Science.gov

Sample records for acoustics temporal patterns

  1. Temporal pattern shifts to avoid acoustic interference in singing birds.

    PubMed

    Ficken, R W; Ficken, M S; Hailman, J P

    1974-02-22

    Two species of forest birds, the least flycatcher and the red-eyed vireo, when breeding in the same season in the same habitat, adjust their temporal pattern of singing to avoid the overlapping of songs. The avoidance of acoustic interference is more marked in the flycatcher, which has a briefer song than the vireo. PMID:17790627

  2. Perception of temporal acoustic patterns by the goldfish (Carassius auratus).

    PubMed

    Fay, R R

    1994-06-01

    The perception of temporal acoustic patterns was studied in the goldfish using classical respiratory conditioning in combination with a stimulus generalization paradigm. Stimuli consisted of a bandpass filtered pulse repeated in various periodic and aperiodic temporal patterns. In each of 14 experiments, animals received 40 conditioning trials to a given stimulus pattern and were then tested for generalization to eight novel stimuli differing only in temporal pattern. In experiments 1-5, animals were conditioned to a periodic pulse train with a particular interpulse interval (IPI) and then tested to novel periodic pulse trains with various IPIs. Generalization gradients were substantially symmetric and monotonic with repetition rate, suggesting a perceptual continuum in goldfish that is similar to periodicity pitch or roughness in human listeners. Several additional experiments indicated that the perceptual qualities of simple and complex temporal patterns are not primarily determined by spectral structure or pulse rate, but rather are determined by the distribution of IPIs. A model for the central analysis of IPIs was successful in accounting for the results of experiments in which animals were conditioned to simple, periodic stimuli. However, the model failed when animals were conditioned to more complex stimuli having aperiodic temporal patterns. These experiments demonstrate the potential usefulness of the stimulus generalization paradigm for investigating aspects of complex sound source perception in non-human animals. PMID:7928708

  3. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    PubMed

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation. PMID:26519093

  4. Syllable acoustics, temporal patterns, and call composition vary with behavioral context in Mexican free-tailed bats

    PubMed Central

    Bohn, Kirsten M.; Schmidt-French, Barbara; Ma, Sean T.; Pollak, George D.

    2008-01-01

    Recent research has shown that some bat species have rich vocal repertoires with diverse syllable acoustics. Few studies, however, have compared vocalizations across different behavioral contexts or examined the temporal emission patterns of vocalizations. In this paper, a comprehensive examination of the vocal repertoire of Mexican free-tailed bats, T. brasiliensis, is presented. Syllable acoustics and temporal emission patterns for 16 types of vocalizations including courtship song revealed three main findings. First, although in some cases syllables are unique to specific calls, other syllables are shared among different calls. Second, entire calls associated with one behavior can be embedded into more complex vocalizations used in entirely different behavioral contexts. Third, when different calls are composed of similar syllables, distinctive temporal emission patterns may facilitate call recognition. These results indicate that syllable acoustics alone do not likely provide enough information for call recognition; rather, the acoustic context and temporal emission patterns of vocalizations may affect meaning. PMID:19045674

  5. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    PubMed

    Hofmann, Hilmar; Peeters, Frank

    2013-01-01

    Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

  6. In-Situ Optical and Acoustical Measurements of the Buoyant Cyanobacterium P. Rubescens: Spatial and Temporal Distribution Patterns

    PubMed Central

    Hofmann, Hilmar; Peeters, Frank

    2013-01-01

    Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

  7. Temporal patterns in the acoustic signals of beaked whales at Cross Seamount.

    PubMed

    Johnston, D W; McDonald, M; Polovina, J; Domokos, R; Wiggins, S; Hildebrand, J

    2008-04-23

    Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey. PMID:18252660

  8. The Curious Acoustic Behavior of Estuarine Snapping Shrimp: Temporal Patterns of Snapping Shrimp Sound in Sub-Tidal Oyster Reef Habitat.

    PubMed

    Bohnenstiehl, DelWayne R; Lillis, Ashlee; Eggleston, David B

    2016-01-01

    Ocean soundscapes convey important sensory information to marine life. Like many mid-to-low latitude coastal areas worldwide, the high-frequency (>1.5 kHz) soundscape of oyster reef habitat within the West Bay Marine Reserve (36°N, 76°W) is dominated by the impulsive, short-duration signals generated by snapping shrimp. Between June 2011 and July 2012, a single hydrophone deployed within West Bay was programmed to record 60 or 30 seconds of acoustic data every 15 or 30 minutes. Envelope correlation and amplitude information were then used to count shrimp snaps within these recordings. The observed snap rates vary from 1500-2000 snaps per minute during summer to <100 snaps per minute during winter. Sound pressure levels are positively correlated with snap rate (r = 0.71-0.92) and vary seasonally by ~15 decibels in the 1.5-20 kHz range. Snap rates are positively correlated with water temperatures (r = 0.81-0.93), as well as potentially influenced by climate-driven changes in water quality. Light availability modulates snap rate on diurnal time scales, with most days exhibiting a significant preference for either nighttime or daytime snapping, and many showing additional crepuscular increases. During mid-summer, the number of snaps occurring at night is 5-10% more than predicted by a random model; however, this pattern is reversed between August and April, with an excess of up to 25% more snaps recorded during the day in the mid-winter. Diurnal variability in sound pressure levels is largest in the mid-winter, when the overall rate of snapping is at its lowest, and the percentage difference between daytime and nighttime activity is at its highest. This work highlights our lack of knowledge regarding the ecology and acoustic behavior of one of the most dominant soniforous invertebrate species in coastal systems. It also underscores the necessity of long-duration, high-temporal-resolution sampling in efforts to understand the bioacoustics of animal behaviors and associated changes within the marine soundscape. PMID:26761645

  9. The Curious Acoustic Behavior of Estuarine Snapping Shrimp: Temporal Patterns of Snapping Shrimp Sound in Sub-Tidal Oyster Reef Habitat

    PubMed Central

    Bohnenstiehl, DelWayne R.; Lillis, Ashlee; Eggleston, David B.

    2016-01-01

    Ocean soundscapes convey important sensory information to marine life. Like many mid-to-low latitude coastal areas worldwide, the high-frequency (>1.5 kHz) soundscape of oyster reef habitat within the West Bay Marine Reserve (36°N, 76°W) is dominated by the impulsive, short-duration signals generated by snapping shrimp. Between June 2011 and July 2012, a single hydrophone deployed within West Bay was programmed to record 60 or 30 seconds of acoustic data every 15 or 30 minutes. Envelope correlation and amplitude information were then used to count shrimp snaps within these recordings. The observed snap rates vary from 1500–2000 snaps per minute during summer to <100 snaps per minute during winter. Sound pressure levels are positively correlated with snap rate (r = 0.71–0.92) and vary seasonally by ~15 decibels in the 1.5–20 kHz range. Snap rates are positively correlated with water temperatures (r = 0.81–0.93), as well as potentially influenced by climate-driven changes in water quality. Light availability modulates snap rate on diurnal time scales, with most days exhibiting a significant preference for either nighttime or daytime snapping, and many showing additional crepuscular increases. During mid-summer, the number of snaps occurring at night is 5–10% more than predicted by a random model; however, this pattern is reversed between August and April, with an excess of up to 25% more snaps recorded during the day in the mid-winter. Diurnal variability in sound pressure levels is largest in the mid-winter, when the overall rate of snapping is at its lowest, and the percentage difference between daytime and nighttime activity is at its highest. This work highlights our lack of knowledge regarding the ecology and acoustic behavior of one of the most dominant soniforous invertebrate species in coastal systems. It also underscores the necessity of long-duration, high-temporal-resolution sampling in efforts to understand the bioacoustics of animal behaviors and associated changes within the marine soundscape. PMID:26761645

  10. Temporal spike pattern learning.

    PubMed

    Talathi, Sachin S; Abarbanel, Henry D I; Ditto, William L

    2008-09-01

    Sensory systems pass information about an animal's environment to higher nervous system units through sequences of action potentials. When these action potentials have essentially equivalent wave forms, all information is contained in the interspike intervals (ISIs) of the spike sequence. How do neural circuits recognize and read these ISI sequences? We address this issue of temporal sequence learning by a neuronal system utilizing spike timing dependent plasticity (STDP). We present a general architecture of neural circuitry that can perform the task of ISI recognition. The essential ingredients of this neural circuit, which we refer to as "interspike interval recognition unit" (IRU) are (i) a spike selection unit, the function of which is to selectively distribute input spikes to downstream IRU circuitry; (ii) a time-delay unit that can be tuned by STDP; and (iii) a detection unit, which is the output of the IRU and a spike from which indicates successful ISI recognition by the IRU. We present two distinct configurations for the time-delay circuit within the IRU using excitatory and inhibitory synapses, respectively, to produce a delayed output spike at time t_{0}+tau(R) in response to the input spike received at time t_{0} . R is the tunable parameter of the time-delay circuit that controls the timing of the delayed output spike. We discuss the forms of STDP rules for excitatory and inhibitory synapses, respectively, that allow for modulation of R for the IRU to perform its task of ISI recognition. We then present two specific implementations for the IRU circuitry, derived from the general architecture that can both learn the ISIs of a training sequence and then recognize the same ISI sequence when it is presented on subsequent occasions. PMID:18851076

  11. Temporal pattern processing in songbirds.

    PubMed

    Comins, Jordan A; Gentner, Timothy Q

    2014-10-01

    Understanding how the brain perceives, organizes and uses patterned information is directly related to the neurobiology of language. Given the present limitations, such knowledge at the scale of neurons, neural circuits and neural populations can only come from non-human models, focusing on shared capacities that are relevant to language processing. Here we review recent advances in the behavioral and neural basis of temporal pattern processing of natural auditory communication signals in songbirds, focusing on European starlings. We suggest a general inhibitory circuit for contextual modulation that can act to control sensory representations based on patterning rules. PMID:25201176

  12. Writing magnetic patterns with surface acoustic waves

    SciTech Connect

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  13. Diel patterns and temporal trends in spawning activities of Robust Redhorse and River Redhorse in Georgia, assessed using passive acoustic monitoring

    USGS Publications Warehouse

    Straight, Carrie A.; Jackson, C. Rhett; Freeman, Byron J.; Freeman, Mary C.

    2015-01-01

    The conservation of imperiled species depends upon understanding threats to the species at each stage of its life history. In the case of many imperiled migratory fishes, understanding how timing and environmental influences affect reproductive behavior could provide managers with information critical for species conservation. We used passive acoustic recorders to document spawning activities for two large-bodied catostomids (Robust Redhorse Moxostoma robustum in the Savannah and Broad rivers, Georgia, and River Redhorse M. carinatum in the Coosawattee River, Georgia) in relation to time of day, water temperature, discharge variation, moonlight, and weather. Robust Redhorse spawning activities in the Savannah and Broad rivers were more frequent at night or in the early morning (0100–0400 hours and 0800–1000 hours, respectively) and less frequent near midday (1300 hours). Spawning attempts in the Savannah and Broad rivers increased over a 3–4-d period and then declined. River Redhorse spawning activities in the Coosawattee River peaked on the first day of recording and declined over four subsequent days; diel patterns were less discernible, although moon illumination was positively associated with spawning rates, which was also observed for Robust Redhorses in the Savannah River. Spawning activity in the Savannah and Broad rivers was negatively associated with water temperature, and spawning activity increased in association with cloud cover in the Savannah River. A large variation in discharge was only measured in the flow-regulated Savannah River and was not associated with spawning attempts. To our knowledge, this is the first study to show diel and multiday patterns in spawning activities for anyMoxostoma species. These patterns and relationships between the environment and spawning activities could provide important information for the management of these species downstream of hydropower facilities.

  14. Transduction of temporal patterns by single neurons.

    PubMed

    Hooper, S L

    1998-12-01

    As our ability to communicate by Morse code illustrates, nervous systems can produce motor outputs, and identify sensory inputs, based on temporal patterning alone. Although this ability is central to a wide range of sensory and motor tasks, the ways in which nervous systems represent temporal patterns are not well understood. I show here that individual neurons of the lobster pyloric network can integrate rhythmic patterned input over the long times (hundreds of milliseconds) characteristic of many behaviorally relevant patterns, and that their firing delays vary as a graded function of the pattern's temporal character. These neurons directly transduce temporal patterns into a neural code, and constitute a novel biological substrate for temporal pattern detection and production. The combined activities of several such neurons can encode simple rhythmic patterns, and I provide a model illustrating how this could be achieved. PMID:10196589

  15. Acoustic radiation patterns for borehole sources

    SciTech Connect

    Fehler, M.; Pearson, C.F.

    1981-01-01

    Amplitudes of S and P waves from commercial borehole acoustic logging tools depend on the angle between the borehole axis and the direction of propagation as well as the distance between source and receiver. Knowledge of the angular dependence or radiation pattern, is necessary to properly measure the attenuation of waves traveling between two boreholes. Functional expressions are shown for the S and P-waves amplitudes. Experimental work in relatively homogeneous granite suggests that this relationship adequately describes the radiation pattern for both explosive sources and for acoustic transducers placed in fluid filled boreholes. Using these functional expressions for the S and P-wave amplitudes a technique was developed to estimate Q, the quality factor, and locate discrete fractures in crystalline rock that compose the Hot Dry Rock Geothermal Reservoir at Fenton Hill, New Mexico.

  16. Spontaneous pattern formation in an acoustical resonator

    NASA Astrophysics Data System (ADS)

    Sánchez-Morcillo, V. J.

    2004-01-01

    A dynamical system of equations describing parametric sound generation (PSG) in a dispersive large aspect ratio resonator is derived. The model generalizes previously proposed descriptions of PSG by including diffraction effects and is analogous to the model used in theoretical studies of optical parametric oscillation. A linear stability analysis of the solution below the threshold of subharmonic generation reveals the existence of a pattern forming instability, which is confirmed by numerical integration. The conditions of emergence of periodic patterns in transverse space are discussed in the acoustical context.

  17. Significance of temporal and spectral acoustic cues for sexual recognition in Xenopus laevis.

    PubMed

    Vignal, Clémentine; Kelley, Darcy

    2007-02-22

    As in many anurans, males of the totally aquatic species, Xenopus laevis, advertise their sexual receptivity using vocalizations. Unusually for anurans, X. laevis females also advertise producing a fertility call that results in courtship duets between partners. Although all X. laevis calls consist of repetitive click trains, male and female calls exhibit sex-specific acoustic features that might convey sexual identity. We tested the significance of the carrier frequency and the temporal pattern of calls using underwater playback experiments in which modified calls were used to evoke vocal responses in males. Since males respond differently to male and female calls, the modification of a key component of sexual identity in calls should change the male's response. We found that a female-like slow call rhythm triggers more vocal activity than a male-like fast rhythm. A call containing both a female-like temporal pattern and a female-like carrier frequency elicits higher levels of courtship display than either feature alone. In contrast, a male-like temporal pattern is sufficient to trigger typical male-male encounter vocalizations regardless of spectral cues. Thus, our evidence supports a role for temporal acoustic cues in sexual identity recognition and for spectral acoustic cues in conveying female attractiveness in X. laevis. PMID:17476767

  18. Resurgence of Temporal Patterns of Responding

    ERIC Educational Resources Information Center

    Cancado, Carlos R. X.; Lattal, Kennon A.

    2011-01-01

    The resurgence of temporal patterns of key pecking by pigeons was investigated in two experiments. In Experiment 1, positively accelerated and linear patterns of responding were established on one key under a discrete-trial multiple fixed-interval variable-interval schedule. Subsequently, only responses on a second key produced reinforcers…

  19. Speech synthesis: From segmental synthesis to acoustic rules, using temporal decomposition

    NASA Astrophysics Data System (ADS)

    Bimbot, Frederic

    1988-12-01

    Coherent speech analysis tools which allow the creation of a set of acoustic knowledge are proposed. The temporal decomposition technique describes a speech segment as a linear combination of a limited set of spectral targets, the time contribution of which is expressed by compact interpolation functions. A dictionary of spectral targets and a typology of temporal patterns can thus be created. A synthesis technique by structured segments is proposed as an intermediate step between segmental synthesis and rule based synthesis. Relations between experimental results and classical phonetic concepts are established.

  20. Auditory Temporal Pattern Discrimination and Reading Ability

    ERIC Educational Resources Information Center

    McAnally, Ken I.; Castles, Anne; Bannister, Susan

    2004-01-01

    The relation between reading ability and performance on an auditory temporal pattern discrimination task was investigated in children who were either good or delayed readers. The stimuli in the primary task consisted of sequences of tones, alternating between high and low frequencies. The threshold interstimulus interval (ISI) for discrimination…

  1. Acoustic and Temporal Partitioning of Cicada Assemblages in City and Mountain Environments

    PubMed Central

    Shieh, Bao-Sen; Liang, Shih-Hsiung; Chiu, Yuh-Wen

    2015-01-01

    Comparing adaptations to noisy city environments with those to natural mountain environments on the community level can provide significant insights that allow an understanding of the impact of anthropogenic noise on invertebrates that employ loud calling songs for mate attraction, especially when each species has its distinct song, as in the case of cicadas. In this study, we investigated the partitioning strategy of cicada assemblages in city and mountain environments by comparing the acoustic features and calling activity patterns of each species, recorded using automated digital recording systems. Our comparison of activity patterns of seasonal and diel calling revealed that there was no significant temporal partitioning of cicada assemblages in either environment. In addition, there was no correlation between the acoustic distance based on spectral features and temporal segregation. Heterospecific spectral overlap was low in both city and mountain environments, although city and mountain cicada assemblages were subject to significantly different levels of anthropogenic or interspecific noise. Furthermore, for the common species found in both environments, the calling activity patterns at both seasonal and diel time scales were significantly consistent across sites and across environments. We suggest that the temporal calling activity is constrained by endogenous factors for each species and is less flexible in response to external factors, such as anthropogenic noise. As a result, cicada assemblages in city environments with low species diversity do not demonstrate a more significant temporal partitioning than those in mountain environments with high species diversity. PMID:25590620

  2. Acoustic and temporal partitioning of cicada assemblages in city and mountain environments.

    PubMed

    Shieh, Bao-Sen; Liang, Shih-Hsiung; Chiu, Yuh-Wen

    2015-01-01

    Comparing adaptations to noisy city environments with those to natural mountain environments on the community level can provide significant insights that allow an understanding of the impact of anthropogenic noise on invertebrates that employ loud calling songs for mate attraction, especially when each species has its distinct song, as in the case of cicadas. In this study, we investigated the partitioning strategy of cicada assemblages in city and mountain environments by comparing the acoustic features and calling activity patterns of each species, recorded using automated digital recording systems. Our comparison of activity patterns of seasonal and diel calling revealed that there was no significant temporal partitioning of cicada assemblages in either environment. In addition, there was no correlation between the acoustic distance based on spectral features and temporal segregation. Heterospecific spectral overlap was low in both city and mountain environments, although city and mountain cicada assemblages were subject to significantly different levels of anthropogenic or interspecific noise. Furthermore, for the common species found in both environments, the calling activity patterns at both seasonal and diel time scales were significantly consistent across sites and across environments. We suggest that the temporal calling activity is constrained by endogenous factors for each species and is less flexible in response to external factors, such as anthropogenic noise. As a result, cicada assemblages in city environments with low species diversity do not demonstrate a more significant temporal partitioning than those in mountain environments with high species diversity. PMID:25590620

  3. Spatial and temporal patterns of morel fruiting.

    PubMed

    Mihail, Jeanne D; Bruhn, Johann N; Bonello, Pierluigi

    2007-03-01

    The biotic and abiotic factors conditioning morel fruit body production are incompletely known. We examined spatial and temporal patterns of Morchella esculenta fruiting over five years in a wooded site in Missouri, USA. Fruiting onset was inversely correlated with spring air and soil temperatures, whereas abundance was positively correlated with rain events (>10mm) during the 30 d preceding fruiting. The two years with the greatest fruiting had the shortest fruiting seasons (6-7d). Fruiting season length was positively correlated with soil warming, suggesting that a narrow range of optimum soil temperatures favour the explosive production of fruit bodies. All woody stems of at least 1cm diam were mapped and stem diameter and crown condition were noted. Morel fruit bodies were significantly closer to stems of Carya spp., Tilia americana and Ulmus americana than predicted by the frequencies of these woody species or their contribution to the total basal area on the site. Although intra-annual clustering of fruit bodies was often observed, inter-annual clustering was not. The spatial pattern of M. esculenta fruiting appears to be associated with vegetation pattern, whereas the onset and abundance of fruiting are determined by the interaction of spring temperatures with availability of supporting precipitation. PMID:17363234

  4. Multimodal far-field acoustic radiation pattern: An approximate equation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1977-01-01

    The far-field sound radiation theory for a circular duct was studied for both single mode and multimodal inputs. The investigation was intended to develop a method to determine the acoustic power produced by turbofans as a function of mode cut-off ratio. With reasonable simplifying assumptions the single mode radiation pattern was shown to be reducible to a function of mode cut-off ratio only. With modal cut-off ratio as the dominant variable, multimodal radiation patterns can be reduced to a simple explicit expression. This approximate expression provides excellent agreement with an exact calculation of the sound radiation pattern using equal acoustic power per mode.

  5. Acoustic change responses to amplitude modulation: a method to quantify cortical temporal processing and hemispheric asymmetry

    PubMed Central

    Han, Ji Hye; Dimitrijevic, Andrew

    2015-01-01

    Objective: Sound modulation is a critical temporal cue for the perception of speech and environmental sounds. To examine auditory cortical responses to sound modulation, we developed an acoustic change stimulus involving amplitude modulation (AM) of ongoing noise. The AM transitions in this stimulus evoked an acoustic change complex (ACC) that was examined parametrically in terms of rate and depth of modulation and hemispheric symmetry. Methods: Auditory cortical potentials were recorded from 64 scalp electrodes during passive listening in two conditions: (1) ACC from white noise to 4, 40, 300 Hz AM, with varying AM depths of 100, 50, 25% lasting 1 s and (2) 1 s AM noise bursts at the same modulation rate. Behavioral measures included AM detection from an attend ACC condition and AM depth thresholds (i.e., a temporal modulation transfer function, TMTF). Results: The N1 response of the ACC was large to 4 and 40 Hz and small to the 300 Hz AM. In contrast, the opposite pattern was observed with bursts of AM showing larger responses with increases in AM rate. Brain source modeling showed significant hemispheric asymmetry such that 4 and 40 Hz ACC responses were dominated by right and left hemispheres respectively. Conclusion: N1 responses to the ACC resembled a low pass filter shape similar to a behavioral TMTF. In the ACC paradigm, the only stimulus parameter that changes is AM and therefore the N1 response provides an index for this AM change. In contrast, an AM burst stimulus contains both AM and level changes and is likely dominated by the rise time of the stimulus. The hemispheric differences are consistent with the asymmetric sampling in time hypothesis suggesting that the different hemispheres preferentially sample acoustic time across different time windows. Significance: The ACC provides a novel approach to studying temporal processing at the level of cortex and provides further evidence of hemispheric specialization for fast and slow stimuli. PMID:25717291

  6. Investigation of acoustic streaming patterns around oscillating sharp edges

    PubMed Central

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2014-01-01

    Oscillating sharp edges have been employed to achieve rapid and homogeneous mixing in microchannels using acoustic streaming. Here we use a perturbation approach to study the flow around oscillating sharp edges in a microchannel. This work extends prior experimental studies to numerically characterize the effect of various parameters on the acoustically induced flow. Our numerical results match well with the experimental results. We investigated multiple device parameters such as the tip angle, oscillation amplitude, and channel dimensions. Our results indicate that, due to the inherent nonlinearity of acoustic streaming, the channel dimensions could significantly impact the flow patterns and device performance. PMID:24903475

  7. Temporal Patterns of Behavior from the Scheduling of Psychology Quizzes

    ERIC Educational Resources Information Center

    Jarmolowicz, David P.; Hayashi, Yusuke; St. Peter Pipkin, Claire

    2010-01-01

    Temporal patterns of behavior have been observed in real-life performances such as bill passing in the U.S. Congress, in-class studying, and quiz taking. However, the practical utility of understanding these patterns has not been evaluated. The current study demonstrated the presence of temporal patterns of quiz taking in a university-level…

  8. Acoustic Predictors of Intelligibility for Segmentally Interrupted Speech: Temporal Envelope, Voicing, and Duration

    ERIC Educational Resources Information Center

    Fogerty, Daniel

    2013-01-01

    Purpose: Temporal interruption limits the perception of speech to isolated temporal glimpses. An analysis was conducted to determine the acoustic parameter that best predicts speech recognition from temporal fragments that preserve different types of speech information--namely, consonants and vowels. Method: Young listeners with normal hearing…

  9. Temporal analysis of acoustic emission from a plunged granular bed.

    PubMed

    Tsuji, Daisuke; Katsuragi, Hiroaki

    2015-10-01

    The statistical property of acoustic emission (AE) events from a plunged granular bed is analyzed by means of actual-time and natural-time analyses. These temporal analysis methods allow us to investigate the details of AE events that follow a power-law distribution. In the actual-time analysis, the calm-time distribution, and the decay of the event-occurrence density after the largest event (i.e., the Omori-Utsu law) are measured. Although the former always shows a power-law form, the latter does not always obey a power law. Markovianity of the event-occurrence process is also verified using a scaling law by assuming that both of them exhibit power laws. We find that the effective shear strain rate is a key parameter to classify the emergence rate of power-law nature and Markovianity in granular AE events. For the natural-time analysis, the existence of self-organized critical states is revealed by calculating the variance of natural time χ(k), where kth natural time of N events is defined as χ(k)=k/N. In addition, the energy difference distribution can be fitted by a q-Gaussian form, which is also consistent with the criticality of the system. PMID:26565229

  10. Temporal analysis of acoustic emission from a plunged granular bed

    NASA Astrophysics Data System (ADS)

    Tsuji, Daisuke; Katsuragi, Hiroaki

    2015-10-01

    The statistical property of acoustic emission (AE) events from a plunged granular bed is analyzed by means of actual-time and natural-time analyses. These temporal analysis methods allow us to investigate the details of AE events that follow a power-law distribution. In the actual-time analysis, the calm-time distribution, and the decay of the event-occurrence density after the largest event (i.e., the Omori-Utsu law) are measured. Although the former always shows a power-law form, the latter does not always obey a power law. Markovianity of the event-occurrence process is also verified using a scaling law by assuming that both of them exhibit power laws. We find that the effective shear strain rate is a key parameter to classify the emergence rate of power-law nature and Markovianity in granular AE events. For the natural-time analysis, the existence of self-organized critical states is revealed by calculating the variance of natural time χk, where k th natural time of N events is defined as χk=k /N . In addition, the energy difference distribution can be fitted by a q -Gaussian form, which is also consistent with the criticality of the system.

  11. Auditory temporal pattern learning by songbirds using maximal stimulus diversity and minimal repetition.

    PubMed

    Comins, Jordan A; Gentner, Timothy Q

    2014-09-01

    The sequential patterning of complex acoustic elements is a salient feature of bird song and other forms of vocal communication. For European starlings (Sturnus vulgaris), a songbird species, individual vocal recognition is improved when the temporal organization of song components (called motifs) follows the normal patterns of each singer. This sensitivity to natural motif sequences may underlie observations that starlings can also learn more complex, unnatural motif patterns. Alternatively, it has been proposed that the apparent acquisition of abstract motif patterning rules instead reflects idiosyncrasies of the training conditions used in prior experiments. That is, that motif patterns are learned not by recognizing differences in temporal structures between patterns, but by identifying serendipitous features (e.g., acoustical cues) in the small sets of training and testing stimuli used. Here, we investigate this possibility, by asking whether starlings can learn to discriminate between two arbitrary motif patterns, when unique examples of each pattern are presented on every trial. Our results demonstrate that abstract motif patterning rules can be acquired from trial-unique stimuli and suggest that such training leads to better pattern generalization compared with training with much smaller stimulus subsets. PMID:24526277

  12. Scaling properties in temporal patterns of schizophrenia

    NASA Astrophysics Data System (ADS)

    Dünki, R. M.; Ambühl, B.

    1996-02-01

    Investigations into the patterns of schizophrenia reveal evidence of scaling properties in temporal behaviour. This is shown in the spectral properties of mid-range and long-range (up to two years) daily recordings from a sample of patients drawn at the therapeutic dwelling SOTERIA (Ambühl et al., in: Springer Series in Synergetics, Vol. 58, eds. Tschacher et al. (Springer, Berlin, 1992) pp. 195-203 and references therein) of the Psychiatric University Hospital in Bern. The therapeutic setting is unique in that it tries to avoid treatment by medication. Power law behaviour has been found within fractal walk analysis and Fourier spectra for the daily fluctuations. A simple dynamic principle, based on a generic intermittency model, is put in relation to these time series thus predicting an additional scaling law for the distribution P( T) of time spans T between successive hospitalizations. Testing this hypothesis with our data shows only insignificant deviations. A possible role of this dynamic principle in the risk assignment of psychotic phases is explored with the help of an example.

  13. Temporal patterns of behavior from the scheduling of psychology quizzes.

    PubMed

    Jarmolowicz, David P; Hayashi, Yusuke; Pipkin, Claire St Peter

    2010-01-01

    Temporal patterns of behavior have been observed in real-life performances such as bill passing in the U.S. Congress, in-class studying, and quiz taking. However, the practical utility of understanding these patterns has not been evaluated. The current study demonstrated the presence of temporal patterns of quiz taking in a university-level introductory psychology course and used these patterns to manage the traffic of quiz takers in a computerized testing lab. Results are discussed in terms of the applications of tracking temporal response patterns. PMID:21119904

  14. Coding of multisensory temporal patterns in human superior temporal sulcus

    PubMed Central

    Noesselt, Tömme; Bergmann, Daniel; Heinze, Hans-Jochen; Münte, Thomas; Spence, Charles

    2012-01-01

    Philosophers, psychologists, and neuroscientists have long been interested in how the temporal aspects of perception are represented in the brain. In the present study, we investigated the neural basis of the temporal perception of synchrony/asynchrony for audiovisual speech stimuli using functional magnetic resonance imaging (fMRI). Subjects judged the temporal relation of (a)synchronous audiovisual speech streams, and indicated any changes in their perception of the stimuli over time. Differential hemodynamic responses for synchronous versus asynchronous stimuli were observed in the multisensory superior temporal sulcus complex (mSTS-c) and prefrontal cortex. Within mSTS-c we found adjacent regions expressing an enhanced BOLD-response to the different physical (a)synchrony conditions. These regions were further modulated by the subjects' perceptual state. By calculating the distances between the modulated regions within mSTS-c in single-subjects we demonstrate that the “auditory leading (AL)” and “visual leading (VL) areas” lie closer to “synchrony areas” than to each other. Moreover, analysis of interregional connectivity indicates a stronger functional connection between multisensory prefrontal cortex and mSTS-c during the perception of asynchrony. Taken together, these results therefore suggest the presence of distinct sub-regions within the human STS-c for the maintenance of temporal relations for audiovisual speech stimuli plus differential functional connectivity with prefrontal regions. The respective local activity in mSTS-c is dependent both upon the physical properties of the stimuli presented and upon the subjects' perception of (a)synchrony. PMID:22973202

  15. Tunable Nanowire Patterning Using Standing Surface Acoustic Waves

    PubMed Central

    Chen, Yuchao; Ding, Xiaoyun; Lin, Sz-Chin Steven; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E.; Huang, Tony Jun

    2014-01-01

    Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 seconds. In this approach, SSAWs were generated by interdigital transducers (IDTs), which induced a periodic alternating current (AC) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shape nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications. PMID:23540330

  16. Tunable acoustic radiation pattern assisted by effective impedance boundary

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Quan, Li; Wang, Li-Wei; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2016-02-01

    The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no fingerprint of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No.11474160), the Fundamental Research Funds for Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201401), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  17. How temporal frequency affects global form coherence in Glass patterns.

    PubMed

    Day, Annie M; Palomares, Melanie

    2014-02-01

    Glass patterns are textural moirés from random dots. Sequential presentation of Glass patterns induces a sense of illusory motion. We evaluated how changes in temporal frequency affected the detection of global form in Glass patterns. We found linear improvement in coherence thresholds with increasing temporal frequency (Experiment 1), particularly in stimuli with large dot-pair separations (Experiment 2). These results support the notion that temporal and orientation information sum to boost sensitivity to visually obscure objects, and are discussed within the framework of "motion streak" detectors. PMID:24325849

  18. 1987 WET DEPOSITION TEMPORAL AND SPATIAL PATTERNS IN NORTH AMERICA

    EPA Science Inventory

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1987 and spatial patterns for 1987. he report investigates the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate...

  19. Spatial, Temporal and Spatio-Temporal Patterns of Maritime Piracy

    PubMed Central

    Marchione, Elio

    2013-01-01

    Objectives: To examine patterns in the timing and location of incidents of maritime piracy to see whether, like many urban crimes, attacks cluster in space and time. Methods: Data for all incidents of maritime piracy worldwide recorded by the National Geospatial Intelligence Agency are analyzed using time-series models and methods originally developed to detect disease contagion. Results: At the macro level, analyses suggest that incidents of pirate attacks are concentrated in five subregions of the earth’s oceans and that the time series for these different subregions differ. At the micro level, analyses suggest that for the last 16 years (or more), pirate attacks appear to cluster in space and time suggesting that patterns are not static but are also not random. Conclusions: Much like other types of crime, pirate attacks cluster in space, and following an attack at one location the risk of others at the same location or nearby is temporarily elevated. The identification of such regularities has implications for the understanding of maritime piracy and for predicting the future locations of attacks. PMID:25076796

  20. Temporal Patterns of Communication in the Workplace

    ERIC Educational Resources Information Center

    Su, Norman Makoto

    2009-01-01

    In this dissertation, we report on results of an in-depth observational study to understand the temporal dimension of communication in the workplace. By employing the "shadowing" method for in situ to-the-second data gathering of information workers' behaviors, we gained a detailed snapshot of informants' workdays, "warts and all." Our…

  1. Spatial and temporal variability of zooplankton off New Caledonia (Southwestern Pacific) from acoustics and net measurements

    NASA Astrophysics Data System (ADS)

    Smeti, Houssem; Pagano, Marc; Menkes, Christophe; Lebourges-Dhaussy, Anne; Hunt, Brian P. V.; Allain, Valerie; Rodier, Martine; de Boissieu, Florian; Kestenare, Elodie; Sammari, Cherif

    2015-04-01

    Spatial and temporal distribution of zooplankton off New Caledonia in the eastern Coral Sea was studied during two multidisciplinary cruises in 2011, during the cool and the hot seasons. Acoustic measurements of zooplankton were made using a shipborne acoustic Doppler current profiler (S-ADCP), a scientific echosounder and a Tracor acoustic profiling system (TAPS). Relative backscatter from ADCP was converted to biomass estimates using zooplankton weights from net-samples collected during the cruises. Zooplankton biomass was estimated using four methods: weighing, digital imaging (ZooScan), ADCP and TAPS. Significant correlations were found between the different biomass estimators and between the backscatters of the ADCP and the echosounder. There was a consistent diel pattern in ADCP derived biomass and echosounder backscatter resulting from the diel vertical migration (DVM) of zooplankton. Higher DVM amplitudes were associated with higher abundance of small zooplankton and cold waters to the south of the study area, while lower DVM amplitudes in the north were associated with warmer waters and higher abundance of large organisms. Zooplankton was largely dominated by copepods (71-73%) among which calanoids prevailed (40-42%), with Paracalanus spp. as the dominant species (16-17%). Overall, zooplankton exhibited low abundance and biomass (mean night dry biomass of 4.7 ± 2.2 mg m3 during the cool season and 2.4 ± 0.4 mg m3 during the hot season) but high richness and diversity (Shannon index ˜4). Substantially enhanced biomass and abundance appeared to be episodically associated with mesoscale features contributing to shape a rather patchy zooplankton distribution.

  2. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is

  3. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…

  4. Thermal Acoustic Waves from Wall with Temporal Temperature Change

    NASA Astrophysics Data System (ADS)

    Sakaguchi, G.; Tsukamoto, M.; Sakurai, A.

    2011-05-01

    Although phenomenon of thermo-acoustic wave has been known for many years in some familiar experiences such as "singing flame" from Bunsen burner, recent trends of utilizing it for the industrial applications urge the understandings of basic details of the phenomenon itself. Here we consider, in this connection, the problem of acoustic wave generation from a particular heat source of solid wall whose temperature changes with time and the phenomenon of temperature change by standing wave oscillating in closed tube. For these we set a hollow tube whose temperature at its one end wall changes with time, and compute flow field inside using the molecular kinetic model, which is found to be more convenient for the boundary value fitting than the ordinary acoustic theory system to this problem. In practice, we use the Boltzmann equation with the BGK approximation, and compute two cases above in monotonic and sinusoidal temperature changes with time. Results of both cases show propagating density wave from the wall almost in acoustic velocity to the first case and the temperature decreases in average to the second case.

  5. Eleutherodactylus frogs show frequency but no temporal partitioning: implications for the acoustic niche hypothesis

    PubMed Central

    2014-01-01

    Individuals in acoustic communities compete for the use of the sound resource for communication, a problem that can be studied as niche competition. The acoustic niche hypothesis presents a way to study the partitioning of the resource, but the studies have to take into account the three dimensions of this niche: time, acoustic frequency, and space. I used an Automated Digital Recording System to determine the partitioning of time and acoustic frequency of eight frogs of the genus Eleutherodactylus from Puerto Rico. The calling activity was measured using a calling index. The community exhibited no temporal partitioning since most species called at the same time, between sunset and midnight. The species partitioned the acoustic frequency of their signals, which, in addition to the microhabitat partitioning, can provide some insight into how these species deal with the problem. This data also suggest that monitoring projects with this group should take place only before midnight to avoid false negatives. PMID:25101228

  6. Spectral and temporal resolutions of information-bearing acoustic changes for understanding vocoded sentencesa)

    PubMed Central

    Stilp, Christian E.; Goupell, Matthew J.

    2015-01-01

    Short-time spectral changes in the speech signal are important for understanding noise-vocoded sentences. These information-bearing acoustic changes, measured using cochlea-scaled entropy in cochlear implant simulations [CSECI; Stilp et al. (2013). J. Acoust. Soc. Am. 133(2), EL136–EL141; Stilp (2014). J. Acoust. Soc. Am. 135(3), 1518–1529], may offer better understanding of speech perception by cochlear implant (CI) users. However, perceptual importance of CSECI for normal-hearing listeners was tested at only one spectral resolution and one temporal resolution, limiting generalizability of results to CI users. Here, experiments investigated the importance of these informational changes for understanding noise-vocoded sentences at different spectral resolutions (4–24 spectral channels; Experiment 1), temporal resolutions (4–64 Hz cutoff for low-pass filters that extracted amplitude envelopes; Experiment 2), or when both parameters varied (6–12 channels, 8–32 Hz; Experiment 3). Sentence intelligibility was reduced more by replacing high-CSECI intervals with noise than replacing low-CSECI intervals, but only when sentences had sufficient spectral and/or temporal resolution. High-CSECI intervals were more important for speech understanding as spectral resolution worsened and temporal resolution improved. Trade-offs between CSECI and intermediate spectral and temporal resolutions were minimal. These results suggest that signal processing strategies that emphasize information-bearing acoustic changes in speech may improve speech perception for CI users. PMID:25698018

  7. Analysis of brain patterns using temporal measures

    DOEpatents

    Georgopoulos, Apostolos

    2015-08-11

    A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.

  8. Complex temporal and spatial patterns in nonequilibrium systems

    SciTech Connect

    Swinney, H.L.

    1991-09-01

    Dynamical systems methods are being developed and used to characterize the formation and evolution of temporal and spatial patterns in systems maintained far from equilibrium. In particular, experiments and analyses are considering electrodeposition of fractal metallic clusters, pattern formation in reaction-diffusion systems, and the primary instabilities of some fluid flows. Novel reactors have been developed to search for chemical patterns (spatial variations in the chemical composition), and sustained patterns have been found in several different one- and two-dimensional geometries. Bifurcations in these patterns are studied by varying control parameters, e.g., the concentrations of the feed chemicals or the temperature. The observed two-dimensional chemical patterns range from the stationary patterns, similar to those predicted by Turing in 1952 but not observed until 1990, to chemical turbulence, which is characterized by large numbers of defects and a rapid decay of spatial correlations. These provide general insights into the formation of spatiotemporal patterns in nonequilibrium systems.

  9. Detecting Multineuronal Temporal Patterns in Parallel Spike Trains

    PubMed Central

    Gansel, Kai S.; Singer, Wolf

    2012-01-01

    We present a non-parametric and computationally efficient method that detects spatiotemporal firing patterns and pattern sequences in parallel spike trains and tests whether the observed numbers of repeating patterns and sequences on a given timescale are significantly different from those expected by chance. The method is generally applicable and uncovers coordinated activity with arbitrary precision by comparing it to appropriate surrogate data. The analysis of coherent patterns of spatially and temporally distributed spiking activity on various timescales enables the immediate tracking of diverse qualities of coordinated firing related to neuronal state changes and information processing. We apply the method to simulated data and multineuronal recordings from rat visual cortex and show that it reliably discriminates between data sets with random pattern occurrences and with additional exactly repeating spatiotemporal patterns and pattern sequences. Multineuronal cortical spiking activity appears to be precisely coordinated and exhibits a sequential organization beyond the cell assembly concept. PMID:22661942

  10. Temporal pattern of locomotor activity in Drosophila melanogaster.

    PubMed

    Martin, J R; Ernst, R; Heisenberg, M

    1999-01-01

    The temporal pattern of locomotor activity of single Drosophila melanogaster flies freely walking in small tubes is described. Locomotor activity monitored by a light gate has a characteristic time-course that depends upon age and the environmental conditions. Several methods are applied to assess the complexity of the temporal pattern. The pattern varies according to sex, genotype, age and environmental conditions (food; light). Activity occurs clustered in bouts. The intrinsic bout structure is quantified by four parameters: number of light gate passages (counts) per bout, duration of a bout, pause between two successive bouts and mean bout period. In addition, the distribution of the periods between light-gate crossings (inter-count intervals) as function of inter-count interval duration reveals a power law, suggesting that the overall distribution of episodes of activity and inactivity has a fractal structure. In the dark without food, the fractal dimension which represents a measure of the complexity of the pattern is sex, genotype and age specific. Fractality is abolished by additional sensory stimulation (food; light). We propose that time-course, bout structure and fractal dimension of the temporal pattern of locomotor activity describe different aspects of the fly's central pattern generator for locomotion and its motivational control. PMID:10077864

  11. 1988 Wet deposition temporal and spatial patterns in North America

    SciTech Connect

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  12. 1988 Wet deposition temporal and spatial patterns in North America

    SciTech Connect

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  13. Speaker recognition with temporal cues in acoustic and electric hearing

    NASA Astrophysics Data System (ADS)

    Vongphoe, Michael; Zeng, Fan-Gang

    2005-08-01

    Natural spoken language processing includes not only speech recognition but also identification of the speaker's gender, age, emotional, and social status. Our purpose in this study is to evaluate whether temporal cues are sufficient to support both speech and speaker recognition. Ten cochlear-implant and six normal-hearing subjects were presented with vowel tokens spoken by three men, three women, two boys, and two girls. In one condition, the subject was asked to recognize the vowel. In the other condition, the subject was asked to identify the speaker. Extensive training was provided for the speaker recognition task. Normal-hearing subjects achieved nearly perfect performance in both tasks. Cochlear-implant subjects achieved good performance in vowel recognition but poor performance in speaker recognition. The level of the cochlear implant performance was functionally equivalent to normal performance with eight spectral bands for vowel recognition but only to one band for speaker recognition. These results show a disassociation between speech and speaker recognition with primarily temporal cues, highlighting the limitation of current speech processing strategies in cochlear implants. Several methods, including explicit encoding of fundamental frequency and frequency modulation, are proposed to improve speaker recognition for current cochlear implant users.

  14. Are temporal features crucial acoustic cues in dog vocal recognition?

    PubMed

    Siniscalchi, Marcello; Lusito, Rita; Sasso, Raffaella; Quaranta, Angelo

    2012-09-01

    To investigate the perceptual mechanisms underlying conspecific vocal recognition in canine species, eighteen dogs were presented with playbacks of normal and reversed versions of typical dog vocalizations. Auditory perception was analysed using the head-turn paradigm, a non-invasive technique extensively employed to study hemispheric specializations for processing conspecific vocalizations in primates. The results revealed that dogs usually turn their heads with the right ear leading (left hemisphere activation) in response to the forward version of their typical calls, and with either no bias and the left ear leading (right hemisphere activation) in response to the reversed call versions. Overall, our findings suggest that temporal features are determinant auditory cues for call sound recognition in dogs, and support earlier findings of the role of the left hemisphere in the analyses of intraspecific communication. PMID:22544303

  15. A SIMPLE HETERODYNE TEMPORAL SPECKLE-PATTERN INTERFEROMETER

    SciTech Connect

    Wong, W. O.; Gao, Z.; Lu, J.

    2010-05-28

    A common light path design of heterodyne speckle pattern interferometer based on temporal speckle pattern interferometry is proposed for non-contact, full-field and real-time continuous displacement measurement. Double frequency laser is produced by rotating a half wave plate. An experiment was carried out to measure the dynamic displacement of a cantilever plate for testing the proposed common path heterodyne speckle pattern interferometer. The accuracy of displacement measurement was checked by measuring the motion at the mid-point of the plate with a point displacement sensor.

  16. 1986 wet deposition temporal and spatial patterns in North America

    SciTech Connect

    Olsen, A.R.

    1989-07-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1986 and spatial patterns for 1986. The report provides statistical distribution summaries of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. The data in the report are from the Acid Depositing System (ADS) for the statistical reporting of North American deposition data. Isopleth maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1986 annual, winter, and summer periods. The temporal pattern analyses use a subset of 30 sites over an 8-year (1979-1986) period and an expanded subset of 137 sites with greater spatial coverage over a 5-year (1982-1986) period. The 8-year period represents the longest period with wet deposition monitoring data unavailable that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. 19 refs., 105 figs., 29 tabs.

  17. Temporal patterns of human cortical activity reflect tone sequence structure.

    PubMed

    Patel, A D; Balaban, E

    2000-03-01

    Despite growing interest in temporal aspects of auditory neural processing, little is known about large-scale timing patterns of brain activity during the perception of auditory sequences. This is partly because it has not been possible to distinguish stimulus-related activity from other, endogenous brain signals recorded by electrical or magnetic sensors. Here we use amplitude modulation of unfamiliar, approximately 1-minute-long tone sequences to label stimulus-related magnetoencephalographic neural activity in human subjects. We show that temporal patterns of activity recorded over particular brain regions track the pitch contour of tone sequences, with the accuracy of tracking increasing as tone sequences become more predictable in structure. In contrast, temporal synchronization between recording locations, particularly between sites over the left posterior hemisphere and the rest of the brain, is greatest when sequences have melody-like statistical properties, which may reflect the perceptual integration of local and global pitch patterns in melody-like sequences. This method is particularly well suited to studying temporal neural correlates of complex auditory sequences (such as speech or music) which engage multiple brain areas as perception unfolds in time. PMID:10716446

  18. Cannabinoid receptor activation shifts temporally engendered patterns of dopamine release.

    PubMed

    Oleson, Erik B; Cachope, Roger; Fitoussi, Aurelie; Tsutsui, Kimberly; Wu, Sharon; Gallegos, Jacqueline A; Cheer, Joseph F

    2014-05-01

    The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55,212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration--suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55,212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner--suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55,212-2. PMID:24345819

  19. Cannabinoid Receptor Activation Shifts Temporally Engendered Patterns of Dopamine Release

    PubMed Central

    Oleson, Erik B; Cachope, Roger; Fitoussi, Aurelie; Tsutsui, Kimberly; Wu, Sharon; Gallegos, Jacqueline A; Cheer, Joseph F

    2014-01-01

    The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55 212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration—suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55 212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner—suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55 212-2. PMID:24345819

  20. Acoustically induced strong interaction between two periodically patterned elastic plates

    NASA Astrophysics Data System (ADS)

    Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou

    2014-09-01

    We study the acoustic-induced interactions between a pair of identical elastic plates patterned with periodical structures. Remarkable mutual forces, both repulsions and attractions, have been observed in the subwavelength regime. The dramatic effect stems from the resonant enhancement of the local field sandwiched between the double plates. The parameter sensitivity of the magnitude and the sign of the interaction (i.e., repulsion or attraction) depend directly on the vibration morphology of the resonant mode. In practical applications, the sign of the interaction can be switched by controlling the external frequency. Both the adjustable magnitude and the switchable sign of the contactless interaction endow this simple and compact double-plate structure with great potential in ultrasonic applications.

  1. Intermodal transfer in temporal discrimination. [of visual and acoustic stimuli duration

    NASA Technical Reports Server (NTRS)

    Warm, J. S.; Stutz, R. M.; Vassolo, P. A.

    1975-01-01

    This study determined if training for accuracy in temporal discrimination would transfer across sensory modalities. A fractionation method was used in which subjects bisected the durations of acoustic and visual signals at three standard intervals (6, 12, and 18 sec). Absolute error was the performance index. Half of the subjects were trained with acoustic stimuli and then tested in vision; the remainder were trained in vision and tested in audition. Similar negatively accelerated acquisition functions were noted for both modalities. Positive intermodal transfer, characterized by symmetry across modalities, was obtained at all standard durations. The results were considered to provide support for the notion that a common mechanism underlies temporal discriminations in different sensory systems.

  2. Impaired extraction of speech rhythm from temporal modulation patterns in speech in developmental dyslexia

    PubMed Central

    Leong, Victoria; Goswami, Usha

    2014-01-01

    Dyslexia is associated with impaired neural representation of the sound structure of words (phonology). The “phonological deficit” in dyslexia may arise in part from impaired speech rhythm perception, thought to depend on neural oscillatory phase-locking to slow amplitude modulation (AM) patterns in the speech envelope. Speech contains AM patterns at multiple temporal rates, and these different AM rates are associated with phonological units of different grain sizes, e.g., related to stress, syllables or phonemes. Here, we assess the ability of adults with dyslexia to use speech AMs to identify rhythm patterns (RPs). We study 3 important temporal rates: “Stress” (~2 Hz), “Syllable” (~4 Hz) and “Sub-beat” (reduced syllables, ~14 Hz). 21 dyslexics and 21 controls listened to nursery rhyme sentences that had been tone-vocoded using either single AM rates from the speech envelope (Stress only, Syllable only, Sub-beat only) or pairs of AM rates (Stress + Syllable, Syllable + Sub-beat). They were asked to use the acoustic rhythm of the stimulus to identity the original nursery rhyme sentence. The data showed that dyslexics were significantly poorer at detecting rhythm compared to controls when they had to utilize multi-rate temporal information from pairs of AMs (Stress + Syllable or Syllable + Sub-beat). These data suggest that dyslexia is associated with a reduced ability to utilize AMs <20 Hz for rhythm recognition. This perceptual deficit in utilizing AM patterns in speech could be underpinned by less efficient neuronal phase alignment and cross-frequency neuronal oscillatory synchronization in dyslexia. Dyslexics' perceptual difficulties in capturing the full spectro-temporal complexity of speech over multiple timescales could contribute to the development of impaired phonological representations for words, the cognitive hallmark of dyslexia across languages. PMID:24605099

  3. Temporal nulling of induction from spatial patterns modulated in time.

    PubMed

    Autrusseau, Florent; Shevell, Steven K

    2006-01-01

    Temporally varying chromatic-inducing light was used to infer receptive-field organization. Time-varying shifts in color appearance within a test field were induced by a surrounding chromatic pattern; the shifts were then nulled by adding a time-varying stimulus to the test area so the observer perceived a steady test. This method measured chromatic induction without requiring an observer to judge the color appearance of the test. The induced color shifts were consistent with a +s/-s spatially antagonistic neural receptive field, which also accounts for color shifts induced by static chromatic patterns (Monnier & Shevell, 2003, Monnier & Shevell, 2004). The response of this type of receptive-field, which is found only in the visual cortex, increases with S-cone stimulation at its center and decreases with S-cone stimulation within its surround. The measurements also showed a negligible influence of temporal inducing frequency in the range 0.5-4 Hz. PMID:16961983

  4. 1987 wet deposition temporal and spatial patterns in North America

    SciTech Connect

    Simpson, J.C.; Olsen, A.R.

    1990-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1987 and spatial patterns for 1987. The report investigates the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Data are from the Acid Deposition System (ADS) for the statistical reporting of North American deposition data which includes the National Atmospheric Deposition Program/National Trends Network (NADP/NTN), the MAP3S precipitation chemistry network, the Utility Acid Precipitation Study Program (UAPSP), the Canadian Precipitation Monitoring Network (CAPMoN), and the daily and 4-weekly Acidic Precipitation in Ontario Study (APIOS-D and APIOS-C). Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1987 annual, winter, and summer periods. The temporal pattern analyses use a subset of 39 sites over a 9-year (1979--1987) period and an expanded subset of 140 sites with greater spatial coverage over a 6-year (1982--1987) period. 68 refs., 15 figs., 15 tabs.

  5. Listener descriptions of isolated and patterned acoustic transients

    NASA Astrophysics Data System (ADS)

    Ballas, J. A.; Howard, J. H., Jr.; Kolm, C.

    1981-11-01

    A three-phase experiment was conducted to assess listeners' ability to recognize and identify environmental acoustic sounds. The first phase was a free identification of ten short duration recordings of real-world events. The second phase was a free identification of five sequences composed of a subset of these ten transients. These sequences were intended to be meaningful, representing the sounds that could be produced by opening water or steam valves. The third phase was a forced identification of the ten transients using a checklist of descriptors. The results showed that while some types of sounds were identified correctly by most listeners, others were confused and rarely identified correctly. Several metallic sounds were often confused semantically even though they were quite distinct perceptually. The identification of patterns was found to depend upon both the salience of the individual sounds in the pattern and the semantic relationship between the sounds. Finally, it was demonstrated that signal processing errors can have perceptually meaningful effects. An error in processing one of the ten sounds produced a signal which was interpreted consistently by most listeners, but in a manner which had little semantic relationship to the actual event which had been recorded.

  6. Acoustic droplet–hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness

    PubMed Central

    Fabiilli, Mario L.; Wilson, Christopher G.; Padilla, Frédéric; Martín-Saavedra, Francisco M.; Fowlkes, J. Brian; Franceschi, Renny T.

    2013-01-01

    Wound healing is regulated by temporally and spatially restricted patterns of growth factor signaling, but there are few delivery vehicles capable of the “on-demand” release necessary for recapitulating these patterns. Recently we described a perfluorocarbon double emulsion that selectively releases a protein payload upon exposure to ultrasound through a process known as acoustic droplet vaporization (ADV). In this study, we describe a delivery system composed of fibrin hydrogels doped with growth factor-loaded double emulsion for applications in tissue regeneration. Release of immunoreactive basic fibroblast growth factor (bFGF) from the composites increased up to 5-fold following ADV and delayed release was achieved by delaying exposure to ultrasound. Releasates of ultrasound-treated materials significantly increased the proliferation of endothelial cells compared to sham controls, indicating that the released bFGF was bioactive. ADV also triggered changes in the ultrastructure and mechanical properties of the fibrin as bubble formation and consolidation of the fibrin in ultrasound-treated composites were accompanied by up to a 22-fold increase in shear stiffness. ADV did not reduce the viability of cells suspended in composite scaffolds. These results demonstrate that an acoustic droplet–hydrogel composite could have broad utility in promoting wound healing through on-demand control of growth factor release and/or scaffold architecture. PMID:23535233

  7. Temporal integration of the contralateral acoustic-reflex threshold and its age-related changes.

    PubMed

    Emmer, Michele B; Silman, Shlomo; Silverman, Carol A; Levitt, Harry

    2006-09-01

    Although numerous studies have investigated temporal integration of the acoustic-reflex threshold (ART), research is lacking on the effect of age on temporal integration of the ART. Therefore the effect of age on temporal integration of the ART was investigated for a broad-band noise (BBN) activator. Subjects consisted of two groups of adults with normal-hearing sensitivity: one group of 20 young adults (ten males and ten females, ages 18-29 years, with a mean age of 24 years) and one group of 20 older adults (ten males and ten females, ages 59-75 years, with a mean age of 67.5 years). Activating stimulus durations were 12, 25, 50, 100, 200, 300, 500, and 1000 ms. Significant main effects for duration and age were obtained. That is, as the duration increased, the acoustic reflex threshold for BBN decreased. The interactions of duration x age group and duration x hearing level were not significant. The result of pair-wise analysis indicated statistically significant differences between the two age groups at durations of 20 ms and longer. The observed age effect on temporal integration of the ART for the BBN activator is interpreted in relation to senescent changes in the auditory system. PMID:17004469

  8. Age-Related Neural Oscillation Patterns During the Processing of Temporally Manipulated Speech.

    PubMed

    Rufener, Katharina S; Oechslin, Mathias S; Wöstmann, Malte; Dellwo, Volker; Meyer, Martin

    2016-05-01

    This EEG-study aims to investigate age-related differences in the neural oscillation patterns during the processing of temporally modulated speech. Viewing from a lifespan perspective, we recorded the electroencephalogram (EEG) data of three age samples: young adults, middle-aged adults and older adults. Stimuli consisted of temporally degraded sentences in Swedish-a language unfamiliar to all participants. We found age-related differences in phonetic pattern matching when participants were presented with envelope-degraded sentences, whereas no such age-effect was observed in the processing of fine-structure-degraded sentences. Irrespective of age, during speech processing the EEG data revealed a relationship between envelope information and the theta band (4-8 Hz) activity. Additionally, an association between fine-structure information and the gamma band (30-48 Hz) activity was found. No interaction, however, was found between acoustic manipulation of stimuli and age. Importantly, our main finding was paralleled by an overall enhanced power in older adults in high frequencies (gamma: 30-48 Hz). This occurred irrespective of condition. For the most part, this result is in line with the Asymmetric Sampling in Time framework (Poeppel in Speech Commun 41:245-255, 2003), which assumes an isomorphic correspondence between frequency modulations in neurophysiological patterns and acoustic oscillations in spoken language. We conclude that speech-specific neural networks show strong stability over adulthood, despite initial processes of cortical degeneration indicated by enhanced gamma power. The results of our study therefore confirm the concept that sensory and cognitive processes undergo multidirectional trajectories within the context of healthy aging. PMID:26613726

  9. Temporal summation of global form signals in dynamic Glass patterns.

    PubMed

    Nankoo, Jean-François; Madan, Christopher R; Spetch, Marcia L; Wylie, Douglas R

    2015-02-01

    The ability to perceive complex objects in the environment requires that the visual system integrate local form information into global shapes. Glass patterns (GPs) are stimuli that are commonly used to study this integration process. GPs consist of randomly positioned dot-pairs oriented in a coherent way to create a global form. When multiple GPs are presented sequentially, observers report a percept of illusory coherent motion and have lower detection thresholds relative to a single presentation GPs. The percept of illusory motion has been attributed to the visual system interpreting the dot-pairs in GPs as motion streaks. However, it remains unclear why dynamic GPs are detected at lower thresholds than static GPs. Two main differences exist between static and dynamic GPs: (a) dynamic GPs contain multiple presentations of global form signals compared to a single presentation in static GPs and (b) dynamic GPs have a greater temporal frequency than static GPs. Here we investigated which of these two factors contributed to the heightened sensitivities for dynamic GPs. We systematically varied the number of unique GPs and the rate at which each unique frame is presented (i.e., temporal frequency). The results show that, within the range of temporal frequency used, the primary influence on detection thresholds was the number of unique frames. These results suggest that the improved detection sensitivities can be driven by a mechanism of temporal summation of global form. PMID:25451242

  10. Spatio-temporal patterns in inclined layer convection

    NASA Astrophysics Data System (ADS)

    Subramanian, Priya; Brausch, Oliver; Daniels, Karen E.; Bodenschatz, Eberhard; Schneider, Tobias M.; Pesch, Werner

    2016-05-01

    This paper reports on a theoretical analysis of the rich variety of spatio-temporal patterns observed recently in inclined layer convection at medium Prandtl number when varying the inclination angle $\\gamma$ and the Rayleigh number $R$. The present numerical investigation of the inclined layer convection system is based on the standard Oberbeck-Boussinesq equations. The patterns are shown to originate from a complicated competition of buoyancy-driven and shear-flow driven pattern forming mechanisms. The former are expressed as \\rm{longitudinal} convection rolls with their axes oriented parallel to the incline, the latter as perpendicular \\rm{transverse} rolls. Along with conventional methods to study roll patterns and their stability, we employ direct numerical simulations in large spatial domains, comparable with the experimental ones. As a result, we determine the phase diagram of the characteristic complex 3D convection patterns above onset of convection in the $\\gamma-R$ plane, and find that it compares very well with the experiments. In particular we demonstrate that interactions of specific Fourier modes, characterized by a resonant interaction of their wavevectors in the layer plane, are key to understanding the pattern morphologies.

  11. Measurement resolution of noise directivity patterns from acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Conner, David A.

    1989-01-01

    The measurement resolution of noise directivity patterns from acoustic flight tests was investigated. Directivity angle resolution is affected by the data reduction parameters, the aircraft velocity and flyover altitude, and by deviations of the aircraft from the desired flight path. Equations are developed which determine bounds for the lateral and longitudinal directivity angle resolution as a function of the nominal directivity angle. The equations are applied to a flight test data base and the effects of several flight conditions and data reduction parameters on the directivity angle resolution are presented. The maximum directivity angle resolution typically occurs when the aircraft is at or near the overhead position. In general, directivity angle resolution improves with decreasing velocity, increasing altitude, increasing sampling rate, decreasing block size, and decreasing block averages. Deviations from the desired ideal flight path will increase the resolution. For the flight experiment considered in this study, an average of two flyovers were required at each test condition to obtain an acceptable flight path. The ability of the pilot to maintain the flight track improved with decreasing altitude, decreasing velocity, and practice. Due to the prevailing wind conditions, yaw angles of as much as 20 deg were required to maintain the desired flight path.

  12. Pattern competition in temporally modulated Rayleigh-Benard convection

    SciTech Connect

    Meyer, C.W.; Cannell, D.S.; Ahlers, G.; Swift, J.B.; Hohenberg, P.C.

    1988-08-22

    Shadowgraph flow-visualization studies and heat-flux measurements were used to study convection subjected to temporal modulation of the Rayleigh number R in the form epsilon(t) = R(t)/R/sub c//sup stat/-1 = epsilon/sub 0/+delta sin(..omega..t), where R/sub c//sup stat/ is the unmodulated threshold, and ..omega.. and t are scaled by the vertical thermal diffusion time. For ..omega.. = 15 and 0.7approx. patterns were observed for a range of epsilon/sub 0/ immediately above the convective threshold epsilon/sub c/. With increasing epsilon/sub 0/ there is a region exhibiting coexistence between hexagons and rolls, followed by roll-like patterns. The observed boundaries between these regions and the magnitude of the convective heat transport are consistent with theory.

  13. Disentangling the drivers of temporal and spatial biotic patterns

    NASA Astrophysics Data System (ADS)

    Belanger, C. L.

    2014-12-01

    Environmental changes in time and across space are multivariate, thus understanding the drivers of biotic responses to paleoclimate events requires the incorporation of multiple proxies and selection of the variables most associated with the biotic patterns. Here, two case studies, one examining paleoecological change leading into the Early Miocene warming and one examining global diversity patterns in modern bivalves, illustrate the utility of multivariate data sets for understanding biotic patterns. We create a multivariate time series of benthic foraminiferal faunal composition and environmental variables (δ13C, Δδ13C, δ18O, δ15N, sediment grain size) from the Early Miocene Astoria Formation spanning ~18-20 mya. We then use multivariate statistics and maximum likelihood model selection to disentangle the potential drivers of the faunal changes. We find that d15N values and age are the most parsimonious correlates with major changes in foraminiferal composition, suggesting oxygenation is primarily affecting the foraminiferal community. Failure to include δ15N in the analysis still yields significant and supported relationships with Δδ13C, which would lead to the incorrect interpretation that the benthic foraminifera are responding primarily to organic carbon flux rather than oxygenation. Similarly, we examine the environmental factors associated with global diversity patterns. Using occurrence data for modern bivalves and a multivariate oceanographic data set, we identify the modern environmental factors most associated with diversity. However, inclusion of spatial variables in addition to environmental variables in the analysis reveals a well-supported relationship between proximity to diversity hotspots and diversity, suggesting historical processes also play a key role in diversity patterns. Because environmental variables can be coupled in time and in space, it is important to consider multiple environmental, temporal, and spatial variables, and their interactions, to disentangle the drivers of biotic patterns. Studies that incorporate multiple variables can be powerful tools for identifying the drivers of biotic patterns and projecting biotic responses to future climate changes.

