA Astrophysics Data System (ADS)

    Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-01-01

    We study the thermal effects that lead to instability and break up in acoustically levitated vaporizing fuel droplets. For selective liquids, atomization occurs at the droplet equator under external heating. Short wavelength [Kelvin-Helmholtz (KH)] instability for diesel and bio-diesel droplets triggers this secondary atomization. Vapor pressure, latent heat, and specific heat govern the vaporization rate and temperature history, which affect the surface tension gradient and gas phase density, ultimately dictating the onset of KH instability. We develop a criterion based on Weber number to define a condition for the inception of secondary atomization.

  8. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow

    PubMed Central

    Sou, In Mei; Layman, Christopher N.; Ray, Chittaranjan

    2013-01-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  9. The path to COVIS: A review of acoustic imaging of hydrothermal flow regimes

    NASA Astrophysics Data System (ADS)

    Bemis, Karen G.; Silver, Deborah; Xu, Guangyu; Light, Russ; Jackson, Darrell; Jones, Christopher; Ozer, Sedat; Liu, Li

    2015-11-01

    Acoustic imaging of hydrothermal flow regimes started with the incidental recognition of a plume on a routine sonar scan for obstacles in the path of the human-occupied submersible ALVIN. Developments in sonar engineering, acoustic data processing and scientific visualization have been combined to develop technology which can effectively capture the behavior of focused and diffuse hydrothermal discharge. This paper traces the development of these acoustic imaging techniques for hydrothermal flow regimes from their conception through to the development of the Cabled Observatory Vent Imaging Sonar (COVIS). COVIS has monitored such flow eight times a day for several years. Successful acoustic techniques for estimating plume entrainment, bending, vertical rise, volume flux, and heat flux are presented as is the state-of-the-art in diffuse flow detection.

  10. Recovery of burner acoustic source structure from far-field sound spectra

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Jones, J. D.

    1984-01-01

    A method is presented that permits the thermal-acoustic efficiency spectrum in a long turbulent burner to be recovered from the corresponding far-field sound spectrum. An acoustic source/propagation model is used based on the perturbation solution of the equations describing the unsteady one-dimensional flow of an inviscid ideal gas with a distributed heat source. The technique is applied to a long cylindrical hydrogen-flame burner operating over power levels of 4.5-22.3 kW. The results show that the thermal-acoustic efficiency at a given frequency, defined as the fraction of the total burner power converted to acoustic energy at that frequency, is rather insensitive to burner power, having a maximum value on the order of 10 to the -4th at 150 Hz and rolling off steeply with increasing frequency. Evidence is presented that acoustic agitation of the flame at low frequencies enhances the mixing of the unburned fuel and air with the hot products of combustion. The paper establishes the potential of the technique as a useful tool for characterizing the acoustic source structure in any burner, such as a gas turbine combustor, for which a reasonable acoustic propagation model can be postulated.

  11. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  12. On the theory of coronal heating mechanisms

    NASA Technical Reports Server (NTRS)

    Kuperus, M.; Ionson, J. A.; Spicer, D. S.

    1980-01-01

    Theoretical models describing solar coronal heating mechanisms are reviewed in some detail. The requirements of chromospheric and coronal heating are discussed in the context of the fundamental constraints encountered in modelling the outer solar atmosphere. Heating by acoustic processes in the 'nonmagnetic' parts of the atmosphere is examined with particular emphasis on the shock wave theory. Also discussed are theories of heating by electrodynamic processes in the magnetic regions of the corona, either magnetohydrodynamic waves or current heating in the regions with large electric current densities (flare type heating). Problems associated with each of the models are addressed.

  13. Flowfield characteristics of an aerodynamic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Yarin, A. L.; Brenn, G.; Keller, J.; Pfaffenlehner, M.; Ryssel, E.; Tropea, C.

    1997-11-01

    A droplet held in a single-axis ultrasonic levitator will principally sustain a certain external blowing along the levitation axis, which introduces the possibility of investigating heat and/or mass transfer from the droplet under conditions which are not too remote from those in spray systems. The focus of the present work is on the influence of the acoustic field on the external flow. More specifically, an axisymmetric submerged gas jet in an axial standing acoustic wave is examined, both in the absence and presence of a liquid droplet. Flow visualization is first presented to illustrate the global flow effects and the operating windows of jet velocities and acoustic powers which are suitable for further study. An analytic and numeric solution, based on the parabolic boundary layer equations are then given for the case of no levitated droplet, providing quantitative estimates of the acoustic field/flow interaction. Detailed velocity measurements using a laser Doppler anemometer verify the analytic results and extend these to the case of a levitated droplet. Some unresolved discrepancy remains in predicting the maximum velocity attainable before the droplet is blown out of the levitator. Two methods are developed to estimate the sound pressure level in the levitator by comparing flowfield patterns with analytic results. These results and observations are used to estimate to what extent acoustic aerodynamic levitators can be used in the future for investigating transport properties of individual droplets.

  14. Oscillatory conductive heat transfer for a fiber in an ideal gas

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Perreira, N. D.

    1985-01-01

    A description of the thermal effects created by placing a cylindrical fiber in an inviscid, ideal gas, through which an acoustic wave propagates, is presented. The fibers and the gas have finite heat capacities and thermal conductivities. Expressions for the temperature distribution in the gas and in the material are determined. The temperature distribution is caused by pressure oscillations in the gas which, in turn, are caused by the passage of an acoustic wave. The relative value of a dimensionless parameter is found to be indicative of whether the exact or approximate equations should be used in the solution. This parameter is a function of the thermal conductivities and heat capacities of the fiber and gas, the acoustic frequency, and the fiber diameter.

  15. Translational illusion of acoustic sources by transformation acoustics.

    PubMed

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  16. Local vascularized flaps for augmentation of Reinke's space.

    PubMed

    Dailey, Seth H; Gunderson, McLean; Chan, Roger; Torrealba, Jose; Kimura, Miwako; Welham, Nathan V

    2011-02-01

    The purpose of this study is to describe and test a novel surgical strategy for augmentation of Reinke's space using vascularized flaps: a thyroid ala perichondrium flap (TAP) and a composite thyroid ala perichondrium flap (CTAP) from the anterior larynx. We hypothesized that these specially designed vascularized flaps would remain viable once inset into the lamina propria, and that they would not disrupt rheologic, biomechanical, and histologic properties of the native vocal fold. Experimental. In vivo canine model. The length and volume of test flaps harvested in six adult human cadaveric larynges were analyzed to determine suitability for use in augmentation in the lamina propria. Also, 12 beagles randomly underwent unilateral placement of either TAP or CTAP, which were designed in accordance with the human adult cadaveric experiments. Flap perfusion was measured before and after harvest with laser Doppler. After 1 month, the beagles were humanely sacrificed and their larynges subjected to aerodynamic and acoustic evaluation using an excised larynx apparatus. The vocal fold lamina propria of four larynges--two TAP and two CTAP--underwent rheologic evaluation using a simple-shear rheometer. The remaining eight larynges underwent quantitative histologic and immunohistochemical evaluation. The survival and complication (swallowing, airway, local wound) rates of all dogs were noted. Initial studies with adult human cadaveric larynges established that TAP and CTAP possessed length and volume greater than native lamina propria. In the canine experiments, the perfusion change in the flaps was similar between flap groups. The damping ratio (ζ), dynamic viscosity (η'), elastic shear modulus (G'), and viscous shear modulus (G″) of treated and untreated native vocal folds were not statistically different. The glottic function measures of vocal efficiency, laryngeal resistance, jitter, shimmer, and harmonics-to-noise ratio (HNR) of treated and normal larynges were not

  17. Investigation of Temperature Ratio Effect on the Low-Frequency Acoustic Spectra of Heated Jets

    NASA Astrophysics Data System (ADS)

    Karam, Sofia

    Jet noise remains one of the most important problems in the aviation industry, and its reduction is sought in the context of both commercial and military aircraft. In this thesis, an investigation of the jet noise is conducted in terms of the effect of temperature and Mach number on low frequency acoustic spectra. A low-order model derived from the generalized acoustic analogy method via a low-frequency asymptotic approach is utilized, where the mean flow and pertinent statistical quantities are obtained from RANS simulations. The study involves a combination of seven acoustic Mach numbers ranging from 0.3 to 1.5 and five temperature ratios (TR) ranging from 1 to 3. The model is calibrated with existing experimental measurements of a Mach 0.9 and TR = 1 jet. The results show that the sound pressure level increases with the increase in Mach number, and decreases with the decrease in temperature ratios.

  18. Acoustic and Acousto-Optic Characteristics of Silicon Nanofoam

    NASA Astrophysics Data System (ADS)

    Iino, Takeshi; Nakamura, Kentaro

    2009-07-01

    Silicon nanofoam is a porous material with a nanometer structure produced through a sol-gel process, and is used as a heat insulator. It is expected that the nanofoam may work as a good acoustic matching layer of an airborne ultrasonic transducer for highly sensitive and wideband ultrasound transmission/detection since the nanofoam has an extremely low acoustic impedance. The nanofoam may also have a possibility as an acousto-optic device because of its very low sound speed and optical transparency. In this study, we have estimated the fundamental acoustic characteristics of the nanofoam through acousto-optic measurements. Sound speed and acoustic attenuation were measured in the frequency range from 130 to 444 kHz using rectangular samples attached to a piezoelectric transducer. The sound speed and acoustic attenuation constant were approximately in the 140-150 m/s range and 4.3 ×10-11f1.9 dB/(mm·Hz1.9), respectively. It was observed that the change rate in the optical refractive index of the nanofoam owing to sound pressure was approximately in the range of (1.2-1.6) ×10-8 1/Pa. Raman-Nath diffraction occurred at a relatively low frequency since the sound speed is low. We also observed modulation in the polarization of the transmitted light owing to ultrasonic waves.

  19. Analysis of acoustic and entropy disturbances in a hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Schilden, Thomas; Schröder, Wolfgang; Ali, Syed Raza Christopher; Schreyer, Anne-Marie; Wu, Jie; Radespiel, Rolf

    2016-05-01

    The tunnel noise in a Mach 5.9 Ludwieg tube is determined by two methods, a newly developed cone-probe-DNS method and a reliable hot-wire-Pitot-probe method. The new method combines pressure and heat flux measurements using a cone probe and direct numerical simulation (DNS). The modal analysis is based on transfer functions obtained by the DNS to link the measured quantities to the tunnel noise. The measurements are performed for several unit-Reynolds numbers in the range of 5 ṡ 106 ≤ Re/m ≤ 16 ṡ 106 and probe positions to identify the sensitivities of tunnel noise. The DNS solutions show similar response mechanisms of the cone probe to incident acoustic and entropy waves which leads to high condition numbers of the transfer matrix such that a unique relationship between response and source mechanism can be only determined by neglecting the contribution of the non-acoustic modes to the pressure and heat flux fluctuations. The results of the cone-probe-DNS method are compared to a modal analysis based on the hot-wire-Pitot-probe method which provides reliable results in the frequency range less than 50 kHz. In this low frequency range the findings of the two different mode analyses agree well. At higher frequencies, the newly developed cone-probe-DNS method is still valid. The tunnel noise is dominated by the acoustic mode, since the entropy mode is lower by one order of magnitude and the vorticity mode can be neglected. The acoustic mode is approximately 0.5% at 30 kHz and the cone-probe-DNS data illustrate the acoustic mode to decrease and to asymptotically approach 0.2%.

  20. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix B: Liquid rocket booster acoustic and thermal environments

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The ascent thermal environment and propulsion acoustic sources for the Martin-Marietta Corporation designed Liquid Rocket Boosters (LRB) to be used with the Space Shuttle Orbiter and External Tank are described. Two designs were proposed: one using a pump-fed propulsion system and the other using a pressure-fed propulsion system. Both designs use LOX/RP-1 propellants, but differences in performance of the two propulsion systems produce significant differences in the proposed stage geometries, exhaust plumes, and resulting environments. The general characteristics of the two designs which are significant for environmental predictions are described. The methods of analysis and predictions for environments in acoustics, aerodynamic heating, and base heating (from exhaust plume effects) are also described. The acoustic section will compare the proposed exhaust plumes with the current SRB from the standpoint of acoustics and ignition overpressure. The sections on thermal environments will provide details of the LRB heating rates and indications of possible changes in the Orbiter and ET environments as a result of the change from SRBs to LRBs.

  1. Laminar and turbulent heating predictions for mars entry vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Yan, Chao; Zheng, Weilin; Zhong, Kang; Geng, Yunfei

    2016-11-01

    Laminar and turbulent heating rates play an important role in the design of Mars entry vehicles. Two distinct gas models, thermochemical non-equilibrium (real gas) model and perfect gas model with specified effective specific heat ratio, are utilized to investigate the aerothermodynamics of Mars entry vehicle named Mars Science Laboratory (MSL). Menter shear stress transport (SST) turbulent model with compressible correction is implemented to take account of the turbulent effect. The laminar and turbulent heating rates of the two gas models are compared and analyzed in detail. The laminar heating rates predicted by the two gas models are nearly the same at forebody of the vehicle, while the turbulent heating environments predicted by the real gas model are severer than the perfect gas model. The difference of specific heat ratio between the two gas models not only induces the flow structure's discrepancy but also increases the heating rates at afterbody of the vehicle obviously. Simple correlations for turbulent heating augmentation in terms of laminar momentum thickness Reynolds number, which can be employed as engineering level design and analysis tools, are also developed from numerical results. At the time of peak heat flux on the +3σ heat load trajectory, the maximum value of momentum thickness Reynolds number at the MSL's forebody is about 500, and the maximum value of turbulent augmentation factor (turbulent heating rates divided by laminar heating rates) is 5 for perfect gas model and 8 for real gas model.

  2. Heat shock, visible light or high calcium augment the cytotoxic effects of Ailanthus altissima (Swingle) leaf extracts against Saccharomyces cerevisiae cells.

    PubMed

    Popa, Claudia Valentina; Lungu, Liliana; Cristache, Ligia Florentina; Ciuculescu, Crinu; Danet, Andrei Florin; Farcasanu, Ileana Cornelia

    2015-01-01

    To gain new insight into the antimicrobial potential of Ailanthus altissima Swingle, ethanol leaf extracts were evaluated for the antifungal effects against the model yeast Saccharomyces cerevisae. The extracts inhibited the yeast growth in a dose-dependent manner, and this effect could be augmented by heat shock, exposure to visible light or exposure to high concentrations of Ca(2+). Using transgenic yeast cells expressing the Ca(2+)-dependent photoprotein, aequorin, it was found that the leaf extracts induced cytosolic Ca(2+) elevation. Experiments on yeast mutants with defects in Ca(2+) transport demonstrated that the cytotoxicity of the A. altissima leaf extracts (AaLEs) was mediated by transient pulses of Ca(2+) ions which were released into the cytosol predominantly from the vacuole. The investigation of the antifungal synergies involving AaLEs may contribute to the development of optimal and safe combination therapies for the treatment of drug-resistant fungal infections.

  3. Spatial acoustic signal processing for immersive communication

    NASA Astrophysics Data System (ADS)

    Atkins, Joshua

    Computing is rapidly becoming ubiquitous as users expect devices that can augment and interact naturally with the world around them. In these systems it is necessary to have an acoustic front-end that is able to capture and reproduce natural human communication. Whether the end point is a speech recognizer or another human listener, the reduction of noise, reverberation, and acoustic echoes are all necessary and complex challenges. The focus of this dissertation is to provide a general method for approaching these problems using spherical microphone and loudspeaker arrays.. In this work, a theory of capturing and reproducing three-dimensional acoustic fields is introduced from a signal processing perspective. In particular, the decomposition of the spatial part of the acoustic field into an orthogonal basis of spherical harmonics provides not only a general framework for analysis, but also many processing advantages. The spatial sampling error limits the upper frequency range with which a sound field can be accurately captured or reproduced. In broadband arrays, the cost and complexity of using multiple transducers is an issue. This work provides a flexible optimization method for determining the location of array elements to minimize the spatial aliasing error. The low frequency array processing ability is also limited by the SNR, mismatch, and placement error of transducers. To address this, a robust processing method is introduced and used to design a reproduction system for rendering over arbitrary loudspeaker arrays or binaurally over headphones. In addition to the beamforming problem, the multichannel acoustic echo cancellation (MCAEC) issue is also addressed. A MCAEC must adaptively estimate and track the constantly changing loudspeaker-room-microphone response to remove the sound field presented over the loudspeakers from that captured by the microphones. In the multichannel case, the system is overdetermined and many adaptive schemes fail to converge to

  4. Augmenting computer networks

    NASA Technical Reports Server (NTRS)

    Bokhari, S. H.; Raza, A. D.

    1984-01-01

    Three methods of augmenting computer networks by adding at most one link per processor are discussed: (1) A tree of N nodes may be augmented such that the resulting graph has diameter no greater than 4log sub 2((N+2)/3)-2. Thi O(N(3)) algorithm can be applied to any spanning tree of a connected graph to reduce the diameter of that graph to O(log N); (2) Given a binary tree T and a chain C of N nodes each, C may be augmented to produce C so that T is a subgraph of C. This algorithm is O(N) and may be used to produce augmented chains or rings that have diameter no greater than 2log sub 2((N+2)/3) and are planar; (3) Any rectangular two-dimensional 4 (8) nearest neighbor array of size N = 2(k) may be augmented so that it can emulate a single step shuffle-exchange network of size N/2 in 3(t) time steps.

  5. Chromospheric heating by acoustic shocks - A confrontation of GHRS observations of Alpha Tauri (K5 III) with ab initio calculations

    NASA Technical Reports Server (NTRS)

    Judge, P. G.; Cuntz, M.

    1993-01-01

    We compare ab initio calculations of semiforbidden C II line profiles near 2325 A with recently published observations of the inactive red giant Alpha Tau (K5 III) obtained using the GHRS on board the Hubble Space Telescope. Our one-dimensional, time-dependent calculations assume that the chromosphere is heated by stochastic acoustic shocks generated by photospheric convection. We calculate various models using results from traditional (mixing length) convection zone calculations as input to hydrodynamical models. The semiforbidden C II line profiles and ratios provide sensitive diagnostics of chromospheric velocity fields, electron densities, and temperatures. We identify major differences between observed and computed line profiles which are related to basic gas dynamics and which are probably not due to technical modeling restrictions. If the GHRS observations are representative of chromospheric conditions at all epochs, then one (or more) of our model assumptions must be incorrect. Several possibilities are examined. We predict time variability of semiforbidden C II lines for comparison with observations. Based upon data from the IUE archives, we argue that photospheric motions associated with supergranulation or global pulsation modes are unimportant in heating the chromosphere of Alpha Tau.

  6. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  7. Acoustic Modifications of the Ames 40x80 Foot Wind Tunnel and Test Techniques for High-Speed Research Model Testing

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Olson, Larry (Technical Monitor)

    1995-01-01

    The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.

  8. Acoustic Streaming in Microgravity: Flow Stability and Heat Transfer Enhancement

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1999-01-01

    Experimental results are presented for drops and bubbles levitated in a liquid host, with particular attention given to the effect of shape oscillations and capillary waves on the local flow fields. Some preliminary results are also presented on the use of streaming flows for the control of evaporation rate and rotation of electrostatically levitated droplets in 1 g. The results demonstrate the potential for the technological application of acoustic methods to active control of forced convection in microgravity.

  9. Acoustic field of a pulsating cylinder in a rarefied gas: Thermoviscous and curvature effects

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Manela, A.

    2017-09-01

    We study the acoustic field of a circular cylinder immersed in a rarefied gas and subject to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The problem is analyzed in the entire range of gas rarefaction rates and excitation frequencies, considering both single cylinder and coaxial cylinders setups. Numerical calculations are carried out via the direct simulation Monte Carlo method, applying a noniterative algorithm to impose the boundary heat-flux condition. Analytical predictions are obtained in the limits of ballistic- and continuum-flow conditions. Comparing with a reference inviscid continuum solution, the results illustrate the specific impacts of gas rarefaction and boundary curvature on the acoustic source efficiency. Inspecting the far-field properties of the generated disturbance, the continuum-limit solution exhibits an exponential decay of the signal with the distance from the source, reflecting thermoviscous effects, and accompanied by an inverse square-root decay, characteristic of the inviscid problem. Stronger attenuation is observed in the ballistic limit, where boundary curvature results in "geometric reduction" of the molecular layer affected by the source, and the signal vanishes at a distance of few acoustic wavelengths from the cylinder. The combined effects of mechanical and thermal excitations are studied to seek for optimal conditions to monitor the vibroacoustic signal. The impact of boundary curvature becomes significant in the ballistic-flow regime, where the optimal heat-flux amplitude required for sound reduction decreases with the distance from the source and is essentially a function of the acoustic-wavelength-scaled distance only.

  10. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  11. An approach for estimating acoustic power in a pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao; Qiu, Limin; Duan, Chaoxiang; You, Xiaokuan; Zhi, Xiaoqin

    2017-10-01

    Acoustic power at the cold end of regenerator is the measure of gross cooling capacity for a pulse tube cryocooler (PTC), which cannot be measured directly. Conventionally, the acoustic power can only be derived from the measurement of velocity, pressure and their phase angle, which is still a challenge for an oscillating flow at cryogenic temperatures. A new method is proposed for estimating the acoustic power, which takes use of the easily measurable parameters, such as the pressure and temperature, instead of the velocity and phase angle between the pressure and velocity at cryogenic temperatures. The ratio of acoustic powers at the both ends of isothermal components, like regenerator, heat exchangers, can be conveniently evaluated by using the ratio of pressure amplitudes and the local temperatures. The ratio of acoustic powers at the both ends of adiabatic components, like transfer line and pulse tube, is obtained by using the ratio of pressure amplitudes. Accuracy of the approach for evaluating the acoustic power for the regenerator is analyzed by comparing the results with those from REGEN 3.3 and references. For the cold end temperature range of 40-80 K, the deviation is less than 5% if the phase angle at the cold end of regenerator is around -30°. The simple method benefits estimating the acoustic power and optimizing the PTC performance without interfering the cryogenic flow field.

  12. Indirect measurement of the thermal-acoustic efficiency spectrum of a long turbulent burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Jones, J. D.; Blevins, L. R.; Cline, J. G.

    1983-01-01

    A new method is described for deducing the thermal-acoustic efficiency spectrum (defined as the fraction of combustion heat release converted to acoustic energy at a given frequency) of a long turbulent burner from the sound spectrum measured in the far field. The method, which is based on a one-dimensional model of the unsteady flow in the burner, is applied to a tubular diffusion-flame hydrogen burner whose length is large compared to its diameter. The results for thermal powers ranging from 4.5 to 22.3 kW show that the thermal-acoustic efficiency is relatively insensitive to the burner power level, decreasing from a value of around 0.0001 at 150 Hz with a slope of about 20 dB per decade. Evidence is presented indicating that acoustic agitation of the flame below 500 Hz, especially in the neighborhood of the resonant frequencies of the burner, is a significant acoustic source.

  13. Augmentation of heat transfer by longitudinal vortices in plate-fin heat exchangers with two rows of tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, R. Jr.; Yanagihara, J.I.