  14. Reconstructing spatial and temporal patterns of paleoglaciation across Central Asia

    NASA Astrophysics Data System (ADS)

    Stroeven, Arjen P.

    2014-05-01

    Understanding the behaviour of mountain glaciers and ice caps, the evolution of mountain landscapes, and testing global climate models all require well-constrained information on past spatial and temporal patterns of glacier change. Particularly important are transitional regions that have high spatial and temporal variation in glacier activity and that can provide a sensitive record of past climate change. Central Asia is an extreme continental location with glaciers that have responded sensitively to variations in major regional climate systems. As an international team, we are reconstructing glacial histories of several areas of the Tibetan Plateau as well as along the Tian Shan, Altai and Kunlun Mountains. Building on previous work, we are using remote sensing-based geomorphological mapping augmented with field observations to map out glacial landforms and the maximum distributions of erratics. We then use cosmogenic nuclide Be-10 and Al-26, optically stimulated luminescence, and electron spin resonance dating of moraines and other landforms to compare dating techniques and to constrain the ages of defined extents of paleo-glaciers and ice caps. Comparing consistently dated glacial histories across central Asia provides an opportunity to examine shifts in the dominance patterns of climate systems over time in the region. Results to date show significant variations in the timing and extent of glaciation, including areas in the southeast Tibetan Plateau and Tian Shan with extensive valley and small polythermal ice cap glaciation during the global last glacial maximum in contrast to areas in central and northeast Tibetan Plateau that had very limited valley glacier expansion then. Initial numerical modelling attempting to simulate mapped and dated paleoglacial extents indicates that relatively limited cooling is sufficient to produce observed past expansions of glaciers across the Tibetan Plateau, and predicts complex basal thermal regimes in some locations that match patterns of past glacial erosion inferred from landform patterns and ages. Future modelling will examine glacier behaviour along major mountain ranges across central Asia.

  15. Emergence of spatio-temporal patterns in neuronal activity.

    PubMed

    Haalman, I; Vaadia, E

    1998-01-01

    This paper explores if dynamic modulation of coherent firing serves cortical functions. We recorded neuronal activity in the frontal cortex of behaving monkeys and found that temporal coincidences of spikes firing of different neurons can emerge within a fraction of a second in relation to the animal behavior. The temporal patterns of the correlation could not be predicted from the modulations of the neurons firing rate and finally, the patterns of correlation depend on the distance between neurons. These findings call for a revision of prevailing models of neural coding that solely rely on firing rates. The findings suggest that modification of neuronal interactions can serve as a mechanism by which neurons associate rapidly into a functional group in order to perform a specific computational task. Increased correlation between members of the groups, and decreased or negative correlation with others, enhance the ability to dissociate one group from concurrently activated competing groups. Such modulation of neuronal interactions allows each neuron to become a member of several different groups and participate in different computational tasks. PMID:9755517

  16. Temporally-Patterned Magnetic Fields Induce Complete Fragmentation in Planaria

    PubMed Central

    Murugan, Nirosha J.; Karbowski, Lukasz M.; Lafrenie, Robert M.; Persinger, Michael A.

    2013-01-01

    A tandem sequence composed of weak temporally-patterned magnetic fields was discovered that produced 100% dissolution of planarian in their home environment. After five consecutive days of 6.5 hr exposure to a frequency-modulated magnetic field (0.1 to 2 µT), immediately followed by an additional 6.5 hr exposure on the fifth day, to another complex field (0.5 to 5 µT) with exponentially increasing spectral power 100% of planarian dissolved within 24 hr. Reversal of the sequence of the fields or presentation of only one pattern for the same duration did not produce this effect. Direct video evidence showed expansion (by visual estimation ∼twice normal volume) of the planarian following the first field pattern followed by size reduction (estimated ∼1/2 of normal volume) and death upon activation of the second pattern. The contortions displayed by the planarian during the last field exposure suggest effects on contractile proteins and alterations in the cell membrane’s permeability to water. PMID:23620783

  17. Pattern-level temporal difference learning, data fusion, and chess

    NASA Astrophysics Data System (ADS)

    Levinson, Robert; Weber, Ryan J.

    2000-04-01

    Our research group is using chess as a vehicle for studying the fusion of adaptation, multiple representation, and search technologies for real-time decision making. Chess systems like Deep Blue have achieved Grandmaster chess play with a brute-force search of the game tree and human- supplied information, like piece-values and opening books. However, subtle aspects of chess, including positional features and advanced concepts, are not capable of being represented or processed efficiently with the standard method. Since 1989, Morph I-III have exhibited more autonomy and learning ability than traditional chess programs in `adaptive pattern-oriented chess'. Like its predecessors, Morph IV is a reinforcement learner, but it also uses a new technique we call pattern-level TD and Q-learning to mathematically map the state space and effectively learn to classify situations. Its three knowledge sources include two traditional ones: material and a piece-square table, and a new method called Distance. These are combined using a simple genetic algorithm and a decision tree. This paper shows the effectiveness of fusing knowledge to replace search in real-time situations, since an agent which combines all sources is capable of consistently beating an agent which employs any of the individual knowledge sources. Surprisingly, the pattern-level TD agent is slightly superior to the pattern-level Q-learning agent, despite the fact that the Q-learning agent updates more Q-values on each temporal step.

  18. Acoustic measurements during holmium:YAG laser ablation of cadaveric human temporal bone: preliminary observations

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; Gibbs, Lisa; Neev, Joseph; Shanks, Janet

    1997-05-01

    Pulsed IR and UV lasers have been suggested for use in middle ear surgery due to decreased thermal trauma, precise ablation characteristics, and potential fiberoptic delivery. While there has been much focus on the thermal and photoacoustic events that occur during pulsed laser ablation of hard tissue, there are few studies that look at the acoustic energy generated from these devices from an audiologic standpoint. In this study, the mastoid cavities of cadaveric human temporal bones were irradiated with a Ho:YAG laser (lambda equals 2.12 micrometer) with the following parameters: 5, 10, and 15 Hz pulse repetition rate and 1, 2, 4, 6, 8, and 10 W average power. During ablation, acoustic measurements were made using a sound level meter held 5 cm away from the target site. With each set of laser parameters, the sound intensity (dB SPL) exceeded 85 dB. Peak intensity measurements of 125 dB were measured, and a saturation effect was noted above 4 W or 500 mJ/pulse. The clinical significance of these findings is discussed and the acoustical aspects of middle ear function and noise trauma are reviewed.

  19. Temporal and acoustic characteristics of Greek vowels produced by adults with cerebral palsy

    NASA Astrophysics Data System (ADS)

    Botinis, Antonis; Orfanidou, Ioanna; Fourakis, Marios; Fourakis, Marios

    2005-09-01

    The present investigation examined the temporal and spectral characteristics of Greek vowels as produced by speakers with intact (NO) versus cerebral palsy affected (CP) neuromuscular systems. Six NO and six CP native speakers of Greek produced the Greek vowels [i, e, a, o, u] in the first syllable of CVCV nonsense words in a short carrier phrase. Stress could be on either the first or second syllable. There were three female and three male speakers in each group. In terms of temporal characteristics, the results showed that: vowels produced by CP speakers were longer than vowels produced by NO speakers; stressed vowels were longer than unstressed vowels; vowels produced by female speakers were longer than vowels produced by male speakers. In terms of spectral characteristics the results showed that the vowel space of the CP speakers was smaller than that of the NO speakers. This is similar to the results recently reported by Liu et al. [J. Acoust. Soc. Am. 117, 3879-3889 (2005)] for CP speakers of Mandarin. There was also a reduction of the acoustic vowel space defined by unstressed vowels, but this reduction was much more pronounced in the vowel productions of CP speakers than NO speakers.

  20. Dynamic temporal processing of nonspeech acoustic information by children with specific language impairment.

    PubMed

    Visto, J C; Cranford, J L; Scudder, R

    1996-06-01

    The present study investigated whether children with specific language impairment (SLI) differed from children with normal language learning in their ability to process binaural temporal information. The SLI group was matched with peers of the same chronological age, as well as peers with similar language age. All three subject groups were tested with measures of complex sound localization involving the precedence effect phenomenon. Subjects were required to track the apparent motion of a "moving" fused auditory image (FAI). Movement of the FAI was simulated by varying the delay incrementally between pairs of clicks presented, one each, from two matched loudspeakers placed on opposite sides of the child's head. With this task, the SLI subjects' performances were found to be similar to their language age-matched but chronologically younger peers. Both groups exhibited tracking skills that were statistically poorer than that of the chronologically age-matched group. Additional tests indicated this effect was not due to differences in motoric tracking abilities nor to the SLI subjects' abilities to perceive small binaural time cues. Thus, children with SLI appear to be impaired in their ability to use binaural acoustic information in a dynamic ongoing fashion. The requirements for processing such nonlinguistic acoustic information in a "dynamic and ongoing" fashion may be similar to those involved in the ongoing processing of rapid changes in the temporal and spectral components of the speech chain. PMID:8783130

  1. Temporal patterns in adult salmon migration timing across southeast Alaska

    USGS Publications Warehouse

    Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David

    2015-01-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon migration timing. Although salmon phenological diversity will complicate future predictions of migration timing, this variation likely acts as a major contributor to population and ecosystem resiliency in southeast Alaska.

  2. Temporal patterns in adult salmon migration timing across southeast Alaska.

    PubMed

    Kovach, Ryan P; Ellison, Stephen C; Pyare, Sanjay; Tallmon, David A

    2015-05-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon migration timing. Although salmon phenological diversity will complicate future predictions of migration timing, this variation likely acts as a major contributor to population and ecosystem resiliency in southeast Alaska. PMID:25482609

  3. Target and temporal pattern selection at neocortical synapses.

    PubMed

    Thomson, Alex M; Bannister, A Peter; Mercer, Audrey; Morris, Oliver T

    2002-12-29

    We attempt to summarize the properties of cortical synaptic connections and the precision with which they select their targets in the context of information processing in cortical circuits. High-frequency presynaptic bursts result in rapidly depressing responses at most inputs onto spiny cells and onto some interneurons. These 'phasic' connections detect novelty and changes in the firing rate, but report frequency of maintained activity poorly. By contrast, facilitating inputs to interneurons that target dendrites produce little or no response at low frequencies, but a facilitating-augmenting response to maintained firing. The neurons activated, the cells they in turn target and the properties of those synapses determine which parts of the circuit are recruited and in what temporal pattern. Inhibitory interneurons provide both temporal and spatial tuning. The 'forward' flow from layer-4 excitatory neurons to layer 3 and from 3 to 5 activates predominantly pyramids. 'Back' projections, from 3 to 4 and 5 to 3, do not activate excitatory cells, but target interneurons. Despite, therefore, an increasing complexity in the information integrated as it is processed through these layers, there is little 'contamination' by 'back' projections. That layer 6 acts both as a primary input layer feeding excitation 'forward' to excitatory cells in other layers and as a higher-order layer with more integrated response properties feeding inhibition to layer 4 is discussed. PMID:12626012

  4. Classifying Human Body Acceleration Patterns Using a Hierarchical Temporal Memory

    NASA Astrophysics Data System (ADS)

    Sassi, Federico; Ascari, Luca; Cagnoni, Stefano

    This paper introduces a novel approach to the detection of human body movements during daily life. With the sole use of one wearable wireless triaxial accelerometer attached to one's chest, this approach aims at classifying raw acceleration data robustly, to detect many common human behaviors without requiring any specific a-priori knowledge about movements. The proposed approach consists of feeding sensory data into a specifically trained Hierarchical Temporal Memory (HTM) to extract invariant spatial-temporal patterns that characterize different body movements. The HTM output is then classified using a Support Vector Machine (SVM) into different categories. The performance of this new HTM+SVM combination is compared with a single SVM using real-word data corresponding to movements like "standing", "walking", "jumping" and "falling", acquired from a group of different people. Experimental results show that the HTM+SVM approach can detect behaviors with very high accuracy and is more robust, with respect to noise, than a classifier based solely on SVMs.

  5. Spatio-Temporal Pattern of Saturn's Equatorial Oscillation

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schnider, P. J.; Marouf, E. A.; McGhee, C. A.; Kliore, A. J.; Rappaport, N. J.

    2010-01-01

    Recent ground-based and Cassini CIRS thermal-infrared data have characterized the spatial and temporal characteristics of an equatorial oscillation in the middle atmosphere of Saturn above the 100-mbar level. The CIRS data [I] indicated a pattern of warm and cold anomalies near the equator, stacked vertically in alternating fashion. The ground-based observations s2, although not having the altitude range or vertical resolution of the CIRS observations, covered several years and indicated an oscillation cycle of approx.15 years, roughly half of Saturn's year. In Earth's middle atmosphere, both the quasi-biennial (approx.26 months) and semi-annual equatorial oscillations have been extensively observed and studied (see e.g., [3]), These exhibit a pattern of alternating warmer and cooler zonal-mean temperatures with altitude, relative to those at subtropical latitudes. Consistent with the thermal wind equation, this is also associated with an alternating pattern of westerly and easterly zonal winds. Moreover, the pattern of winds and temperatures descends with time. Momentum deposition by damped vertically propagating waves is thought to play a key role m forcing both types of oscillation, and it can plausibly account for the descent. Here we report the direct observation of this descent in Saturn's equatorial atmosphere from Cassini radio occultation soundings in 2005 and 2009. The retrieved temperatures are consistent with a descent of 0.7 x the pressure scale height. The descent rate is related to the magnitude of the wave forcing, radiative damping, and induced meridional circulations. We discuss possible implications.

  6. Spatial and temporal patterns of hydrological extremes in Europe

    NASA Astrophysics Data System (ADS)

    Hall, Julia; Perdigão, Rui A. P.

    2015-04-01

    At a catchment scale, the hydrological characteristics of extreme events such as floods and droughts vary considerably across Europe. However, extreme events are also governed by large-scale physical processes that can influence the hydrological response of larger regions beyond catchment or national boundaries. To analyse such extreme events at a regional scale, a hydrological database for Europe, consisting of daily data from over 5000 stations, has been assembled. The database is a result of existing datasets of European coverage amended and complemented by a collaborative effort as part of a joint European flood research agreement based on the exchange of data, models, staff and expertise. The developed database allows an analysis of the influence of large scale drivers such as climate on the spatial patterns of floods and droughts across Europe. The timing of extreme events in Europe is a key variable in understanding the main processes governing flood and drought events. In this contribution, regional similarities and differences of hydrological extremes in Europe are analysed and the resulting characteristic spatio-temporal patterns of floods and droughts are presented separately and compared with one another.

  7. A Temporal Pattern Mining Approach for Classifying Electronic Health Record Data

    PubMed Central

    Batal, Iyad; Valizadegan, Hamed; Cooper, Gregory F.; Hauskrecht, Milos

    2013-01-01

    We study the problem of learning classification models from complex multivariate temporal data encountered in electronic health record systems. The challenge is to define a good set of features that are able to represent well the temporal aspect of the data. Our method relies on temporal abstractions and temporal pattern mining to extract the classification features. Temporal pattern mining usually returns a large number of temporal patterns, most of which may be irrelevant to the classification task. To address this problem, we present the Minimal Predictive Temporal Patterns framework to generate a small set of predictive and non-spurious patterns. We apply our approach to the real-world clinical task of predicting patients who are at risk of developing heparin induced thrombocytopenia. The results demonstrate the benefit of our approach in efficiently learning accurate classifiers, which is a key step for developing intelligent clinical monitoring systems. PMID:25309815

  8. Spatio-Temporal Patterns of Surface Irradiance in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.

    2014-12-01

    Climate-glacier dynamics in the Himalaya are complex. Research indicates extreme local variability in glacier fluctuations and the presence of regional trends. The glaciers in the Karakoram Himalaya depart from world trends of glacier recession, as many are advancing or surging. Nevertheless, glacier sensitivity to climate change has yet to be quantitatively assessed given numerous controlling factors. We attempt to address part of the problem by evaluating the role of topography in explaining variations in surface irradiance. Specifically, we developed a spectral-based topographic solar radiation model that accounts for multi-scale topographic effects. We evaluate surface irradiance simulations over a multitude of glaciers across the Karakoram and Nepalese Himalaya and examine spatio-temporal patterns to determine which alpine glaciers are more susceptible to radiation forcing. Simulation results reveal that many Nepalese glaciers characterized by rapid downwasting, retreat and expanding proglacial lakes, exhibit relatively high-magnitude daily irradiance patterns spatially focused over the terminus region, while other glacier surface areas received less short-wave irradiance. These results were found to be associated with basin-scale relief conditions and topographic shielding. Altitudinal variation in glacier surface irradiance was found to increase during the later portion of the ablation season, as changes in solar geometry produce more cast shadows that protect glaciers given extreme relief. Topographic effects on surface irradiance vary significantly from glacier to glacier, demonstrating the important role of glacier and mountain geodynamics on glacier sensitivity to climate change. Spatial and altitudinal patterns, coupled with information regarding supraglacial debris distribution, depth and ice-flow velocities, may potentially explain glacier sensitivity to climate change and the local variability of glacier fluctuations in the Himalaya.

  9. Different Neurons Population Distribution correlates with Topologic-Temporal Dynamic Acoustic Information Flow

    NASA Astrophysics Data System (ADS)

    Riofrio, Walter; Angel Aguilar, Luis

    In this study, we will focus on two aspects of neural interconnections. One is the way in which the information flow is produced, and the other has to do with the neural distribution with specific architectural arrangements in the brain. It is very important to realize that both aspects are related, but it is possible to support in the former that the information flow is not only governed by the number of spikes in the neurons, but by a series of other factors as well. Here we show the role played by GABAergic neurons in acoustic information transmission in the Central Nucleus of Inferior Colliculus (CNIC). We report a neural spatial-temporal cluster distribution, associated with each isofrequency region. With these results, we will shed some light onto the emergence of certain mental properties starting from the neural dynamic interactions.

  10. Detection of Acoustic Temporal Fine Structure by Cochlear Implant Listeners: Behavioral Results and Computational Modeling

    PubMed Central

    Imennov, Nikita S.; Won, Jong Ho; Drennan, Ward R.; Jameyson, Elyse; Rubinstein, Jay T.

    2013-01-01

    A test of within-channel detection of acoustic temporal fine structure (aTFS) cues is presented. Eight cochlear implant listeners (CI) were asked to discriminate between two Schroeder-phase (SP) complexes using a two-alternative, forced-choice task. Because differences between the acoustic stimuli are primarily constrained to their aTFS, successful discrimination reflects a combination of the subjects’ perception of and the strategy’s ability to deliver aTFS cues. Subjects were mapped with single-channel Continuous Interleaved Sampling (CIS) and Simultaneous Analog Stimulation (SAS) strategies. To compare within- and across- channel delivery of aTFS cues, a 16-channel clinical HiRes strategy was also fitted. Throughout testing, SAS consistently outperformed the CIS strategy (p ≤ 0.002). For SP stimuli with F0 =50 Hz, the highest discrimination scores were achieved with the HiRes encoding, followed by scores with the SAS and the CIS strategies, respectively. At 200 Hz, single-channel SAS performed better than HiRes (p = 0.022), demonstrating that under a more challenging testing condition, discrimination performance with a single-channel analog encoding can exceed that of a 16-channel pulsatile strategy. To better understand the intermediate steps of discrimination, a biophysical model was used to examine the neural discharges evoked by the SP stimuli. Discrimination estimates calculated from simulated neural responses successfully tracked the behavioral performance trends of single-channel CI listeners. PMID:23333260

  11. The Spatial and Temporal Pattern of Heavy Precipitation in Seoul

    NASA Astrophysics Data System (ADS)

    Lee, K. S.; Yu, J.; Im, J.; Jin, R.

    2014-12-01

    1.Introduction Combined with summer heavy rainfall and urbanization today's urban area face higher frequency of heavy rainfall with higher intensity in summer than before. Heavy rainfall in short time makes it low elevation area to be susceptible to more flooding than before. According to KMA it is announced as heavy rainfall warning whose precipitation amount is equal to or greater than 150mm per 12 hours. And sometimes, these rainfall events bring out severe disasters such as the case of flooding in Gangnam Station, Daechi Station and landslides which resulted in 20 person death in downtown Seoul on July 27th, 2011. Thus, the purpose of this study is to investigate the spatial and temporal pattern of heavy precipitation in Seoul. Ultimately it aims to contribute these results to the proper urban planning and management. 2. Materials and Methods In this study, the digital topograhic data and weather data in Seoul Metropolitan Area were used to figure out the spatial distribution of summer heavy rainfall. The precipitation data in summer (June to Sep.) season were used to detect the recent changes of temporal and spatial features from 1995 to 2014 (20 years) using Automatic Weather tation (AWS) data in Seoul Metropolitan Area. The precipitation amount in summer during the past 20 years has been on the rise but rainy days have barely changed,which reveals the daily precipitation intensity has increased. After deriving the characteristic of heavy rainfall, the relationship among precipitation, topography and land uses were interpreted and discussed. This study is to investigate the characteristics of flood prone area by focusing topographic and land use characteristics. Ultimately it contributes to prepare the guideline for flood preventive urban plannig.

  12. Innovations in motoneuron synchrony drive rapid temporal modulations in vertebrate acoustic signaling.

    PubMed

    Chagnaud, Boris P; Zee, Michele C; Baker, Robert; Bass, Andrew H

    2012-06-01

    Rapid temporal modulation of acoustic signals among several vertebrate lineages has recently been shown to depend on the actions of superfast muscles. We hypothesized that such fast events, known to require synchronous activation of muscle fibers, would rely on motoneuronal properties adapted to generating a highly synchronous output to sonic muscles. Using intracellular in vivo recordings, we identified a suite of premotor network inputs and intrinsic motoneuronal properties synchronizing the oscillatory-like, simultaneous activation of superfast muscles at high gamma frequencies in fish. Motoneurons lacked spontaneous activity, firing synchronously only at the frequency of premotor excitatory input. Population-level motoneuronal output generated a spike-like, vocal nerve volley that directly determines muscle contraction rate and, in turn, natural call frequency. In the absence of vocal output, motoneurons showed low excitability and a weak afterhyperpolarization, leading to rapid accommodation in firing rate. By contrast, vocal activity was accompanied by a prominent afterhyperpolarization, indicating a dependency on network activity. Local injection of a GABA(A) receptor antagonist demonstrated the necessity of electrophysiologically and immunohistochemically confirmed inhibitory GABAergic input for motoneuronal synchrony and vocalization. Numerous transneuronally labeled motoneurons following single-cell neurobiotin injection together with electrophysiological collision experiments confirmed gap junctional coupling, known to contribute to synchronous activity in other neural networks. Motoneuronal synchrony at the premotor input frequency was maintained during differential recruitment of variably sized motoneurons. Differential motoneuron recruitment led, however, to amplitude modulation (AM) of vocal output and, hence, natural call AM. In summary, motoneuronal intrinsic properties, in particular low excitability, predisposed vocal motoneurons to the synchronizing influences of premotor inputs to translate a temporal input code into a coincident and extremely synchronous, but variable-amplitude, output code. We propose an analogous suite of neuronal properties as a key innovation underlying similarly rapid acoustic events observed among amphibians, reptiles, birds, and mammals. PMID:22423004

  13. Spatio-temporal correlation of vegetation and temperature patterns

    NASA Astrophysics Data System (ADS)

    Coppola, R.; D'Emilio, M.; Imbrenda, V.; Lanfredi, M.; Macchiato, M.; Simoniello, T.

    2010-05-01

    Temperature is one of the variables largely influencing vegetation species distributions (biogeographical regions) and plant development (phenological cycle). Anomalies in temperature regional patterns and in microclimate conditions induce modifications in vegetation cover phenology; in particular in European regions, the responsiveness of vegetation to temperature increase is greater in warmer Mediterranean countries. In order to assess the spatial arrangement and the temporal variability of vegetation and temperature patterns in a typical Mediterranean environment, we investigated monthly NDVI-AVHRR and temperature time series over Southern Italy, core of Mediterranean Basin. Temperature data, obtained from 35 meteoclimatic stations, were rasterized by adopting a combined deterministic-stochastic procedure we suitably implemented for the investigated region in order to obtain spatial data comparable with NDVI maps. For the period 1996-1998, monthly MVC data were clusterized on annual basis by means of a classification procedure to aggregate areas with similar phenological cycles. The same procedure was adopted to jointly evaluate temperature and vegetation profiles and identify areas having similar phenological and temperature patterns. The comparison of the identified clusters showed that the classification obtained with and without temperature profiles are very similar enhancing the strong role of this variable in vegetation development. Some exceptions in the cluster arrangement are due to local anomalies in vegetation distribution, such as forest fires. In order to spatially analyze such a dependence, we also elaborated a time correlation map for each year and we found that the correlation patterns are persistent on the year basis and generally follow the land cover distributions. The correlation values are very high and positive for the forested mountainous areas (R>0.8), whereas they are negative for plan coastal areas (R<-0.8). Low correlation values (R= -0.4/0.4) were found for the transitional zones and agricultural areas mainly dominated by irrigated herbaceous cultivations. On average, in southern Italy the analysis showed a strong dependence of NDVI and temperature profiles during the spring and summer time (greening period) and a reduced responsiveness in autumn when precipitations control the vegetation recovery after the water shortage period.

  14. Temporal patterns of diversification across global cichlid biodiversity (Acanthomorpha: Cichlidae).

    PubMed

    McMahan, Caleb D; Chakrabarty, Prosanta; Sparks, John S; Smith, W M Leo; Davis, Matthew P

    2013-01-01

    The contrasting distribution of species diversity across the major lineages of cichlids makes them an ideal group for investigating macroevolutionary processes. In this study, we investigate whether different rates of diversification may explain the disparity in species richness across cichlid lineages globally. We present the most taxonomically robust time-calibrated hypothesis of cichlid evolutionary relationships to date. We then utilize this temporal framework to investigate whether both species-rich and depauperate lineages are associated with rapid shifts in diversification rates and if exceptional species richness can be explained by clade age alone. A single significant rapid rate shift increase is detected within the evolutionary history of the African subfamily Pseudocrenilabrinae, which includes the haplochromins of the East African Great Lakes. Several lineages from the subfamilies Pseudocrenilabrinae (Australotilapiini, Oreochromini) and Cichlinae (Heroini) exhibit exceptional species richness given their clade age, a net rate of diversification, and relative rates of extinction, indicating that clade age alone is not a sufficient explanation for their increased diversity. Our results indicate that the Neotropical Cichlinae includes lineages that have not experienced a significant rapid burst in diversification when compared to certain African lineages (rift lake). Neotropical cichlids have remained comparatively understudied with regard to macroevolutionary patterns relative to African lineages, and our results indicate that of Neotropical lineages, the tribe Heroini may have an elevated rate of diversification in contrast to other Neotropical cichlids. These findings provide insight into our understanding of the diversification patterns across taxonomically disparate lineages in this diverse clade of freshwater fishes and one of the most species-rich families of vertebrates. PMID:23990936

  15. The temporal pattern of vitellogenin synthesis in Drosophila grimshawi

    SciTech Connect

    Kambysellis, M.P.; Hatzopoulos, P.; Craddock, E.M. )

    1989-09-01

    The temporal pattern of protein production and, in particular, vitellogenin protein synthesis during the sexual maturation of Drosophila grimshawi females has been studied in vivo by briefly feeding the flies with 35S-methionine and 3H-amino acids. The overall level of incorporation was very low in young flies; it then progressively increased to reach a maximum with the onset of sexual maturity at 13-15 days. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses revealed three classes of proteins: those synthesized throughout the age spectrum, which constitute the majority of protein species; proteins synthesized primarily or only in young flies; and proteins synthesized only by the older flies. In this Drosophila species, the three vitellogenins (V1, V2, and V3) appeared to be synthesized in a two-phase pattern. In the first phase, small quantities of V1 and V2 were detected immunologically in the fat body and hemolymph of newly emerged and 1 day-old flies. These proteins did not accumulate in the hemolymph or the ovaries, apparently being unstable proteins. The second phase commenced in early vitellogenesis (7-9 days of age) with synthesis in the fat body of small quantities of V1 and V2, followed by V3 proteins. These proteins were secreted and accumulated in the hemolymph and 24 h later were found in the ovaries. Their quantities increased rapidly and a steady state of synthesis, release into the hemolymph, and uptake by the ovaries was reached by days 13-15. We have estimated that during the steady state of vitellogenin synthesis, a fly can synthesize in 24 h at least 152 micrograms of vitellogenins, which is more than 2% of its body weight, at an average rate of about 6.3 micrograms vitellogenins/h. About 2 micrograms of this are synthesized in the fat body, and about 4 micrograms in the ovaries.

  16. The temporal patterns of disease severity and prevalence in schistosomiasis.

    PubMed

    Ciddio, Manuela; Mari, Lorenzo; Gatto, Marino; Rinaldo, Andrea; Casagrandi, Renato

    2015-03-01

    Schistosomiasis is one of the most widespread public health problems in the world. In this work, we introduce an eco-epidemiological model for its transmission and dynamics with the purpose of explaining both intra- and inter-annual fluctuations of disease severity and prevalence. The model takes the form of a system of nonlinear differential equations that incorporate biological complexity associated with schistosome's life cycle, including a prepatent period in snails (i.e., the time between initial infection and onset of infectiousness). Nonlinear analysis is used to explore the parametric conditions that produce different temporal patterns (stationary, endemic, periodic, and chaotic). For the time-invariant model, we identify a transcritical and a Hopf bifurcation in the space of the human and snail infection parameters. The first corresponds to the occurrence of an endemic equilibrium, while the latter marks the transition to interannual periodic oscillations. We then investigate a more realistic time-varying model in which fertility of the intermediate host population is assumed to seasonally vary. We show that seasonality can give rise to a cascade of period-doubling bifurcations leading to chaos for larger, though realistic, values of the amplitude of the seasonal variation of fertility. PMID:25833443

  17. Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution

    SciTech Connect

    Zhou, Yuyu; Smith, Steven J.

    2013-09-09

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/CFSR reanalysis data. The estimated Weibull distribution performs well in fitting the time series wind speed data at the global level according to R2, root mean square error, and power density error. The spatial, decadal, and seasonal patterns of wind speed distribution were then evaluated. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in substantial errors. While large-scale wind speed data is often presented in the form of average wind speeds, these results highlight the need to also provide information on the wind speed distribution.

  18. The temporal patterns of disease severity and prevalence in schistosomiasis

    SciTech Connect

    Ciddio, Manuela; Gatto, Marino Casagrandi, Renato

    2015-03-15

    Schistosomiasis is one of the most widespread public health problems in the world. In this work, we introduce an eco-epidemiological model for its transmission and dynamics with the purpose of explaining both intra- and inter-annual fluctuations of disease severity and prevalence. The model takes the form of a system of nonlinear differential equations that incorporate biological complexity associated with schistosome's life cycle, including a prepatent period in snails (i.e., the time between initial infection and onset of infectiousness). Nonlinear analysis is used to explore the parametric conditions that produce different temporal patterns (stationary, endemic, periodic, and chaotic). For the time-invariant model, we identify a transcritical and a Hopf bifurcation in the space of the human and snail infection parameters. The first corresponds to the occurrence of an endemic equilibrium, while the latter marks the transition to interannual periodic oscillations. We then investigate a more realistic time-varying model in which fertility of the intermediate host population is assumed to seasonally vary. We show that seasonality can give rise to a cascade of period-doubling bifurcations leading to chaos for larger, though realistic, values of the amplitude of the seasonal variation of fertility.

  19. The temporal patterns of disease severity and prevalence in schistosomiasis

    NASA Astrophysics Data System (ADS)

    Ciddio, Manuela; Mari, Lorenzo; Gatto, Marino; Rinaldo, Andrea; Casagrandi, Renato

    2015-03-01

    Schistosomiasis is one of the most widespread public health problems in the world. In this work, we introduce an eco-epidemiological model for its transmission and dynamics with the purpose of explaining both intra- and inter-annual fluctuations of disease severity and prevalence. The model takes the form of a system of nonlinear differential equations that incorporate biological complexity associated with schistosome's life cycle, including a prepatent period in snails (i.e., the time between initial infection and onset of infectiousness). Nonlinear analysis is used to explore the parametric conditions that produce different temporal patterns (stationary, endemic, periodic, and chaotic). For the time-invariant model, we identify a transcritical and a Hopf bifurcation in the space of the human and snail infection parameters. The first corresponds to the occurrence of an endemic equilibrium, while the latter marks the transition to interannual periodic oscillations. We then investigate a more realistic time-varying model in which fertility of the intermediate host population is assumed to seasonally vary. We show that seasonality can give rise to a cascade of period-doubling bifurcations leading to chaos for larger, though realistic, values of the amplitude of the seasonal variation of fertility.

  20. Macroscale Circulation Patterns as Reflected in Spatial and Temporal Patterns of Precipitation over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Conselyea, K.; Yin, Z.

    2007-12-01

    Circulation patterns such as the NAO, PNA, and AO have been known to impact climate both near the action centers and at great distances away. These macroscale circulation patterns can impact regional wind patterns, temperature gradients and pressure gradients. Changes in these gradients can cause an onset of various weather conditions including precipitation. Precipitation across the Tibetan Plateau is influenced by known phenomena such as monsoon systems and teleconnections. Previous studies have suggested that other forcing mechanisms also may play a vital role in influencing precipitation in this region. To evaluate potential forcing factors affecting precipitation across the Tibetan Plateau, the relationship between the spatial and temporal patterns of precipitation and the regional and macroscale circulation patterns will be investigated. To explore this relationship statistical analysis, such as Principal Component Analysis (PCA), Correlation Field Analysis, and Canonical Correspondence Analysis (CCA), is preformed. This study also incorporates tree ring chronologies from Qilian junipers (Sabina przewalskii Kom.) sampled in the Qaidam Basin, northeastern Tibetan Plateau. These data have been used in previous studies to indicate environmental change, and tree rings taken from this region have shown signatures of circulation patterns such as Arctic Oscillation (AO). Based on the relationship between tree ring data and circulation patterns it is possible to reconstruct past events. This information along with examination of National Centers for Environmental Protection/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis data will aid in the examination of the relationship between teleconnection patterns and precipitation, and develop a greater understanding of the precipitation variability across the Tibetan Plateau.

  1. Time-frequency integration characteristics of hearing are optimized for perception of speech-like acoustic patterns.

    PubMed

    Räsänen, Okko; Laine, Unto K

    2013-07-01

    Several psychoacoustic phenomena such as loudness perception, absolute thresholds of hearing, and perceptual grouping in time are affected by temporal integration of the signal in the auditory system. Similarly, the frequency resolution of the hearing system, often expressed in terms of critical bands, implies signal integration across neighboring frequencies. Although progress has been made in understanding the neurophysiological mechanisms behind these processes, the underlying reasons for the observed integration characteristics have remained poorly understood. The current work proposes that the temporal and spectral integration are a result of a system optimized for pattern detection from ecologically relevant acoustic inputs. This argument is supported by a simulation where the average time-frequency structure of speech that is derived from a large set of speech signals shows a good match to the time-frequency characteristics of the human auditory system. The results also suggest that the observed integration characteristics are learnable from acoustic inputs of the auditory environment using a Hebbian-like learning rule. PMID:23862817

  2. Generation of a reference radiation pattern of string instruments using automatic excitation and acoustic centering.

    PubMed

    Shabtai, Noam R; Behler, Gottfried; Vorländer, Michael

    2015-11-01

    Radiation patterns of musical instruments are important for the understanding of music perception in concert halls, and may be used to improve the plausibility of virtual acoustic systems. Many attempts have been performed to measure the spatial response of musical instruments using surrounding spherical microphone arrays with a limited number of microphones. This work presents a high-resolution spatial sampling of the radiation pattern of an electrically excited violin, and addresses technical problems that arise due to mechanical reasons of the excitation apparatus using acoustic centering. PMID:26627818

  3. Acoustics and sociolinguistics: Patterns of communication in hearing impairing classrooms

    NASA Astrophysics Data System (ADS)

    McKellin, William; Shahin, Kimary; Jamieson, Janet; Hodgson, Murray; Pichora-Fuller, Kathleen

    2005-04-01

    In elementary school classes, noise during student led activities is often taken as evidence of successful interaction and learning. In this complex social environment of elementary school classrooms, acquisition of complex language and social skills-the focus of activities in early education-is expected to take place in hearing-hostile environments. Communication and language processing in these contexts requires interactive strategies, discourse forms, and syntactic structures different from the educationally desired forms used in acoustically advantageous environments. Recordings were made of the interaction of groups of students in grades 1-3, 5, and 7 during collaborative group work in their regular classrooms. Each student wore microphones at the ear level and head-mounted video cameras. Each group as a whole was also audio- and videotaped and noise level readings were recorded. Analysis of the acoustical and phonological properties of language heard by each student has demonstrated that the language variety used in these noisy and reverberant settings is similar to that of individuals with hearing impairments. This paper reports similarities between the syntactic structures and pragmatic strategies used by hearing impaired children and normally hearing children in noisy contexts. [Work supported by Peter Wall Institute for Advanced Studies, University of British Columbia.

  4. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  5. Cell patterning with a heptagon acoustic tweezer--application in neurite guidance.

    PubMed

    Gesellchen, F; Bernassau, A L; Déjardin, T; Cumming, D R S; Riehle, M O

    2014-07-01

    Accurate control over positioning of cells is a highly desirable feature in tissue engineering applications since it allows, for example, population of substrates in a controlled fashion, rather than relying on random seeding. Current methods to achieve a differential distribution of cells mostly use passive patterning methods to change chemical, mechanical or topographic properties of surfaces, making areas differentially permissive to the adhesion of cells. However, these methods have no ad hoc control over the actual deposition of cells. Direct patterning methods like bioprinting offer good control over cell position, but require sophisticated instrumentation and are often cost- and time-intensive. Here, we present a novel electronically controlled method of generating dynamic cell patterns by acoustic trapping of cells at a user-determined position, with a heptagonal acoustic tweezer device. We demonstrate the capability of the device to create complex patterns of cells using the device's ability to re-position acoustic traps by using a phase shift in the acoustic wave, and by switching the configuration of active piezoelectric transducers. Furthermore, we show that by arranging Schwann cells from neonatal rats in a linear pattern we are able to create Bands of Büngner-like structures on a non-structured surface and demonstrate that these features are able to guide neurite outgrowth from neonatal rat dorsal root ganglia. PMID:24817215

  6. Temporal and spatial patterns of nitrate in a claypan soil

    SciTech Connect

    Ghidey, F.; Alberts, E.E.

    1999-03-01

    The temporal and spatial patterns of NO{sub 3}-N were studied on a 35-ha field located in the claypan soil region of north-central Missouri. Soil samples were collected from the 0- to 5-, 5- to 10-, and 10- to 15-cm depths and were analyzed for NO{sub 3}-N concentrations. Surface water samples from the field were collected for NO{sub 3}-N and NH{sub 4}-N analysis during each surface runoff event. Groundwater samples were also taken from the field well four times a year for 5 yr and analyzed for NO{sub 3}-N concentrations. The effects of topography, depth to claypan, soil pH, organic matter (OM) content, cation exchange capacity (CEC), and soil water content on the spatial distribution of NO{sub 3}-N concentration were also evaluated. Nitrate-N concentration in the 0- to 5-cm soil depth increased in the first few weeks following application, then decreased rapidly and was very low at harvest. During the study period, nitrate movement below the layer of fertilizer application was very low, and <5% of the total N applied in the soil was lost to surface runoff. Nitrate-N concentration in groundwater samples decreased by an average of 0.40 mg L{sup {minus}1} yr{sup {minus}1} from 1992 to 1996. The semivariograms did not exhibit strong spatial dependency except for the samples collected 1 and 4 wk after fertilizer applications in 1993 and 1995, respectively. Nitrate-N concentration was poorly correlated to soil water content and depth to claypan and relatively strongly correlated to elevation and soil pH.

  7. Spatial and temporal patterns of subtidal and intertidal crabs excursions

    NASA Astrophysics Data System (ADS)

    Silva, A. C. F.; Boaventura, D. M.; Thompson, R. C.; Hawkins, S. J.

    2014-01-01

    Highly mobile predators such as fish and crabs are known to migrate from the subtidal zone to forage in the intertidal zone at high-tide. The extent and variation of these habitat linking movements along the vertical shore gradient have not been examined before for several species simultaneously, hence not accounting for species interactions. Here, the foraging excursions of Carcinus maenas (L.), Necora puber (Linnaeus, 1767) and Cancer pagurus (Linnaeus, 1758) were assessed in a one-year mark-recapture study on two replicated rocky shores in southwest U.K. A comparison between the abundance of individuals present on the shore at high-tide with those present in refuges exposed at low-tide indicated considerable intertidal migration by all species, showing strong linkage between subtidal and intertidal habitats. Estimates of population size based on recapture of marked individuals indicated that an average of ~ 4000 individuals combined for the three crab species, can be present on the shore during one tidal cycle. There was also a high fidelity of individuals and species to particular shore levels. Underlying mechanisms for these spatial patterns such as prey availability and agonistic interactions are discussed. Survival rates were estimated using the Cormack-Jolly-Seber model from multi-recapture analysis and found to be considerably high with a minimum of 30% for all species. Growth rates were found to vary intraspecifically with size and between seasons. Understanding the temporal and spatial variations in predation pressure by crabs on rocky shores is dependent on knowing who, when and how many of these commercially important crab species depend on intertidal foraging. Previous studies have shown that the diet of these species is strongly based on intertidal prey including key species such as limpets; hence intertidal crab migration could be associated with considerable impacts on intertidal assemblages.

  8. Match analysis and temporal patterns of fatigue in rugby sevens.

    PubMed

    Granatelli, Giampietro; Gabbett, Tim J; Briotti, Gianluca; Padulo, Johnny; Buglione, Antonio; D'Ottavio, Stefano; Ruscello, Bruno M

    2014-03-01

    Rugby sevens is a rapidly growing sport. Match analysis is increasingly being used by sport scientists and coaches to improve the understanding of the physical demands of this sport. This study investigated the physical and physiological demands of elite men's rugby sevens, with special reference to the temporal patterns of fatigue during match play. Nine players, 4 backs and 5 forwards (age 25.1 ± 3.1 years) participated during 2 "Roma 7" international tournaments (2010 and 2011). All the players were at the professional level in the highest Italian rugby union, and 5 of these players also competed at the international level. During the matches (n = 15), the players were filmed to assess game performance. Global positioning system, heart rate (HR), and blood lactate (BLa) concentration data were measured and analyzed. The mean total distance covered throughout matches was 1,221 ± 118 m (first half = 643 ± 70 m and second half = 578 ± 77 m; with a decrease of 11.2%, p > 0.05, Effect Size [ES] = 0.29). The players achieved 88.3 ± 4.2 and 87.7 ± 3.4% of the HRmax during the first and second halves, respectively. The BLa for the first and second halves was 3.9 ± 0.9 and 11.2 ± 1.4 mmol·L, respectively. The decreases in performance occurred consistently in the final 3 minutes of the matches (-40.5% in the distance covered per minute). The difference found in relation to the playing position, although not statistically significant (p = 0.11), showed a large ES (η = 0.20), suggesting possible practical implications. These results demonstrate that rugby sevens is a demanding sport that places stress on both the anaerobic glycolytic and aerobic oxidative energy systems. Strength and conditioning programs designed to train these energy pathways may prevent fatigue-induced reductions in physical performance. PMID:23722109

  9. Spatial and Temporal Patterns of Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan

    2014-05-01

    This study determines the spatial and temporal distribution of regions with frequent aerosol-cloud interactions (aci) and identifies their meteorological determinants based on CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and ECMWF (European Centre for Medium-Range Weather Forecasts) data products. Atmospheric aerosols influence the microphysical structure of clouds, while both also respond to meteorological conditions. The potential radiative adjustments to changes in a cloud system associated with aerosol-cloud interactions are grouped and termed as effective radiative forcing due to aerosol-cloud interactions (ERFaci). It is difficult to distinguish, to what extent radiative forcing and precipitation patterns of clouds are a result of cloud feedbacks to aerosols or the existing meteorological conditions. A complete understanding of aerosol-cloud-meteorology interactions is crucial as the uncertainty range of ERFaci in climate change modeling could be significantly reduced. In the present study it is suggested that presence of hydrated aerosols is an implication for aci. Knowledge of their vertical and horizontal distribution and frequency over the globe would be important for understanding ERFaci. To identify regions with aerosol-cloud transitions the CAD score (cloud-aerosol discrimination) of the CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) instrument on the CALIPSO satellite is used. It separates aerosols and clouds according to the probability distribution functions of 5 parameters (attenuated backscatter, total color ratio, volume depolarization ratio, altitude and latitude) and assigns the likelihood of cloud or aerosol presence. This parameter is used to calculate relative frequencies of aci on a global scale from 2006 to 2013.

  10. Intrinsic Temporal Patterning in the Spontaneous Movement of Awake Neonates.

    ERIC Educational Resources Information Center

    Robertson, Steven S.

    1982-01-01

    The temporal organization of spontaneous movement in healthy, awake neonates was studied on the second or third day after birth. Movement was recorded using time lapse photography and quantified as a function of time. Evidence of intrinsic temporal organization among subjects was found. (MP)

  11. ACOUSTIC IDENTIFICATION AND MEASUREMENT OF ACTIVITY PATTERNS OF WHITE GRUBS IN SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activity patterns of Phyllophaga crinita (Burmeister), P. congrua (LeConte), P. crassissima (Blanchard), and Cyclocephala lurida (Bland) grubs were acoustically monitored in small pots of bluegrass, Poa arachnifera Torr, at varying and constant temperatures over multiple-day periods. Distinctive te...

  12. Acoustically Evoked Different Vibration Pattern Across the Width of the Cochlea Partition

    NASA Astrophysics Data System (ADS)

    Zha, Dingjun; Chen, Fangyi; Friderberg, Anders; Choudhury, Niloy; Nuttall, Alfred

    2011-11-01

    Using optical low coherence interferometry, the acoustically evoked vibration patterns of the basilar membrane (BM) and reticular lamina (RL) in the first turn of living guinea pigs were measured as function of the radial location. It was demonstrated that the vibration of the BM varied widely in amplitude, but little in phase across the width of the partition, while the RL had a different vibration pattern compared with the BM.

  13. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside infrasonic radiation, our multiparametric dataset also allowed us to investigate other acoustic processes relevant for explosive eruptions, including shock-wave generation and audible sound radiation, and to link them to the starting conditions and evolution of the blasts.

  14. Flow patterns and transport in Rayleigh surface acoustic wave streaming: combined finite element method and raytracing numerics versus experiments.

    PubMed

    Frommelt, Thomas; Gogel, Daniel; Kostur, Marcin; Talkner, Peter; Hänggi, Peter; Wixforth, Achim

    2008-10-01

    This work presents an approach for determining the streaming patterns that are generated by Rayleigh surface acoustic waves in arbitrary 3-D geometries by finite element method (FEM) simulations. An efficient raytracing algorithm is applied on the acoustic subproblem to avoid the unbearable memory demands and computational time of a conventional FEM acoustics simulation in 3-D. The acoustic streaming interaction is modeled by a body force term in the Stokes equation. In comparisons between experiments and simulated flow patterns, we demonstrate the quality of the proposed technique. PMID:18986877

  15. Pattern recognition of Landsat data based upon temporal trend analysis

    NASA Technical Reports Server (NTRS)

    Engvall, J. L.; Tubbs, J. D.; Holmes, Q. A.

    1977-01-01

    The Delta Classifier defined as an agricultural crop classification scheme employing a temporal trend procedure is applied to more than 100 different Landsat data sets collected during the 1974-1975 growing season throughout the major wheat-producing regions of the United States. The classification approach stresses examination of temporal trends of the Landsat mean vectors of crops in the absence of corresponding ground truth information. It is shown that the resulting classifications compare favorably to ground truth estimates for wheat proportion in those cases where ground truth is available, and that the temporal trend procedure yields estimates of the wheat proportion that are comparable to the best results from maximum likelihood classification with photointerpreter-defined training fields.

  16. Association rule mining based on spatio-temporal processes of spatial distribution patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewu; Su, Fenzhen; Shi, Yishao; He, Yawen

    2008-12-01

    Spatial distribution pattern is an arrangement of two or more spatial objects according to some spatial relations, such as spatial direction, topological and distance relations. In the real world, spatial objects and spatial distribution pattern all vary continuously along the time-line. Traditional spatial and non-spatial data dissevers this continuous spatio-temporal process. Under analyzing relations among spatial object, its attributes and spatial distribution pattern, we brought metaspatio- temporal process, spatio-temporal process and spatial distribution pattern spatio-temporal process. Rainfall in Eastern China has a typical spatial distribution pattern, being composed of the northern rain area and the southern rain area. Through constructing spatio-temporal process transactions, the association rules can be extracted from spatiotemporal process data set by the Apriori algorithm. The result of the spaio-temporal process association rule mining is consistent with the analysis of the theory. Finally, it is concluded that the spatio-temporal process can describe change of a spatial object in a defined time range, and change trend of one entity can be forecasted through varying trend of others based on the valuable spatio-temporal process association rules.

  17. A model for optimizing file access patterns using spatio-temporal parallelism

    SciTech Connect

    Boonthanome, Nouanesengsy; Patchett, John; Geveci, Berk; Ahrens, James; Bauer, Andy; Chaudhary, Aashish; Miller, Ross G.; Shipman, Galen M.; Williams, Dean N.

    2013-01-01

    For many years now, I/O read time has been recognized as the primary bottleneck for parallel visualization and analysis of large-scale data. In this paper, we introduce a model that can estimate the read time for a file stored in a parallel filesystem when given the file access pattern. Read times ultimately depend on how the file is stored and the access pattern used to read the file. The file access pattern will be dictated by the type of parallel decomposition used. We employ spatio-temporal parallelism, which combines both spatial and temporal parallelism, to provide greater flexibility to possible file access patterns. Using our model, we were able to configure the spatio-temporal parallelism to design optimized read access patterns that resulted in a speedup factor of approximately 400 over traditional file access patterns.

  18. Spatial and Temporal Patterns of Tidal Dissipation in Synchronous Satellites

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; Aharonson, Oded

    2003-01-01

    Tidal heating is an important energy source for several solar system bodies, and there is a wide-spread perception that the pattern of surface heat flow is diagnostic of internal structure. We wish to clarify that situation. Our analysis depends upon two important assumptions: First, that heat transport is dominated by conduction. Second, that the body can be modeled by a sequence of spherically symmetric layers, each with a linear visco-elastic rheology. Under these assumptions, surface heat flow patterns in tidally dominated satellites will reflect radially integrated dissipation patterns. For synchronously rotating satellites with zero obliquity, this pattern depends quite strongly on orbital eccentricity but relatively little on purely radial variations in internal structure. The total amount of heat generated within the body does depend sensitively on internal structure, but the spatial pattern is rather insensitive to structure, especially at low orbital eccentricities.

  19. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    SciTech Connect

    Bornholdt, S.; Graudenz, D.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  20. Hemispatial PCA dissociates temporal from parietal ERP generator patterns

    PubMed Central

    Tenke, Craig E.; Kayser, Jürgen; Shankman, Stewart A.; Griggs, Carlye B.; Leite, Paul; Stewart, Jonathan W.; Bruder, Gerard E.

    2008-01-01

    Event-related potentials (31-channel ERPs) were recorded from 38 depressed, unmedicated outpatients and 26 healthy adults (all right-handed) in tonal and phonetic oddball tasks developed to exploit the perceptual challenge of a dichotic stimulation. Tonal nontargets were pairs of complex tones (corresponding to musical notes G and B above middle C) presented simultaneously to each ear (L/R) in an alternating series (G/B or B/G; 2-s fixed SOA). A target tone (note A) replaced one of the pair on 20% of the trials (A/B, G/A, B/A, A/G). Phonetic nontargets were L/R pairs of syllables (/ba/, /da/) with a short voice onset time (VOT), and targets contained a syllable (/ta/) with a long VOT. Subjects responded with a left or right button press to targets (counterbalanced across blocks). Target detection was poorer in patients than controls and for tones than syllables. Reference-free current source densities (CSDs; spherical spline Laplacian) derived from ERP waveforms were simplified and measured using temporal, covariance-based PCA followed by unrestricted Varimax rotation. Target-related N2 sinks and mid-parietal P3 sources were represented by CSD factors peaking at 245 and 440 ms. The P3 source topography included a secondary, left-lateralized temporal lobe maximum for both targets and nontargets. However, a subsequent hemispheric spatiotemporal PCA disentangled temporal lobe N1 and P3 sources as distinct factors. P3 sources were reduced in patients compared with controls, even after using performance as a covariate. Results are consistent with prior reports of P3 reduction in depression and implicate distinct parietal and temporal generators of P3 when using a dichotic oddball paradigm. PMID:17963912

  1. Spatio-temporal patterns of bacteria caused by collective motion

    NASA Astrophysics Data System (ADS)

    Kitsunezaki, So

    2006-04-01

    In incubation experiments on bacterial colonies of Proteus mirabilis, collective motion of bacteria is found to generate macroscopic turbulent patterns on the surface of agar media. We propose a mathematical model to describe the time evolution of the positional and directional distributions of motile bacteria in such systems, and investigate this model both numerically and analytically. It is shown that as the average density of bacteria increases, nonuniform swarming patterns emerge from a uniform stationary state. For a sufficient large density, we find that spiral patterns are caused by interactions between the local bacteria densities and the rotational mode of the collective motion. Unidirectional spiral patterns similar to those observed in experiments appear in the case in which the equilibrium directional distribution is asymmetric.

  2. Dexterous acoustic trapping and patterning of particles assisted by phononic crystal plate

    SciTech Connect

    Wang, Tian; Ke, Manzhu Xu, Shengjun; Feng, Junheng; Qiu, Chunyin; Liu, Zhengyou

    2015-04-20

    In this letter, we present experimental demonstration of multi-particles trapping and patterning by the artificially engineered acoustic field of phononic crystal plate. Polystyrene particles are precisely trapped and patterned in two dimensional arrays, for example, the square, triangular, or quasi-periodic arrays, depending on the structures of the phononic crystal plates with varying sub-wavelength holes array. Analysis shows that the enhanced acoustic radiation force, induced by the resonant transmission field highly localized near the sub-wavelength apertures, accounts for the particles self-organizing. It can be envisaged that this kind of simple design of phononic crystal plates would pave an alternative route for self-assembly of particles and may be utilized in the lab-on-a-chip devices.

  3. Objective Phonological and Subjective Perceptual Characteristics of Syllables Modulate Spatiotemporal Patterns of Superior Temporal Gyrus Activity

    PubMed Central

    Frye, Richard E.; Fisher, Janet McGraw; Witzel, Thomas; Ahlfors, Seppo P.; Swank, Paul; Liederman, Jacqueline; Halgren, Eric

    2008-01-01

    Natural consonant vowel syllables are reliably classified by most listeners as voiced or voiceless. However, our previous research (Liederman et al., 2005) suggests that among synthetic stimuli varying systematically in voice onset time (VOT), syllables that are classified reliably as voiceless are nonetheless perceived differently within and between listeners. This perceptual ambiguity was measured by variation in the accuracy of matching two identical stimuli presented in rapid succession. In the current experiment, we used magnetoencephalography (MEG) to examine the differential contribution of objective (i.e., VOT) and subjective (i.e., perceptual ambiguity) acoustic features on speech processing. Distributed source models estimated cortical activation within two regions of interest in the superior temporal gyrus (STG) and one in the inferior frontal gyrus. These regions were differentially modulated by VOT and perceptual ambiguity. Ambiguity strongly influenced lateralization of activation; however, the influence on lateralization was different in the anterior and middle/posterior portions of the STG. The influence of ambiguity on the relative amplitude of activity in the right and left anterior STG activity depended on VOT, whereas that of middle/posterior portions of the STG did not. These data support the idea that early cortical responses are bilaterally distributed whereas late processes are lateralized to the dominant hemisphere and support a how/what dual-stream auditory model. This study helps to clarify the role of the anterior STG, especially in the right hemisphere, in syllable perception. Moreover, our results demonstrate that both objective phonological and subjective perceptual characteristics of syllables independently modulate spatiotemporal patterns of cortical activation. PMID:18356082

  4. Patterns of altered functional connectivity in mesial temporal lobe epilepsy

    PubMed Central

    Pittau, Francesca; Grova, Christophe; Moeller, Friederike; Dubeau, François; Gotman, Jean

    2013-01-01

    Summary Purpose In mesial temporal lobe epilepsy (MTLE) the epileptogenic area is confined to the mesial temporal lobe, but other cortical and subcortical areas are also affected and cognitive and psychiatric impairments are usually documented. Functional connectivity methods are based on the correlation of the blood oxygen level dependent (BOLD) signal between brain regions, which exhibit consistent and reproducible functional networks from resting state data. The aim of this study is to compare functional connectivity of patients with MTLE during the interictal period with healthy subjects. We hypothesize that patients show reduced functional connectivity compared to controls, the interest being to determine which regions show this reduction. Methods We selected electroencephalography–functional magnetic resonance imaging (EEG-fMRI) resting state data without EEG spikes from 16 patients with right and 7 patients with left MTLE. EEG-fMRI resting state data of 23 healthy subjects matched for age, sex, and manual preference were selected as controls. Four volumes of interest in the left and right amygdalae and hippocampi (LA, RA, LH, and RH) were manually segmented in the anatomic MRI of each subject. The averaged BOLD time course within each volume of interest was used to detect brain regions with BOLD signal correlated with it. Group differences between patients and controls were estimated. Key Findings In patients with right MTLE, group difference functional connectivity maps (RMTLE – controls) showed for RA and RH decreased connectivity with the brain areas of the default mode network (DMN), the ventromesial limbic prefrontal regions, and contralateral mesial temporal structures; and for LA and LH, decreased connectivity with DMN and contralateral hippocampus. Additional decreased connectivity was found between LA and pons and between LH and ventromesial limbic prefrontal structures. In patients with left MTLE, functional connectivity maps (LMTLE – controls) showed for LA and LH decreased connectivity with DMN, contralateral hippocampus, and bilateral ventromesial limbic prefrontal regions; no change in connectivity was detected for RA; and for RH, there was decreased connectivity with DMN, bilateral ventromesial limbic prefrontal regions, and contralateral amygdala and hippocampus. Significance In unilateral MTLE, amygdala and hippocampus on the affected and to a lesser extent on the healthy side are less connected, and are also less connected with the dopaminergic mesolimbic and the DMNs. Changes in functional connectivity between mesial temporal lobe structures and these structures may explain cognitive and psychiatric impairments often found in patients with MTLE. PMID:22578020

  5. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain

    PubMed Central

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-01

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development. PMID:26786896

  6. Data-Driven Rule Mining and Representation of Temporal Patterns in Physiological Sensor Data.

    PubMed

    Banaee, Hadi; Loutfi, Amy

    2015-09-01

    Mining and representation of qualitative patterns is a growing field in sensor data analytics. This paper leverages from rule mining techniques to extract and represent temporal relation of prototypical patterns in clinical data streams. The approach is fully data-driven, where the temporal rules are mined from physiological time series such as heart rate, respiration rate, and blood pressure. To validate the rules, a novel similarity method is introduced, that compares the similarity between rule sets. An additional aspect of the proposed approach has been to utilize natural language generation techniques to represent the temporal relations between patterns. In this study, the sensor data in the MIMIC online database was used for evaluation, in which the mined temporal rules as they relate to various clinical conditions (respiratory failure, angina, sepsis, …) were made explicit as a textual representation. Furthermore, it was shown that the extracted rule set for any particular clinical condition was distinct from other clinical conditions. PMID:26340684

  7. X-ray diffraction pattern of a Gulyaev-Bleustein surface acoustic wave in grazing geometry

    SciTech Connect

    Levonyan, L. V. Khachaturyan, G. K.

    2006-12-15

    The X ray diffraction pattern of a Gulyaev-Bleustein surface acoustic wave (SAW) under grazing angles of incidence in noncoplanar symmetric Laue geometry has been considered. It is supposed that the propagation direction of an SAW makes a small angle with the diffraction vector. It is shown that small deviations from the Bragg angle ({approx}0.01'' induced by the SAW and do not affect the reflection coefficient lead to the formation of diffraction satellites both in the cases of standing and traveling SAWs. It has been established that the recorded diffraction pattern, which is a time-averaged intensity distribution, has characteristic profiles for odd and even satellites.

  8. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  9. Acoustic temporal modulation detection in normal-hearing and cochlear implanted listeners: effects of hearing mechanism and development.

    PubMed

    Park, Min-Hyun; Won, Jong Ho; Horn, David L; Rubinstein, Jay T

    2015-06-01

    Temporal modulation detection ability matures over many years after birth and may be particularly sensitive to experience during this period. Profound hearing loss during early childhood might result in greater perceptual deficits than a similar loss beginning in adulthood. We tested this idea by measuring performance in temporal modulation detection in profoundly deaf children and adults fitted with cochlear implants (CIs). At least two independent variables could constrain temporal modulation detection performance in children with CIs: altered encoding of modulation information due to the CI-auditory nerve interface, and atypical development of central processing of sound information provided by CIs. The effect of altered encoding was investigated by testing subjects with one of two different hearing mechanisms (normal hearing vs. CI) and the effect of atypical development was studied by testing two different age groups. All subjects were tested for their ability to detect acoustic temporal modulations of sound amplitude. A comparison of the slope, or cutoff frequency, of the temporal modulation transfer functions (TMTFs) among the four subject groups revealed that temporal resolution was mainly constrained by hearing mechanism: normal-hearing listeners could detect smaller amplitude modulations at high modulation frequencies than CI users. In contrast, a comparison of the height of the TMTFs revealed a significant interaction between hearing mechanism and age group on overall sensitivity to temporal modulation: sensitivity was significantly poorer in children with CIs, relative to the other three groups. Results suggest that there is an age-specific vulnerability of intensity discrimination or non-sensory factors, which subsequently affects sensitivity to temporal modulation in prelingually deaf children who use CIs. PMID:25790949

  10. Cultural and environmental influences on temporal-spectral development patterns of corn and soybeans

    NASA Technical Reports Server (NTRS)

    Crist, E. P.

    1982-01-01

    A technique for evaluating crop temporal-spectral development patterns is described and applied to the analysis of cropping practices and environmental conditions as they affect reflectance characteristics of corn and soybean canopies. Typical variations in field conditions are shown to exert significant influences on the spectral development patterns, and thereby to affect the separability of the two crops.

  11. [Clinical pattern of epilepsy with abortive temporal lobe attacks].

    PubMed

    Dowzenko, A; Niedzielska-Zawadzka, K; Witkowska-Olearska, K; Jakubowska, T

    1977-01-01

    The purpose of the present work was to evaluate the clinical course of epilepsy with infrequent partial attacks with complex manifestations derived from the temporal lobe. Thirty patients aged 14 to 64 years treated on an outpatient basis and discovered during epidemiological investigations were followed-up. In half the cases only attacks without generalization occurred, in the remaining cases isolated generalized seizures appeared during many years of disease duration. In both groups a decrease was observed in the frequency of seizures in patients treated systematically or irregularly, as well as in those who had never been treated. Despite a long duration of the disease (above 6 years in 24 cases) the patients had normal mental level and good social adaptation. PMID:840359

  12. Acoustic correlates of English rhythmic patterns for American versus Japanese speakers.

    PubMed

    Mori, Yoko; Hori, Tomoko; Erickson, Donna

    2014-01-01

    This study investigates acoustic correlates of English rhythmic patterns for 20 American English speakers (AS) and 42 Japanese learners of English (JS). The results indicate that for AS in an English sentence where monosyllabic content and function words alternate, the vowels in content words are over twice as long as those in function words, resulting in alternating long-short vowels. In contrast, the JS show no stress-related duration control and realize a similar rhythmic pattern mostly through recursive high-low fundamental frequency (F0). In a sentence with a sequence of content words in which 4 stressed syllables occur successively, the AS show recursion of strong-weak syllables by means of F0, intensity and first formant, whereas JS show inconsistent stress patterns. These results indicate that the AS apply different strategies for implementing rhythmic alternation depending on sentence stress patterns, and these strategies are different from those of JS. PMID:25227394

  13. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves.