    1999-07-01

    The thermal performance of fin-tube compact heat exchangers is highly affected by the thermal resistance occurring on the air side, which is much higher than the thermal resistance inside the tubes. Since this kind of heat exchanger is widely used in these days, with applications on air-conditioning, refrigeration, automobilistic industry and many other areas, the development of more efficient and cheaper heat exchangers is highly attractive, because it will permit the manufacturing of more competitive equipments. This work presents results of numerical simulations for fin-tube compact heat exchangers using smooth fins and longitudinal vortex generators. The computational model has twomore » rows of round tubes in staggered arrangement. Built-in delta winglet vortex generators were used, and its geometric dimensions were chosen according to the best results of literature. The steady-state numerical simulations were carried out at Re = 300, with a code based on the finite volume method. The typical configuration, where the vortex generators of both tube rows have identical parameters set, was compared with new ones where the vortex generators of the second row have different attack angles and positions. The global and local influence of vortex generators on heat transfer and flow losses are analyzed by comparison with a smooth fin model without vortex generators. The results show that a best heat transfer performance can be obtained by positioning the vortex generators of the second row at a particular position and angle of attack, when the increasing of the flow losses was smaller than the heat transfer enhancement achieved.« less

  14. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  15. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  16. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1994-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  17. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    range acoustic systems, whether for acoustic surveillance, communication, or remote sensing of the ocean interior . The data from the NPAL network, and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water... Acoustics PI James A. Mercer Applied Physics Laboratory, University of Washington 1013 NE 40th Street Seattle, WA 98105 phone: (206) 543-1361 fax

  18. Pilot-optimal augmentation synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1978-01-01

    An augmentation synthesis method usable in the absence of quantitative handling qualities specifications, and yet explicitly including design objectives based on pilot-rating concepts, is presented. The algorithm involves the unique approach of simultaneously solving for the stability augmentation system (SAS) gains, pilot equalization and pilot rating prediction via optimal control techniques. Simultaneous solution is required in this case since the pilot model (gains, etc.) depends upon the augmented plant dynamics, and the augmentation is obviously not a priori known. Another special feature is the use of the pilot's objective function (from which the pilot model evolves) to design the SAS.

  19. Augmenting the access grid using augmented reality

    NASA Astrophysics Data System (ADS)

    Li, Ying

    2012-01-01

    The Access Grid (AG) targets an advanced collaboration environment, with which multi-party group of people from remote sites can collaborate over high-performance networks. However, current AG still employs VIC (Video Conferencing Tool) to offer only pure video for remote communication, while most AG users expect to collaboratively refer and manipulate the 3D geometric models of grid services' results in live videos of AG session. Augmented Reality (AR) technique can overcome the deficiencies with its characteristics of combining virtual and real, real-time interaction and 3D registration, so it is necessary for AG to utilize AR to better assist the advanced collaboration environment. This paper introduces an effort to augment the AG by adding support for AR capability, which is encapsulated in the node service infrastructure, named as Augmented Reality Service (ARS). The ARS can merge the 3D geometric models of grid services' results and real video scene of AG into one AR environment, and provide the opportunity for distributed AG users to interactively and collaboratively participate in the AR environment with better experience.

  20. Instabilities encountered during heat transfer to a supercritical fluid

    NASA Technical Reports Server (NTRS)

    Cornelius, A. J.

    1969-01-01

    Investigation was made of the unstable behavior of a heat-transfer loop operating at a supercritical pressure. Natural convection operation of the loop, with observations on acoustic and slow oscillatory behavior, was emphasized during testing. The basic cause of both types of behavior appeared to originate in the heated boundary layer.

  1. Physical modeling and characterization of thermo-acoustic loudspeakers made of silver nano-wire films

    NASA Astrophysics Data System (ADS)

    La Torraca, P.; Larcher, L.; Bobinger, M.; Pavan, P.; Seeber, B.; Lugli, P.

    2017-06-01

    Recent developments of ultra-low heat capacity nanostructured materials revived the interest in the thermo-acoustic (TA) loudspeaker technology, which shows important advantages compared to the classical dynamic loudspeakers as they feature a lower cost and weight, flexibility, conformability to the surface of various shapes, and transparency. The development of the TA loudspeaker technology requires accurate physical models connecting the material properties to the thermal and acoustic speaker's performance. We present here a combined theoretical and experimental analysis of TA loudspeakers, where the electro-thermal and the thermo-acoustic transductions are handled separately, thus allowing an in-depth description of both the pressure and temperature dynamics. The electro-thermal transduction is analyzed by accounting for all the heat flow processes taking place between the TA loudspeaker and the surrounding environment, with focus on their frequency dependence. The thermo-acoustic conversion is studied by solving the coupled thermo-acoustic equations, derived from the Navier-Stokes equations, and by exploiting the Huygens-Fresnel principle to decompose the TA loudspeaker surface into a dense set of TA point sources. A general formulation of the 3D pressure field is derived summing up the TA point source contributions via a Rayleigh integral. The model is validated against temperature and sound pressure level measured on the TA loudspeaker sample made of a Silver Nanowire random network deposited on a polyimide substrate. A good agreement is found between measurements and simulations, demonstrating that the model is capable of connecting material properties to the thermo-acoustic performance of the device, thus providing a valuable tool for the design and optimization of TA loudspeakers.

  2. Robotic vehicle uses acoustic sensors for voice detection and diagnostics

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2000-07-01

    An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.

  3. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  4. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  5. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  6. Local Vascularized Flaps for Augmentation of Reinke’s Space

    PubMed Central

    Dailey, Seth H.; Gunderson, McLean; Chan, Roger; Torrealba, Jose; Kimura, Miwako; Welham, Nathan V.

    2011-01-01

    Objectives/Hypothesis The purpose of this study is to describe and test a novel surgical strategy for augmentation of Reinke’s space using vascularized flaps: a thyroid ala perichondrium flap (TAP) and a composite thyroid ala perichondrium flap (CTAP) from the anterior larynx. We hypothesized that these specially designed vascularized flaps would remain viable once inset into the lamina propria, and that they would not disrupt rheologic, biomechanical, and histologic properties of the native vocal fold. Study Design Experimental. In vivo canine model. Methods The length and volume of test flaps harvested in six adult human cadaveric larynges were analyzed to determine suitability for use in augmentation in the lamina propria. Also, 12 beagles randomly underwent unilateral placement of either TAP or CTAP, which were designed in accordance with the human adult cadaveric experiments. Flap perfusion was measured before and after harvest with laser Doppler. After 1 month, the beagles were humanely sacrificed and their larynges subjected to aerodynamic and acoustic evaluation using an excised larynx apparatus. The vocal fold lamina propria of four larynges—two TAP and two CTAP—underwent rheologic evaluation using a simple-shear rheometer. The remaining eight larynges underwent quantitative histologic and immunohistochemical evaluation. The survival and complication (swallowing, airway, local wound) rates of all dogs were noted. Results Initial studies with adult human cadaveric larynges established that TAP and CTAP possessed length and volume greater than native lamina propria. In the canine experiments, the perfusion change in the flaps was similar between flap groups. The damping ratio (ζ), dynamic viscosity (η′), elastic shear modulus (G′), and viscous shear modulus (G″) of treated and untreated native vocal folds were not statistically different. The glottic function measures of vocal efficiency, laryngeal resistance, jitter, shimmer, and harmonics

  7. A study of acoustic heating and forced convection in the solar corona

    NASA Technical Reports Server (NTRS)

    Foukal, P. V.

    1980-01-01

    The S055 EUV spectra was used to perform emission measure and line intensity ratio analyses of loop plasma conditions in a study on the thermodynamics of magnetic loops in the solar corona. The evidence that loops contain plasma hotter than the background corona, and thus, require enhanced local dissipation of magnetic or mechanical energy is discussed. The S055 EUV raster pictures were used to study physical conditions in cool ultraviolet absorbing clouds in the solar corona, and optical data were used to derive constraints on the dimension, time scales and optical depths in dark opaque clouds not seen in H alpha and CaK as filaments or prominences. Theoretical modelling of propagation of magnetically guided acoustic shocks in the solar chromosphere finds it still unlikely that high frequency acoustic shocks could reach the solar corona. Dynamic modelling of spicules shows that such guided slow mode shocks can explain the acceleration of cool spicular material seen high in the corona.

  8. Modeling the thermo-acoustic effects of thermal-dependent speed of sound and acoustic absorption of biological tissues during focused ultrasound hyperthermia.

    PubMed

    López-Haro, S A; Gutiérrez, M I; Vera, A; Leija, L

    2015-10-01

    To evaluate the effects of thermal dependence of speed of sound (SOS) and acoustic absorption of biological tissues during noninvasive focused ultrasound (US) hyperthermia therapy. A finite element (FE) model was used to simulate hyperthermia therapy in the liver by noninvasive focused US. The model consisted of an ultrasonic focused transducer radiating a four-layer biological medium composed of skin, fat, muscle, and liver. The acoustic field and temperature distribution along the layers were obtained after 15 s of hyperthermia therapy using the bio-heat equation. The model solution was found with and without the thermal dependence of SOS and acoustic absorption of biological tissues. The inclusion of the thermal dependence of the SOS generated an increment of 0.4 mm in the longitudinal focus axis of the acoustic field. Moreover, results indicate an increment of the hyperthermia area (zone with temperature above 43 °C), and a maximum temperature difference of almost 3.5 °C when the thermal dependence of absorption was taken into account. The increment of the achieved temperatures at the treatment zone indicated that the effects produced by the thermal dependence of SOS and absorption must be accounted for when planning hyperthermia treatment in order to avoid overheating undesired regions.

  9. Acoustic wave generation by microwaves and applications to nondestructive evaluation.

    PubMed

    Hosten, Bernard; Bacon, Christophe; Guilliorit, Emmanuel

    2002-05-01

    Although acoustic wave generation by electromagnetic waves has been widely studied in the case of laser-generated ultrasounds, the literature on acoustic wave generation by thermal effects due to electromagnetic microwaves is very sparse. Several mechanisms have been suggested to explain the phenomenon of microwave generation, i.e. radiation pressure, electrostriction or thermal expansion. Now it is known that the main cause is the thermal expansion due to the microwave absorption. This paper will review the recent advances in the theory and experiments that introduce a new way to generate ultrasonic waves without contact for the purpose of nondestructive evaluation and control. The unidirectional theory based on Maxwell's equations, heat equation and thermoviscoelasticity predicts the generation of acoustic waves at interfaces and inside stratified materials. Acoustic waves are generated by a pulsed electromagnetic wave or a burst at a chosen frequency such that materials can be excited with a broad or narrow frequency range. Experiments show the generation of acoustic waves in water, viscoelastic polymers and composite materials shaped as rod and plates. From the computed and measured accelerations at interfaces, the viscoelastic and electromagnetic properties of materials such as polymers and composites can be evaluated (NDE). Preliminary examples of non-destructive testing applications are presented.

  10. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  11. Effects of Acoustic and Fluid Dynamic Interactions in Resonators: Applications in Thermoacoustic Refrigeration

    NASA Astrophysics Data System (ADS)

    Antao, Dion Savio

    Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization

  12. In the Age of Breast Augmentation, Breast Reconstruction Provides an Opportunity to Augment the Breast.

    PubMed

    Zimmerman, Amanda L; Tugertimur, Bugra; Smith, Paul D; Kumar, Ambuj; Dayicioglu, Deniz

    2017-01-01

    Augmentation mammoplasty remains the most common cosmetic surgery procedure performed. The objective of this article is to evaluate the impact of augmented volume of the reconstructed breast in patients that undergo nipple-sparing mastectomy and patients previously augmented who undergo mastectomy with tissue expander/implant-based reconstruction. Patients undergoing skin-sparing mastectomy, nipple-sparing mastectomy, and mastectomy after previous augmentation followed by tissue expander/implant-based reconstruction between June 2011 and April 2015 by 2 surgeons at the same institution were included. Retrospective chart review of the patients identified using these criteria was performed to record patient characteristics, complications, breast volume, implant volume, and percentage change in volume at the time of reconstruction. Percentage change of breast volume was calculated using the formula (implant breast weight)/(breast weight) for skin-sparing and nipple-sparing mastectomy patients and (final breast implant weight - [breast weight + augmentation breast implant weight])/([breast weight + augmentation breast implant]) for patients undergoing mastectomy following previous augmentation. A total of 293 patients were included in the study with 63 patients who underwent nipple-sparing mastectomy, 166 patients who underwent skin-sparing mastectomy, and 64 patients who underwent previous augmentation with subsequent mastectomy. Mean percentage change in breast volume was 66% in the nipple-sparing mastectomy group, 15% for the right breast and 18% for the left breast in the skin-sparing mastectomy group, and 81% for the right breast and 72% for the left breast in the mastectomy following previous augmentation group. Complication rate for nipple-sparing mastectomy was 27%, mastectomy following previous augmentation was 20.3%, and skin-sparing mastectomy group was 18.7%. Patients who undergo nipple-sparing mastectomy or mastectomy following previous augmentation have

  13. Acoustic Characterization of Compact Jet Engine Simulator Units

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Haskin, Henry H.

    2013-01-01

    Two dual-stream, heated jet, Compact Jet Engine Simulator (CJES) units are designed for wind tunnel acoustic experiments involving a Hybrid Wing Body (HWB) vehicle. The newly fabricated CJES units are characterized with a series of acoustic and flowfield investigations to ensure successful operation with minimal rig noise. To limit simulator size, consistent with a 5.8% HWB model, the CJES units adapt Ultra Compact Combustor (UCC) technology developed at the Air Force Research Laboratory. Stable and controllable operation of the combustor is demonstrated using passive swirl air injection and backpressuring of the combustion chamber. Combustion instability tones are eliminated using nonuniform flow conditioners in conjunction with upstream screens. Through proper flow conditioning, rig noise is reduced by more than 20 dB over a broad spectral range, but it is not completely eliminated at high frequencies. The low-noise chevron nozzle concept designed for the HWB test shows expected acoustic benefits when installed on the CJES unit, and consistency between CJES units is shown to be within 0.5 dB OASPL.

  14. [Augmentation technique on the proximal humerus].

    PubMed

    Scola, A; Gebhard, F; Röderer, G

    2015-09-01

    The treatment of osteoporotic fractures is still a challenge. The advantages of augmentation with respect to primary in vitro stability and the clinical use for the proximal humerus are presented in this article. In this study six paired human humeri were randomized into an augmented and a non-augmented group. Osteosynthesis was performed with a PHILOS plate (Synthes®). In the augmented group the two screws finding purchase in the weakest cancellous bone were augmented. The specimens were tested in a 3-part fracture model in a varus bending test. The augmented PHILOS plates withstood significantly more load cycles until failure. The correlation to bone mineral density (BMD) showed that augmentation could partially compensate for low BMD. The augmentation of the screws in locked plating in a proximal humerus fracture model is effective in improving the primary stability in a cyclic varus bending test. The targeted augmentation of two particular screws in a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. The technique of augmentation is simple and can be applied in open and minimally invasive procedures. When the correct procedure is used, complications (cement leakage into the joint) can be avoided.

  15. Examination of nanosecond laser melting thresholds in refractory metals by shear wave acoustics

    NASA Astrophysics Data System (ADS)

    Abdullaev, A.; Muminov, B.; Rakhymzhanov, A.; Mynbayev, N.; Utegulov, Z. N.

    2017-07-01

    Nanosecond laser pulse-induced melting thresholds in refractory (Nb, Mo, Ta and W) metals are measured using detected laser-generated acoustic shear waves. Obtained melting threshold values were found to be scaled with corresponding melting point temperatures of investigated materials displaying dissimilar shearing behavior. The experiments were conducted with motorized control of the incident laser pulse energies with small and uniform energy increments to reach high measurement accuracy and real-time monitoring of the epicentral acoustic waveforms from the opposite side of irradiated sample plates. Measured results were found to be in good agreement with numerical finite element model solving coupled elastodynamic and thermal conduction governing equations on structured quadrilateral mesh. Solid-melt phase transition was handled by means of apparent heat capacity method. The onset of melting was attributed to vanished shear modulus and rapid radial molten pool propagation within laser-heated metal leading to preferential generation of transverse acoustic waves from sources surrounding the molten mass resulting in the delay of shear wave transit times. Developed laser-based technique aims for applications involving remote examination of rapid melting processes of materials present in harsh environment (e.g. spent nuclear fuels) with high spatio-temporal resolution.

  16. Numerical methods for large eddy simulation of acoustic combustion instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton T.

    Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion

  17. Acoustic reflectors are visible in the right heart during radiofrequency ablation of varicose veins.

    PubMed

    Sounderajah, V; Moore, H M; Thapar, A; Lane, T R A; Fox, K; Franklin, I J; Davies, A H

    2015-09-01

    Cerebrovascular events have been noted after foam sclerotherapy for varicose veins. One hypothesis is migration of microemboli to the brain through a cardiac septal defect. The aim of this study was to identify whether acoustic reflectors are found in the right side of the heart during radiofrequency ablation of varicose veins, as neurological events are not reported during these procedures. Transthoracic echocardiography was performed during local anaesthetic radiofrequency ablation (VNUS ClosureFast) of the great saphenous vein in 14 patients. An apical view was captured at the start of the procedure, during each cycle of heating and at 1 min post-treatment. Patients were monitored for 1 h. Video loops were read by an independent cardiologist. The presence of acoustic reflectors was classified as: 0 = absent, 1 = occasional, 2 = stream, 3 = complete opacification. Loops were of diagnostic quality in 11/14 (79%) patients. After the second cycle of heating, acoustic reflectors moving through the right heart were seen in 5/11 (45%) patients. These were classified as grade 1 in four patients and grade 2 in one patient. No acoustic reflectors were seen in the left heart. No neurological symptoms were reported. Acoustic reflectors in the right heart are a common finding during radiofrequency ablation of varicose veins. Considering the prevalence of cardiac septal defects (17%), more neurological events would be expected if these particles were indeed responsible for these events. Further work is required to elicit the mechanisms underlying neurological complications following sclerotherapy. © The Author(s) 2014.

  18. Advanced intellect-augmentation techniques

    NASA Technical Reports Server (NTRS)

    Engelbart, D. C.

    1972-01-01

    User experience in applying our augmentation tools and techniques to various normal working tasks within our center is described so as to convey a subjective impression of what it is like to work in an augmented environment. It is concluded that working-support, computer-aid systems for augmenting individuals and teams, are undoubtedly going to be widely developed and used. A very special role in this development is seen for multi-access computer networks.

  19. Comparison between diffuse infrared and acoustic transmission over the human skull.

    PubMed

    Wang, Q; Reganti, N; Yoshioka, Y; Howell, M; Clement, G T

    2015-01-01

    Skull-induced distortion and attenuation present a challenge to both transcranial imaging and therapy. Whereas therapeutic procedures have been successful in offsetting aberration using from prior CTs, this approach impractical for imaging. In effort to provide a simplified means for aberration correction, we have been investigating the use of diffuse infrared light as an indicator of acoustic properties. Infrared wavelengths were specifically selected for tissue penetration; however this preliminary study was performed through bone alone via a transmission mode to facilitate comparison with acoustic measurements. The inner surface of a half human skull, cut along the sagittal midline, was illuminated using an infrared heat lamp and images of the outer surface were acquired with an IR-sensitive camera. A range of source angles were acquired and averaged to eliminate source bias. Acoustic measurement were likewise obtained over the surface with a source (1MHz, 12.7mm-diam) oriented parallel to the skull surface and hydrophone receiver (1mm PVDF). Preliminary results reveal a positive correlation between sound speed and optical intensity, whereas poor correlation is observed between acoustic amplitude and optical intensity.

  20. Sound and heat revolutions in phononics

    NASA Astrophysics Data System (ADS)

    Maldovan, Martin

    2013-11-01

    The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.

  1. Mixing in Shear Coaxial Jets with and without Acoustics

    DTIC Science & Technology

    2012-03-29

    Distribution Unlimited Combustion Instability Lab - Background • Combustion instability is an unsustainable growth of pressure and heat transfer ...beyond liquid, gas states. Shear coaxial injectors are a common choice for cryogenic liquid rocket engines. Interactions of transverse acoustics with...and combustion beyond liquid, gas states • Shear coaxial injectors are a common choice for cryogenic liquid rocket engines • Interactions of

  2. External Acoustic Liners for Multi-Functional Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Czech, Michael J. (Inventor); Howerton, Brian M. (Inventor); Thomas, Russell H. (Inventor); Nark, Douglas M. (Inventor)

    2017-01-01

    Acoustic liners for aircraft noise reduction include one or more chambers that are configured to provide a pressure-release surface such that the engine noise generation process is inhibited and/or absorb sound by converting the sound into heat energy. The size and shape of the chambers can be selected to inhibit the noise generation process and/or absorb sound at selected frequencies.

  3. Augmented reality in neurosurgery

    PubMed Central

    Tagaytayan, Raniel; Kelemen, Arpad

    2016-01-01

    Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting. PMID:29765445

  4. Augmented reality in neurosurgery.

    PubMed

    Tagaytayan, Raniel; Kelemen, Arpad; Sik-Lanyi, Cecilia

    2018-04-01

    Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting.

  5. Low-Frequency Acoustic Noise Mitigation Characteristics of Metamaterials-Inspired Vibro-Impact Structures

    NASA Astrophysics Data System (ADS)

    Rekhy, Anuj

    Acoustic absorbers like foams, fiberglass or liners have been used commonly in structures for infrastructural, industrial, automotive and aerospace applications to mitigate noise. However, these conventional materials have limited effectiveness to mitigate low-frequency (LF) acoustic waves with frequency less than 400 Hz owing to the need for impractically large mass or volume. LF acoustic waves contribute significantly towards environmental noise pollution as well as unwanted structural responses. Therefore, there is a need to develop lightweight, compact, structurally-integrated solutions to mitigate LF noise in several applications. Inspired by metamaterials, which are man-made structural materials that derive their unique dynamic behavior not just from material constituents but more so from engineered configurations, tuned mass-loaded membranes as vibro-impact attachments on a baseline structure are investigated to determine their performance as a LF acoustic barrier. The hypothesis is that the LF incident waves are up-converted via impact to higher modes in the baseline structure which are far more evanescent and may then be effectively mitigated using conventional means. Such Metamaterials-Inspired Vibro-Impact Structures (MIVIS) could be tuned to match the dominant frequency content of LF acoustic sources in specific applications. Prototype MIVIS unit cells were designed and tested to study the energy transfer mechanism via impact-induced frequency up-conversion, and the consequent sound transmission loss. Structural acoustic simulations were done to predict responses using models based on normal incidence transmission loss tests. Experimental proof-of-concept was achieved and further correlations to simulations were utilized to optimize the energy up-conversion mechanism using parametric studies. Up to 36 dB of sound transmission loss increase is obtained at the anti-resonance frequency (326 Hz) within a tunable LF bandwidth of about 200 Hz while impact

  6. Auralization of concert hall acoustics using finite difference time domain methods and wave field synthesis

    NASA Astrophysics Data System (ADS)

    Hochgraf, Kelsey

    Auralization methods have been used for a long time to simulate the acoustics of a concert hall for different seat positions. The goal of this thesis was to apply the concept of auralization to a larger audience area that the listener could walk through to compare differences in acoustics for a wide range of seat positions. For this purpose, the acoustics of Rensselaer's Experimental Media and Performing Arts Center (EMPAC) Concert Hall were simulated to create signals for a 136 channel wave field synthesis (WFS) system located at Rensselaer's Collaborative Research Augmented Immersive Virtual Environment (CRAIVE) Laboratory. By allowing multiple people to dynamically experience the concert hall's acoustics at the same time, this research gained perspective on what is important for achieving objective accuracy and subjective plausibility in an auralization. A finite difference time domain (FDTD) simulation on a three-dimensional face-centered cubic grid, combined at a crossover frequency of 800 Hz with a CATT-Acoustic(TM) simulation, was found to have a reverberation time, direct to reverberant sound energy ratio, and early reflection pattern that more closely matched measured data from the hall compared to a CATT-Acoustic(TM) simulation and other hybrid simulations. In the CRAIVE lab, nine experienced listeners found all hybrid auralizations (with varying source location, grid resolution, crossover frequency, and number of loudspeakers) to be more perceptually plausible than the CATT-Acoustic(TM) auralization. The FDTD simulation required two days to compute, while the CATT-Acoustic(TM) simulation required three separate TUCT(TM) computations, each taking four hours, to accommodate the large number of receivers. Given the perceptual advantages realized with WFS for auralization of a large, inhomogeneous sound field, it is recommended that hybrid simulations be used in the future to achieve more accurate and plausible auralizations. Predictions are made for a

  7. On the Induction of the First-Order Phase Magnetic Transitions by Acoustic Vibrations in MnSi

    NASA Astrophysics Data System (ADS)

    Pikin, S. A.