    PubMed

    Collins, David J; Morahan, Belinda; Garcia-Bustos, Jose; Doerig, Christian; Plebanski, Magdalena; Neild, Adrian

    2015-01-01

    In single-cell analysis, cellular activity and parameters are assayed on an individual, rather than population-average basis. Essential to observing the activity of these cells over time is the ability to trap, pattern and retain them, for which previous single-cell-patterning work has principally made use of mechanical methods. While successful as a long-term cell-patterning strategy, these devices remain essentially single use. Here we introduce a new method for the patterning of multiple spatially separated single particles and cells using high-frequency acoustic fields with one cell per acoustic well. We characterize and demonstrate patterning for both a range of particle sizes and the capture and patterning of cells, including human lymphocytes and red blood cells infected by the malarial parasite Plasmodium falciparum. This ability is made possible by a hitherto unexplored regime where the acoustic wavelength is on the same order as the cell dimensions. PMID:26522429

  14. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Collins, David J.; Morahan, Belinda; Garcia-Bustos, Jose; Doerig, Christian; Plebanski, Magdalena; Neild, Adrian

    2015-11-01

    In single-cell analysis, cellular activity and parameters are assayed on an individual, rather than population-average basis. Essential to observing the activity of these cells over time is the ability to trap, pattern and retain them, for which previous single-cell-patterning work has principally made use of mechanical methods. While successful as a long-term cell-patterning strategy, these devices remain essentially single use. Here we introduce a new method for the patterning of multiple spatially separated single particles and cells using high-frequency acoustic fields with one cell per acoustic well. We characterize and demonstrate patterning for both a range of particle sizes and the capture and patterning of cells, including human lymphocytes and red blood cells infected by the malarial parasite Plasmodium falciparum. This ability is made possible by a hitherto unexplored regime where the acoustic wavelength is on the same order as the cell dimensions.

  15. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves

    PubMed Central

    Collins, David J.; Morahan, Belinda; Garcia-Bustos, Jose; Doerig, Christian; Plebanski, Magdalena; Neild, Adrian

    2015-01-01

    In single-cell analysis, cellular activity and parameters are assayed on an individual, rather than population-average basis. Essential to observing the activity of these cells over time is the ability to trap, pattern and retain them, for which previous single-cell-patterning work has principally made use of mechanical methods. While successful as a long-term cell-patterning strategy, these devices remain essentially single use. Here we introduce a new method for the patterning of multiple spatially separated single particles and cells using high-frequency acoustic fields with one cell per acoustic well. We characterize and demonstrate patterning for both a range of particle sizes and the capture and patterning of cells, including human lymphocytes and red blood cells infected by the malarial parasite Plasmodium falciparum. This ability is made possible by a hitherto unexplored regime where the acoustic wavelength is on the same order as the cell dimensions. PMID:26522429

  16. Effective beam pattern of the Blainville's beaked whale (Mesoplodon densirostris) and implications for passive acoustic monitoring.

    PubMed

    Shaffer, Jessica Ward; Moretti, David; Jarvis, Susan; Tyack, Peter; Johnson, Mark

    2013-03-01

    The presence of beaked whales in mass-strandings coincident with navy maneuvers has prompted the development of methods to detect these cryptic animals. Blainville's beaked whales, Mesoplodon densirostris, produce distinctive echolocation clicks during long foraging dives making passive acoustic detection a possibility. However, performance of passive acoustic monitoring depends upon the source level, beam pattern, and clicking behavior of the whales. In this study, clicks recorded from Digital acoustic Tags (DTags) attached to four M. densirostris were linked to simultaneous recordings from an 82-hydrophone bottom-mounted array to derive the source level and beam pattern of the clicks, as steps towards estimating their detectability. The mean estimated on-axis apparent source level for the four whales was 201 dBrms97. The mean 3 dB beamwidth and directivity index, estimated from sequences of clicks directed towards the far-field hydrophones, were 13° and 23 dB, respectively. While searching for prey, Blainville's beaked whales scan their heads horizontally at a mean rate of 3.6°/s over an angular range of some +/-10°. Thus, while the DI indicates a narrow beam, the area of ensonification over a complete foraging dive is large given the combined effects of body and head movements associated with foraging. PMID:23464046

  17. Temporal Patterns in Seawater Quality from Dredging in Tropical Environments.

    PubMed

    Jones, Ross; Fisher, Rebecca; Stark, Clair; Ridd, Peter

    2015-01-01

    Maintenance and capital dredging represents a potential risk to tropical environments, especially in turbidity-sensitive environments such as coral reefs. There is little detailed, published observational time-series data that quantifies how dredging affects seawater quality conditions temporally and spatially. This information is needed to test realistic exposure scenarios to better understand the seawater-quality implications of dredging and ultimately to better predict and manage impacts of future projects. Using data from three recent major capital dredging programs in North Western Australia, the extent and duration of natural (baseline) and dredging-related turbidity events are described over periods ranging from hours to weeks. Very close to dredging i.e. <500 m distance, a characteristic features of these particular case studies was high temporal variability. Over several hours suspended sediment concentrations (SSCs) can range from 100-500 mg L-1. Less turbid conditions (10-80 mg L-1) can persist over several days but over longer periods (weeks to months) averages were <10 mg L-1. During turbidity events all benthic light was sometimes extinguished, even in the shallow reefal environment, however a much more common feature was very low light 'caliginous' or daytime twilight periods. Compared to pre-dredging conditions, dredging increased the intensity, duration and frequency of the turbidity events by 10-, 5- and 3-fold respectively (at sites <500 m from dredging). However, when averaged across the entire dredging period of 80-180 weeks, turbidity values only increased by 2-3 fold above pre-dredging levels. Similarly, the upper percentile values (e.g., P99, P95) of seawater quality parameters can be highly elevated over short periods, but converge to values only marginally above baseline states over longer periods. Dredging in these studies altered the overall probability density distribution, increasing the frequency of extreme values. As such, attempts to understand the potential biological impacts must consider impacts across telescoping-time frames and changes to extreme conditions in addition to comparing central tendency (mean/median). An analysis technique to capture the entire range of likely conditions over time-frames from hours to weeks is described using a running means/percentile approach. PMID:26444284

  18. Temporal Patterns in Seawater Quality from Dredging in Tropical Environments

    PubMed Central

    Jones, Ross; Fisher, Rebecca; Stark, Clair; Ridd, Peter

    2015-01-01

    Maintenance and capital dredging represents a potential risk to tropical environments, especially in turbidity-sensitive environments such as coral reefs. There is little detailed, published observational time-series data that quantifies how dredging affects seawater quality conditions temporally and spatially. This information is needed to test realistic exposure scenarios to better understand the seawater-quality implications of dredging and ultimately to better predict and manage impacts of future projects. Using data from three recent major capital dredging programs in North Western Australia, the extent and duration of natural (baseline) and dredging-related turbidity events are described over periods ranging from hours to weeks. Very close to dredging i.e. <500 m distance, a characteristic features of these particular case studies was high temporal variability. Over several hours suspended sediment concentrations (SSCs) can range from 100–500 mg L-1. Less turbid conditions (10–80 mg L-1) can persist over several days but over longer periods (weeks to months) averages were <10 mg L-1. During turbidity events all benthic light was sometimes extinguished, even in the shallow reefal environment, however a much more common feature was very low light ‘caliginous’ or daytime twilight periods. Compared to pre-dredging conditions, dredging increased the intensity, duration and frequency of the turbidity events by 10-, 5- and 3-fold respectively (at sites <500 m from dredging). However, when averaged across the entire dredging period of 80–180 weeks, turbidity values only increased by 2–3 fold above pre-dredging levels. Similarly, the upper percentile values (e.g., P99, P95) of seawater quality parameters can be highly elevated over short periods, but converge to values only marginally above baseline states over longer periods. Dredging in these studies altered the overall probability density distribution, increasing the frequency of extreme values. As such, attempts to understand the potential biological impacts must consider impacts across telescoping-time frames and changes to extreme conditions in addition to comparing central tendency (mean/median). An analysis technique to capture the entire range of likely conditions over time-frames from hours to weeks is described using a running means/percentile approach. PMID:26444284

  19. Temporal and spatial patterns of suicides in Stockholm's subway stations.

    PubMed

    Uittenbogaard, Adriaan; Ceccato, Vania

    2015-08-01

    This paper investigates the potential temporal and spatial variations of suicides in subway stations in Stockholm, Sweden. The study also assesses whether the variation in suicide rates is related to the station environments by controlling for each station's location and a number of contextual factors using regression models and geographical information systems (GIS). Data on accidents are used as references for the analysis of suicides. Findings show that suicides tend to occur during the day and in the spring. They are concentrated in the main transportation hubs but, interestingly, during off-peak hours. However, the highest rates of suicides per passenger are found in Stockholm's subway stations located in the Southern outskirts. More than half of the variation in suicide rates is associated with stations that have walls between the two sides of the platform but still allow some visibility from passers-by. The surrounding environment and socioeconomic context show little effect on suicide rates, but stations embedded in areas with high drug-related crime rates tend to show higher suicide rates. PMID:25958035

  20. Spatial and temporal patterns of global onshore wind speed distribution

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyu; Smith, Steven J.

    2013-09-01

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/climate forecast system reanalysis (CFSR) data over land areas. The Weibull distribution performs well in fitting the time series wind speed data at most locations according to R2, root mean square error, and power density error. The wind speed frequency distribution, as represented by the Weibull k parameter, exhibits a large amount of spatial variation, a regionally varying amount of seasonal variation, and relatively low decadal variation. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in non-negligible errors. While large-scale wind speed data are often presented in the form of mean wind speeds, these results highlight the need to also provide information on the wind speed frequency distribution.

  1. Two temporal functions of Glass: Ommatidium patterning and photoreceptor differentiation.

    PubMed

    Liang, Xulong; Mahato, Simpla; Hemmerich, Chris; Zelhof, Andrew C

    2016-06-01

    Much progress has been made in elucidating the molecular networks required for specifying retinal cells, including photoreceptors, but the downstream mechanisms that maintain identity and regulate differentiation remain poorly understood. Here, we report that the transcription factor Glass has a dual role in establishing a functional Drosophila eye. Utilizing conditional rescue approaches, we confirm that persistent defects in ommatidium patterning combined with cell death correlate with the overall disruption of eye morphology in glass mutants. In addition, we reveal that Glass exhibits a separable role in regulating photoreceptor differentiation. In particular, we demonstrate the apparent loss of glass mutant photoreceptors is not only due to cell death but also a failure of the surviving photoreceptors to complete differentiation. Moreover, the late reintroduction of Glass in these developmentally stalled photoreceptors is capable of restoring differentiation in the absence of correct ommatidium patterning. Mechanistically, transcription profiling at the time of differentiation reveals that Glass is necessary for the expression of many genes implicated in differentiation, i.e. rhabdomere morphogenesis, phototransduction, and synaptogenesis. Specifically, we show Glass directly regulates the expression of Pph13, which encodes a transcription factor necessary for opsin expression and rhabdomere morphogenesis. Finally, we demonstrate the ability of Glass to choreograph photoreceptor differentiation is conserved between Drosophila and Tribolium, two holometabolous insects. Altogether, our work identifies a fundamental regulatory mechanism to generate the full complement of cells required for a functional rhabdomeric visual system and provides a critical framework to investigate the basis of differentiation and maintenance of photoreceptor identity. PMID:27105580

  2. Spatial and Temporal Emergence Pattern of Lyme Disease in Virginia

    PubMed Central

    Li, Jie; Kolivras, Korine N.; Hong, Yili; Duan, Yuanyuan; Seukep, Sara E.; Prisley, Stephen P.; Campbell, James B.; Gaines, David N.

    2014-01-01

    The emergence of infectious diseases over the past several decades has highlighted the need to better understand epidemics and prepare for the spread of diseases into new areas. As these diseases expand their geographic range, cases are recorded at different geographic locations over time, making the analysis and prediction of this expansion complicated. In this study, we analyze spatial patterns of the disease using a statistical smoothing analysis based on areal (census tract level) count data of Lyme disease cases in Virginia from 1998 to 2011. We also use space and space–time scan statistics to reveal the presence of clusters in the spatial and spatiotemporal distribution of Lyme disease. Our results confirm and quantify the continued emergence of Lyme disease to the south and west in states along the eastern coast of the United States. The results also highlight areas where education and surveillance needs are highest. PMID:25331806

  3. Dynamical Properties of Transient Spatio-Temporal Patterns in Bacterial Colony of Proteus mirabilis

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazuhiko; Wakita, Jun-ichi; Itoh, Hiroto; Shimada, Hirotoshi; Kurosu, Sayuri; Ikeda, Takemasa; Yamazaki, Yoshihiro; Matsuyama, Tohey; Matsushita, Mitsugu

    2002-02-01

    Spatio-temporal patterns emerged inside a colony of bacterial species Proteus mirabilis on the surface of nutrient-rich semisolid agar medium have been investigated. We observed various patterns composed of the following basic types: propagating stripe, propagating stripe with fixed dislocation, expanding and shrinking target, and rotating spiral. The remarkable point is that the pattern changes immediately when we alter the position for observation, but it returns to the original if we restore the observing position within a few minutes. We further investigated mesoscopic and microscopic properties of the spatio-temporal patterns. It turned out that whenever the spatio-temporal patterns are observed in a colony, the areas are composed of two superimposed monolayers of elongated bacterial cells. In each area they are aligned almost parallel with each other like a two-dimensional nematic liquid crystal, and move collectively and independently of another layer. It has been found that the observed spatio-temporal patterns are explained as the moiré effect.

  4. Processes driving temporal dynamics in the nested pattern of waterbird communities

    NASA Astrophysics Data System (ADS)

    Sebastián-González, Esther; Botella, Francisco; Paracuellos, Mariano; Sánchez-Zapata, José Antonio

    2010-03-01

    Nestedness is a common pattern of bird communities in habitat patches, and it describes the situation where smaller communities form proper subsets of larger communities. Several studies have examined the processes causing nestedness and the implications for conservation, but few have considered the temporal changes in these processes. We used data from 6 years and two seasons (wintering and breeding) to explore the temporal changes in the causes of the nested pattern of a waterbird community in man-made irrigation ponds. Nestedness was significant in both seasons and in all years, and thus temporally stable. Despite the nestedness of waterbird communities, the proportion of idiosyncratic species (species that do not follow the nested pattern) was higher than in other studies. Furthermore, the idiosyncratic species often had endangered status. Selective colonisation and, mainly, selective extinction were the most important factors producing the nested pattern. In addition, the nested structure of the microhabitats at the ponds also caused the pattern. The causes of the pattern changed temporally even in the absence of big disturbance events. In general, breeding communities were more stable than wintering communities, and the seasonal differences in the causes of the nestedness were larger than the inter-annual differences. Consequently, studies of community nestedness from only one snapshot in time should be considered with caution.

  5. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation.

    PubMed

    Fried, S I; Hsueh, H A; Werblin, F S

    2006-02-01

    The goal of retinal prosthetic devices is to generate meaningful visual information in patients that have lost outer retinal function. To accomplish this, these devices should generate patterns of ganglion cell activity that closely resemble the spatial and temporal components of those patterns that are normally elicited by light. Here, we developed a stimulus paradigm that generates precise temporal patterns of activity in retinal ganglion cells, including those patterns normally generated by light. Electrical stimulus pulses (> or =1-ms duration) elicited activity in neurons distal to the ganglion cells; this resulted in ganglion cell spiking that could last as long as 100 ms. However, short pulses, <0.15 ms, elicited only a single spike within 0.7 ms of the leading edge of the pulse. Trains of these short pulses elicited one spike per pulse at frequencies < or =250 Hz. Patterns of short electrical pulses (derived from normal light elicited spike patterns) were delivered to ganglion cells and generated spike patterns that replicated the normal light patterns. Finally, we found that one spike per pulse was elicited over almost a 2.5:1 range of stimulus amplitudes. Thus a common stimulus amplitude could accommodate a 2.5:1 range of activation thresholds, e.g., caused by differences arising from cell biophysical properties or from variations in electrode-to-cell distance arising when a multielectrode array is placed on the retina. This stimulus paradigm can generate the temporal resolution required for a prosthetic device. PMID:16236780

  6. The dynamics of spatio-temporal Rho GTPase signaling: formation of signaling patterns

    PubMed Central

    Fritz, Rafael Dominik; Pertz, Olivier

    2016-01-01

    Rho GTPases are crucial signaling molecules that regulate a plethora of biological functions. Traditional biochemical, cell biological, and genetic approaches have founded the basis of Rho GTPase biology. The development of biosensors then allowed measuring Rho GTPase activity with unprecedented spatio-temporal resolution. This revealed that Rho GTPase activity fluctuates on time and length scales of tens of seconds and micrometers, respectively. In this review, we describe Rho GTPase activity patterns observed in different cell systems. We then discuss the growing body of evidence that upstream regulators such as guanine nucleotide exchange factors and GTPase-activating proteins shape these patterns by precisely controlling the spatio-temporal flux of Rho GTPase activity. Finally, we comment on additional mechanisms that might feed into the regulation of these signaling patterns and on novel technologies required to dissect this spatio-temporal complexity. PMID:27158467

  7. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images.

    PubMed

    Hesford, Andrew J; Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C

    2014-08-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast. PMID:25096103

  8. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images

    PubMed Central

    Hesford, Andrew J.; Tillett, Jason C.; Astheimer, Jeffrey P.; Waag, Robert C.

    2014-01-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast. PMID:25096103

  9. Learning temporal patterns of risk in a predator-diverse environment.

    PubMed

    Bosiger, Yoland J; Lonnstedt, Oona M; McCormick, Mark I; Ferrari, Maud C O

    2012-01-01

    Predation plays a major role in shaping prey behaviour. Temporal patterns of predation risk have been shown to drive daily activity and foraging patterns in prey. Yet the ability to respond to temporal patterns of predation risk in environments inhabited by highly diverse predator communities, such as rainforests and coral reefs, has received surprisingly little attention. In this study, we investigated whether juvenile marine fish, Pomacentrus moluccensis (lemon damselfish), have the ability to learn to adjust the intensity of their antipredator response to match the daily temporal patterns of predation risk they experience. Groups of lemon damselfish were exposed to one of two predictable temporal risk patterns for six days. "Morning risk" treatment prey were exposed to the odour of Cephalopholis cyanostigma (rockcod) paired with conspecific chemical alarm cues (simulating a rockcod present and feeding) during the morning, and rockcod odour only in the evening (simulating a rockcod present but not feeding). "Evening risk" treatment prey had the two stimuli presented to them in the opposite order. When tested individually for their response to rockcod odour alone, lemon damselfish from the morning risk treatment responded with a greater antipredator response intensity in the morning than in the evening. In contrast, those lemon damselfish previously exposed to the evening risk treatment subsequently responded with a greater antipredator response when tested in the evening. The results of this experiment demonstrate that P. moluccensis have the ability to learn temporal patterns of predation risk and can adjust their foraging patterns to match the threat posed by predators at a given time of day. Our results provide the first experimental demonstration of a mechanism by which prey in a complex, multi-predator environment can learn and respond to daily patterns of predation risk. PMID:22493699

  10. Learning Temporal Patterns of Risk in a Predator-Diverse Environment

    PubMed Central

    Bosiger, Yoland J.; Lonnstedt, Oona M.; McCormick, Mark I.; Ferrari, Maud C. O.

    2012-01-01

    Predation plays a major role in shaping prey behaviour. Temporal patterns of predation risk have been shown to drive daily activity and foraging patterns in prey. Yet the ability to respond to temporal patterns of predation risk in environments inhabited by highly diverse predator communities, such as rainforests and coral reefs, has received surprisingly little attention. In this study, we investigated whether juvenile marine fish, Pomacentrus moluccensis (lemon damselfish), have the ability to learn to adjust the intensity of their antipredator response to match the daily temporal patterns of predation risk they experience. Groups of lemon damselfish were exposed to one of two predictable temporal risk patterns for six days. “Morning risk” treatment prey were exposed to the odour of Cephalopholis cyanostigma (rockcod) paired with conspecific chemical alarm cues (simulating a rockcod present and feeding) during the morning, and rockcod odour only in the evening (simulating a rockcod present but not feeding). “Evening risk” treatment prey had the two stimuli presented to them in the opposite order. When tested individually for their response to rockcod odour alone, lemon damselfish from the morning risk treatment responded with a greater antipredator response intensity in the morning than in the evening. In contrast, those lemon damselfish previously exposed to the evening risk treatment subsequently responded with a greater antipredator response when tested in the evening. The results of this experiment demonstrate that P. moluccensis have the ability to learn temporal patterns of predation risk and can adjust their foraging patterns to match the threat posed by predators at a given time of day. Our results provide the first experimental demonstration of a mechanism by which prey in a complex, multi-predator environment can learn and respond to daily patterns of predation risk. PMID:22493699

  11. Patterns of temporal scaling of groundwater level fluctuation

    NASA Astrophysics Data System (ADS)

    Yu, Xue; Ghasemizadeh, Reza; Padilla, Ingrid Y.; Kaeli, David; Alshawabkeh, Akram

    2016-05-01

    We studied the fractal scaling behavior of groundwater level fluctuation for various types of aquifers in Puerto Rico using the methods of (1) detrended fluctuation analysis (DFA) to examine the monofractality and (2) wavelet transform maximum modulus (WTMM) to analyze the multifractality. The DFA results show that fractals exist in groundwater fluctuations of all the aquifers with scaling patterns that are anti-persistent (1 < β < 1.5; 1.32 ± 0.12, 18 wells) or persistent (β > 1.5; 1.62 ± 0.07, 4 wells). The multifractal analysis confirmed the need to characterize these highly complex processes with multifractality, which originated from the stochastic distribution of the irregularly-shaped fluctuations. The singularity spectra of the fluctuation processes in each well were site specific. We found a general elevational effect with smaller fractal scaling coefficients in the shallower wells, except for the Northern Karst Aquifer Upper System. High spatial variability of fractal scaling of groundwater level fluctuations in the karst aquifer is due to the coupled effects of anthropogenic perturbations, precipitation, elevation and particularly the high heterogeneous hydrogeological conditions.

  12. Detecting spatial and temporal patterns of aboveground production in a tallgrass prairie using remotely sensed data

    SciTech Connect

    Su, Haiping; Krummel, J.R.; Briggs, J.M.; Knapp, A.K.; Blair, J.M.

    1996-05-01

    Spatial and temporal patterns of aboveground production is a tallgrass prairie ecosystem constitute one of the important spatial components associated with ecological processes and biophysical resources (e.g. water and nutrients). This study addresses the effects of disturbance, topography, and climate on the spatial and temporal patterns of North American tallgrass prairie at a landscape level by using high resolution satellite data. Spatial heterogeneity derived from the satellite data was related to the impacts of the disturbance of fire and grazing, topographical gradient, and amount of precipitation during the growing season. The result suggests that ecological processes and biophysical resources can be quantified with high resolution satellite data for tallgrass prairie management.

  13. A smart pattern recognition system for the automatic identification of aerospace acoustic sources

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Fuller, C. R.

    1989-01-01

    An intelligent air-noise recognition system is described that uses pattern recognition techniques to distinguish noise signatures of five different types of acoustic sources, including jet planes, propeller planes, a helicopter, train, and wind turbine. Information for classification is calculated using the power spectral density and autocorrelation taken from the output of a single microphone. Using this system, as many as 90 percent of test recordings were correctly identified, indicating that the linear discriminant functions developed can be used for aerospace source identification.

  14. Geochemical and temporal patterns of felsic volcanism in Ethiopia

    SciTech Connect

    Walter, R.C.; Westgate, J.A.; Giday, W.G.; Aronson, J.L.; Hart, W.K.

    1985-01-01

    At least three major geochemical groups characterize late Cenozoic felsic volcanism exposed in the central Ethiopian Rift graben or along its uplifted margins. Each group is distinguished by age and/or position with distinctive compositional traits that are probably tectonically controlled. They include: (1) large-volume Pliocene tholeiitic to calcalkaline rhyolitic ignimbrites that form >500m thick exposures along the rift margins. These have moderate FeO/sub T/ (1.5-3.0%), low CaO (<0.5%) and moderately steep REE slopes (Ce/Yb = 21-24) with large negative Eu anomalies (Eu/Eu* = 0.2-0.4). K/Ar ages range from 4.5 to 3.0 Ma. These ignimbrites must have been associated with major caldera-forming events, but no calderas of this age or chemistry have yet been found; (2) Plio-Pleistocene trachytic volcanoes occur on the Ethiopian Highland, parallel to the rift axis. These have low SiO/sub 2/ (60-70%), high FeO/sub T/ (4-8%) and steep REE patterns (Ce/Yb = 25-37) with very small negative Eu anomalies (0.8-0.9). The volcanoes of Chilalo, Kaka, Hunkulu and the Bada Range are of this group. K/Ar ages range from 3.5 to 1.0 Ma; (3) Pleistocene peralkaline rhyolitic volcanoes of the Ethiopian Rift graben have high FeO/sub T/ (5-8%), high Na/sub 2/O (6-8%) and shallow REE profiles (Ce/Yb = 14-21) with small Eu anomalies (0.5 to 0.6). K/Ar ages range from 0.5 to <0.05 Ma. The volcanoes of Aluto and Dofen are of this group. Eruption of Group 1 signaled the modern rapid development of the present rift; Group 2 overlapped in time and mainly was confined to the Plateau margins; and Group 3 represents the present mature stage of rift floor volcanism.

  15. Spatio-Temporal Patterns in Colonies of Rod-Shaped Bacteria

    NASA Astrophysics Data System (ADS)

    Kitsunezaki, S.

    In incubation experiments of bacterial colonies of Proteus Mirabilis, macroscopic spatio-temporal patterns, such as turbulent and unidirectional spiral patterns, appear in colonies. Considering only kinetic propeties of rod-shaped bacteria, we propose a phenomenological model for the directional and positional distributions. As the average density increases, homogeneous states bifurcate sub-critically into nonuniform states exhibiting localized collective motion, and spiral patterns appear for sufficiently large density. These patterns result from interactions between the local bacteria densities and the order parameter representing collective motion. Our model can be described by reduced equations using a perturbative method for large density. The unidirectionality of sprial rotation is also discussed.

  16. Rainfall Redistribution in a Tropical Forest: Spatial Patterns and Temporal Persistence.

    NASA Astrophysics Data System (ADS)

    Zimmermann, A.; Zimmermann, B.; Elsenbeer, H.

    2008-12-01

    The quest for hidden spatial patterns has left few near-surface processes untouched, and throughfall is not one of them. Indeed, the spatial patterns of several hydrological and biogeochemical processes at the forest floor have been linked to throughfall patterns. And yet, the geographical bias of pertinent previous studies and their methodologies and approaches to data analysis cast a doubt on the general validity of claims regarding spatial patterns of throughfall. We employed a mixed design- and model-based and event-based sampling strategy with an extent of one hectare and 220 throughfall collectors in a tropical rainforest in an attempt to separate spatial patterns from spatial illusions. For most of 56 sampled events, throughfall frequency distributions called for robust variogram estimation techniques. In the presence of outliers, the classical, non-robust variogram estimator not only overestimates the sill variance but also induces artificial autocorrelation structures. Throughfall patterns typically displayed no or only weak autocorrelations, except in areas with little understory where measurements correlated over 10 - 15 m. The temporal persistence of throughfall was high, that is, measurements at individual sampling points were significantly correlated over consecutive wet seasons. Interestingly, seasonality, and hence deciduousness, had a negligible influence, whereas the magnitude of an event strongly determined the temporal stability of throughfall. Our results demonstrate that vegetation characteristics strongly influence spatial patterns of throughfall, whereas the temporal persistence of throughfall largely depends on event size.

  17. Characterizing spatial and temporal patterns of intermittent rivers

    NASA Astrophysics Data System (ADS)

    de Vries, Stefan B.; Hoeve, Jasper; Sauquet, Eric; Leigh, Catherine; Bonada, Núria; Fike, Kimberly; Dahm, Clifford; Booij, Martijn J.; Datry, Thibault

    2015-04-01

    Intermittent rivers (IRs) support high biodiversity due to their dynamic alternations between terrestrial and aquatic phases. They represent a large proportion of the river network. However the current knowledge on these ecosystems is limited. The international research project "Intermittent River Biodiversity Analysis and Synthesis" (IRBAS, www.irbas.fr) aims to collect and analyze data on IR biodiversity from France, Spain, North America and Australia. These activities ultimately should help in identifying relationships between flow regime components and ecological responses. The IRBAS project will provide guidelines for policy-makers and resource managers for effective water and habitat management, restoration and preservation. This work examines one of the aspects in the IRBAS project: studying the large-scale spatial distribution of IRs as well as the year-to-year variability of zero-flow events. IRs were described by two variables: the frequency of periods without flow (FREQ) per time period (months or years) and the total number of zero-flow days (DUR) in a specified time window (month or year). Daily discharge data from more than 1700 gauging stations with no significant human influence on flow were collected from France, Spain, Australia and conterminous United States. A minimum length of 30 years of data starting from 1970 was required with less than 5% of missing data. Climate data for France and Australia were also collected. A classification of perennial versus intermittent rivers was defined, with 455 stations out of the 1684 considered "intermittent", i.e. the gauging station records had, on average, at least 5 zero-flow days per year. The analysis of the subset of IRs showed that: - Greater than 50% of the IRs in the database is located in Australia, where only 35% of the stations are considered perennial. In Spain the proportion of IRs reaches 25%. The proportion of intermittent rivers in France (7%) is certainly underestimated as a consequence of the monitoring strategy, i.e. gauging stations have been primarily installed to measure perennial flows of medium size basins and most of the IRs remain ungauged. This is also true in the US where ~ 7% of the current and historical gage network is on intermittent rivers. - Intermittence of rivers demonstrates high seasonality which varies from one country to another. - Links between climate variability and intermittence are not straightforward. No relation was found between annual DUR and annual precipitation in France whereas DUR was significantly correlated with precipitation in Australia. Potential evapotranspiration was correlated with DUR for France, but not for Australia, where the results were more obscure. - No spatially coherent trends in flow intermittence were identified in Spain, France or the USA. Significant trends according to the Mann Kendall test were found in Australia and results suggest trends in yearly DUR consistent with observed changes in rainfall in Western Australia during the last few decades. The El Nino cycle is one of the possible sources of variability in intermittency patterns.

  18. Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data.

    PubMed

    Bach, Benjamin; Shi, Conglei; Heulot, Nicolas; Madhyastha, Tara; Grabowski, Tom; Dragicevic, Pierre

    2016-01-01

    We introduce time curves as a general approach for visualizing patterns of evolution in temporal data. Examples of such patterns include slow and regular progressions, large sudden changes, and reversals to previous states. These patterns can be of interest in a range of domains, such as collaborative document editing, dynamic network analysis, and video analysis. Time curves employ the metaphor of folding a timeline visualization into itself so as to bring similar time points close to each other. This metaphor can be applied to any dataset where a similarity metric between temporal snapshots can be defined, thus it is largely datatype-agnostic. We illustrate how time curves can visually reveal informative patterns in a range of different datasets. PMID:26529718

  19. Spatio-temporal expression patterns of anterior Hox genes during Nile tilapia (Oreochromis niloticus) embryonic development.

    PubMed

    Lyon, R Stewart; Davis, Adam; Scemama, Jean-Luc

    2013-01-01

    Hox genes encode transcription factors that function to pattern regional tissue identities along the anterior-posterior axis during animal embryonic development. Divergent nested Hox gene expression patterns within the posterior pharyngeal arches may play an important role in patterning morphological variation in the pharyngeal jaw apparatus (PJA) between evolutionarily divergent teleost fishes. Recent gene expression studies have shown the expression patterns from all Hox paralog group (PG) 2-6 genes in the posterior pharyngeal arches (PAs) for the Japanese medaka (Oryzias latipes) and from most genes of these PGs for the Nile tilapia (Oreochromis niloticus). While several orthologous Hox genes exhibit divergent spatial and temporal expression patterns between these two teleost species in the posterior PAs, several tilapia Hox gene expression patterns from PG3-6 must be documented for a full comparative study. Here we present the spatio-temporal expression patterns of hoxb3b, c3a, b4a, a5a, b5a, b5b, b6a and b6b in the neural tube and posterior PAs of the Nile tilapia. We show that several of these tilapia Hox genes exhibit divergent expression patterns in the posterior PAs from their medaka orthologs. We also compare these gene expression patterns to orthologs in other gnathostome vertebrates, including the dogfish shark. PMID:23376031

  20. Spatio-Temporal Diffusion Pattern and Hotspot Detection of Dengue in Chachoengsao Province, Thailand

    PubMed Central

    Jeefoo, Phaisarn; Tripathi, Nitin Kumar; Souris, Marc

    2011-01-01

    In recent years, dengue has become a major international public health concern. In Thailand it is also an important concern as several dengue outbreaks were reported in last decade. This paper presents a GIS approach to analyze the spatial and temporal dynamics of dengue epidemics. The major objective of this study was to examine spatial diffusion patterns and hotspot identification for reported dengue cases. Geospatial diffusion pattern of the 2007 dengue outbreak was investigated. Map of daily cases was generated for the 153 days of the outbreak. Epidemiological data from Chachoengsao province, Thailand (reported dengue cases for the years 1999–2007) was used for this study. To analyze the dynamic space-time pattern of dengue outbreaks, all cases were positioned in space at a village level. After a general statistical analysis (by gender and age group), data was subsequently analyzed for temporal patterns and correlation with climatic data (especially rainfall), spatial patterns and cluster analysis, and spatio-temporal patterns of hotspots during epidemics. The results revealed spatial diffusion patterns during the years 1999–2007 representing spatially clustered patterns with significant differences by village. Villages on the urban fringe reported higher incidences. The space and time of the cases showed outbreak movement and spread patterns that could be related to entomologic and epidemiologic factors. The hotspots showed the spatial trend of dengue diffusion. This study presents useful information related to the dengue outbreak patterns in space and time and may help public health departments to plan strategies to control the spread of disease. The methodology is general for space-time analysis and can be applied for other infectious diseases as well. PMID:21318014

  1. On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses

    NASA Astrophysics Data System (ADS)

    Gutkin, R.; Green, C. J.; Vangrattanachai, S.; Pinho, S. T.; Robinson, P.; Curtis, P. T.

    2011-05-01

    This paper investigates failure in Carbon Fibre Reinforced Plastics CFRP using Acoustic Emission (AE). Signals have been collected and post-processed for various test configurations: tension, Compact Tension (CT), Compact Compression (CC), Double Cantilever Beam (DCB) and four-point bend End Notched Flexure (4-ENF). The signals are analysed with three different pattern recognition algorithms: k-means, Self Organising Map (SOM) combined with k-means and Competitive Neural Network (CNN). The SOM combined with k-means appears as the most effective of the three algorithms. The results from the clustering analysis follow patterns found in the peak frequencies distribution. A detailed study of the frequency content of each test is then performed and the classification of several failure modes is achieved.

  2. Crosswell acoustic surveying in gas sands: Travel-time pattern recognition, seismic Q and channel waves

    NASA Astrophysics Data System (ADS)

    Albright, J. N.; Johnson, P. A.

    The application of crosswell acoustic measurements to gas sands research has been explored through surveys conducted in the Mesa Verde formation at the Department of Energy Multi-Well Experiment (MWX) site near Rifle, Colorado. The borehole tools used in the survey are similar in concept to those used in commercial service for sonic logging, but they are especially adapted for the stringent requirements of crosswell shooting in hot gas wells. Important information about the geologic structure between wells can be extracted from crosswell scans without resorting to elaborate processing. A useful representation is a display of the travel time of P-waves in terms of the cylindrical coordinates of the transmitter referenced to the receiver. This is known as a gamma-depth ((GAMMA)-Z) plot. Such a representation may yield distinctive patterns, which can be interpreted based on the successful replication of the pattern through computer simulations.

  3. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.

    1999-01-01

    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  4. TOOLS FOR PRESENTING SPATIAL AND TEMPORAL PATTERNS OF ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    The EPA Health Effects Research Laboratory has developed this data presentation tool for use with a variety of types of data which may contain spatial and temporal patterns of interest. he technology links mainframe computing power to the new generation of "desktop publishing" ha...

  5. TEMPORAL AND SPATIAL PATTERNS OF METHANE EMISSIONS FROM A RESERVOIR DRAINING AN AGRICULTURAL WATERSHED (abstract)

    EPA Science Inventory

    We used multiple approaches to characterize temporal and spatial patterns in methane (CH4) emissions from a mid-latitude reservoir (William H. Harsha Lake, Ohio, USA) draining an agricultural watershed. Weekly to monthly monitoring at six sites in the reservoir during a 13 month...

  6. TEMPORAL AND SPATIAL PATTERNS OF METHANE EMISSIONS FROM A RESERVOIR DRAINING AN AGRICULTURAL WATERSHED

    EPA Science Inventory

    We used multiple approaches to characterize temporal and spatial patterns in methane (CH4) emissions from a mid-latitude reservoir (William H. Harsha Lake, Ohio, USA) draining an agricultural watershed. Weekly to monthly monitoring at six sites in the reservoir during a 13 month...

  7. Temporal patterns of mosquito landing on human hosts: implications for detection, monitoring, and vector control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal patterns of landing activity on a human host by female Anopheles quadrimaculatus, Culex nigripalpus, Cx. quinquefasciatus, Ochlerotatus triseriatus and Aedes albopictus varied significantly throughout the diel period and with respect to time of collection within a 15 minute observation peri...

  8. Discrimination of acoustic patterns in rats using the water T-maze

    PubMed Central

    de la Mora, Daniela M.; Toro, Juan M.

    2014-01-01

    The extraction of abstract rules and their generalization to new items has been proposed to be at the heart of higher cognitive functions such as language. Research with animals has shown that various species can extract rather complex patterns from the input, as well as establish abstract same/different relations. However, much of these findings have been observed after extensive training procedures. Here, we tested rats’ capacity to discriminate and generalize tone triplets that entailed a repetition from triplets that followed an ordinal, non-repeating pattern following a relatively short discrimination training procedure in a water T-maze. Our findings demonstrate that, under this procedure and after only 12 sessions, rats can learn to discriminate both patterns when a reliable difference in pitch variations is present across them (Experiment 1). When differences in pitch are eliminated (Experiment 2), no discrimination between patterns is found. Results suggest a procedure based on a water T-maze might be used to explore discrimination of acoustic patterns in rodents. PMID:25729120

  9. Variability of spatio-temporal patterns in non-homogeneous rings of spiking neurons.

    PubMed

    Yanchuk, Serhiy; Perlikowski, Przemyslaw; Popovych, Oleksandr V; Tass, Peter A

    2011-12-01

    We show that a ring of unidirectionally delay-coupled spiking neurons may possess a multitude of stable spiking patterns and provide a constructive algorithm for generating a desired spiking pattern. More specifically, for a given time-periodic pattern, in which each neuron fires once within the pattern period at a predefined time moment, we provide the coupling delays and/or coupling strengths leading to this particular pattern. The considered homogeneous networks demonstrate a great multistability of various travelling time- and space-periodic waves which can propagate either along the direction of coupling or in opposite direction. Such a multistability significantly enhances the variability of possible spatio-temporal patterns and potentially increases the coding capability of oscillatory neuronal loops. We illustrate our results using FitzHugh-Nagumo neurons interacting via excitatory chemical synapses as well as limit-cycle oscillators. PMID:22225385

  10. Spatio-temporal patterns of soil available nutrients following experimental disturbance in a pine forest.

    PubMed

    Guo, Dali; Mou, Pu; Jones, Robert H; Mitchell, Robert J

    2004-03-01

    Although disturbance is known to alter soil nutrient heterogeneity, it remains unclear whether spatial patterns in soil nutrients after disturbance follow predictable temporal changes that reflect underlying processes. This study examined the effects of tree harvesting and girdling on overall variability, geostatistical patterns, and resource congruence of soil available nutrients in a mature Pinus elliottii Engelm. forest. The two disturbances led to different patterns of vegetation removal, forest floor redistribution, and revegetation, but showed similar post-disturbance changes in overall soil nutrient variability. Soil nutrient variability increased after both disturbances by more than 5-fold, and then decreased, returning to the undisturbed level in 4 years. Spatial structures assessed using geostatistics did not show predictable temporal trends. However, girdled plots showed more persistent spatial structures in soil nutrients than harvested plots, and had semivariogram ranges mostly equal to or less than 10 m, reflecting effects of persistent and spatially stable patches of undisturbed hardwoods that had an average patch size of 10 m. Resource congruence examined with Spearman rank correlations was nil before disturbance, increased after disturbance and then became nil again by the 4th year post-disturbance. The timing of the increase was related to treatment, occurring in the 1st year after disturbance in the girdled plots, but not until the 2nd year in the harvested plots. These two patterns of congruence were potentially caused by different rates of nutrient patch formation and resource uptake by plants during early succession. Although temporal changes in soil heterogeneity have been documented previously, the present study indicates that temporal trends in nutrient variability after disturbance may be predictable, and that the marked changes in spatio-temporal patterns of soil nutrients as a result of disturbance are ephemeral. PMID:14689301

  11. Temporally-patterned deep brain stimulation in a mouse model of multiple traumatic brain injury.

    PubMed

    Tabansky, Inna; Quinkert, Amy Wells; Rahman, Nadera; Muller, Salomon Zev; Lofgren, Jesper; Rudling, Johan; Goodman, Alyssa; Wang, Yingping; Pfaff, Donald W

    2014-10-15

    We report that mice with closed-head multiple traumatic brain injury (TBI) show a decrease in the motoric aspects of generalized arousal, as measured by automated, quantitative behavioral assays. Further, we found that temporally-patterned deep brain stimulation (DBS) can increase generalized arousal and spontaneous motor activity in this mouse model of TBI. This arousal increase is input-pattern-dependent, as changing the temporal pattern of DBS can modulate its effect on motor activity. Finally, an extensive examination of mouse behavioral capacities, looking for deficits in this model of TBI, suggest that the strongest effects of TBI in this model are found in the initiation of any kind of movement. PMID:25072520

  12. Temporally-Patterned Deep Brain Stimulation in a Mouse Model of Multiple Traumatic Brain Injury

    PubMed Central

    Tabansky, Inna; Quinkert, Amy Wells; Rahman, Nadera; Muller, Salomon Zev; Löfgren, Jesper; Rudling, Johan; Goodman, Alyssa; Wang, Yingping; Pfaff, Donald W.

    2014-01-01

    We report that mice with closed-head multiple traumatic brain injury (TBI) show a decrease in the motoric aspects of generalized arousal, as measured by automated, quantitative behavioral assays. Further, we found that temporally-patterned deep brain stimulation (DBS) can increase generalized arousal and spontaneous motor activity in this mouse model of TBI. This arousal increase is input-pattern-dependent, as changing the temporal pattern of DBS can modulate its effect on motor activity. Finally, an extensive examination of mouse behavioral capacities, looking for deficits in this model of TBI, suggest that the strongest effects of TBI in this model are found in the initiation of any kind of movement. PMID:25072520

  13. Temporal pattern of incorporation of /sup 3/H precursors into pituitary glycoproteins and their subsequent release

    SciTech Connect

    Grotjan, H.E. Jr.

    1982-04-01

    The temporal pattern of incorporation of various /sup 3/H precursors into glycoproteins by rat anterior pituitaries incubated in vitro and the release of /sup 3/H-glycoproteins was examined. (/sup 3/H)Leucine incorporation was linear with respect to time and (/sup 3/H)leucine-containing macromolecules appeared in the media in about 1 hr. The temporal pattern of (/sup 3/H)mannose incorporation and release was similar. (/sup 3/H)Galactose and (/sup 3/H)fucose were incorporated after apparent time of delays of approximately 15 min and soon thereafter (20-25 min) appeared in the medium in /sup 3/H-glycoproteins. Thus, these precursors appear to be added as terminal residues. (/sup 3/H)Glucosamine exhibited a pattern intermediate between (/sup 3/H)leucine and (/sup 3/H)fucose whereas (/sup 3/H)GlcNAc appeared to be incorporated as a terminal residue.

  14. The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement.

    PubMed

    Clause, Amanda; Kim, Gunsoo; Sonntag, Mandy; Weisz, Catherine J C; Vetter, Douglas E; Rűbsamen, Rudolf; Kandler, Karl

    2014-05-21

    Patterned spontaneous activity is a hallmark of developing sensory systems. In the auditory system, rhythmic bursts of spontaneous activity are generated in cochlear hair cells and propagated along central auditory pathways. The role of these activity patterns in the development of central auditory circuits has remained speculative. Here we demonstrate that blocking efferent cholinergic neurotransmission to developing hair cells in mice that lack the α9 subunit of nicotinic acetylcholine receptors (α9 KO mice) altered the temporal fine structure of spontaneous activity without changing activity levels. KO mice showed a severe impairment in the functional and structural sharpening of an inhibitory tonotopic map, as evidenced by deficits in synaptic strengthening and silencing of connections and an absence in axonal pruning. These results provide evidence that the precise temporal pattern of spontaneous activity before hearing onset is crucial for the establishment of precise tonotopy, the major organizing principle of central auditory pathways. PMID:24853941

  15. Employing passive acoustics as a temporally precise monologue for constraining ebullitive methane fluxes in warming subarctic lakes

    NASA Astrophysics Data System (ADS)

    Osman, M.; Varner, R. K.; Palace, M. W.; Wik, M.; Crill, P. M.; Lang, A.

    2013-12-01

    Systematic difficulties in capturing the large spatial and temporal variability of ebullition (bubbling) has promoted a broad range of uncertainty in our understanding of the role of lakes as key emitters of atmospheric methane (CH4). With the projected warming and ongoing thawing of high-latitude frozen peatlands abundant in small lakes and ponds, there is an increasing need for methods that provide high-temporal resolution delineating precisely when and under what circumstances ebullitive fluxes occur. Employing the well-established Minnaert resonance formula as a reliable proxy for bubble volume, we designed a system of passive acoustic hydrophone sensors calibrated to continuously record ebullition from lakes at 160 kbits/sec. We present here the results of three summer field seasons (2011-2013) of acoustic and manual bubble flux measurements from four subarctic lakes situated in discontinuous permafrost regions of northern Sweden and Alaska. Results show trends similar to prior lake measurements in the subarctic. We found wide variation in CH4 concentrations, spanning between 0.10 to 95.16%. Fluxes ranged from 0-279.72 mg CH4 m-2 d-1 and averaged 12.03 mg CH4 m-2 d-1 (n = 401) over the three year period. High resolution time series analysis of our measurements will be compared alongside standard meteorological parameters such as atmospheric pressure, temperature, rainfall, water table, wind speed, and radiative inputs to infer dominant external forcings on ebullition. Radiocarbon and 13C/12C ratios of bubble samples collected from Swedish lakes in July 2013 are to be subsequently analyzed for age, transport, and production mechanisms.

  16. Temporal Feeding Pattern May Influence Reproduction Efficiency, the Example of Breeding Mares

    PubMed Central

    Benhajali, Haifa; Ezzaouia, Mohammed; Lunel, Christophe; Charfi, Faouzia; Hausberger, Martine

    2013-01-01

    Discomfort in farm animals may be induced by inappropriate types or timing of food supplies. Thus, time restriction of meals and lack of roughage have been shown to be one source of emergence of oral stereotypies and abnormal behaviour in horses which have evolved to eat high-fibre diets in small amounts over long periods of time. This feeding pattern is often altered in domestic environment where horses are often fed low fibre meals that can be rapidly consumed. This study aimed at determining the effect of the temporal pattern of feeding on reproductive efficiency of breeding mares, One hundred Arab breeding mares were divided into two groups that differed only in the temporal pattern of roughage availability: only at night for the standard feeding pattern group (SFP mares), night and day for the “continuous feeding” group (CF mares). The total amount of roughage provided was the same as the CF mares received half of the hay during the day while in paddock (haynets). Mares were tested for oestrus detection by teasing with one stallion and were then examined clinically by rectal palpations and ultrasound before being mated naturally or inseminated by fresh or frozen semen. Multivariate logistic regression was used to analyse data. The treatment affected significantly the reproductive efficiency of the mares with fewer oestrus abnormalities (p = 0.0002) and more fertility (p = 0.024) in CF mares (conception rate = 81% versus 55% in SFP mares). Ensuring semi-continous feeding by providing roughage may be a way of fulfilling the basic physiological needs of the horses' digestive system, reducing stress and associated inhibitors of reproduction. To our knowledge, this study provides the first evidence of an impact of temporal feeding patterns on reproductive success in a Mammal. Temporal patterns of feeding may be a major and underestimated factor in breeding. PMID:24098636

  17. Temporal and spatial patterns of habitat use by juveniles of a small coastal shark (Mustelus lenticulatus) in an estuarine nursery.

    PubMed

    Francis, Malcolm P

    2013-01-01

    Juvenile rig (Mustelus lenticulatus) were internally tagged with acoustic transmitters and tracked with acoustic receivers deployed throughout two arms of Porirua Harbour, a small (7 km(2)) estuary in New Zealand. Ten rig were tracked for up to four months during summer-autumn to determine their spatial and temporal use of the habitat. The overall goal was to estimate the size of Marine Protected Areas required to protect rig nursery areas from direct human impacts. Rig showed clear site preferences, but those preferences varied among rig and over time. They spent most of their time in large basins and on shallow sand and mud flats around the margins, and avoided deep channels. Habitat range increased during autumn for many of the rig. Only one shark spent time in both harbour arms, indicating that there was little movement between the two. Rig home ranges were 2-7 km(2), suggesting that an effective MPA would need to cover the entire Porirua Harbour. They moved to outer harbour sites following some high river flow rates, and most left the harbour permanently during or soon after a river spike, suggesting that they were avoiding low salinity water. Rig showed strong diel movements during summer, although the diel pattern weakened in autumn. Persistent use of the same day and night sites indicates that diel movements are directed rather than random. Further research is required to determine the sizes of rig home ranges in larger harbours where nursery habitat is more extensive. Marine Protected Areas do not control land-based impacts such as accelerated sedimentation and heavy metal pollution, so integration of marine and terrestrial management tools across a range of government agencies is essential to fully protect nursery areas. PMID:23437298

  18. Temporal and Spatial Patterns of Habitat Use by Juveniles of a Small Coastal Shark (Mustelus lenticulatus) in an Estuarine Nursery

    PubMed Central

    Francis, Malcolm P.

    2013-01-01

    Juvenile rig (Mustelus lenticulatus) were internally tagged with acoustic transmitters and tracked with acoustic receivers deployed throughout two arms of Porirua Harbour, a small (7 km2) estuary in New Zealand. Ten rig were tracked for up to four months during summer–autumn to determine their spatial and temporal use of the habitat. The overall goal was to estimate the size of Marine Protected Areas required to protect rig nursery areas from direct human impacts. Rig showed clear site preferences, but those preferences varied among rig and over time. They spent most of their time in large basins and on shallow sand and mud flats around the margins, and avoided deep channels. Habitat range increased during autumn for many of the rig. Only one shark spent time in both harbour arms, indicating that there was little movement between the two. Rig home ranges were 2–7 km2, suggesting that an effective MPA would need to cover the entire Porirua Harbour. They moved to outer harbour sites following some high river flow rates, and most left the harbour permanently during or soon after a river spike, suggesting that they were avoiding low salinity water. Rig showed strong diel movements during summer, although the diel pattern weakened in autumn. Persistent use of the same day and night sites indicates that diel movements are directed rather than random. Further research is required to determine the sizes of rig home ranges in larger harbours where nursery habitat is more extensive. Marine Protected Areas do not control land-based impacts such as accelerated sedimentation and heavy metal pollution, so integration of marine and terrestrial management tools across a range of government agencies is essential to fully protect nursery areas. PMID:23437298

  19. Different Temporal Patterns of Specific and General Autobiographical Memories across the Lifespan in Alzheimer's Disease

    PubMed Central

    Philippi, Nathalie; Rousseau, François; Noblet, Vincent; Botzung, Anne; Després, Olivier; Cretin, Benjamin; Kremer, Stéphane; Blanc, Frédéric; Manning, Liliann

    2015-01-01

    We compared specific (i.e., associated with a unique time and space) and general (i.e., extended or repeated events) autobiographical memories (AbM) in Alzheimer's disease (AD). The comparison aims at investigating the relationship between these two components of AbM across the lifespan and the volume of cerebral regions of interest within the temporal lobe. We hypothesized that the ability to elicit specific memories would correlate with hippocampal volume, whereas evoking general memories would be related to lateral temporal lobe. AbM was assessed using the modified Crovitz test in 18 patients with early AD and 18 matched controls. The proportions of total memories—supposed to reflect the ability to produce general memories—and specific memories retrieved were compared between AD patients and controls. Correlations to MRI volumes of temporal cortex were tested. We found different temporal patterns for specific and general memories in AD patients, with (i) relatively spared general memories, according to a temporal gradient that preserved remote memories, predominantly associated with right lateral temporal cortex volume. (ii) Conversely, the retrieval of specific AbMs was impaired for all life periods and correlated with bilateral hippocampal volumes. Our results highlight a shift from an initially episodic to a semantic nature of AbMs during AD, where the abstracted form of memories remains. PMID:26175549

  20. Different Temporal Patterns of Specific and General Autobiographical Memories across the Lifespan in Alzheimer's Disease.

    PubMed

    Philippi, Nathalie; Rousseau, François; Noblet, Vincent; Botzung, Anne; Després, Olivier; Cretin, Benjamin; Kremer, Stéphane; Blanc, Frédéric; Manning, Liliann

    2015-01-01

    We compared specific (i.e., associated with a unique time and space) and general (i.e., extended or repeated events) autobiographical memories (AbM) in Alzheimer's disease (AD). The comparison aims at investigating the relationship between these two components of AbM across the lifespan and the volume of cerebral regions of interest within the temporal lobe. We hypothesized that the ability to elicit specific memories would correlate with hippocampal volume, whereas evoking general memories would be related to lateral temporal lobe. AbM was assessed using the modified Crovitz test in 18 patients with early AD and 18 matched controls. The proportions of total memories-supposed to reflect the ability to produce general memories-and specific memories retrieved were compared between AD patients and controls. Correlations to MRI volumes of temporal cortex were tested. We found different temporal patterns for specific and general memories in AD patients, with (i) relatively spared general memories, according to a temporal gradient that preserved remote memories, predominantly associated with right lateral temporal cortex volume. (ii) Conversely, the retrieval of specific AbMs was impaired for all life periods and correlated with bilateral hippocampal volumes. Our results highlight a shift from an initially episodic to a semantic nature of AbMs during AD, where the abstracted form of memories remains. PMID:26175549

  1. Can acoustic emissions patterns signal imminence of avalanche events in a growing sand pile?

    NASA Astrophysics Data System (ADS)

    Vögtli, Melanie; Lehmann, Peter; Breitenstein, Daniel; Or, Dani

    2014-05-01

    Gravity driven mass release is often triggered abruptly with limited precursory cues to indicate imminent failure and thus limiting early warning. Evidence suggests that with increased mechanical loading of a slope, numerous local damage events marking friction between rearranged particles or breakage of roots release strain energy as elastic waves measurable as acoustic emissions. We examined the potential predictability of mass release events from preceding acoustic emission (AE) signatures in a well-known and simple model system of a growing sand pile. We installed four AE-sensors within the core of a 30 cm (diameter) sand pile fed by a constant input of grains and mounted on a balance. Subsequent to the convergence of the slope to dynamic angle of repose, sand avalanche across the bottom boundary were monitored by abrupt mass change and by the amplitudes and number of AE events (recorded at high frequency and averaged to 0.2 s). We detected a systematic change of AE-patterns characterized by systematically decreasing AE standard deviation prior to each mass release. Although the lead time following minimum AE standard deviation was relatively short (10s of seconds), the AE signature already started to change minutes before the mass release. Accordingly the information embedded in AE signal dynamics could potentially offer larger lead times for systems of practical interest.

  2. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    PubMed

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations. PMID:23831918

  3. Intra-Population Genetic Variation in the Temporal Pattern of Egg Maturation in a Parasitoid Wasp

    PubMed Central

    Wajnberg, Eric; Curty, Christine; Jervis, Mark

    2012-01-01

    Parasitoid wasps are taxonomically and biologically extremely diverse. A conceptual framework has recently been developed for understanding life-history evolution and diversification in these animals, and it has confirmed that each of two linked life-history traits – the mode of larval development and the temporal pattern of egg maturation – acts as an organiser of life-history. The framework has been predicated on the assumption that there exists sufficient genetic variation in the latter trait to allow it to be shaped by natural selection. Focusing on the parasitoid wasp Trichogramma brassicae, our aim was to test the validity of that assumption, using established quantitative genetic methods. We demonstrate the existence of a statistically significant degree of intra-population polygenic variation in the temporal pattern of egg production within the wasp population we studied. Furthermore, our results, together with published data on clinal variation in the egg maturation pattern of another species, suggest that intra-specific evolutionary shifts in the temporal pattern of egg maturation of parasitoid wasps can result from a change in allocation to egg production either before, or very shortly after adult emergence, without there being an accompanying change in lifetime fecundity. As well as opening new avenues of research into the reproductive strategies, behaviour, community organisation and biological control potential of parasitoid wasps, this discovery also has implications for studies of life-history evolution and diversification in insects generally. PMID:23029312

  4. Spatial and temporal patterns of cloud cover and fog inundation in coastal California: Ecological implications

    USGS Publications Warehouse

    Rastogi, Bharat; Williams, A. Park; Fischer, Douglas T.; Iacobellis, Sam F.; McEachern, Kathryn; Carvalho, Leila; Jones, Charles Leslie; Baguskas, Sara A.; Still, Christopher J.

    2016-01-01

    The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in coastal California where forests are frequently shaded by low-lying clouds or immersed in fog during otherwise warm and dry summer months. Summer fog and stratus can ameliorate summer drought stress and enhance soil water budgets, and often have different spatial and temporal patterns. Here we use remote sensing datasets to characterize the spatial and temporal patterns of cloud cover over California’s northern Channel Islands. We found marine stratus to be persistent from May through September across the years 2001-2012. Stratus clouds were both most frequent and had the greatest spatial extent in July. Clouds typically formed in the evening, and dissipated by the following early afternoon. We present a novel method to downscale satellite imagery using atmospheric observations and discriminate patterns of fog from those of stratus and help explain patterns of fog deposition previously studied on the islands. The outcomes of this study contribute significantly to our ability to quantify the occurrence of coastal fog at biologically meaningful spatial and temporal scales that can improve our understanding of cloud-ecosystem interactions, species distributions and coastal ecohydrology.

  5. Temporal consistency of spatial pattern in growth of the mussel, Mytilus edulis: Implications for predictive modelling

    NASA Astrophysics Data System (ADS)

    Bergström, Per; Lindegarth, Susanne; Lindegarth, Mats

    2013-10-01

    Human pressures on coastal seas are increasing and methods for sustainable management, including spatial planning and mitigative actions, are therefore needed. In coastal areas worldwide, the development of mussel farming as an economically and ecologically sustainable industry requires geographic information on the growth and potential production capacity. In practice this means that coherent maps of temporally stable spatial patterns of growth need to be available in the planning process and that maps need to be based on mechanistic or empirical models. Therefore, as a first step towards development of models of growth, we assessed empirically the fundamental requirement that there are temporally consistent spatial patterns of growth in the blue mussel, Mytilus edulis. Using a pilot study we designed and dimensioned a transplant experiment, where the spatial consistency in the growth of mussels was evaluated at two resolutions. We found strong temporal and scale-dependent spatial variability in growth but patterns suggested that spatial patterns were uncoupled between growth of shell and that of soft tissue. Spatial patterns of shell growth were complex and largely inconsistent among years. Importantly, however, the growth of soft tissue was qualitatively consistent among years at the scale of km. The results suggest that processes affecting the whole coastal area cause substantial differences in growth of soft tissue among years but that factors varying at the scale of km create strong and persistent spatial patterns of growth, with a potential doubling of productivity by identifying the most suitable locations. We conclude that the observed spatial consistency provides a basis for further development of predictive modelling and mapping of soft tissue growth in these coastal areas. Potential causes of observed patterns, consequences for mussel-farming as a tool for mitigating eutrophication, aspects of precision of modelling and sampling of mussel growth as well as ecological functions in general are discussed.

  6. Three Eurasian teleconnection patterns: spatial structures, temporal variability, and associated winter climate anomalies

    NASA Astrophysics Data System (ADS)

    Liu, Yuyun; Wang, Lin; Zhou, Wen; Chen, Wen

    2014-06-01

    The Eurasian (EU) pattern is a distinct teleconnection pattern observed in boreal winter. Since the EU pattern was first identified, three types have been reported in the literature: the conventional EU pattern; the type 1 EU pattern, or Scandinavian (SCAND) pattern; and the type 2 EU pattern, or East Atlantic/West Russia (EATL/WRUS) pattern. Based on several reanalysis and observational datasets, the three EU patterns are extracted using the rotated empirical orthogonal function method. In order to provide a further distinction and understanding of the three EU patterns, a comprehensive side-by-side comparison is performed among them including their temporal variability, horizontal and vertical structure, related stationary Rossby wave activity, impact on climate, and possible driving factors associated with external forcing. The results reveal that all three EU patterns are characterised by a clear quasi-barotropic wave-train structure, but each has a distinct source and centre of action. Accordingly, their impacts on the precipitation and surface air temperature also differ from one other. Further evidence suggests that the conventional EU pattern is likely driven by anomalous sea surface temperatures (SST) over the North Atlantic, in which process the transient eddies are actively involved. The SCAND pattern is partly maintained by the vorticity source over Western Europe, which arises from the anomalous convergence/divergence over the Mediterranean and is efficiently driven by the tropical and southern Indian Ocean SST via divergent circulation. The EATL/WRUS pattern shows some linkage to the North American snow cover, and the involved process remains unclear and needs further investigation.

  7. Temporal patterns of deer-vehicle collisions consistent with deer activity pattern and density increase but not general accident risk.

    PubMed

    Hothorn, Torsten; Müller, Jörg; Held, Leonhard; Möst, Lisa; Mysterud, Atle

    2015-08-01

    The increasing number of deer-vehicle collisions (DVCs) across Europe during recent decades poses a serious threat to human health and animal welfare and increasing costs for society. DVCs are triggered by both a human-related and a deer-related component. Mitigation requires an understanding of the processes driving temporal and spatial collision patterns. Separating human-related from deer-related processes is important for identifying potentially effective countermeasures, but this has rarely been done. We analysed two time series of 341,655 DVCs involving roe deer and 854,659 non-deer-related accidents (non-DVCs) documented between 2002 and 2011. Nonparametric smoothing and temporal parametric modelling were used to estimate annual, seasonal, weekly and diurnal patterns in DVCs, non-DVCs and adjusted DVCs. As we had access to data on both DVCs and non-DVCs, we were able to disentangle the relative role of human-related and deer-related processes contributing to the overall temporal DVC pattern. We found clear evidence that variation in DVCs was mostly driven by deer-related and not human-related activity on annual, seasonal, weekly and diurnal scales. A very clear crepuscular activity pattern with high activity after sunset and around sunrise throughout the year was identified. Early spring and the mating season between mid-July and mid-August are typically periods of high roe deer activity, and as expected we found a high number of DVC during these periods, although these patterns differed tremendously during different phases of a day. The role of human activity was mainly reflected in fewer DVCs on weekends than on weekdays. Over the ten-year study period, we estimated that DVCs increased by 25%, whereas the number of non-DVCs decreased by 10%. Increasing deer densities are the most likely driver behind this rise in DVCs. Precise estimates of DVC patterns and their relationship to deer and human activity patterns allow implementation of specific mitigation measures, such as tailored driver warning systems or temporary speed limits. To prevent a further increase in DVCs, state-wide measures to decrease roe deer density are required. PMID:25984644

  8. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Xia, K.; Young, R.