    2017-12-01

    The main result of the paper contains the conclusion that the magnetic phase transition in MnSi always remains first order at any temperature and magnetic field. In these aims, a model of coupling of an order parameter with other degrees of freedom is used. The coupling of magnetic order parameters with long-wave acoustic phonons, in the presence of the nonsingular parts of the bulk and shear moduli, a first-order transition occurs, participle near the transition the heat capacity and the compressibility remain finite, if the heat capacity becomes infinite in the system disregarding the acoustic phonons. The role of the Frenkel heterophase fluctuations is discussed. The impurity effect shows that, for some phases, the heat capacity of the system remains continuous and finite at the transition point. It is supposed that the transition is progressively smoothed by these fluctuations at the application of the magnetic field.

  8. On the induction of the first-order phase magnetic transitions by acoustic vibrations in MnSi

    NASA Astrophysics Data System (ADS)

    Pikin, S. A.

    2017-12-01

    The main result of the paper contains the conclusion that the magnetic phase transition in MnSi always remains first order at any temperature and magnetic field. In these aims, a model of coupling of an order parameter with other degrees of freedom is used. The coupling of magnetic order parameters with longwave acoustic phonons, in the presence of the nonsingular parts of the bulk and shear moduli, a first-order transition occurs, participle near the transition the heat capacity and the compressibility remain finite, if in the system without allowance of the acoustic phonons the heat capacity becomes infinite. The role of the Frenkel heterophase fluctuations is discussed. The impurity effect shows that, for some phases, the heat capacity of the system remains continuous and finite at the transition point. It is supposed that the transition is progressively smoothed by these fluctuations at the application of the magnetic field.

  9. Remote acoustic sensing as a safety mechanism during exposure of metal implants to alternating magnetic fields

    PubMed Central

    Chatzinoff, Yonatan; Szczepanski, Debby; Bing, Chenchen; Shaikh, Sumbul; Wyman, Omar; Perry, Cameron E.; Richardson, James A.; Burns, Dennis K.; Evers, Bret M.; Greenberg, David E.; Chopra, Rajiv

    2018-01-01

    Treatment of prosthetic joint infections often involves multiple surgeries and prolonged antibiotic administration, resulting in a significant burden to patients and the healthcare system. We are exploring a non-invasive method to eradicate biofilm on metal implants utilizing high-frequency alternating magnetic fields (AMF) which can achieve surface induction heating. Although proof-of-concept studies demonstrate the ability of AMF to eradicate biofilm in vitro, there is a legitimate safety concern related to the potential for thermal damage to surrounding tissues when considering heating implanted metal objects. The goal of this study was to explore the feasibility of detecting acoustic emissions associated with boiling at the interface between a metal implant and surrounding soft tissue as a wireless safety sensing mechanism. Acoustic emissions generated during in vitro and in vivo AMF exposures were captured with a hydrophone, and the relationship with surface temperature analyzed. The effect of AMF exposure power, surrounding media composition, implant location within the AMF transmitter, and implant geometry on acoustic detection during AMF therapy was also evaluated. Acoustic emissions were reliably identified in both tissue-mimicking phantom and mouse studies, and their onset coincided with the implant temperature reaching the boiling threshold. The viscosity of the surrounding medium did not impact the production of acoustic emissions; however, emissions were not present when the medium was oil due to the higher boiling point. Results of simulations and in vivo studies suggest that short-duration, high-power AMF exposures combined with acoustic sensing can be used to minimize the amount of thermal damage in surrounding tissues. These studies support the hypothesis that detection of boiling associated acoustic emissions at a metal/tissue interface could serve as a real-time, wireless safety indicator during AMF treatment of biofilm on metallic implants. PMID

  10. Remote acoustic sensing as a safety mechanism during exposure of metal implants to alternating magnetic fields.

    PubMed

    Cheng, Bingbing; Chatzinoff, Yonatan; Szczepanski, Debby; Bing, Chenchen; Shaikh, Sumbul; Wyman, Omar; Perry, Cameron E; Richardson, James A; Burns, Dennis K; Evers, Bret M; Greenberg, David E; Chopra, Rajiv

    2018-01-01

    Treatment of prosthetic joint infections often involves multiple surgeries and prolonged antibiotic administration, resulting in a significant burden to patients and the healthcare system. We are exploring a non-invasive method to eradicate biofilm on metal implants utilizing high-frequency alternating magnetic fields (AMF) which can achieve surface induction heating. Although proof-of-concept studies demonstrate the ability of AMF to eradicate biofilm in vitro, there is a legitimate safety concern related to the potential for thermal damage to surrounding tissues when considering heating implanted metal objects. The goal of this study was to explore the feasibility of detecting acoustic emissions associated with boiling at the interface between a metal implant and surrounding soft tissue as a wireless safety sensing mechanism. Acoustic emissions generated during in vitro and in vivo AMF exposures were captured with a hydrophone, and the relationship with surface temperature analyzed. The effect of AMF exposure power, surrounding media composition, implant location within the AMF transmitter, and implant geometry on acoustic detection during AMF therapy was also evaluated. Acoustic emissions were reliably identified in both tissue-mimicking phantom and mouse studies, and their onset coincided with the implant temperature reaching the boiling threshold. The viscosity of the surrounding medium did not impact the production of acoustic emissions; however, emissions were not present when the medium was oil due to the higher boiling point. Results of simulations and in vivo studies suggest that short-duration, high-power AMF exposures combined with acoustic sensing can be used to minimize the amount of thermal damage in surrounding tissues. These studies support the hypothesis that detection of boiling associated acoustic emissions at a metal/tissue interface could serve as a real-time, wireless safety indicator during AMF treatment of biofilm on metallic implants.

  11. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  12. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  13. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  14. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  15. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-07

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  16. Acoustic propagation in rigid ducts with blockage

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1982-01-01

    Acoustic levitation has been suggested for moving nonmagnetic material in furnaces for heat processing in space experiments. Basically, acoustic standing waves under resonant conditions are excited in the cavity of the furnace while the material blockage is located at a pressure node and thus at a maximum gradient. The position of the blockage is controlled by displacing the node as a result of frequency change. The present investigation is concerned with the effect of blockage on the longitudinal and transverse resonances of a cylindrical cavity, taking into account the results of a one-dimensional and three-dimensional (3-D) analysis. Based on a Green's function surface element method, 3-D analysis is tested experimentally and proved to be accurate over a wide range of geometric parameters and boundary shapes. The shift in resonance depends on the change in pressure gradient and duct shortening caused by the blockage.

  17. A 1 kW-class multi-stage heat-driven thermoacoustic cryocooler system operating at liquefied natural gas temperature range

    NASA Astrophysics Data System (ADS)

    Zhang, L. M.; Hu, J. Y.; Wu, Z. H.; Luo, E. C.; Xu, J. Y.; Bi, T. J.

    2015-07-01

    This article introduces a multi-stage heat-driven thermoacoustic cryocooler capable of reaching cooling capacity about 1 kW at liquefied natural gas temperature range without any moving mechanical parts. The cooling system consists of an acoustically resonant double-acing traveling wave thermoacoustic heat engine and three identical pulse tube coolers. Unlike other traditional traveling wave thermoacoustic heat engines, the acoustically resonant double-acting thermoacoustic heat engine is a closed-loop configuration consists of three identical thermoacoustic conversion units. Each pulse tube cooler is bypass driven by one thermoacoustic heat engine unit. The device is acoustically completely symmetric and therefore "self-matching" for efficient traveling-wave thermoacoustic conversion. In the experiments, with 7 MPa helium gas as working gas, when the heating temperature reaches 918 K, total cooling capacity of 0.88 kW at 110 K is obtained with a resonant frequency of about 55 Hz. When the heating temperature is 903 K, a maximum total cooling capacity at 130 K of 1.20 kW is achieved, with a thermal-to-cold exergy efficiency of 8%. Compared to previously developed heat-driven thermoacoustic cryocoolers, this device has higher thermal efficiency and higher power density. It shows a good prospect of application in the field of natural gas liquefaction and recondensation.

  18. An experimental study of tone excited heated jets

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Salikuddin, M.

    1984-01-01

    The objective of this investigation was to obtain detailed experimental data on the effects of upstream acoustic excitation on the mixing of heated jets with the surrounding air. Based on the information gathered in the literature survey, a technical approach was developed to carry out a systematic set of mean flowfield measurements for a broad range of jet operating and acoustic excitation conditions. Most of the results were obtained at Mach numbers of 0.3 and 0.8 and total temperatures of up to 800 K. Some measurements were made also for the fully expanded supersonic jet of Mj = 1.15. The maximum level of excitation was Le equal to or less than 150 dB and a range of excitation frequencies up to fe = 4 kHz was used. The important results derived from this study can be summarized as follows: (1) the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions, (2) the threshold excitation level increases with increasing jet temperature, and (3) the preferred Strouhal number does not change significantly with a change of the jet operating conditions.

  19. Measurements of the Influence of Integral Length Scale on Stagnation Region Heat Transfer

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Ching, Chang Y.

    1994-01-01

    The purpose was twofold: first, to determine if a length scale existed that would cause the greatest augmentation in stagnation region heat transfer for a given turbulence intensity and second, to develop a prediction tool for stagnation heat transfer in the presence of free stream turbulence. Toward this end, a model with a circular leading edge was fabricated with heat transfer gages in the stagnation region. The model was qualified in a low turbulence wind tunnel by comparing measurements with Frossling's solution for stagnation region heat transfer in a laminar free stream. Five turbulence generating grids were fabricated; four were square mesh, biplane grids made from square bars. Each had identical mesh to bar width ratio but different bar widths. The fifth grid was an array of fine parallel wires that were perpendicular to the axis of the cylindrical leading edge. Turbulence intensity and integral length scale were measured as a function of distance from the grids. Stagnation region heat transfer was measured at various distances downstream of each grid. Data were taken at cylinder Reynolds numbers ranging from 42,000 to 193,000. Turbulence intensities were in the range 1.1 to 15.9 percent while the ratio of integral length scale to cylinder diameter ranged from 0.05 to 0.30. Stagnation region heat transfer augmentation increased with decreasing length scale. An optimum scale was not found. A correlation was developed that fit heat transfer data for the square bar grids to within +4 percent. The data from the array of wires were not predicted by the correlation; augmentation was higher for this case indicating that the degree of isotropy in the turbulent flow field has a large effect on stagnation heat transfer. The data of other researchers are also compared with the correlation.

  20. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  1. Surface Acoustic Waves to Drive Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-03-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  2. Surface Acoustic Waves to Drive Plant Transpiration.

    PubMed

    Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T

    2017-03-31

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  3. Panel acoustic contribution analysis.

    PubMed

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  4. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Sass, Jared P. (Inventor); Weiser, Erik S. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  5. Foam/aerogel composite materials for thermal and acoustic insulation and cryogen storage

    NASA Technical Reports Server (NTRS)

    Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Williams, Martha K. (Inventor); Sass, Jared P. (Inventor); Weiser, Erik S. (Inventor)

    2010-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  6. Augmented reality: a review.

    PubMed

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.

  7. Is dust acoustic wave a new plasma acoustic mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, C.B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi {ital et al.} [J. Plasma Phys. {bold 41}, 219 (1989)]. It is suggested that both correct and more usable nomenclature of themore » ALM should be the so-called acoustic mode. {copyright} {ital 1997 American Institute of Physics.}« less

  8. 2-Dimensional changes of the soft tissue profile of augmented and non-augmented human extraction sockets: a randomized pilot study.

    PubMed

    Flügge, Tabea; Nelson, Katja; Nack, Claudia; Stricker, Andres; Nahles, Susanne

    2015-04-01

    This study identified the soft tissue changes of the alveolar ridge at different time points within 12 weeks after tooth extraction with and without socket augmentation. In 38 patients with single tooth extractions, 40 sockets were augmented and 39 extraction sockets were not augmented. At 2, 4, 6, 8 and 12 weeks impressions were taken and casts digitized with a laser scanner. The horizontal and vertical changes were compared between augmented and non-augmented sites. A p-value <0.05 was considered statistically significant. The mean changes of augmented sockets were between 0.4 mm (2 weeks) and 0.8 mm (12 weeks). In non-augmented sockets changes of 0.7 mm (2 weeks) and of 1.0 mm (12 weeks) were demonstrated. The mean values differed significantly between the buccal and oral region (p < 0.01). Overall, there were significant differences of the mean dimensional changes regarding time (p < 0.01) and augmentation (p < 0.01). Augmented sockets showed less resorption within 4 weeks after extraction compared to non-augmented sockets. Non-augmented sockets showed a continuous dimensional loss with a great variation over 12 weeks whereas augmented sockets had the highest degree of resorption between 4 and 6 weeks. At 12 weeks a comparable resorption in augmented and non-augmented sockets was observed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Transpulmonary hypothermia: a novel method of rapid brain cooling through augmented heat extraction from the lungs.

    PubMed

    Kumar, Matthew M; Goldberg, Andrew D; Kashiouris, Markos; Keenan, Lawrence R; Rabinstein, Alejandro A; Afessa, Bekele; Johnson, Larry D; Atkinson, John L D; Nayagam, Vedha

    2014-10-01

    Delay in instituting neuroprotective measures after cardiac arrest increases death and decreases neuronal recovery. Current hypothermia methods are slow, ineffective, unreliable, or highly invasive. We report the feasibility of rapid hypothermia induction in swine through augmented heat extraction from the lungs. Twenty-four domestic crossbred pigs (weight, 50-55kg) were ventilated with room air. Intraparenchymal brain temperature and core temperatures from pulmonary artery, lower esophagus, bladder, rectum, nasopharynx, and tympanum were recorded. In eight animals, ventilation was switched to cooled helium-oxygen mixture (heliox) and perfluorocarbon (PFC) aerosol and continued for 90min or until target brain temperature of 32°C was reached. Eight animals received body-surface cooling with water-circulating blankets; eight control animals continued to be ventilated with room air. Brain and core temperatures declined rapidly with cooled heliox-PFC ventilation. The brain reached target temperature within the study period (mean [SD], 66 [7.6]min) in only the transpulmonary cooling group. Cardiopulmonary functions and poststudy histopathological examination of the lungs were normal. Transpulmonary cooling is novel, rapid, minimally invasive, and an effective technique to induce therapeutic hypothermia. High thermal conductivity of helium and vaporization of PFC produces rapid cooling of alveolar gases. The thinness and large surface area of alveolar membrane facilitate rapid cooling of the pulmonary circulation. Because of differences in thermogenesis, blood flow, insulation, and exposure to the external environment, the brain cools at a different rate than other organs. Transpulmonary hypothermia was significantly faster than body surface cooling in reaching target brain temperature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Augmented Reality for the Improvement of Remote Laboratories: An Augmented Remote Laboratory

    ERIC Educational Resources Information Center

    Andujar, J. M.; Mejias, A.; Marquez, M. A.

    2011-01-01

    Augmented reality (AR) provides huge opportunities for online teaching in science and engineering, as these disciplines place emphasis on practical training and unsuited to completely nonclassroom training. This paper proposes a new concept in virtual and remote laboratories: the augmented remote laboratory (ARL). ARL is being tested in the first…

  11. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  12. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  13. Speaker verification system using acoustic data and non-acoustic data

    DOEpatents

    Gable, Todd J [Walnut Creek, CA; Ng, Lawrence C [Danville, CA; Holzrichter, John F [Berkeley, CA; Burnett, Greg C [Livermore, CA

    2006-03-21

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  14. Turbulence modeling and surface heat transfer in a stagnation flow region

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Yeh, F. C.

    1987-01-01

    Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.

  15. Flow and heat transfer enhancement in tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  16. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.

  17. Dynamic augmentation restores anterior tibial translation in ACL suture repair: a biomechanical comparison of non-, static and dynamic augmentation techniques.

    PubMed

    Hoogeslag, Roy A G; Brouwer, Reinoud W; Huis In 't Veld, Rianne; Stephen, Joanna M; Amis, Andrew A

    2018-02-03

    There is a lack of objective evidence investigating how previous non-augmented ACL suture repair techniques and contemporary augmentation techniques in ACL suture repair restrain anterior tibial translation (ATT) across the arc of flexion, and after cyclic loading of the knee. The purpose of this work was to test the null hypotheses that there would be no statistically significant difference in ATT after non-, static- and dynamic-augmented ACL suture repair, and they will not restore ATT to normal values across the arc of flexion of the knee after cyclic loading. Eleven human cadaveric knees were mounted in a test rig, and knee kinematics from 0° to 90° of flexion were recorded by use of an optical tracking system. Measurements were recorded without load and with 89-N tibial anterior force. The knees were tested in the following states: ACL-intact, ACL-deficient, non-augmented suture repair, static tape augmentation and dynamic augmentation after 10 and 300 loading cycles. Only static tape augmentation and dynamic augmentation restored ATT to values similar to the ACL-intact state directly postoperation, and maintained this after cyclic loading. However, contrary to dynamic augmentation, the ATT after static tape augmentation failed to remain statistically less than for the ACL-deficient state after cyclic loading. Moreover, after cyclic loading, ATT was significantly less with dynamic augmentation when compared to static tape augmentation. In contrast to non-augmented ACL suture repair and static tape augmentation, only dynamic augmentation resulted in restoration of ATT values similar to the ACL-intact knee and decreased ATT values when compared to the ACL-deficient knee immediately post-operation and also after cyclic loading, across the arc of flexion, thus allowing the null hypotheses to be rejected. This may assist healing of the ruptured ACL. Therefore, this study would support further clinical evaluation of dynamic augmentation of ACL repair.

  18. Advances in edge-diffraction modeling for virtual-acoustic simulations

    NASA Astrophysics Data System (ADS)

    Calamia, Paul Thomas

    In recent years there has been growing interest in modeling sound propagation in complex, three-dimensional (3D) virtual environments. With diverse applications for the military, the gaming industry, psychoacoustics researchers, architectural acousticians, and others, advances in computing power and 3D audio-rendering techniques have driven research and development aimed at closing the gap between the auralization and visualization of virtual spaces. To this end, this thesis focuses on improving the physical and perceptual realism of sound-field simulations in virtual environments through advances in edge-diffraction modeling. To model sound propagation in virtual environments, acoustical simulation tools commonly rely on geometrical-acoustics (GA) techniques that assume asymptotically high frequencies, large flat surfaces, and infinitely thin ray-like propagation paths. Such techniques can be augmented with diffraction modeling to compensate for the effect of surface size on the strength and directivity of a reflection, to allow for propagation around obstacles and into shadow zones, and to maintain soundfield continuity across reflection and shadow boundaries. Using a time-domain, line-integral formulation of the Biot-Tolstoy-Medwin (BTM) diffraction expression, this thesis explores various aspects of diffraction calculations for virtual-acoustic simulations. Specifically, we first analyze the periodic singularity of the BTM integrand and describe the relationship between the singularities and higher-order reflections within wedges with open angle less than 180°. Coupled with analytical approximations for the BTM expression, this analysis allows for accurate numerical computations and a continuous sound field in the vicinity of an arbitrary wedge geometry insonified by a point source. Second, we describe an edge-subdivision strategy that allows for fast diffraction calculations with low error relative to a numerically more accurate solution. Third, to address

  19. An optoacoustic guide with augmented reality system towards precision breast conserving surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lan, Lu; Liu, Kaiming; Xia, Yan; Wu, Jiayingzi; Li, Rui; Wang, Pu; Han, Linda K.; Cheng, Ji-Xin

    2017-02-01

    Breast-conserving surgery is a well-accepted breast cancer treatment. However, it is still challenging for the surgeon to accurately localize the tumor during the surgery. Also, the guidance provided by current methods is 1 dimensional distance information, which is indirect and not intuitive. Therefore, it creates problems on a large re-excision rate, and a prolonged surgical time. To solve these problems, we have developed a fiber-delivered optoacoustic guide (OG), which mimics the traditional localization guide wire and is preoperatively placed into tumor mass, and an augmented reality (AR) system to provide real-time visualization on the location of the tumor with sub-millimeter variance. By a nano-composite light diffusion sphere and light absorbing layer formed on the tip of an optical fiber, the OG creates an omnidirectional acoustic source inside tumor mass under pulsed laser excitation. The optoacoustic signal generated has a high dynamic range ( 58dB) and spreads in a large apex angle of 320 degrees. Then, an acoustic radar with three ultrasound transducers is attached to the breast skin, and triangulates the location of the OG tip. With an AR system to sense the location of the acoustic radar, the relative position of the OG tip inside the tumor to the AR display is calculated and rendered. This provides direct visual feedback of the tumor location to surgeons, which will greatly ease the surgical planning during the operation and save surgical time. A proof-of-concept experiment using a tablet and a stereo-vision camera is demonstrated and 0.25 mm tracking variance is achieved.