    2013-12-01

    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder. "Fracture Toughness of Metallic Glasses: Annealing-Induced Embrittlement." Physical review letters 109.19 (2012): 194301. [7] Buehler, Markus J., Farid F. Abraham, and Huajian Gao. "Hyperelasticity governs dynamic fracture at a critical length scale." Nature 426.6963 (2003): 141-146.

  9. Acoustic reflex patterns according to different intensity and different duration of white noise (WN) stimuli.

    PubMed

    Rossi, G; Solero, P

    1983-01-01

    The data were gathered by connecting the output from a middle ear impedance meter (Amplaid 702) to the computer and averaging section of the Amplaid MK VI which was also used as an acoustic stimuli generator. The stimuli consisted of white noise bursts having different peak equivalent sound pressures (115, 105, 95, 85 dB SPL) and different durations (from 1000 to 3 msec). The parameters examined were: stapedius muscle contraction latency time; muscle fibre recruitment time, i.e. the interval between the onset of contraction and its maximum; duration of contraction; amplitude of maximum contraction. An evaluation was also made as to the "efficiency" of contraction, expressed as the function of duration and amplitude. The authors discuss the different patterns of "efficiency" curve achieved at various intensity levels by stimuli of different duration. PMID:6880673

  10. Exploratory Analysis of Spatial-Temporal Patterns of Air Pollution in the City

    NASA Astrophysics Data System (ADS)

    Champendal, Alexandre; Kanevski, Mikhail; Huguenot, Pierre-Emmanuel; Golay, Jean

    2013-04-01

    Air pollution in the city is an important problem influencing environment, well-being of society, economy, management of urban zones, etc. The problem is extremely difficult due to a very complex distribution of the pollution sources, morphology of the city and dispersion processes leading to multivariate nature of the phenomena and high local spatial-temporal variability. The task of understanding, modelling and prediction of spatial-temporal patterns of air pollution in urban zones is an interesting and challenging topic having many research axes from science-based modelling to geostatistics and data mining. The present research mainly deals with a comprehensive exploratory analysis of spatial-temporal air pollution data using statistical, geostatistical and machine learning tools. This analysis helps to 1) understand and model spatial-temporal correlations using variography, 2) explore the temporal evolution of spatial correlation matrix; 3) analyse and visualize an interconnection between measurement stations using network science tools; 4) quantify the availability and predictability of structured patterns. The real data case study deals with spatial-temporal air pollution data of canton Geneva (2002-2011). Carbon dioxide (NO2) have caught our attention. It has effects on health: nitrogen dioxide can irritate the lungs, effects on plants; NO2 contributes to the phenomenon of acid rain. The negative effects of nitrogen dioxides on plants are reducing the growth, production and pesticide resistance. And finally the effects on materials: nitrogen dioxides increase the corrosion. Well-defined patterns of spatial-temporal correlations were detected. The analysis and visualization of spatial correlation matrix for 91 stations were carried out using the network science tools and high levels of clustering were revealed. Moving Window Correlation Matrix and Spatio-temporal variography methods were applied to define and explore the dynamic of our data. More than just exploratory of data analysis, this study brings to front the high complexity of air pollution in the city. This approach allowed the definition, parameterisation and analysis of the air pollution data in the city with the future goal of integrating this knowledge in the development of different models of air pollution diffusion. Keywords: space-time environmental data, variography, moving window correlation matrix, network science

  11. Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns.

    PubMed

    Barascud, Nicolas; Pearce, Marcus T; Griffiths, Timothy D; Friston, Karl J; Chait, Maria

    2016-02-01

    We use behavioral methods, magnetoencephalography, and functional MRI to investigate how human listeners discover temporal patterns and statistical regularities in complex sound sequences. Sensitivity to patterns is fundamental to sensory processing, in particular in the auditory system, because most auditory signals only have meaning as successions over time. Previous evidence suggests that the brain is tuned to the statistics of sensory stimulation. However, the process through which this arises has been elusive. We demonstrate that listeners are remarkably sensitive to the emergence of complex patterns within rapidly evolving sound sequences, performing on par with an ideal observer model. Brain responses reveal online processes of evidence accumulation-dynamic changes in tonic activity precisely correlate with the expected precision or predictability of ongoing auditory input-both in terms of deterministic (first-order) structure and the entropy of random sequences. Source analysis demonstrates an interaction between primary auditory cortex, hippocampus, and inferior frontal gyrus in the process of discovering the regularity within the ongoing sound sequence. The results are consistent with precision based predictive coding accounts of perceptual inference and provide compelling neurophysiological evidence of the brain's capacity to encode high-order temporal structure in sensory signals. PMID:26787854

  12. Empirical macroscopic features of spatial-temporal traffic patterns at highway bottlenecks.

    PubMed

    Kerner, Boris S

    2002-04-01

    Results of an empirical study of congested patterns measured during 1995-2001 at German highways are presented. Based on this study, various types of congested patterns at on and off ramps have been identified, their macroscopic spatial-temporal features have been derived, and an evolution of those patterns and transformations between different types of the patterns over time has been found out. It has been found that at an isolated bottleneck (a bottleneck that is far enough from other effective bottlenecks) either the general pattern (GP) or the synchronized flow pattern (SP) can be formed. In GP, synchronized flow occurs and wide moving jams spontaneously emerge in that synchronized flow. In SP, no wide moving jams emerge, i.e., SP consists of synchronized flow only. An evolution of GP into SP when the flow rate to the on ramp decreases has been found and investigated. Spatial-temporal features of complex patterns that occur if two or more effective bottlenecks exist on a highway have been found out. In particular, the expanded pattern where synchronized flow covers two or more effective bottlenecks can be formed. It has been found that the spatial-temporal structure of congested patterns possesses predictable, i.e., characteristic, unique, and reproducible features, for example, the most probable types of patterns that are formed at a given bottleneck. According to the empirical investigations the cases of the weak and the strong congestion should be distinguished. In contrast to the weak congestion, the strong congestion possesses the following characteristic features: (i) the flow rate in synchronized flow is self-maintaining near a limit flow rate; (ii) the mean width of the region of synchronized flow in GP does not depend on traffic demand; (iii) there is a correlation between the parameters of synchronized flow and wide moving jams: the higher the flow rate out from a wide moving jam is, the higher is the limit flow rate in the synchronized flow. The strong congestion often occurs in GP whereas the weak congestion is usual for SP. The weak congestion is often observed at off ramps whereas the strong congestion much more often occurs at on ramps. Under the weak congestion diverse transformations between different congested patterns can occur. PMID:12005957

  13. A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar Purkinje cell.

    PubMed

    Steuber, Volker; Willshaw, David

    2004-01-01

    It has been suggested that information in the brain is encoded in temporal spike patterns which are decoded by a combination of time delays and coincidence detection. Here, we show how a multi-compartmental model of a cerebellar Purkinje cell can learn to recognise temporal parallel fibre activity patterns by adapting latencies of calcium responses after activation of metabotropic glutamate receptors (mGluRs). In each compartment of our model, the mGluR signalling cascade is represented by a set of differential equations that reflect the underlying biochemistry. Phosphorylation of the mGluRs changes the concentration of receptors which are available for activation by glutamate and thereby adjusts the time delay between mGluR stimulation and voltage response. The adaptation of a synaptic delay as opposed to a weight represents a novel non-Hebbian learning mechanism that can also implement the adaptive timing of the classically conditioned eye-blink response. PMID:15306737

  14. Reliability of spatial and temporal patterns of C. finmarchicus inferred from the CPR survey

    NASA Astrophysics Data System (ADS)

    Hélaouët, Pierre; Beaugrand, Grégory; Reygondeau, Gabriel

    2016-01-01

    The Continuous Plankton Recorder (CPR) survey has collected plankton since 1958 in the North Atlantic Ocean and its adjacent seas. Among all species recorded by the CPR, Calanus finmarchicus has probably been the most investigated species because of its ecological importance for the temperate and subpolar regions of the North Atlantic Ocean. However, abundances of C. finmarchicus assessed from the CPR survey have been rarely compared to more traditional sampling methodologies. In this study, we examine and compare spatial (surface and vertical) and temporal (diel and seasonal) patterns in the abundance of C. finmarchicus with another sampling technique in the gulf of Maine. Our results provide evidence that the CPR survey not only gives internally consistent time series of C. finmarchicus, but also an accurate representation of both spatial (surface and vertical) and temporal (diel and seasonal) patterns.

  15. Automatic classification of acetowhite temporal patterns to identify precursor lesions of cervical cancer

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Fragoso, K.; Acosta-Mesa, H. G.; Cruz-Ramírez, N.; Hernández-Jiménez, R.

    2013-12-01

    Cervical cancer has remained, until now, as a serious public health problem in developing countries. The most common method of screening is the Pap test or cytology. When abnormalities are reported in the result, the patient is referred to a dysplasia clinic for colposcopy. During this test, a solution of acetic acid is applied, which produces a color change in the tissue and is known as acetowhitening phenomenon. This reaction aims to obtaining a sample of tissue and its histological analysis let to establish a final diagnosis. During the colposcopy test, digital images can be acquired to analyze the behavior of the acetowhitening reaction from a temporal approach. In this way, we try to identify precursor lesions of cervical cancer through a process of automatic classification of acetowhite temporal patterns. In this paper, we present the performance analysis of three classification methods: kNN, Naïve Bayes and C4.5. The results showed that there is similarity between some acetowhite temporal patterns of normal and abnormal tissues. Therefore we conclude that it is not sufficient to only consider the temporal dynamic of the acetowhitening reaction to establish a diagnosis by an automatic method. Information from cytologic, colposcopic and histopathologic disciplines should be integrated as well.

  16. Invariant phase structure of olivo-cerebellar oscillations and its putative role in temporal pattern generation

    PubMed Central

    Jacobson, Gilad A.; Lev, Iddo; Yarom, Yosef; Cohen, Dana

    2009-01-01

    Complex movements require accurate temporal coordination between their components. The temporal acuity of such coordination has been attributed to an internal clock signal provided by inferior olivary oscillations. However, a clock signal can produce only time intervals that are multiples of the cycle duration. Because olivary oscillations are in the range of 5–10 Hz, they can support intervals of ≈100–200 ms, significantly longer than intervals suggested by behavioral studies. Here, we provide evidence that by generating nonzero-phase differences, olivary oscillations can support intervals shorter than the cycle period. Chronically implanted multielectrode arrays were used to monitor the activity of the cerebellar cortex in freely moving rats. Harmaline was administered to accentuate the oscillatory properties of the inferior olive. Olivary-induced oscillations were observed on most electrodes with a similar frequency. Most importantly, oscillations in different recording sites retained a constant phase difference that assumed a variety of values in the range of 0–180°, and were maintained across large global changes in the oscillation frequency. The inferior olive may thus underlie not only rhythmic activity and synchronization, but also temporal patterns that require intervals shorter than the cycle duration. The maintenance of phase differences across frequency changes enables the olivo-cerebellar system to replay temporal patterns at different rates without distortion, allowing the execution of tasks at different speeds. PMID:19208809

  17. Temporal patterns of native Mandarin Chinese speakers' productions of English stop-vowel syllable

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Behne, Dawn M.

    2001-05-01

    Second language (L2) production can be a kind of interlanguage, a relatively stable system bearing the nature of both the native language (L1) and L2. Within such a system sound components of a syllable may bear their own interlanguage characteristics and yet interact with the other component sounds. The present study investigates temporal patterns of L1-L2 interaction at the syllable level. Audio recordings were made of English stop-vowel syllables produced by native speakers of Mandarin who were fluent in English (ChE). Native English productions (AmE) of these syllables and native productions of Mandarin (ChM) stop-vowel syllables were acquired as native norms. Temporal measures included stop closure duration, voice-onset time (VOT), vowel duration, and syllable duration. Results show that the internal timing components of ChE often deviate from AmE, with the closure duration, VOT, and vowel duration being intermediate to AmE and ChM. However, at the syllable level, ChE productions tend to follow the overall patterns of AmE. Temporal deviations were often compensated by temporal compensation of other components in the syllable, maintaining a balanced consonant/vowel distribution. These findings have implications for a broader understanding of L2 productions.

  18. Spatial and Temporal Patterns in Macrofaunal Diversity Components Relative to Sea Floor Landscape Structure

    PubMed Central

    Zajac, Roman N.; Vozarik, Joseph M.; Gibbons, Brittney R.

    2013-01-01

    We examined temporal changes in macrofaunal ?- and ?-diversity over several spatial scales (within patches, among patches, across landscapes and across regions) in Long Island Sound on the northeast USA coast. Regional ?-diversity was estimated at 144 taxa, however ?-diversity fluctuated over time as did ?- and ?-diversity components. Based on additive partitioning, patch- and region-scale ?-diversity components generally had the highest contributions to ?-diversity; lower percentages were found at within-patch and landscape scales. Multiplicative diversity partitioning indicated highest species turnover at within- and among patch scales. For all partition results, within-patch and patch-scale ?-diversity increased sharply when hypoxia impacted benthic communities. Spatial variation in diversity components can be attributed to the collection of different patch types at varying spatial scales and their associated habitats across the benthic landscapes, as well as gradients in depth and other estuarine-scale characteristics. Temporal variation in diversity components across spatial scales may be related to seasonal changes in habitat heterogeneity, species population dynamics, and seasonal disturbances. Rare species were significant and temporally consistent components of macrofaunal diversity patterns over different spatial scales. Our findings agree with other marine and terrestrial studies that show diversity components vary significantly over different spatial scales and the importance of habitat/landscape heterogeneity in supporting diversity. However, our results indicate that the relative contributions of scale-specific ?-diversity components can also change significantly over time. Thus, studies of diversity patterns across patches and landscapes based on data collected at one time, or assembled into a single data set from different times, may not capture the full suite of diversity patterns that occur over varying spatial scales and any time-specific determinants of those patterns. Many factors that shape and maintain sedimentary communities vary temporally, and appear to play an important role in determining and maintaining macrofaunal diversity over different spatial scales. PMID:23776552

  19. Spatial and temporal patterns in macrofaunal diversity components relative to sea floor landscape structure.

    PubMed

    Zajac, Roman N; Vozarik, Joseph M; Gibbons, Brittney R

    2013-01-01

    We examined temporal changes in macrofaunal α- and β-diversity over several spatial scales (within patches, among patches, across landscapes and across regions) in Long Island Sound on the northeast USA coast. Regional ε-diversity was estimated at 144 taxa, however γ-diversity fluctuated over time as did α- and β-diversity components. Based on additive partitioning, patch- and region-scale β-diversity components generally had the highest contributions to γ-diversity; lower percentages were found at within-patch and landscape scales. Multiplicative diversity partitioning indicated highest species turnover at within- and among patch scales. For all partition results, within-patch and patch-scale β-diversity increased sharply when hypoxia impacted benthic communities. Spatial variation in diversity components can be attributed to the collection of different patch types at varying spatial scales and their associated habitats across the benthic landscapes, as well as gradients in depth and other estuarine-scale characteristics. Temporal variation in diversity components across spatial scales may be related to seasonal changes in habitat heterogeneity, species population dynamics, and seasonal disturbances. Rare species were significant and temporally consistent components of macrofaunal diversity patterns over different spatial scales. Our findings agree with other marine and terrestrial studies that show diversity components vary significantly over different spatial scales and the importance of habitat/landscape heterogeneity in supporting diversity. However, our results indicate that the relative contributions of scale-specific β-diversity components can also change significantly over time. Thus, studies of diversity patterns across patches and landscapes based on data collected at one time, or assembled into a single data set from different times, may not capture the full suite of diversity patterns that occur over varying spatial scales and any time-specific determinants of those patterns. Many factors that shape and maintain sedimentary communities vary temporally, and appear to play an important role in determining and maintaining macrofaunal diversity over different spatial scales. PMID:23776552

  20. A Sequence Identification Measurement Model to Investigate the Implicit Learning of Metrical Temporal Patterns

    PubMed Central

    Schultz, Benjamin G.; Stevens, Catherine J.; Keller, Peter E.; Tillmann, Barbara

    2013-01-01

    Implicit learning (IL) occurs unconsciously and without intention. Perceptual fluency is the ease of processing elicited by previous exposure to a stimulus. It has been assumed that perceptual fluency is associated with IL. However, the role of perceptual fluency following IL has not been investigated in temporal pattern learning. Two experiments by Schultz, Stevens, Keller, and Tillmann demonstrated the IL of auditory temporal patterns using a serial reaction-time task and a generation task based on the process dissociation procedure. The generation task demonstrated that learning was implicit in both experiments via motor fluency, that is, the inability to suppress learned information. With the aim to disentangle conscious and unconscious processes, we analyze unreported recognition data associated with the Schultz et al. experiments using the sequence identification measurement model. The model assumes that perceptual fluency reflects unconscious processes and IL. For Experiment 1, the model indicated that conscious and unconscious processes contributed to recognition of temporal patterns, but that unconscious processes had a greater influence on recognition than conscious processes. In the model implementation of Experiment 2, there was equal contribution of conscious and unconscious processes in the recognition of temporal patterns. As Schultz et al. demonstrated IL in both experiments using a generation task, and the conditions reported here in Experiments 1 and 2 were identical, two explanations are offered for the discrepancy in model and behavioral results based on the two tasks: 1) perceptual fluency may not be necessary to infer IL, or 2) conscious control over implicitly learned information may vary as a function of perceptual fluency and motor fluency. PMID:24086461

  1. Synchronization and control in time-delayed complex networks and spatio-temporal patterns

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Kurths, J.; Schöll, E.

    2016-02-01

    This special topics issue is a collection of contributions on the recent developments of control and synchronization in time delayed systems and space time chaos. The various articles report interesting results on time delayed complex networks; fractional order delayed models; dynamics of spatio-temporal patterns; stochastic models etc. Experimental analysis on synchronization, dynamics and control of chaos are also well investigated using Field Programmable Gate Array (FPGA), circuit realizations and chemical reactions.

  2. Study of Spatio-Temporal Immunofluorescence on Bead Patterns in a Microfluidic Channel

    NASA Astrophysics Data System (ADS)

    Sivagnanam, Venkataragavalu; Yang, Hui; Gijs, Martin A. M.

    2010-12-01

    We performed a direct immunoassay inside a microfluidic channel on patterned streptavidin-coated beads, which captured fluorescently-labeled biotin target molecules from a continuous flow. We arranged the beads in a dot array at the bottom of the channel and demonstrated their position- and flow rate-dependent fluorescence. As the target analyte gets gradually depleted from the flow when passing downstream the channel, the highest fluorescence intensity was observed on the most upstream positioned dot patterns. We propose a simple analytical convection model to explain this spatio-temporal fluorescence.

  3. Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog.

    PubMed

    Yoo, Paul B; Liu, Haoran; Hincapie, Juan G; Ruble, Stephen B; Hamann, Jason J; Grill, Warren M

    2016-02-01

    Despite current knowledge of the myriad physiological effects of vagus nerve stimulation (VNS) in various mammalian species (including humans), the impact of varying stimulation parameters on nerve recruitment and physiological responses is not well understood. We investigated nerve recruitment, cardiovascular responses, and skeletal muscle responses to different temporal patterns of VNS across 39 combinations of stimulation amplitude, frequency, and number of pulses per burst. Anesthetized dogs were implanted with stimulating and recording cuff electrodes around the cervical vagus nerve, whereas laryngeal electromyogram (EMG) and heart rate were recorded. In seven of eight dogs, VNS-evoked bradycardia (defined as ?10% decrease in heart rate) was achieved by applying stimuli at amplitudes equal to or greater than the threshold for activating slow B-fibers. Temporally patterned VNS (minimum 5 pulses per burst) was sufficient to elicit bradycardia while reducing the concomitant activation of laryngeal muscles by more than 50%. Temporal patterns of VNS can be used to modulate heart rate while minimizing laryngeal motor fiber activation, and this is a novel approach to reduce the side effects produced by VNS. PMID:26811057

  4. Temporal and spatial patterns of diarrhoea in the Mekong Delta area, Vietnam.

    PubMed

    Phung, D; Huang, C; Rutherford, S; Chu, C; Wang, X; Nguyen, M; Nguyen, N H; Do, C M; Nguyen, T H

    2015-12-01

    This study examined the temporal and spatial patterns of diarrhoea in relation to hydro-meteorological factors in the Mekong Delta area in Vietnam. A time-series design was applied to examine the temporal pattern of the climate-diarrhoea relationship using Poisson regression models. Spatial analysis was applied to examine the spatial clusters of diarrhoea using Global Moran's I and local indicators of spatial autocorrelation (LISA). The temporal pattern showed that the highest peak of diarrhoea was from weeks 30-42 corresponding to August-October annually. A 1 cm increase in river water level at a lag of 1 week was associated with a small [0·07%, 95% confidence interval (CI) 0·01-0·1] increase in the diarrhoeal rate. A 1 °C increase in temperature at lag of 2 and 4 weeks was associated with a 1·5% (95% CI 0·3-2·7) and 1·1% (95% CI 0·1-2·3) increase in diarrhoeal risk, respectively. Relative humidity and diarrhoeal risk were in nonlinear relationship. The spatial analysis showed significant clustering of diarrhoea, and the LISA map shows three multi-centred diarrhoeal clusters and three single-centred clusters in the research location. The findings suggest that climatic conditions projected to be associated with climate change have important implication for human health impact in the Mekong Delta region. PMID:25876699

  5. Searching for the Holy Grail: Temporally Informative Firing Patterns in the Rat

    PubMed Central

    Matell, Matthew S.

    2015-01-01

    This chapter reviews our work from the past decade investigating cortical and striatal firing patterns in rats while they time intervals in the multi-seconds range. We have found that both cortical and striatal firing rates contain information that the rat can use to identify how much time has elapsed both from trial onset and from the onset of an active response state. I describe findings showing that the striatal neurons that are modulated by time are also modulated by overt behaviors, suggesting that time modulates the strength of motor coding in the striatum, rather than being represented as an abstract quantity in isolation. I also describe work showing that there are variety of temporally informative activity patterns in pre-motor neurons, and argue that the heterogeneity of these patterns can enhance an organism's temporal estimate. Finally, I describe recent behavioral work from my lab in which the simultaneous cueing of multiple durations leads to scalar temporal expectation at an intermediate time, providing strong support for a monotonic representation of time. PMID:25358713

  6. Spatio-temporal soil moisture patterns - A meta-analysis using plot to catchment scale data

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Fiener, P.; Koyama, C. N.; Bogena, H. R.; Cornelissen, T.; Baatz, R.; Herbst, M.; Diekkrüger, B.; Vereecken, H.; Schneider, K.

    2015-01-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. It is influenced by many factors, such as topography, soil properties, vegetation type, management, and meteorological conditions. The role of these factors in controlling the spatial patterns and temporal dynamics is often not well known. The aim of the current study is to analyze spatio-temporal soil moisture patterns acquired across a variety of land use types, on different spatial scales (plot to meso-scale catchment) and with different methods (point measurements, remote sensing, and modeling). We apply a uniform set of tools to determine method specific effects, as well as site and scale specific controlling factors. Spatial patterns of soil moisture and their temporal development were analyzed using nine different datasets from the Rur catchment in Western Germany. For all datasets we found negative linear relationships between the coefficient of variation and the mean soil moisture, indicating lower spatial variability at higher mean soil moisture. For a forest sub-catchment compared to cropped areas, the offset of this relationship was larger, with generally larger variability at similar mean soil moisture values. Using a geostatistical analysis of the soil moisture patterns we identified three groups of datasets with similar values for sill and range of the theoretical variogram: (i) modeled and measured datasets from the forest sub-catchment (patterns mainly influenced by soil properties and topography), (ii) remotely sensed datasets from the cropped part of the Rur catchment (patterns mainly influenced by the land-use structure of the cropped area), and (iii) modeled datasets from the cropped part of the Rur catchment (patterns mainly influenced by large scale variability of soil properties). A fractal analysis revealed that all analyzed soil moisture patterns showed a multifractal behavior, with at least one scale break and generally high fractal dimensions. Corresponding scale breaks were found between different datasets. The factors causing these scale breaks are consistent with the findings of the geostatistical analysis. Furthermore, the joined analysis of the different datasets showed that small differences in soil moisture dynamics, especially at the upper and lower bounds of soil moisture (at maximum porosity and wilting point of the soils) can have a large influence on the soil moisture patterns and their autocorrelation structure. Depending on the prevalent type of land use and the time of year, vegetation causes a decrease or an increase of spatial variability in the soil moisture pattern.

  7. Discrimination and Comprehension of Synthetic Speech by Students with Visual Impairments: The Case of Similar Acoustic Patterns

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Argyropoulos, Vassilios S.; Kouroupetroglou, Georgios

    2008-01-01

    This study examined the perceptions held by sighted students and students with visual impairments of the intelligibility and comprehensibility of similar acoustic patterns produced by synthetic speech. It determined the types of errors the students made and compared the performance of the two groups on auditory discrimination and comprehension.

  8. Spatio-temporal patterns of dengue in Malaysia: combining address and sub-district level.

    PubMed

    Ling, Cheong Y; Gruebner, Oliver; Krämer, Alexander; Lakes, Tobia

    2014-11-01

    Spatio-temporal patterns of dengue risk in Malaysia were studied both at the address and the sub-district level in the province of Selangor and the Federal Territory of Kuala Lumpur. We geocoded laboratory-confirmed dengue cases from the years 2008 to 2010 at the address level and further aggregated the cases in proportion to the population at risk at the sub-district level. Kulldorff's spatial scan statistic was applied for the investigation that identified changing spatial patterns of dengue cases at both levels. At the address level, spatio-temporal clusters of dengue cases were concentrated at the central and south-eastern part of the study area in the early part of the years studied. Analyses at the sub-district level revealed a consistent spatial clustering of a high number of cases proportional to the population at risk. Linking both levels assisted in the identification of differences and confirmed the presence of areas at high risk for dengue infection. Our results suggest that the observed dengue cases had both a spatial and a temporal epidemiological component, which needs to be acknowledged and addressed to develop efficient control measures, including spatially explicit vector control. Our findings highlight the importance of detailed geographical analysis of disease cases in heterogeneous environments with a focus on clustered populations at different spatial and temporal scales. We conclude that bringing together information on the spatio-temporal distribution of dengue cases with a deeper insight of linkages between dengue risk, climate factors and land use constitutes an important step towards the development of an effective risk management strategy. PMID:25545931

  9. Spatial and Temporal Migration Patterns of Neotropical Migrants in the Southwest Revealed by Stable Isotopes

    USGS Publications Warehouse

    Paxton, Kristina L.; van Riper, Charles, III

    2006-01-01

    Executive Summary We used stable hydrogen isotopes (?D) to investigate both temporal and spatial patterns during spring migration for three warbler species, Wilson's Warbler (Wilsonia pusilla), MacGillivray's Warbler (Oporornis tolmiei), and Nashville Warbler (Vermivora ruficapilla), across multiple migration routes in southwest North America. A strong correlation between stable hydrogen isotope values of feathers and the local precipitation at sites where feathers where collected across the breeding range for all three species reaffirmed that stable hydrogen isotopes were a good predictor of breeding locations. For the Wilson's Warbler, we found a significant negative relationship between the date when warblers passed through the sampling station and ?D values of their feathers, indicating that warblers who bred the previous season at southern latitudes migrated through the migration stations earlier than did warblers that had previously bred at more northern latitudes. This pattern was consistent across their southwestern migration route (5 sites sampled) and was consistent between years. Comparing ?D values between migration stations also showed a shift towards more negative ?D values from the western to the eastern migration stations sampled in this study, which corresponded to different geographical regions of the Wilson's Warblers' western breeding range. For MacGillivray's Warbler we found the same temporal pattern as Wilson's Warbler, with warblers that bred the previous season at southern latitudes migrating through the migration stations earlier than warblers that had previously bred at more northern latitudes. This pattern was consistent at the Lower Colorado River and Arivaca Creek, the two sites where sample sizes were adequate to test these hypotheses. Comparison of the ?D between the two sites indicated that the majority of warblers migrating through these stations were breeding within a geographically limited area of MacGillivray's Warblers' overall breeding range. This is in contrast to the larger range of ?D values for Wilson's Warblers at these two sites, which corresponded to a broader area across their breeding range. Feathers were also collected across MacGillivray's Warblers' wintering range, and stable hydrogen isotope analysis indicated a significant positive relationship with wintering latitude. Because the ?D value of MacGillivray's Warblers' feathers reflects the ?D value of their breeding locations, with more negative values representing more northerly breeding latitudes, this positive relationship between feather ?D and wintering latitude indicated that warblers wintering at more southern latitudes bred at more northern latitudes. This supports a leapfrog migration system for MacGillivray's Warblers and is the first documentation of such a pattern. We did not find a temporal pattern to the spring migration of Nashville Warblers. This lack of temporal pattern could be due to the reduced size of the breeding and wintering ranges of Nashville Warblers, both of which could decrease the advantages of a temporal migration pattern. A small population of Nashville Warblers also breeds on the California coast and the sporadic nature of migration for Nashville Warblers in the southwest suggests that in some years more Nashville Warblers may winter along the California coast. The information in this study has increased our understanding of both spatial and temporal patterns of migration for three neotropical migrant birds and has important implications for understanding the ecology and evolution of migrants and factors influencing overall population dynamics.

  10. Temporal variability of thermal refuges and water temperature patterns in an Atlantic salmon river

    NASA Astrophysics Data System (ADS)

    Dugdale, S.; Bergeron, N.; St-Hilaire, A.

    2013-12-01

    River basins in northern latitudes are predicted to experience increased water temperatures under future climate change. This will have a negative impact on most salmonid populations which are highly intolerant of temperatures in excess of 23° C. In response to summer heat stress, salmonids thermoregulate in discrete units of cold water. Termed thermal refuges, these are of great significance to the ability of salmon and trout to survive increased water temperatures. Although previous research has documented links between the spatial patterns of thermal refuges and salmonid distribution and behaviour, the temporal variability of these cold water units has never been studied. In this investigation, airborne thermal infrared (TIR) imagery acquired six times between 2009 and 2011 was used to characterise temporal variability of thermal refuges and broader scale patterns of water temperature in the Rivière Ouelle, an Atlantic salmon river in Québec, Canada. Thermal refuges detected from TIR imagery were classified into a series of categories, revealing notable inter-survey variability between the absolute counts of each refuge type. Broader-scale longitudinal temperature profiles of river temperature were also extracted. Temporal variability in the absolute counts of lateral groundwater seeps (the most frequently observed thermal refuge class) was shown to correlate strongly with long duration hydrometeorological metrics such as seasonal mean discharge (R2 = 0.94, p < 0.01). Conversely, thermal refuges resulting from cold water tributaries were more temporally stable. Downstream temperature complexity was shown to correlate best with short duration metrics such as cumulative precipitation depth within a 5-day period prior to each survey (R2 = 0.90, p < 0.01). This study is the first of its kind to link thermal refuge dynamics and water temperature patterns to hydrometeorological conditions and may offer valuable insights into how changing hydrometeorological regimes could influence these important cold water units in the future.

  11. Factors influencing the temporal patterns of dyadic behaviours and interactions between domestic cats and their owners.

    PubMed

    Wedl, Manuela; Bauer, Barbara; Gracey, Dorothy; Grabmayer, Christine; Spielauer, Elisabeth; Day, Jon; Kotrschal, Kurt

    2011-01-01

    Human-cat dyads may be similar in interaction structure to human dyads because many humans regard their cats as being social companions. Consequently, we predict that dyadic structure will be contingent on owner and cat personalities, sex, and age as well as duration of cohabitation of the partners. Forty owner-cat dyads were visited in their homes, on four occasions, during which their behaviours and interactions were video-taped. Behaviour was coded from tape and was analysed for temporal (t)-patterns using Theme (Noldus; Magnusson, 1996). Owner personality was assessed using the NEO-FFI. Five cat personality axes were identified by Principal Component Analysis (PCA) based on observer-rated items and on coded behaviours. We found that the higher the owner in neuroticism, the fewer t-patterns occurred per minute. The higher the owner in extraversion, the higher was the number of non-overlapping patterns per minute. The more "active" the cat, the fewer non-overlapping patterns occurred per minute, but the higher was the event type complexity. The older the cat, the lower was dyadic event type complexity. We suggest that basic temporal structures similar to those of human-cat dyads may also be found in other long-term and complex dyadic relationships, including those between humans. PMID:20837114

  12. Temporal pattern of plasminogen activator activity in the developing chick cerebellum.

    PubMed

    Scicolone, G; Pereyra-Alfonso, S; Sanchez, V; Flores, V

    1997-11-01

    Plasminogen activators are considered to be involved in several developmental events. The present work aims at characterizing the developmental pattern of expression of plasminogen activators in the chick cerebellum. Soluble fractions derived by ultracentrifugation from Triton X-100 treated membrane fractions were used for determination of the enzyme activity with a radial fibrinolytic assay. By using specific inhibitors and different anti-plasminogen activators antibodies it is shown that only one type of the enzyme, the urokinase-type plasminogen activator, is expressed during the cerebellum ontogeny. Our results show the existence of a bimodal pattern of enzyme activity with two peaks that temporally coincide with the processes of massive neuronal migration, neurite outgrowth and synapse formation and plasticity. It is proposed that plasminogen activator could play a role in these developmental events and that its pattern of variability is developmentally regulated. PMID:9568535

  13. Temporal organization of an anuran acoustic community in a Taiwanese subtropical forest

    USGS Publications Warehouse

    Hsu, M.-Y.; Kam, Y.-C.; Fellers, G.M.

    2006-01-01

    We recorded anuran vocalizations in each of four habitats at Lien Hua Chih Field Station, Taiwan, between July 2000 and July 2001. For each 27 biweekly sample, eight recorders taped calls for 1 min out of every 11 between the hours of 17:00 and 07:00. We obtained 11 481 recordings with calls, and identified 21 503 frogs or groups of frogs. These included 20 species, with an average of 10.4??3.5 species calling each night. Some species called year round, others called in the spring and summer, and a third group called only in the fall and winter. The number of species calling and the maximum calling intensity were correlated with both rainfall and air temperature. The nightly pattern of calling varied among species. Most species called continuously throughout the night, whereas some had a peak right after dusk. A few species had different nightly calling patterns in different habitats. Both Rana limnocharis and Rana kuhlii changed their calling pattern in the presence of large choruses of other anuran species. ?? 2006 The Authors.

  14. Spatio-temporal patterns of leptospirosis in Thailand: is flooding a risk factor?

    PubMed

    Suwanpakdee, S; Kaewkungwal, J; White, L J; Asensio, N; Ratanakorn, P; Singhasivanon, P; Day, N P J; Pan-Ngum, W

    2015-07-01

    We studied the temporal and spatial patterns of leptospirosis, its association with flooding and animal census data in Thailand. Flood data from 2010 to 2012 were extracted from spatial information taken from satellite images. The incidence rate ratio (IRR) was used to determine the relationship between spatio-temporal flooding patterns and the number of human leptospirosis cases. In addition, the area of flood coverage, duration of waterlogging, time lags between flood events, and a number of potential animal reservoirs were considered in a sub-analysis. There was no significant temporal trend of leptospirosis over the study period. Statistical analysis showed an inconsistent relationship between IRR and flooding across years and regions. Spatially, leptospirosis occurred repeatedly and predominantly in northeastern Thailand. Our findings suggest that flooding is less influential in leptospirosis transmission than previously assumed. High incidence of the disease in the northeastern region is explained by the fact that agriculture and animal farming are important economic activities in this area. The periodic rise and fall of reported leptospirosis cases over time might be explained by seasonal exposure from rice farming activities performed during the rainy season when flood events often occur. We conclude that leptospirosis remains an occupational disease in Thailand. PMID:25778527

  15. Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper.

    PubMed

    Bertet, Claire; Li, Xin; Erclik, Ted; Cavey, Matthieu; Wells, Brent; Desplan, Claude

    2014-08-28

    Temporal patterning of neural progenitors is one of the core mechanisms generating neuronal diversity in the central nervous system. Here, we show that, in the tips of the outer proliferation center (tOPC) of the developing Drosophila optic lobes, a unique temporal series of transcription factors not only governs the sequential production of distinct neuronal subtypes but also controls the mode of progenitor division, as well as the selective apoptosis of Notch(OFF) or Notch(ON) neurons during binary cell fate decisions. Within a single lineage, intermediate precursors initially do not divide and generate only one neuron; subsequently, precursors divide, but their Notch(ON) progeny systematically die through Reaper activity, whereas later, their Notch(OFF) progeny die through Hid activity. These mechanisms dictate how the tOPC produces neurons for three different optic ganglia. We conclude that temporal patterning generates neuronal diversity by specifying both the identity and survival/death of each unique neuronal subtype. PMID:25171415

  16. Spatio-Temporal Pattern Analysis for Regional Climate Change Using Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Das, M.; Ghosh, S. K.

    2015-07-01

    Of late, significant changes in climate with their grave consequences have posed great challenges on humankind. Thus, the detection and assessment of climatic changes on a regional scale is gaining importance, since it helps to adopt adequate mitigation and adaptation measures. In this paper, we have presented a novel approach for detecting spatio-temporal pattern of regional climate change by exploiting the theory of mathematical morphology. At first, the various climatic zones in the region have been identified by using multifractal cross-correlation analysis (MF-DXA) of different climate variables of interest. Then, the directional granulometry with four different structuring elements has been studied to detect the temporal changes in spatial distribution of the identified climatic zones in the region and further insights have been drawn with respect to morphological uncertainty index and Hurst exponent. The approach has been evaluated with the daily time series data of land surface temperature (LST) and precipitation rate, collected from Microsoft Research - Fetch Climate Explorer, to analyze the spatio-temporal climatic pattern-change in the Eastern and North-Eastern regions of India throughout four quarters of the 20th century.

  17. Statistical analysis on spatial and temporal patterns of the Chinese elderly population.

    PubMed

    Lai, D

    1999-01-01

    China contains over one-fifth of the world population. Over the past 20 years, the Chinese population has been ageing rapidly due to the dramatic family planning programs enforced by the Chinese government. These family planning programs have been implemented gradually during the last two decades and the programs implemented were varied from region to region. In this study, we statistically examined the spatial and temporal patterns of the processes of the Chinese elderly populations among the provinces, autonomous regions and municipalities (P/A/M) from 1953 to 1994. The D-statistic was used in assessing the spatial autocorrelation for the proportions of the elderly population of the 30 (29) P/A/M in the Chinese mainland. The simple T-statistic was used in measuring the temporal changes since 1953. The spatial and temporal patterns were statistically significant according to the testing statistics. We also found that the proportions of the elderly population were highly correlated with the population densities of the P/A/M. We linked these statistical results with the changes in the socio-economic situations since the founding of the People's Republic of China in 1949. PMID:18656104

  18. Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper

    PubMed Central

    Bertet, Claire; Li, Xin; Erclik, Ted; Cavey, Matthieu; Wells, Brent; Desplan, Claude

    2014-01-01

    Temporal patterning of neural progenitors is one of the core mechanisms generating neuronal diversity in the central nervous system. Here, we show that in the tips of the outer proliferation center (tOPC) of the developing Drosophila optic lobes, a unique temporal series of transcription factors not only governs the sequential production of distinct neuronal subtypes, but also controls the mode of progenitor division as well as the selective apoptosis of NotchOFF or NotchON neurons during binary cell fate decisions. Within a single lineage, intermediate precursors initially do not divide and generate only one neuron; subsequently, precursors divide but their NotchON progeny systematically die through Reaper activity whereas later, their NotchOFF progeny die through Hid activity. These mechanisms dictate how the tOPC produces neurons for three different optic ganglia. We conclude that temporal patterning generates neuronal diversity by specifying both the identity and survival/death of each unique neuronal subtype. PMID:25171415

  19. Decoding of retinal ganglion cell spike trains evoked by temporally patterned electrical stimulation.

    PubMed

    Ryu, Sang Baek; Ye, Jang Hee; Goo, Yong Sook; Kim, Chi Hyun; Kim, Kyung Hwan

    2010-08-12

    For successful restoration of vision by retinal prostheses, the neural activity of retinal ganglion cells (RGCs) evoked by electrical stimulation should represent the information of spatiotemporal patterns of visual input. We propose a method to evaluate the effectiveness of stimulation pulse trains so that the crucial temporal information of a visual input is accurately represented in the RGC responses as the amplitudes of pulse trains are modulated according to the light intensity. This was enabled by spike train decoding. The effectiveness of the stimulation was evaluated by the accuracy of decoding pulse amplitude from the RGC spike train, i.e., by the similarity between the original and the decoded pulse amplitude time series. When the parameters of stimulation were suitably determined, the RGC responses were reliably modulated by varying the amplitude of electrical pulses. Accordingly, the temporal pattern of pulse amplitudes could be successfully decoded from multiunit RGC spike trains. The range of pulse amplitude and the pulse rate were critical for accurate representation of input information in RGC responses. These results suggest that pulse amplitude modulation is a feasible means to encode temporal visual information by RGC spike trains and thus to implement stimulus encoding strategies for retinal prostheses. PMID:20599822

  20. Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors

    PubMed Central

    Gu, Huaguang; Pan, Baobao

    2015-01-01

    In rabbit depressor nerve fibers, an on-off firing pattern, period-1 firing, and integer multiple firing with quiescent state were observed as the static pressure level was increased. A bursting pattern with bursts at the systolic phase of blood pressure, continuous firing, and bursting with burst at diastolic phase and quiescent state at systolic phase were observed as the mean level of the dynamic blood pressure was increased. For both static and dynamic pressures, the firing frequency of the first two firing patterns increased and of the last firing pattern decreased due to the quiescent state. If the quiescent state is disregarded, the spike frequency becomes an increasing trend. The instantaneous spike frequency of the systolic phase bursting, continuous firing, and diastolic phase bursting can reflect the temporal process of the systolic phase, whole procedure, and diastolic phase of the dynamic blood pressure signal, respectively. With increasing the static current corresponding to pressure level, the deterministic Hodgkin-Huxley (HH) model manifests a process from a resting state first to period-1 firing via a subcritical Hopf bifurcation and then to a resting state via a supercritical Hopf bifurcation, and the firing frequency increases. The on-off firing and integer multiple firing were here identified as noise-induced firing patterns near the subcritical and supercritical Hopf bifurcation points, respectively, using the stochastic HH model. The systolic phase bursting and diastolic phase bursting were identified as pressure-induced firings near the subcritical and supercritical Hopf bifurcation points, respectively, using an HH model with a dynamic signal. The firing, spike frequency, and instantaneous spike frequency observed in the experiment were simulated and explained using HH models. The results illustrate the dynamics of different firing patterns and the frequency and temporal coding mechanisms of aortic baroreceptor. PMID:26379539

  1. Temporal and spatial patterns in vegetation and atmospheric properties from AVIRIS

    SciTech Connect

    Roberts, D.A.; Green, R.O.; Adams, J.B.

    1997-12-01

    Little research has focused on the use of imaging spectrometry for change detection. In this paper, the authors apply Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to the monitoring of seasonal changes in atmospheric water vapor, liquid water, and surface cover in the vicinity of the Jasper Ridge, CA, for three dates in 1992. Apparent surface reflectance was retrieved and water vapor and liquid water mapped by using a radiative-transfer-based inversion that accounts for spatially variable atmospheres. Spectral mixture analysis (SMA) was used to model reflectance data as mixtures of green vegetation (GV), nonphotosynthetic vegetation (NPV), soil, and shade. Temporal and spatial patterns in endmember fractions and liquid water were compared to the normalized difference vegetation index (NDVI). The reflectance retrieval algorithm was tested by using a temporally invariant target.

  2. Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry.

    PubMed

    Etchepareborda, Pablo; Bianchetti, Arturo; Veiras, Francisco E; Vadnjal, Ana Laura; Federico, Alejandro; Kaufmann, Guillermo H

    2015-09-01

    Three real-time methods for object-phase recovery are implemented and compared in temporal speckle-pattern interferometry. Empirical mode and intrinsic time-scale decompositions are used and compared as real-time nonstationary and nonlinear filtering techniques for the extraction of the spatio-temporal evolution of the object phase. The proposed real-time methods avoid the application of the Hilbert transform and improve the accuracy of the measurement by filtering under-modulated pixels using Delaunay triangulation. The performance of the proposed methods is evaluated by comparing phase-recovery accuracy and computation time by means of numerical simulations and experimental data obtained from common and simultaneous π/2 phase-shifting heterodyne interferometry. PMID:26368890

  3. Spatial and temporal coherence of broadband acoustic transmissions in the Straits of Florida

    NASA Astrophysics Data System (ADS)

    Deferrari, Harry A.; Williams, Neil; Nguyen, Hien

    2003-04-01

    Month-long time series of broadband coherent measurements of channel pulse responses in the Florida Straits allow for estimation of signal coherence under a great variety of signal parameters and environmental conditions. Two 32-element arrays, one vertical and another horizontal (bottomed) along the path of propagation allow for comparison of spatial coherency and single phone temporal coherencies. The transmitted signals cover 5 octaves from 100 through 3200 Hz. Coherencies for single resolved SRBR arrivals are compared with those for unresolved multipath BRB focused arrivals. Many factors are at play including the complication of coherent reception from nearby shipping and multipath interference. However, the time series are long enough to sort out and explain most relations to the environmental variability. Vertical and horizontal coherence lengths are compared over a wide range of frequencies. Generally, SBRB paths are found to be far more stable and coherent than RBR paths especially at higher frequencies suggesting that sound-speed variability near turning RBR rays/modes is more destructive to coherency. The loss of signal coherency for RBR paths is accompanied by a significant loss of signal intensity-as much as 10 to 15 dB.

  4. Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

    PubMed Central

    Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628

  5. Complex Relationships Between the Spatial and Temporal Patterns of Climate in Mountainous Terrain

    NASA Astrophysics Data System (ADS)

    Daly, C.; Nolin, A. W.

    2007-12-01

    A complex interplay between the spatial and temporal patterns of climate is known to exist at the regional scale in the Pacific Northwest. For example, there is a surprising lack of relationship between maximum temperature in winter and minimum temperature in all seasons on mountain tops vs. those in valley bottoms. This lack of relationship exists at time scales ranging from sub-daily to monthly and longer. Recent analysis of temperature data from the H.J. Andrews Experimental Forest in Oregon's Cascade Mountains provides a case study from a small (10x12 km) watershed. Initial results suggest that: (1) Temporal variations in climate do not always occur in lock-step across the landscape - they are often asynchronous; (2) much of this asynchrony appears to be controlled by susceptibility to cold air flowing down drainages and pooling in valley bottoms; (3) the patterns and degrees of climatic asynchrony (i.e., cold air drainage) vary strongly with weather regime, season, time of day, topographic position, and other factors; and (4) effects of cold air drainage on the spatial patterns of snowpack persistence may produce positive feedbacks that can reinforce cold air pooling. This has great implications for long-term ecosystem monitoring and analysis in complex terrain. It suggests that terrestrial and aquatic ecosystems in very close proximity may be exposed to markedly different regimes of weather and climate trends and variability across scales ranging from seconds to months, and perhaps longer.

  6. Mitral cell temporal response patterns evoked by odor mixtures in the rat olfactory bulb.

    PubMed

    Giraudet, Pascale; Berthommier, Frédéric; Chaput, Michel

    2002-08-01

    Mammals generally have the ability to extract odor information contained in complex mixtures of molecular components. However, odor mixture processing has been studied electrophysiologically only in insects, crustaceans, and fish. As a first step toward a better understanding of this processing in high vertebrates, we studied the representation of odor mixtures in the rat olfactory bulb, i.e., the second-order level of the olfactory pathways. We compared the single-unit responses of mitral cells, the main cells of the olfactory bulb, to pure odors and to their binary mixtures. Eighty-six mitral cells were recorded in anesthetized freely breathing rats stimulated with five odorants and their 10 binary mixtures. The spontaneous activity and the odor-evoked responses were characterized by their temporal distribution of activity along the respiratory cycle, i.e., by cycle-triggered histograms. Ninety percent of the mixtures were found to evoke a response when at least one of their two components evoked a response. Mixture-evoked patterns were analyzed to describe the modalities of the combination of patterns evoked by the two components. In most of the cases, the mixture pattern was closely similar to one of the component patterns. This dominance of a component over the other one was related to the responsiveness of the cell to the individual components of the mixture, to the molecular nature of the stimulus, and to the coarse shape of individual response patterns. This suggests that the components of binary mixtures may be encoded simultaneously by different odor-specific temporal distributions of activity. PMID:12163534

  7. The Power of the Variogram for Characterising Spatial and Temporal Patterns of Streamflow Variability.

    NASA Astrophysics Data System (ADS)

    Chiverton, A.; Hannaford, J.; Holman, I.; Corstanje, R.; Prudhomme, C.; Hess, T.; Bloomfield, J.

    2014-12-01

    Variograms are widely used in spatial statistics, as a way of examining correlations between points in space, but also have potential for application to temporal data. A variogram provides a robust and flexible way to quantify the temporal dependence (or autocorrelation, i.e. the dependence of flow on a given day with previous days) in daily river flow time series. There are, however, very few published examples of variogram techniques applied to hydrological datasets. The power of the variogram lies in its ability to characterise temporal dependence and, as such, describe the precipitation-to-flow relationship; as this is largely controlled by the catchment characteristics (e.g. elevation, soil type, rock type and land cover), it opens up a range of applications for characterising spatial patterns of streamflow regimes, as well as the dynamics of streamflow over time. This presentation describes a novel variogram-based method for investigating the influence that catchment characteristics have on moderating how streamflow responds to temporal changes in precipitation for a set of 116 catchments from across the UK. In the new approach, catchments are first classified based on the shape of streamflow variograms, with the classes being predictable based on catchment characteristics. The classification method therefore sheds light on how spatial variations in landscape properties influence the precipitation-to-flow relationship, and has significant potential for un-gauged site applications. Temporal variability is then assessed using a moving-window approach to index changes in variogram parameters over time, with a key benefit of the method being that different variogram parameters capture distinct aspects of the changing flow regime. Results demonstrate that precipitation alone cannot explain the variation in flow responses: catchment characteristics have a substantial role in moderating how a river responds to climatic variability, with the findings paving the way for assessments of the varying sensitivity of UK catchments to future streamflow change.

  8. TEMPORAL PATTERNS IN THREE-DIMENSIONAL STRUCTURE AND ACTIVITY OF SCHOOLS OF THE ATLANTIC SILVERSIDE 'MENIDIA MENIDIA'

    EPA Science Inventory

    Temporal patterns in the structure and activity of schools of the Atlantic silverside Menidia menidia were investigated under laboratory conditions using a new computerized video technique for three-dimensional analysis. Fish were collected by seining at Middle Bridge, Pettaquans...

  9. Spatio-temporal foraging patterns of a giant zooplanktivore, the leatherback turtle

    NASA Astrophysics Data System (ADS)

    Fossette, Sabrina; Hobson, Victoria J.; Girard, Charlotte; Calmettes, Beatriz; Gaspar, Philippe; Georges, Jean-Yves; Hays, Graeme C.

    2010-05-01

    Understanding food web functioning through the study of natural bio-indicators may constitute a valuable and original approach. In the context of jellyfish proliferation in many overexploited marine ecosystems studying the spatio-temporal foraging patterns of the giant "jellyvore" leatherback turtle turns out to be particularly relevant. Here we analyzed long-term tracking data to assess spatio-temporal foraging patterns in 21 leatherback turtles during their pluri-annual migration in the Northern Atlantic. Through an analytical approach based on the animal's own motion (independent of currents) and diving behavior distinct zones of high and low foraging success were identified. High foraging success occurred in a sub-equatorial zone spanning the width of the Atlantic and at high (>30°N) latitudes. Between these zones in the centre of North Atlantic gyre there was low foraging success. This "ocean desert" area was traversed at high speed by leatherbacks on their way to more productive areas at higher latitudes. Animals traveled slowly in high foraging success areas and dived shallower (17.2 ± 8.0 km day - 1 and 53.6 ± 33.1 m mean ± SD respectively) than in low foraging success areas (51.0 ± 13.1 km day - 1 and 81.8 ± 56.2 m mean ± SD respectively). These spatio-temporal foraging patterns seem to relatively closely match the main features of the integrated meso-zooplankton distribution in the North Atlantic. Our method of defining high foraging success areas is intuitive and relatively easy to implement but also takes into account the impact of oceanic currents on animal's behavior.

  10. The impact of spatial and temporal patterns on multi-cellular behavior

    NASA Astrophysics Data System (ADS)

    Nikolic, Djordje L.

    What makes a fruit fly a fruit fly? Essentially this question stems from one of the most fascinating problems in biology: how a single cell (fertilized egg) can give rise to a fully grown animal. To be able to answer this question, the importance to how spatial and temporal patterns of gene and protein expression influence the development of an organism must be understood. After all, fruit fly larvae are segmented, while fertilized eggs are not. Pattern formation is fundamental to establishing this organization of the developing embryo with the ultimate goal being the precise arrangements of specialized cells and tissues within each organ in an adult organism. The research presented here showcases the examples of studies that assess the impact spatial and temporal protein patterns have on the behavior of a collection of cells. By introducing new experimental, non-traditional techniques we developed model systems that allowed us to examine the dependence of the strength of adhesion of cells on the protein organization on sub-cellular, micron length scales, and to investigate how epithelial cell sheets coordinate their migration incorporating individual cell locomotion, molecular signal propagation and different boundary conditions. The first part of this dissertation presents a photolithography-based silanization patterning technique that allowed us to homogeneously pattern large areas with high precision. This method is then applied to organizing cell adhesion-promoting proteins on surfaces for the purposes of studying and manipulating cell behavior. We show how the strength of adhesion is dependent on high local density of an adhesive extracellular matrix protein fibronectin. The varied appeal of this technique is exhibited by showing its applicability to pattern stretched DNA, too. The second part of this dissertation focuses on the impact of spatial and temporal propagation of a molecular signal (ERK 1/2 MAPK) in migrating epithelial sheets during wound healing. By tracking the motion of individual cells within the sheet under the three constructed conditions, we show how the dynamics of the individual cells' motion is responsible for the coordinated migration of the sheet in accordance with the activation of ERK 1/2 MAPK.

  11. Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems

    PubMed Central

    Metzler, Ralf; Klafter, Joseph; Jortner, Joshua

    1999-01-01

    Logarithmic oscillations superimposed on the temporal relaxation patterns of complex systems are considered from the standpoint of their hierarchical origin. We propose that a closer examination of experimental data should reveal logarithmic oscillations in systems that are characterized by a hierarchical structure of their dynamical degrees of freedom. On that footing, a new methodology of data analysis is proposed that may prove important for the dynamics of protein folding and of conformational fluctuations in proteins in which the relevant time scales of the dynamical evolution underlying the relaxation kinetics can be deduced from these oscillations. PMID:10500133

  12. Temporal patterns of rarity provide a more complete view of microbial diversity.

    PubMed

    Shade, Ashley; Gilbert, Jack A

    2015-06-01

    Recently, conditionally rare taxa (CRTs)--those taxa that are typically in very low abundance but occasionally achieve prevalence--were shown to contribute to patterns of microbial diversity because their collective dynamics explained a large proportion of temporal variability in microbial community structure. Here the benefits and challenges of characterizing the presence and interpreting the role of CRTs are further explored, along with questions about CRT ecology. We also introduce a conceptual model for thinking about microbial taxa as dynamic components along the dimensions of occurrence and abundance. Accounting for CRTs in interpretations of microbial ecological dynamics is essential if we are to understand community stability and ecoevolutionary interactions. PMID:25667105

  13. Global Spatio-temporal Patterns of Influenza in the Post-pandemic Era

    NASA Astrophysics Data System (ADS)

    He, Daihai; Lui, Roger; Wang, Lin; Tse, Chi Kong; Yang, Lin; Stone, Lewi

    2015-06-01

    We study the global spatio-temporal patterns of influenza dynamics. This is achieved by analysing and modelling weekly laboratory confirmed cases of influenza A and B from 138 countries between January 2006 and January 2015. The data were obtained from FluNet, the surveillance network compiled by the the World Health Organization. We report a pattern of skip-and-resurgence behavior between the years 2011 and 2013 for influenza H1N1pdm, the strain responsible for the 2009 pandemic, in Europe and Eastern Asia. In particular, the expected H1N1pdm epidemic outbreak in 2011/12 failed to occur (or “skipped”) in many countries across the globe, although an outbreak occurred in the following year. We also report a pattern of well-synchronized wave of H1N1pdm in early 2011 in the Northern Hemisphere countries, and a pattern of replacement of strain H1N1pre by H1N1pdm between the 2009 and 2012 influenza seasons. Using both a statistical and a mechanistic mathematical model, and through fitting the data of 108 countries, we discuss the mechanisms that are likely to generate these events taking into account the role of multi-strain dynamics. A basic understanding of these patterns has important public health implications and scientific significance.

  14. Crosswell acoustic surveying in gas sands: travel-time pattern recognition, seismic Q and channel waves

    SciTech Connect

    Albright, J.N.; Johnson, P.A.

    1985-01-01

    The application of crosswell acoustic measurements to gas sands research has been explored through surveys conducted in the Mesa Verde formation at the Department of Energy Multi-Well Experiment (MWX) site near Rifle, Colorado. The borehole tools used in the survey are similar in concept to those used in commercial service for sonic logging, but they are especially adapted for the stringent requirements of crosswell shooting in hot gas wells. Important information about the geologic structure between wells can be extracted from crosswell scans without resorting to elaborate processing. A useful representation is a display of the travel time of P-waves in terms of the cylindrical coordinates of the transmitter referenced to the receiver. This is known as a gamma-depth (..gamma..-Z) plot. Such a representation may yield distinctive patterns, which can be interpreted based on the successful replication of the pattern through computer simulations. The apparent seismic Q of P-waves transmitted through the sands at the MWX site is derived using two methods. The first applies to crosswell surveys in which signals can be acquired over a significant range of source-receiver distances. A Q of 15 between well pair MWX 1/2 is derived in this manner. The second method makes use of signals transmitted between wells in a three-well complex and provides an estimate of seismic Q for the rocks bounded by each well pair. Q estimates derived from this technique are 18, 30, and 28 for well bores MWX-1/2, MWX-2/3 and MWX-3/1, respectively. Channel waves propagate through the MWX coals. Evidence suggests that tube waves launched in the transmitter well give rise, under appropriate conditions, to channel waves, which in turn excite tube waves in nearby wells that penetrate the same channel. Although the sequence of conversions is weak, the resulting waveforms are coherent enough to resolve the channel waves through stacking. 8 refs., 10 figs.

  15. Trend and uncertainty in spatial-temporal patterns of hydrological droughts in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Lopes, A. V.; Chiang, J. C. H.; Thompson, S. A.; Dracup, J. A.

    2016-04-01

    Spatial-temporal patterns of hydrological droughts in the Amazon basin are derived from drought indices computed from existing streamflow data. Principal component analysis and Monte Carlo simulations are employed to account for the uncertainty and overcome the limitations of missing data in streamflow records. Results show that northern and southern subbasins differ in drought trends and in patterns of correlation between drought indices and climate anomalies originating from the Pacific (El Niño-Southern Oscillation) and Atlantic (differences in sea surface temperature across the equator) Oceans. A significant trend toward more intense droughts is found in the southern subbasins, which is highly correlated to tropical Atlantic Ocean sea surface temperature anomalies. That drying trend might have distinct causes in each subbasin and can lead to potential intensification of regional impacts.

  16. Power-law Relationship in Describing Temporal and Spatial Precipitation Pattern in Turkey

    NASA Astrophysics Data System (ADS)

    Kadiğlu, M.; Şen, Z.

    Wet and dry spell properties of monthly rainfall series at five meteorology stations in Turkey are examined by plotting successive wet and dry month duration versus their number of occurrences on the double-logarithmic paper. Straight line relationships on such graphs show that power-laws govern the pattern of successive persistent wet and dry monthly spells. Functional power law relationships between the number of dry and wet spells for a given monthly period are derived from the available monthly precipitation data. The probability statements for wet and dry period spells are obtained from the power law expressions. Comparison of power-law behaviours at five distinct sites in Turkey provides useful interpretation about the temporal and spatial rainfall pattern. As in temperate areas such as Turkey the rainfall amounts change mostly due to one-month-long dry or wet spells.

  17. Spatial and temporal pattern of Fgf-8 expression during chicken development.

    PubMed

    Stolte, Daniel; Huang, Ruijin; Christ, Bodo

    2002-01-01

    This study analyzes the temporal and spatial expression pattern of Fgf-8 over a continuous series of developmental stages. Special emphasis is laid on the paraxial mesoderm where Fgf-8 expression is highly dynamic. Whereas the anterior portion of the unsegmented mesoderm is devoid of expression, Fgf-8 is upregulated in the posterior half of a newly formed somite. Soon after somite formation, this highly localized expression gives way to a more diffuse pattern of Fgf-8 expression at low levels in presumptive sclerotomal cells. During later somite maturation, transcripts become restricted to the myotome. Co-staining with the myotome marker MyoD reveals that Fgf-8 expression defines a subpopulation of muscle precursor cells. PMID:11875659

  18. Spatial and temporal patterns of dengue in Guangdong province of China.

    PubMed

    Wang, Chenggang; Yang, Weizhong; Fan, Jingchun; Wang, Furong; Jiang, Baofa; Liu, Qiyong

    2015-03-01

    The aim of the study was to describe the spatial and temporal patterns of dengue in Guangdong for 1978 to 2010. Time series analysis was performed using data on annual dengue incidence in Guangdong province for 1978-2010. Annual average dengue incidences for each city were mapped for 4 periods by using the geographical information system (GIS). Hot spot analysis was used to identify spatial patterns of dengue cases for 2005-2010 by using the CrimeStat III software. The incidence of dengue in Guangdong province had fallen steadily from 1978 to 2010. The time series was a random sequence without regularity and with no fixed cycle. The geographic range of dengue fever had expanded from 1978 to 2010. Cases were mostly concentrated in Zhanjiang and the developed regions of Pearl River Delta and Shantou. PMID:23467628

  19. Spatio-temporal dynamics of the white-eye square superlattice pattern in dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Wei, Lingyan; Dong, Lifang; Feng, Jianyu; Liu, Weibo; Fan, Weili; Pan, Yuyang

    2016-05-01

    We report on the first investigation of the white-eye square superlattice pattern (WESSP) in a dielectric barrier discharge system. The evolution of patterns with increasing voltage is given. A phase diagram of WESSP as functions of gas pressure p and argon concentration φ is presented. The spatio-temporal dynamics of the WESSP is studied by using an intensified charge-coupled device camera and photomultipliers. Results show that the WESSP consists of four different transient sublattices, whose discharge sequence is small spots—spots on the line—halos—central spots in each half voltage cycle. The discharge moment and position of each sublattice are dependent upon the field of the wall charges produced by all sublattices discharged previously.

  20. A framework for the assessment of the spatial and temporal patterns of threatened coastal delphinids

    NASA Astrophysics Data System (ADS)

    Wang, Jingzhen; Yang, Yingting; Yang, Feng; Li, Yuelin; Li, Lianjie; Lin, Derun; He, Tangtian; Liang, Bo; Zhang, Tao; Lin, Yao; Li, Ping; Liu, Wenhua

    2016-01-01

    The massively accelerated biodiversity loss rate in the Anthropocene calls for an efficient and effective way to identify the spatial and temporal dynamics of endangered species. To this end, we developed a useful identification framework based on a case study of locally endangered Sousa chinensis by combining both LEK (local ecological knowledge) evaluation and regional boat-based survey methods. Our study investigated the basic ecological information of Sousa chinensis in the estuaries of eastern Guangdong that had previously been neglected, which could guide the future study and conservation. Based on the statistical testing of reported spatial and temporal dolphins sighting data from fishermen and the ecological monitoring analyses, including sighting rate, site fidelity and residence time estimations, some of the current Sousa chinensis units are likely to be geographically isolated and critically endangered, which calls for much greater conservation efforts. Given the accelerated population extinction rate and increasing budgetary constraints, our survey pattern can be applied in a timely and economically acceptable manner to the spatial and temporal assessment of other threatened coastal delphinids, particularly when population distributions are on a large scale and traditional sampling methods are difficult to implement.