  20. Repeated vertebral augmentation for new vertebral compression fractures of postvertebral augmentation patients: a nationwide cohort study

    PubMed Central

    Liang, Cheng-Loong; Wang, Hao-Kwan; Syu, Fei-Kai; Wang, Kuo-Wei; Lu, Kang; Liliang, Po-Chou

    2015-01-01

    Purpose Postvertebral augmentation vertebral compression fractures are common; repeated vertebral augmentation is usually performed for prompt pain relief. This study aimed to evaluate the incidence and risk factors of repeat vertebral augmentation. Methods We performed a retrospective, nationwide, population-based longitudinal observation study, using the National Health Insurance Research Database (NHIRD) of Taiwan. All patients who received vertebral augmentation for vertebral compression fractures were evaluated. The collected data included patient characteristics (demographics, comorbidities, and medication exposure) and repeat vertebral augmentation. Kaplan–Meier and stratified Cox proportional hazard regressions were performed for analyses. Results The overall incidence of repeat vertebral augmentation was 11.3% during the follow-up until 2010. Patients with the following characteristics were at greater risk for repeat vertebral augmentation: female sex (AOR=1.24; 95% confidence interval [CI]: 1.10–2.36), advanced age (AOR=1.60; 95% CI: 1.32–2.08), diabetes mellitus (AOR=4.31; 95% CI: 4.05–5.88), cerebrovascular disease (AOR=4.09; 95% CI: 3.44–5.76), dementia (AOR=1.97; 95% CI: 1.69–2.33), blindness or low vision (AOR=3.72; 95% CI: 2.32–3.95), hypertension (AOR=2.58; 95% CI: 2.35–3.47), and hyperlipidemia (AOR=2.09; 95% CI: 1.67–2.22). Patients taking calcium/vitamin D (AOR=2.98; 95% CI: 1.83–3.93), bisphosphonates (AOR=2.11; 95% CI: 1.26–2.61), or calcitonin (AOR=4.59; 95% CI: 3.40–5.77) were less likely to undergo repeat vertebral augmentation; however, those taking steroids (AOR=7.28; 95% CI: 6.32–8.08), acetaminophen (AOR=3.54; 95% CI: 2.75–4.83), or nonsteroidal anti-inflammatory drugs (NSAIDs) (AOR=6.14; 95% CI: 5.08–7.41) were more likely to undergo repeat vertebral augmentation. Conclusion We conclude that the incidence of repeat vertebral augmentation is rather high. An understanding of risk factors predicting repeat

  1. Reductive Augmentation of the Breast.

    PubMed

    Chasan, Paul E

    2018-06-01

    Although breast reduction surgery plays an invaluable role in the correction of macromastia, it almost always results in a breast lacking in upper pole fullness and/or roundness. We present a technique of breast reduction combined with augmentation termed "reductive augmentation" to solve this problem. The technique is also extremely useful for correcting breast asymmetry, as well as revising significant pseudoptosis in the patient who has previously undergone breast augmentation with or without mastopexy. An evolution of techniques has been used to create a breast with more upper pole fullness and anterior projection in those patients desiring a more round, higher-profile appearance. Reductive augmentation is a one-stage procedure in which a breast augmentation is immediately followed by a modified superomedial pedicle breast reduction. Often, the excision of breast tissue is greater than would normally be performed with breast reduction alone. Thirty-five patients underwent reductive augmentation, of which 12 were primary surgeries and 23 were revisions. There was an average tissue removal of 255 and 227 g, respectively, per breast for the primary and revision groups. Six of the reductive augmentations were performed for gross asymmetry. Fourteen patients had a previous mastopexy, and 3 patients had a previous breast reduction. The average follow-up was 26 months. Reductive augmentation is an effective one-stage method for achieving a more round-appearing breast with upper pole fullness both in primary breast reduction candidates and in revisionary breast surgery. This technique can also be applied to those patients with significant asymmetry. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  2. In situ acoustic-based analysis system for physical and chemical properties of the lower Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Farrelly, F. A.; Petri, A.; Pitolli, L.; Pontuale, G.

    2004-01-01

    The environmental acoustic reconnaissance and sounding experiment (EARS), is composed of two parts: the environmental acoustic reconnaissance (EAR) instrument and the environmental acoustic sounding experiment (EASE). They are distinct, but have the common objective of characterizing the acoustic environment of Mars. The principal goal of the EAR instrument is "listening" to Mars. This could be a most significant experiment if one thinks of everyday life experience where hearing is possibly the most important sense after sight. Not only will this contribute to opening up this important area of planetary exploration, which has been essentially ignored until now, but will also bring the general public closer in contact with our most proximate planet. EASE is directed at characterizing acoustic propagation parameters, specifically sound velocity and absorption, and will provide information regarding important physical and chemical parameters of the lower Martian atmosphere; in particular, water vapor content, specific heat capacity, heat conductivity and shear viscosity, which will provide specific constraints in determining its composition. This would enable one to gain a deeper understanding of Mars and its analogues on Earth. Furthermore, the knowledge of the physical and chemical parameters of the Martian atmosphere, which influence its circulation, will improve the comprehension of its climate now and in the past, so as to gain insight on the possibility of the past presence of life on Mars. These aspect are considered strategic in the contest of its exploration, as is clearly indicated in NASA's four main objectives on "Long Term Mars Exploration Program" (http://marsweb.jpl.nasa.gov/mer/science).

  3. Augmented assessment as a means to augmented reality.

    PubMed

    Bergeron, Bryan

    2006-01-01

    Rigorous scientific assessment of educational technologies typically lags behind the availability of the technologies by years because of the lack of validated instruments and benchmarks. Even when the appropriate assessment instruments are available, they may not be applied because of time and monetary constraints. Work in augmented reality, instrumented mannequins, serious gaming, and similar promising educational technologies that haven't undergone timely, rigorous evaluation, highlights the need for assessment methodologies that address the limitations of traditional approaches. The most promising augmented assessment solutions incorporate elements of rapid prototyping used in the software industry, simulation-based assessment techniques modeled after methods used in bioinformatics, and object-oriented analysis methods borrowed from object oriented programming.

  4. Cavity Heating Experiments Supporting Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Berger, Karen T.; Bey, Kim S.; Merski, N. Ronald; Wood, William A.

    2011-01-01

    The two-color thermographic phosphor method has been used to map the local heating augmentation of scaled idealized cavities at conditions simulating the windward surface of the Shuttle Orbiter Columbia during flight STS-107. Two experiments initiated in support of the Columbia Accident Investigation were conducted in the Langley 20-Inch Mach 6 Tunnel. Generally, the first test series evaluated open (length-to-depth less than 10) rectangular cavity geometries proposed as possible damage scenarios resulting from foam and ice impact during launch at several discrete locations on the vehicle windward surface, though some closed (length-to-depth greater than 13) geometries were briefly examined. The second test series was designed to parametrically evaluate heating augmentation in closed rectangular cavities. The tests were conducted under laminar cavity entry conditions over a range of local boundary layer edge-flow parameters typical of re-entry. Cavity design parameters were developed using laminar computational predictions, while the experimental boundary layer state conditions were inferred from the heating measurements. An analysis of the aeroheating caused by cavities allowed exclusion of non-breeching damage from the possible loss scenarios being considered during the investigation.

  5. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  6. Marble Ageing Characterization by Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Boudani, Mohamed El; Wilkie-Chancellier, Nicolas; Martinez, Loïc; Hébert, Ronan; Rolland, Olivier; Forst, Sébastien; Vergès-Belmin, Véronique; Serfaty, Stéphane

    In cultural heritage, statue marble characterization by acoustic waves is a well-known non-destructive method. Such investigations through the statues by time of flight method (TOF) point out sound speeds decrease with ageing. However for outdoor stored statues as the ones in the gardens of Chateau de Versailles, ageing affects mainly the surface of the Carrara marble. The present paper proposes an experimental study of the marble acoustic properties variations during accelerated laboratory ageing. The surface degradation of the marble is reproduced in laboratory for 29 mm thick marble samples by using heating/cooling thermal cycles on one face of a marble plate. Acoustic waves are generated by 1 MHz central frequency contact transducers excited by a voltage pulse placed on both sides of the plate. During the ageing and by using ad hoc transducers, the marble samples are characterized in transmission, along their volume by shear, compressional TOF measurements and along their surface by Rayleigh waves measurements. For Rayleigh waves, both TOF by transducers and laser vibrometry methods are used to detect the Rayleigh wave. The transmission measurements point out a deep decrease of the waves speeds in conjunction with a dramatic decrease of the maximum frequency transmitted. The marble acts as a low pass filter whose characteristic frequency cut decreases with ageing. This pattern occurs also for the Rayleigh wave surface measurements. The speed change in conjunction with the bandwidth translation is shown to be correlated to the material de-structuration during ageing. With a similar behavior but reversed in time, the same king of phenomena have been observed trough sol-gel materials during their structuration from liquid to solid state (Martinez, L. et all (2004). "Chirp-Z analysis for sol-gel transition monitoring". Ultrasonics, 42(1), 507-510.). A model is proposed to interpret the acoustical measurements

  7. Controlling competing orders via nonequilibrium acoustic phonons: Emergence of anisotropic effective electronic temperature

    NASA Astrophysics Data System (ADS)

    Schütt, Michael; Orth, Peter P.; Levchenko, Alex; Fernandes, Rafael M.

    2018-01-01

    Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.

  8. An acoustic switch.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2014-01-01

    The benefits derived from the development of acoustic transistors which act as switches or amplifiers have been reported in the literature. Here we propose a model of acoustic switch. We theoretically demonstrate that the device works: the input signal is totally restored at the output when the switch is on whereas the output signal nulls when the switch is off. The switch, on or off, depends on a secondary acoustic field capable to manipulate the main acoustic field. The model relies on the attenuation effect of many oscillating bubbles on the main travelling wave in the liquid, as well as on the capacity of the secondary acoustic wave to move the bubbles. This model evidences the concept of acoustic switch (transistor) with 100% efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  10. Acoustic levitation of an object larger than the acoustic wavelength.

    PubMed

    Andrade, Marco A B; Okina, Fábio T A; Bernassau, Anne L; Adamowski, Julio C

    2017-06-01

    Levitation and manipulation of objects by sound waves have a wide range of applications in chemistry, biology, material sciences, and engineering. However, the current acoustic levitation techniques are mainly restricted to particles that are much smaller than the acoustic wavelength. In this work, it is shown that acoustic standing waves can be employed to stably levitate an object much larger than the acoustic wavelength in air. The levitation of a large slightly curved object weighting 2.3 g is demonstrated by using a device formed by two 25 kHz ultrasonic Langevin transducers connected to an aluminum plate. The sound wave emitted by the device provides a vertical acoustic radiation force to counteract gravity and a lateral restoring force that ensure horizontal stability to the levitated object. In order to understand the levitation stability, a numerical model based on the finite element method is used to determine the acoustic radiation force that acts on the object.

  11. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Kirby, C. R.; Convertino, V. A.

    1986-01-01

    The relationship between plasma aldosterone levels and sweat sodium excretion after chronic exercise and heat acclimation was investigated, using subjects exercised, at 40 C and 45 percent humidity, for 2 h/day on ten consecutive days at 45 percent of their maximal oxygen uptake. The data indicate that, following heat acclimation, plasma aldosterone concentrations decrease, and that the eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augmented through exercise and heat acclimation.

  12. Study of critical defects in ablative heat shield systems for the space shuttle

    NASA Technical Reports Server (NTRS)

    Miller, C. C.; Rummel, W. D.

    1974-01-01

    Experimental results are presented for a program conducted to determine the effects of fabrication-induced defects on the performance of an ablative heat shield material. Exposures representing a variety of space shuttle orbiter mission environments-humidity acoustics, hot vacuum and cold vacuum-culuminating in entry heating and transonic acoustics, were simulated on large panels containing intentional defects. Nondestructive methods for detecting the defects, were investigated. The baseline materials were two honeycomb-reinforced low density, silicone ablators, MG-36 and SS-41. Principal manufacturing-induced defects displaying a critical potential included: off-curing of the ablator, extreme low density, undercut (or crushed) honeycomb reinforcements, and poor wet-coating of honeycomb.

  13. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  14. Pedicle screw cement augmentation. A mechanical pullout study on different cement augmentation techniques.

    PubMed

    Costa, Francesco; Ortolina, Alessandro; Galbusera, Fabio; Cardia, Andrea; Sala, Giuseppe; Ronchi, Franco; Uccelli, Carlo; Grosso, Rossella; Fornari, Maurizio

    2016-02-01

    Pedicle screws with polymethyl methacrylate (PMMA) cement augmentation have been shown to significantly improve the fixation strength in a severely osteoporotic spine. However, the efficacy of screw fixation for different cement augmentation techniques remains unknown. This study aimed to determine the difference in pullout strength between different cement augmentation techniques. Uniform synthetic bones simulating severe osteoporosis were used to provide a platform for each augmentation technique. In all cases a polyaxial screw and acrylic cement (PMMA) at medium viscosity were used. Five groups were analyzed: I) only screw without PMMA (control group); II) retrograde cement pre-filling of the tapped area; III) cannulated and fenestrate screw with cement injection through perforation; IV) injection using a standard trocar of PMMA (vertebroplasty) and retrograde pre-filling of the tapped area; V) injection through a fenestrated trocar and retrograde pre-filling of the tapped area. Standard X-rays were taken in order to visualize cement distribution in each group. Pedicle screws at full insertion were then tested for axial pullout failure using a mechanical testing machine. A total of 30 screws were tested. The results of pullout analysis revealed better results of all groups with respect to the control group. In particular the statistical analysis showed a difference of Group V (p = 0.001) with respect to all other groups. These results confirm that the cement augmentation grants better results in pullout axial forces. Moreover they suggest better load resistance to axial forces when the distribution of the PMMA is along all the screw combining fenestration and pre-filling augmentation technique. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  16. Turbulent Supersonic/Hypersonic Heating Correlations for Open and Closed Cavities

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Greene, Francis A.

    2009-01-01

    Supersonic/hypersonic laminar heating correlations that were developed for damage assessment analysis of atmospheric re-entry vehicles have been modified and extended to cover fully-turbulent conditions over rectangular cavity geometries that are aligned with the local velocity. Turbulent boundary layer properties were computationally determined and used to develop the cavity geometry parametrics and to correlate experimental closed cavity heating data to yield new relationships for the floor-averaged and centerline endwall peak-heating augmentation. With the form of the closed-cavity correlations established, historical data were used to develop new correlations for turbulent open-cavity heating.

  17. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.

    PubMed

    Karlsen, Jonas T; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δ(s) and δ(t) relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  18. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas T.; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δs and δt relative to the particle radius a , but it assumes the particle to be small in comparison to the acoustic wavelength λ . This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  19. Acoustic neuroma

    MedlinePlus

    ... Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... that makes it hard to hear conversations Ringing ( tinnitus ) in the affected ear Less common symptoms include: ...

  20. Augmenting Human Performance in Remotely Piloted Aircraft.

    PubMed

    Gruenwald, Christina M; Middendorf, Matthew S; Hoepf, Michael R; Galster, Scott M

    2018-02-01

    An experiment in a program of research supporting the sense-assess-augment (SAA) framework is described. The objective is to use physiological measures to assess operator cognitive workload in remotely piloted aircraft (RPA) operations, and provide augmentation to assist the operator in times of high workload. In previous experiments, physiological measures were identified that demonstrate sensitivity to changes in workload. The current research solely focuses on the augmentation component of the SAA paradigm. This line of research uses a realistic RPA simulation with varying levels of workload. Recruited from the Midwest region were 12 individuals (6 women) to participate in the experiment. The subjects were trained to perform a surveillance task and a tracking task using RPAs. There was also a secondary task in which subjects were required to answer cognitive probes. A within subjects factorial design was employed with three factors per task. Subjective workload estimates were acquired using the NASA-TLX. Performance data were calculated using a composite scoring algorithm. Augmentation significantly improved performance and reduced workload in both tasks. In the surveillance task, augmentation increased performance from 573.78 to 679.04. Likewise, augmentation increased performance in the tracking task from 749.39 to 791.81. Augmentation was more beneficial in high workload conditions than low workload conditions. The increase in performance and decrease in workload associated with augmentation is an important and anticipated finding. This suggests that augmentation should only be provided when it is truly needed, especially if the augmentation requires additional assets and/or resources.Gruenwald CM, Middendorf MS, Hoepf MR, Galster SM. Augmenting human performance in remotely piloted aircraft. Aerosp Med Hum Perform. 2018; 89(2):115-121.

  1. Double negative acoustic metastructure for attenuation of acoustic emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Bhushan, Pulak; Prakash, Om; Bhattacharya, Shantanu

    2018-03-01

    Acoustic metamaterials hold great potential for attenuation of low frequency acoustic emissions. However, a fundamental challenge is achieving high transmission loss over a broad frequency range. In this work, we report a double negative acoustic metastructure for absorption of low frequency acoustic emissions in an aircraft. This is achieved by utilizing a periodic array of hexagonal cells interconnected with a neck and mounted with an elastic membrane on both ends. An average transmission loss of 56 dB under 500 Hz and an overall absorption of over 48% have been realized experimentally. The negative mass density is derived from the dipolar resonances created as a result of the in-phase movement of the membranes. Further, the negative bulk modulus is ascribed to the combined effect of out-of-phase acceleration of the membranes and the Helmholtz resonator. The proposed metastructure enables absorption of low frequency acoustic emissions with improved functionality that is highly desirable for varied applications.

  2. Augmentation-related brain plasticity

    PubMed Central

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  3. Investigation of the Acoustic Source Characteristics of High Energy Laser Pulses: Models and Experiment

    DTIC Science & Technology

    2008-06-01

    any mechanism which heats water. Sulak et al. [1979], for example, derive an expression for the acoustic wave resulting from the interaction of a... Sulak [1979] also provides an equation he attributes to Bowen for the pressure amplitude as a function of time. It is: ( ) ( ), /, 4 p w r t r cKp...pressure expected from heating water. His treatment is different from the one we see in Sulak , because he looks specifically at a situation where there

  4. Confronting an Augmented Reality

    ERIC Educational Resources Information Center

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  5. Advanced Intellect-Augmentation Techniques.

    ERIC Educational Resources Information Center

    Engelbart, D. C.

    This progress report covers a two-year project which is part of a program that is exploring the value of computer aids in augmenting human intellectual capability. The background and nature of the program, its resources, and the activities it has undertaken are outlined. User experience in applying augmentation tools and techniques to various…

  6. On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes

    ERIC Educational Resources Information Center

    Chandran, Pallath

    2004-01-01

    The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…

  7. Reducing the dimensions of acoustic devices using anti-acoustic-null media

    NASA Astrophysics Data System (ADS)

    Li, Borui; Sun, Fei; He, Sailing

    2018-02-01

    An anti-acoustic-null medium (anti-ANM), a special homogeneous medium with anisotropic mass density, is designed by transformation acoustics (TA). Anti-ANM can greatly compress acoustic space along the direction of its main axis, where the size compression ratio is extremely large. This special feature can be utilized to reduce the geometric dimensions of classic acoustic devices. For example, the height of a parabolic acoustic reflector can be greatly reduced. We also design a brass-air structure on the basis of the effective medium theory to materialize the anti-ANM in a broadband frequency range. Numerical simulations verify the performance of the proposed anti-ANM.

  8. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea

    DTIC Science & Technology

    2016-06-21

    the "Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical Society of America (Vol. 134, No . 4, Pt. 2 of 2 , October20 13...also listed. Fourteen (14) of these publications appeared in the " Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical

  9. Deterministic Local Sensitivity Analysis of Augmented Systems - II: Applications to the QUENCH-04 Experiment Using the RELAP5/MOD3.2 Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu-Bujor, Mihaela; Jin Xuezhou; Cacuci, Dan G.

    2005-09-15

    The adjoint sensitivity analysis procedure for augmented systems for application to the RELAP5/MOD3.2 code system is illustrated. Specifically, the adjoint sensitivity model corresponding to the heat structure models in RELAP5/MOD3.2 is derived and subsequently augmented to the two-fluid adjoint sensitivity model (ASM-REL/TF). The end product, called ASM-REL/TFH, comprises the complete adjoint sensitivity model for the coupled fluid dynamics/heat structure packages of the large-scale simulation code RELAP5/MOD3.2. The ASM-REL/TFH model is validated by computing sensitivities to the initial conditions for various time-dependent temperatures in the test bundle of the Quench-04 reactor safety experiment. This experiment simulates the reflooding with water ofmore » uncovered, degraded fuel rods, clad with material (Zircaloy-4) that has the same composition and size as that used in typical pressurized water reactors. The most important response for the Quench-04 experiment is the time evolution of the cladding temperature of heated fuel rods. The ASM-REL/TFH model is subsequently used to perform an illustrative sensitivity analysis of this and other time-dependent temperatures within the bundle. The results computed by using the augmented adjoint sensitivity system, ASM-REL/TFH, highlight the reliability, efficiency, and usefulness of the adjoint sensitivity analysis procedure for computing time-dependent sensitivities.« less

  10. Relationships between objective acoustic indices and acoustic comfort evaluation in nonacoustic spaces

    NASA Astrophysics Data System (ADS)

    Kang, Jian

    2004-05-01

    Much attention has been paid to acoustic spaces such as concert halls and recording studios, whereas research on nonacoustic buildings/spaces has been rather limited, especially from the viewpoint of acoustic comfort. In this research a series of case studies has been carried out on this topic, considering various spaces including shopping mall atrium spaces, library reading rooms, football stadia, swimming spaces, churches, dining spaces, as well as urban open public spaces. The studies focus on the relationships between objective acoustic indices such as sound pressure level and reverberation time and perceptions of acoustic comfort. The results show that the acoustic atmosphere is an important consideration in such spaces and the evaluation of acoustic comfort may vary considerably even if the objective acoustic indices are the same. It is suggested that current guidelines and technical regulations are insufficient in terms of acoustic design of these spaces, and the relationships established from the case studies between objective and subjective aspects would be useful for developing further design guidelines. [Work supported partly by the British Academy.

  11. Plasma heating for containerless and microgravity materials processing

    NASA Technical Reports Server (NTRS)

    Leung, Emily W. (Inventor); Man, Kin F. (Inventor)

    1994-01-01

    A method for plasma heating of levitated samples to be used in containerless microgravity processing is disclosed. A sample is levitated by electrostatic, electromagnetic, aerodynamic, or acoustic systems, as is appropriate for the physical properties of the particular sample. The sample is heated by a plasma torch at atmospheric pressure. A ground plate is provided to help direct the plasma towards the sample. In addition, Helmholtz coils are provided to produce a magnetic field that can be used to spiral the plasma around the sample. The plasma heating system is oriented such that it does not interfere with the levitation system.

  12. Thermal acoustic oscillations, volume 2. [cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Sims, W. H.; Fan, C.

    1975-01-01

    A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions.

  13. Virtual acoustics displays

    NASA Astrophysics Data System (ADS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-03-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  14. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  15. Simulation of Acoustics for Ares I Scale Model Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Putnam, Gabriel; Strutzenberg, Louise L.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.

  16. Acoustic characteristics of externally blown flap systems with mixer nozzles

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.; Dorsch, R. G.; Wagner, J. M.

    1974-01-01

    Noise tests were conducted on a large scale, cold flow model of an engine-under-the-wing externally blown flap lift augmentation system employing a mixer nozzle. The mixer nozzle was used to reduce the flap impingement velocity and, consequently, try to attenuate the additional noise caused by the interaction between the jet exhaust and the wing flap. Results from the mixer nozzle tests are summarized and compared with the results for a conical nozzle. The comparison showed that with the mixer nozzle, less noise was generated when the trailing flap was in a typical landing setting (e.g., 60 deg). However, for a takeoff flap setting (20 deg), there was little or no difference in the acoustic characteristics when either the mixer or conical nozzle was used.

  17. The Augmentation System Framework.

    ERIC Educational Resources Information Center

    Engelbart, Doug; Hooper, Kristina

    1986-01-01

    Augmentation systems are composed of things that will add to what the human is genetically endowed with in order to extend the net capabilities that a human or human organization can apply to the problems or goals of human society. A broad brush categorization of the components of an augmentation system includes three distinct though interacting…

  18. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; McKellip, Rodney; Brannon, David P.; Underwood, Lauren; Russell, Kristen J.

    2007-01-01

    In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near

  19. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; McKellip, R. C.; Brannon, D. P.; Underwood, L. W.; Russell, K. J.

    2007-12-01

    In polar regions of the Moon, there are areas within craters that are permanently shadowed from solar illumination, which can reach temperatures of 100K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50K in many cases. Temperatures observed in theses regions suggest that they could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high vacuum cryogenic environments, which in their current state could support cryogenic applications. The unique conditions at the lunar poles, besides ice stores, harbor an environment that provides an opportunity to reduce the power, weight and total mass that needs to be carried from the Earth to the moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few man-made augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist there. Our analysis reveals that lightweight thermal shielding, within shaded craters, could create an environment several Kelvin above absolute zero. The temperature ranges of naturally shaded craters and thermally augmented ones could enable the long-term storage of most gases, low temperature superconductors for large magnetic fields, devices and advanced high speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were to be used

  20. Acoustic containerless experiment system: A non-contact surface tension measurement

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Wang, T. G.; Barmatz, M.