  1. Spatio-temporal dynamics study of wave patterns in binary fluid convection

    NASA Astrophysics Data System (ADS)

    Slimani, Said

    1998-11-01

    The present thesis is devoted to studying spatio-temporal dynamics of non-linear traveling waves. We develop theoretical tools using Bi-Orthogonal Decompositions to understand nonlinear interactions between different components of the wave field under consideration. We study the possible evolutions of uniformly traveling wave as a control parameter varies. Two scenarios have been identified: one involving superpositions of uniformly traveling waves and bifurcations, and one consisting of spatio-temporal modulations of the uniformly traveling waves. We have applied such techniques to convection in binary fluid mixtures in an annular cell, a system which exhibits chaotic wave phenomena. More precisely, we have analyzed sets of experimental data and performed a parameter study of this data base. This experiment has the advantage to be performed with extreme precision and stability. We have shown how our (generic) tools provide quantitative characterization of the complexity arising in this system and how the previous scenarios of uniformly traveling wave destabilization take place. We have studied in detail the Counterpropagating Wave Packets regime and modeled the wave patterns through spatio-temporal modulations model, the dynamics of which agreed well.

  2. A framework for the assessment of the spatial and temporal patterns of threatened coastal delphinids

    PubMed Central

    Wang, Jingzhen; Yang, Yingting; Yang, Feng; Li, Yuelin; Li, Lianjie; Lin, Derun; He, Tangtian; Liang, Bo; Zhang, Tao; Lin, Yao; Li, Ping; Liu, Wenhua

    2016-01-01

    The massively accelerated biodiversity loss rate in the Anthropocene calls for an efficient and effective way to identify the spatial and temporal dynamics of endangered species. To this end, we developed a useful identification framework based on a case study of locally endangered Sousa chinensis by combining both LEK (local ecological knowledge) evaluation and regional boat-based survey methods. Our study investigated the basic ecological information of Sousa chinensis in the estuaries of eastern Guangdong that had previously been neglected, which could guide the future study and conservation. Based on the statistical testing of reported spatial and temporal dolphins sighting data from fishermen and the ecological monitoring analyses, including sighting rate, site fidelity and residence time estimations, some of the current Sousa chinensis units are likely to be geographically isolated and critically endangered, which calls for much greater conservation efforts. Given the accelerated population extinction rate and increasing budgetary constraints, our survey pattern can be applied in a timely and economically acceptable manner to the spatial and temporal assessment of other threatened coastal delphinids, particularly when population distributions are on a large scale and traditional sampling methods are difficult to implement. PMID:26804347

  3. Knowledge-level querying of temporal patterns in clinical research systems.

    PubMed

    O'Connor, Martin J; Shankar, Ravi D; Parrish, David B; Das, Amar K

    2007-01-01

    Managing time-stamped data is essential to clinical research activities and often requires the use of considerable domain knowledge. Adequately representing this domain knowledge is difficult in relational database systems. As a result, there is a need for principled methods to overcome the disconnect between the database representation of time-oriented research data and corresponding knowledge of domain-relevant concepts. In this paper, we present a set of methodologies for undertaking knowledge level querying of temporal patterns, and discuss its application to the verification of temporal constraints in clinical-trial applications. Our approach allows knowledge generated from query results to be tied to the data and, if necessary, used for further inference. We show how the Semantic Web ontology and rule languages, OWL and SWRL, respectively, can support the temporal knowledge model needed to integrate low-level representations of relational data with high-level domain concepts used in research data management. We present a scalable bridge-based software architecture that uses this knowledge model to enable dynamic querying of time-oriented research data. PMID:17911729

  4. A framework for the assessment of the spatial and temporal patterns of threatened coastal delphinids.

    PubMed

    Wang, Jingzhen; Yang, Yingting; Yang, Feng; Li, Yuelin; Li, Lianjie; Lin, Derun; He, Tangtian; Liang, Bo; Zhang, Tao; Lin, Yao; Li, Ping; Liu, Wenhua

    2016-01-01

    The massively accelerated biodiversity loss rate in the Anthropocene calls for an efficient and effective way to identify the spatial and temporal dynamics of endangered species. To this end, we developed a useful identification framework based on a case study of locally endangered Sousa chinensis by combining both LEK (local ecological knowledge) evaluation and regional boat-based survey methods. Our study investigated the basic ecological information of Sousa chinensis in the estuaries of eastern Guangdong that had previously been neglected, which could guide the future study and conservation. Based on the statistical testing of reported spatial and temporal dolphins sighting data from fishermen and the ecological monitoring analyses, including sighting rate, site fidelity and residence time estimations, some of the current Sousa chinensis units are likely to be geographically isolated and critically endangered, which calls for much greater conservation efforts. Given the accelerated population extinction rate and increasing budgetary constraints, our survey pattern can be applied in a timely and economically acceptable manner to the spatial and temporal assessment of other threatened coastal delphinids, particularly when population distributions are on a large scale and traditional sampling methods are difficult to implement. PMID:26804347

  5. Spatial and temporal patterns of hydrologic connectivity between upland landscapes and stream networks (Invited)

    NASA Astrophysics Data System (ADS)

    Ma, L.; Qi, Z.; Helmers, M. J.; Ahuja, L. R.; Malone, R. W.

    2011-12-01

    Congress enacted the Clean Water Act (CWA) 'to restore and maintain the chemical, physical, and biological integrity of the Nation's waters'. A recent Supreme Court decision further described protection for waters with 'a significant nexus to navigable waters" if they are in the same watershed and have an effect on the chemical, physical, or biological integrity of traditional navigable waters or interstate waters that is more than 'speculative or insubstantial.' Evolving interpretation of the CWA and 'significant nexus' (connectivity) requires investigation and understanding of the spatial and temporal patterns of hydrologic connectivity between upland landscapes and stream networks that mediate streamflow magnitude and composition. While hydrologic connectivity is a continuum, strong non-linearities including the shift from unsaturated to saturated flow conditions lead to threshold or transient connectivity behavior and orders of magnitude changes in flow velocities and source water compositions. Here we illustrate the spatial and temporal dynamics of hydrologic connectivity between upland landscapes and stream networks that provide direct and proximate links between streamflow composition and its watershed sources. We suggest that adjacency alone does not determine influence on hydrologic response and streamwater composition and that new understanding and communication of the temporal and spatial dynamics of watershed connectivity are required to address urgent needs at the interface of the CWA, science, and society.

  6. Spatial and temporal patterns of hydrologic connectivity between upland landscapes and stream networks (Invited)

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; Nippgen, F.; Jencso, K. G.; Emanuel, R. E.

    2013-12-01

    Congress enacted the Clean Water Act (CWA) 'to restore and maintain the chemical, physical, and biological integrity of the Nation's waters'. A recent Supreme Court decision further described protection for waters with 'a significant nexus to navigable waters" if they are in the same watershed and have an effect on the chemical, physical, or biological integrity of traditional navigable waters or interstate waters that is more than 'speculative or insubstantial.' Evolving interpretation of the CWA and 'significant nexus' (connectivity) requires investigation and understanding of the spatial and temporal patterns of hydrologic connectivity between upland landscapes and stream networks that mediate streamflow magnitude and composition. While hydrologic connectivity is a continuum, strong non-linearities including the shift from unsaturated to saturated flow conditions lead to threshold or transient connectivity behavior and orders of magnitude changes in flow velocities and source water compositions. Here we illustrate the spatial and temporal dynamics of hydrologic connectivity between upland landscapes and stream networks that provide direct and proximate links between streamflow composition and its watershed sources. We suggest that adjacency alone does not determine influence on hydrologic response and streamwater composition and that new understanding and communication of the temporal and spatial dynamics of watershed connectivity are required to address urgent needs at the interface of the CWA, science, and society.

  7. Spatial and temporal patterns of hydrologic connectivity between upland landscapes and stream networks

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; Jencso, K. G.; Nippgen, F.; Emanuel, R. E.; Marshall, L. A.; Gooseff, M. N.

    2012-12-01

    Congress enacted the Clean Water Act (CWA) "to restore and maintain the chemical, physical, and biological integrity of the Nation's waters". A recent Supreme Court decision further described protection for waters with "a significant nexus to navigable waters" if they are in the same watershed and have an effect on the chemical, physical, or biological integrity of traditional navigable waters or interstate waters that is more than "speculative or insubstantial." Evolving interpretation of the CWA and "significant nexus" (connectivity) requires investigation and understanding of the spatial and temporal patterns of hydrologic connectivity between upland landscapes and stream networks that mediate streamflow magnitude and composition. While, hydrologic connectivity is a continuum, strong non-linearities including the shift from unsaturated to saturated flow conditions lead to threshold or transient connectivity behavior and orders of magnitude changes in flow velocities. Here we illustrate the spatial and temporal dynamics of hydrologic connectivity between upland landscapes and stream networks that provide direct and proximate links between streamflow composition and its watershed sources. New understanding and communication of the temporal and spatial scales of watershed connectivity are required to address urgent needs at the interface of the CWA, science, and society.

  8. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.

    PubMed

    Kasabov, Nikola; Dhoble, Kshitij; Nuntalid, Nuttapod; Indiveri, Giacomo

    2013-05-01

    On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn new patterns from incoming data. So far these networks have been mainly used for fast image and speech frame-based recognition. Alternative spike-time learning methods, such as Spike-Timing Dependent Plasticity (STDP) and its variant Spike Driven Synaptic Plasticity (SDSP), can also be used to learn spatio-temporal representations, but they usually require many iterations in an unsupervised or semi-supervised mode of learning. This paper introduces a new class of eSNN, dynamic eSNN, that utilise both rank-order learning and dynamic synapses to learn SSTD in a fast, on-line mode. The paper also introduces a new model called deSNN, that utilises rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-supervised modes. The SDSP learning is used to evolve dynamically the network changing connection weights that capture spatio-temporal spike data clusters both during training and during recall. The new deSNN model is first illustrated on simple examples and then applied on two case study applications: (1) moving object recognition using address-event representation (AER) with data collected using a silicon retina device; (2) EEG SSTD recognition for brain-computer interfaces. The deSNN models resulted in a superior performance in terms of accuracy and speed when compared with other SNN models that use either rank-order or STDP learning. The reason is that the deSNN makes use of both the information contained in the order of the first input spikes (which information is explicitly present in input data streams and would be crucial to consider in some tasks) and of the information contained in the timing of the following spikes that is learned by the dynamic synapses as a whole spatio-temporal pattern. PMID:23340243

  9. Population dynamics of wetland fishes: Spatio-temporal patterns synchronized by hydrological disturbance?

    USGS Publications Warehouse

    Ruetz, C. R., III; Trexler, J.C.; Jordan, F.; Loftus, W.F.; Perry, S.A.

    2005-01-01

    1. Drought is a natural disturbance that can cause widespread mortality of aquatic organisms in wetlands. We hypothesized that seasonal drying of marsh surfaces (i.e. hydrological disturbance) shapes spatio-temporal patterns of fish populations. 2. We tested whether population dynamics of fishes were synchronized by hydrological disturbance (Moran effect) or distance separating study sites (dispersal). Spatio-temporal patterns were examined in local populations of five abundant species at 17 sites (sampled five times per year from 1996 to 2001) in a large oligotrophic wetland. 3. Fish densities differed significantly across spatio-temporal scales for all species. For all species except eastern mosquitofish (Gambusia holbrooki), a significant portion of spatio-temporal variation in density was attributed to drying events (used as a covariate). 4. We observed three patterns of response to hydrological disturbance. Densities of bluefin killifish (Lucania goodei), least killifish (Heterandria formosa), and golden top-minnow (Fundulus chrysotus) were usually lowest after a dry down and recovered slowly. Eastern mosquitofish showed no distinct response to marsh drying (i.e. they recovered quickly). Flagfish (Jordanella floridae) density was often highest after a dry down and then declined. Population growth after a dry down was often asymptotic for bluefin killifish and golden topminnow, with greatest asymptotic density and longest time to recovery at sites that dried infrequently. 5. Fish population dynamics were synchronized by hydrological disturbance (independent of distance) and distance separating study sites (independent of hydrological disturbance). Our ability to separate the relative importance of the Moran effect from dispersal was strengthened by a weak association between hydrological synchrony and distance among study sites. Dispersal was the primary mechanism for synchronous population dynamics of flagfish, whereas hydrological disturbance was the primary mechanism for synchronous population dynamics of the other species examined. 6. Species varied in the relative role of the Moran effect and dispersal in homogenizing their population dynamics, probably as a function of life history and ability to exploit dry-season refugia. ?? 2005 British Ecological Society.

  10. Spatial and temporal patterns of bioindicator mercury in pennsylvania oak forest.

    PubMed

    McClenahen, James R; Hutnik, Russell J; Davis, Donald D

    2013-01-01

    We monitored spatial and temporal patterns of total Hg in forest bioindicators to assess possible local, regional, and global changes in atmospheric Hg deposition. Total Hg concentrations were monitored in leaves and fresh litterfall of northern red oak ( L.), on an epiphytic moss ( Hedw.) on northern red oak stems, and in surface soil organic matter (O and O horizons) in Pennsylvania oak-dominated forests. Variously configured plots were used to monitor Hg deposition near local coal-fired generating stations and an industrial city and along an extended regional transect. Linearly decreasing temporal trends in Hg concentrations occurred in leaves, litterfall, moss, and soil O and O. Mean annual Hg concentrations were often greater near local emissions sources compared with remote areas, especially in the initial monitoring period. Decreasing time trends for different impact areas tended to converge due to greater rates of Hg decrease where initial bioindicator Hg levels were higher. Fresh litter and soil O showed the greatest overall potential as Hg bioindicators. We conclude that Hg deposition has been significantly decreasing over time throughout the study area as a result of locally and regionally declining Hg emissions. Reductions in Hg emissions are likely a co-benefit of the 1990 Clean Air Act regulations and changing industrial activities. Recent leveling of several bioindicator Hg time trends may foretell a shift in Hg depositional patterns. Mercury monitoring studies such as this fulfill a need for documenting local and regional effects of emissions reduction. PMID:23673822

  11. Temporal patterns of human behaviour: are there signs of deterministic 1/ f scaling?

    NASA Astrophysics Data System (ADS)

    Dünki, Rudolf M.; Keller, Elvira; Meier, Peter F.; Ambühl, Brigitte

    2000-02-01

    Temporal patterns apparently exhibiting scaling properties may originate either from fractal stochastic processes or from causal (i.e., deterministic) dynamics. In general, the distinction between the possible two origins remains a non-trivial task. This holds especially for the interpretation of properties derived from temporal patterns of various types of human behaviour, which were reported repeatedly. We propose here a computational scheme based on a generic intermittency model to test predictability (thus determinism) of a part of a time series with knowledge gathered from another part. The method is applied onto psychodynamic time series related to turns from non-psychosis to psychosis. A nonrandom correlation ( ρ=0.76) between prediction and real outcome is found. Our scheme thus provides a particular kind of fractal risk-assessment for this possibly deterministic process. We briefly discuss possible implications of these findings to evaluate the risk to undergo a state transition, in our case a patients risk to enter a next psychotic state. We further point to some problems concerning data sample pecularities and equivalence between data and model setup.

  12. Spatial and temporal patterns of enzootic raccoon rabies adjusted for multiple covariates

    PubMed Central

    Recuenco, Sergio; Eidson, Millicent; Kulldorff, Martin; Johnson, Glen; Cherry, Bryan

    2007-01-01

    Background With the objective of identifying spatial and temporal patterns of enzootic raccoon variant rabies, a spatial scan statistic was utilized to search for significant terrestrial rabies clusters by year in New York State in 1997–2003. Cluster analyses were unadjusted for other factors, adjusted for covariates, and adjusted for covariates and large scale geographic variation (LSGV). Adjustments were intended to identify the unusual aggregations of cases given the expected distribution based on the observed locations. Results Statistically significant clusters were identified particularly in the Albany, Finger Lakes, and South Hudson areas. The clusters were generally persistent in the Albany area, but demonstrated cyclical changes in rabies activity every few years in the other areas. Cluster adjustments allowed the discussion of possible causes for the high risk raccoon rabies areas identified. Conclusion This study analyzed raccoon variant rabies spatial and temporal patterns in New York that have not been previously described at a focal (census tract) level. Comparisons across the type of spatial analysis performed with various degrees of adjustment allow consideration of the potential influence of geographical factors for raccoon rabies and possible reasons for the highest risk areas (statistically significant clusters). PMID:17428324

  13. Temporal patterns of human and canine Giardia infection in the United States: 2003-2009.

    PubMed

    Mohamed, Ahmed S; Levine, Michael; Camp, Joseph W; Lund, Elisabeth; Yoder, Jonathan S; Glickman, Larry T; Moore, George E

    2014-02-01

    Giardia protozoa have been suspected to be of zoonotic transmission, including transmission from companion animals such as pet dogs to humans. Patterns of infection have been previously described for dogs and humans, but such investigations have used different time periods and locations for these two species. Our objective was to describe and compare the overall trend and seasonality of Giardia species infection among dogs and humans in the United States from 2003 through 2009 in an ecological study using public health surveillance data and medical records of pet dogs visiting a large nationwide private veterinary hospital. Canine data were obtained from all dogs visiting Banfield hospitals in the United States with fecal test results for Giardia species, from January 2003 through December 2009. Incidence data of human cases from the same time period were obtained from the CDC. Descriptive time plots, a seasonal trend decomposition (STL) procedure, and seasonal autoregressive moving-average (SARIMA) models were used to assess the temporal characteristics of Giardia infection in the two species. Canine incidence showed a gradual decline from 2003 to 2009 with no significant/distinct regular seasonal component. By contrast, human incidence showed a stable annual rate with a significant regular seasonal cycle, peaking in August and September. Different temporal patterns in human and canine Giardia cases observed in this study suggest that the epidemiological disease processes underlying both series might be different, and Giardia transmission between humans and their companion dogs seems uncommon. PMID:24309130

  14. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    PubMed Central

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  15. Measurement of the temporal patterns of school bag carriage using activity monitoring and structured interview.

    PubMed

    Mackie, H W; Legg, S J

    2007-10-01

    The primary objective of the current study was to quantify the temporal patterns of school bag carriage over an actual school day using activity monitoring and structured interviews, in order to better understand the physical demands of school bag carriage. The temporal patterns of 40 students' school bag carriage over a 24-h period were defined by total school bag carrying time, mean event school bag carrying time, the number of school bag carrying events, total carrying time travelling to and from school and the number of students who walked or used transport to travel to and from school. There were significant correlations between activity monitor [mean(SD) 119(48) min] and structured interview [100(39) min] determined total school bag carrying time (r = 0.59), activity monitor [8(4) min] and structured interview [9(4) min] determined mean event school bag carriage time (r = 0.65), and activity monitor [15(4) events] and structured interview [11(2) events] determined number of school bag carrying events (r = 0.52). However, the number of school bag carrying events, and for students who used transport, the total amount of time spent travelling to school was significantly different using the two measures. The durations of school bag carriage and the relationship between activity monitor and structured interview were similar to those reported in previous studies. PMID:17917906

  16. Spatio-temporal patterns of key exploited marine species in the Northwestern Mediterranean Sea.

    PubMed

    Morfin, Marie; Fromentin, Jean-Marc; Jadaud, Angélique; Bez, Nicolas

    2012-01-01

    This study analyzes the temporal variability/stability of the spatial distributions of key exploited species in the Gulf of Lions (Northwestern Mediterranean Sea). To do so, we analyzed data from the MEDITS bottom-trawl scientific surveys from 1994 to 2010 at 66 fixed stations and selected 12 key exploited species. We proposed a geostatistical approach to handle zero-inflated and non-stationary distributions and to test for the temporal stability of the spatial structures. Empirical Orthogonal Functions and other descriptors were then applied to investigate the temporal persistence and the characteristics of the spatial patterns. The spatial structure of the distribution (i.e. the pattern of spatial autocorrelation) of the 12 key species studied remained highly stable over the time period sampled. The spatial distributions of all species obtained through kriging also appeared to be stable over time, while each species displayed a specific spatial distribution. Furthermore, adults were generally more densely concentrated than juveniles and occupied areas included in the distribution of juveniles. Despite the strong persistence of spatial distributions, we also observed that the area occupied by each species was correlated to its abundance: the more abundant the species, the larger the occupation area. Such a result tends to support MacCall's basin theory, according to which density-dependence responses would drive the expansion of those 12 key species in the Gulf of Lions. Further analyses showed that these species never saturated their habitats, suggesting that they are below their carrying capacity; an assumption in agreement with the overexploitation of several of these species. Finally, the stability of their spatial distributions over time and their potential ability to diffuse outside their main habitats give support to Marine Protected Areas as a potential pertinent management tool. PMID:22655079

  17. Spatio-Temporal Patterns of Key Exploited Marine Species in the Northwestern Mediterranean Sea

    PubMed Central

    Morfin, Marie; Fromentin, Jean-Marc; Jadaud, Angélique; Bez, Nicolas

    2012-01-01

    This study analyzes the temporal variability/stability of the spatial distributions of key exploited species in the Gulf of Lions (Northwestern Mediterranean Sea). To do so, we analyzed data from the MEDITS bottom-trawl scientific surveys from 1994 to 2010 at 66 fixed stations and selected 12 key exploited species. We proposed a geostatistical approach to handle zero-inflated and non-stationary distributions and to test for the temporal stability of the spatial structures. Empirical Orthogonal Functions and other descriptors were then applied to investigate the temporal persistence and the characteristics of the spatial patterns. The spatial structure of the distribution (i.e. the pattern of spatial autocorrelation) of the 12 key species studied remained highly stable over the time period sampled. The spatial distributions of all species obtained through kriging also appeared to be stable over time, while each species displayed a specific spatial distribution. Furthermore, adults were generally more densely concentrated than juveniles and occupied areas included in the distribution of juveniles. Despite the strong persistence of spatial distributions, we also observed that the area occupied by each species was correlated to its abundance: the more abundant the species, the larger the occupation area. Such a result tends to support MacCall's basin theory, according to which density-dependence responses would drive the expansion of those 12 key species in the Gulf of Lions. Further analyses showed that these species never saturated their habitats, suggesting that they are below their carrying capacity; an assumption in agreement with the overexploitation of several of these species. Finally, the stability of their spatial distributions over time and their potential ability to diffuse outside their main habitats give support to Marine Protected Areas as a potential pertinent management tool. PMID:22655079

  18. Categorizing Temporal Patterns of Arrest in a Cohort of Adults with Serious Mental Illness

    PubMed Central

    Banks, Steven M.; Roy-Bujnowski, Kristen; Grudzinskas, Albert J.; Simon, Lorna J.; Wolff, Nancy

    2010-01-01

    Temporal patterns of arrest among mental health systems' clientele have not been well explored. This study uses “trajectory analysis,” a methodology widely employed by criminologists exploring patterns of desistence in offending, to examine patterns of criminal justice involvement in a cohort of mental health service recipients. Data for this study are from a statewide cohort of individuals who received services from the Massachusetts Department of Mental Health in 1991 (N=13,876) and whose arrests were followed for roughly 10 years. Zero-inflated Poisson trajectory analysis applied to cohort members having two or more arrests identified five trajectories with widely varying arrest patterns. Analysis of differences in the composition of the five trajectory-based groups revealed few between-group differences in members' demographic and service use characteristics, while certain offense types were disproportionately prevalent among particular trajectory-based groups. The implications of these findings for understanding criminal justice involvement in this population and the utility of the trajectory model for system planning are discussed. PMID:19728101

  19. Temporal links in daily activity patterns between coral reef predators and their prey.

    PubMed

    Bosiger, Yoland J; McCormick, Mark I

    2014-01-01

    Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced. PMID:25354096

  20. Coexistence of productive and non-productive populations by fluctuation-driven spatio-temporal patterns.

    PubMed

    Behar, Hilla; Brenner, Naama; Louzoun, Yoram

    2014-09-01

    Cooperative interactions, their stability and evolution, provide an interesting context in which to study the interface between cellular and population levels of organization. Here we study a public goods model relevant to microorganism populations actively extracting a growth resource from their environment. Cells can display one of two phenotypes - a productive phenotype that extracts the resources at a cost, and a non-productive phenotype that only consumes the same resource. Both proliferate and are free to move by diffusion; growth rate and diffusion coefficient depend only weakly phenotype. We analyze the continuous differential equation model as well as simulate stochastically the full dynamics. We find that the two sub-populations, which cannot coexist in a well-mixed environment, develop spatio-temporal patterns that enable long-term coexistence in the shared environment. These patterns are purely fluctuation-driven, as the corresponding continuous spatial system does not display Turing instability. The average stability of coexistence patterns derives from a dynamic mechanism in which the producing sub-population equilibrates with the environmental resource and holds it close to an extinction transition of the other sub-population, causing it to constantly hover around this transition. Thus the ecological interactions support a mechanism reminiscent of self-organized criticality; power-law distributions and long-range correlations are found. The results are discussed in the context of general pattern formation and critical behavior in ecology as well as in an experimental context. PMID:25058368

  1. Temporal Links in Daily Activity Patterns between Coral Reef Predators and Their Prey

    PubMed Central

    Bosiger, Yoland J.; McCormick, Mark I.

    2014-01-01

    Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced. PMID:25354096

  2. Seasonal and temporal patterns of NDMA formation potentials in surface waters.

    PubMed

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2015-02-01

    The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (<100 ng/L). In most sources, NDMA FP showed more variability in spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) < 0.27). Multiple linear regression analysis using DOC and log [sucralose] yielded a better correlation with NDMA FP (R(2) = 0.53). PMID:25481075

  3. The use of census migration data to approximate human movement patterns across temporal scales.

    PubMed

    Wesolowski, Amy; Buckee, Caroline O; Pindolia, Deepa K; Eagle, Nathan; Smith, David L; Garcia, Andres J; Tatem, Andrew J

    2013-01-01

    Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data. PMID:23326367

  4. [Spatial and temporal patterns of stream fish assemblages in the Qiupu Headwaters National Wetland Park].

    PubMed

    Wang, Wen-Jian; Chu, Ling; Si, Chun; Zhu, Ren; Chen, Wen-Hao; Chen, Fang-Ming; Yan, Yun-Zhi

    2013-08-01

    Identifying and clarifying how stream fish assemblage patterns vary spatially and temporally are basic measures for the conservation and management of fish species. Based on data collected from 24 wadeable reaches within the Qiupu Headwaters National Wetland Park between May and October 2012, we examined the spatial and temporal patterns of the assemblage structures and diversities, collecting a total of 29 fish species belonging to four orders and ten families. The results of our survey showed influences of local habitat and tributary spatial position variables on fish assemblages. Fish diversity showed significant variations across stream-orders and seasons, which were higher in the second-order streams than in first-order streams and higher in October than in May. Habitat factors such as substrate coarseness and heterogeneity, water temperature and water depth, as well as tributary position factor-link, showed significant effects on fish diversity. Fish assemblages fitted the nested pattern that upstream assemblages presented as a nested subset of downstream assemblages. Fish assemblage structures did not vary significantly across seasons but did across stream-orders; fish assemblages between first- and second-order streams showed significant differences despite some overlap. These spatial differences mainly resulted from spatial variations of the relative abundance of Cobitis rarus, Ctenogobius sp., Zacco platypus, Phoxinus oxycephalus, Rhodeus ocellatus and Vanmanenia stenosoma, among which P. oxycephalus had higher abundance in first-order than in second-order streams but the other five species were more abundant in second-order streams. Fish assemblage structures were significantly related to substrate heterogeneity, water depth, stream order, link and C-link. PMID:23913894

  5. The Use of Census Migration Data to Approximate Human Movement Patterns across Temporal Scales

    PubMed Central

    Wesolowski, Amy; Buckee, Caroline O.; Pindolia, Deepa K.; Eagle, Nathan; Smith, David L.; Garcia, Andres J.; Tatem, Andrew J.

    2013-01-01

    Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data. PMID:23326367

  6. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  7. Buoyancy characteristics of the bloater (Coregonus hoyi) in relation to patterns of vertical migration and acoustic backscattering

    USGS Publications Warehouse

    Fleischer, Guy W.; TeWinkel, Leslie M.

    1998-01-01

    Acoustic studies in Lake Michigan found that bloaters (Coregonus hoyi) were less reflective per size than the other major pelagic species. This difference in in situ acoustic backscattering could indicate that the deep-water bloaters have compressed swimbladders for much of their vertical range with related implications on buoyancy. To test this hypothesis, the buoyancy characteristics of bloaters were determined with fish placed in a cage that was lowered to bottom and monitored with an underwater camera. We found bloaters were positively buoyant near surface, neutrally buoyant at intermediate strata, and negatively buoyant near bottom. This pattern was consistent for the range of depths bloaters occur. The depth of neutral buoyancy (near the 50-n strata) corresponds with the maximum extent of vertical migration for bloaters observed in acoustic surveys. Fish below this depth would be negatively buoyant which supports our contention that bloaters deeper in the water column have compressed swimbladders. Understanding the buoyancy characteristics of pelagic fishes will help to predict the effects of vertical migration on target strength measurement and confirms the use of acoustics as a tool to identify and quantify the ecological phenomenon of vertical migration.

  8. Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an Arctic predator.

    PubMed

    Giroux, Marie-Andrée; Berteaux, Dominique; Lecomte, Nicolas; Gauthier, Gilles; Szor, Guillaume; Bêty, Joël

    2012-05-01

    1. Flows of nutrients and energy across ecosystem boundaries have the potential to subsidize consumer populations and modify the dynamics of food webs, but how spatio-temporal variations in autochthonous and allochthonous resources affect consumers' subsidization remains largely unexplored. 2. We studied spatio-temporal patterns in the allochthonous subsidization of a predator living in a relatively simple ecosystem. We worked on Bylot Island (Nunavut, Canada), where arctic foxes (Vulpes lagopus L.) feed preferentially on lemmings (Lemmus trimucronatus and Dicrostonyx groenlandicus Traill), and alternatively on colonial greater snow geese (Anser caerulescens atlanticus L.). Geese migrate annually from their wintering grounds (where they feed on farmlands and marshes) to the Canadian Arctic, thus generating a strong flow of nutrients and energy across ecosystem boundaries. 3. We examined the influence of spatial variations in availability of geese on the diet of fox cubs (2003-2005) and on fox reproductive output (1996-2005) during different phases of the lemming cycle. 4. Using stable isotope analysis and a simple statistical routine developed to analyse the outputs of a multisource mixing model (SIAR), we showed that the contribution of geese to the diet of arctic fox cubs decreased with distance from the goose colony. 5. The probability that a den was used for reproduction by foxes decreased with distance from the subsidized goose colony and increased with lemming abundance. When lemmings were highly abundant, the effect of distance from the colony disappeared. The goose colony thus generated a spatial patterning of reproduction probability of foxes, while the lemming cycle generated a strong temporal variation of reproduction probability of foxes. 6. This study shows how the input of energy owing to the large-scale migration of prey affects the functional and reproductive responses of an opportunistic consumer, and how this input is spatially and temporally modulated through the foraging behaviour of the consumer. Thus, perspectives of both landscape and foraging ecology are needed to fully resolve the effects of subsidies on animal demographic processes and population dynamics. PMID:22268371

  9. Optimization of the temporal pattern of radiation: An IMRT based study

    SciTech Connect

    Altman, Michael B.; Chmura, Steven J.; Deasy, Joseph O.; Roeske, John C. . E-mail: roeske@rover.uchicago.edu

    2006-11-01

    Purpose: To investigate how the temporal pattern of dose applied during a single-intensity modulated radiation therapy (IMRT) fraction can be arranged to maximize or minimize cell kill. Methods and Materials: Using the linear-quadratic repair-time model and a simplified IMRT delivery pattern model, the surviving fraction of cells for a single fraction was calculated for all permutations of the dose delivery pattern for an array of clinically based IMRT cases. Maximization of cell kill was achieved by concentrating the highest doses in the middle of a fraction, while minimization was achieved by spreading the highest doses between the beginning and end. The percent difference between maximum and minimum cell kill (%Diff{sub min/max}) and the difference between maximum and minimum total doses normalized to 2 Gy/fx ({delta}NTD{sub 2Gy}) was calculated for varying fraction durations (T), {alpha}/{beta} ratios, and doses/fx. Results: %Diff{sub min/max} and {delta}NTD{sub 2Gy} both increased with increasing T and with decreasing {alpha}/{beta}. The largest increases occurred with dose/fx. With {alpha}/{beta} = 3 Gy and 30 min/fx, %Diff{sub min/max} ranged from 2.7-5.3% for 2 Gy/fx to 48.6-74.1% for 10 Gy/fx, whereas {delta}NTD{sub 2Gy} ranged from 1.2 Gy-2.4 Gy for 30 fractions of 2 Gy/fx to 2.3-4.8 Gy for 2 fractions of 10.84 Gy/fx. Using {alpha}/{beta} = 1.5 Gy, an analysis of prostate hypofractionation schemes yielded differences in clinical outcome based on the pattern of applied dose ranging from 3.2%-6.1% of the treated population. Conclusions: Rearrangement of the temporal pattern of dose for a single IMRT fraction could be used to optimize cell kill and to directly, though modestly, affect treatment outcome.

  10. Ultrasonic acoustic health monitoring of ball bearings using neural network pattern classification of power spectral density

    NASA Astrophysics Data System (ADS)

    Kirchner, William; Southward, Steve; Ahmadian, Mehdi

    2010-03-01

    This paper presents a generic passive non-contact based approach using ultrasonic acoustic emissions (UAE) to facilitate the neural network classification of bearing health, and more specifically the bearing operating condition. The acoustic emission signals used in this study are in the ultrasonic range (20-120 kHz). A direct benefit of microphones capable of measurements in this frequency range is their inherent directionality. Using selected bands from the UAE power spectrum signature, it is possible to pose the health monitoring problem as a multi-class classification problem, and make use of a single neural network to classify the ultrasonic acoustic emission signatures. Artificial training data, based on statistical properties of a significantly smaller experimental data set is used to train the neural network. This specific approach is generic enough to suggest that it is applicable to a variety of systems and components where periodic acoustic emissions exist.

  11. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    PubMed Central

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-01-01

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738

  12. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    PubMed

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-01-01

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738

  13. A review on the temporal pattern of deer-vehicle accidents: impact of seasonal, diurnal and lunar effects in cervids.

    PubMed

    Steiner, Wolfgang; Leisch, Friedrich; Hackländer, Klaus

    2014-05-01

    The increasing number of deer-vehicle-accidents (DVAs) and the resulting economic costs have promoted numerous studies on behavioural and environmental factors which may contribute to the quantity, spatiotemporal distribution and characteristics of DVAs. Contrary to the spatial pattern of DVAs, data of their temporal pattern is scarce and difficult to obtain because of insufficient accuracy in available datasets, missing standardization in data aquisition, legal terms and low reporting rates to authorities. Literature of deer-traffic collisions on roads and railways is reviewed to examine current understanding of DVA temporal trends. Seasonal, diurnal and lunar peak accident periods are identified for deer, although seasonal pattern are not consistent among and within species or regions and data on effects of lunar cycles on DVAs is almost non-existent. Cluster analysis of seasonal DVA data shows nine distinct clusters of different seasonal DVA pattern for cervid species within the reviewed literature. Studies analyzing the relationship between time-related traffic predictors and DVAs yield mixed results. Despite the seasonal dissimilarity, diurnal DVA pattern are comparatively constant in deer, resulting in pronounced DVA peaks during the hours of dusk and dawn frequently described as bimodal crepuscular pattern. Behavioural aspects in activity seem to have the highest impact in DVAs temporal trends. Differences and variations are related to habitat-, climatic- and traffic characteristics as well as effects of predation, hunting and disturbance. Knowledge of detailed temporal DVA pattern is essential for prevention management as well as for the application and evaluation of mitigation measures. PMID:24549035

  14. Formation of inverse Chladni patterns at microscale by acoustic streaming on a silicon membrane immersed in a liquid

    NASA Astrophysics Data System (ADS)

    Poulain, Cedric; Vuillermet, Gael; Casset, Fabrice

    2015-11-01

    High frequency acoustics (in the MHz range) is known to be very efficient to handle micro particles or living cells in microfluidics by taking advantage of the acoustic radiation force. Here, we will show that low frequency (~ 50kHz) together with use ultra thin silicon plate can give rise to a micro streaming that enables to move particles at will. Indeed, by means of silicon membranes excited in the low ultrasound range, we show that it is possible to form inverse two-dimensional Chladni patterns of micro-beads in liquid. Unlike the well-known effect in a gaseous environment at macroscale, where gravity effects are generally dominant, leading particles towards the nodal regions of displacement, we will show that the micro scale streaming in the vicinity of the plate tends to gather particles in antinodal regions. Moreover, a symmetry breaking effect together with the streaming can trigger a whole rotation of the beads in the fluidic cavity. We demonstrate that it is possible to make the patterns rotate at a well defined angular velocity where beads actually jump from one acoustic trap to another.

  15. Wildlife in the Matrix: Spatio-Temporal Patterns of Herbivore Occurrence in Karnataka, India

    NASA Astrophysics Data System (ADS)

    Karanth, Krithi K.

    2016-01-01

    Wildlife reserves are becoming increasingly isolated from the surrounding human-dominated landscapes particularly in Asia. It is imperative to understand how species are distributed spatially and temporally in and outside reserves, and what factors influence their occurrence. This study surveyed 7500 km2 landscape surrounding five reserves in the Western Ghats to examine patterns of occurrence of five herbivores: elephant, gaur, sambar, chital, and pig. Species distributions are modeled spatio-temporally using an occupancy approach. Trained field teams conducted 3860 interview-based occupancy surveys in a 10-km buffer surrounding these five reserves in 2012. I found gaur and wild pig to be the least and most wide-ranging species, respectively. Elephant and chital exhibit seasonal differences in spatial distribution unlike the other three species. As predicted, distance to reserve, the reserve itself, and forest cover were associated with higher occupancy of all species, and higher densities of people negatively influenced occurrence of all species. Park management, species protection, and conflict mitigation efforts in this landscape need to incorporate temporal and spatial understanding of species distributions. All species are known crop raiders and conflict prone locations with resources (such as water and forage) have to be monitored and managed carefully. Wildlife reserves and adjacent areas are critical for long-term persistence and habitat use for all five herbivores and must be monitored to ensure wildlife can move freely. Such a large-scale approach to map and monitor species distributions can be adapted to other landscapes to identify and monitor critical habitats shared by people and wildlife.

  16. Monitoring, analyzing and simulating of spatial-temporal changes of landscape pattern over mining area

    NASA Astrophysics Data System (ADS)

    Liu, Pei; Han, Ruimei; Wang, Shuangting

    2014-11-01

    According to the merits of remotely sensed data in depicting regional land cover and Land changes, multi- objective information processing is employed to remote sensing images to analyze and simulate land cover in mining areas. In this paper, multi-temporal remotely sensed data were selected to monitor the pattern, distri- bution and trend of LUCC and predict its impacts on ecological environment and human settlement in mining area. The monitor, analysis and simulation of LUCC in this coal mining areas are divided into five steps. The are information integration of optical and SAR data, LULC types extraction with SVM classifier, LULC trends simulation with CA Markov model, landscape temporal changes monitoring and analysis with confusion matrixes and landscape indices. The results demonstrate that the improved data fusion algorithm could make full use of information extracted from optical and SAR data; SVM classifier has an efficient and stable ability to obtain land cover maps, which could provide a good basis for both land cover change analysis and trend simulation; CA Markov model is able to predict LULC trends with good performance, and it is an effective way to integrate remotely sensed data with spatial-temporal model for analysis of land use / cover change and corresponding environmental impacts in mining area. Confusion matrixes are combined with landscape indices to evaluation and analysis show that, there was a sustained downward trend in agricultural land and bare land, but a continues growth trend tendency in water body, forest and other lands, and building area showing a wave like change, first increased and then decreased; mining landscape has undergone a from small to large and large to small process of fragmentation, agricultural land is the strongest influenced landscape type in this area, and human activities are the primary cause, so the problem should be pay more attentions by government and other organizations.

  17. Temporal patterns of emergency calls of a metropolitan city in China

    NASA Astrophysics Data System (ADS)

    Wang, Wenjun; Yuan, Ning; Pan, Lin; Jiao, Pengfei; Dai, Weidi; Xue, Guixiang; Liu, Dong

    2015-10-01

    Quantitative understanding of human communication behavior, one of the fundamental human activities, is of great value in many practical problems, ranging from urban planning to emergency management. Most of the recent studies have focused on human communication under normal situations. Here, we study the temporal patterns of emergency calls, which is a special kind of human communication activity under emergency circumstances, by analyzing a dataset of emergency call records that collected from a metropolitan city in China during a five year period. We find that most individuals rarely make emergency calls. The distribution of inter-call durations decays as double power law along with an exponential tail. We also discover that, comparing with the normal communication activities, the activity of calling the emergency number shows more significant characteristics of burstiness and memory. We further demonstrate that the behavior of calling the emergency number when people encounter extreme events could be explained by an event-driven memory process.

  18. Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation

    NASA Astrophysics Data System (ADS)

    Busemeyer, Lucas; Ruckelshausen, Arno; Möller, Kim; Melchinger, Albrecht E.; Alheit, Katharina V.; Maurer, Hans Peter; Hahn, Volker; Weissmann, Elmar A.; Reif, Jochen C.; Würschum, Tobias

    2013-08-01

    To extend agricultural productivity by knowledge-based breeding and tailor varieties adapted to specific environmental conditions, it is imperative to improve our ability to assess the dynamic changes of the phenome of crops under field conditions. To this end, we have developed a precision phenotyping platform that combines various sensors for a non-invasive, high-throughput and high-dimensional phenotyping of small grain cereals. This platform yielded high prediction accuracies and heritabilities for biomass of triticale. Genetic variation for biomass accumulation was dissected with 647 doubled haploid lines derived from four families. Employing a genome-wide association mapping approach, two major quantitative trait loci (QTL) for biomass were identified and the genetic architecture of biomass accumulation was found to be characterized by dynamic temporal patterns. Our findings highlight the potential of precision phenotyping to assess the dynamic genetics of complex traits, especially those not amenable to traditional phenotyping.

  19. Differentiation of bacterial colonies and temporal growth patterns using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrübeoglu, Mehrube; Buck, Gregory W.; Livingston, Daniel W.

    2014-09-01

    Detection and identification of bacteria are important for health and safety. Hyperspectral imaging offers the potential to capture unique spectral patterns and spatial information from bacteria which can then be used to detect and differentiate bacterial species. Here, hyperspectral imaging has been used to characterize different bacterial colonies and investigate their growth over time. Six bacterial species (Pseudomonas fluorescens, Escherichia coli, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, Enterobacter aerogenes) were grown on tryptic soy agar plates. Hyperspectral data were acquired immediately after, 24 hours after, and 96 hours after incubation. Spectral signatures from bacterial colonies demonstrated repeatable measurements for five out of six species. Spatial variations as well as changes in spectral signatures were observed across temporal measurements within and among species at multiple wavelengths due to strengthening or weakening reflectance signals from growing bacterial colonies based on their pigmentation. Between-class differences and within-class similarities were the most prominent in hyperspectral data collected 96 hours after incubation.

  20. Soil moisture spatial and temporal patterns from a wireless sensor network test bed

    NASA Astrophysics Data System (ADS)

    Villalba, G.; Davis, T. W.; Liang, X.

    2014-12-01

    The dynamics of water movement through vegetated porous media is a complex problem with large variabilities over differing temporal and spatial scales. This study examines a multi-year wireless sensor network (WSN) collecting shallow subsurface (10 and 30 cm) soil moisture content and soil water potential. The study site, located at the Audubon Society of Western Pennsylvania's Beechwood Farms Nature Reserve, is one of the longest running WSNs of its kind. Despite the noisy nature of the collected data (e.g., in comparison to traditional data logger methods), the WSN, consisting of over 50 nodes with more than 100 sensors, provides critical information regarding catchment-scale spatiotemporal patterns of soil moisture and soil water potential within a forested hill-sloped region of southwestern Pennsylvania.

  1. Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation

    PubMed Central

    Busemeyer, Lucas; Ruckelshausen, Arno; Möller, Kim; Melchinger, Albrecht E.; Alheit, Katharina V.; Maurer, Hans Peter; Hahn, Volker; Weissmann, Elmar A.; Reif, Jochen C.; Würschum, Tobias

    2013-01-01

    To extend agricultural productivity by knowledge-based breeding and tailor varieties adapted to specific environmental conditions, it is imperative to improve our ability to assess the dynamic changes of the phenome of crops under field conditions. To this end, we have developed a precision phenotyping platform that combines various sensors for a non-invasive, high-throughput and high-dimensional phenotyping of small grain cereals. This platform yielded high prediction accuracies and heritabilities for biomass of triticale. Genetic variation for biomass accumulation was dissected with 647 doubled haploid lines derived from four families. Employing a genome-wide association mapping approach, two major quantitative trait loci (QTL) for biomass were identified and the genetic architecture of biomass accumulation was found to be characterized by dynamic temporal patterns. Our findings highlight the potential of precision phenotyping to assess the dynamic genetics of complex traits, especially those not amenable to traditional phenotyping. PMID:23942574

  2. SWI/SNF complex prevents lineage reversion and induces temporal patterning in neural stem cells.

    PubMed

    Eroglu, Elif; Burkard, Thomas R; Jiang, Yanrui; Saini, Nidhi; Homem, Catarina C F; Reichert, Heinrich; Knoblich, Juergen A

    2014-03-13

    Members of the SWI/SNF chromatin-remodeling complex are among the most frequently mutated genes in human cancer, but how they suppress tumorigenesis is currently unclear. Here, we use Drosophila neuroblasts to demonstrate that the SWI/SNF component Osa (ARID1) prevents tumorigenesis by ensuring correct lineage progression in stem cell lineages. We show that Osa induces a transcriptional program in the transit-amplifying population that initiates temporal patterning, limits self-renewal, and prevents dedifferentiation. We identify the Prdm protein Hamlet as a key component of this program. Hamlet is directly induced by Osa and regulates the progression of progenitors through distinct transcriptional states to limit the number of transit-amplifying divisions. Our data provide a mechanistic explanation for the widespread tumor suppressor activity of SWI/SNF. Because the Hamlet homologs Evi1 and Prdm16 are frequently mutated in cancer, this mechanism could well be conserved in human stem cell lineages. PAPERCLIP: PMID:24630726

  3. Subject transfer BCI based on Composite Local Temporal Correlation Common Spatial Pattern.

    PubMed

    Hatamikia, Sepideh; Nasrabadi, Ali Motie

    2015-09-01

    In this paper, a subject transfer framework is proposed for the classification of Electroencephalogram (EEG) signals in brain-computer interfaces (BCIs). This study introduces a modification of Common Spatial Pattern (CSP) for subject transfer BCIs, where similar characteristics are considered to transfer knowledge from other subjects׳ data. With this aim, we proposed a new approach based on Composite Local Temporal Correlation CSP, namely Composite LTCCSP with selected subjects, which considers the similarity between subjects using Frobenius distance. The performance of the proposed method is compared with different methods like traditional CSP, Composite CSP, LTCCSP and Composite LTCCSP. Experimental results have shown that our proposed method has increased the performance compared to all these different methods. Furthermore, our results suggest that it is worth emphasizing the data of subjects with similar characteristics in a subject transfer diagram. The suggested framework, as demonstrated by experimental results, can obtain a positive knowledge transfer for enhancing the performance of BCIs. PMID:26103603

  4. Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?

    PubMed

    Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter

    2006-01-01

    To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material (pure tones) and/or low-level operations (detection, labelling, chord disembedding, detection of pitch changes) show a superior level of performance and shorter ERP latencies. In contrast, tasks involving spectrally- and temporally-dynamic material and/or complex operations (evaluation, attention) are poorly performed by autistics, or generate inferior ERP activity or brain activation. Neural complexity required to perform auditory tasks may therefore explain pattern of performance and activation of autistic individuals during auditory tasks. PMID:16382329

  5. Remote sensing captures varying temporal patterns of vegetation between human-altered and natural landscapes

    PubMed Central

    Roderick, George K.

    2015-01-01

    Global change has led to shifts in phenology, potentially disrupting species interactions such as plant–pollinator relationships. Advances in remote sensing techniques allow one to detect vegetation phenological diversity between different land use types, but it is not clear how this translates to other communities in the ecosystem. Here, we investigated the phenological diversity of the vegetation across a human-altered landscape including urban, agricultural, and natural land use types. We found that the patterns of change in the vegetation indices (EVI and NDVI) of human-altered landscapes are out of synchronization with the phenology in neighboring natural California grassland habitat. Comparing these findings to a spatio-temporal pollinator distribution dataset, EVI and NDVI were significant predictors of total bee abundance, a relationship that improved with time lags. This evidence supports the importance of differences in temporal dynamics between land use types. These findings also highlight the potential to utilize remote sensing data to make predictions for components of biodiversity that have tight vegetation associations, such as pollinators. PMID:26290795

  6. Scene-based correction of fixed pattern noise in hyperspectral image data using temporal reordering

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Kaufman, Jason R.

    2015-09-01

    Hyperspectral image data suffer from pixel-to-pixel response nonuniformity that degrades the imagery in the form of columnated striping noise. This nonuniformity, or fixed pattern noise (FPN), is typically compensated for through flat-field calibration procedures. FPN is a particularly challenging problem because the detector responsivities drift relative to one another in time, requiring that the sensor be periodically recalibrated. Both the rate and severity of the drift depend on a host of factors that result in varying levels of residual calibration error being present within the data at all times. Scene-based nonuniformity correction (SBNUC) algorithms estimate and remove FPN by exploiting content within the scene data and are often necessary to acceptably remove sensor artifacts for subpixel target detection applications. We present results from two SBNUC techniques that reduce residual FPN and improve target signal-to-clutter ratio. We make the observation that temporally reordering the data in conjunction with the use of spatial ratios or differentials results in algorithms that require a low number of temporal data samples to reliably correct for FPN with minimal introduction of image artifacts. Additionally, application of the algorithms within the principal components domain can further improve their correction ability.

  7. Spatial temporal patterns in childhood leukaemia: further evidence for an infectious origin. EUROCLUS project.

    PubMed Central

    Alexander, F. E.; Boyle, P.; Carli, P. M.; Coebergh, J. W.; Draper, G. J.; Ekbom, A.; Levi, F.; McKinney, P. A.; McWhirter, W.; Magnani, C.; Michaelis, J.; Olsen, J. H.; Peris-Bonet, R.; Petridou, E.; Pukkala, E.; Vatten, L.

    1998-01-01

    The EUROCLUS project included information on residence at diagnosis for 13351 cases of childhood leukaemia diagnosed in the period 1980-89 in defined geographical regions in 17 countries. A formal algorithm permits identification of small census areas as containing case excesses. The present analysis examines spatial-temporal patterns of the cases (n = 970) within these clustered areas. The objectives were, first, to compare these results with those from an analysis conducted for UK data for the period 1966-83, and, second, to extend them to consider infant leukaemias. A modification of the Knox test investigates, within the small areas, temporal overlap between cases in a subgroup of interest at a putative critical time and all other cases at any time between birth and diagnosis. Critical times were specified in advance as follows: for cases of acute lymphoblastic leukaemia aged 2-4 years, the 18-month period preceding diagnosis; for cases of total leukaemia aged 5-14 years, 1 year before to 1 year after birth; and for infant cases (diagnosed < 1 year), 1 year before to 6 months after birth. Each of the analyses found evidence of excess space-time overlap compared with that expected; these were 10% (P = 0.005), 15% (P= 0.0002) and 26% (P= 0.03) respectively. The results are interpreted in terms of an infectious origin of childhood leukaemia. PMID:9514063

  8. Remote sensing captures varying temporal patterns of vegetation between human-altered and natural landscapes.

    PubMed

    Leong, Misha; Roderick, George K

    2015-01-01

    Global change has led to shifts in phenology, potentially disrupting species interactions such as plant-pollinator relationships. Advances in remote sensing techniques allow one to detect vegetation phenological diversity between different land use types, but it is not clear how this translates to other communities in the ecosystem. Here, we investigated the phenological diversity of the vegetation across a human-altered landscape including urban, agricultural, and natural land use types. We found that the patterns of change in the vegetation indices (EVI and NDVI) of human-altered landscapes are out of synchronization with the phenology in neighboring natural California grassland habitat. Comparing these findings to a spatio-temporal pollinator distribution dataset, EVI and NDVI were significant predictors of total bee abundance, a relationship that improved with time lags. This evidence supports the importance of differences in temporal dynamics between land use types. These findings also highlight the potential to utilize remote sensing data to make predictions for components of biodiversity that have tight vegetation associations, such as pollinators. PMID:26290795

  9. Defining high-flow seasons using temporal streamflow patterns from a global model

    NASA Astrophysics Data System (ADS)

    Lee, D.; Ward, P.; Block, P.

    2015-11-01

    Globally, flood catastrophes lead all natural hazards in terms of impacts on society, causing billions of dollars of damages annually. Here, a novel approach to defining high-flow seasons (3-month) globally is presented by identifying temporal patterns of streamflow. The main high-flow season is identified using a volume-based threshold technique and the PCR-GLOBWB model. In comparison with observations, 40 % (50 %) of locations at a station (sub-basin) scale have identical peak months and 81 % (89 %) are within 1 month, indicating fair agreement between modeled and observed high-flow seasons. Minor high-flow seasons are also defined for bi-modal flow regimes. Identified major and minor high-flow seasons together are found to well represent actual flood records from the Dartmouth Flood Observatory, further substantiating the model's ability to reproduce the appropriate high-flow season. These high-spatial-resolution high-flow seasons and associated performance metrics allow for an improved understanding of temporal characterization of streamflow and flood potential, causation, and management. This is especially attractive for regions with limited observations and/or little capacity to develop early warning flood systems.

  10. Migratory patterns of exotic brown trout Salmo trutta in south-western Hokkaido, Japan, on the basis of otolith Sr:Ca ratios and acoustic telemetry.

    PubMed

    Honda, K; Arai, T; Kobayashi, S; Tsuda, Y; Miyashita, K

    2012-02-01

    Acoustic telemetry and microchemical analysis of otolith strontium-calcium ratios were used to evaluate how exotic brown trout Salmo trutta have responded to Japanese riverine environments of south-western Hokkaido by observing their migratory patterns. The existence of anadromous S. trutta was also verified. Most S. trutta caught in rivers for otolith analysis were freshwater residents (95·6%), whereas those caught in the sea were mainly smolts (91·3%), which had just migrated from rivers during spring. Anadromous S. trutta (n = 6) were captured in rivers and in the sea, confirming the existence of mature pre- and post-spawning fish. According to telemetry results, both mature and immature S. trutta used the river in winter, and their estimated sea-run timings showed individual differences. Through the combination of these two methods, migratory patterns on various spatio-temporal scales were observed. This first documentation of the presence of both male and female anadromous S. trutta in the same region within Japan indicated the risk of further colonization of exotic S. trutta via oceanic migration. PMID:22268438

  11. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable.

    PubMed

    Lachnit, Tim; Meske, Diana; Wahl, Martin; Harder, Tilmann; Schmitz, Ruth

    2011-03-01

    Marine macroalgae are constantly exposed to epibacterial colonizers. The epiphytic bacterial patterns and their temporal and spatial variability on host algae are poorly understood. To investigate the interaction between marine macroalgae and epiphytic bacteria, this study tested if the composition of epibacterial communities on different macroalgae was specific and persisted under varying biotic and abiotic environmental conditions over a 2-year observation time frame. Epibacterial communities on the co-occurring macroalgae Fucus vesiculosus, Gracilaria vermiculophylla and Ulva intestinalis were repeatedly sampled in summer and winter of 2007 and 2008. The epibacterial community composition was analysed by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene libraries. Epibacterial community profiles did not only differ significantly at each sampling interval among algal species, but also showed consistent seasonal differences on each algal species at a bacterial phylum level. These compositional patterns re-occurred at the same season of two consecutive years. Within replicates of the same algal species, the composition of bacterial phyla was subject to shifts at the bacterial species level, both within the same season but at different years and between different seasons. However, 7-16% of sequences were identified as species specific to the host alga. These findings demonstrate that marine macroalgae harbour species-specific and temporally adapted epiphytic bacterial biofilms on their surfaces. Since several algal host-specific bacteria were highly similar to other bacteria known to either avoid subsequent colonization by eukaryotic larvae or to exhibit potent antibacterial activities, algal host-specific bacterial associations are expected to play an important role for marine macroalgae. PMID:21078035

  12. Reconstructing spatial and temporal patterns of paleoglaciation along the Tian Shan

    NASA Astrophysics Data System (ADS)

    Harbor, J.; Stroeven, A. P.; Beel, C.; Blomdin, R.; Caffee, M. W.; Chen, Y.; Codilean, A.; Gribenski, N.; Hattestrand, C.; Heyman, J.; Ivanov, M.; Kassab, C.; Li, Y.; Lifton, N. A.; Liu, G.; Petrakov, D.; Rogozhina, I.; Usubaliev, R.

    2012-12-01

    Testing and calibrating global climate models require well-constrained information on past climates of key regions around the world. Particularly important are transitional regions that provide a sensitive record of past climate change. Central Asia is an extreme continental location with glaciers and rivers that respond sensitively to temporal variations in the dominance of several major climate systems. As an international team initiative, we are reconstructing the glacial history of the Kyrgyz and Chinese Tian Shan, based on mapping and dating of key localities along the range. Remote-sensing-based geomorphological mapping, building on previous maps produced by Kyrgyz, Russian, Chinese and German scholars, is being augmented with field observations of glacial geomorphology and the maximum distribution of erratics. We are using cosmogenic nuclide (CN) 10Be dating of moraines and other landforms that constrain the former maximum extents of glaciers. Study sites include the Ala-Archa, Ak-Shyrak and Inylchek/Sary-Dzaz areas in Kyrgyzstan and the Urumqi valley (as well as its upland and southern slopes), and the Tumur and Bogeda peak areas in China. Comparing consistently dated glacial histories along and across the range will allow us to examine potential shifts in the dominance patterns of climate systems over time in Central Asia. We are also comparing ages based on CN with optically stimulated luminescence (OSL) and electron spin resonance (ESR) dates. The final stage of this project will use intermediate complexity glacier flow models to examine paleoclimatic implications of the observed spatial and temporal patterns of glacier changes across Central Asia and eastern Tibet, focused in particular on the last glacial cycle.

  13. Temporal variability in winter travel patterns of Yellowstone bison: the effects of road grooming.

    PubMed

    Bruggeman, Jason E; Garrott, Robert A; Bjornlie, Daniel D; White, P J; Watson, Fred G R; Borkowski, John

    2006-08-01

    The influence of winter recreation on wildlife in Yellowstone National Park (YNP), Wyoming and Montana, USA, is a controversial issue. In particular, the effects of road grooming, done to facilitate snowmobile and snowcoach travel, on bison (Bison bison) ecology are under debate. We collected data during winters, from 1997 to 2005, on bison road use, off-road travel, and activity budgets to quantify temporal trends in the amount of bison road and off-road travel and to identify the ecological factors affecting bison movements and use of the groomed road system in the Madison-Gibbon-Firehole (MGF) area of YNP. Using model comparison techniques, we found bison travel patterns to be influenced by multiple, interacting effects. Road travel was negatively correlated with road grooming, and we found no evidence that bison preferentially used groomed roads during winter. Snow water equivalent, bison density, and the springtime melt period were positively correlated with both bison road and off-road travel. From behavioral scans on 68,791 bison, we found that travel is only a small percentage (11%) of all bison activity, with foraging comprising 67% of observations. Also, only 7% of traveling bison and 30% of foraging bison were displacing snow, and we suggest foraging, rather than traveling, is likely the major energetic cost to bison in winter. Bison utilize their own trail network, connecting foraging areas using stream corridors, geothermal pathways, and self-groomed travel routes. Our results indicate that temporal patterns in bison road travel are a manifestation of general travel behavior and that groomed roads in the MGF do not appear to be a major factor influencing bison ecology and spatial redistribution. We suggest that the changes in bison spatial dynamics during the past three decades have likely been the result of the natural phenomenon of density-dependent range expansion, rather than having been caused by the anthropogenic influence of road grooming. PMID:16937817

  14. Discharge pattern in the auditory nerve evoked by vowel stimuli: a comparison between acoustical and electrical stimulation.

    PubMed

    Knauth, M; Hartmann, R; Klinke, R

    1994-04-01

    Single channel cochlear implants only transmit the time structure of the electrically coded input signal. All nerve fibres show similar thresholds for monopolar round window stimulation, i.e., activation does not depend on their site of origin. To investigate the fine structure of the firing pattern elicited by stimulation with an analogue coded speech processing system (VIENNA 1-channel implant), cats were electrically stimulated with German steady-state vowels at the round window. Single fibre activity was recorded from primary auditory fibres and period histograms were calculated. The electrically evoked impulse patterns were compared with those from acoustic stimulation with the same vowels. With acoustic stimulation, the response of a fibre depends on the individual characteristic frequency (CF) with regard to the fundamental F0 and the formants F1, F2 and F3 of the vowels, the spontaneous activity of the fibre and the sound level. The evoked firing pattern was used to calculate period histograms, the frequency content of which was analysed by Fourier transformation. With electrical stimulation in the threshold range, an action potential is strongly synchronized to a cathodic peak of the current within one period of F0. With increasing current level 3-5 impulses can be locked to the same period. The timing of the short intervals is determined by the relative refractory period and current peaks (negative or positive) caused by the dominant higher formant F2 or F3. The acoustically evoked patterns are specific for the CF of the neuron and represent the spectral information of the different vowels.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8040095

  15. Spatial and temporal patterns of large-scale droughts in Europe: model dispersion and performance

    NASA Astrophysics Data System (ADS)

    Tallaksen, Lena M.; Stahl, Kerstin

    2014-05-01

    Droughts are regional events that have a wide range of environmental and socio-economic impacts and thus, it is vital that models correctly simulate drought characteristics in a future climate. In this study we explore the performance of a suite of off-line, global hydrological and land surface models in mapping spatial and temporal patterns of large-scale hydrological droughts. The model ensemble consists of seven global models run with the same simulation setup (developed in a joint effort within the WATCH project). Daily total runoff (sum of fast and slow component) simulated for each grid cell in Europe for the period 1963-2000 constitute the basis for the analysis. Simulated and observed daily (7-day backward-smoothed) runoff series for each grid cell were first transformed into nonparametric anomalies, and a grid cell is considered to be in drought if the runoff is below q20, i.e., the 20% non-exceedance frequency of that day. The mean annual drought area, i.e., the average of the daily total area in drought, is used to characterize the overall dryness of a year. The annual maximum drought cluster area, i.e., the area of the largest cluster of spatially contiguous cells in drought within a year, is chosen as a measure of the severity of a given drought. The total number of drought events is defined as runs of consecutive days in drought over the entire record. Consistent model behavior was found for inter-annual variability in mean drought area, whereas high model dispersion was revealed in the weekly evolution of contiguous area in drought and its annual maximum. Comparison with nearly three hundred catchment-scale streamflow observations showed an overall tendency to overestimate the number of drought events and hence, underestimate drought duration, whereas persistence in drought affected area (weekly mean) was underestimated, noticeable for one group of models. The high model dispersion in temporal and spatial persistence of drought identified implies that care should be taken when analyzing drought characteristics from only one or a limited number of models unless validated specifically for hydrological drought. Citation: Tallaksen, L.M., Stahl, K. (2014) Spatial and temporal patterns of large-scale droughts in Europe: model dispersion and performance. Geophysical Research Letters (accepted), doi: 10.1002/2013GL058573

  16. Spatio-Temporal Transmission Patterns of Black-Band Disease in a Coral Community

    PubMed Central

    Zvuloni, Assaf; Artzy-Randrup, Yael; Stone, Lewi; Kramarsky-Winter, Esti; Barkan, Roy; Loya, Yossi

    2009-01-01

    Background Transmission mechanisms of black-band disease (BBD) in coral reefs are poorly understood, although this disease is considered to be one of the most widespread and destructive coral infectious diseases. The major objective of this study was to assess transmission mechanisms of BBD in the field based on the spatio-temporal patterns of the disease. Methodology/Principal Findings 3,175 susceptible and infected corals were mapped over an area of 10×10 m in Eilat (northern Gulf of Aqaba, Red Sea) and the distribution of the disease was examined monthly throughout almost two full disease cycles (June 2006–December 2007). Spatial and spatio-temporal analyses were applied to infer the transmission pattern of the disease and to calculate key epidemiological parameters such as (basic reproduction number). We show that the prevalence of the disease is strongly associated with high water temperature. When water temperatures rise and disease prevalence increases, infected corals exhibit aggregated distributions on small spatial scales of up to 1.9 m. Additionally, newly-infected corals clearly appear in proximity to existing infected corals and in a few cases in direct contact with them. We also present and test a model of water-borne infection, indicating that the likelihood of a susceptible coral becoming infected is defined by its spatial location and by the relative spatial distribution of nearby infected corals found in the site. Conclusions/Significance Our results provide evidence that local transmission, but not necessarily by direct contact, is likely to be an important factor in the spread of the disease over the tested spatial scale. In the absence of potential disease vectors with limited mobility (e.g., snails, fireworms) in the studied site, water-borne infection is likely to be a significant transmission mechanism of BBD. Our suggested model of water-borne transmission supports this hypothesis. The spatio-temporal analysis also points out that infected corals surviving a disease season appear to play a major role in the re-introduction of the disease to the coral community in the following season. PMID:19337384

  17. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  18. Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron

    PubMed Central

    Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913

  19. The pattern of acoustic emission under fluid initiation of failure: Laboratory modeling

    NASA Astrophysics Data System (ADS)

    Potanina, M. G.; Smirnov, V. B.; Ponomarev, A. V.; Bernard, P.; Lyubushin, A. A.; Shoziyoev, Sh. P.