    1988-01-01

    The Acoustic Containerless Experiment System (ACES) was flown on STS 41-B in February 1984 and was scheduled to be reflown in 1986. The primary experiment that was to be conducted with the ACES module was the containerless melting and processing of a fluoride glass sample. A second experiment that was to be conducted was the verification of a non-contact surface tension measurement technique using the molten glass sample. The ACES module consisted of a three-axis acoustic positioning module that was inside an electric furnace capable of heating the system above the melting temperature of the sample. The acoustic module is able to hold the sample with acoustic forces in the center of the chamber and, in addition, has the capability of applying a modulating force on the sample along one axis of the chamber so that the molten sample or liquid drop could be driven into one of its normal oscillation modes. The acoustic module could also be adjusted so that it could place a torque on the molten drop and cause the drop to rotate. In the ACES, a modulating frequency was applied to the drop and swept through a range of frequencies that would include the n = 2 mode. A maximum amplitude of the drop oscillation would indicate when resonance was reached and from that data the surface tension could be calculated. For large viscosity samples, a second technique for measuring surface tension was developed. The results of the ACES experiment and some of the problems encountered during the actual flight of the experiment will be discussed.

  1. Acoustic levitation technique for containerless processing at high temperatures in space

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.; Danley, Thomas J.

    1988-01-01

    High temperature processing of a small specimen without a container has been demonstrated in a set of experiments using an acoustic levitation furnace in the microgravity of space. This processing technique includes the positioning, heating, melting, cooling, and solidification of a material supported without physical contact with container or other surface. The specimen is supported in a potential energy well, created by an acoustic field, which is sufficiently strong to position the specimen in the microgravity environment of space. This containerless processing apparatus has been successfully tested on the Space Shuttle during the STS-61A mission. In that experiment, three samples wer successfully levitated and processed at temperatures from 600 to 1500 C. Experiment data and results are presented.

  2. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  3. Acoustical renovation of temporary classrooms to meet American National Standards Institute (ANSI) standard

    NASA Astrophysics Data System (ADS)

    Lubman, David

    2005-09-01

    This exercise demonstrates that key requirements of the ANSI S12.60-2002 on classroom acoustics can be met through renovations at modest cost. Free-standing classrooms at two schools in Southern California were successfully renovated. Noise levels were greatly reduced, and now meet requirements of the ANSI standard. A 1950s style bungalow classroom at the Paradise Canyon School (PCS) in Los Angeles County and a double-trailer classroom at the Wildomar Elementary School (WES) in Riverside County were targeted. The aim was to make classrooms suitable for pupils with severe hearing disabilities. But the methods used apply equally to mainstream classrooms. At both schools the above-ceiling air distribution systems were modified to produce quiet airflow. At PCS, a noisy rooftop heat pump was replaced with a much quieter rooftop heat pump and installation. At WES, a noisy wall-mounted heat pump was replaced with a new unit mounted on an exterior concrete pad. At PCS, exterior noise intrusion was achieved by replacing a poorly performing accordion wall with a permanent wall. Further noise reduction can be achieved by replacing leaky windows. Exterior noise intrusion at WES was obtained by replacing leaky windows. The resulting acoustical improvements are documented. Costs and lessons learned are discussed.

  4. ARSC: Augmented Reality Student Card--An Augmented Reality Solution for the Education Field

    ERIC Educational Resources Information Center

    El Sayed, Neven A. M.; Zayed, Hala H.; Sharawy, Mohamed I.

    2011-01-01

    Augmented Reality (AR) is the technology of adding virtual objects to real scenes through enabling the addition of missing information in real life. As the lack of resources is a problem that can be solved through AR, this paper presents and explains the usage of AR technology we introduce Augmented Reality Student Card (ARSC) as an application of…

  5. Experimental validation of energy parameters in parabolic trough collector with plain absorber and analysis of heat transfer enhancement techniques

    NASA Astrophysics Data System (ADS)

    Bilal, F. R.; Arunachala, U. C.; Sandeep, H. M.

    2018-01-01

    The quantum of heat loss from the receiver of the Parabolic Trough Collector is considerable which results in lower thermal efficiency of the system. Hence heat transfer augmentation is essential which can be attained by various techniques. An analytical model to evaluate the system with bare receiver performance was developed using MATLAB. The experimental validation of the model resulted in less than 5.5% error in exit temperature using both water and thermic oil as heat transfer fluid. Further, heat transfer enhancement techniques were incorporated in the model which included the use of twisted tape inserts, nanofluid, and a combination of both for further enhancement. It was observed that the use of evacuated glass cover in the existing setup would increase the useful heat gain up to 5.3%. Fe3O4/H2O nanofluid showed a maximum enhancement of 56% in the Nusselt number for the volume concentration of 0.6% at highest Reynolds number. Similarly, twisted tape turbulators (with twist ratio of 2) taken alone with water exhibited 59% improvement in Nusselt number. Combining both the heat transfer augmentation techniques at their best values revealed the Nusselt number enhancement up to 87%. It is concluded that, use of twisted tape with water is the best method for heat transfer augmentation since it gives the maximum effective thermal efficiency amongst all for the range of Re considered. The first section in your paper

  6. Contributions to Global Augmented Compound Urban Heat Extreme (ACUTE) from Climate Change and the Urban Heat Island Effect

    NASA Astrophysics Data System (ADS)

    Huang, K.

    2017-12-01

    Over the next decades, climate change is projected to increase the intensity and frequency of extreme heat events (EHEs). The severity and periodicity of these hazards are likely to be further compounded by stronger urban heat island (UHI) effects as the world continues to urbanize. However, there is little known about how greenhouse gases (GHG) induced changes in EHE will interact with UHI, and what this will mean for the exposure of urban populations to high temperature. This work aims to fill this knowledge gap by combining a mesoscale meteorological model (Weather Research Forecasting, WRF) with a global urban expansion forecast, to generate spatially explicit projections of compound urban temperature extremes through 2050. These global projections include all the urban areas in developing world. The respective contributions from GHG-induced climate change, the UHI effect, and their interaction vary across different types of urban areas. The resulting compound heat extremes will be more intense and frequent in emerging Asian and African mega urban regions, located in tropical/subtropical climates, due to their unprecedented sizes and the significantly reduced evaporation. Previous studies neglecting the interaction between global climate change and regional UHI effect have underestimated exposure to heat extremes in urban areas.

  7. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-11-01

    Acoustic metasurfaces provide useful wavefront shaping capabilities, such as beam steering, acoustic focusing, and asymmetric transmission, in a compact structure. Most acoustic metasurfaces described in the literature are transmissive devices and focus their performance on steering sound beam of the fundamental diffractive order. In addition, the range of incident angles studied is usually below the critical incidence predicted by generalized Snell's law of reflection. In this work, we comprehensively analyze the wave interaction with a generic periodic phase-modulating structure in order to predict the behavior of all diffractive orders, especially for cases beyond critical incidence. Under the guidance of the presented analysis, a broadband reflective metasurface is designed based on an expanded library of labyrinthine acoustic metamaterials. Various local and nonlocal wavefront shaping properties are experimentally demonstrated, and enhanced absorption of higher order diffractive waves is experimentally shown for the first time. The proposed methodology provides an accurate approach for predicting practical diffracted wave behaviors and opens a new perspective for the study of acoustic periodic structures. The designed metasurface extends the functionalities of acoustic metasurfaces and paves the way for the design of thin planar reflective structures for broadband acoustic wave manipulation and extraordinary absorption.

  8. Modeling photothermal and acoustical induced microbubble generation and growth.

    PubMed

    Krasovitski, Boris; Kislev, Hanoch; Kimmel, Eitan

    2007-12-01

    Previous experimental studies showed that powerful heating of nanoparticles by a laser pulse using energy density greater than 100 mJ/cm(2), could induce vaporization and generate microbubbles. When ultrasound is introduced at the same time as the laser pulse, much less laser power is required. For therapeutic applications, generation of microbubbles on demand at target locations, e.g. cells or bacteria can be used to induce hyperthermia or to facilitate drug delivery. The objective of this work is to develop a method capable of predicting photothermal and acoustic parameters in terms of laser power and acoustic pressure amplitude that are needed to produce stable microbubbles; and investigate the influence of bubble coalescence on the thresholds when the microbubbles are generated around nanoparticles that appear in clusters. We develop and solve here a combined problem of momentum, heat and mass transfer which is associated with generation and growth of a microbubble, filled with a mixture of non-vaporized gas (air) and water vapor. The microbubble's size and gas content vary as a result of three mechanisms: gas expansion or compression, evaporation or condensation on the bubble boundary, and diffusion of dissolved air in the surrounding water. The simulations predict that when ultrasound is applied relatively low threshold values of laser and ultrasound power are required to obtain a stable microbubble from a single nanoparticle. Even lower power is required when microbubbles are formed by coalescence around a cluster of 10 nanoparticles. Laser pulse energy density of 21 mJ/cm(2) is predicted for instance together with acoustic pressure of 0.1 MPa for a cluster of 10 or 62 mJ/cm(2) for a single nanoparticle. Those values are well within the safety limits, and as such are most appealing for targeted therapeutic purposes.

  9. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  10. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.

    PubMed

    Ergün, A Sanlı

    2011-10-01

    Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Containerless processing at high temperatures using acoustic levitation

    NASA Technical Reports Server (NTRS)

    Rey, C. A.; Merkley, D. R.; Hampton, S.; Devos, J.; Mapes-Riordan, D.; Zatarski, M.

    1991-01-01

    Advanced techniques are presented which facilitate the development of inert or reducing atmospheres in excess of 2000 K in order to improve processing of containerless capabilities at higher temperatures and to provide more contamination-free environments. Recent testing, in the laboratory and aboard the NASA KC-135 aircraft, of a high-temperature acoustic positioner demonstrated the effectiveness of a specimen motion damping system and of specimen spin control. It is found that stable positioning can be achieved under ambient and heated conditions, including the transient states of heat-up and cool-down. An incorporated high-temperature levitator was found capable of processing specimens of up to 6-mm diameter in a high-purity environment without the contaminating effects of a container at high temperatures and with relative quiescence.

  12. Augmented Reality-Guided Lumbar Facet Joint Injections.

    PubMed

    Agten, Christoph A; Dennler, Cyrill; Rosskopf, Andrea B; Jaberg, Laurenz; Pfirrmann, Christian W A; Farshad, Mazda

    2018-05-08

    The aim of this study was to assess feasibility and accuracy of augmented reality-guided lumbar facet joint injections. A spine phantom completely embedded in hardened opaque agar with 3 ring markers was built. A 3-dimensional model of the phantom was uploaded to an augmented reality headset (Microsoft HoloLens). Two radiologists independently performed 20 augmented reality-guided and 20 computed tomography (CT)-guided facet joint injections each: for each augmented reality-guided injection, the hologram was manually aligned with the phantom container using the ring markers. The radiologists targeted the virtual facet joint and tried to place the needle tip in the holographic joint space. Computed tomography was performed after each needle placement to document final needle tip position. Time needed from grabbing the needle to final needle placement was measured for each simulated injection. An independent radiologist rated images of all needle placements in a randomized order blinded to modality (augmented reality vs CT) and performer as perfect, acceptable, incorrect, or unsafe. Accuracy and time to place needles were compared between augmented reality-guided and CT-guided facet joint injections. In total, 39/40 (97.5%) of augmented reality-guided needle placements were either perfect or acceptable compared with 40/40 (100%) CT-guided needle placements (P = 0.5). One augmented reality-guided injection missed the facet joint space by 2 mm. No unsafe needle placements occurred. Time to final needle placement was substantially faster with augmented reality guidance (mean 14 ± 6 seconds vs 39 ± 15 seconds, P < 0.001 for both readers). Augmented reality-guided facet joint injections are feasible and accurate without potentially harmful needle placement in an experimental setting.

  13. Challenges associated with reentry maxillary sinus augmentation.

    PubMed

    Mardinger, Ofer; Moses, Ofer; Chaushu, Gavriel; Manor, Yifat; Tulchinsky, Ze'ev; Nissan, Joseph

    2010-09-01

    This study was a retrospective assessment of reentry sinus augmentation compared with sinus augmentation performed for the first time. There were 38 subjects who required sinus augmentation. The study group (17 patients, 21 sinuses) included subjects following failure of a previous sinus augmentation procedure that required reentry augmentation. The control group (21 patients, 21 sinuses) included subjects in which sinus augmentation was performed for the first time. Patients' medical files were reviewed. A preformed questionnaire was used to collect data regarding demographic parameters, medical and dental health history, habits, and intra- and postoperative data. Operative challenges in the study group included adhesions of the buccal flap to the Schneiderian membrane (62%, 13/21, P<.001), bony fenestration of the lateral wall with adhesions (71%, 15/21, P<.001), limited mobility of a clinical fibrotic Schneiderian membrane (71%, 15/21, P<.001), and increased incidence of membrane perforations (47%, 10/21, versus 9.5%, 2/21, P=.03). In the control group the Schneiderian membrane was thin and flexible. Sinus augmentation succeeded in all cases of both groups. Implant failure was significantly higher in the study group (11% versus 0%, P<.001). Clinical success of reentry sinus augmentation is predictable despite its complexity. Clinicians should be aware of anatomical changes caused by previous failure of this procedure. Patients should be informed about the lower success rate of implants when reentry sinus augmentation is required. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  14. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  15. Assessment of solar-assisted gas-fired heat pump systems

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  16. Search for acoustic signals from high energy cascades

    NASA Technical Reports Server (NTRS)

    Bell, R.; Bowen, T.

    1985-01-01

    High energy cosmic ray secondaries can be detected by means of the cascades they produce when they pass through matter. When the charged particles of these cascades ionize the matter they are traveling through, the heat produced and resulting thermal expansion causes a thermoacoustic wave. These sound waves travel at about one hundred-thousandth the speed of light, and should allow an array of acoustic transducers to resolve structure in the cascade to about 1 cm without high speed electronics or segmentation of the detector.

  17. A heat transfer model for a hot helium airship

    NASA Astrophysics Data System (ADS)

    Rapert, R. M.

    1987-06-01

    Basic heat transfer empirical and analytic equations are applied to a double envelope airship concept which uses heated Helium in the inner envelope to augment and control gross lift. The convective and conductive terms lead to a linear system of five equations for the concept airship, with the nonlinear radiation terms included by an iterative solution process. The graphed results from FORTRAN program solutions are presented for the variables of interest. These indicate that a simple use of airship engine exhaust heat gives more than a 30 percent increase in gross airship lift. Possibly more than 100 percent increase can be achieved if a 'stream injection' heating system, with associated design problems, is used.

  18. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Treesearch

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  19. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  20. Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7

    NASA Astrophysics Data System (ADS)

    Walker, R.

    1984-12-01

    The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.

  1. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  2. [Cement augmentation on the spine : Biomechanical considerations].

    PubMed

    Kolb, J P; Weiser, L; Kueny, R A; Huber, G; Rueger, J M; Lehmann, W

    2015-09-01

    Vertebral compression fractures are the most common osteoporotic fractures. Since the introduction of vertebroplasty and screw augmentation, the management of osteoporotic fractures has changed significantly. The biomechanical characteristics of the risk of adjacent fractures and novel treatment modalities for osteoporotic vertebral fractures, including pure cement augmentation by vertebroplasty, and cement augmentation of screws for posterior instrumentation, are explored. Eighteen human osteoporotic lumbar spines (L1-5) adjacent to vertebral bodies after vertebroplasty were tested in a servo-hydraulic machine. As augmentation compounds we used standard cement and a modified low-strength cement. Different anchoring pedicle screws were tested with and without cement augmentation in another cohort of human specimens with a simple pull-out test and a fatigue test that better reflects physiological conditions. Cement augmentation in the osteoporotic spine leads to greater biomechanical stability. However, change in vertebral stiffness resulted in alterations with the risk of adjacent fractures. By using a less firm cement compound, the risk of adjacent fractures is significantly reduced. Both screw augmentation techniques resulted in a significant increase in the withdrawal force compared with the group without cement. Augmentation using perforated screws showed the highest stability in the fatigue test. The augmentation of cement leads to a significant change in the biomechanical properties. Differences in the stability of adjacent vertebral bodies increase the risk of adjacent fractures, which could be mitigated by a modified cement compound with reduced strength. Screws that were specifically designed for cement application displayed greatest stability in the fatigue test.

  3. Solar Energy School Heating Augmentation Experiment. Design, Construction and Initial Operation. A Report.

    ERIC Educational Resources Information Center

    InterTechnology Corp., Warrenton, VA.

    This report describes an experimental solar heating system, complete with thermal storage and controls, that has met all the heating requirements of five detached classrooms of the Fauquier High School in Warrenton, Virginia. The objectives of the experiment were to (1) demonstrate that solar energy can be used to provide a substantial part of the…

  4. Augmented Reality Comes to Physics

    NASA Astrophysics Data System (ADS)

    Buesing, Mark; Cook, Michael

    2013-04-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as Tagwhat and Star Chart (a must for astronomy class). The yellow line marking first downs in a televised football game2 and the enhanced puck that makes televised hockey easier to follow3 both use augmented reality to do the job.

  5. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    NASA Astrophysics Data System (ADS)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  6. New acoustical technology of sound absorption based on reverse horn

    NASA Astrophysics Data System (ADS)

    Zhang, Yong Yan; Wu, Jiu Hui; Cao, Song Hua; Cao, Pei; Zhao, Zi Ting

    2016-12-01

    In this paper, a novel reverse horn’s sound-absorption mechanism and acoustic energy focusing mechanism for low-frequency broadband are presented. Due to the alternation of the reverse horn’s thickness, the amplitude of the acoustic pressure propagated in the structure changes, which results in growing energy focused in the edge and in the reverse horn’s tip when the characteristic length is equal to or less than a wavelength and the incident wave is compressed. There are two kinds of methods adopted to realize energy dissipation. On the one hand, sound-absorbing materials are added in incident direction in order to overcome the badness of the reverse horn’s absorption in high frequency and improve the overall high-frequency and low-frequency sound-absorption coefficients; on the other hand, adding mass and film in its tip could result in mechanical energy converting into heat energy due to the coupled vibration of mass and the film. Thus, the reverse horn with film in the tip could realize better sound absorption for low-frequency broadband. These excellent properties could have potential applications in the one-dimensional absorption wedge and for the control of acoustic wave.

  7. Turbulent resistive heating of solar coronal arches

    NASA Technical Reports Server (NTRS)

    Benford, G.

    1983-01-01

    The possibility that coronal heating occurs by means of anomalous Joule heating by electrostatic ion cyclotron waves is examined, with consideration given to currents running from foot of a loop to the other. It is assumed that self-fields generated by the currents are absent and currents follow the direction of the magnetic field, allowing the plasma cylinder to expand radially. Ion and electron heating rates are defined within the cylinder, together with longitudinal conduction and convection, radiation and cross-field transport, all in terms of Coulomb and turbulent effects. The dominant force is identified as electrostatic ion cyclotron instability, while ion acoustic modes remain stable. Rapid heating from an initial temperature of 10 eV to 100-1000 eV levels is calculated, with plasma reaching and maintaining a temperature in the 100 eV range. Strong heating is also possible according to the turbulent Ohm's law and by resistive heating.

  8. Radical production inside an acoustically driven microbubble.

    PubMed

    Stricker, Laura; Lohse, Detlef

    2014-01-01

    The chemical production of radicals inside acoustically driven bubbles is determined by the local temperature inside the bubbles and by their composition at collapse. By means of a previously validated ordinary differential equations (ODE) model [L. Stricker, A. Prosperetti, D. Lohse, Validation of an approximate model for the thermal behavior in acoustically driven bubbles, J. Acoust. Soc. Am. 130 (5) (2011) 3243-3251], based on boundary layer assumption for mass and heat transport, we study the influence of different parameters on the radical production. We perform different simulations by changing the driving frequency and pressure, the temperature of the surrounding liquid and the composition of the gas inside the bubbles. In agreement with the experimental conditions of new generation sonochemical reactors, where the bubbles undergo transient cavitation oscillations [D. F. Rivas, L. Stricker, A. Zijlstra, H. Gardeniers, D. Lohse, A. Prosperetti, Ultrasound artificially nucleated bubbles and their sonochemical radical production, Ultrason. Sonochem. 20 (1) (2013) 510-524], we mainly concentrate on the initial chemical transient and we suggest optimal working ranges for technological applications. The importance of the chemical composition at collapse is reflected in the model, including the role of entrapped water vapor. We in particular study the exothermal reactions taking place in H2 and O2 mixtures. At the exact stoichiometric mixture 2:1 the highest internal bubble temperatures are achieved. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    DOE PAGES

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; ...

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysismore » of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.« less

  10. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  11. An Investigation of the Effects of Metallurgical and/or Testing Variables on the Acoustic Emission from Crystalline Materials.

    DTIC Science & Technology

    1982-09-01

    alloy , a number of minor phases have been reported (Thompson and Brooks, 1975). The precipitates expected after the heat treatments used in this study... precipitate or inclusion fracture, twin formation, martensite to create detectable acoustic emission. In alloy formation, dislocation motion, and... precipitate anticipated for each heat The nominal composition of 2219 is given in Table 2. It is treatment. essentially a binary aluminium- copper alloy

  12. The development of augmented video system on postcards

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsu; Chou, Yin-Ju

    2013-03-01

    This study focuses on development of augmented video system on traditional picture postcards. The system will provide users to print out the augmented reality marker on the sticker to stick on the picture postcard, and it also allows users to record their real time image and video to augment on that stick marker. According dynamic image, users can share travel moods, greeting, and travel experience to their friends. Without changing in the traditional picture postcards, we develop augmented video system on them by augmented reality (AR) technology. It not only keeps the functions of traditional picture postcards, but also enhances user's experience to keep the user's memories and emotional expression by augmented digital media information on them.

  13. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    NASA Astrophysics Data System (ADS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  14. Broadband acoustic focusing by Airy-like beams based on acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Chen, Di-Chao; Zhu, Xing-Feng; Wei, Qi; Wu, Da-Jian; Liu, Xiao-Jun

    2018-01-01

    An acoustic metasurface (AM) composed of space-coiling subunits is proposed to generate acoustic Airy-like beams (ALBs) by manipulating the transmitted acoustic phase. The self-accelerating, self-healing, and non-diffracting features of ALBs are demonstrated using finite element simulations. We further employ two symmetrical AMs to realize two symmetrical ALBs, resulting in highly efficient acoustic focusing. At the working frequency, the focal intensity can reach roughly 20 times that of the incident wave. It is found that the highly efficient acoustic focusing can circumvent obstacles in the propagating path and can be maintained in a broad frequency bandwidth. In addition, simply changing the separation between the two AMs can modulate the focal length of the proposed AM lens. ALBs generated by AMs and the corresponding AM lens may benefit applications in medical ultrasound imaging, biomedical therapy, and particle trapping and manipulation.

  15. Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals

    PubMed Central

    2011-01-01

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  16. Acoustic integrated extinction.

    PubMed

    Norris, Andrew N

    2015-05-08

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122 , 3206-3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  17. Interacting Multiscale Acoustic Vortices as Coherent Excitations in Dust Acoustic Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2018-03-01

    In this work, using three-dimensional intermittent dust acoustic wave turbulence in a dusty plasma as a platform and multidimensional empirical mode decomposition into different-scale modes in the 2 +1 D spatiotemporal space, we demonstrate the experimental observation of the interacting multiscale acoustic vortices, winding around wormlike amplitude hole filaments coinciding with defect filaments, as the basic coherent excitations for acoustic-type wave turbulence. For different decomposed modes, the self-similar rescaled stretched exponential lifetime histograms of amplitude hole filaments, and the self-similar power spectra of dust density fluctuations, indicate that similar dynamical rules are followed over a wide range of scales. In addition to the intermode acoustic vortex pair generation, propagation, or annihilation, the intra- and intermode interactions of acoustic vortices with the same or opposite helicity, their entanglement and synchronization, are found to be the key dynamical processes in acoustic wave turbulence, akin to the interacting multiscale vortices around wormlike cores observed in hydrodynamic turbulence.

  18. Computerized tomography-assisted calculation of sinus augmentation volume.

    PubMed

    Krennmair, Gerald; Krainhöfner, Martin; Maier, Harald; Weinländer, Michael; Piehslinger, Eva

    2006-01-01

    This study was intended to calculate the augmentation volume for a sinus lift procedure based on cross-sectional computerized tomography (CT) scans for 2 different augmentation heights. Based on area calculations of cross-sectional CT scans, the volume of additional bone needed was calculated for 44 sinus lift procedures. The amount of bone volume needed to raise the sinus floor to heights of both 12 and 17 mm was calculated. To achieve a sinus floor height of 12 mm, it was necessary to increase the height by a mean of 7.2+/-2.1 mm (range, 3.0 to 10.5 mm), depending on the residual ridge height; to achieve a height of 17 mm, a mean of 12.4+/-2.0 mm (range, 8.5 to 15.5 mm) was required (P < .01). The calculated augmentation volume for an augmentation height of 12 mm was 1.7+/-.9 cm3; for an augmentation height of 17 mm, the volume required was 3.6+/-1.5 cm3. Increasing the height of the sinus lift by 5 mm, ie, from 12 mm to 17 mm augmentation height, increased the augmentation volume by 100%. A significant correlation was found between augmentation height and the calculated sinus lift augmentation volume (r = 0. 78, P < .01). Detailed preoperative knowledge of sinus lift augmentation volume is helpful as a predictive value in deciding on a donor site for harvesting autogenous bone and on the ratio of bone to bone substitute to use. Calculation of the augmentation size can help determine the surgical approach and thus perioperative treatment and the costs of the surgery for both patients and clinicians.

  19. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  20. Turbulent Supersonic/Hypersonic Heating Correlations for Open and Closed Cavities

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Greene, Francis A.

    2009-01-01

    Supersonic/hypersonic laminar heating correlations that were developed for damage assessment analysis of atmospheric re-entry vehicles have been modified and extended to cover fully-turbulent conditions over rectangular cavity geometries that are aligned with the local velocity. Turbulent boundary layer properties were computationally determined and used to develop the cavity geometry parametrics and to correlate experimental closed cavity heating data to yield new relationships for the floor-averaged and centerline endwall peakheating augmentation. With the form of the closed-cavity correlations established, historical data were used to develop new correlations for turbulent open-cavity heating.

  1. RMS active damping augmentation

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Scott, Michael A.; Demeo, Martha E.

    1992-01-01

    The topics are presented in viewgraph form and include: RMS active damping augmentation; potential space station assembly benefits to CSI; LaRC/JSC bridge program; control law design process; draper RMS simulator; MIMO acceleration control laws improve damping; potential load reduction benefit; DRS modified to model distributed accelerations; accelerometer location; Space Shuttle aft cockpit simulator; simulated shuttle video displays; SES test goals and objectives; and SES modifications to support RMS active damping augmentation.

  2. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  3. Heat Exchanger Design in Combined Cycle Engines

    NASA Astrophysics Data System (ADS)

    Webber, H.; Feast, S.; Bond, A.

    Combined cycle engines employing both pre-cooled air-breathing and rocket modes of operation are the most promising propulsion system for achieving single stage to orbit vehicles. The air-breathing phase is purely for augmentation of the mission velocity required in the rocket phase and as such must be mass effective, re-using the components of the rocket cycle, whilst achieving adequate specific impulse. This paper explains how the unique demands placed on the air-breathing cycle results in the need for sophisticated thermodynamics and the use of a series of different heat exchangers to enable precooling and high pressure ratio compression of the air for delivery to the rocket combustion chambers. These major heat exchanger roles are; extracting heat from incoming air in the precooler, topping up cycle flow temperatures to maintain constant turbine operating conditions and extracting rejected heat from the power cycle via regenerator loops for thermal capacity matching. The design solutions of these heat exchangers are discussed.

  4. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  5. Acoustic waves in the solar atmosphere at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.

    2009-12-01

    Aims. The energy supply for the radiative losses of the quiet solar chromosphere is studied. On the basis of high spatial resolution data, we investigate the amount of energy flux carried by acoustic waves in the solar photosphere. Methods: Time sequences from quiet Sun disc centre were obtained with the “Göttingen” Fabry-Perot spectrometer at the Vacuum Tower Telescope, Observatorio del Teide/Tenerife, in the non-magnetic Fe i 5576 Å line. The data were reconstructed with speckle methods. The velocity and intensity fluctuations at line minimum were subjected to Fourier and wavelet analyses. The energy fluxes at frequencies higher than the acoustic cutoff frequency (period U ≈ 190 s) were corrected for the transmission of the solar atmosphere, which reduces the signal from short-period waves. Results: Both Fourier and wavelet analysis give an amount of energy flux of ~3000 W m-2 at a height h = 250 km. Approximately 2/3 of it is carried by waves in the 5-10 mHz range, and 1/3 in the 10-20 mHz band. Extrapolation of the flux spectra gives an energy flux of 230-400 W m-2 at frequencies ν > 20 mHz. We find that the waves occur predominantly above inter-granular areas. Conclusions: We conclude that the acoustic flux in waves with periods shorter than the acoustic cutoff period can contribute to the basal heating of the solar chromosphere, in addition to the atmospheric gravity waves found recently.

  6. New Acoustic Arena Qualified at NASA Glenn's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P.

    2004-01-01

    A new acoustic arena has been qualified in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. This arena is outfitted specifically for conducting fan noise research with the Advanced Noise Control Fan (ANCF) test rig. It features moveable walls with large acoustic wedges (2 by 2 by 1 ft) that create an acoustic environment usable at frequencies as low as 250 Hz. The arena currently uses two dedicated microphone arrays to acquire fan inlet and exhaust far-field acoustic data. It was used successfully in fiscal year 2003 to complete three ANCF tests. It also allowed Glenn to improve the operational efficiency of the four test rigs at AAPL and provided greater flexibility to schedule testing. There were a number of technical challenges to overcome in bringing the new arena to fruition. The foremost challenge was conflicting acoustic requirements of four different rigs. It was simply impossible to construct a static arena anywhere in the facility without intolerably compromising the acoustic test environment of at least one of the test rigs. This problem was overcome by making the wall sections of the new arena movable. Thus, the arena can be reconfigured to meet the operational requirements of any particular rig under test. Other design challenges that were encountered and overcome included structural loads of the large wedges, personnel access requirements, equipment maintenance requirements, and typical time and budget constraints. The new acoustic arena improves operations at the AAPL facility in several significant ways. First, it improves productivity by allowing multiple rigs to operate simultaneously. Second, it improves research data quality by providing a unique test area within the facility that is optimal for conducting fan noise research. Lastly, it reduces labor and equipment costs by eliminating the periodic need to transport the ANCF into and out of the primary AAPL acoustic arena. The investment to design, fabricate, and

  7. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H [Albuquerque, NM; Fleming, James G [Albuquerque, NM; Tuck, Melanie R [Albuquerque, NM

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  8. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  9. Nonsteady-Flow Thrust Augmenting Ejectors

    NASA Technical Reports Server (NTRS)

    Foa, J. V.

    1979-01-01

    Ejector augmenters in which the transfer of mechanical energy from the primary to the secondary flow takes place through the work of interface pressure forces are investigated. Nonsteady flow processes are analyzed from the standpoint of energy transfer efficiency and a comparison of a rotary jet augmenter to an ejector is presented.

  10. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions within the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center, in partnership with GE Aviation, is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to develop a scaling methodology for using data obtained from small- and moderate-scale experiments which exhibits the independence of the jet sizes to the measured noise levels. The experimental results presented in this thesis have shown reasonable agreement between small-scale and moderate-scale jet acoustic data, as well as between heated jets and heat-simulated ones. As the scaling methodology is validated, it will be extended to using acoustic data measured with small-scale supersonic model jets to the prediction of the most important components of full-scale engine noise. When comparing the measured acoustic spectra with a microphone array set at different radial locations, the characteristics of the jet noise source distribution may induce subtle inaccuracies, depending on the conditions of jet operation. A close look is taken at the details of the noise generation region in order to better understand the mismatch between spectra measured at various acoustic field radial locations. A processing methodology was developed to correct the effect of the noise source distribution and efficiently compare near-field and far-field spectra with unprecedented accuracy. This technique then demonstrates that the measured noise levels in the physically restricted space of an anechoic chamber can be appropriately

  11. The acoustic vector sensor: a versatile battlefield acoustics sensor

    NASA Astrophysics Data System (ADS)

    de Bree, Hans-Elias; Wind, Jelmer W.

    2011-06-01

    The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.

  12. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  13. Hybrid Electrostatic/Acoustic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won K.; Trinh, Eugene H.; Chung, Sang K.; Elleman, Daniel D.

    1987-01-01

    Because electrostatic and acoustic forces independent of each other, hybrid levitator especially suitable for studies of drop dynamics. Like all-acoustic or all-electrostatic systems, also used in studies of containerless material processing. Vertical levitating force applied to sample by upper and lower electrodes. Torques or vibrational forces in horizontal plane applied by acoustic transducers. Electrically charged water drop about 4 mm in diameter levitated electrostatically and rotated acoustically until it assumed dumbell shape and broke apart.

  14. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  15. Review of Progress in Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2018-04-01

    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  16. Quantitative assessment of acoustic intensity in the focused ultrasound field using hydrophone and infrared imaging.

    PubMed

    Yu, Ying; Shen, Guofeng; Zhou, Yufeng; Bai, Jingfeng; Chen, Yazhu

    2013-11-01

    With the popularity of ultrasound therapy in clinics, characterization of the acoustic field is important not only to the tolerability and efficiency of ablation, but also for treatment planning. A quantitative method was introduced to assess the intensity distribution of a focused ultrasound beam using a hydrophone and an infrared camera with no prior knowledge of the acoustic and thermal parameters of the absorber or the configuration of the array elements. This method was evaluated in both theoretical simulations and experimental measurements. A three-layer model was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the sonication and the consequent temperature elevation. Experiments were carried out to measure the acoustic pressure with the hydrophone and the temperature elevation with the infrared camera. The percentage differences between the derived results and the simulation are <4.1% for on-axis intensity and <21.1% for -6-dB beam width at heating times up to 360 ms in the focal region of three phased-array ultrasound transducers using two different absorbers. The proposed method is an easy, quick and reliable approach to calibrating focused ultrasound transducers with satisfactory accuracy. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Effects of normal acceleration on transient burning rate augmentation of an aluminized solid propellant

    NASA Technical Reports Server (NTRS)

    Northam, G. B.

    1972-01-01

    Instantaneous burning rate data for a polybutadiene acrylic acid propellant, containing 16 weight percent aluminum, were calculated from the pressure histories of a test motor with 96.77 sq cm of burning area and a 5.08-cm-thick propellant web. Additional acceleration tests were conducted with reduced propellant web thicknesses of 3.81, 2.54, and 1.27 cm. The metallic residue collected from the various web thickness tests was characterized by weight and shape and correlated with the instantaneous burning rate measurements. Rapid depressurization extinction tests were conducted in order that surface pitting characteristics due to localized increased burning rate could be correlated with the residue analysis and the instantaneous burning rate data. The acceleration-induced burning rate augmentation was strongly dependent on propellant distance burned, or burning time, and thus was transient in nature. The results from the extinction tests and the residue analyses indicate that the transient rate augmentation was highly dependent on local enhancement of the combustion zone heat feedback to the surface by the growth of molten residue particles on or just above the burning surface. The size, shape, and number density of molten residue particles, rather than the total residue weight, determined the acceleration-induced burning rate augmentation.

  18. A two-beam acoustic system for tissue analysis.

    PubMed

    Sachs, T D; Janney, C D

    1977-03-01

    In the 'thermo-acoustic sensing technique' (TAST), a burst of sound, called the 'thermometer' beam is passed through tissue and its transit time is measured. A focused sound field, called the heating field, then warms a small volume in the path of the therometer beam, in proportion to the absorption. Finally, the therometer beam burst is repeated and its transit time subtracted from that of the initial thermometer burst. This difference measures the velocity perturbation in the tissue produced by the heating field. The transit time difference is td = K integral of infinity-infinity IP dchi where K is the instrument constant, I the heating field intensity, and P a perturbation factor which characterizes the tissues. The integration is carried out along the path of the thermometer beam. The perturbation factor is P = (formula: see text) where C is the specific heat, rho the denisty, V the velocity of sound, (formula: see text) the temperature coefficient of velocity and alpha the heating field absorption coefficient which is apparently sensitive to tissue structure and condition. Experiments on a fixed human brain showed an ability to distinguish between various tissue types combined with a spatial resolution of better than 3 mm. Should predictions based on the data and theory prove correct, TAST may become a non-invasive alternative to biopsy.

  19. Augmentation cystoplasty in neurogenic bladder

    PubMed Central

    Kocjancic, Ervin; Demirdağ, Çetin

    2016-01-01

    The aim of this review is to update the indications, contraindications, technique, complications, and the tissue engineering approaches of augmentation cystoplasty (AC) in patients with neurogenic bladder. PubMed/MEDLINE was searched for the keywords "augmentation cystoplasty," "neurogenic bladder," and "bladder augmentation." Additional relevant literature was determined by examining the reference lists of articles identified through the search. The update review of of the indications, contraindications, technique, outcome, complications, and tissue engineering approaches of AC in patients with neurogenic bladder is presented. Although some important progress has been made in tissue engineering AC, conventional AC still has an important role in the surgical treatment of refractory neurogenic lower urinary tract dysfunction. PMID:27617312

  20. Is a synthetic augmentation in medial open wedge high tibial osteotomies superior to no augmentation in terms of bone-healing?

    PubMed

    Ferner, Felix; Dickschas, Joerg; Ostertag, Helmut; Poske, Ulrich; Schwitulla, Judith; Harrer, Joerg; Strecker, Wolf

    2016-01-01

    Medial open-wedge high tibial osteotomy (MOWHTO) is an established method to treat unicompartimental osteoarthritis of the knee joint. However, augmentation of the created tibial gap after osteotomy is controversially discussed. We performed a prospective investigation of 49 consecutive cases of MOWHTO at our department. Patients were divided into two groups: group A consisted of 19 patients while group B consisted of 30 patients. In group A, the augmentation of the opening gap after osteotomy was filled with a synthetic bone graft, whereas group B received no augmentation. As an indicator for bone healing we investigated the non-union rate in our study population and compared the non-union-rate between the two groups. The non-union rate was 28% in group A (five of 19 patients had to undergo revision) which received synthetic augmentation, while it was 3.3% in group B (one of 30 patients had to undergo revision) which received no augmentation. The difference between the groups was statistically significant (p-value 0.027). With regard to bone healing after MOWHTO, synthetic augmentation was not superior to no augmentation in terms of non-union rates after surgery. In fact, we registered a significantly higher rate of non-union after augmentation with synthetic bone graft. III. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  2. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  3. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    PubMed

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  4. Heat-Flux Measurements from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2015-11-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude is used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer -Härm flux qSH = - κ∇Te and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  7. Augmented Reality Comes to Physics

    ERIC Educational Resources Information Center

    Buesing, Mark; Cook, Michael

    2013-01-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…

  8. Research on Acoustical Scattering, Diffraction Catastrophes, Optics of Bubbles, Photoacoustics, and Acoustical Phase Conjugation.

    DTIC Science & Technology

    1987-09-15

    optical levitation of bubbles; D. Acoustical and optical diffraction catastrophes (theory and optical simulation of transverse cusps, experiments with...35 C. Optical Levitation of Bubbles in Water by the Radiation Pressure of a Laser Beam: An Acoustically Quiet Levitator ...radiation pressure of a laser beam: an acoustically quiet levitator ," J. Acoust . Soc. Am. (submitted July 1987). C. Books (and sections thereof) Published

  9. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  10. Pure detection of the acoustic spin pumping in Pt/YIG/PZT structures

    NASA Astrophysics Data System (ADS)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Saitoh, Eiji

    2014-11-01

    The acoustic spin pumping (ASP) stands for the generation of a spin voltage from sound waves in a ferromagnet/paramagnet junction. In this letter, we propose and demonstrate a method for pure detection of the ASP, which enables the separation of sound-wave-driven spin currents from the spin Seebeck effect due to the heating of a sample caused by a sound-wave injection. Our demonstration using a Pt/YIG/PZT sample shows that the ASP signal in this structure measured by a conventional method is considerably offset by the heating signal and that the pure ASP signal is one order of magnitude greater than that reported in the previous study.

  11. Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels

    NASA Astrophysics Data System (ADS)

    Mathias, Adam Dustin

    The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.

  12. Surface-acoustic-wave (SAW) flow sensor

    NASA Astrophysics Data System (ADS)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  13. Surface-acoustic-wave (SAW) flow sensor.

    PubMed

    Joshi, S G

    1991-01-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  14. Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response.

    PubMed

    Fazenda, Bruno; Scarre, Chris; Till, Rupert; Pasalodos, Raquel Jiménez; Guerra, Manuel Rojo; Tejedor, Cristina; Peredo, Roberto Ontañón; Watson, Aaron; Wyatt, Simon; Benito, Carlos García; Drinkall, Helen; Foulds, Frederick

    2017-09-01

    During the 1980 s, acoustic studies of Upper Palaeolithic imagery in French caves-using the technology then available-suggested a relationship between acoustic response and the location of visual motifs. This paper presents an investigation, using modern acoustic measurement techniques, into such relationships within the caves of La Garma, Las Chimeneas, La Pasiega, El Castillo, and Tito Bustillo in Northern Spain. It addresses methodological issues concerning acoustic measurement at enclosed archaeological sites and outlines a general framework for extraction of acoustic features that may be used to support archaeological hypotheses. The analysis explores possible associations between the position of visual motifs (which may be up to 40 000 yrs old) and localized acoustic responses. Results suggest that motifs, in general, and lines and dots, in particular, are statistically more likely to be found in places where reverberation is moderate and where the low frequency acoustic response has evidence of resonant behavior. The work presented suggests that an association of the location of Palaeolithic motifs with acoustic features is a statistically weak but tenable hypothesis, and that an appreciation of sound could have influenced behavior among Palaeolithic societies of this region.

  15. An Expendable Source for Measuring Shallow Water Acoustic Propagation and Geo-Acoustic Bottom Properties

    DTIC Science & Technology

    2015-09-30

    Propagation and Geo -Acoustic Bottom Properties Harry A DeFerrari RSMAS – University of Miami 4600 Rickenbacker Causeway Miami FL. 33149...limited information about the ocean acoustic environment and the geo -acoustic properties of the bottom. The objective here is to measure the pulse...models and estimate the geo -acoustic properties of the bottom by inversion. APPROACH M-sequences have long been the workhorse of basic research

  16. Coupling between Hydrodynamics, Acoustics, and Heat Release in a Self-Excited Unstable Combustor

    DTIC Science & Technology

    2015-04-07

    liquid rocket engines,3,4 gas -turbines,5,6 ramjets,7,8 and scramjets.9,10 Varying levels of instabilities can arise and are almost always unwanted because...Acoustic disturbance from Gas non-uniformities convected through a nozzle ,” J. Sound Vib. 55(2), 225-243 (1977). 21 C. S. Goh and A. S. Morgans, “The...and has the right to use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT The unsteady gas dynamic field in a closed

  17. Strategies and Challenges in Simultaneous Augmentation Mastopexy.

    PubMed

    Spring, Michelle A; Hartmann, Emily C; Stevens, W Grant

    2015-10-01

    Simultaneous breast augmentation and mastopexy is a common procedure often considered to be one of the most difficult cosmetic breast surgeries. One-stage augmentation mastopexy was initially described more than 50 years ago. The challenge lies in the fact that the surgery has multiple opposing goals: to increasing the volume of a breast, enhance the shape, and simultaneously decrease the skin envelope. Successful outcomes in augmentation can be expected with proper planning, technique, and patient education. This article focuses on common indications for simultaneous augmentation mastopexy, techniques for safe and effective combined procedures, challenges of the procedure, and potential complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  19. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591

  20. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  1. Acoustically Driven Magnetized Target Fusion At General Fusion: An Overview

    NASA Astrophysics Data System (ADS)

    O'Shea, Peter; Laberge, M.; Donaldson, M.; Delage, M.; the Fusion Team, General

    2016-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma of about 1e23 m-3, 100eV, 7 Tesla, 20 cm radius, >100 μsec life with a 1000x volume compression in 100 microseconds. If near adiabatic compression is achieved, the final plasma of 1e26 m-3, 10keV, 700 Tesla, 2 cm radius, confined for 10 μsec would produce interesting fusion energy gain. General Fusion (GF) is developing an acoustic compression system using pneumatic pistons focusing a shock wave on the CT plasma in the center of a 3 m diameter sphere filled with liquid lead-lithium. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although acoustic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated Aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the acoustic driver front.

  2. Acoustic Neuroma Association

    MedlinePlus

    ... Gold Sponsor NSPC Brain & Spine Surgery Learn More Gold Sponsor University of Colorado Acoustic Neuroma Program and Rocky Mountain Gamma Knife Center Learn More Gold Sponsor USC Acoustic Neuroma Center Learn More Gold ...

  3. Carbon Nanotube Underwater Acoustic Thermophone

    DTIC Science & Technology

    2016-09-23

    Attorney Docket No. 300009 1 of 8 A CARBON NANOTUBE UNDERWATER ACOUSTIC THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The...the Invention [0003] The present invention is an acoustically transparent carbon nanotube thermophone. (2) Description of the Prior Art [0004...Traditional acoustic transduction typically begins with the generation of electrical excitation pulsed through an amplifier into an electro- acoustic

  4. Acoustic building infiltration measurement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muehleisen, Ralph T.; Raman, Ganesh

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  5. The accidental (acoustical) tourist

    NASA Astrophysics Data System (ADS)

    Van Kirk, Wayne

    2002-11-01

    The acoustical phenomenon observed at an ancient temple in the Great Ball Court at Chichen Itza was described as ''little short of amazing--an ancient whispering gallery'' by Silvanus G. Morley, leader of the Carnegie Institute's archaeological team that excavated and restored these structures in the 1920s. Since then, many others have experienced the extraordinary acoustics at Chichen Itza and other Maya sites. Despite these reports, archaeologists and acousticians have until recently shown little interest in understanding these phenomena. After experiencing Chichen Itza's remarkable acoustics as a tourist in 1994, the author commenced collecting and disseminating information about acoustical phenomena there and at other Mayan sites, hoping to stimulate interest among archaeologists and acousticians. Were these designs accidental or intentional? If intentional, how was the knowledge obtained? How were acoustical features used? This paper highlights the author's collection of anecdotal reports of mysterious Mayan acoustics (http://http://www.ianlawton.com/pa1.htm<\\/A>), recommended reading for scientists and engineers who wish to pursue this fascinating study. Also recounted are some of the reactions of archaeologists-ranging from curious, helpful, and insightful to humorous and appalling--to outsiders' efforts to bring serious scientific attention to the new field of acoustical archaeology.