    2015-03-01

    The results of the laboratory experiment on the initiation of acoustic emission in a loaded specimen by wetting a part of its surface without a material increase in the pore pressure are analyzed. The experiment was conducted on the lever press at the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (Sobolev and Ponomarev, 2011). Infusion of water into the surface of the specimen initiated the swarm acoustic emission, which, after having migrated to the area with higher stresses, culminated in the formation of a macrofracture. The analysis revealed the regularities in the excitation and relaxation of the acoustic activity in response to different types of initiation: the forced excitation by stepwise increasing the load at the initial stage of the experiment; excitation resulting from fluid diffusion, which can be associated with the reduction in the material strength due to wetting; excitation that reflects the preparation for the emergence of a macrofracture in the area with the highest Coulomb stresses; and spontaneous excitation of swarm activity at the stage of relaxation of the acoustic emission after the formation of a macrofracture. The features revealed in the acoustic time series at the stages of excitation and decay of the emission are qualitatively similar to the trends identified in the variations of seismic parameters during the natural swarms, preparation of the sources of the strong earthquakes, and relaxation of the aftershocks. In particular, the obtained results support the hypothesis of fluid initiation of nonvolcanic seismic swarms.

  20. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.

    PubMed

    Byrne, Michael E; Clint McCoy, J; Hinton, Joseph W; Chamberlain, Michael J; Collier, Bret A

    2014-09-01

    Accurately describing animal space use is vital to understanding how wildlife use habitat. Improvements in GPS technology continue to facilitate collection of telemetry data at high spatial and temporal resolutions. Application of the recently introduced dynamic Brownian bridge movement model (dBBMM) to such data is promising as the method explicitly incorporates the behavioural heterogeneity of a movement path into the estimated utilization distribution (UD). Utilization distributions defining space use are normally estimated for time-scales ranging from weeks to months, obscuring much of the fine-scale information available from high-volume GPS data sets. By accounting for movement heterogeneity, the dBBMM provides a rigorous, behaviourally based estimate of space use between each set of relocations. Focusing on UDs generated between individual sets of locations allows us to quantify fine-scale circadian variation in habitat use. We used the dBBMM to estimate UDs bounding individual time steps for three terrestrial species with different life histories to illustrate how the method can be used to identify fine-scale variations in habitat use. We also demonstrate how dBBMMs can be used to characterize circadian patterns of habitat selection and link fine-scale patterns of habitat use to behaviour. We observed circadian patterns of habitat use that varied seasonally for a white-tailed deer (Odocoileus virginianus) and coyote (Canis latrans). We found seasonal patterns in selection by the white-tailed deer and were able to link use of conifer forests and agricultural fields to behavioural state of the coyote. Additionally, we were able to quantify the date in which a Rio Grande wild turkey (Meleagris gallopavo intermedia) initiated laying as well as when during the day, she was most likely to visit the nest site to deposit eggs. The ability to quantify circadian patterns of habitat use may have important implications for research and management of wildlife. Additionally, the ability to link such patterns to behaviour may aid in the development of mechanistic models of habitat selection. PMID:24460723

  1. Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham M.; Huggins, David R.

    2011-07-01

    SummarySpatio-temporal patterns of soil water are major determinants of crop yield potential in dryland agriculture and can serve as the basis for delineating precision management zones. Soil water patterns can vary significantly due to differences in seasonal precipitation, soil properties and topographic features. In this study we used empirical orthogonal function (EOF) analysis to characterize the spatial variability of soil water at the Washington State University Cook Agronomy Farm (CAF) near Pullman, WA. During the period 1999-2006, the CAF was divided into three roughly equal blocks (A, B, and C), and soil water at 0.3 m intervals to a depth of 1.5 m measured gravimetrically at approximately one third of the 369 geo-referenced points on the 37-ha watershed. These data were combined with terrain attributes, soil bulk density and apparent soil conductivity (EC a). The first EOF generated from the three blocks explained 73-76% of the soil water variability. Field patterns of soil water based on EOF interpolation varied between wet and dry conditions during spring and fall seasons. Under wet conditions, elevation and wetness index were the dominant factors regulating the spatial patterns of soil water. As soil dries out during summer and fall, soil properties (EC a and bulk density) become more important in explaining the spatial patterns of soil water. The EOFs generated from block B, which represents average topographic and soil properties, provided better estimates of soil water over the entire watershed with larger Nash-Sutcliffe Coefficient of Efficiency (NSCE) values, especially when the first two EOFs were retained. Including more than the first two EOFs did not significantly increase the NSCE of soil water estimate. The EOF interpolation method to estimate soil water variability worked slightly better during spring than during fall, with average NSCE values of 0.23 and 0.20, respectively. The predictable patterns of stored soil water in the spring could serve as the basis for delineating precision management zones as yield potential is largely driven by water availability. The EOF-based method has the advantage of estimating the soil water variability based on soil water data from several measurement times, whereas in regression methods only soil water measurement at a single time are used. The EOF-based method can also be used to estimate soil water at any time other than measurement times, assuming the average soil water of the watershed is known at that time.

  2. Spatio-temporal patterns of throughfall and solute deposition in an open tropical rain forest

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Germer, Sonja; Neill, Christopher; Krusche, Alex V.; Elsenbeer, Helmut

    2008-10-01

    SummaryThe brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondônia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season ( n = 14) and peak of the wet season ( n = 14) and analyzed the samples for pH and concentrations of NH4+, Na +, K +, Ca 2+, Mg 2+, Cl -, NO3-, SO42- and DOC. The coefficient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly low compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall patterns was low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of "hot" and "cold" spots of throughfall quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor and in the soil. Solute deposition patterns showed less clear trends but all patterns displayed a short-term stability only. The weak stability of those patterns is apt to impede the formation of solute deposition-induced biochemical microhabitats in the soil.

  3. Does Sex Matter? Temporal and Spatial Patterns of Cougar-Human Conflict in British Columbia

    PubMed Central

    Teichman, Kristine J.; Cristescu, Bogdan; Nielsen, Scott E.

    2013-01-01

    Wildlife-human conflicts occur wherever large carnivores overlap human inhabited areas. Conflict mitigation can be facilitated by understanding long-term dynamics and examining sex-structured conflict patterns. Predicting areas with high probability of conflict helps focus management strategies in order to proactively decrease carnivore mortality. We investigated the importance of cougar (Puma concolor) habitat, human landscape characteristics and the combination of habitat and human features on the temporal and spatial patterns of cougar-human conflicts in British Columbia. Conflicts (n = 1,727; 1978–2007) involved similar numbers of male and female cougars with conflict rate decreasing over the past decade. Conflicts were concentrated within the southern part of the province with the most conflicts per unit area occurring on Vancouver Island. For both sexes, the most supported spatial models for the most recent (1998–2007) conflicts contained both human and habitat variables. Conflicts were more likely to occur close to roads, at intermediate elevations and far from the northern edge of the cougar distribution range in British Columbia. Male cougar conflicts were more likely to occur in areas of intermediate human density. Unlike cougar conflicts in other regions, cattle density was not a significant predictor of conflict location. With human populations expanding, conflicts are expected to increase. Conservation tools, such as the maps predicting conflict hotspots from this study, can help focus management efforts to decrease carnivore-human conflict. PMID:24040312

  4. Temporal, spatial, and between-host comparisons of patterns of parasitism in lake zooplankton.

    PubMed

    Duffy, Meghan A; Cáceres, Carla E; Hall, Spencer R; Tessier, Alan J; Ives, Anthony R

    2010-11-01

    In nature, multiple parasite species infect multiple host species and are influenced by processes operating across different spatial and temporal scales. Data sets incorporating these complexities offer exciting opportunities to examine factors that shape epidemics. We present a method using generalized linear mixed models in a multilevel modeling framework to analyze patterns of variances and correlations in binomially distributed prevalence data. We then apply it to a multi-lake, multiyear data set involving two Daphnia host species and nine microparasite species. We found that the largest source of variation in parasite prevalence was the species identities of host-parasite pairs, indicating strong host-parasite specificity. Within host-parasite combinations, spatial variation (among lakes) exceeded interannual variation. This suggests that factors promoting differences among lakes (e.g., habitat characteristics and species interactions) better explain variation in peak infection prevalence in our data set than factors driving differences among years (e.g., climate). Prevalences of parasites in D. dentifera were more positively correlated than those for D. pulicaria, suggesting that similar factors influenced epidemic size among parasites in D. dentifera. Overall, this study demonstrates a method for parsing patterns of variation and covariation in infection prevalence data, providing greater insight into the relative importance of different underlying drivers of parasitism. PMID:21141193

  5. Spatial and temporal patterns of nonindigenous fish introductions in the United States

    USGS Publications Warehouse

    Nico, L.G.; Fuller, P.L.

    1999-01-01

    In 1978 biologists in Gainesville, Florida, began compiling records on the distribution and status of nonindigenous fishes known in U.S. inland waters. The database, now in electronic format, currently contains approximately 17,000 records representing more than 500 nonindigenous fish taxa (i.e., species, hybrids, and unidentified forms). Of these taxa, 317 (61%) are native to the United States but have been introduced by humans into U.S. drainages outside their natural geographic ranges; 185 (35%) are fishes introduced from foreign countries; and 22 (4%) are hybrids. Of the introduced foreign fish taxa, 71 (38%) are species that have established (i.e., reproducing) or possibly established populations in open U.S. waters. The database is a useful tool for natural resource managers and other decision makers. Although we periodically revise records and constantly enter new ones, our database is fairly updated; thus, we are able to more thoroughly analyze patterns of introduction and the spread of nonindigenous fishes within the United States. Moreover, information gaps exposed by the data set should serve to stimulate and guide future research on nonindigenous fishes. This paper introduces our database and provides an overview of temporal and spatial patterns of nonindigenous fish distributions in U.S. inland waters.

  6. Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity

    PubMed Central

    Keller, Stefanie; Bartolino, Valerio; Hidalgo, Manuel; Bitetto, Isabella; Casciaro, Loredana; Cuccu, Danila; Esteban, Antonio; Garcia, Cristina; Garofalo, Germana; Josephides, Marios; Jadaud, Angelique; Lefkaditou, Evgenia; Maiorano, Porzia; Manfredi, Chiara; Marceta, Bojan; Massutí, Enric; Micallef, Reno; Peristeraki, Panagiota; Relini, Giulio; Sartor, Paolo; Spedicato, Maria Teresa; Tserpes, George; Quetglas, Antoni

    2016-01-01

    Species diversity is widely recognized as an important trait of ecosystems’ functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200–400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversity. PMID:26760965

  7. NFI-C2 temporal-spatial expression and cellular localization pattern during tooth formation.

    PubMed

    Lamani, Ejvis; Gluhak-Heinrich, Jelica; MacDougall, Mary

    2015-12-01

    Currently, little is known regarding critical signaling pathways during later stages of tooth development, especially those associated with root formation. Nfi-c null mice, lacking molar roots, have implicated the transcription factor NFI-C as having an essential role in root development. Previously, we identified three NFI-C isoforms expressed in dental tissues with NFI-C2 being the major transcript. However, the expression pattern of the NFI-C2 protein is not characterized. In this study we performed in situ hybridization and immunohistochemistry using isoform specific probes. We show the production of a NFI-C2 peptide antibody, its characterization, the temporal-spatial expression pattern of the NFI-C2 protein during odontogenesis and sub-cellular localization in dental cells. Moderate NFI-C2 staining, as early as bud stage, was detected mostly in the condensing dental ectomesenchyme. This staining intensified within the dental pulp at later stages culminating in high expression in the dentin producing odontoblasts. The dental epithelium showed slight staining until cytodifferentiation of enamel organ into ameloblasts and stratum intermedium. During root formation NFI-C2 expression was high in the Hertwig's epithelial root sheath and later was found in the fully developed root and its supporting tissues. NFI-C2 cellular staining was cytosolic, associated with the Golgi, and nuclear. These data suggest a broader role for NFI-C during tooth formation than limited to root and periodontal ligament development. PMID:26687982

  8. Does sex matter? Temporal and spatial patterns of cougar-human conflict in British Columbia.

    PubMed

    Teichman, Kristine J; Cristescu, Bogdan; Nielsen, Scott E

    2013-01-01

    Wildlife-human conflicts occur wherever large carnivores overlap human inhabited areas. Conflict mitigation can be facilitated by understanding long-term dynamics and examining sex-structured conflict patterns. Predicting areas with high probability of conflict helps focus management strategies in order to proactively decrease carnivore mortality. We investigated the importance of cougar (Puma concolor) habitat, human landscape characteristics and the combination of habitat and human features on the temporal and spatial patterns of cougar-human conflicts in British Columbia. Conflicts (n = 1,727; 1978-2007) involved similar numbers of male and female cougars with conflict rate decreasing over the past decade. Conflicts were concentrated within the southern part of the province with the most conflicts per unit area occurring on Vancouver Island. For both sexes, the most supported spatial models for the most recent (1998-2007) conflicts contained both human and habitat variables. Conflicts were more likely to occur close to roads, at intermediate elevations and far from the northern edge of the cougar distribution range in British Columbia. Male cougar conflicts were more likely to occur in areas of intermediate human density. Unlike cougar conflicts in other regions, cattle density was not a significant predictor of conflict location. With human populations expanding, conflicts are expected to increase. Conservation tools, such as the maps predicting conflict hotspots from this study, can help focus management efforts to decrease carnivore-human conflict. PMID:24040312

  9. Detection of Cardiac Function Abnormality from MRI Images Using Normalized Wall Thickness Temporal Patterns

    PubMed Central

    Wael, Mai; Fahmy, Ahmed S.

    2016-01-01

    Purpose. To develop a method for identifying abnormal myocardial function based on studying the normalized wall motion pattern during the cardiac cycle. Methods. The temporal pattern of the normalized myocardial wall thickness is used as a feature vector to assess the cardiac wall motion abnormality. Principal component analysis is used to reduce the feature dimensionality and the maximum likelihood method is used to differentiate between normal and abnormal features. The proposed method was applied on a dataset of 27 cases from normal subjects and patients. Results. The developed method achieved 81.5%, 85%, and 88.5% accuracy for identifying abnormal contractility in the basal, midventricular, and apical slices, respectively. Conclusions. A novel feature vector, namely, the normalized wall thickness, has been introduced for detecting myocardial regional wall motion abnormality. The proposed method provides assessment of the regional myocardial contractility for each cardiac segment and slice; therefore, it could be a valuable tool for automatic and fast determination of regional wall motion abnormality from conventional cine MRI images. PMID:27034648

  10. A Study On Quantification And Spatial-Temporal Patterns Of Wetlands Soil Moisture

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-qiang; Zhou, De-min; Luan, Zhao-qing; Gong, Hui-li

    2010-10-01

    It is of great scientific theory applying value in scientifically understanding the suitable habitat humidity characteristics of different wetlands plants, wetland protection and restoration and containing wetlands ecological degradation to study the change of soil water environmental gradient characteristics with the geomorphic gradient in the wetlands in inland plain and the soil moisture spatial variation in different plant ecosystem types. According to the monitoring data of soil water, the spatial and temporal patterns characteristics of wetland soil moisture are analyzed in a typical small depression of dish shape in the section 135 of Honghe Reserve. The results show that the geomorphic gradient descends and there are significant differences in soil moisture from the island forest on the edge to the swamp in the center of the depression throughout the growing season. On the whole, the soil moisture descends with the geomorphic gradient although there are different trends at different depths in the soil. In addition, the wetness indices of the same area are calculated based on TOPMODEL and DEM. The numerical simulation method is used to characterize the spatiotemporal pattern of the regional soil moisture and the differences are further analyzed between the field monitoring data and the computer numerical simulation data. The study is of guiding significance in strengthening the quantitative research and numerical simulation technology of wetland science.

  11. Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity.

    PubMed

    Keller, Stefanie; Bartolino, Valerio; Hidalgo, Manuel; Bitetto, Isabella; Casciaro, Loredana; Cuccu, Danila; Esteban, Antonio; Garcia, Cristina; Garofalo, Germana; Josephides, Marios; Jadaud, Angelique; Lefkaditou, Evgenia; Maiorano, Porzia; Manfredi, Chiara; Marceta, Bojan; Massutí, Enric; Micallef, Reno; Peristeraki, Panagiota; Relini, Giulio; Sartor, Paolo; Spedicato, Maria Teresa; Tserpes, George; Quetglas, Antoni

    2016-01-01

    Species diversity is widely recognized as an important trait of ecosystems' functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200-400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversity. PMID:26760965

  12. Spatial and temporal patterns of micropollutants upstream and downstream of 24 WWTPs across Switzerland

    NASA Astrophysics Data System (ADS)

    Spycher, Barbara; Deuber, Fabian; Kistler, David; Burdon, Frank; Reyes, Marta; Alder, Alfredo C.; Joss, Adriano; Eggen, Rik; Singer, Heinz; Stamm, Christian

    2015-04-01

    Treated wastewater is an important source of micropollutants in many streams. These chemicals consist of very diverse set of compounds that may vary in space and time. In order to improve our understanding of such spatio-temporal patterns of micropollutants in surface waters, we compared upstream and downstream locations at 24 sites across the Swiss Plateau and Jura (12 sites in the 2013 campaign, 12 sites during the 2014 campaign). Each site represents the most upstream treatment plant in the corresponding catchment. This survey is part of the interdisciplinary, Eawag-wide research project EcoImpact that aims at elucidating the ecological effects of micropollutants on stream ecosystems. In 2013, a broad analytical screening was applied to samples collected during winter (January) and summer conditions (June). Based in these results, the bi-monthly samples obtained in 2014 were analysed for a set of about 60 selected organic micropollutants and 10 heavy metals. The screening results demonstrate that generally pharmaceuticals, artificial sweeteners and corrosion inhibitors make up the largest part of the organic micropollutants. Pesticides including biocides and plant protection products are also regularly found but at lower concentrations. This presentation will analyse the variability of the micropollutant patterns across the different sites and how upstream conditions and the wastewater composition changes with season.

  13. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species. PMID:26233026

  14. Horizontal spatial and temporal distribution patterns of nearshore larval fish assemblages at a temperate rocky shore

    NASA Astrophysics Data System (ADS)

    Borges, Rita; Ben-Hamadou, Radhouan; Chícharo, M. Alexandra; Ré, Pedro; Gonçalves, Emanuel J.

    2007-02-01

    There have been no previous studies of the composition of nearshore larval fish assemblages along the coast of Portugal. We aimed to describe the composition and horizontal distribution patterns of larval fish assemblages and their temporal dynamics near a rocky reef at depths shallower than 13 m (inshore) and at two miles (3.70 km) from shore (offshore), as well as along transects perpendicular to the shoreline, from the reef to 10 miles offshore (18.52 km). Samples were taken using 5 min sub-surface trawls at the rocky shore of the Arrábida Marine Park (W Portugal). A total of 1021 larvae were collected, belonging to 61 taxa inshore and to 29 taxa offshore. Along transects, 626 larvae of 52 taxa were collected. Most larvae belonged to coastal species associated with rocky reefs. Total larval abundance and diversity were higher from May to July, which is consistent with the spawning activity of adults. Diversity and total larval abundance decreased significantly with increasing distance from shore, both in the inshore/offshore comparison and in the transects, where this decrease was evident at a very small spatial scale (within the first mile from the reef). Species assemblages differed in the pattern of distribution, with most species clearly associated to the extreme nearshore. The distribution patterns obtained were independent of the spawning mode of species. Results are discussed in the light of the possible physical mechanisms that can potentially act at the Arrábida Marine Park to facilitate larvae retention and the role of larval behaviour.

  15. Spatial and temporal patterns of forest disturbance in geographically distinct regions: rates, intensity, and size distribution

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.; Hurtt, G. C.; Huang, C.; Masek, J. G.; Fisk, J.

    2013-12-01

    Disturbance plays a critical role in shaping the structure and function of terrestrial forested ecosystems as well as the ecosystem services they provide such as the storage and transfer of carbon between the atmosphere and biosphere. Despite increased awareness and research on the importance of disturbance in shaping terrestrial ecosystems and the global carbon budget, large uncertainties and challenges remain. One area of large uncertainty is the role of natural and partial mortality disturbance events. The distribution of disturbance over space and time influence not only landscape and regional forest structure and function but also our ability to accurately monitor and model disturbance on the landscape under various sampling regimes. This study aims to quantify how disturbance events vary spatially, temporally and mechanistically within and between distinct regions of the conterminous US. Specifically we characterized the current and near past disturbance gap size frequency, severity, rates, variance and spatial patterns of disturbance using 30 m annual Landsat time-series data from 1984-2010 run through the highly automated Vegetation Change Tracker (VCT). Mapped forest change were broken down into land conversion (forest to non forest), severe disturbance (stand replacing), and non severe (partial clearing/ thinning). Local to national field and aerial inventories were used to both validate disturbance maps as well as inform disturbance mechanism classification. Results show strong distinctions in disturbance rates, gap sizes and patterns of disturbance between the northeast (p012r29*), northwest (p045r029), and southeast (p016r035) study regions as well as intra regional trends. The southeastern site had the highest average annual rate of disturbance at just over 1.5% forest area disturbed, followed by Northwest (~1%) and Northeast (~0.5%), with the northwest having the largest inter-annual variation. Within region strong patterns of disturbance could be observed between geopolitical boundaries. Results have implications on various sampling regimes ability to adequately capture disturbance across the regions and thus implications on estimates of forest carbon storage and flux.

  16. Temporal patterns in daily measurements of inorganic and organic speciated PM2.5 in Denver

    PubMed Central

    Dutton, Steven J.; Rajagopalan, Balaji; Vedal, Sverre; Hannigan, Michael P.

    2013-01-01

    Airborne particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) has been linked to a wide range of adverse health effects and as a result is currently regulated by the U.S. Environmental Protection Agency. PM2.5 originates from a multitude of sources and has heterogeneous physical and chemical characteristics. These features complicate the link between PM2.5 emission sources, ambient concentrations and health effects. The goal of the Denver Aerosol Sources and Health (DASH) study is to investigate associations between sources and health using daily measurements of speciated PM2.5 in Denver. The datxa set being collected for the DASH study will be the longest daily speciated PM2.5 data set of its kind covering 5.5 years of daily inorganic and organic speciated measurements. As of 2008, 4.5 years of bulk measurements (mass, inorganic ions and total carbon) and 1.5 years of organic molecular marker measurements have been completed. Several techniques were used to reveal long-term and short-term temporal patterns in the bulk species and the organic molecular marker species. All species showed a strong annual periodicity, but their monthly and seasonal behavior varied substantially. Weekly periodicities appear in many compound classes with the most significant weekday/weekend effect observed for elemental carbon, cholestanes, hopanes, select polycyclic aromatic hydrocarbons (PAHs), heavy n-alkanoic acids and methoxyphenols. Many of the observed patterns can be explained by meteorology or anthropogenic activity patterns while others do not appear to have such obvious explanations. Similarities and differences in these findings compared to those reported from other cities are highlighted. PMID:23486844

  17. Understanding flood-induced water chemistry variability extracting temporal patterns with the LDA method

    NASA Astrophysics Data System (ADS)

    Aubert, A. H.; Tavenard, R.; Emonet, R.; De Lavenne, A.; Malinowski, S.; Guyet, T.; Quiniou, R.; Odobez, J.; Merot, P.; Gascuel-odoux, C.

    2013-12-01

    Studying floods has been a major issue in hydrological research for years, both in quantitative and qualitative hydrology. Stream chemistry is a mix of solutes, often used as tracers, as they originate from various sources in the catchment and reach the stream by various flow pathways. Previous studies (for instance (1)) hypothesized that stream chemistry reaction to a rainfall event is not unique but varies seasonally, and according to the yearly meteorological conditions. Identifying a typology of flood temporal chemical patterns is a way to better understand catchment processes at the flood and seasonal time scale. We applied a probabilistic model (Latent Dirichlet Allocation or LDA (2)) mining recurrent sequential patterns from a dataset of floods. A set of 472 floods was automatically extracted from a daily 12-year long record of nitrate, dissolved organic carbon, sulfate and chloride concentrations. Rainfall, discharge, water table depth and temperature are also considered. Data comes from a long-term hydrological observatory (AgrHys, western France) located at Kervidy-Naizin. From each flood, a document has been generated that is made of a set of "hydrological words". Each hydrological word corresponds to a measurement: it is a triplet made of the considered variable, the time at which the measurement is made (relative to the beginning of the flood), and its magnitude (that can be low, medium or high). The documents and the number of pattern to be mined are used as input data to the LDA algorithm. LDA relies on spotting co-occurrences (as an alternative to the more traditional study of correlation) between words that appear within the flood documents. It has two nice properties that are its ability to easily deal with missing data and its additive property that allows a document to be seen as a mixture of several flood patterns. The output of LDA is a set of patterns easily represented in graphics. These patterns correspond to typical reactions to rainfall events. The patterns themselves are carefully studied, as well as their repartition along the year and along the 12 years of the dataset. We would recommend the use of such model to any study based on patterns or signature extraction. It could be well suited to compare different geographical locations and analyzing the resulting different pattern distributions. (1) Aubert, A.H., Gascuel-Odoux, C., Gruau, G., Akkal, N., Faucheux, M., Fauvel, Y., Grimaldi, C., Hamon, Y., Jaffrezic, A., Lecoz Boutnik, M., Molenat, J., Petitjean, P., Ruiz, L., Merot, Ph. (2013), Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study. Hydrol. Earth Syst. Sci., 17(4): 1379-1391. (2) Aubert, A.H., Tavenard, R, Emonet, R., de Lavenne, A., Malinowski, S., Guyet, T., Quiniou, R., Odobez, J.-M., Merot, Ph., Gascuel-Odoux, C., submitted to WRR. Clustering with a probabilistic method newly applied in hydrology: application on flood events from water quality time-series.

  18. Passive acoustic telemetry reveals highly variable home range and movement patterns among unicornfish within a marine reserve

    NASA Astrophysics Data System (ADS)

    Marshell, A.; Mills, J. S.; Rhodes, K. L.; McIlwain, J.

    2011-09-01

    Marine reserves are the primary management tool for Guam's reef fish fishery. While a build-up of fish biomass has occurred inside reserve boundaries, it is unknown whether reserve size matches the scale of movement of target species. Using passive acoustic telemetry, we quantified movement patterns and home range size of two heavily exploited unicornfish Naso unicornis and Naso lituratus. Fifteen fish ( N. unicornis: n = 7; N. lituratus: n = 4 male, n = 4 female) were fitted with internal acoustic tags and tracked continuously over four months within a remote acoustic receiver array located in a decade-old marine reserve. This approach provided robust estimates of unicornfish movement patterns and home range size. The mean home range of 3.2 ha for N. unicornis was almost ten times larger than that previously recorded from a three-week tracking study of the species in Hawaii. While N. lituratus were smaller in body size, their mean home range (6.8 ha) was over twice that of N. unicornis. Both species displayed strong site fidelity, particularly during nocturnal and crepuscular periods. Although there was some overlap, individual movement patterns and home range size were highly variable within species and between sexes. N. unicornis home range increased with body size, and only the three largest fish home ranges extended into the deeper outer reef slope beyond the shallow reef flat. Both Naso species favoured habitat dominated by corals. Some individuals made predictable daily crepuscular migrations between different locations or habitat types. There was no evidence of significant spillover from the marine reserve into adjacent fished areas. Strong site fidelity coupled with negligible spillover suggests that small-scale reserves, with natural habitat boundaries to emigration, are effective in protecting localized unicornfish populations.

  19. Spatial and temporal statistical analysis of bycatch data: Patterns of sea turtle bycatch in the North Atlantic

    USGS Publications Warehouse

    Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.

    2008-01-01

    Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.

  20. Patterns of Occurrence and Marine Mammal Acoustic Behavior in Relation to Navy Sonar Activity Off Jacksonville, Florida.

    PubMed

    Oswald, Julie N; Norris, Thomas F; Yack, Tina M; Ferguson, Elizabeth L; Kumar, Anurag; Nissen, Jene; Bell, Joel

    2016-01-01

    Passive acoustic data collected from marine autonomous recording units deployed off Jacksonville, FL (from 13 September to 8 October 2009 and 3 December 2009 to 8 January 2010), were analyzed for detection of cetaceans and Navy sonar. Cetaceans detected included Balaenoptera acutorostrata, Eubalaena glacialis, B. borealis, Physeter macrocephalus, blackfish, and delphinids. E. glacialis were detected at shallow and, somewhat unexpectedly, deep sites. P. macrocephalus were characterized by a strong diel pattern. B. acutorostrata showed the strongest relationship between sonar activity and vocal behavior. These results provide a preliminary assessment of cetacean occurrence off Jacksonville and new insights on vocal responses to sonar. PMID:26611034

  1. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    NASA Astrophysics Data System (ADS)

    Torres-Arredondo, M.-A.; Tibaduiza, D.-A.; McGugan, M.; Toftegaard, H.; Borum, K.-K.; Mujica, L. E.; Rodellar, J.; Fritzen, C.-P.

    2013-10-01

    Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures.

  2. Temporal and spatial patterns of West Nile virus transmission in Saginaw County, Michigan, 2003-2006.

    PubMed

    Chuang, Ting-Wu; Knepper, Randall G; Stanuszek, William W; Walker, Edward D; Wilson, Mark L

    2011-09-01

    The dynamics of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) infection in mosquitoes, sentinel pheasants, and wild dead birds were evaluated during 2003-2006 in Saginaw Co., MI. Mosquitoes were collected by New Jersey Light Traps at 22 sites during May-September, pooled by species and sample location, and tested for presence of WNV RNA by using a real-time reverse transcription-polymerase chain reaction assay. Oral swabs from wild dead birds submitted by the public were tested by Vec-Test assay. Sentinel pheasants were bled weekly, and serum was tested for antibodies with an inhibition enzyme immunoassay. In total, 37,225 mosquitoes [Aedes vexans (Meigen), Culex pipiens L., and Culex restuans Theobald] were tested in 5,429 pools, of which 59 (1.1%) were positive. Ae. vexans was most abundant but had a comparatively low infection rate (0.06-2.11) compared with Cx. pipiens (1.75-4.59) and Cx. restuans (1.22-15.67). Mosquito abundances were temporally related to variations in 2-wk average weather variables. Infected dead crows appeared earlier each transmission season than blue jays, but infection prevalence for both peaked approximately mid-August. Space-time clusters were found in different locations each year. Sentinel pheasant seroprevalence was 19.3% (16/83), 12.7% (10/79), and 7.7% (5/65) during 2003-2005, respectively. We demonstrated temporal patterns of WNV activity in corvid birds and Culex spp. mosquitoes during the study period, suggesting virus transmission within an enzootic cycle. Despite the absence of human case reports nearby, this surveillance system demonstrated WNV transmission and possible human risk. Maintained surveillance using more appropriate gravid traps and CDC CO2 light traps could improve sensitivity of vector collection and virus detection. PMID:21936324

  3. Mining Spatial-Temporal Patterns and Structural Sparsity for Human Motion Data Denoising.

    PubMed

    Feng, Yinfu; Ji, Mingming; Xiao, Jun; Yang, Xiaosong; Zhang, Jian J; Zhuang, Yueting; Li, Xuelong

    2015-12-01

    Motion capture is an important technique with a wide range of applications in areas such as computer vision, computer animation, film production, and medical rehabilitation. Even with the professional motion capture systems, the acquired raw data mostly contain inevitable noises and outliers. To denoise the data, numerous methods have been developed, while this problem still remains a challenge due to the high complexity of human motion and the diversity of real-life situations. In this paper, we propose a data-driven-based robust human motion denoising approach by mining the spatial-temporal patterns and the structural sparsity embedded in motion data. We first replace the regularly used entire pose model with a much fine-grained partlet model as feature representation to exploit the abundant local body part posture and movement similarities. Then, a robust dictionary learning algorithm is proposed to learn multiple compact and representative motion dictionaries from the training data in parallel. Finally, we reformulate the human motion denoising problem as a robust structured sparse coding problem in which both the noise distribution information and the temporal smoothness property of human motion have been jointly taken into account. Compared with several state-of-the-art motion denoising methods on both the synthetic and real noisy motion data, our method consistently yields better performance than its counterparts. The outputs of our approach are much more stable than that of the others. In addition, it is much easier to setup the training dataset of our method than that of the other data-driven-based methods. PMID:25561602

  4. Larval brine shrimp malate dehydrogenase: biosynthesis and temporal pattern related to environmental salinity.

    PubMed

    Hand, S C; Conte, F P

    1982-01-10

    Brine shrimp nauplii challenged with artificial sea water containing 2.5 M NaCl maintain significantly higher levels of cytoplasmic malate dehydrogenase (s-MDH) than larvae incubated in sea water having 0.5 M NaCl. Eight to ten hours after emergence, free-swimming nauplii living in 0.5 M NaCl exhibit a steady decline of s-MDH for 20-40 hours; the decreased is less and stabilizes earlier-in nauplii incubated in 2.5 M NaCl. The 14C-labeled amino acids produced by H 14CO3 fixation were rapidly incorporated into newly formed s-MDH protein as assayed using quantitative rocket immunoelectrophoresis (IEP) with monospecific antiserum prepared against purified brine shrimp s-MDH. Higher rates of enzyme biosynthesis ( greater than 45%) occurred in 2.5 M NaCl together with rapid s-MDH turnover (half-life = 17 hours), accounting for the difference observed in enzyme level between different salt regimes. In contrast, incorporation of 14C-labeled amino acids into total cytoplasmic protein decreased slightly in high salt, suggesting that a preferential synthesis of s-MDH is taking place. Temporal patterns of s-MDH during embryonic development were monitored using both catalytic activity and quantitative IEP assays. Levels of s-MDH seen in encysted gastrulae (0.22 units or 0.57 microgram s-MDH protein/100 embryos) remain relatively constant through the E1 and E2 emergent stages until the exhibited decline observed in the naupliar stage. The results are discussed in relation to the bioenergetics and temporal development of water and electrolyte regulation in nauplii. PMID:7077258

  5. Temporal and Spatial Patterns of Ambient Endotoxin Concentrations in Fresno, California

    PubMed Central

    Tager, Ira B.; Lurmann, Frederick W.; Haight, Thaddeus; Alcorn, Siana; Penfold, Bryan; Hammond, S. Katharine

    2010-01-01

    Background Endotoxins are found in indoor dust generated by human activity and pets, in soil, and adsorbed onto the surfaces of ambient combustion particles. Endotoxin concentrations have been associated with respiratory symptoms and the risk of atopy and asthma in children. Objective We characterized the temporal and spatial variability of ambient endotoxin in Fresno/Clovis, California, located in California’s Central Valley, to identify correlates and potential predictors of ambient endotoxin concentrations in a cohort of children with asthma [Fresno Asthmatic Children’s Environment Study (FACES)]. Methods Between May 2001 and October 2004, daily ambient endotoxin and air pollutants were collected at the central ambient monitoring site of the California Air Resources Board in Fresno and, for shorter time periods, at 10 schools and indoors and outdoors at 84 residences in the community. Analyses were restricted to May–October, the dry months during which endotoxin concentrations are highest. Results Daily endotoxin concentration patterns were determined mainly by meteorologic factors, particularly the degree of air stagnation. Overall concentrations were lowest in areas distant from agricultural activities. Highest concentrations were found in areas immediately downwind from agricultural/pasture land. Among three other measured air pollutants [fine particulate matter, elemental carbon (a marker of traffic in Fresno), and coarse particulate matter (PMc)], PMc was the only pollutant correlated with endotoxin. Endotoxin, however, was the most spatially variable. Conclusions Our data support the need to evaluate the spatial/temporal variability of endotoxin concentrations, rather than relying on a few measurements made at one location, in studies of exposure and and respiratory health effects, particularly in children with asthma and other chronic respiratory diseases. PMID:20494854

  6. Interpreting the spatio-temporal patterns of sea turtle strandings: Going with the flow

    USGS Publications Warehouse

    Hart, K.M.; Mooreside, P.; Crowder, L.B.

    2006-01-01

    Knowledge of the spatial and temporal distribution of specific mortality sources is crucial for management of species that are vulnerable to human interactions. Beachcast carcasses represent an unknown fraction of at-sea mortalities. While a variety of physical (e.g., water temperature) and biological (e.g., decomposition) factors as well as the distribution of animals and their mortality sources likely affect the probability of carcass stranding, physical oceanography plays a major role in where and when carcasses strand. Here, we evaluate the influence of nearshore physical oceanographic and wind regimes on sea turtle strandings to decipher seasonal trends and make qualitative predictions about stranding patterns along oceanfront beaches. We use results from oceanic drift-bottle experiments to check our predictions and provide an upper limit on stranding proportions. We compare predicted current regimes from a 3D physical oceanographic model to spatial and temporal locations of both sea turtle carcass strandings and drift bottle landfalls. Drift bottle return rates suggest an upper limit for the proportion of sea turtle carcasses that strand (about 20%). In the South Atlantic Bight, seasonal development of along-shelf flow coincides with increased numbers of strandings of both turtles and drift bottles in late spring and early summer. The model also predicts net offshore flow of surface waters during winter - the season with the fewest relative strandings. The drift bottle data provide a reasonable upper bound on how likely carcasses are to reach land from points offshore and bound the general timeframe for stranding post-mortem (< two weeks). Our findings suggest that marine turtle strandings follow a seasonal regime predictable from physical oceanography and mimicked by drift bottle experiments. Managers can use these findings to reevaluate incidental strandings limits and fishery takes for both nearshore and offshore mortality sources. ?? 2005 Elsevier Ltd. All rights reserved.

  7. Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida

    PubMed Central

    Juliano, S. A.

    2009-01-01

    Understanding mechanisms fostering coexistence between invasive and resident species is important in predicting ecological, economic, or health impacts of invasive species. The mosquito Aedes aegypti coexists at some urban sites in southeastern United States with invasive Aedes albopictus, which is often superior in interspecific competition. We tested predictions for three hypotheses of species coexistence: seasonal condition-specific competition, aggregation among individual water-filled containers, and colonization–competition tradeoff across spatially partitioned habitat patches (cemeteries) that have high densities of containers. We measured spatial and temporal patterns of abundance for both species among water-filled resident cemetery vases and experimentally positioned standard cemetery vases and ovitraps in metropolitan Tampa, Florida. Consistent with the seasonal condition-specific competition hypothesis, abundances of both species in resident and standard cemetery vases were higher early in the wet season (June) versus late in the wet season (September), but the proportional increase of A. albopictus was greater than that of A. aegypti, presumably due to higher dry-season egg mortality and strong wet-season competitive superiority of larval A. albopictus. Spatial partitioning was not evident among cemeteries, a result inconsistent with the colonization-competition tradeoff hypothesis, but both species were highly independently aggregated among standard cemetery vases and ovitraps, which is consistent with the aggregation hypothesis. Densities of A. aegypti but not A. albopictus differed among land use categories, with A. aegypti more abundant in ovitraps in residential areas compared to industrial and commercial areas. Spatial partitioning among land use types probably results from effects of land use on conditions in both terrestrial and aquatic-container environments. These results suggest that both temporal and spatial variation may contribute to local coexistence between these Aedes in urban areas. PMID:19263086

  8. Spatial and temporal patterns of sea ice variations in Vilkitsky strait, Russian High Arctic

    NASA Astrophysics Data System (ADS)

    Ci, T.; Cheng, X.; Hui, F.

    2013-12-01

    The Arctic Ocean has been greatly affected by climate change. Future predications show an even more drastic reduction of the ice cap which will open new areas for the exploration of natural resources and maritime transportation.Shipping through the Arctic Ocean via the Northern Sea Route (NSR) could save about 40% of the sailing distance from Asia (Yokohama) to Europe (Rotterdam) compared to the traditional route via the Suez Canal. Vilkitsky strait is the narrowest and northest portion of the Northern Sea Route with heaviest traffic between the Taimyr Peninsular and the Severnaya Zemlya archipelago. The preliminary results of sea ice variations are presented by using moderate-resolution imaging spectro radiometer(MODIS) data with 250-m resolution in the Vilkitsky strait during 2009-2012. Temporally, the first rupture on sea ice in Vilkitsky strait usually comes up in April and sea ice completely break into pieces in early June. The strait would be ice-free between August and late September. The frequency of ice floes grows while temperature falls down in October. There are always one or two months suitable for transport. Spatially, Sea ice on Laptev sea side breaks earlier than that of Kara sea side while sea ice in central of strait breaks earlier than in shoreside. The phenomena are directly related with the direction of sea wind and ocean current. In summmary, study on Spatial and temporal patterns in this area is significant for the NSR. An additional research issue to be tackled is to seeking the trends of ice-free duration in the context of global warming. Envisat ASAR data will also be used in this study.

  9. Automated pattern analysis: A newsilent partner in insect acoustic detection studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This seminar reviews methods that have been developed for automated analysis of field-collected sounds used to estimate pest populations and guide insect pest management decisions. Several examples are presented of successful usage of acoustic technology to map insect distributions in field environ...

  10. Acoustic Modal Patterns and Striations (AMPS) experiment G-325, Norfolk Public Schools

    NASA Technical Reports Server (NTRS)

    Young, Joy W.

    1995-01-01

    This paper will describe how high school students with the guidance of volunteer mentors were able to successfully complete an acoustics space experiment. Some of the NORSTAR program strategies used to effectively accomplish this goal will be discussed. The experiment and present status of results will be explained.

  11. Spatio-Temporal Migration Patterns of Pacific Salmon Smolts in Rivers and Coastal Marine Waters

    PubMed Central

    Melnychuk, Michael C.; Welch, David W.; Walters, Carl J.

    2010-01-01

    Background Migrations allow animals to find food resources, rearing habitats, or mates, but often impose considerable predation risk. Several behavioural strategies may reduce this risk, including faster travel speed and taking routes with shorter total distance. Descriptions of the natural range of variation in migration strategies among individuals and populations is necessary before the ecological consequences of such variation can be established. Methodology/Principal Findings Movements of tagged juvenile coho, steelhead, sockeye, and Chinook salmon were quantified using a large-scale acoustic tracking array in southern British Columbia, Canada. Smolts from 13 watersheds (49 watershed/species/year combinations) were tagged between 2004–2008 and combined into a mixed-effects model analysis of travel speed. During the downstream migration, steelhead were slower on average than other species, possibly related to freshwater residualization. During the migration through the Strait of Georgia, coho were slower than steelhead and sockeye, likely related to some degree of inshore summer residency. Hatchery-reared smolts were slower than wild smolts during the downstream migration, but after ocean entry, average speeds were similar. In small rivers, downstream travel speed increased with body length, but in the larger Fraser River and during the coastal migration, average speed was independent of body length. Smolts leaving rivers located towards the northern end of the Strait of Georgia ecosystem migrated strictly northwards after ocean entry, but those from rivers towards the southern end displayed split-route migration patterns within populations, with some moving southward. Conclusions/Significance Our results reveal a tremendous diversity of behavioural migration strategies used by juvenile salmon, across species, rearing histories, and habitats, as well as within individual populations. During the downstream migration, factors that had strong effects on travel speeds included species, wild or hatchery-rearing history, watershed size and, in smaller rivers, body length. During the coastal migration, travel speeds were only strongly affected by species differences. PMID:20886121

  12. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Ariza, A.; Landeira, J. M.; Escánez, A.; Wienerroither, R.; Aguilar de Soto, N.; Røstad, A.; Kaartvedt, S.; Hernández-León, S.

    2016-05-01

    Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400-500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500-600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s - 1 and the long-range ones at 11.5 ± 3.8 cm s - 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.

  13. Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model

    PubMed Central

    2011-01-01

    Background Acute quadriplegic myopathy (AQM) or critical illness myopathy (CIM) is frequently observed in intensive care unit (ICU) patients. To elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness associated with AQM, a gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals. Results During the observation period, 1583 genes were significantly up- or down-regulated by factors of two or greater. A significant temporal gene expression pattern was constructed at short (6 h-4 days), intermediate (5-8 days) and long (9-14 days) durations. A striking early and maintained up-regulation (6 h-14d) of muscle atrogenes (muscle ring-finger 1/tripartite motif-containing 63 and F-box protein 32/atrogin-1) was observed, followed by an up-regulation of the proteolytic systems at intermediate and long durations (5-14d). Oxidative stress response genes and genes that take part in amino acid catabolism, cell cycle arrest, apoptosis, muscle development, and protein synthesis together with myogenic factors were significantly up-regulated from 5 to 14 days. At 9-14 d, genes involved in immune response and the caspase cascade were up-regulated. At 5-14d, genes related to contractile (myosin heavy chain and myosin binding protein C), regulatory (troponin, tropomyosin), developmental, caveolin-3, extracellular matrix, glycolysis/gluconeogenesis, cytoskeleton/sarcomere regulation and mitochondrial proteins were down-regulated. An activation of genes related to muscle growth and new muscle fiber formation (increase of myogenic factors and JunB and down-regulation of myostatin) and up-regulation of genes that code protein synthesis and translation factors were found from 5 to 14 days. Conclusions Novel temporal patterns of gene expression have been uncovered, suggesting a unique, coordinated and highly complex mechanism underlying the muscle wasting associated with AQM in ICU patients and providing new target genes and avenues for intervention studies. PMID:22165895

  14. Spinodal decomposition and the emergence of dissipative transient periodic spatio-temporal patterns in acentrosomal microtubule multitudes of different morphology.

    PubMed

    Buljan, Vlado A; Holsinger, R M Damian; Brown, D; Bohorquez-Florez, J J; Hambly, B D; Delikatny, E J; Ivanova, E P; Banati, R B

    2013-06-01

    We have studied a spontaneous self-organization dynamics in a closed, dissipative (in terms of guansine 5'-triphosphate energy dissipation), reaction-diffusion system of acentrosomal microtubules (those nucleated and organized in the absence of a microtubule-organizing centre) multitude constituted of straight and curved acentrosomal microtubules, in highly crowded conditions, in vitro. Our data give experimental evidence that cross-diffusion in conjunction with excluded volume is the underlying mechanism on basis of which acentrosomal microtubule multitudes of different morphologies (straight and curved) undergo a spatial-temporal demix. Demix is constituted of a bifurcation process, manifested as a slow isothermal spinodal decomposition, and a dissipative process of transient periodic spatio-temporal pattern formation. While spinodal decomposition is an energy independent process, transient periodic spatio-temporal pattern formation is accompanied by energy dissipative process. Accordingly, we have determined that the critical threshold for slow, isothermal spinodal decomposition is 1.0 ± 0.05 mg/ml of microtubule protein concentration. We also found that periodic spacing of transient periodic spatio-temporal patterns was, in the overall, increasing versus time. For illustration, we found that a periodic spacing of the same pattern was 0.375 ± 0.036 mm, at 36 °C, at 155th min, while it was 0.540 ± 0.041 mm at 31 °C, and at 275th min after microtubule assembly started. The lifetime of transient periodic spatio-temporal patterns spans from half an hour to two hours approximately. The emergence of conditions of macroscopic symmetry breaking (that occur due to cross-diffusion in conjunction with excluded volume) may have more general but critical importance in morphological pattern development in complex, dissipative, but open cellular systems. PMID:23822485

  15. Medio-Frontal and Anterior Temporal abnormalities in children with attention deficit hyperactivity disorder (ADHD) during an acoustic antisaccade task as revealed by electro-cortical source reconstruction

    PubMed Central

    2011-01-01

    Background Attention Deficit Hyperactivity Disorder (ADHD) is one of the most prevalent disorders in children and adolescence. Impulsivity is one of three core symptoms and likely associated with inhibition difficulties. To date the neural correlate of the antisaccade task, a test of response inhibition, has not been studied in children with (or without) ADHD. Methods Antisaccade responses to visual and acoustic cues were examined in nine unmedicated boys with ADHD (mean age 122.44 ± 20.81 months) and 14 healthy control children (mean age 115.64 ± 22.87 months, three girls) while an electroencephalogram (EEG) was recorded. Brain activity before saccade onset was reconstructed using a 23-source-montage. Results When cues were acoustic, children with ADHD had a higher source activity than control children in Medio-Frontal Cortex (MFC) between -230 and -120 ms and in the left-hemispheric Temporal Anterior Cortex (TAC) between -112 and 0 ms before saccade onset, despite both groups performing similarly behaviourally (antisaccades errors and saccade latency). When visual cues were used EEG-activity preceding antisaccades did not differ between groups. Conclusion Children with ADHD exhibit altered functioning of the TAC and MFC during an antisaccade task elicited by acoustic cues. Children with ADHD need more source activation to reach the same behavioural level as control children. PMID:21226906

  16. Very high resolution airborne imagery for characterising spatial and temporal thermal patterns of braided rivers

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, V.; Piégay, H.; Allemand, P.; Grandjean, P.

    2011-12-01

    At the catchment scale water temperature is influenced by geographical factors, but at the reach scale superficial and groundwater hydrology and channel geometry strongly affect thermal patterns. During the last 30 years, studies have been pointed out the significance and complexity of water exchanges between the channel and the hyporheic and phreatic zones. These surface-subsurface water exchanges influence water temperature patterns. Braided rivers present particular thermal conditions with very high spatial water temperature variability. This high thermal variability is difficult to comprehend using only in situ measurements and so thermal infrared (TIR) remote sensing is particularly suited to assessing the thermal patterns associated with these rivers. The aims of this study are to evaluate temperature patterns of nine braided reaches at very high spatial resolution (~20 cm) and to link temperature and water-body types. We hypothesized that river type has an influence of the spatial patterns of water temperature and that the patterns change through the day. All reaches are located in France, in the Rhône catchment. The nine reaches were selected based on high aquatic habitat diversities and are located in three regional areas: the massif des Écrins, the Rhône valley, and south Alps. They are about 1 km long. We have three distinct temporal approaches. The first one is a multi-site approach which proposes one survey of each site during summers 2010 or 2011. Three reaches were selected for the second phase (a multi-annual analysis and were therefore imaged both in summers 2010 and 2011. The last phase is an intra-day survey of two reaches with several flights at different times of day. This presentation focuses on the last approach with two reaches of the Drôme and Drac Noir rivers. To observe the evolution of the thermal patterns of these two reaches through the day, four flights within a day were realized during summer 2011 for both sites. The Drôme reach (44°44' N, 4°56' E) is characterized by a nivo-pluvial regime while the Drac Noir (44°40' N, 6°18' E) is a glacial river. Very high spatial resolution thermal images are needed because braided rivers have multiple, often narrow, channels. Satellite and aircraft TIR do not have fine enough spatial resolutions and consequently we used a drone, a helicopter and a paraglider to acquire sets of images. The three vector types were equipped with a thermal camera (7.5-14 μm) which can detect noise equivalent temperature differences of ±0.08°C. Based on flight and camera parameter, we collected thermal images with very high spatial resolution (10-30 cm). At the same time as the thermal acquisitions, visible images were recorded and in situ measurements of water temperatures, velocities and discharges were taken.

  17. Temporal pattern and effect of sex on lipopolysaccharide-induced stress hormone and cytokine response in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The temporal pattern and gender effect on immune and stress hormone responses to a lipopolysaccharide (LPS) challenge was assessed using a pig model. Secretion of the proinflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin-1 (IL-1) beta and IL-6 increased (P < 0.05) in a time-depend...

  18. Water quality in the Fort Cobb Watershed, USA: Spatial and temporal patterns of dissolved P stream concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved phosphorus (P) has often been identified as the nutrient of concern in lakes, reservoirs and streams especially where there is evidence of eutrophication. The objective of this work is to identify spatial and temporal patterns in dissolved P [soluble reactive P (SRP) and bioavailable P (B...

  19. Temporal pattern and effect of sex on lipopolysaccharide-induced stress hormone and cytokine response in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The temporal pattern and gender effect of immune and stress hormone responses to a lipopolysaccharide (LPS) challenge were assessed using a pig model. Secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 increased in a time-dependent manner f...

  20. DATA-DRIVEN DISCOVERY OF TEMPORAL AND GEOSPATIAL PATTERNS OF DISEASE TRANSMISSION: WEST NILE VIRUS IN MARYLAND

    EPA Science Inventory

    The necessity of rapid response to a developing disease outbreak often precludes systematic investigation of the mechanisms and patterns (temporal and geospatial) of spread. In order to deploy the most rapid response possible, we must exploit existing data to its maximum extent....

  1. Different Phases of Long-Term Memory Require Distinct Temporal Patterns of PKA Activity after Single-Trial Classical Conditioning

    ERIC Educational Resources Information Center

    Michel, Maximilian; Kemenes, Ildiko; Muller, Uli; Kemenes, Gyorgy

    2008-01-01

    The cAMP-dependent protein kinase (PKA) is known to play a critical role in both transcription-independent short-term or intermediate-term memory and transcription-dependent long-term memory (LTM). Although distinct phases of LTM already have been demonstrated in some systems, it is not known whether these phases require distinct temporal patterns

  2. Identifying spatio-temporal patterns of transboundary disease spread: examples using avian influenza H5N1 outbreaks

    PubMed Central

    Farnsworth, Matthew L.; Ward, Michael P.

    2009-01-01

    Characterizing spatio-temporal patterns among epidemics in which the mechanism of spread is uncertain is important for generating disease spread hypotheses, which may in turn inform disease control and prevention strategies. Using a dataset representing three phases of highly pathogenic avian influenza H5N1 outbreaks in village poultry in Romania, 2005–2006, spatio-temporal patterns were characterized. We first fit a set of hierarchical Bayesian models that quantified changes in the spatio-temporal relative risk for each of the 23 affected counties. We then modeled spatial synchrony in each of the three epidemic phases using non-parametric covariance functions and Thin Plate Spline regression models. We found clear differences in the spatio-temporal patterns among the epidemic phases (local versus regional correlated processes), which may indicate differing spread mechanisms (for example wild bird versus human-mediated). Elucidating these patterns allowed us to postulate that a shift in the primary mechanism of disease spread may have taken place between the second and third phases of this epidemic. Information generated by such analyses could assist affected countries in determining the most appropriate control programs to implement, and to allocate appropriate resources to preventing contact between domestic poultry and wild birds versus enforcing bans on poultry movements and quarantine. The methods used in this study could be applied in many different situations to analyze transboundary disease data in which only location and time of occurrence data are reported. PMID:19210952

  3. Spatio-Temporal Expression Patterns of Arabidopsis thaliana and Medicago truncatula Defensin-Like Genes

    PubMed Central

    Nallu, Sumitha; Wang, Lin; Botanga, Christopher J.; Gomez, S. Karen; Costa, Liliana M.; Harrison, Maria J.; Samac, Deborah A.; Glazebrook, Jane; Katagiri, Fumiaki; Gutierrez-Marcos, Jose F.; VandenBosch, Kathryn A.

    2013-01-01

    Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species. PMID:23527067

  4. Spatial, temporal, and interspecies patterns in fine particulate matter in Texas.

    PubMed

    Gebhart, Kristi A; Malm, William C; Ashbaugh, Lowell L

    2005-11-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 microm) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a "high-sensitivity" version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbón I and II plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years. PMID:16350362

  5. Inferring the Spatio-temporal Patterns of Dengue Transmission from Surveillance Data in Guangzhou, China

    PubMed Central

    Liu, Jiming; Tan, Qi; Shi, Benyun

    2016-01-01

    Background Dengue is a serious vector-borne disease, and incidence rates have significantly increased during the past few years, particularly in 2014 in Guangzhou. The current situation is more complicated, due to various factors such as climate warming, urbanization, population increase, and human mobility. The purpose of this study is to detect dengue transmission patterns and identify the disease dispersion dynamics in Guangzhou, China. Methodology We conducted surveys in 12 districts of Guangzhou, and collected daily data of Breteau index (BI) and reported cases between September and November 2014 from the public health authority reports. Based on the available data and the Ross-Macdonald theory, we propose a dengue transmission model that systematically integrates entomologic, demographic, and environmental information. In this model, we use (1) BI data and geographic variables to evaluate the spatial heterogeneities of Aedes mosquitoes, (2) a radiation model to simulate the daily mobility of humans, and (3) a Markov chain Monte Carlo (MCMC) method to estimate the model parameters. Results/Conclusions By implementing our proposed model, we can (1) estimate the incidence rates of dengue, and trace the infection time and locations, (2) assess risk factors and evaluate the infection threat in a city, and (3) evaluate the primary diffusion process in different districts. From the results, we can see that dengue infections exhibited a spatial and temporal variation during 2014 in Guangzhou. We find that urbanization, vector activities, and human behavior play significant roles in shaping the dengue outbreak and the patterns of its spread. This study offers useful information on dengue dynamics, which can help policy makers improve control and prevention measures. PMID:27105350

  6. Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy.

    PubMed

    Fang, Peng; An, Jie; Zeng, Ling-Li; Shen, Hui; Chen, Fanglin; Wang, Wensheng; Qiu, Shijun; Hu, Dewen

    2015-01-01

    Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE), but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right) mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE. PMID:25844312

  7. Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy

    PubMed Central

    Fang, Peng; An, Jie; Zeng, Ling-Li; Shen, Hui; Chen, Fanglin; Wang, Wensheng; Qiu, Shijun; Hu, Dewen

    2015-01-01

    Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE), but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right) mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE. PMID:25844312

  8. Convergence and Divergence in the Evolution of Cat Skulls: Temporal and Spatial Patterns of Morphological Diversity

    PubMed Central

    Sakamoto, Manabu; Ruta, Marcello

    2012-01-01

    Background Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective. Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats. Methodology/Principal Findings A new phylogenetic analysis supports the monophyly of saber-toothed cats (Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various saber-toothed tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae, we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats. Conclusions/Significance Ancestors of large cats in the ‘Panthera’ lineage tend to occupy, at a much later stage, morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in reconstructing temporal transitions across two-dimensional trait spaces, can be used in ecophenotypical and functional diversity studies, and may reveal novel patterns of morphospace occupation. PMID:22792186

  9. Prevalence and temporal pattern of hospital readmissions for patients with type I and type II diabetes

    PubMed Central

    Liu, Xiaoqian; Liu, Yuanyuan; Lv, Yuanjun; Li, Changping; Cui, Zhuang; Ma, Jun

    2015-01-01

    Objective Repeated hospitalisation for patients is common and costly, yet partly preventable. However, we know little about readmissions for patients with diabetes in China. The current study aims to assess the frequency and temporal pattern of and risk factors for all-cause readmission among hospitalised patients with diabetes in Tianjin, China. Method This retrospective, cohort analysis used the Tianjin Basic Medical Insurance Register System data of 2011. The patterns of and the reasons for all-cause readmissions for patients with diabetes were described. The differences of readmission-free survival (RFS) between newly and previously diagnosed patients were compared. Time-dependent Cox models were established to identify the risk factors for readmission at different time intervals after discharge. Results Readmission rates were approximately 30%, with the most common diagnoses of cerebral infarction (for type I) or diabetes (for type II) for patients with diabetes. The majority of patients were readmitted to the hospital after more than 90 days, followed by 8–30 days (all p=0.002). Approximately 37.2% and 42.8% of readmitted patients with type I and type II diabetes were diagnosed previously, and the RFS rates for previously diagnosed patients were significantly lower than for newly diagnosed patients at any time interval after discharge. Prior history of diabetes (all p<0.05), length of stay (all p<0.01) and reimbursement ratio (90% vs >92%, all p<0.0002) were consistently associated with the RFS for patients readmitted to the hospital at <7, 8–30, 31–60 and 61–90 days. Conclusions Hospital readmissions among patients with diabetes were affected by the diagnosis status. Patient characteristics and the quality of healthcare might regulate short-interval and long-interval hospital readmission, respectively, after discharge. PMID:26525716

  10. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China.

    PubMed

    Cui, Gaoyang; Chen, Yunming; Cao, Yang

    2015-01-01

    The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989-1993, 1994-1998, 1999-2003, and 2004-2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011

  11. Automated swimming activity monitor for examining temporal patterns of toxicant effects on individual Daphnia magna.

    PubMed

    Bahrndorff, Simon; Michaelsen, Thomas Yssing; Jensen, Anne; Marcussen, Laurits Faarup; Nielsen, Majken Elley; Roslev, Peter

    2016-07-01

    Aquatic pollutants are often biologically active at low concentrations and impact on biota in combination with other abiotic stressors. Traditional toxicity tests may not detect these effects, and there is a need for sensitive high-throughput methods for detecting sublethal effects. We have evaluated an automated infra-red (IR) light-based monitor for recording the swimming activity of Daphnia magna to establish temporal patterns of toxicant effects on an individual level. Activity was recorded for 48 h and the sensitivity of the monitor was evaluated by exposing D. magna to the reference chemicals K2 Cr2 O7 at 15, 20 and 25 °C and 2,4-dichlorophenol at 20 °C. Significant effects (P < 0.001) of toxicant concentrations, exposure time and incubation temperatures were observed. At 15 °C, the swimming activity remained unchanged for 48 h at sublethal concentrations of K2 Cr2 O7 whereas activity at 20 and 25 °C was more biphasic with decreases in activity occurring after 12-18 h. A similar biphasic pattern was observed after 2,4-dichlorophenol exposure at 20 °C. EC50 values for 2,4-dichlorophenol and K2 Cr2 O7 determined from automated recording of swimming activity showed increasing toxicity with time corresponding to decreases in EC50 of 0.03-0.07 mg l(-1) h(-1) . EC50 values determined after 48 h were comparable or lower than EC50 values based on visual inspection according to ISO 6341. The results demonstrated that the swimming activity monitor is capable of detecting sublethal behavioural effects that are toxicant and temperature dependent. The method allows EC values to be established at different time points and can serve as a high-throughput screening tool in toxicity testing. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26198804

  12. Capturing spatial and temporal patterns of widespread, extreme flooding across Europe

    NASA Astrophysics Data System (ADS)

    Busby, Kathryn; Raven, Emma; Liu, Ye

    2013-04-01

    Statistical characterisation of physical hazards is an integral part of probabilistic catastrophe models used by the reinsurance industry to estimate losses from large scale events. Extreme flood events are not restricted by country boundaries which poses an issue for reinsurance companies as their exposures often extend beyond them. We discuss challenges and solutions that allow us to appropriately capture the spatial and temporal dependence of extreme hydrological events on a continental-scale, which in turn enables us to generate an industry-standard stochastic event set for estimating financial losses for widespread flooding. By presenting our event set methodology, we focus on explaining how extreme value theory (EVT) and dependence modelling are used to account for short, inconsistent hydrological data from different countries, and how to make appropriate statistical decisions that best characterise the nature of flooding across Europe. The consistency of input data is of vital importance when identifying historical flood patterns. Collating data from numerous sources inherently causes inconsistencies and we demonstrate our robust approach to assessing the data and refining it to compile a single consistent dataset. This dataset is then extrapolated using a parameterised EVT distribution to estimate extremes. Our method then captures the dependence of flood events across countries using an advanced multivariate extreme value model. Throughout, important statistical decisions are explored including: (1) distribution choice; (2) the threshold to apply for extracting extreme data points; (3) a regional analysis; (4) the definition of a flood event, which is often linked with reinsurance industry's hour's clause; and (5) handling of missing values. Finally, having modelled the historical patterns of flooding across Europe, we sample from this model to generate our stochastic event set comprising of thousands of events over thousands of years. We then briefly illustrate how this is applied within a probabilistic model to estimate catastrophic loss curves used by the reinsurance industry.

  13. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China

    PubMed Central

    Cui, Gaoyang; Chen, Yunming; Cao, Yang

    2015-01-01

    The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011

  14. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    PubMed Central

    Broderick, Patricia A.

    2013-01-01

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system. PMID:24961434

  15. In-hive patterns of temporal polyethism in strains of honey bees (Apis mellifera) with distinct genetic backgrounds.

    PubMed

    Siegel, Adam J; Fondrk, M Kim; Amdam, Gro V; Page, Robert E

    2013-01-01

    Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging. PMID:24031117

  16. Laser-speckle-visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  17. Spatial and temporal variability of subsurface flow patterns at the hillslope scale: an experimental analysis

    NASA Astrophysics Data System (ADS)

    Penna, Daniele; Hopp, Luisa; Dalla Fontana, Giancarlo; Borga, Marco

    2014-05-01

    Despite the importance of subsurface flow in regulating catchment runoff and slope stability, the dominant controls on the spatial and temporal variability of subsurface flow patterns on hillslopes of headwater catchments are still poorly understood. In this work, we used groundwater data from spatially distributed piezometric wells on two alpine hillslopes to investigate the main factors controlling the water table response to precipitation. Particularly, we tested the following hypotheses: i) piezometric response triggering is jointly controlled by antecedent moisture condition and rainfall depth; ii) contrasting hillslope topographic features affect the magnitude and dynamics of piezometric response, and iii) soil depth controls the timing of piezometric response. Two steep hillslopes of similar size, soil properties and vegetation cover but contrasting topography (divergent-convex and relatively planar morphology) in the 0.14 km2 Bridge Creek Catchment (Dolomites, Central-Eastern Italian Alps) were instrumented with 24 piezometric wells, ranging in depth between 0.7 m and 1.5 m from the soil surface. The analysis was conducted for 63 rainfall-runoff events selected over three years in the snow-free months. Results show that piezometric response, although very variable both in space and in time, was clearly distinct for events that occurred during wet or dry conditions, distinguished on the basis of a threshold relation between stormflow and an index combining antecedent soil moisture and rainfall depth. Correlation analysis based on two metrics of transient water table response (percentage of well activation and piezometric peak) revealed that antecedent soil water content alone was the poorest predictor of piezometric response whereas the highest degree of variance was explained by the combination of rainfall and antecedent soil moisture. Hillslope topography played a significant role on water table peak only for the site characterized by an overall convex-divergent morphology. As at other experimental sites, groundwater was found to not rise in unison throughout the hillslope, violating the steady-state assumption. However, in contrast with many other studies, we observed that water table level at the top of the hillslope typically peaked earlier and was less variable than at the hillslope toe. We related this behaviour to the control exerted by soil depth that increased in downslope direction. The temporal structure of the piezometric response, mainly driven by the soil depth and hillslope topography, led to consistent hysteretic behaviour, characterized by the highest variability for intermediate groundwater levels and the lowest during wet conditions. On the one hand, this work contributes to improve the comprehension of the hydrological behaviour of the study catchment, adding new information on the effect of topography of individual hillslopes and of soil depth on the spatial and temporal dynamics of subsurface flow patterns. On the other hand, these results offer insights, previously missing, on the main controls governing the water table response in alpine hillslopes, and likely in other hillslopes of humid catchments worldwide, that are generally poorly investigated due to practical difficulties in monitoring groundwater variations. Keywords: water table dynamics; hillslope topography; antecedent conditions; hysteresis; soil depth, steady state.

  18. Meandering River Dynamics: Spatial and Temporal Wave Growth and Non-Periodic Wave Patterns

    NASA Astrophysics Data System (ADS)

    Weiss, S.; Higdon, J.

    2014-12-01

    The evolution of meandering river channels results from interactions amongst turbulent water flow, sediment transport, and channel geometry. Most current physics-based models derive from the meander-morphodynamics equations introduced by Ikeda et al. (1981). Corresponding linear theories have focused almost exclusively on periodic sequences of small-amplitude meanders. Mathematical consideration of the equations shows that boundary conditions must be chosen carefully to yield numerical solutions for a well posed boundary value problem. The numerical algorithms presented in this work yield 2D solutions to the (corrected) Ikeda et al. (1981) equations with second order convergence in both time and space. We explore the characteristics of spatially versus temporally growing waves, as well as the effects of stochastic variations in the upstream boundary condition and in the dimensionless parameter β, which characterizes the strength of secondary flow relative to cross-stream shear. Consideration of the growth patterns for spatially growing waves provides some insight for the design of experimental systems exhibiting self sustaining river meanders.

  19. Temporal patterns of infiltration into a water repellent soil under field conditions

    NASA Astrophysics Data System (ADS)

    Ward, Phil; Roper, Margaret; Micin, Shayne; Jongepier, Ramona

    2014-05-01

    Water repellency causes substantial economic losses for farmers in southern Australia through impacts on crop growth and weed germination. However, recent research has demonstrated that laboratory measurements of water repellency may not be a reliable indicator of the severity of symptoms experienced in the field. In particular, crop residue retention and minimal soil disturbance led to increased water repellency, but was also associated with higher soil water contents measured at strategic times of the year. Little is known about the temporal patterns of soil water storage close to the soil surface in a water repellent sand. In this research we measured soil water content at a depth of 0.05 m at 15-minute intervals from June 2011 to October 2012, under various treatment combinations of residue retention and soil disturbance. Measurements were made in both 'crop row' and 'crop inter-row' positions. For a rainfall event (9.2 mm) in March 2012, prior to crop seeding, plots previously established with no-till absorbed significantly more water (increase in soil water content of 0.074 v/v) than plots conventionally cultivated (0.038 v/v). In June 2012 (12.6 mm), 4 weeks after crop seeding, tillage was again significant, and there was a significant interaction between tillage and 'row' or 'inter-row' position. These results demonstrate the importance of crop management in modifying the response of water repellent soils to rainfall in the field.

  20. Temporal pattern of suicide risk in young individuals with early psychosis.

    PubMed

    Fedyszyn, Izabela E; Robinson, Jo; Matyas, Thomas; Harris, Meredith G; Paxton, Susan J

    2010-01-30

    Individuals with a first episode of psychotic illness are known to be at high risk of suicide, yet little is understood about the timing of risk in this critical period. The present study aimed to examine the temporal pattern of suicide risk in patients with early psychosis (EP) and to determine whether discrete periods of significantly elevated risk can be identified up to 24 months after commencing treatment. Suicidality ratings collected each month as part of patient routine assessment at the Early Psychosis Prevention and Intervention Centre (EPPIC) were retrieved from the service database for patients treated between December 2002 and December 2005 (N=696). Time-series analysis was performed on suicide risk estimated from the aggregated data of 94 individuals who met the study inclusion criteria. Suicide risk was highest in the first month of treatment, decreasing rapidly over the next 6 months and declining slightly thereafter. A power function adequately described this curvilinear trend. Fluctuations around the trend were unpredictable, except for a mild tendency to reverse from month to month, and did not reach statistical significance. The findings suggest limited scope for preventative interventions driven by chronology alone. Intensive routine suicide screening across the course of treatment may facilitate identification and early management of EP patients at suicide risk. PMID:19962766

  1. Multi-Voxel Pattern Analysis of Noun and Verb Differences in Ventral Temporal Cortex Marked Revision

    PubMed Central

    Boylan, Christine; Trueswell, John C.; Thompson-Schill, Sharon L.

    2014-01-01

    Recent evidence suggests a probabilistic relationship exists between the phonological/orthographic form of a word and its lexical-syntactic category (specifically nouns vs. verbs) such that syntactic prediction may elicit form-based estimates in sensory cortex. We tested this hypothesis by conducting multi-voxel pattern analysis (MVPA) of fMRI data from early visual cortex (EVC), left ventral temporal (VT) cortex, and a subregion of the latter - the left mid fusiform gyrus (mid FG), sometimes called the “visual word form area.” Crucially, we examined only those volumes sampled when subjects were predicting, but not viewing, nouns and verbs. This allowed us to investigate prediction effects in visual areas without any bottom-up orthographic input. We found that voxels in VT and mid FG, but not in EVC, were able to classify noun-predictive trials vs. verb-predictive trials in sentence contexts, suggesting that sentence-level predictions are sufficient to generate word form-based estimates in visual areas. PMID:25156159

  2. Structural and functional correlates of behavioral pattern separation in the hippocampus and medial temporal lobe.

    PubMed

    Doxey, Christopher R; Kirwan, C Brock

    2015-04-01

    Structures of the medial temporal lobe (MTL) are known to be involved in declarative memory processes. However, little is known about how age-related changes in MTL structures, white matter integrity, and functional connectivity affect pattern separation processes in the MTL. In this study, we used magnetic resonance imaging (MRI) to measure the volumes of MTL regions of interest, including hippocampal subfields (dentate gyrus, CA3, CA1, and subiculum) in healthy older and younger adults. Additionally, we used diffusion tensor imaging to measure white matter integrity for both groups. Finally, we used functional MRI to acquire resting functional connectivity measures for both groups. We show that, along with age, the volume of left CA3/dentate gyrus predicts memory performance. Differences in fractional anisotropy and the strength of resting functional connections between the hippocampus and other cortical structures implicated in memory processing were not significant predictors of performance. As previous studies have only hinted, it seems that the size of left CA3/dentate gyrus contributes more to successful discrimination between similar mnemonic representations than other hippocampal sub-fields, MTL structures, and other neuroimaging correlates. Accordingly, the implications of aging and atrophy on lure discrimination capacities are discussed. PMID:25394655

  3. Conserved Temporal Patterns of MicroRNA Expression in Drosophila Support a Developmental Hourglass Model

    PubMed Central

    Ninova, Maria; Ronshaugen, Matthew; Griffiths-Jones, Sam

    2014-01-01

    The spatiotemporal control of gene expression is crucial for the successful completion of animal development. The evolutionary constraints on development are particularly strong for the mid-embryonic stage when body segments are specified, as evidenced by a high degree of morphological and protein-coding gene conservation during this period—a phenomenon known as the developmental hourglass. The discovery of microRNA-mediated gene control revealed an entirely new layer of complexity of the molecular networks that orchestrate development. However, the constraints on microRNA developmental expression and evolution, and the implications for animal evolution are less well understood. To systematically explore the conservation of microRNAs during development, we carried out a genome-wide comparative study of microRNA expression levels throughout the ontogenesis of two divergent fruit flies, Drosophila melanogaster and D. virilis. We show that orthologous microRNAs display highly similar temporal profiles regardless of their mutation rates, suggesting that the timely expression of microRNA genes can be more constrained than their sequence. Furthermore, transitions between key developmental events in the different species are accompanied by conserved shifts in microRNA expression profiles, with the mid-embryonic period between gastrulation and segmentation characterized by the highest similarity of microRNA expression. The conservation of microRNA expression therefore displays an hourglass pattern similar to that observed for protein-coding genes. PMID:25169982

  4. Temporal patterns of variable relationships in person-oriented research: longitudinal models of configural frequency analysis.

    PubMed

    von Eye, Alexander; Mun, Eun Young; Bogat, G Anne

    2008-03-01

    This article reviews the premises of configural frequency analysis (CFA), including methods of choosing significance tests and base models, as well as protecting alpha, and discusses why CFA is a useful approach when conducting longitudinal person-oriented research. CFA operates at the manifest variable level. Longitudinal CFA seeks to identify those temporal patterns that stand out as more frequent (CFA types) or less frequent (CFA antitypes) than expected with reference to a base model. A base model that has been used frequently in CFA applications, prediction CFA, and a new base model, auto-association CFA, are discussed for analysis of cross-classifications of longitudinal data. The former base model takes the associations among predictors and among criteria into account. The latter takes the auto-associations among repeatedly observed variables into account. Application examples of each are given using data from a longitudinal study of domestic violence. It is demonstrated that CFA results are not redundant with results from log-linear modeling or multinomial regression and that, of these approaches, CFA shows particular utility when conducting person-oriented research. PMID:18331134

  5. Temporal Patterns in Bivalve Excurrent Flow Under Varying Ambient Flow Conditions

    NASA Astrophysics Data System (ADS)

    Delavan, S. K.; Webster, D. R.

    2008-11-01

    The predator-prey relationship between blue crabs (Callinectes sapidus) and bivalve clams (Mercenaria mercenaria) is mediated by the transport of metabolites released by the prey (clams) and transported downstream as a passive scalar. This study focuses on how the prey behavior contributes to the information available within the odorant plume. Clams may modify factors such as excurrent flux, flow unsteadiness, and siphon height and diameter. A Particle Image Velocimetry (PIV) system has been used to quantify the temporal patterns in the excurrent jet of the bivalve siphon under varying ambient flow conditions. According to a spectral analysis of siphon excurrent velocity time records, there is a low frequency periodic component that could contribute to the mixing of clam metabolites through the generation of persistent jet vorticies. Also, fractal analysis of the velocity time records shows that as the ambient velocity increases the excurrent velocity becomes more correlated and less random. These results suggest that for high ambient flow a low frequency periodicity may be sufficient to promote the mixing and dilution of metabolites. In contrast, for low ambient flow more random siphon excurrent velocity may be required to reduce the amount of information available to predators in the downstream odorant plume.

  6. Fish in a ring: spatio-temporal pattern formation in one-dimensional animal groups

    PubMed Central

    Abaid, Nicole; Porfiri, Maurizio

    2010-01-01

    In this work, we study the collective behaviour of fish shoals in annular domains. Shoal mates are modelled as self-propelled particles moving on a discrete lattice. Collective decision-making is determined by information exchange among neighbours. Neighbourhoods are specified using the perceptual limit and numerosity of fish. Fish self-propulsion and obedience to group decisions are described through random variables. Spatio-temporal schooling patterns are measured using coarse observables adapted from the literature on coupled oscillator networks and features of the time-varying network describing the fish-to-fish information exchange. Experiments on zebrafish schooling in an annular tank are used to validate the model. Effects of group size and obedience parameter on coarse observables and network features are explored to understand the implications of perceptual numerosity and spatial density on fish schooling. The proposed model is also compared with a more traditional metric model, in which the numerosity constraint is released and fish interactions depend only on physical configurations. Comparison shows that the topological regime on which the proposed model is constructed allows for interpreting characteristic behaviours observed in the experimental study that are not captured by the metric model. PMID:20413559

  7. Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing

    PubMed Central

    Li, Guosheng; Wang, Dongfang; Yang, Ruolin; Logan, Kyle; Chen, Hao; Zhang, Shanshan; Skaggs, Megan I.; Lloyd, Alan; Burnett, William J.; Laurie, John D.; Hunter, Brenda G.; Dannenhoffer, Joanne M.; Larkins, Brian A.; Drews, Gary N.; Wang, Xiangfeng; Yadegari, Ramin

    2014-01-01

    Endosperm is a filial structure resulting from a second fertilization event in angiosperms. As an absorptive storage organ, endosperm plays an essential role in support of embryo development and seedling germination. The accumulation of carbohydrate and protein storage products in cereal endosperm provides humanity with a major portion of its food, feed, and renewable resources. Little is known regarding the regulatory gene networks controlling endosperm proliferation and differentiation. As a first step toward understanding these networks, we profiled all mRNAs in the maize kernel and endosperm at eight successive stages during the first 12 d after pollination. Analysis of these gene sets identified temporal programs of gene expression, including hundreds of transcription-factor genes. We found a close correlation of the sequentially expressed gene sets with distinct cellular and metabolic programs in distinct compartments of the developing endosperm. The results constitute a preliminary atlas of spatiotemporal patterns of endosperm gene expression in support of future efforts for understanding the underlying mechanisms that control seed yield and quality. PMID:24821765

  8. Temporal-Spatial Neural Activation Patterns Linked to Perceptual Encoding of Emotional Salience

    PubMed Central

    Todd, Rebecca M.; Taylor, Margot J.; Robertson, Amanda; Cassel, Daniel B.; Doesberg, Sam M.; Lee, Daniel H.; Shek, Pang N.; Pang, Elizabeth W.

    2014-01-01

    It is well known that we continuously filter incoming sensory information, selectively allocating attention to what is important while suppressing distracting or irrelevant information. Yet questions remain about spatiotemporal patterns of neural processes underlying attentional biases toward emotionally significant aspects of the world. One index of affectively biased attention is an emotional variant of an attentional blink (AB) paradigm, which reveals enhanced perceptual encoding for emotionally salient over neutral stimuli under conditions of limited executive attention. The present study took advantage of the high spatial and temporal resolution of magnetoencephalography (MEG) to investigate neural activation related to emotional and neutral targets in an AB task. MEG data were collected while participants performed a rapid stimulus visual presentation task in which two target stimuli were embedded in a stream of distractor words. The first target (T1) was a number and the second (T2) either an emotionally salient or neutral word. Behavioural results replicated previous findings of greater accuracy for emotionally salient than neutral T2 words. MEG source analyses showed that activation in orbitofrontal cortex, characterized by greater power in the theta and alpha bands, and dorsolateral prefrontal activation were associated with successful perceptual encoding of emotionally salient relative to neutral words. These effects were observed between 250 and 550 ms, latencies associated with discrimination of perceived from unperceived stimuli. These data suggest that important nodes of both emotional salience and frontoparietal executive systems are associated with the emotional modulation of the attentional blink. PMID:24727751

  9. Acoustic pattern variations in the female-directed birdsongs of a colony of laboratory-bred zebra finches.

    PubMed

    Helekar; Marsh; Viswanath; Rosenfield

    2000-04-01

    The acoustic profile of the zebra finch song is characterized by a series of identical repeating units, each comprising a distinctive sequence of acoustic elements, called syllables. Here, we perform an analysis of song pattern deviations caused by variabilities in the production of song syllables. Zebra finches produce four different kinds of syllable variabilities-syllable deletions, single or double syllable insertions, syllable alterations, and syllable repetitions. All these variabilities, with the exception of repetitions, are present in songs of more than two-thirds of the normal adult birds; repetitions are present in less than one-fifth of birds. The frequency of occurrence of these variabilities is independent of the amount of singing, suggesting that they are unlikely to result simply from singing-induced physiological changes such as fatigue. Their frequencies in tutor-deprived birds are not significantly different from those in normal birds, indicating that they are unlikely to be acquired due to deficiencies in tutor-dependent learning. The types, patterns of occurrence and relative frequencies of these song syllable variabilities might reveal insights into the functioning of the song motor control pathway. PMID:10794919

  10. Visual recognition based on temporal cortex cells: viewer-centred processing of pattern configuration.

    PubMed

    Perrett, D I; Oram, M W

    1998-01-01

    A model of recognition is described based on cell properties in the ventral cortical stream of visual processing in the primate brain. At a critical intermediate stage in this system, 'Elaborate' feature sensitive cells respond selectively to visual features in a way that depends on size (+/- 1 octave), orientation (+/- 45 degrees) but does not depend on position within central vision (+/- 5 degrees). These features are simple conjunctions of 2-D elements (e.g. a horizontal dark area above a dark smoothly convex area). They can arise either as elements of an object's surface pattern or as a 3-D component bounded by an object's external contour. By requiring a combination of several such features without regard to their position within the central region of the visual image, 'Pattern' sensitive cells at higher levels can exhibit selectivity for complex configurations that typify objects seen under particular viewing conditions. Given that input features to such Pattern sensitive cells are specified in approximate size and orientation, initial cellular 'representations' of the visual appearance of object type (or object example) are also selective for orientation and size. At this level, sensitivity to object view (+/- 60 degrees) arises because visual features disappear as objects are rotated in perspective. Processing is thus viewer-centred and the neurones only respond to objects seen from particular viewing conditions or 'object instances'. Combined sensitivity to multiple features (conjunctions of elements) independent of their position, establishes selectivity for the configurations of object parts (from one view) because rearranged configurations of the same parts yield images lacking some of the 2-D visual features present in the normal configuration. Different neural populations appear to be selectively tuned to particular components of the same biological object (e.g. face, eyes, hands, legs), perhaps because the independent articulation of these components gives rise to correlated activity in different sets of input visual features. Generalisation over viewing conditions for a given object can be established by hierarchically pooling outputs of view-condition specific cells with pooling operations dependent on the continuity in experience across viewing conditions. Different object parts are seen together and different views are seen in succession when the observer walks around the object. The view specific coding that characterises the selectivity of cells in the temporal lobe can be seen as a natural consequence of selective experience of objects from particular vantage points. View specific coding for the face and body also has great utility in understanding complex social signals, a property that may not be feasible with object-centred processing. PMID:9755511

  11. Temporal Patterns of Larval Fish Occurrence in a Large Subtropical River

    PubMed Central

    Shuai, Fangmin; Li, Xinhui; Li, Yuefei; Li, Jie; Yang, Jiping; Lek, Sovan

    2016-01-01

    Knowledge of temporal patterns of larval fish occurrence is limited in south China, despite its ecological importance. This research examines the annual and seasonal patterns of fish larval presence in the large subtropical Pearl River. Data is based on samples collected every two days, from 2006 to 2013. In total, 45 taxa representing 13 families and eight orders were sampled. The dominant larval family was Cyprinidae, accounting for 27 taxa. Squaliobarbus curriculus was the most abundant species, followed by Megalobrama terminalis, Xenocypris davidi, Cirrhinus molitorella, Hemiculter leuscisculus and Squalidus argentatus. Fish larvae abundances varied significantly throughout the seasons (multivariate analyses: Cluster, SIMPROF and ANOSIM). The greatest numbers occurred between May and September, peaking from June through August, which corresponds to the reproductive season. In this study, redundancy analysis was used to describe the relationship between fish larval abundance and associated environmental factors. Mean water temperature, river discharge, atmospheric pressure, maximum temperature and precipitation play important roles in larval occurrence patterns. According to seasonal variations, fish larvae occurrence is mainly affected by water temperature. It was also noted that the occurrence of Salanx reevesii and Cyprinus carpio larvae is associated with higher dissolved oxygen (DO) concentrations, higher atmospheric pressure and lower water temperatures which occur in the spring. On the other hand, M. terminalis, X. davidi, and C. molitorella are associated with high precipitation, high river discharge, low atmospheric pressure and low DO concentrations which featured during the summer months. S. curriculus also peaks in the summer and is associated with peak water temperatures and minimum NH3–N concentrations. Rhinogobius giurinus occur when higher atmospheric pressure, lower precipitation and lower river discharges occur in the autumn. Dominant fish species stagger their spawning period to avoid intraspecific competition for food resources during early life stages; a coexistence strategy to some extent. This research outlines the environmental requirements for successful spawning for different fish species. Understanding processes such as those outlined in this research paper is the basis of conservation of fish community diversity which is a critical resource to a successful sustainable fishery in the Pearl River. PMID:26760762

  12. Temporal Patterns of Larval Fish Occurrence in a Large Subtropical River.

    PubMed

    Shuai, Fangmin; Li, Xinhui; Li, Yuefei; Li, Jie; Yang, Jiping; Lek, Sovan

    2016-01-01

    Knowledge of temporal patterns of larval fish occurrence is limited in south China, despite its ecological importance. This research examines the annual and seasonal patterns of fish larval presence in the large subtropical Pearl River. Data is based on samples collected every two days, from 2006 to 2013. In total, 45 taxa representing 13 families and eight orders were sampled. The dominant larval family was Cyprinidae, accounting for 27 taxa. Squaliobarbus curriculus was the most abundant species, followed by Megalobrama terminalis, Xenocypris davidi, Cirrhinus molitorella, Hemiculter leuscisculus and Squalidus argentatus. Fish larvae abundances varied significantly throughout the seasons (multivariate analyses: Cluster, SIMPROF and ANOSIM). The greatest numbers occurred between May and September, peaking from June through August, which corresponds to the reproductive season. In this study, redundancy analysis was used to describe the relationship between fish larval abundance and associated environmental factors. Mean water temperature, river discharge, atmospheric pressure, maximum temperature and precipitation play important roles in larval occurrence patterns. According to seasonal variations, fish larvae occurrence is mainly affected by water temperature. It was also noted that the occurrence of Salanx reevesii and Cyprinus carpio larvae is associated with higher dissolved oxygen (DO) concentrations, higher atmospheric pressure and lower water temperatures which occur in the spring. On the other hand, M. terminalis, X. davidi, and C. molitorella are associated with high precipitation, high river discharge, low atmospheric pressure and low DO concentrations which featured during the summer months. S. curriculus also peaks in the summer and is associated with peak water temperatures and minimum NH3-N concentrations. Rhinogobius giurinus occur when higher atmospheric pressure, lower precipitation and lower river discharges occur in the autumn. Dominant fish species stagger their spawning period to avoid intraspecific competition for food resources during early life stages; a coexistence strategy to some extent. This research outlines the environmental requirements for successful spawning for different fish species. Understanding processes such as those outlined in this research paper is the basis of conservation of fish community diversity which is a critical resource to a successful sustainable fishery in the Pearl River. PMID:26760762

  13. Discovering temporal patterns in water quality time series, focusing on floods with the LDA method

    NASA Astrophysics Data System (ADS)

    Hélène Aubert, Alice; Tavenard, Romain; Emonet, Rémi; Malinowski, Simon; Guyet, Thomas; Quiniou, René; Odobez, Jean-Marc; Gascuel-Odoux, Chantal

    2013-04-01

    Studying floods has been a major issue in hydrological research for years. It is often done in terms of water quantity but it is also of interest in terms of water quality. Stream chemistry is a mix of solutes. They originate from various sources in the catchment, reach the stream by various flow pathways and are transformed by biogeochemical reactions at different locations. Therefore, we hypothesized that reaction of the stream chemistry to a rainfall event is not unique but varies according to the season (1), and the global meteorological conditions of the year (2). Identifying a typology of temporal chemical patterns of reaction to a rainfall event is a way to better understand catchment processes at the flood time scale. To answer this issue, we applied a probabilistic model (Latent Dirichlet Allocation or LDA (3)) mining recurrent sequential patterns to a dataset of floods. The dataset is 12 years long and daily recorded. It gathers a broad range of parameters from which we selected rainfall, discharge, water table depth, temperature as well as nitrate, dissolved organic carbon, sulphate and chloride concentrations. It comes from a long-term hydrological observatory (AgrHys, western France) located at Kervidy-Naizin. A set of 472 floods was automatically extracted (4). From each flood, a document has been generated that is made of a set of "hydrological words". Each hydrological word corresponds to a measurement: it is a triplet made of the considered variable, the time at which the measurement is made (relative to the beginning of the flood), and its magnitude (that can be low, medium or high). The documents are used as input data to the LDA algorithm. LDA relies on spotting co-occurrences (as an alternative to the more traditional study of correlation) between words that appear within the flood documents. It has two nice properties that are its ability to easily deal with missing data and its additive property that allows a document to be seen as a mixture of several flood patterns. The output of LDA is a set of patterns that can easily be represented in graphics. These patterns correspond to typical reactions to rainfall events. The patterns themselves are carefully studied, as well as their repartition along the year and along the 12 years of the dataset. The novelties are fourfold. First, as a methodological point of view, we learn that hydrological data can be analyzed with this LDA model giving a typology of a multivariate chemical signature of floods. Second, we outline that chemistry parameters are sufficient to obtain meaningful patterns. There is no need to include hydro-meteorological parameters to define the patterns. However, hydro-meteorological parameters are useful to understand the processes leading to these patterns. Third, our hypothesis of seasonal specific reaction to rainfall is verified, moreover detailed; so is our hypothesis of different reactions to rainfall for years with different hydro-meteorological conditions. Fourth, this method allows the consideration of overlapping floods that are usually not studied. We would recommend the use of such model to study chemical reactions of stream after rainfall events, or more broadly after any hydrological events. The typology that has been provided by this method is a kind of bar code of water chemistry during floods. It could be well suited to compare different geographical locations by using the same patterns and analysing the resulting different pattern distributions. (1) Aubert, A.H. et al., 2012. The chemical signature of a livestock farming catchment: synthesis from a high-frequency multi-element long term monitoring. HESSD, 9(8): 9715 - 9741. (2) Aubert, A.H., Gascuel-Odoux, C., Merot, P., 2013. Annual hysteresis of water quality: A method to analyse the effect of intra- and inter-annual climatic conditions. Journal of Hydrology, 478(0): 29-39. (3) Blei, D. M.; Ng, A. Y.; Jordan, M. I., 2003. Latent Dirichlet allocation. Journal of Machine Learning Research, 3(4-5): 993-1022. (4) de Lavenne, A., Cudennec, C., Streamflow velocity estimation in GIUH-type approach: what can neighbouring basins tell us? Poster Presentation - EGU General Assembly, 22-27 April 2012, Vienna, Austria.

  14. Spatial and Temporal Pattern of Rift Valley Fever Outbreaks in Tanzania; 1930 to 2007

    PubMed Central

    Sindato, Calvin; Karimuribo, Esron D.; Pfeiffer, Dirk U.; Mboera, Leonard E. G.; Kivaria, Fredrick; Dautu, George; Bernard, Bett; Paweska, Janusz T.

    2014-01-01

    Background Rift Valley fever (RVF)-like disease was first reported in Tanzania more than eight decades ago and the last large outbreak of the disease occurred in 200607. This study investigates the spatial and temporal pattern of RVF outbreaks in Tanzania over the past 80 years in order to guide prevention and control strategies. Materials and Methods A retrospective study was carried out based on disease reporting data from Tanzania at district or village level. The data were sourced from the Ministries responsible for livestock and human health, Tanzania Meteorological Agency and research institutions involved in RVF surveillance and diagnosis. The spatial distribution of outbreaks was mapped using ArcGIS 10. The space-time permutation model was applied to identify clusters of cases, and a multivariable logistic regression model was used to identify risk factors associated with the occurrence of outbreaks in the district. Principal Findings RVF outbreaks were reported between December and June in 1930, 1947, 1957, 1960, 1963, 1968, 197779, 1989, 199798 and 200607 in 39.2% of the districts in Tanzania. There was statistically significant spatio-temporal clustering of outbreaks. RVF occurrence was associated with the eastern Rift Valley ecosystem (OR?=?6.14, CI: 1.96, 19.28), total amount of rainfall of >405.4 mm (OR?=?12.36, CI: 3.06, 49.88), soil texture (clay [OR?=?8.76, CI: 2.52, 30.50], and loam [OR?=?8.79, CI: 2.04, 37.82]). Conclusion/Significance RVF outbreaks were found to be distributed heterogeneously and transmission dynamics appeared to vary between areas. The sequence of outbreak waves, continuously cover more parts of the country. Whenever infection has been introduced into an area, it is likely to be involved in future outbreaks. The cases were more likely to be reported from the eastern Rift Valley than from the western Rift Valley ecosystem and from areas with clay and loam rather than sandy soil texture. PMID:24586433

  15. Spatial-temporal patterns in Mediterranean carnivore road casualties: Consequences for mitigation

    USGS Publications Warehouse

    Grilo, C.; Bissonette, J.A.; Santos-Reis, M.

    2009-01-01

    Many carnivores have been seriously impacted by the expansion of transportation systems and networks; however we know little about carnivore response to the extent and magnitude of road mortality, or which age classes may be disproportionately impacted. Recent research has demonstrated that wildlife-vehicle-collisions (WVC) involving carnivores are modulated by temporal and spatial factors. Thus, we investigated road mortality on a guild of small and medium-sized carnivores in southern Portugal using road-kill data obtained from a systematic 36 months monitoring period along highways (260 km) and national roads (314 km) by addressing the following questions: (a) which species and age class are most vulnerable to WVC? (b) are there temporal and/or spatial patterns in road-kill? and (c) which life-history and/or spatial factors influence the likelihood of collisions? We recorded a total of 806 carnivore casualties, which represented an average of 47 ind./100 km/year. Red fox and stone marten had the highest mortality rates. Our findings highlight three key messages: (1) the majority of road-killed individuals were adults of common species; (2) all carnivores, except genets, were more vulnerable during specific life-history phenological periods: higher casualties were observed when red fox and stone marten were provisioning young, Eurasian badger casualties occurred more frequently during dispersal, and higher Egyptian mongoose mortality occurred during the breeding period; and (3) modeling demonstrated that favorable habitat, curves in the road, and low human disturbance were major contributors to the deadliest road segments. Red fox carcasses were more likely to be found on road sections with passages distant from urban areas. Conversely, stone marten mortalities were found more often on national roads with high of cork oak woodland cover; Egyptian mongoose and genet road-kills were found more often on road segments close to curves. Based on our results, two key mitigation measures should help to reduce WVC in Portugal. The first involves the improvement of existing crossings with buried and small mesh size fence to guide the individuals towards to the passages, in road segments with high traffic volume (>1200 vehicles/night) and located in preferred carnivore habitats. The second mitigation involves cutting or removal of dense vegetation in verges of road segments with curves to aid motorists in seeing animals about to cross. ?? 2008 Elsevier Ltd.

  16. Geospatial and temporal patterns of annual cholera outbreaks in Matlab, Bangladesh

    NASA Astrophysics Data System (ADS)

    Majumder, M. S.; de Klerk, K.; Meyers, D.

    2012-12-01

    Cholera is a waterborne diarrheal disease endemic to Bangladesh, resulting in 1 million diagnoses annually. Such disease burden results in incalculable lost wages and treatment expenses, taken from the pockets of an already impoverished society. Two seasonally correlated outbreaks of cholera occur in Bangladesh every year. In the spring and early summer, the Bay of Bengal - which serves as a natural reservoir for the cholera bacteria - flows inland, causing the first outbreak amongst coastal communities. Waste containing the cholera bacteria enters the sewage system and remains untreated due to poor water and sanitation infrastructure. Therefore, during the following monsoon season, flooding of cholera-contaminated sewage into drinking water sources results in a second outbreak. Though considered common knowledge among local populations, this geographic and temporal progression has not been empirically verified in the current literature. The aim of our ongoing study is to systematically analyze the seasonal trajectory of endemic cholera in Bangladesh. This paper discusses the results obtained from a comprehensive survey of available cholera data from the International Centre of Diarrheal Disease Research, Bangladesh (ICDDR,B) in Matlab, Bangladesh. Matlab thana is a near-coastal community that consists of 142 villages. Monsoon season takes place from June through October. Due to its proximity to the Meghna River, which opens into the Bay of Bengal, the area experiences significant flooding during these months. Using 10 years of geographically referenced cholera data, cases were plotted in time and space. Preliminary patterns suggest that villages closer to the Meghna River experience the majority of the area's cholera outbreaks and that case count is highest in late spring and late fall. April/May and November/December represent 25% and 23% of total annual case counts respectively. Moreover, villages further from the coastline demonstrate 57% higher relative prevalence in fall than in the spring. Such initial results demonstrate great promise in advancing our present knowledge of endemic cholera in Bangladesh. By improving our understanding of cholera proliferating in time and space, disease mitigation resources can be distributed to the most susceptible areas when they need them most. The next step forward for our ongoing study involves the use of mobile health (mHealth) case surveillance and cloud computing for real-time geographic and temporal cholera data acquisition.

  17. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  18. Age-related changes in trunk neuromuscular activation patterns during a controlled functional transfer task include amplitude and temporal synergies.

    PubMed

    Quirk, D Adam; Hubley-Kozey, Cheryl L

    2014-12-01

    While healthy aging is associated with physiological changes that can impair control of trunk motion, few studies examine how spinal muscle responses change with increasing age. This study examined whether older (over 65 years) compared to younger (20-45 years) adults had higher overall amplitude and altered temporal recruitment patterns of trunk musculature when performing a functional transfer task. Surface electromyograms from twelve bilateral trunk muscle (24) sites were analyzed using principal component analysis, extracting amplitude and temporal features (PCs) from electromyographic waveforms. Two PCs explained 96% of the waveform variance. Three factor ANOVA models tested main effects (group, muscle and reach) and interactions for PC scores. Significant (p<.0125) group interactions were found for all PC scores. Post hoc analysis revealed that relative to younger adults, older adults recruited higher agonist and antagonistic activity, demonstrated continuous activation levels in specific muscle sites despite changing external moments, and had altered temporal synergies within abdominal and back musculature. In summary both older and younger adults recruit highly organized activation patterns in response to changing external moments. Differences in temporal trunk musculature recruitment patterns suggest that older adults experience different dynamic spinal stiffness and loading compared to younger adults during a functional lifting task. PMID:25457424

  19. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    NASA Astrophysics Data System (ADS)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and Ben-Zion Y.: ‘Techniques and parameters to analyze seismicity patterns associated with large earthquakes', Geophysics Res., vol. 102, pp. 17785-17795, 1997a [3] Habermann R. E.: ‘Precursory seismic quiescence: past, present and future', Pure Applied Geophysics, vol. 126, pp. 279-318, 1988 [4] Matthews M. V. and Reasenberg P. A.: ‘Statistical methods for investigating quiescence and other temporal seismicity patterns', Pure Applied Geophysics, vol. 126, pp. 357-372, 1988 [5] Zubkov S. I.: ‘The appearance times of earthquake precursors', Izv. Akad. Nauk SSSR Fiz. Zemli (Solid Earth), No. 5, pp. 87-91, 1987 [6] Dobrovolsky I. P., Zubkov S. I. and Miachkin V. I.: ‘Estimation of the size of earthquake preparation zones', Pageoph, vol. 117, pp. 1025-1044, 1979 [7] Dobrovolsky I. P., Gershenzon N. I. And Gokhberg M. B.: ‘Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake', Physics of the Earth and Planetary Interiors, vol. 57, pp. 144-156, 1989 [8] Richter C. F.: ‘Elementary Seismology', W.H.Freeman and Co., San Francisco, 1958 [9] Choy G. L. and Boatwright J. L.: ‘Global patterns of radiated seismic energy and apparent stress', Journal of Geophysical Research, vol. 84 (B5), pp. 2348-2350, 1995 [10] Haykin S.: ‘Neural Networks', 2nd Edition, Prentice Hall, 1999 [11] Jang J., Sun T. and Mizutany E.: ‘Neuro-fuzzy and soft computing', Prentice Hall, Upper Saddle River, NJ, 1997 [12] Konstantaras A., Varley M.R., Vallianatos F., Collins G. and Holifield P.: ‘Detection of weak seismo-electric signals upon the recordings of the electrotelluric field by means of neuron-fuzzy technology', IEEE Geoscience and Remote Sensing Letters, vol. 4 (1), 2007 [13] Konstantaras A., Varley M.R., Vallianatos F., Collins G. and Holifield P.: ‘Neuro-fuzzy prediction-based adaptive filtering applied to severely distorted magnetic field recordings', IEEE Geoscience and Remote Sensing Letters, vol. 3 (4), 2006 [14] Maravelakis E., Bilalis N., Keith J. and Antoniadis A.: ‘Measuring and Benchmarking the Innovativeness of SME's: a three dimensional Fuzzy Logic Approach', Production Planning and Control Journal, vol. 17 (3), pp. 283-292, 2006 [15] Bodri B.: ‘A neural-network model for earthquake occurrence', Geodynamics, vol. 32, pp. 289-310, 2001 [16] Skounakis E., Karagiannis V. and Vlissidis A.: ‘A Versatile System for Real-time Analyzing and Testing Objects Quality', Proceedings-CD of the 4th International Conference on "New Horizons in Industry, Business and Education" (NHIBE 2005), Corfu, Greece, pp. 701-708, 2005

  20. Spatio-Temporal Pattern and Socio-Economic Factors of Bacillary Dysentery at County Level in Sichuan Province, China.

    PubMed

    Ma, Yue; Zhang, Tao; Liu, Lei; Lv, Qiang; Yin, Fei

    2015-01-01

    Bacillary dysentery (BD) remains a big public health problem in China. Effective spatio-temporal monitoring of BD incidence is important for successful implementation of control and prevention measures. This study aimed to examine the spatio-temporal pattern of BD and analyze socio-economic factors that may affect BD incidence in Sichuan province, China. Firstly, we used space-time scan statistic to detect the high risk spatio-temporal clusters in each year. Then, bivariate spatial correlation and Bayesian spatio-temporal model were utilized to examine the associations between the socio-economic factors and BD incidence. Spatio-temporal clusters of BD were mainly located in the northern-southern belt of the midwest area of Sichuan province. The proportion of primary industry, the proportion of rural population and the rates of BD incidence show statistically significant positive correlation. The proportion of secondary industry, proportion of tertiary Industry, number of beds in hospitals per thousand persons, medical and technical personnel per thousand persons, per capital GDP and the rate of BD incidence show statistically significant negative correlation. The best fitting spatio-temporal model showed that medical and technical personnel per thousand persons and per capital GDP were significantly negative related to the risk of BD. PMID:26469274

  1. Spatio-Temporal Pattern and Socio-Economic Factors of Bacillary Dysentery at County Level in Sichuan Province, China

    PubMed Central

    Ma, Yue; Zhang, Tao; Liu, Lei; Lv, Qiang; Yin, Fei

    2015-01-01

    Bacillary dysentery (BD) remains a big public health problem in China. Effective spatio-temporal monitoring of BD incidence is important for successful implementation of control and prevention measures. This study aimed to examine the spatio-temporal pattern of BD and analyze socio-economic factors that may affect BD incidence in Sichuan province, China. Firstly, we used space-time scan statistic to detect the high risk spatio-temporal clusters in each year. Then, bivariate spatial correlation and Bayesian spatio-temporal model were utilized to examine the associations between the socio-economic factors and BD incidence. Spatio-temporal clusters of BD were mainly located in the northern-southern belt of the midwest area of Sichuan province. The proportion of primary industry, the proportion of rural population and the rates of BD incidence show statistically significant positive correlation. The proportion of secondary industry, proportion of tertiary Industry, number of beds in hospitals per thousand persons, medical and technical personnel per thousand persons, per capital GDP and the rate of BD incidence show statistically significant negative correlation. The best fitting spatio-temporal model showed that medical and technical personnel per thousand persons and per capital GDP were significantly negative related to the risk of BD. PMID:26469274

  2. The use of satellite data for monitoring temporal and spatial patterns of fire: a comprehensive review

    NASA Astrophysics Data System (ADS)

    Lasaponara, R.

    2009-04-01

    Remotely sensed (RS) data can fruitfully support both research activities and operative monitoring of fire at different temporal and spatial scales with a synoptic view and cost effective technologies. "The contribution of remote sensing (RS) to forest fires may be grouped in three categories, according to the three phases of fire management: (i) risk estimation (before fire), (ii) detection (during fire) and (iii) assessment (after fire)" Chuvieco (2006). Relating each phase, wide research activities have been conducted over the years. (i) Risk estimation (before fire) has been mainly based on the use of RS data for (i) monitoring vegetation stress and assessing variations in vegetation moisture content, (ii) fuel type mapping, at different temporal and spatial scales from global, regional down to a local scale (using AVHRR, MODIS, TM, ASTER, Quickbird images and airborne hyperspectral and LIDAR data). Danger estimation has been mainly based on the use of AVHRR (onborad NOAA), MODIS (onboard TERRA and AQUA), VEGETATION (onboard SPOT) due to the technical characteristics (i.e. spectral, spatial and temporal resolution). Nevertheless microwave data have been also used for vegetation monitoring. (ii) Detection: identification of active fires, estimation of fire radiative energy and fire emission. AVHRR was one of the first satellite sensors used for setting up fire detection algorithms. The availbility of MODIS allowed us to obtain global fire products free downloaded from NASA web site. Sensors onboard geostationary satellite platforms, such as GOES, SEVIRI, have been used for fire detection, to obtain a high temporal resolution (at around 15 minutes) monitoring of active fires. (iii) Post fire damage assessment includes: burnt area mapping, fire emission, fire severity, vegetation recovery, fire resilience estimation, and, more recently, fire regime characterization. Chuvieco E. L. Giglio, C. Justice, 2008 Global charactrerization of fire activity: toward defining fire regimes from Earth observation data Global Change Biology vo. 14. doi: 10.1111/j.1365-2486.2008.01585.x 1-15, Chuvieco E., P. Englefield, Alexander P. Trishchenko, Yi Luo Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2381-2396 Chuvieco Emilio 2006, Remote Sensing of Forest Fires: Current limitations and future prospects in Observing Land from Space: Science, Customers and Technology, Advances in Global Change Research Vol. 4 pp 47-51 De Santis A., E. Chuvieco Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models, Remote Sensing of Environment, Volume 108, Issue 4, 29 June 2007, Pages 422-435. De Santis A., E. Chuvieco, Patrick J. Vaughan, Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models, Remote Sensing of Environment, Volume 113, Issue 1, 15 January 2009, Pages 126-136 García M., E. Chuvieco, H. Nieto, I. Aguado Combining AVHRR and meteorological data for estimating live fuel moisture content Remote Sensing of Environment, Volume 112, Issue 9, 15 September 2008, Pages 3618-3627 Ichoku C., L. Giglio, M. J. Wooster, L. A. Remer Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2950-2962. Lasaponara R. and Lanorte, On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape Ecological Modelling Volume 204, Issues 1-2, 24 May 2007, Pages 79-84 Lasaponara R., A. Lanorte, S. Pignatti,2006 Multiscale fuel type mapping in fragmented ecosystems: preliminary results from Hyperspectral MIVIS and Multispectral Landsat TM data, Int. J. Remote Sens., vol. 27 (3) pp. 587-593. Lasaponara R., V. Cuomo, M. F. Macchiato, and T. Simoniello, 2003 .A self-adaptive algorithm based on AVHRR multitemporal data analysis for small active fire detection.n International Journal of Remote Sensing, vol. 24, No 8, 1723-1749. Minchella A., F. Del Frate, F. Capogna, S. Anselmi, F. Manes Use of multitemporal SAR data for monitoring vegetation recovery of Mediterranean burned areas Remote Sensing of Environment, In Press Næsset E., T. Gobakken Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 3079-3090 Peterson S. H, Dar A. Roberts, Philip E. Dennison Mapping live fuel moisture with MODIS data: A multiple regression approach, Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4272-4284. Schroeder Wilfrid, Elaine Prins, Louis Giglio, Ivan Csiszar, Christopher Schmidt, Jeffrey Morisette, Douglas Morton Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2711-2726 Shi J., T. Jackson, J. Tao, J. Du, R. Bindlish, L. Lu, K.S. Chen Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4285-4300 Tansey, K., Grégoire, J-M., Defourny, P., Leigh, R., Pekel, J-F., van Bogaert, E. and Bartholomé, E., 2008 A New, Global, Multi-Annual (2000-2007) Burnt Area Product at 1 km Resolution and Daily Intervals Geophysical Research Letters, VOL. 35, L01401, doi:10.1029/2007GL031567, 2008. Telesca L. and Lasaponara R., 2006; "Pre-and Post- fire Behaviural trends revealed in satellite NDVI time series" Geophysical Research Letters,., 33, L14401, doi:10.1029/2006GL026630 Telesca L. and Lasaponara R 2005 Discriminating Dynamical Patterns in Burned and Unburned Vegetational Covers by Using SPOT-VGT NDVI Data. Geophysical Research Letters,, 32, L21401, doi:10.1029/2005GL024391. Telesca L. and Lasaponara R. Investigating fire-induced behavioural trends in vegetation covers , Communications in Nonlinear Science and Numerical Simulation, 13, 2018-2023, 2008 Telesca L., A. Lanorte and R. Lasaponara, 2007. Investigating dynamical trends in burned and unburned vegetation covers by using SPOT-VGT NDVI data. Journal of Geophysics and Engineering, Vol. 4, pp. 128-138, 2007 Telesca L., R. Lasaponara, and A. Lanorte, Intra-annual dynamical persistent mechanisms in Mediterranean ecosystems revealed SPOT-VEGETATION Time Series, Ecological Complexity, 5, 151-156, 2008 Verbesselt, J., Somers, B., Lhermitte, S., Jonckheere, I., van Aardt, J., and Coppin, P. (2007) Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sensing of Environment 108: 357-368. Zhang X., S. Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897 Zhang X., Shobha Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897

  3. Analysis and Monitoring of the Spatio-temporal Aerosol Patterns over Bangladesh

    NASA Astrophysics Data System (ADS)

    Mamun, M.; Islam, M.

    2012-12-01

    Nowadays climate change is the burning issue and atmospheric aerosols are vital parameter of the global climate system. So, atmospheric aerosols are one of the hot topics for present scientific research. Most remote sensing methods retrieve aerosol optical depth (AOD) to assess the aerosols and their various effects on environmental and climate system. However, there is lack of studies dealing with monitoring of aerosol patterns over Bangladesh. In this research, we have analyzed the spatial and temporal variations in aerosol load over Bangladesh, using MODerate resolution Imaging Spectroradiometer (MODIS) Level 3 remote sensing data. A Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to generate a backward trajectory in order to identify the origins of air masses, with the aim of understanding these spatial and temporal variabilities in aerosol concentrations. During the last decade, AODs have increased across Bangladesh and revealed a higher AOD concentration in western part but a much cleaner environment in eastern part. An assessment of monthly mean variations in AOD has exhibited maximum AODs in June and minimum AODs in October. Looking over seasonal variations during the last decade over Bangladesh showed maximum AOD values during the summer, while minimum AOD values showed during the post monsoon also an evidence of a decreasing AOD trend showed during the monsoon can be owing to an increase in monsoonal rainfall in Bangladesh, while all other seasons showed increasing trends. Northwestern part of Bangladesh has showed at the top of AOD concentration in winter season during the year 2010. Dense fog activities in northern part of Bangladesh may be the causes of this high AOD distribution. We also documented, the regional AOD variations over seven different divisions of Bangladesh, for which Dhaka and Sylhet divisions showed decreasing trends where all others showed increasing trends. Annual mean AODs have highest levels in Rajshahi and Khulna and lowest level in Sylhet. Back trajectory analysis indicates that Bangladesh is mainly affected by the pollutions and desert dust of India combining with sea salt particles blown from the Arabian Sea. The sources of air masses were arriving at lower altitudes (500m, 1500m) mainly in western India and Indian subcontinent but higher altitude (2500m) air masses were loading especially in winter season from far western regions, such as Europe and various sub-Sahara region of Africa. However, an exceptional result was observed in post monsoon of 2010 that different flow patterns of air masses were observed that the air masses were arriving in Sylhet from southeast in the direction, the sources of air masses were in coastal region of Thailand and the boarder region of Myanmar and China. The air masses were arriving at several divisions in different seasons from different distances and directions owing to the variations of wind velocities and wind directions. These studies become important and useful to proceed about climate change in Bangladesh. However, more and more studies are required to understand about atmospheric aerosol properties and their climate impacts.

  4. Temporal patterns of veterans' psychiatric service utilization, disability payments, and cocaine use.

    PubMed

    Grossman, L S; Willer, J K; Miller, N S; Stovall, J G; McRae, S G; Maxwell, S

    1997-01-01

    This study examined temporal patterns of service utilization, disability benefits, and substance use. Specifically, it investigated whether the first day of the first week of each month (when disability payments are disbursed) was associated with increased emergency room (ER) use and more frequent cocaine use among psychiatric patients. All 1993 psychiatric ER presentations (n=1,448) at a Veterans Administration hospital were reviewed in order by the week of each month in which they occurred. A random subsample of only those admitted to an inpatient psychiatric service (n=143) was further assessed for amount of disability payments received and recent cocaine use. This study found that for the total population of patients utilizing the ER, most ER visits occurred during the first week, followed by weeks two, three, and four respectively. The highest percentage (49%) of patients who used cocaine were those admitted during the first week of the month, followed by week two (39%), week four (28%) and week three (25%). For the subsample of patients admitted to inpatient services, patients hospitalized during the fourth week of the month were those receiving the highest disability payments. This study found that cocaine users have the most ER visits during the first week of the month following receipt of benefits. Current data, if confirmed, would suggest public policy changes, such as payment of entitlement money to cocaine users through a third-party payee and stipulated treatment for psychiatric patients with substance use disorders as a condition of payment. Ethical and political issues, including confidentiality and patient autonomy, would need to be considered in any such policy changes. PMID:9339861

  5. Exploring spatio-temporal patterns of mortality using mixed effects models.

    PubMed

    Pickle, L W

    A linear mixed effects (LME) model previously used for a spatial analysis of mortality data for a single time period is extended to include time trends and spatio-temporal interactions. This model includes functions of age and time period that can account for increasing and decreasing death rates over time and age, and a change-point of rates at a predetermined age. A geographic hierarchy is included that provides both regional and small area age-specific rate estimates, stabilizing rates based on small numbers of deaths by sharing information within a region. The proposed log-linear analysis of rates allows the use of commercially available software for parameter estimation, and provides an estimator of overdispersion directly as the residual variance. Because of concerns about the accuracy of small area rate estimates when there are many instances of no observed deaths, we consider potential sources of error, focusing particularly on the similarity of likelihood inferences using the LME model for rates as compared to an exact Poisson-normal mixed effects model for counts. The proposed LME model is applied to breast cancer deaths which occurred among white women during 1979-1996. For this example, application of diagnostics for multiparameter likelihood comparisons suggests a restriction of age to a minimum of either 25 or 35, depending on whether small area rate estimates are required. Investigation into a convergence problem led to the discovery that the changes in breast cancer geographic patterns over time are related more to urbanization than to region, as previously thought. Published in 2000 by John Wiley & Sons, Ltd. PMID:10960851

  6. Spatial and temporal patterns of dissolved organic matter optical properties across large rivers in Africa

    NASA Astrophysics Data System (ADS)

    Lambert, Thibault; Darchambeau, François; Vieira Borges, Alberto; Alhou, Bassirou; Mbega, Jean-Daniel; Teodoru, Cristian; Marwick, Trent Richard; Bouillon, Steven

    2014-05-01

    Tropical rivers have disproportionally high carbon transport and outgassing compared to temperate and Arctic rivers. Yet the cycling of dissolved organic matter (DOM) within these systems is still poorly studied with the exception of the Amazon basin. The chromophoric or colored dissolved organic matter (CDOM) is the fraction of DOM that absorbs ultraviolet and visible light. As the biochemical nature of DOM (and CDOM) defines its optical properties, optical measurements are particularly useful to assess the composition of DOM in freshwater and hence can be applied as proxies for assessments of DOM sources and its biogeochemical role. However, less is known on how specific optical characteristics can be applied as proxies and how these proxies vary from one system to another. In this study we compared concentrations and stable isotopic signature of dissolved organic carbon with optical properties of DOM from diverse tropical river systems across the African continent including the Congo basin, the Zambezi basin, the Ogooué basin and the Niger basin. These major rivers of the African continent were monitored for long period (from 1-3 years) at biweekly frequency. This large dataset allowed us to compare the spatial and temporal patterns of DOM quality along various environmental gradients, including hydrology, river size, terrestrial vegetation and connectivity to terrestrial inputs. The optical proxies presented and discussed in this study include absorption coefficients a(Λ) at different wavelength (254, 300, 350 and 440 nm), spectral slopes (S275-295and S350-400), the spectral slope ratio (SR=S275-295:S350-400) and the a(250):a(365) ratio.

  7. Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: Role of insect defoliation

    NASA Astrophysics Data System (ADS)

    Eshleman, Keith N.; Morgan, Raymond P.; Webb, James R.; Deviney, Frank A.; Galloway, James N.

    1998-08-01

    Fluxes of dissolved nitrogen (N) as nitrate from forested watersheds in the mid-Appalachian region have important water quality ramifications for small acid-sensitive streams and for downstream receiving waters such as the Chesapeake Bay. Previous studies of N leakage have suggested that annual dissolved N fluxes from small watersheds can vary by several orders of magnitude and may be increasing as second-growth forests gradually become N saturated from the accrual of atmospheric N loadings. In this study, we examined the temporal (intra-annual and interannual) variability in dissolved nitrate fluxes from five small (area < 15 km2) forested watersheds in the mid-Appalachian region from 1988 to 1995. At all sites, nitrate concentrations were observed to increase dramatically during storm flow events, with nitric acid contributing significantly to depressions in pH and acid-neutralizing capacity; annual nitrate fluxes were dominated by high-discharge periods. Interannually, the fluxes at each site varied by 1-2 orders of magnitude, but the patterns of N leakage displayed considerable synchrony with outbreaks of gypsy moth caterpillar defoliation that began in the late 1980s and early 1990s in this region. N leakage from forested watersheds apparently lagged the initial defoliation by several months to perhaps a year or more. Defoliation outbreaks by the gypsy moth caterpillar (or other herbivorous pests) thus provide an alternative explanation of N leakage from forest ecosystems. Poorly documented insect defoliations, rather than premature N saturation of intact forest ecosystems, need to be considered as a possible explanation of N leakage from forested watersheds in the mid-Appalachian region and elsewhere.

  8. Learning of Temporal Motor Patterns: An Analysis of Continuous Versus Reset Timing

    PubMed Central

    Laje, Rodrigo; Cheng, Karen; Buonomano, Dean V.

    2011-01-01

    Our ability to generate well-timed sequences of movements is critical to an array of behaviors, including the ability to play a musical instrument or a video game. Here we address two questions relating to timing with the goal of better understanding the neural mechanisms underlying temporal processing. First, how does accuracy and variance change over the course of learning of complex spatiotemporal patterns? Second, is the timing of sequential responses most consistent with starting and stopping an internal timer at each interval or with continuous timing? To address these questions we used a psychophysical task in which subjects learned to reproduce a sequence of finger taps in the correct order and at the correct times – much like playing a melody at the piano. This task allowed us to calculate the variance of the responses at different time points using data from the same trials. Our results show that while “standard” Weber’s law is clearly violated, variance does increase as a function of time squared, as expected according to the generalized form of Weber’s law – which separates the source of variance into time-dependent and time-independent components. Over the course of learning, both the time-independent variance and the coefficient of the time-dependent term decrease. Our analyses also suggest that timing of sequential events does not rely on the resetting of an internal timer at each event. We describe and interpret our results in the context of computer simulations that capture some of our psychophysical findings. Specifically, we show that continuous timing, as opposed to “reset” timing, is consistent with “population clock” models in which timing emerges from the internal dynamics of recurrent neural networks. PMID:22016724

  9. Dynamic Triggering of Microseismicity inferred from Spatio/Temporal Patterns in a Mine Setting

    NASA Astrophysics Data System (ADS)

    Castellanos, F.; Van der Baan, M.

    2014-12-01

    We examine spatial and temporal patterns of microseismic events in an underground mine. Our objective is to address three key questions: Where does the seismicity occur? Why does it occur in these locations but not elsewhere? And what triggers it? We take advantage of waveform similarity by performing multiplet analysis based on the double-difference technique to obtain highly accurate relative locations. Seven vertical receiver boreholes that surround the area under investigation have recorded microseismic data during a month, thus providing a good azimuthal coverage. A minimum crosscorrelation level of 85% is used to detect 21 multiplet groups, which represents 60% of the total seismicity. The largest groups are located close to the main shaft and tunnels at orebody levels, thus we postulate seismicity is facilitated by the potential of subsidence if we assume a compacting earth and hoop stresses acting on the vertical shafts. Surprisingly, most events only occur during certain hours of the day but do not relate to blasting. They correlate with scheduled operations of rock removal. Therefore, it is likely they have been triggered by the transportation of the debris along the main shaft instead of blasting, as we initially expected. Given that seismicity is present around the main shaft but absent close to the second air shaft, we conclude that for seismicity to occur both a favourable stress state must exist, as well as additional external forces, causing dynamic triggering. This analysis provides more insight into anthropogenic processes and their roles as major initiators of seismicity during dynamic stress transfer thereby facilitating identification of hazardous areas in mine settings.

  10. Systematic temporal patterns in the relationship between housing development and forest bird biodiversity.

    PubMed

    Pidgeon, Anna M; Flather, Curtis H; Radeloff, Volker C; Lepczyk, Christopher A; Keuler, Nicholas S; Wood, Eric M; Stewart, Susan I; Hammer, Roger B

    2014-10-01

    As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale-dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated whether there is also a systematic temporal trend in the relationship between bird biodiversity and housing development. We used linear regression to examine associations between forest bird species richness and housing growth in the conterminous United States over 30 years. Our data sources were the North American Breeding Bird Survey and the 2000 decennial U.S. Census. In the 9 largest forested ecoregions, housing density increased continually over time. Across the conterminous United States, the association between bird species richness and housing density was positive for virtually all guilds except ground nesting birds. We found a systematic trajectory of declining bird species richness as housing increased through time. In more recently developed ecoregions, where housing density was still low, the association with bird species richness was neutral or positive. In ecoregions that were developed earlier and where housing density was highest, the association of housing density with bird species richness for most guilds was negative and grew stronger with advancing decades. We propose that in general the relationship between human settlement and biodiversity over time unfolds as a 2-phase process. The first phase is apparently innocuous; associations are positive due to coincidence of low-density housing with high biodiversity. The second phase is highly detrimental to biodiversity, and increases in housing density are associated with biodiversity losses. The long-term effect on biodiversity depends on the final housing density. This general pattern can help unify our understanding of the relationship of human encroachment and biodiversity response. PMID:24811862

  11. Temporal patterns in the foraging behavior of sea otters in Alaska

    USGS Publications Warehouse

    Esslinger, George G.; Bodkin, James L.; Breton, André R.; Burns, Jennifer M.; Monson, Daniel H.

    2014-01-01

    Activity time budgets in apex predators have been proposed as indicators of population status relative to resource limitation or carrying capacity. We used archival time-depth recorders implanted in 15 adult female and 4 male sea otters (Enhydra lutris) from the northernmost population of the species, Prince William Sound, Alaska, USA, to examine temporal patterns in their foraging behavior. Sea otters that we sampled spent less time foraging during summer (females 8.8 hr/day, males 7.9 hr/day) than other seasons (females 10.1–10.5 hr/day, males 9.2–9.5 hr/day). Both sexes showed strong preferences for diurnal foraging and adjusted their foraging effort in response to the amount of available daylight. One exception to this diurnal foraging mode occurred after females gave birth. For approximately 3 weeks post-partum, females switched to nocturnal foraging, possibly in an effort to reduce the risk of predation by eagles on newborn pups. We used multilevel mixed regression models to assess the contribution of several biological and environmental covariates to variation in the daily foraging effort of parous females. In the random effects only model, 87% of the total variation in foraging effort was within-otter variation. The relatively small among-otter variance component (13%) indicates substantial consistency in the foraging effort of sea otters in this northern population. In the top 3 models, 17% of the within-otter variation was explained by reproductive stage, day length, wind speed, air temperature and a wind speed × air temperature interaction. This study demonstrates the potential importance of environmental and reproductive effects when using activity budgets to assess population status relative to carrying capacity.

  12. Spatial and Temporal Patterns of On-Road Diesel Truck Emissions in California

    NASA Astrophysics Data System (ADS)

    McDonald, B.; Harley, R. A.

    2011-12-01

    Heavy-duty diesel-powered trucks comprise a relatively small fraction of total traffic, typically less than 10% nationally. However, as light-duty gasoline vehicle emissions have been controlled over time, diesel trucks have become a major source of emissions of pollutants such as nitrogen oxides (NOx) and fine particulate matter (PM). In the past, spatially resolved emission inventories for trucks have often been mapped either by (1) assuming a constant truck fraction and applying that value to gridded estimates of total vehicle miles traveled throughout the area of interest, or (2) using surrogates (e.g., miles of highway available in each grid square) to apportion top-down estimates of diesel emissions. Unfortunately, such simplified descriptions of truck traffic are inaccurate. Goods movement-related traffic differs markedly from passenger vehicle travel in many ways, and truck traffic does not make equal use of all available highways. Here we develop new inventories that reflect observed spatial patterns and day of week, seasonal, and decadal changes in diesel truck emissions. High-resolution (4 km) gridded emission inventories have been developed in this study for diesel trucks in California. Fuel consumption and associated CO2 emissions were calculated for each segment of highway from census counts of truck traffic that span the entire highway network. This captures the majority of truck travel and on-road diesel fuel consumption in California. Remaining truck traffic on other roadways (e.g., urban arterials) is estimated by difference using statewide taxable diesel fuel sales and fuel economy survey data. Fuel-based emission factors measured in roadside remote sensing and tunnel studies were applied to CO2 emissions to estimate NOx. Air basin-specific temporal patterns in diesel truck activity and emissions are derived from 75 Weigh-in-Motion (WIM) traffic count sites located on major highways throughout the state. WIM sensors count and classify vehicles by number of axles and weight per axle, so separate counts for truck traffic are available with hourly or better time resolution. We find strong weekly cycles in diesel truck emissions, with lower values on weekends, especially in urban air basins surrounding Los Angeles and San Francisco. We also find seasonal cycles, up to +/-20% about annual average values, in the San Francisco Bay area and the San Joaquin and Sacramento Valleys. Peak emissions in these areas occur in June-July and appear to be associated with the harvest season in Central California.