  6. Developments in Acoustic Metamaterials for Acoustic Ground Cloaks

    NASA Astrophysics Data System (ADS)

    Kerrian, Peter Adam

    The objective of acoustic cloaking is to eliminate both the back scattered and forward scattered acoustic fields by redirecting the incident wave around an object. Acoustic ground cloaks, which conceal an object on a rigid reflecting surface, utilize a linear coordinate transformation to map the flat surface to a void by compressing space into two cloaking regions consisting of a homogeneous anisotropic acoustic metafluid. Transformation acoustics allows for the realization of a coordinate transformation through a reinterpretation of the scale factors as a new material in the original coordinate system. Previous work has demonstrated at least three types of unit cells exhibit homogeneous anisotropic mass density and homogeneous isotropic bulk modulus: alternating layers of homogeneous isotropic fluids, perforated plates and solid inclusions. The primary focus of this dissertation is to demonstrate underwater anisotropic mass density with a solid inclusion unit cell and realize an underwater perforated plate acoustic ground cloak. An in depth analysis into the methods used to characterize the effective material parameters of solid inclusion unit cells with water as the background fluid was performed for both single inclusion unit cells as well as multi-inclusion unit cells. The degree of density anisotropy obtainable for a rigid single inclusion unit cell is limited by the size of the inclusion. However, a greater degree of anisotropy can be achieved by introducing additional inclusions into the unit cell design. For example, including a foam material that is less dense than the background fluid, results in an anisotropic density tensor with one component greater than and one component less than the value of the background fluid. The results of a parametric study determined that for a multi-inclusion unit cell, the effective material parameters can be controlled by the dimensions of the rigid inclusion as well as the material parameters and dimensions of the foam

  7. Diagnosing Acoustic Neuroma

    MedlinePlus

    ... Other symptoms of the acoustic neuroma include asymmetric tinnitus (ringing in the ear), dizziness and disequilibrium (difficulty ... than 80% of patients having acoustic neuromas have tinnitus. Tinnitus is usually described as hissing, ringing, buzzing ...

  8. A lifting surface theory for thrust augmenting ejectors

    NASA Technical Reports Server (NTRS)

    Bevilaqua, P. M.

    1977-01-01

    The circulation theory of airfoil lift has been applied to calculate the performance of thrust augmenting ejectors. The ejector shroud is considered to be 'flying' in the secondary velocity field induced by the entrainment of the primary jet, so that the augmenting thrust is viewed as analogous to the lift on an airfoil. Vortex lattice methods are utilized to compute the thrust augmentation from the force on the flaps. The augmentation is shown to be a function of the length and shape of the flaps, as well as their position and orientation. Predictions of this new theory are compared with the results of classical methods of calculating the augmentation by integration of the stream thrust.

  9. Insights into the role of heat shock protein 72 to whole-body heat acclimation in humans

    PubMed Central

    Amorim, Fabiano Trigueiro; Fonseca, Ivana T; Machado-Moreira, Christiano A; Magalhães, Flávio de Castro

    2015-01-01

    Abstract Heat acclimation results in systemic and cellular adaptions that reduce the negative effect of heat and, consequently, the risk of heat illness. Although the classical changes observed with heat acclimation lead to increased tolerance to exercise in the heat by reducing heat storage (reflected in reduced core and skin temperatures) and increasing whole-body capacity for heat dissipation (greater plasma volume, sweat output, and skin blood flow), it appears that heat acclimation also induces changes at the cellular level that might increase tolerance of the whole organism to a higher core temperature for the development of fatigue. Thermotolerance is a process that involves increased resilience to an otherwise lethal heat stress that follows a sublethal exposure to heat. Thermotolerance is believed to be the result of increased content of heat shock proteins (Hsp), specially a member of the 70 kDa family, Hsp72 kDa. In humans, we and others have reported that heat acclimation increases intracellular Hsp72 levels. This increase in intracellular Hsp72 could improve whole-body organism thermotolerance by maintaining intestinal epithelial tight junction barriers, by increasing resistance to gut-associated endotoxin translocation, or by reducing the inflammatory response. In this review, we will initially provide an overview of the physiological adaptations induced by heat acclimation and emphasize the main cellular changes that occur with heat acclimation associated with intracellular accumulation of Hsp72. Finally, we will present an argument for a role of whole-body heat acclimation in augmenting cellular thermotolerance, which may protect vital organs from deleterious effects of heat stress in humans. PMID:27227070

  10. Acoustic waves in the solar atmosphere. VII - Non-grey, non-LTE H(-) models

    NASA Technical Reports Server (NTRS)

    Schmitz, F.; Ulmschneider, P.; Kalkofen, W.

    1985-01-01

    The propagation and shock formation of radiatively damped acoustic waves in the solar chromosphere are studied under the assumption that H(-) is the only absorber; the opacity is non-grey. Deviations from local thermodynamic equilibrium (LTE) are permitted. The results of numerical simulations show the depth dependence of the heating by the acoustic waves to be insensitive to the mean state of the atmosphere. After the waves have developed into shocks, their energy flux decays exponentially with a constant damping length of about 1.4 times the pressure scale height, independent of initial flux and wave period. Departures from LTE have a strong influence on the mean temperature structure in dynamical chromosphere models; this is even more pronounced in models with reduced particle density - simulating conditions in magnetic flux tubes - which show significantly increased temperatures in response to mechanical heating. When the energy dissipation of the waves is sufficiently large to dissociate most of the H(-) ions, a strong temperature rise is found that is reminiscent of the temperature structure in the transition zone between chromosphere and corona; the energy flux remaining in the waves then drives mass motions.

  11. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  12. Heating of carriers as controlled by the combined interactions with acoustic and piezoelectric phonons in degenerate III-V semiconductors at low lattice temperature

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D. P.; Das, J.; Basu, A.; Das, B.

    2017-09-01

    In compound semiconductors which lack inversion symmetry, the combined interaction of the electrons with both acoustic and piezoelectric phonons is dominant at low lattice temperatures ( 20 K). The field dependence of the effective electron temperature under these conditions, has been calculated by solving the modified energy balance equation that takes due account of the degeneracy. The traditionally used heated Fermi-Dirac (F.D.) function for the non-equilibrium distribution function is approximated by some well tested model distribution. This makes it possible to carry out the integrations quite easily and, thus to obtain some more realistic results in a closed form, without taking recourse to any oversimplified approximations. The numerical results that follow for InSb, InAs and GaN, from the present analysis, are then compared with the available theoretical and experimental data. The degeneracy and the piezoelectric interaction, both are seen to bring about significant changes in the electron temperature characteristics. The scope for further refinement is discussed.

  13. Acoustics of a planetarium

    NASA Astrophysics Data System (ADS)

    Shepherd, Micah; Leishman, Timothy W.; Utami, Sentagi

    2005-09-01

    Brigham Young University has recently constructed a planetarium with a 38-ft.-diameter dome. The facility also serves as a classroom. Since planetariums typically have poor acoustics due to their domed ceiling structures, acoustical recommendations were requested before its construction. The recommendations were made in an attempt to create an acceptable listening environment for lectures and other listening events. They were based in part on computer models and auralizations intended to predict the effectiveness of several acoustical treatments on the outer walls and on the dome itself. The recommendations were accepted and the planetarium was completed accordingly. A series of acoustical measurements was subsequently made in the room and the resulting acoustical parameters were mapped over the floor plan. This paper discusses these results and compares them with the predictions of the computer models.

  14. Nonlinear acoustic wave equations with fractional loss operators.

    PubMed

    Prieur, Fabrice; Holm, Sverre

    2011-09-01

    Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations. © 2011 Acoustical Society of America

  15. Impacts of short-time scale water column variability on broadband high-frequency acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Eickmeier, Justin

    signal propagation. It is determined that on a time scale of seconds, corresponding to typical periods of surface water waves, the arrival time of reflected acoustic signals from surface waves appear as striation patterns in measured data and can be accurately modelled by ray tracing. Second, changes in acoustic beam arrival angle and acoustic ray path influenced by isotherm depth oscillations are analyzed using an 8-element delay-sum beamformer. The results are compared with outputs from a two-dimensional (2-D) parabolic equation (PE) model using measured sound speed profiles (SSPs) in the water column. Using the method of beamforming on the received signal, the arrival time and angle of an acoustic beam was obtained for measured acoustic signals. It is determined that the acoustic ray path, acoustic beam intensity and angular spread are a function of vertical isotherm oscillations on a time scale of minutes and can be modeled accurately by a 2-D PE model. Third, a forward problem is introduced which uses acoustic wavefronts received on a vertical line array, 1.48 km from the source, in the lower part of the water column to infer range dependence or independence in the SSP. The matched filtering results of received acoustic wavefronts at all hydrophone depths are compared with a ray tracing routine augmented to calculate only direct path and bottom reflected signals. It is determined that the SSP range dependence can be inferred on a time scale of hours using an array of hydrophones spanning the water column. Sound speed profiles in the acoustic field were found to be range independent for 11 of the 23 hours in the measurements. A SSP cumulative reconstruction process, conducted from the seafloor to the sea surface, layer-by-layer, identifies critical segments in the SSP that define the ray path, arrival time and boundary interactions. Data-model comparison between matched filtered arrival time spread and arrival time output from the ray tracing was robust when the SSP

  16. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  17. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  18. Augmented reality in dentistry: a current perspective.

    PubMed

    Kwon, Ho-Beom; Park, Young-Seok; Han, Jung-Suk

    2018-02-21

    Augmentation reality technology offers virtual information in addition to that of the real environment and thus opens new possibilities in various fields. The medical applications of augmentation reality are generally concentrated on surgery types, including neurosurgery, laparoscopic surgery and plastic surgery. Augmentation reality technology is also widely used in medical education and training. In dentistry, oral and maxillofacial surgery is the primary area of use, where dental implant placement and orthognathic surgery are the most frequent applications. Recent technological advancements are enabling new applications of restorative dentistry, orthodontics and endodontics. This review briefly summarizes the history, definitions, features, and components of augmented reality technology and discusses its applications and future perspectives in dentistry.

  19. Vowel Acoustic Space Development in Children: A Synthesis of Acoustic and Anatomic Data

    ERIC Educational Resources Information Center

    Vorperian, Houri K.; Kent, Ray D.

    2007-01-01

    Purpose: This article integrates published acoustic data on the development of vowel production. Age specific data on formant frequencies are considered in the light of information on the development of the vocal tract (VT) to create an anatomic-acoustic description of the maturation of the vowel acoustic space for English. Method: Literature…

  20. Acoustic Levitation With Less Equipment

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  1. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  2. Variable-Position Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  3. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    NASA Astrophysics Data System (ADS)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However

  4. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  5. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1993-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  6. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  7. The Nozzle Acoustic Test Rig: an Acoustic and Aerodynamic Free-jet Facility

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    1994-01-01

    The nozzle acoustic test rig (NATR) was built at NASA Lewis Research Center to support the High Speed Research Program. The facility is capable of measuring the acoustic and aerodynamic performance of aircraft engine nozzle concepts. Trade-off studies are conducted to compare performance and noise during simulated low-speed flight and takeoff. Located inside an acoustically treated dome with a 62-ft radius, the NATR is a free-jet that has a 53-in. diameter and is driven by an air ejector. This ejector is operated with 125 lb/s of compressed air, at 125 psig, to achieve 375 lb/s at Mach 0.3. Acoustic and aerodynamic data are collected from test nozzles mounted in the free-jet flow. The dome serves to protect the surrounding community from high noise levels generated by the nozzles, and to provide an anechoic environment for acoustic measurements. Information presented in this report summarizes free-jet performance, fluid support systems, and data acquisition capabilities of the NATR.

  8. Augmented Reality Tower Technology Assessment

    NASA Technical Reports Server (NTRS)

    Reisman, Ronald J.; Brown, David M.

    2009-01-01

    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.

  9. Magnetoactive Acoustic Metamaterials.

    PubMed

    Yu, Kunhao; Fang, Nicholas X; Huang, Guoliang; Wang, Qiming

    2018-04-11

    Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli-responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields. It is shown for the first time that effective modulus can be reversibly switched between positive and negative within controlled frequency regimes through lattice buckling modulated by theoretically predicted magnetic fields. The magnetically triggered negative-modulus and cavity-induced negative density are integrated to achieve flexible switching between single-negative and double-negative. This strategy opens promising avenues for remote, rapid, and reversible modulation of acoustic transportation, refraction, imaging, and focusing in subwavelength regimes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Allen, Christopher; Chu, S. Reynold

    2008-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles to ensure compliance with acoustic requirements and thus provide a safe and habitable acoustic environment for the crews, and to validate developed models via building physical mockups and conducting acoustic measurements.

  11. Saturn systems holddown acoustic efficiency and normalized acoustic power spectrum.

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1972-01-01

    Saturn systems field acoustic data are used to derive mid- and far-field prediction parameters for rocket engine noise. The data were obtained during Saturn vehicle launches at the Kennedy Space Center. The data base is a sorted set of acoustic data measured during the period 1961 through 1971 for Saturn system launches SA-1 through AS-509. The model assumes hemispherical radiation from a simple source located at the intersection of the longitudinal axis of each booster and the engine exit plane. The model parameters are evaluated only during vehicle holddown. The acoustic normalized power spectrum and efficiency for each system are isolated as a composite from the data using linear numerical methods. The specific definitions of each allows separation. The resulting power spectra are nondimensionalized as a function of rocket engine parameters. The nondimensional Saturn system acoustic spectrum and efficiencies are compared as a function of Strouhal number with power spectra from other systems.

  12. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  13. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  14. Mixing in Shear Coaxial Jets with and without Acoustics (Briefing Charts)

    DTIC Science & Technology

    2012-05-21

    and heat transfer fluctuations in a rocket engine – Irreparable damage can occur in əs • Combustion Instability caused a 4-yr delay in the...common choice for cryogenic liquid rocket engines • Interactions of transverse acoustics with injector’s own modes and mixing needs to be understood...Pr = 0.44 • LAR-thin , Pr = 0.44, J = 0.5 POM 2 POM 1 Average Snapshot Power Spectral Densities (PSD) of Temporal Coefficients of POMs 1 and 2

  15. Transmission acoustic microscopy investigation

    NASA Astrophysics Data System (ADS)

    Maev, Roman; Kolosov, Oleg; Levin, Vadim; Lobkis, Oleg

    The nature of acoustic contrast, i.e. the connection of the amplitude and phase of the output signal of the acoustic microscope with the local values of the acoustic parameters of the sample (density, elasticity, viscosity) is a central problem of acoustic microscopy. A considerable number of studies have been devoted to the formation of the output signal of the reflection scanning acoustic microscope. For the transmission acoustic microscope (TAM) this problem has remained almost unstudied. Experimental investigation of the confocal system of the TAM was carried out on an independently manufactured laboratory mockup of the TAM with the working frequency of the 420 MHz. Acoustic lenses with the radius of curvature of about 500 microns and aperture angle of 45 deg were polished out in the end faces of two cylindrical sound conductors made from Al2O3 single crystals with an axis parallel to the axis C of the crystal (the length of the sound conductor is 20 mm; diameter, 6 mm). At the end faces of the sound conductor, opposite to the lenses, CdS transducers with a diameter of 2 mm were disposed. The electric channel of the TAM provided a possibility for registering the amplitude of the microscope output signal in the case of the dynamic range of the 50 dB.

  16. What Is an Acoustic Neuroma

    MedlinePlus

    ... CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Italian Japanese Korean Portuguese Romanian Spanish What is Acoustic Neuroma? Each heading slides to reveal information. Important ...

  17. Antidepressant augmentation with anti-inflammatory agents.

    PubMed

    Andrade, Chittaranjan

    2014-09-01

    Antidepressant augmentation strategies are commonly employed to treat depressed patients who do not respond to antidepressant monotherapy. Neuroinflammatory mechanisms have been implicated in depression, and nonsteroidal anti-inflammatory drugs (NSAIDs) have been found effective in animal models of depression both in monotherapy and when used to augment antidepressant drugs. However, results with NSAIDs have been mixed in human observational studies, with both better and worse depression outcomes reported. Four small (pooled N = 160) randomized controlled trials suggest that celecoxib (200-400 mg/d) augmentation of antidepressant medication improves 4-6 week outcomes in major depressive disorder. There are no data, however, to support the use of celecoxib or other NSAIDs in antidepressant-resistant depression. There are also concerns about adverse events associated with NSAID treatment, and about pharmacodynamic drug interactions between these drugs and serotonin reuptake inhibitors. A reasonable conclusion for the present is that NSAID augmentation of antidepressants is, at best, a tentative approach in nonrefractory major depression. © Copyright 2014 Physicians Postgraduate Press, Inc.

  18. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  19. Local infusion of ascorbate augments NO-dependent cutaneous vasodilatation during intense exercise in the heat

    PubMed Central

    Meade, Robert D; Fujii, Naoto; Alexander, Lacy M; Paull, Gabrielle; Louie, Jeffrey C; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Abstract Nitric oxide (NO)-dependent cutaneous vasodilatation is reportedly diminished during exercise performed at a high (700 W) relative to moderate (400 W) rate of metabolic heat production. The present study evaluated whether this impairment results from increased oxidative stress associated with an accumuluation of reactive oxygen species (ROS) during high intensity exercise. On two separate days, 11 young (mean ± SD, 24 ± 4 years) males cycled in the heat (35°C) at a moderate (500 W) or high (700 W) rate of metabolic heat production. Each session included two 30 min exercise bouts followed by 20 and 40 min of recovery, respectively. Cutaneous vascular conductance (CVC) was monitored at four forearm skin sites continuously perfused via intradermal microdialysis with: (1) lactated Ringer solution (Control); (2) 10 mm ascorbate (Ascorbate); (3) 10 mm l-NAME; or (4) 10 mm ascorbate + 10 mm l-NAME (Ascorbate + l-NAME). At the end of each 500 W exercise bout, CVC was attenuated with l-NAME (∼35% CVCmax) and Ascorbate + l-NAME (∼43% CVCmax) compared to Control (∼60% CVCmax; all P < 0.04); however, Ascorbate did not modulate CVC during exercise (∼60% CVCmax; both P > 0.87). Conversely, CVC was elevated with Ascorbate (∼72% CVCmax; both P < 0.03) but remained similar to Control (∼59% CVCmax) with l-NAME (∼50% CVCmax) and Ascorbate + l-NAME (∼47% CVCmax; all P > 0.05) at the end of both 700 W exercise bouts. We conclude that oxidative stress associated with an accumulation of ascorbate-sensitive ROS impairs NO-dependent cutaneous vasodilatation during intense exercise. Key points Recent work demonstrates that nitric oxide (NO) contributes to cutaneous vasodilatation during moderate (400 W of metabolic heat production) but not high (700 W of metabolic heat production) intensity exercise bouts performed in the heat (35°C). The present study evaluated whether the impairment in NO-dependent cutaneous vasodilatation

  20. Properties of Materials Using Acoustic Waves.

    DTIC Science & Technology

    1982-05-01

    Acoust. Soc. Am. 69, 1624 (1981). R.E. Apfel, "Acoustic Cavitation : A Possible Consequence of Biomedical Uses of Ultrasound ," Brit. J. Cancer, in...efforts can be classified into four broad categories; - Applications of acoustic levitation; nonlinear acoustics and radiation pressure; acoustic cavitation ...supercooled water - a question of concern to cryobiologists. We have also measured the properties of several lipid oils (only available in less than

  1. Radiative Amplification of Acoustic Waves in Hot Stars

    NASA Technical Reports Server (NTRS)

    Wolf, B. E.

    1985-01-01

    The discovery of broad P Cygni profiles in early type stars and the detection of X-rays emitted from the envelopes of these stars made it clear, that a considerable amount of mechanical energy has to be present in massive stars. An attack on the problem, which has proven successful when applied to late type stars is proposed. It is possible that acoustic waves form out of random fluctuations, amplify by absorbing momentum from stellar radiation field, steepen into shock waves and dissipate. A stellar atmosphere was constructed, and sinusoidal small amplitude perturbations of specified Mach number and period at the inner boundary was introduced. The partial differential equations of hydrodynamics and the equations of radiation transfer for grey matter were solved numerically. The equation of motion was augmented by a term which describes the absorption of momentum from the radiation field in the continuum and in lines, including the Doppler effect and allows for the treatment of a large number of lines in the radiative acceleration term.

  2. Detecting changes in dynamic and complex acoustic environments

    PubMed Central

    Boubenec, Yves; Lawlor, Jennifer; Górska, Urszula; Shamma, Shihab; Englitz, Bernhard

    2017-01-01

    Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments. DOI: http://dx.doi.org/10.7554/eLife.24910.001 PMID:28262095

  3. Geo-Acoustic Doppler Spectroscopy: A Novel Acoustic Technique For Surveying The Seabed

    NASA Astrophysics Data System (ADS)

    Buckingham, Michael J.

    2010-09-01

    An acoustic inversion technique, known as Geo-Acoustic Doppler Spectroscopy, has recently been developed for estimating the geo-acoustic parameters of the seabed in shallow water. The technique is unusual in that it utilizes a low-flying, propeller-driven light aircraft as an acoustic source. Both the engine and propeller produce sound and, since they are rotating sources, the acoustic signature of each takes the form of a sequence of narrow-band harmonics. Although the coupling of the harmonics across the air-sea interface is inefficient, due to the large impedance mismatch between air and water, sufficient energy penetrates the sea surface to provide a useable underwater signal at sensors either in the water column or buried in the sediment. The received signals, which are significantly Doppler shifted due to the motion of the aircraft, will have experienced a number of reflections from the seabed and thus they contain information about the sediment. A geo-acoustic inversion of the Doppler-shifted modes associated with each harmonic yields an estimate of the sound speed in the sediment; and, once the sound speed has been determined, the known correlations between it and the remaining geo-acoustic parameters allow all of the latter to be computed. This inversion technique has been applied to aircraft data collected in the shallow water north of Scripps pier, returning values of the sound speed, shear speed, porosity, density and grain size that are consistent with the known properties of the sandy sediment in the channel.

  4. Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Basu, Saptarshi

    2016-12-01

    We study thermally induced atomization modes in contact free (acoustically levitated) nanoparticle laden fuel droplets. The initial droplet size, external heat supplied, and suspended particle concentration (wt. %) in droplets govern the stability criterion which ultimately determines the dominant mode of atomization. Pure fuel droplets exhibit two dominant modes of breakup namely primary and secondary. Primary modes are rather sporadic and normally do not involve shape oscillations. Secondary atomization however leads to severe shape deformations and catastrophic intense breakup of the droplets. The dominance of these modes has been quantified based on the external heat flux, dynamic variation of surface tension, acoustic pressure, and droplet size. Addition of particles alters the regimes of the primary and secondary atomization and introduces bubble induced boiling and bursting. We analyze this new mode of atomization and estimate the time scale of bubble growth up to the point of bursting using energy balance to determine the criterion suitable for parent droplet rupture. All the three different modes of breakup have been well identified in a regime map determined in terms of Weber number and the heat utilization rate which is defined as the energy utilized for transient heating, vaporization, and boiling in droplets.

  5. Modeling of the heat distribution in the intervertebral disk.

    PubMed

    Persson, Johan; Hansen, Eskil; Lidgren, Lars; McCarthy, Ian

    2005-05-01

    The heat transfer equation was used to model the heat distribution in an intervertebral disk during ultrasound (US) exposure. The influence of thermal and acoustic parameters was studied to get a quantitative understanding of the heat transfer in the system. Heating of collagen to 65 degrees C or above will lead to denaturation and is believed to stabilize and contract the outer part of the disk in a herniated disk. In our model, the US intensity was approximated by a Gaussian distribution and nonlinear propagation was excluded. The effect of self-heating and cooling of the transducer was also studied. The simulations were performed using the finite element method. From this model, it can be concluded that it is possible to heat parts of the disk to treatment temperature using a focused 5-mm diameter US probe. The physical constraints on the piezocrystal set the limit of the size of the treatment volume.

  6. Heat stress and cardiovascular, hormonal, and heat shock proteins in humans.

    PubMed

    Iguchi, Masaki; Littmann, Andrew E; Chang, Shuo-Hsiu; Wester, Lydia A; Knipper, Jane S; Shields, Richard K

    2012-01-01

    carefully prescribed heat stress constitutes a method to augment or supplement exercise.

  7. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  8. Multimode Acoustic Research

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1985-01-01

    There is a need for high temperature containerless processing facilities that can efficiently position and manipulate molten samples in the reduced gravity environment of space. The goal of the research is to develop sophisticated high temperature manipulation capabilities such as selection of arbitrary axes rotation and rapid sample cooling. This program will investigate new classes of acoustic levitation in rectangular, cylindrical and spherical geometries. The program tasks include calculating theoretical expressions of the acoustic forces in these geometries for the excitation of up to three acoustic modes (multimodes). These calculations are used to: (1) determine those acoustic modes that produce stable levitation, (2) isolate the levitation and rotation capabilities to produce more than one axis of rotation, and (3) develop methods to translate samples down long tube cylindrical chambers. Experimental levitators will then be constructed to verify the stable levitation and rotation predictions of the models.

  9. Correlation of combustor acoustic power levels inferred from internal fluctuating pressure measurements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1978-01-01

    Combustion chamber acoustic power levels inferred from internal fluctuating pressure measurements are correlated with operating conditions and chamber geometries over a wide range. The variables include considerations of chamber design (can, annular, and reverse-flow annular) and size, number of fuel nozzles, burner staging and fuel split, airflow and heat release rates, and chamber inlet pressure and temperature levels. The correlated data include those obtained with combustion component development rigs as well as engines.

  10. From Augmentation Media to Meme Media.

    ERIC Educational Resources Information Center

    Tanaka, Yuzuru

    Computers as meta media are now evolving from augmentation media vehicles to meme media vehicles. While an augmentation media system provides a seamlessly integrated environment of various tools and documents, meme media system provides further functions to edit and distribute tools and documents. Documents and tools on meme media can easily…

  11. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  12. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  13. Acoustic Levitator Maintains Resonance

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.

    1986-01-01

    Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.

  14. Conjugate heat transfer of laminar mixed convection of a nanofluid through an inclined tube with circumferentially non-uniform heating.

    PubMed

    Allahyari, Shahriar; Behzadmehr, Amin; Sarvari, Seyed Masoud Hosseini

    2011-04-26

    Laminar mixed convection of a nanofluid consisting of water and Al2O3 in an inclined tube with heating at the top half surface of a copper tube has been studied numerically. The bottom half of the tube wall is assumed to be adiabatic (presenting a tube of a solar collector). Heat conduction mechanism through the tube wall is considered. Three-dimensional governing equations with using two-phase mixture model have been solved to investigate hydrodynamic and thermal behaviours of the nanofluid over wide range of nanoparticle volume fractions. For a given nanoparticle mean diameter the effects of nanoparticle volume fractions on the hydrodynamics and thermal parameters are presented and discussed at different Richardson numbers and different tube inclinations. Significant augmentation on the heat transfer coefficient as well as on the wall shear stress is seen.

  15. Stability-Augmentation Devices for Miniature Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, RIchard M.

    2005-01-01

    Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability-augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft. A stability-augmentation device of the type under consideration includes a mass pod (a counterweight) at the outer end of a telescoping shaft, plus associated equipment to support the operation of the aircraft. The telescoping shaft and mass pod are stowed in the rear of the aircraft. When deployed, they extend below the aircraft. Optionally, an antenna for radio communication can be integrated into the shaft. At the time of writing this article, the deployment of the telescoping shaft and mass pod was characterized as passive and automatic, but information about the deployment mechanism(s) was not available. The feasibility of this stability-augmentation concept was demonstrated in flights of hand-launched prototype aircraft.

  16. Potential costs of breast augmentation mammaplasty.

    PubMed

    Schmitt, William P; Eichhorn, Mitchell G; Ford, Ronald D

    2016-01-01

    Augmentation mammaplasty is one of the most common surgical procedures performed by plastic surgeons. The aim of this study was to estimate the cost of the initial procedure and its subsequent complications, as well as project the cost of Food and Drug Administration (FDA)-recommended surveillance imaging. The potential costs to the individual patient and society were calculated. Local plastic surgeons provided billing data for the initial primary silicone augmentation and reoperative procedures. Complication rates used for the cost analysis were obtained from the Allergen Core study on silicone implants. Imaging surveillance costs were considered in the estimations. The average baseline initial cost of silicone augmentation mammaplasty was calculated at $6335. The average total cost of primary breast augmentation over the first decade for an individual patient, including complications requiring reoperation and other ancillary costs, was calculated at $8226. Each decade thereafter cost an additional $1891. Costs may exceed $15,000 over an averaged lifetime, and the recommended implant surveillance could cost an additional $33,750. The potential cost of a breast augmentation, which includes the costs of complications and imaging, is significantly higher than the initial cost of the procedure. Level III, economic and decision analysis study. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Augmentation of immune cell activity against tumor cells by Rauwolfia radix.

    PubMed

    Jin, Guang-Bi; Hong, Tie; Inoue, Satoshi; Urano, Tomohiko; Cho, Shigefumi; Otsu, Koji; Kitahara, Maya; Ouchi, Yasuyoshi; Cyong, Jong-Chol

    2002-08-01

    In this study, we investigated the effect of Rauwolfia radix on heat shock protein (HSP) 70 expression and cytotoxicity against tumor cells in activated human T cells. When activated T cells were cultured with Rauwolfia radix for 18 h, HSP70 expression after heat shock was remarkably increased, and cytotoxicity against T98G tumor cells was augmented. Moreover, Rauwolfia radix also enhanced the cytotoxicity of heat shocked activated T cells against Molt-4 and T98G tumor cells. Secretions of interferon-gamma (IFN-gamma) and tumor necrosis alpha (TNF-alpha), due to Concanavalin A (Con A) stimulation, were increased by Rauwolfia radix in activated T cells. To investigate the antitumor effect in vivo, EL-4 tumor-bearing mice were administered with Rauwolfia radix in drinking water. The survival period of the Rauwolfia radix treatment group was significantly prolonged compared with that of the control group. Reserpine, the major active ingredient of Rauwolfia radix, also enhanced the cytotoxicity of activated T cells against Molt-4 and T98G tumor cells, and prolonged the survival period of EL-4 tumor-bearing mice. Taken together, our results suggest that Rauwolfia radix can enhance the activity of immune cells against tumor cells.

  18. Numerical Study of Laminar Flow and Convective Heat Transfer Utilizing Nanofluids in Equilateral Triangular Ducts with Constant Heat Flux

    PubMed Central

    Ting, Hsien-Hung; Hou, Shuhn-Shyurng

    2016-01-01

    This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2%) and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8%) are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data. PMID:28773698

  19. Acoustic and microwave tests in a cylindrical cavity for acoustic gas thermometry at high temperature

    PubMed Central

    Zhang, K.; Feng, X.J.; Gillis, K.; Moldover, M.; Zhang, J.T.; Lin, H.; Qu, J.F.; Duan, Y.N.

    2016-01-01

    Relative primary acoustic gas thermometry determines the ratios of thermodynamic temperatures from measured ratios of acoustic and microwave resonance frequencies in a gas-filled metal cavity on isotherms of interest. When measured in a cavity with known dimensions, the frequencies of acoustic resonances in a gas determine the speed of sound, which is a known function of the thermodynamic temperature T. Changes in the dimensions of the cavity are measured using the frequencies of the cavity's microwave resonances. We explored techniques and materials for acoustic gas thermometry at high temperatures using a cylindrical cavity with remote acoustic transducers. We used gas-filled ducts as acoustic waveguides to transmit sound between the cavity at high temperatures and the acoustic transducers at room temperature. We measured non-degenerate acoustic modes in a cylindrical cavity in the range 295 K < T < 797 K. The fractional uncertainty of the measured acoustic frequencies increased from 2×10−6 at 295 K to 5×10−6 at 797 K. In addition, we measured the frequencies of several transverse magnetic (TM) microwave resonances up to 1000 K in order to track changes in the cavity's length L and radius R. The fractional standard deviation of the values of L deduced from three TM modes increased from 3×10−6 for T < 600 K to 57×10−6 at 1000 K. We observed similar inconsistencies in a previous study. PMID:26903106

  20. Breast augmentation surgery

    MedlinePlus

    ... the shape of your breasts. Talk with a plastic surgeon if you are considering breast augmentation. Discuss ... mammograms or breast x-rays before surgery. The plastic surgeon will do a routine breast exam. Several ...

  1. Applied Augmented Reality for High Precision Maintenance

    NASA Astrophysics Data System (ADS)

    Dever, Clark

    Augmented Reality had a major consumer breakthrough this year with Pokemon Go. The underlying technologies that made that app a success with gamers can be applied to improve the efficiency and efficacy of workers. This session will explore some of the use cases for augmented reality in an industrial environment. In doing so, the environmental impacts and human factors that must be considered will be explored. Additionally, the sensors, algorithms, and visualization techniques used to realize augmented reality will be discussed. The benefits of augmented reality solutions in industrial environments include automated data recording, improved quality assurance, reduction in training costs and improved mean-time-to-resolution. As technology continues to follow Moore's law, more applications will become feasible as performance-per-dollar increases across all system components.

  2. Airy acoustical-sheet spinner tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  3. Direct Field Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Larkin, Paul; Goldstein, Bob

    2008-01-01

    This paper presents an update to the methods and procedures used in Direct Field Acoustic Testing (DFAT). The paper will discuss some of the recent techniques and developments that are currently being used and the future publication of a reference standard. Acoustic testing using commercial sound system components is becoming a popular and cost effective way of generating a required acoustic test environment both in and out of a reverberant chamber. This paper will present the DFAT test method, the usual setup and procedure and the development and use of a closed-loop, narrow-band control system. Narrow-band control of the acoustic PSD allows all standard techniques and procedures currently used in random control to be applied to acoustics and some examples are given. The paper will conclude with a summary of the development of a standard practice guideline that is hoped to be available in the first quarter of next year.

  4. Wideband acoustic microscopy of tissue.

    PubMed

    Daft, C W; Briggs, G D

    1989-01-01

    A scanning acoustic microscope (SAM) has been used to measure the elastic properties of tissue with a resolution of around 8 mum. This is achieved by broadband excitation of the acoustic lens, and the recording of an undemodulated returning signal. A method of analyzing this information to yield sound velocity, acoustic impedance, section thickness, and acoustic attenuation is described. Results from a sample of skin tissue are presented and compared with data from a computer simulation of the experiment.

  5. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas; Houston, Janice

    2012-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I liftoff acoustic environments and to determine the acoustic reduction gained by using an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model and Mobile Launcher with tower. Acoustic and pressure data were measured by over 200 instruments. The ASMAT results are compared to Ares I-X flight data.

  6. Contactless ultrasonic device to measure surface acoustic wave velocities versus temperature.

    PubMed

    Hubert, C; Nadal, M H; Ravel-Chapuis, G; Oltra, R

    2007-02-01

    A complete optical experimental setup for generating and detecting surface acoustic waves [Rayleigh waves (RWs)] in metals versus temperature up to the melting point is described. The RWs were excited by a pulsed Nd:YAG laser and detected by a high sensitivity subangstrom heterodyne interferometer. A special furnace was used to heat the sample using infrared radiation with a regulation of the sample temperature less than 0.1 K. First measurements on an aluminum alloy sample are presented to validate the setup.

  7. Wideband acoustic wave resonators composed of hetero acoustic layer structure

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Tanaka, Shuji

    2018-07-01

    “Hetero acoustic layer (HAL) surface acoustic wave (SAW) device” is a new type of SAW device using a single crystal piezoelectric thin plate supported by a substrate. In this study, a HAL SAW resonator using a LiNbO3 (LN) thin plate and a multi-layer acoustic film was designed by finite element method (FEM) and fabricated. The thickness of LN is 3.6 µm and the pitch of an interdigital transducer (IDT) (λ) is 5.24 µm for a resonance frequency of 600 MHz. The multi-layer acoustic film is composed of 3 layers of SiO2 and AlN for each, i.e., 6 layers in total, alternately deposited on a glass substrate. The HAL SAW resonator achieved a wide bandwidth of 20.3% and a high impedance ratio of 83 dB. Compared with a 0th shear horizontal (SH0) mode plate wave resonator, the performance is better and the thickness of LN is 7 times larger. The HAL SAW without a cavity is advantageous in terms of mechanical stability, thickness controllability and fabrication yield.

  8. Acoustic emissions monitoring and synchrotron X-ray diffraction analysis of mineral dehydrations at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Guillon, S.; Schubnel, A. J.; Brunet, F.; Lathe, C.; Mueller, H.

    2009-12-01

    We have monitored from in-situ X-ray diffraction coupled to Acoustic Emission (AE) imaging, the behavior of several materials under elevated pressures and temperatures (quartz, kaolinite, serpentinite). The samples were placed in a boron-epoxy assembly with an 8mm edge-length and loaded in the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg). AE were recorded using six piezoceramic transducers (2 MHz eigen frequency) glued on each of the six WC anvils. Full waveforms were acquired using an eight channel digital oscilloscope and a continuous acoustic recorder. Our system was first tested using quartz beads (500μm) aggregates. During cold compression performed on these samples many acoustic events were recorded and located inside the samples. These are obviously related to the fragile fracturing of the quartz due to the porosity loss. During the heating cycles performed on the same samples, the acoustic activity progressively vanishes between 300 and 400°C indicating the transition to the ductile regime towards higher temperatures. Further experiments were performed by mixing 20wt% of kaolinite to the quartz. As a result, the amount of acoustic emissions recorded during cold compression is significantly reduced. This is thought to be a result of the ductile behaviour of kaolinite even at low temperatures. This assumption has been confirmed by performing experiments on pure kaolinite which did not produce acoustic emissions during cold compression nor during heating cycles up to 1000°C (i.e. beyond the kaolinite dehydration temperature). This set of experiments clearly established that no acoustic activity is produced by the assembly and that AEs produced by the samples are accurately located by the software. The behaviour of serpentinite dehydration was then investigated under various pressure conditions (i.e. various volume changes), from ~0.6 to ~40kbars. These experiments were performed under deviatoric stress conditions

  9. Acoustic emissions monitoring and synchrotron X-ray diffraction analysis of mineral dehydrations at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Schubnel, Alexandre; Julien, Gasc; Sophie, Guillon; Fabrice, Brunet; Christian, Lathe; Hans-Joachim, Mueller

    2010-05-01

    We have monitored from in-situ X-ray diffraction coupled to Acoustic Emission (AE) imaging, the behavior of several materials under elevated pressures and temperatures (quartz, kaolinite, serpentinite). The samples were placed in a boron-epoxy assembly with an 8mm edge-length and loaded in the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg). AE were recorded using six piezoceramic transducers (2 MHz eigen frequency) glued on each of the six WC anvils. Full waveforms were acquired using an eight channel digital oscilloscope and a continuous acoustic recorder. Our system was first tested using quartz beads (500μm) aggregates. During cold compression performed on these samples many acoustic events were recorded and located inside the samples. These are obviously related to the fragile fracturing of the quartz due to the porosity loss. During the heating cycles performed on the same samples, the acoustic activity progressively vanishes between 300 and 400°C indicating the transition to the ductile regime towards higher temperatures. Further experiments were performed by mixing 20wt% of kaolinite to the quartz. As a result, the amount of acoustic emissions recorded during cold compression is significantly reduced. This is thought to be a result of the ductile behaviour of kaolinite even at low temperatures. This assumption has been confirmed by performing experiments on pure kaolinite which did not produce acoustic emissions during cold compression nor during heating cycles up to 1000°C (i.e. beyond the kaolinite dehydration temperature). This set of experiments clearly established that no acoustic activity is produced by the assembly and that AEs produced by the samples are accurately located by the software. The behaviour of serpentinite dehydration was then investigated under various pressure conditions (i.e. various volume changes), from ~0.6 to ~40kbars. These experiments were performed under deviatoric stress conditions

  10. Chin augmentation - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100009.htm Chin augmentation - series—Normal anatomy To use the sharing features ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  11. Breast augmentation - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100205.htm Breast augmentation - series—Normal anatomy To use the sharing features ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  12. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  13. Breakdown of the Debye approximation for the acoustic modes with nanometric wavelengths in glasses

    PubMed Central

    Monaco, Giulio; Giordano, Valentina M.

    2009-01-01

    On the macroscopic scale, the wavelengths of sound waves in glasses are large enough that the details of the disordered microscopic structure are usually irrelevant, and the medium can be considered as a continuum. On decreasing the wavelength this approximation must of course fail at one point. We show here that this takes place unexpectedly on the mesoscopic scale characteristic of the medium range order of glasses, where it still works well for the corresponding crystalline phases. Specifically, we find that the acoustic excitations with nanometric wavelengths show the clear signature of being strongly scattered, indicating the existence of a cross-over between well-defined acoustic modes for larger wavelengths and ill-defined ones for smaller wavelengths. This cross-over region is accompanied by a softening of the sound velocity that quantitatively accounts for the excess observed in the vibrational density of states of glasses over the Debye level at energies of a few milli-electronvolts. These findings thus highlight the acoustic contribution to the well-known universal low-temperature anomalies found in the specific heat of glasses. PMID:19240211

  14. Department of Cybernetic Acoustics

    NASA Astrophysics Data System (ADS)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  15. Acoustic explorations of the upper ocean boundary layer

    NASA Astrophysics Data System (ADS)

    Vagle, Svein

    2005-04-01

    The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.

  16. Status of FAA Studies in Thermal Acoustics

    NASA Astrophysics Data System (ADS)

    Lively, John; Ouyang, Zhong; Brasche, Lisa; Holland, Steve; Eisenmann, David; Bantel, Tom; Hassan, Waled

    2008-02-01

    As with many aerospace applications, commercial jet engine components are operated in demanding environments, often at extreme temperature and stress conditions. The predominant used surface inspection method used on these components is fluorescent penetrant inspection. Research has been ongoing for a number of years on a new technology using a short burst of low frequency (˜20 KHz) ultrasound to "heat up" cracks and make them visible in the infrared range. The basic premise of the Thermal Acoustic method is to use an energy source with recent efforts using an ultrasonic horn originally intended for use in ultrasonic welding to excite the component. The energy source causes an increase in local heating, which is detectable with infrared cameras typically used in Thermographic inspection. While considerable research is underway, additional information on the sensitivity and applicability of this technique to engine components and alloys is needed prior to widespread use in the aviation industry. The purpose of this program is to provide additional data to determine applicability of this method to engine components.

  17. Observation and Modeling of Storm Generated Acoustic Waves in the Ionosphere Revealed in a Dense Network of GPS Receivers

    NASA Astrophysics Data System (ADS)

    Walterscheid, R. L.; Azeem, S. I.

    2017-12-01

    Acoustic waves generated in the lower atmosphere may become an important source of variably in the upper atmosphere. Although they are excited with small amplitudes they are minimally subject to viscous dissipation and may reach significant amplitudes at F-region altitudes. A number of studies in the 1970s showed clear signatures in ionosonde data in the infrasonic period range attributable to thunder storm activity. We have examined Total Electron Content data from a dense network of over 4000 ground-based GPS receivers over the continental United States during an outbreak of severe weather, including tornados, over Kansas in May 2015. A sequence of GPS TEC images showed clear Traveling Ionospheric Disturbances (TIDs) in the form of concentric rings moving outward from the center of the storm region. The characteristics of the disturbance (phase speed and frequency) were consistent with acoustic waves in the infrasonic range. We have modeled the disturbance by including a tropospheric heat source representing latent heat release from a large thunderstorm. The disturbance at ionospheric altitudes resembles the observed disturbance in terms of phase speed, frequency and horizontal wavelength. We conclude that the observed TIDs in TEC were caused by an acoustic wave generated by deep convection.

  18. Social media responses to heat waves.

    PubMed

    Jung, Jihoon; Uejio, Christopher K

    2017-07-01

    Social network services (SNSs) may benefit public health by augmenting surveillance and distributing information to the public. In this study, we collected Twitter data focusing on six different heat-related themes (air conditioning, cooling center, dehydration, electrical outage, energy assistance, and heat) for 182 days from May 7 to November 3, 2014. First, exploratory linear regression associated outdoor heat exposure to the theme-specific tweet counts for five study cities (Los Angeles, New York, Chicago, Houston, and Atlanta). Next, autoregressive integrated moving average (ARIMA) time series models formally associated heat exposure to the combined count of heat and air conditioning tweets while controlling for temporal autocorrelation. Finally, we examined the spatial and temporal distribution of energy assistance and cooling center tweets. The result indicates that the number of tweets in most themes exhibited a significant positive relationship with maximum temperature. The ARIMA model results suggest that each city shows a slightly different relationship between heat exposure and the tweet count. A one-degree change in the temperature correspondingly increased the Box-Cox transformed tweets by 0.09 for Atlanta, 0.07 for Los Angeles, and 0.01 for New York City. The energy assistance and cooling center theme tweets suggest that only a few municipalities used Twitter for public service announcements. The timing of the energy assistance tweets suggests that most jurisdictions provide heating instead of cooling energy assistance.

  19. Social media responses to heat waves

    NASA Astrophysics Data System (ADS)

    Jung, Jihoon; Uejio, Christopher K.

    2017-07-01

    Social network services (SNSs) may benefit public health by augmenting surveillance and distributing information to the public. In this study, we collected Twitter data focusing on six different heat-related themes (air conditioning, cooling center, dehydration, electrical outage, energy assistance, and heat) for 182 days from May 7 to November 3, 2014. First, exploratory linear regression associated outdoor heat exposure to the theme-specific tweet counts for five study cities (Los Angeles, New York, Chicago, Houston, and Atlanta). Next, autoregressive integrated moving average (ARIMA) time series models formally associated heat exposure to the combined count of heat and air conditioning tweets while controlling for temporal autocorrelation. Finally, we examined the spatial and temporal distribution of energy assistance and cooling center tweets. The result indicates that the number of tweets in most themes exhibited a significant positive relationship with maximum temperature. The ARIMA model results suggest that each city shows a slightly different relationship between heat exposure and the tweet count. A one-degree change in the temperature correspondingly increased the Box-Cox transformed tweets by 0.09 for Atlanta, 0.07 for Los Angeles, and 0.01 for New York City. The energy assistance and cooling center theme tweets suggest that only a few municipalities used Twitter for public service announcements. The timing of the energy assistance tweets suggests that most jurisdictions provide heating instead of cooling energy assistance.

  20. Combustion performance and heat transfer characterization of LOX/hydrocarbon type propellants, volume 2

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1983-01-01

    A data base which relates candidate design variables, such as injector type, acoustic cavity configuration, chamber length, fuel film-cooling, etc., to operational characteristics such as combustion efficiency, combustion stability, carbon deposition, and chamber gas-side heat flux was generated.