  13. Non-linear power law approach for spatial and temporal pattern analysis of salt marsh evolution

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Cornacchia, L.; Valentini, E.; Bozzeda, F.

    2013-11-01

    Many complex systems on the Earth surface show non-equilibrium fluctuations, often determining the spontaneous evolution towards a critical state. In this context salt marshes are characterized by complex patterns both in geomorphological and ecological features, which often appear to be strongly correlated. A striking feature in salt marshes is vegetation distribution, which can self-organize in patterns over time and space. Self-organized patchiness of vegetation can often give rise to power law relationships in the frequency distribution of patch sizes. In cases where the whole distribution does not follow a power law, the variance of scale in its tail may often be disregarded. To this end, the research aims at how changes in the main climatic and hydrodynamic variables may influence such non-linearity, and how numerical thresholds can describe this. Since it would be difficult to simultaneously monitor the presence and typology of vegetation and channel sinuosity through in situ data, and even harder to analyze them over medium to large time-space scales, remote sensing offers the ability to analyze the scale invariance of patchiness distributions. Here, we focus on a densely vegetated and channelized salt marsh (Scheldt estuary Belgium-the Netherlands) by means of the sub-pixel analysis on satellite images to calculate the non-linearity in the values of the power law exponents due to the variance of scale. The deviation from power laws represents stochastic conditions under climate drivers that can be hybridized on the basis of a fuzzy Bayesian generative algorithm. The results show that the hybrid approach is able to simulate the non-linearity inherent to the system and clearly show the existence of a link between the autocorrelation level of the target variable (i.e. size of vegetation patches), due to its self-organization properties, and the influence exerted on it by the external drivers (i.e. climate and hydrology). Considering the results of the stochastic model, high uncertainties can be associated to the short term climate influence on the saltmarshes, and the medium-long term spatial and temporal trends seem to be dominated by vegetation with its evolution in time and space. The evolution of vegetation patches (under power law) and channel sinuosity can then be used to forecast potential deviation from steady states in intertidal systems, taking into account the climatic and hydrological regimes.

  14. Temporal and spatial paleoproductivity patterns associated with Eastern Mediterranean sapropels: paleoceanographic significance.

    NASA Astrophysics Data System (ADS)

    Gallego-Torres, D.; Martinez-Ruiz, F.; Meyers, P. A.; Paytan, A.; Jimenez-Espejo, F. J.; Ortega-Huertas, M.

    2007-12-01

    Deposition of Eastern Mediterranean sapropels has been discussed in terms of enhanced primary productivity and/or preferential preservation due to anoxic conditions in the deep basin. However, formation of these organic enriched layers is not homogeneous across the basin and through time, and temporal and spatial patterns can be observed in organic carbon concentrations and depositional conditions. We used a transect of ODP sites in the Eastern Mediterranean for the study of such variations, covering the area of major influence of the European continent and incoming waters from the Western Mediterranean basin (Ionian basin, Site 964), a region of influence of the Nile River (Levantine basin, Site 967), the central region of the basin with minor continental influence (Mediterranean Ridge, Site 969), and shallower bathymetries (Eratosthenes Seamount, Site 966). A set of paleoproductivity related proxies has been applied in order to reconstruct the paleoceanographic conditions that led to the formation of sapropels. As a whole, sapropel formation corresponds to wetter periods occurring during precessional minima and appears associated to increased productivity, evidenced by Ba/Al, and TOC-Ba mass accumulation rates maxima. δ13C data indicate intensified carbon fixation during organic carbon entrapment in sediment, where as low δ15N values provide evidence of nitrogen fixation through cyanobacteria activity as a source of increased primary and export productivity. This overwhelming export productivity led to the depletion of deep water dissolved oxygen, thus improving organic matter preservation. The above mentioned proxies show that sapropels represent periods of high productivity in an otherwise oligotrophic basin. This productivity was initiated and sustained by a change in bacterial community to nitrogen-fixing organism favored by intensified continental drainage and nutrient input. In agreement to this observation, sapropel onset generally occurred earlier in the Levantine basin, directly influenced by variations in the Nile River discharge, and progressively spread toward the western part of the basin. Thus, this change in paleoceanographic conditions is ultimately climatically driven and the evolution of the regional climate affects the intensity of the sapropel formation for the last 3 My. Intensified productivity and enhanced preservation is observed during sapropel deposition from the middle Pliocene until the lower Pleistocene. Productivity maxima occur during the late Pleistocene, coinciding with highest recorded sedimentary rate, and a relatively weak increase is observed during the deposition of the Holocene sapropel. This pattern implies that the rates of deep-water ventilation and of continental erosion generally increased in the eastern Mediterranean region as climate cooled since the mid-Pliocene.

  15. A generic regional spatio-temporal co-occurrence pattern mining model: a case study for air pollution

    NASA Astrophysics Data System (ADS)

    Akbari, Mohammad; Samadzadegan, Farhad; Weibel, Robert

    2015-07-01

    Spatio-temporal co-occurrence patterns represent subsets of object types which are located together in both space and time. Existing algorithms for co-occurrence pattern mining cannot handle complex applications such as air pollution in several ways. First, the existing models assume that spatial relationships between objects are explicitly represented in the input data, while the new method allows extracting implicitly contained spatial relationships algorithmically. Second, instead of extracting co-occurrence patterns of only point data, the proposed method deals with different feature types that is with point, line and polygon data. Thus, it becomes relevant for a wider range of real applications. Third, it also allows mining a spatio-temporal co-occurrence pattern simultaneously in space and time so that it illustrates the evolution of patterns over space and time. Furthermore, the proposed algorithm uses a Voronoi tessellation to improve efficiency. To evaluate the proposed method, it was applied on a real case study for air pollution where the objective is to find correspondences of air pollution with other parameters which affect this phenomenon. The results of evaluation confirm not only the capability of this method for co-occurrence pattern mining of complex applications, but also it exhibits an efficient computational performance.

  16. SN algorithm: analysis of temporal clinical data for mining periodic patterns and impending augury

    PubMed Central

    2013-01-01

    Background EHR (Electronic Health Record) system has led to development of specialized form of clinical databases which enable storage of information in temporal prospective. It has been a big challenge for mining this form of clinical data considering varied temporal points. This study proposes a conjoined solution to analyze the clinical parameters akin to a disease. We have used “association rule mining algorithm” to discover association rules among clinical parameters that can be augmented with the disease. Furthermore, we have proposed a new algorithm, SN algorithm, to map clinical parameters along with a disease state at various temporal points. Result SN algorithm is based on Jacobian approach, which augurs the state of a disease ‘Sn’ at a given temporal point ‘Tn’ by mapping the derivatives with the temporal point ‘T0’, whose state of disease ‘S0’ is known. The predictive ability of the proposed algorithm is evaluated in a temporal clinical data set of brain tumor patients. We have obtained a very high prediction accuracy of ~97% for a brain tumor state ‘Sn’ for any temporal point ‘Tn’. Conclusion The results indicate that the methodology followed may be of good value to the diagnostic procedure, especially for analyzing temporal form of clinical data. PMID:24283349

  17. Temporal stability of estimated soil water flux patterns across agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When a field or a small watershed is repeatedly surveyed for soil water content, sites often can be spotted where soil is consistently wetter or consistently dryer than average across the study area. This phenomenon has been called time stability, temporal stability, temporal persistence, or rank st...

  18. Temporal Variability and Stability in Infant-Directed Sung Speech: Evidence for Language-Specific Patterns

    ERIC Educational Resources Information Center

    Falk, Simone

    2011-01-01

    In this paper, sung speech is used as a methodological tool to explore temporal variability in the timing of word-internal consonants and vowels. It is hypothesized that temporal variability/stability becomes clearer under the varying rhythmical conditions induced by song. This is explored cross-linguistically in German--a language that exhibits a…

  19. Spatio-Temporal Patterns of Schistosomiasis Japonica in Lake and Marshland Areas in China: The Effect of Snail Habitats

    PubMed Central

    Hu, Yi; Gao, Jie; Chi, Meina; Luo, Can; Lynn, Henry; Sun, Liqian; Tao, Bo; Wang, Decheng; Zhang, Zhijie; Jiang, Qingwu

    2014-01-01

    The progress of the integrated control policy for schistosomiasis implemented since 2005 in China, which is aiming at reducing the roles of bovines and humans as infection sources, may be challenged by persistent presence of infected snails in lake and marshland areas. Based on annual parasitologic data for schistosomiasis during 2004–2011 in Xingzi County, a spatio-temporal kriging model was used to investigate the spatio-temporal pattern of schistosomiasis risk. Results showed that environmental factors related to snail habitats can explain the spatio-temporal variation of schistosomiasis. Predictive maps of schistosomiasis risk illustrated that clusters of the disease fluctuated during 2004–2008; there was an extensive outbreak in 2008 and attenuated disease occurrences afterwards. An area with an annually constant cluster of schistosomiasis was identified. Our study suggests that targeting snail habitats located within high-risk areas for schistosomiasis would be an economic and sustainable way of schistosomiasis control in the future. PMID:24980498

  20. Spatio-temporal patterns of schistosomiasis japonica in lake and marshland areas in China: the effect of snail habitats.

    PubMed

    Hu, Yi; Gao, Jie; Chi, Meina; Luo, Can; Lynn, Henry; Sun, Liqian; Tao, Bo; Wang, Decheng; Zhang, Zhijie; Jiang, Qingwu

    2014-09-01

    The progress of the integrated control policy for schistosomiasis implemented since 2005 in China, which is aiming at reducing the roles of bovines and humans as infection sources, may be challenged by persistent presence of infected snails in lake and marshland areas. Based on annual parasitologic data for schistosomiasis during 2004-2011 in Xingzi County, a spatio-temporal kriging model was used to investigate the spatio-temporal pattern of schistosomiasis risk. Results showed that environmental factors related to snail habitats can explain the spatio-temporal variation of schistosomiasis. Predictive maps of schistosomiasis risk illustrated that clusters of the disease fluctuated during 2004-2008; there was an extensive outbreak in 2008 and attenuated disease occurrences afterwards. An area with an annually constant cluster of schistosomiasis was identified. Our study suggests that targeting snail habitats located within high-risk areas for schistosomiasis would be an economic and sustainable way of schistosomiasis control in the future. PMID:24980498

  1. Analysis of Spatio-Temporal Patterns of Leaf Area Index in Different Forest Types of India Using High Temporal Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Chhabra, A.; Panigrahy, S.

    2011-08-01

    Knowledge of temporal variations of Leaf Area Index (LAI) aids in understanding the climate-vegetation interaction of different vegetative systems. This information is amenable from high temporal remote sensing data. India has around 78.37 million hectare, accounting for 23.84% of the geographic area of the country under forest/tree cover. India has a diverse set of vegetation types ranging from tropical evergreen to dry deciduous. We present a detailed spatio-temporal and inter-seasonal analysis of LAI patterns in different forest types of India using MODIS 8-day composites global LAI/fPAR product for the year 2005 at 1-km spatial resolution. A forest cover mask was generated using SPOT 1-km landuse/landcover classification over the Indian region. The range of estimated LAI varied from 0.1-6.9 among the different forest types. Maximum LAI was observed in tropical evergreen forests in North-Eastern region and Western Ghats. Low LAI was observed in Central Indian region due to predominance of dry deciduous forests. The spatial patterns of seasonal variations detected that for most of the forest types, the peak LAI values were observed during September and October months of the autumn season in contrast to minimum LAI during summer season. The mean LAI and standard deviation for each 8-day LAI composite were also computed and mean monthly LAI profiles were derived for each forest type classified on the basis of their geographical locations. These results are useful indicators for detailed understanding of phenological sequence and may also serve as important inputs for deriving bioclimatic indices for different forest types of India.

  2. Application of pattern recognition techniques to the identification of aerospace acoustic sources

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.; Obrien, Walter F.; Cabell, Randolph H.

    1988-01-01

    A pattern recognition system was developed that successfully recognizes simulated spectra of five different types of transportation noise sources. The system generates hyperplanes during a training stage to separate the classes and correctly classify unknown patterns in classification mode. A feature selector in the system reduces a large number of features to a smaller optimal set, maximizing performance and minimizing computation.

  3. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments—A review

    NASA Astrophysics Data System (ADS)

    Fiener, P.; Auerswald, K.; Van Oost, K.

    2011-05-01

    Surface runoff and associated erosion processes adversely affect soil and surface water quality. There is increasing evidence that a sound understanding of spatial-temporal dynamics of land use and management are crucial to understanding surface runoff processes and underpinning mitigation strategies. In this review, we synthesise the effects of (1) temporal patterns of land management of individual fields, and (2) spatio-temporal interaction of several fields within catchments by applying semivariance analysis, which allows the extent and range of the different patterns to be compared. Consistent effects of management on the temporal dynamics of surface runoff of individual fields can be identified, some of which have been incorporated into small-scale hydrological models. In contrast, the effects of patchiness, the spatial organisation of patches with different soil hydrological properties, and the effects of linear landscape structures are less well understood and are rarely incorporated in models. The main challenge for quantifying these effects arises from temporal changes within individual patches, where the largest contrasts usually occur in mid-summer and cause a seasonally varying effect of patchiness on the overall catchment response. Some studies indicate that increasing agricultural patchiness, due to decreasing field sizes, reduces the catchment-scale response to rainfall, especially in cases of Hortonian runoff. Linear structures associated with patchiness of fields (e.g. field borders, ditches, and ephemeral gullies) may either increase or decrease the hydraulic connectivity within a catchment. The largest gap in research relates to the effects and temporal variation of patch interaction, the influence of the spatial organisation of patches and the interaction with linear structures. In view of the substantial changes in the structure of agricultural landscapes occurring throughout the world, it is necessary to improve our knowledge of the influence of patchiness and connectivity, and to implement this knowledge in new modelling tools.

  4. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    PubMed

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. PMID:26831341

  5. Cascadia Segmentation and Long Term Temporal Rupture Pattern based on Paleoseismicity: some Global Implications

    NASA Astrophysics Data System (ADS)

    Goldfinger, C.

    2011-12-01

    Onshore and offshore paleoseismic evidence from 41 Cascadia earthquakes strongly suggest that segmentation plays a significant role in Cascadia, and may have multiple sources. Offshore turbidite records show a remarkable correspondence along strike in 14C ages, physical property correlations, and even details such as mass per event and number of coarse fraction units per event. The joint correlation of these parameters allows approximate delineation of paleo-rupture extent, limited mostly by the spatial distribution of cores. The onshore-offshore space-time diagram reveals that recurrence intervals and segment length decreases southward along the margin. Southern segments may be controlled by obvious structural boundaries such as the Blanco Fracture zone, and two subducting pseudo faults. Along the northern margin, where segmentation is not apparent, basement structure is masked by thicker incoming sediment supply from two large fan systems, supporting a primary control by sediment thickness on the subducting plate. We suspect, supported by paleoseismic data, that northern Cascadia and northern Sumatra may be prone to large ruptures by similar mechanisms. One segment boundary in Cascadia appears not to be related to sediment supply, but may linked to a narrowing of the locked interface in map view. The Cascadia forearc is composed of an Eocene-Pliocene accretionary complex, outboard of which lies a Pleistocene-Holocene wedge of low taper, mixed vergence, and high pore fluid pressure. The young wedge is widest off Washington and northernmost Oregon, tapering both north and south. Mixed vergence, open folds, mud volcanoes and backstop parallel trends indicate poor coupling of the young wedge that is easily mapped from surface data. The long-term average downdip limit of significant coupling appears to be consistent with thermal, geodetic, and structural evidence of a transition from arc normal to arc parallel contraction. An average boundary consistent with these disparate data suggest significant heterogeneity in along-strike width and or magnitude of coupling. A seaward swing of the downdip locked zone, combined with a landward position of the updip limit may create a "pinchout" in central Oregon, where we observe a paleoseismic segment boundary. The 10ka paleoseismic record includes evidence of temporal variability as well. Temporal clustering, and the presence of several outsized events is apparent. When we compare the mass of correlated turbidite deposits along strike, we find a surprisingly strong correspondence between disparate sites, enough to conclude that earthquake magnitude and turbidite mass are crudely related for many Cascadia events. The two outsized events, dated at ~ 5960 and 8810 yrs. BP, consistently have two to five times the average turbidite mass for Holocene events at many sites, a relation not related to sediment supply. Plotting the long term energy balance based on mass per event reveals a robust pattern including long term increases and declines in stored "energy state" or "supercycles". If Cascadia is representative of other plate boundary faults, this suggests that recurrence models may be neither time nor slip predictable and cannot be based on short instrumental records.

  6. Understanding spatio-temporal mobility patterns for seniors, child/student and adult using smart card data

    NASA Astrophysics Data System (ADS)

    Huang, X.; Tan, J.

    2014-11-01

    Commutes in urban areas create interesting travel patterns that are often stored in regional transportation databases. These patterns can vary based on the day of the week, the time of the day, and commuter type. This study proposes methods to detect underlying spatio-temporal variability among three groups of commuters (senior citizens, child/students, and adults) using data mining and spatial analytics. Data from over 36 million individual trip records collected over one week (March 2012) on the Singapore bus and Mass Rapid Transit (MRT) system by the fare collection system were used. Analyses of such data are important for transportation and landuse designers and contribute to a better understanding of urban dynamics. Specifically, descriptive statistics, network analysis, and spatial analysis methods are presented. Descriptive variables were proposed such as density and duration to detect temporal features of people. A directed weighted graph G ≡ (N , L, W) was defined to analyze the global network properties of every pair of the transportation link in the city during an average workday for all three categories. Besides, spatial interpolation and spatial statistic tools were used to transform the discrete network nodes into structured human movement landscape to understand the role of transportation systems in urban areas. The travel behaviour of the three categories follows a certain degree of temporal and spatial universality but also displays unique patterns within their own specialties. Each category is characterized by their different peak hours, commute distances, and specific locations for travel on weekdays.

  7. Spatial and temporal patterns of nonvolcanic tremor along the southern Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Boyarko, Devin C.; Brudzinski, Michael R.

    2010-08-01

    Episodic tremor and slip (ETS), the spatial and temporal correlation of slow slip events monitored via GPS surface displacements and nonvolcanic tremor (NVT) monitored via seismic signals, is a newly discovered mode of deformation thought to be occurring downdip from the seismogenic zone along several subduction zone megathrusts. To provide overall constraints on the distribution and migration behavior of NVT in southern Cascadia, we apply a semiautomated location algorithm to seismic data available during the EarthScope Transportable Array deployment to detect the most prominent pulses of NVT and invert analyst-refined relative arrival times for source locations. In the processing, we also detect distinct and isolated bursts of energy within the tremor similar to observations of low-frequency earthquakes in southwest Japan. We investigate in detail eight NVT episodes between November 2005 and August 2007 with source locations extending over a 650 km along-strike region from northern California to northern Oregon. We find complex tremor migration patterns with periods of steady migration (4-10 km/d), halting, and frequent along-strike jumps (30-400 km) in activity. The initiation and termination points of laterally continuous tremor activity appear to be repeatable features between NVT episodes which support the hypothesis of segmentation within the ETS zone. The overall distribution of NVT epicenters occur within a narrow band primarily confined by the surface projections of the 30 and 40 km contours of the subducting plate interface. We find as much as 50 km spatial offset from the updip edge of the tremor source zone to the downdip edge of the thermally and geodetically defined transition zone, which may inhibit ETS from triggering earthquakes further updip. Intriguingly, NVT activity is spatially anticorrelated with local seismicity, suggesting the two processes are mutually exclusive. We propose that the transition in frictional behavior coupled with high pore fluid pressures in the ETS zone favor tremor generation instead of regular interplate seismicity and frequent ETS produces a semicontinuous relaxation of strain within the overriding and subducting plates that further inhibit seismogenesis surrounding the ETS source region.

  8. Spatio-Temporal Patterns of Demyelination and Remyelination in the Cuprizone Mouse Model.

    PubMed

    Tagge, Ian; O'Connor, Audrey; Chaudhary, Priya; Pollaro, Jim; Berlow, Yosef; Chalupsky, Megan; Bourdette, Dennis; Woltjer, Randy; Johnson, Mac; Rooney, William

    2016-01-01

    Cuprizone administration in mice provides a reproducible model of demyelination and spontaneous remyelination, and has been useful in understanding important aspects of human disease, including multiple sclerosis. In this study, we apply high spatial resolution quantitative MRI techniques to establish the spatio-temporal patterns of acute demyelination in C57BL/6 mice after 6 weeks of cuprizone administration, and subsequent remyelination after 6 weeks of post-cuprizone recovery. MRI measurements were complemented with Black Gold II stain for myelin and immunohistochemical stains for associated tissue changes. Gene expression was evaluated using the Allen Gene Expression Atlas. Twenty-five C57BL/6 male mice were split into control and cuprizone groups; MRI data were obtained at baseline, after 6 weeks of cuprizone, and 6 weeks post-cuprizone. High-resolution (100μm isotropic) whole-brain coverage magnetization transfer ratio (MTR) parametric maps demonstrated concurrent caudal-to-rostral and medial-to-lateral gradients of MTR decrease within corpus callosum (CC) that correlated well with demyelination assessed histologically. Our results show that demyelination was not limited to the midsagittal line of the corpus callosum, and also that opposing gradients of demyelination occur in the lateral and medial CC. T2-weighted MRI gray/white matter contrast was strong at baseline, weak after 6 weeks of cuprizone treatment, and returned to a limited extent after recovery. MTR decreases during demyelination were observed throughout the brain, most clearly in callosal white matter. Myelin damage and repair appear to be influenced by proximity to oligodendrocyte progenitor cell populations and exhibit an inverse correlation with myelin basic protein gene expression. These findings suggest that susceptibility to injury and ability to repair vary across the brain, and whole-brain analysis is necessary to accurately characterize this model. Whole-brain parametric mapping across time is essential for gaining a real understanding of disease processes in-vivo. MTR increases in healthy mice throughout adolescence and adulthood were observed, illustrating the need for appropriate age-matched controls. Elucidating the unique and site-specific demyelination in the cuprizone model may offer new insights into in mechanisms of both damage and repair in human demyelinating diseases. PMID:27054832

  9. Spatio-Temporal Patterns of Demyelination and Remyelination in the Cuprizone Mouse Model

    PubMed Central

    Tagge, Ian; O’Connor, Audrey; Chaudhary, Priya; Pollaro, Jim; Berlow, Yosef; Chalupsky, Megan; Bourdette, Dennis; Woltjer, Randy; Johnson, Mac; Rooney, William

    2016-01-01

    Cuprizone administration in mice provides a reproducible model of demyelination and spontaneous remyelination, and has been useful in understanding important aspects of human disease, including multiple sclerosis. In this study, we apply high spatial resolution quantitative MRI techniques to establish the spatio-temporal patterns of acute demyelination in C57BL/6 mice after 6 weeks of cuprizone administration, and subsequent remyelination after 6 weeks of post-cuprizone recovery. MRI measurements were complemented with Black Gold II stain for myelin and immunohistochemical stains for associated tissue changes. Gene expression was evaluated using the Allen Gene Expression Atlas. Twenty-five C57BL/6 male mice were split into control and cuprizone groups; MRI data were obtained at baseline, after 6 weeks of cuprizone, and 6 weeks post-cuprizone. High-resolution (100μm isotropic) whole-brain coverage magnetization transfer ratio (MTR) parametric maps demonstrated concurrent caudal-to-rostral and medial-to-lateral gradients of MTR decrease within corpus callosum (CC) that correlated well with demyelination assessed histologically. Our results show that demyelination was not limited to the midsagittal line of the corpus callosum, and also that opposing gradients of demyelination occur in the lateral and medial CC. T2-weighted MRI gray/white matter contrast was strong at baseline, weak after 6 weeks of cuprizone treatment, and returned to a limited extent after recovery. MTR decreases during demyelination were observed throughout the brain, most clearly in callosal white matter. Myelin damage and repair appear to be influenced by proximity to oligodendrocyte progenitor cell populations and exhibit an inverse correlation with myelin basic protein gene expression. These findings suggest that susceptibility to injury and ability to repair vary across the brain, and whole-brain analysis is necessary to accurately characterize this model. Whole-brain parametric mapping across time is essential for gaining a real understanding of disease processes in-vivo. MTR increases in healthy mice throughout adolescence and adulthood were observed, illustrating the need for appropriate age-matched controls. Elucidating the unique and site-specific demyelination in the cuprizone model may offer new insights into in mechanisms of both damage and repair in human demyelinating diseases. PMID:27054832

  10. Spatio-temporal Patterns and Landscape-Associated Risk of Buruli Ulcer in Akonolinga, Cameroon

    PubMed Central

    Landier, Jordi; Gaudart, Jean; Carolan, Kevin; Lo Seen, Danny; Guégan, Jean-François; Eyangoh, Sara; Fontanet, Arnaud; Texier, Gaëtan

    2014-01-01

    Background Buruli ulcer (BU) is an extensively damaging skin infection caused by Mycobacterium ulcerans, whose transmission mode is still unknown. The focal distribution of BU and the absence of interpersonal transmission suggest a major role of environmental factors, which remain unidentified. This study provides the first description of the spatio-temporal variations of BU in an endemic African region, in Akonolinga, Cameroon. We quantify landscape-associated risk of BU, and reveal local patterns of endemicity. Methodology/Principal Findings From January 2002 to May 2012, 787 new BU cases were recorded in 154 villages of the district of Akonolinga. Incidence per village ranged from 0 (n = 59 villages) to 10.4 cases/1000 person.years (py); median incidence was 0.4 cases/1,000py. Villages neighbouring the Nyong River flood plain near Akonolinga town were identified as the highest risk zone using the SPODT algorithm. We found a decreasing risk with increasing distance to the Nyong and identified 4 time phases with changes in spatial distribution. We classified the villages into 8 groups according to landscape characteristics using principal component analysis and hierarchical clustering. We estimated the incidence ratio (IR) associated with each landscape using a generalised linear model. BU risk was highest in landscapes with abundant wetlands, especially cultivated ones (IR = 15.7, 95% confidence interval [95%CI] = 15.7[4.2–59.2]), and lowest in reference landscape where primary and secondary forest cover was abundant. In intermediate-risk landscapes, risk decreased with agriculture pressure (from IR[95%CI] = 7.9[2.2–28.8] to 2.0[0.6–6.6]). We identified landscapes where endemicity was stable and landscapes where incidence increased with time. Conclusion/Significance Our study on the largest series of BU cases recorded in a single endemic region illustrates the local evolution of BU and identifies the Nyong River as the major driver of BU incidence. Local differences along the river are explained by wetland abundance and human modification of the environment. PMID:25188464

  11. Spatial and temporal patterns of Pleistocene biogenic sediment accumulation in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Moy, C. M.; Bahlburg, H.; Childress, L. B.; Cowan, E. A.; Forwick, M.; Müller, J.; Ribeiro, F.; Ridgway, K. D.; Mix, A. C.

    2013-12-01

    Reconstructing the timing and nature of past changes in aquatic productivity in the Gulf of Alaska (GoA) can shed light on the primary processes driving biogeochemical cycling over geologic timescales. Today, Fe is an important micronutrient that limits primary productivity in surface waters beyond the continental shelf in much of the GoA. However, we have a relatively poor understanding of how Fe-delivery processes, combined with changing climate, environmental, and oceanographic conditions, interact to influence primary production over glacial-interglacial timescales. An important first step is to identify the spatial and temporal patterns of increased productivity in the sediment record. Here, we present sedimentologic and physical property data from IODP Expedition 341 and identify intervals where diatom ooze and diatom-rich mud lithofacies are prevalent during the Pleistocene. Among the Expedition 341 recovered cores, were high-recovery intervals in the outer (Site U1417) and inner (U1418) Surveyor Fan, and from a small slope basin at the edge of the continental shelf (Site U1419). In general, greenish gray diatomaceous ooze (containing >50 % diatoms in smear slides) and diatom-rich mud (>25% diatoms) is found in beds ranging in thickness from 20 to 150 cm, interbedded with gray mud that commonly contains lonestones. Ooze is occasionally found immediately overlying volcanic ash. Compared to non-biogenic mud, diatomaceous sediments are generally characterized by lower magnetic susceptibility, natural gamma ray, bulk density, and higher b* color reflectance. At Site U1417, we observe a frequent occurrence of diatomaceous ooze during the middle Pleistocene relative to the early and late Pleistocene. At Site U1418, intervals containing diatom ooze are less common than at U1417 and biogenic sediments are mainly observed within the late Pleistocene portion of the record. However, higher sedimentation rates at U1418 relative to U1417, and the co-occurrence of sand and interbedded mud and silt indicate that clastic sediment dilution may obscure biogenic sediment contribution. At Site U1419, two prominent ~5 m thick intervals of diatomaceous ooze are found (within the uppermost 5 m and between 80 and 90 m composite depth, respectively). Between these intervals are numerous 20 cm thick intervals of biogenic sediment that were likely deposited during the middle or late Pleistocene based on preliminary shipboard age models. Biogenic intervals observed at Expedition 341 sites may be related to increased productivity driven by a combination of the aforementioned processes, but additional chronological and geochemical constraints are needed from all sites to rule out the role that changing sedimentation rates and/or silica dissolution plays in controlling the distribution of ooze in these records.

  12. Incorporation of treatment plan spatial and temporal dose patterns into a prostate intrafractional motion management strategy

    SciTech Connect

    Zhang Pengpeng; Hunt, Margie; Happersett, Laura; Cox, Brett; Mageras, Gig

    2012-09-15

    Purpose: Periodic MV/KV radiographs taken during volumetric modulated arc therapy (VMAT) for hypofractionated treatment provide guidance in intrafractional motion management. The choice of imaging frequency and timing are key components in delivering the desired dose while reducing associated overhead such as imaging dose, preparation, and processing time. In this project the authors propose a paradigm with imaging timing and frequency based on the spatial and temporal dose patterns of the treatment plan. Methods: A number of control points are used in treatment planning to model VMAT delivery. For each control point, the sensitivity of individual target or organ-at-risk dose to motion can be calculated as the summation of dose degradations given the organ displacements along a number of possible motion directions. Instead of acquiring radiographs at uniform time intervals, MV/KV image pairs are acquired indexed to motion sensitivity. Five prostate patients treated via hypofractionated VMAT are included in this study. Intrafractional prostate motion traces from the database of an electromagnetic tracking system are used to retrospectively simulate the VMAT delivery and motion management. During VMAT delivery simulation patient position is corrected based on the radiographic findings via couch movement if target deviation violates a patient-specific 3D threshold. The violation rate calculated as the percentage of traces failing the clinical dose objectives after motion correction is used to evaluate the efficacy of this approach. Results: Imaging indexed to a 10 s equitime interval and correcting patient position accordingly reduces the violation rate to 19.5% with intervention from 44.5% without intervention. Imaging indexed to the motion sensitivity further reduces the violation rate to 12.1% with the same number of images. To achieve the same 5% violation rate, the imaging incidence can be reduced by 40% by imaging indexed to motion sensitivity instead of time. Conclusions: The simulation results suggest that image scheduling according to the characteristics of the treatment plan can improve the efficiency of intrafractional motion management. Using such a technique, the accuracy of delivered dose during image-guided hypofractionated VMAT treatment can be improved.

  13. Temporal pattern in the effect of postnatal blood lead level on intellectual development of young children.

    PubMed

    Schnaas, L; Rothenberg, S J; Perroni, E; Martínez, S; Hernández, C; Hernández, R M

    2000-01-01

    To determine the temporal pattern of the effect of postnatal blood lead level on the General Cognitive Index (GCI) of the McCarthy Scales of Children's Abilities, we used data from 112 children of the Mexico City Prospective Lead Study with complete evaluations from 36 to 60 months of age at 6-month intervals. We measured blood lead level every 6 months from 6 to 54 months. We controlled for 5-min Apgar, birth weight, birth order, sex, socioeconomic level, maternal IQ, and maximum maternal educational level in a repeated measures ANCOVA using child blood lead level grouped by 6-18 month (geometric mean 10.1 microg/dl, range 3.5-37.0 microg/dl), 24-36 month (geometric mean 9.7 microg/dl, range 3.0-42.7 microg/dl), and 42-54 month (geometric mean 8.4 microg/dl, range 2.5-44.8 microg/dl) averages. There were significant interactions between the 6-18 month blood lead level and age with GCI as the endpoint and between 24-36 month blood lead level and age. The regression coefficient of blood lead at 6-18 months became more negative with age until 48 months, when the rate of decline moderated (linear polynomial contrast p=0. 047). The regression coefficient of blood lead at 24-36 months with CGI became more negative as well from 36 to 48 months but then started decreasing toward zero from 48 to 60 months (quadratic polynomial contrast p=0.019). Significant between-subjects lead effects on GCI were found for 24-36 month blood lead level at 48 months (p=0.021) and at 54 months (p=0.073). The greatest effect (at 48 months) was a 5.8-point GCI decrease with each natural log unit increase in blood lead. Significant between-subjects lead effects on GCI were found for 42-54 month blood lead level at 54 months (p=0. 040) and at 60 months (p=0.060). The effect of postnatal blood lead level on GCI reaches its maximum approximately 1-3 years later, and then becomes less evident. Four to five years of age appears to be a critical period for the manifestation of the earlier postnatal blood lead level effects. PMID:11120385

  14. Patterns of venom production and temporal polyethism in workers of Jerdon's jumping ant, Harpegnathos saltator.

    PubMed

    Haight, Kevin L

    2012-12-01

    Ants are chemical factories, and among their more noticeable products are their venoms. Though many studies have addressed the properties and activities of ant venoms, basic venom-related physiological questions, such as how venom production and replacement may vary with age, are rarely addressed. The answers to these questions are fundamental to understanding the physiological capabilities of these organisms, as well as the parameters within which potential optimization of their investment in venom production must take place. The only previous investigation into venom production in ants found it to be limited to early life in workers of the fire ant, Solenopsis invicta (Haight and Tschinkel, 2003). Because similar studies have not been conducted for comparison, it is unclear whether or not this is a common physiological pattern in ants. As a parsimonious way to address this question, and, more generally, to increase the currently scant information available regarding the venom-producing capabilities of ants, the longevity, temporal polyethism, age-related venom production, and age-related venom replacement capabilities of workers of Jerdon's jumping ant, Harpegnathos saltator were investigated. Longevity varied from 10 days to nearly 2 years, with a median lifespan of 206 days. Workers remained in the nest when young, transitioned to outside work (foraging) after 50 days of age, and reached a plateau in their tendency to be outside the nest at 74 days of age. They eclosed with empty venom sacs, filled them by about 57 days of age, and were able to replace venom at all three ages tested (though at a higher rate when aged 100 days than 30 and 206). So, venom-production ability is not limited to early life in H. saltator workers, and aspects of venom physiology and exploratory behavior appear to coincide in a manner likely to result in foraging efficiency benefits; venom sacs reach fullness around the age workers begin their foraging careers, and venom replacement rate is highest around the age workers become the most dedicated foragers. PMID:23041374

  15. Spatial-temporal excess mortality patterns of the 1918–1919 influenza pandemic in Spain

    PubMed Central

    2014-01-01

    Background The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that experienced the highest mortality burden. Methods We analyzed monthly death rates from respiratory diseases and all-causes across 49 provinces of Spain, including the Canary and Balearic Islands, during the period January-1915 to June-1919. We estimated the influenza-related excess death rates and risk of death relative to baseline mortality by pandemic wave and province. We then explored the association between pandemic excess mortality rates and health and socio-demographic factors, which included population size and age structure, population density, infant mortality rates, baseline death rates, and urbanization. Results Our analysis revealed high geographic heterogeneity in pandemic mortality impact. We identified 3 pandemic waves of varying timing and intensity covering the period from Jan-1918 to Jun-1919, with the highest pandemic-related excess mortality rates occurring during the months of October-November 1918 across all Spanish provinces. Cumulative excess mortality rates followed a south–north gradient after controlling for demographic factors, with the North experiencing highest excess mortality rates. A model that included latitude, population density, and the proportion of children living in provinces explained about 40% of the geographic variability in cumulative excess death rates during 1918–19, but different factors explained mortality variation in each wave. Conclusions A substantial fraction of the variability in excess mortality rates across Spanish provinces remained unexplained, which suggests that other unidentified factors such as comorbidities, climate and background immunity may have affected the 1918–19 pandemic mortality rates. Further archeo-epidemiological research should concentrate on identifying settings with combined availability of local historical mortality records and information on the prevalence of underlying risk factors, or patient-level clinical data, to further clarify the drivers of 1918 pandemic influenza mortality. PMID:24996457

  16. Spatio-temporal distribution patterns of the epibenthic community in the coastal waters of Suriname

    NASA Astrophysics Data System (ADS)

    Willems, Tomas; De Backer, Annelies; Wan Tong You, Kenneth; Vincx, Magda; Hostens, Kris

    2015-10-01

    This study aimed to characterize the spatio-temporal patterns of the epibenthic community in the coastal waters of Suriname. Data were collected on a (bi)monthly basis in 2012-2013 at 15 locations in the shallow (<40 m) coastal area, revealing three spatially distinct species assemblages, related to clear gradients in some environmental parameters. A species-poor coastal assemblage was discerned within the muddy, turbid-water zone (6-20 m depth), dominated by Atlantic seabob shrimp Xiphopenaeus kroyeri (Crustacea: Penaeoidea). Near the 30 m isobath, sediments were much coarser (median grain size on average 345±103 μm vs. 128±53 μm in the coastal assemblage) and water transparency was much higher (on average 7.6±3.5 m vs. 2.4±2.1 m in the coastal assemblage). In this zone, a diverse offshore assemblage was found, characterized by brittle stars (mainly Ophioderma brevispina and Ophiolepis elegans) and a variety of crabs, sea stars and hermit crabs. In between both zones, a transition assemblage was noted, with epibenthic species typically found in either the coastal or offshore assemblages, but mainly characterized by the absence of X. kroyeri. Although the epibenthic community was primarily structured in an on-offshore gradient related to depth, sediment grain size and sediment total organic carbon content, a longitudinal (west-east) gradient was apparent as well. The zones in the eastern part of the Suriname coastal shelf seemed to be more widely stretched along the on-offshore gradient. Although clear seasonal differences were noted in the environmental characteristics (e.g. dry vs. rainy season), this was not reflected in the epibenthic community structure. X. kroyeri reached very high densities (up to 1383 ind 1000 m-²) in the shallow coastal waters of Suriname. As X. kroyeri is increasingly exploited throughout its range, the current study provides the ecological context for its presence and abundance, which is crucial for an ecosystem approach and the sustainable management of this commercially important species and its habitat.

  17. Spatio-temporal recharge patterns in a semi-arid alluvial basin with irrigated crops

    NASA Astrophysics Data System (ADS)

    Ruud, N. C.; Harter, T.; Naugle, A. W.

    2001-12-01

    Recharge in semi-arid regions with irrigated crops is predominantly driven by irrigation technology and cropping patterns, but also by the seasonal distribution of rainfall and the availability of irrigation water. A significant amount of basin recharge occurs from ephemeral streams and unlined irrigation canals. A spatially distributed, GIS-based hydrologic model of water application and water use at the land-atmosphere interface was developed to estimate transient recharge to the deep vadose zone and into the unconfined alluvial aquifer. The spatial basis for the hydrologic model are individual landuse units (diffuse recharge) and a network of streams and canals with water seepage (lineal recharge). The land-atmosphere interface and unsaturated zone model component (LAIUZ) is coupled to a surface water supply model component (SWSM) that provides surface water deliveries by district or sub-district, depending on available information. Using LAIUZ and SWSM, we investigate the regional behavior and spatio-temporal variability of deep vadose zone recharge in the 3,800 square kilometer Tule groundwater basin of the San Joaquin Valley, California. Surface water management in the topographically flat basin is divided between two dozen irrigation and water districts. All surface water is imported or is natural discharge into the basin. Groundwater extractions are managed by landowners on a field-by-field basis. Monthly varying recharge and groundwater pumping rates are computed for the hydrologic years 1970 through 2000. The average size of the GIS landuse units is 0.4 sq. kilometers. The GIS coverage distinguishes over 60 landuse types. Applied and consumptive water use are computed based on actual evapotranspiration and known irrigation or water use efficiencies for each landuse unit. Seepage from streams is computed by mass balance. The resulting model estimates of groundwater recharge and pumping are in good agreement with measured groundwater level changes for the thirty-year period (model validation). Throughout the region, the deep vadose zone (up to 30 m deep) is found to account for a significant amount of intermediate-term basin storage, particularly during wet year cycles. The hydrologic model demonstrates that practically all of the annual precipitation (230 mm) is available for intermediate storage in the root zone, crop water uptake, or deep percolation. No direct losses to evaporation occur, presumably because most precipitation occurs during the winter months. Diffuse recharge is 110 mm/year (range: 38 - 200 mm/year). Lineal recharge accounts for one-third of the total recharge (170 mm/year) in the basin. In wet years, lineal recharge along streams and in intentional recharge basins may account for over 50% of the total recharge, whereas in dry years it may be as little as 8%.

  18. Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex.

    PubMed

    Xu, Min; Zhang, Si-yu; Dan, Yang; Poo, Mu-ming

    2014-01-01

    Perception of time interval on the order of seconds is an essential component of cognition, but the underlying neural mechanism remains largely unknown. In rats trained to estimate time intervals, we found that many neurons in the medial prefrontal cortex (PFC) exhibited sustained spiking activity with diverse temporal profiles of firing-rate modulation during the time-estimation period. Interestingly, in tasks involving different intervals, each neuron exhibited firing-rate modulation with the same profile that was temporally scaled by a factor linearly proportional to the instructed intervals. The behavioral variability across trials within each task also correlated with the intertrial variability of the temporal scaling factor. Local cooling of the medial PFC, which affects neural circuit dynamics, significantly delayed behavioral responses. Thus, PFC neuronal activity contributes to time perception, and temporally scalable firing-rate modulation may reflect a general mechanism for neural representation of interval timing. PMID:24367075

  19. Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex

    PubMed Central

    Xu, Min; Zhang, Si-yu; Dan, Yang; Poo, Mu-ming

    2014-01-01

    Perception of time interval on the order of seconds is an essential component of cognition, but the underlying neural mechanism remains largely unknown. In rats trained to estimate time intervals, we found that many neurons in the medial prefrontal cortex (PFC) exhibited sustained spiking activity with diverse temporal profiles of firing-rate modulation during the time-estimation period. Interestingly, in tasks involving different intervals, each neuron exhibited firing-rate modulation with the same profile that was temporally scaled by a factor linearly proportional to the instructed intervals. The behavioral variability across trials within each task also correlated with the intertrial variability of the temporal scaling factor. Local cooling of the medial PFC, which affects neural circuit dynamics, significantly delayed behavioral responses. Thus, PFC neuronal activity contributes to time perception, and temporally scalable firing-rate modulation may reflect a general mechanism for neural representation of interval timing. PMID:24367075

  20. Numerical Study of the Complex Temporal Pattern of Spontaneous Oscillation in Bullfrog Saccular Hair Cells

    NASA Astrophysics Data System (ADS)

    Roongthumskul, Yuttana; Fredrickson-Hemsing, Lea; Kao, Albert; Bozovic, Dolores

    2011-11-01

    Hair bundles of the bullfrog sacculus display spontaneous oscillations that show complex temporal profiles. Quiescent intervals are typically interspersed with oscillations, analogous to bursting behavior observed in neural systems. By introducing slow calcium dynamics into the theoretical model of bundle mechanics, we reproduce numerically the multi-mode oscillations and explore the effects of internal parameters on the temporal profiles and the frequency tuning of their linear response functions. We also study the effects of mechanical overstimulation on the oscillatory behavior.

  1. High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling

    PubMed Central

    Banks, H T; Birch, Malcolm J; Brewin, Mark P; Greenwald, Stephen E; Hu, Shuhua; Kenz, Zackary R; Kruse, Carola; Maischak, Matthias; Shaw, Simon; Whiteman, John R

    2014-01-01

    We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685–6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (r + 1)D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over for r ⩽100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin–Voigt and Maxwell–Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd. PMID:25834284

  2. Spatial and temporal patterns of larval dispersal in a coral-reef fish metapopulation: evidence of variable reproductive success.

    PubMed

    Pusack, Timothy J; Christie, Mark R; Johnson, Darren W; Stallings, Christopher D; Hixon, Mark A

    2014-07-01

    Many marine organisms can be transported hundreds of kilometres during their pelagic larval stage, yet little is known about spatial and temporal patterns of larval dispersal. Although traditional population-genetic tools can be applied to infer movement of larvae on an evolutionary timescale, large effective population sizes and high rates of gene flow present serious challenges to documenting dispersal patterns over shorter, ecologically relevant, timescales. Here, we address these challenges by combining direct parentage analysis and indirect genetic analyses over a 4-year period to document spatial and temporal patterns of larval dispersal in a common coral-reef fish: the bicolour damselfish (Stegastes partitus). At four island locations surrounding Exuma Sound, Bahamas, including a long-established marine reserve, we collected 3278 individuals and genotyped them at 10 microsatellite loci. Using Bayesian parentage analysis, we identified eight parent-offspring pairs, thereby directly documenting dispersal distances ranging from 0 km (i.e., self-recruitment) to 129 km (i.e., larval connectivity). Despite documenting substantial dispersal and gene flow between islands, we observed more self-recruitment events than expected if the larvae were drawn from a common, well-mixed pool (i.e., a completely open population). Additionally, we detected both spatial and temporal variation in signatures of sweepstakes and Wahlund effects. The high variance in reproductive success (i.e., 'sweepstakes') we observed may be influenced by seasonal mesoscale gyres present in the Exuma Sound, which play a prominent role in shaping local oceanographic patterns. This study documents the complex nature of larval dispersal in a coral-reef fish, and highlights the importance of sampling multiple cohorts and coupling both direct and indirect genetic methods in order disentangle patterns of dispersal, gene flow and variable reproductive success. PMID:24917250

  3. Spatial and Temporal Patterns of Impervious Cover Relative to Watershed Stream Location

    EPA Science Inventory

    The influence of spatial pattern on ecological processes is a guiding principle of landscape ecology. The guiding principle of spatial pattern was used for a U.S. nationwide assessment of impervious cover (IC). Spatial pattern was measured by comparing IC concentration near strea...

  4. Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data.

    PubMed

    Zhong, Chen; Batty, Michael; Manley, Ed; Wang, Jiaqiu; Wang, Zijia; Chen, Feng; Schmitt, Gerhard

    2016-01-01

    To discover regularities in human mobility is of fundamental importance to our understanding of urban dynamics, and essential to city and transport planning, urban management and policymaking. Previous research has revealed universal regularities at mainly aggregated spatio-temporal scales but when we zoom into finer scales, considerable heterogeneity and diversity is observed instead. The fundamental question we address in this paper is at what scales are the regularities we detect stable, explicable, and sustainable. This paper thus proposes a basic measure of variability to assess the stability of such regularities focusing mainly on changes over a range of temporal scales. We demonstrate this by comparing regularities in the urban mobility patterns in three world cities, namely London, Singapore and Beijing using one-week of smart-card data. The results show that variations in regularity scale as non-linear functions of the temporal resolution, which we measure over a scale from 1 minute to 24 hours thus reflecting the diurnal cycle of human mobility. A particularly dramatic increase in variability occurs up to the temporal scale of about 15 minutes in all three cities and this implies that limits exist when we look forward or backward with respect to making short-term predictions. The degree of regularity varies in fact from city to city with Beijing and Singapore showing higher regularity in comparison to London across all temporal scales. A detailed discussion is provided, which relates the analysis to various characteristics of the three cities. In summary, this work contributes to a deeper understanding of regularities in patterns of transit use from variations in volumes of travellers entering subway stations, it establishes a generic analytical framework for comparative studies using urban mobility data, and it provides key points for the management of variability by policy-makers intent on for making the travel experience more amenable. PMID:26872333

  5. Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data

    PubMed Central

    Zhong, Chen; Batty, Michael; Manley, Ed; Wang, Jiaqiu; Wang, Zijia; Chen, Feng; Schmitt, Gerhard

    2016-01-01

    To discover regularities in human mobility is of fundamental importance to our understanding of urban dynamics, and essential to city and transport planning, urban management and policymaking. Previous research has revealed universal regularities at mainly aggregated spatio-temporal scales but when we zoom into finer scales, considerable heterogeneity and diversity is observed instead. The fundamental question we address in this paper is at what scales are the regularities we detect stable, explicable, and sustainable. This paper thus proposes a basic measure of variability to assess the stability of such regularities focusing mainly on changes over a range of temporal scales. We demonstrate this by comparing regularities in the urban mobility patterns in three world cities, namely London, Singapore and Beijing using one-week of smart-card data. The results show that variations in regularity scale as non-linear functions of the temporal resolution, which we measure over a scale from 1 minute to 24 hours thus reflecting the diurnal cycle of human mobility. A particularly dramatic increase in variability occurs up to the temporal scale of about 15 minutes in all three cities and this implies that limits exist when we look forward or backward with respect to making short-term predictions. The degree of regularity varies in fact from city to city with Beijing and Singapore showing higher regularity in comparison to London across all temporal scales. A detailed discussion is provided, which relates the analysis to various characteristics of the three cities. In summary, this work contributes to a deeper understanding of regularities in patterns of transit use from variations in volumes of travellers entering subway stations, it establishes a generic analytical framework for comparative studies using urban mobility data, and it provides key points for the management of variability by policy-makers intent on for making the travel experience more amenable. PMID:26872333

  6. Temporal changes of diffusion patterns in mild traumatic brain injury via group-based semi-blind source separation.

    PubMed

    Jing, Min; McGinnity, T Martin; Coleman, Sonya; Fuchs, Armin; Kelso, J A Scott

    2015-07-01

    Despite the emerging applications of diffusion tensor imaging (DTI) to mild traumatic brain injury (mTBI), very few investigations have been reported related to temporal changes in quantitative diffusion patterns, which may help to assess recovery from head injury and the long term impact associated with cognitive and behavioral impairments caused by mTBI. Most existing methods are focused on detection of mTBI affected regions rather than quantification of temporal changes following head injury. Furthermore, most methods rely on large data samples as required for statistical analysis and, thus, are less suitable for individual case studies. In this paper, we introduce an approach based on spatial group independent component analysis (GICA), in which the diffusion scalar maps from an individual mTBI subject and the average of a group of controls are arranged according to their data collection time points. In addition, we propose a constrained GICA (CGICA) model by introducing the prior information into the GICA decomposition process, thus taking available knowledge of mTBI into account. The proposed method is evaluated based on DTI data collected from American football players including eight controls and three mTBI subjects (at three time points post injury). The results show that common spatial patterns within the diffusion maps were extracted as spatially independent components (ICs) by GICA. The temporal change of diffusion patterns during recovery is revealed by the time course of the selected IC. The results also demonstrate that the temporal change can be further influenced by incorporating the prior knowledge of mTBI (if available) based on the proposed CGICA model. Although a small sample of mTBI subjects is studied, as a proof of concept, the preliminary results provide promising insight for applications of DTI to study recovery from mTBI and may have potential for individual case studies in practice. PMID:25167559

  7. Complex temporal and spatial patterns in nonequilibrium processes. Final report, December 1, 1987--November 30, 1992

    SciTech Connect

    Not Available

    1992-12-31

    Dynamical systems methods have been used to study bifurcations and pattern formation in nonequilibrium systems. Accomplishments during this period include: information-theoretic methods for analyzing chaos, chemical reactors for studying sustained reaction-diffusion patterns, a reactor exploiting pattern formation to extract short- lived intermediate species, observation of bifurcation from periodic to quasiperiodic rotating chemical spiral patterns, observation of a Turing bifurcation (transition from uniform state to a stationary chemical pattern), method for extracting noise strength in ramped convection, self-similar fractal structure of Zn clusters in electrodeposition, and dynamical instability in crack propagation.

  8. Temporal motifs reveal collaboration patterns in online task-oriented networks.

    PubMed

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs. PMID:26066218

  9. Temporal motifs reveal collaboration patterns in online task-oriented networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.

  10. Acoustic Analyses and Intelligibility Assessments of Timing Patterns among Chinese English Learners with Different Dialect Backgrounds

    ERIC Educational Resources Information Center

    Chen, Hsueh Chu

    2015-01-01

    This paper includes two interrelated studies. The first production study investigates the timing patterns of English as spoken by Chinese learners with different dialect backgrounds. The second comprehension study explores native and non-native speakers' assessments of the intelligibility of Chinese-accented English, and examines the effects of

  11. Acoustic Analyses and Intelligibility Assessments of Timing Patterns among Chinese English Learners with Different Dialect Backgrounds

    ERIC Educational Resources Information Center

    Chen, Hsueh Chu

    2015-01-01

    This paper includes two interrelated studies. The first production study investigates the timing patterns of English as spoken by Chinese learners with different dialect backgrounds. The second comprehension study explores native and non-native speakers' assessments of the intelligibility of Chinese-accented English, and examines the effects of…

  12. Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving.

    PubMed

    Éber, Nándor; Palomares, Laura O; Salamon, Péter; Krekhov, Alexei; Buka, Ágnes

    2012-08-01

    The temporal evolution of patterns within the driving period of the ac voltage was studied in the 10-mHz-250-Hz frequency range. It was shown that the stationary electroconvection pattern of the conductive regime transforms into a flashing one at ultralow frequencies, existing only in narrow time windows within the period. Furthermore a transition between electroconvection and flexoelectric domains was detected which is repeating in each half period. The two patterns are well separated in time and in Fourier space. Simultaneous current measurements uncovered that the electric properties of the polyimide orienting layers influence the redistribution of the applied voltage. The experimental findings are in good qualitative agreement with the theoretical predictions based on an extended standard model including flexoelectricity. PMID:23005775

  13. Restoration of Central Programmed Movement Pattern by Temporal Electrical Stimulation-Assisted Training in Patients with Spinal Cerebellar Atrophy

    PubMed Central

    Huang, Ying-Zu; Chang, Yao-Shun; Hsu, Miao-Ju; Wong, Alice M. K.; Chang, Ya-Ju

    2015-01-01

    Disrupted triphasic electromyography (EMG) patterns of agonist and antagonist muscle pairs during fast goal-directed movements have been found in patients with hypermetria. Since peripheral electrical stimulation (ES) and motor training may modulate motor cortical excitability through plasticity mechanisms, we aimed to investigate whether temporal ES-assisted movement training could influence premovement cortical excitability and alleviate hypermetria in patients with spinal cerebellar ataxia (SCA). The EMG of the agonist extensor carpi radialis muscle and antagonist flexor carpi radialis muscle, premovement motor evoked potentials (MEPs) of the flexor carpi radialis muscle, and the constant and variable errors of movements were assessed before and after 4 weeks of ES-assisted fast goal-directed wrist extension training in the training group and of general health education in the control group. After training, the premovement MEPs of the antagonist muscle were facilitated at 50 ms before the onset of movement. In addition, the EMG onset latency of the antagonist muscle shifted earlier and the constant error decreased significantly. In summary, temporal ES-assisted training alleviated hypermetria by restoring antagonist premovement and temporal triphasic EMG patterns in SCA patients. This technique may be applied to treat hypermetria in cerebellar disorders. (This trial is registered with NCT01983670.) PMID:26417459

  14. Spatial and Temporal Patterns of Nitrogen Transport in a Subtropical Urban Coastal Watershed

    NASA Astrophysics Data System (ADS)

    Toor, G.; Banger, K.; Inglett, P.; Stanley, C.

    2010-12-01

    Non-point source pollution is the dominant pathway of nitrogen (N) transport in agriculture as well as urban watersheds. Very little is known about N transport in urban watersheds located in the subtropics. Our objective was to evaluate the spatial and temporal evolution patterns of N forms in streams draining sub-basins, ranging in size from 19 to 350 km2, of an urban watershed located in the Tampa Bay region. We used long-term monthly (1991-2009) and weekly (2009) stream water N concentration data collected from these sub-basins to evaluate the impact of urban development on N transport. Sub-basins were separated in two groups based on urban land uses: developed (18-24% residential, 1-14% built up) and undeveloped (3-11% residential, 1-3% built up). Mean monthly total N concentrations during 1991-2009 were 0.8-2.4 mg L-1 at all sites and were greatest in streams draining developed (1.7-2.4 mg L-1) than undeveloped (0.8-1.2 mg L-1) sub-basins. All the developed and undeveloped sub-basins had a narrow range of organic N concentration (0.60-0.77 mg L-1) in streams; however, percent organic N was about twice as much in streams draining undeveloped (66-71% of total N) than developed (30-44% of total N) sub-basins. On the other hand, both NO3-N concentration and percentage of total N were much greater in developed (0.89-1.66 mg L-1; 53-68% of total N) than undeveloped (0.21-0.37 mg L-1; 25-30% of total N) sub-basins. Among all N forms, mean monthly concentrations of NH4-N were lowest (<0.1 mg L-1; 2-5% of total N). Compared with long-term monthly total N concentrations, weekly total N concentrations were much higher (1.90-2.90 mg L-1) during 2009 high-flow period (June to September), with greater concentrations in developed (2.40-2.95 mg L-1) as compared to undeveloped (1.90-2.06 mg L-1) sub-basins. Concentrations of organic N mirrored a similar trend as total N at all sites. The weekly inorganic N (NO3-N, NH4-N) trends were similar to long-term data, with greater proportions in developed (26-39% of total N) than undeveloped (13-23% of total N) sub-basins. Percent weekly organic N was much greater (65-85% of total N) across all sites as compared to 1991-2009 monthly data (30-71% of total N). Organic N approached 77-85% of total N in undeveloped and 71-75% of total N in developed sub-basins. Organic N forms consists of dissolved organic N (DON; humic substances, amino acids, amino sugars, and tannins) and particulate organic N (PON; partially decomposed organic matter); these forms were measured in weekly samples. The undeveloped sub-basins had much greater concentrations of DON (0.97-1.05 mg L-1, 50-53% of total N) as compared to PON (0.56-0.64 mg L-1, 27-34% of total N). The transport of a specific organic N form whether DON or PON will be determined by the duration and intensity of rainfall-runoff events. For example, high-rainfall events may transport leaf litter and organic matter (that are components of PON) to streams, whereas low-rainfall events may not have enough hydrologic power to transport particulates from land to streams but can mobilize and carry DON to streams.

  15. The monaural temporal window based on masking period pattern data in school-aged children and adults

    PubMed Central

    Buss, Emily; He, Shuman; Grose, John H.; Hall, Joseph W.

    2013-01-01

    Several lines of evidence indicate that auditory temporal resolution improves over childhood, whereas other data implicate the development of processing efficiency. The present study used the masking period pattern paradigm to examine the maturation of temporal processing in normal-hearing children (4.8 to 10.7 yrs) compared to adults. Thresholds for a brief tone were measured at 6 temporal positions relative to the period of a 5-Hz quasi-square-wave masker envelope, with a 20-dB modulation depth, as well as in 2 steady maskers. The signal was a pure tone at either 1000 or 6500 Hz, and the masker was a band of noise, either spectrally wide or narrow (21.3 and 1.4 equivalent rectangular bandwidths, respectively). Masker modulation improved thresholds more for wide than narrow bandwidths, and adults tended to receive more benefit from modulation than young children. Fits to data for the wide maskers indicated a change in window symmetry with development, reflecting relatively greater backward masking for the youngest listeners. Data for children >6.5 yrs of age appeared more adult-like for the 6500- than the 1000-Hz signal. Differences in temporal window asymmetry with listener age cannot be entirely explained as a consequence of a higher criterion for detection in children, a form of inefficiency. PMID:23464028

  16. Temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy field at Kelantan, Malaysia.

    PubMed

    Hussain, Hazilia; Yusoff, Mohd Kamil; Ramli, Mohd Firuz; Abd Latif, Puziah; Juahir, Hafizan; Zawawi, Mohamed Azwan Mohammed

    2013-11-15

    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate. PMID:24511695

  17. Persistent patterns of brain activity: an EEG coherence study of the positive effect of music on spatial-temporal reasoning.

    PubMed

    Sarnthein, J; vonStein, A; Rappelsberger, P; Petsche, H; Rauscher, F H; Shaw, G L

    1997-04-01

    Motivated by predictions from the structured trion model of the cortex, behavioral experiments have demonstrated a causal short-term enhancement of spatial-temporal reasoning in college students following exposure to a Mozart sonata, but not in control conditions. The coherence analysis of electroencephalogram (EEG) recordings is well suited to the neurophysiological investigation of this behavioral enhancement. Here we report the presence of right frontal and left temporo-parietal coherent activity induced by listening to Mozart which carried over into the spatial-temporal tasks in three of our seven subjects. This carry-over effect was compared to EEG coherence analysis of spatial-temporal-tasks after listening to text. We suggest that these EEG coherence results provide the beginnings of understanding of the neurophysiological basis of the causal enhancement of spatial-temporal reasoning by listening to specific music. The observed long-lasting coherent EEG pattern might be evidence for structured sequences in cortical dynamics which extend over minutes. PMID:9175137

  18. Temporal control of self-organized pattern formation without morphogen gradients in bacteria

    PubMed Central

    Payne, Stephen; Li, Bochong; Cao, Yangxiaolu; Schaeffer, David; Ryser, Marc D; You, Lingchong

    2013-01-01

    Diverse mechanisms have been proposed to explain biological pattern formation. Regardless of their specific molecular interactions, the majority of these mechanisms require morphogen gradients as the spatial cue, which are either predefined or generated as a part of the patterning process. However, using Escherichia coli programmed by a synthetic gene circuit, we demonstrate here the generation of robust, self-organized ring patterns of gene expression in the absence of an apparent morphogen gradient. Instead of being a spatial cue, the morphogen serves as a timing cue to trigger the formation and maintenance of the ring patterns. The timing mechanism enables the system to sense the domain size of the environment and generate patterns that scale accordingly. Our work defines a novel mechanism of pattern formation that has implications for understanding natural developmental processes. PMID:24104480

  19. Temporal evolution of the chemical structure during the pattern transfer by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Ha, N.-B.; Jeong, S.; Yu, S.; Ihm, H.-I.; Kim, J.-S.

    2015-01-01

    Ru films patterned by ion-beam sputtering (IBS) serve as sacrificial masks for the transfer of the patterns to Si(1 0 0) and metallic glass substrates by continued IBS. Under the same sputter condition, however, both bare substrates remain featureless. Chemical analyses of the individual nano structures simultaneously with the investigation of their morphological evolution reveal that the pattern transfer, despite its apparent success, suffers from premature degradation before the mask is fully removed by IBS. Moreover, the residue of the mask or Ru atoms stubbornly remains near the surface, resulting in unintended doping or alloying of both patterned substrates.

  20. TEMPORAL GENE INDUCTION PATTERNS IN SHEEPSHEAD MINNOWS EXPOSED TO 17-ESTRADIOL

    EPA Science Inventory

    Gene arrays provide a powerful method to examine changes in gene expression in fish due to chemical exposures in the environment. In this study, we expanded an existing gene array for sheepshead minnows (Cyprinodon variegatus) (SHM) and used it to examine temporal changes in gene...

  1. Biodiversity, productivity and the temporal stability of productivity: patterns and processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theory predicts that the temporal stability of productivity, measured as the ratio of the mean to the standard deviation of community biomass, increases with species richness and evenness. We used experimental species mixtures of grassland plants to test this hypothesis and identify the mechanisms i...

  2. Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing.

    PubMed

    Oja, Jane; Kohout, Petr; Tedersoo, Leho; Kull, Tiiu; Kõljalg, Urmas

    2015-03-01

    Orchid mycorrhizal (OrM) symbionts play a key role in the growth of orchids, but the temporal variation and habitat partitioning of these fungi in roots and soil remain unclear. Temporal changes in root and rhizosphere fungal communities of Cypripedium calceolus, Neottia ovata and Orchis militaris were studied in meadow and forest habitats over the vegetation period by using 454 pyrosequencing of the full internal transcribed spacer (ITS) region. The community of typical OrM symbionts differed by plant species and habitats. The root fungal community of N. ovata changed significantly in time, but this was not observed in C. calceolus and O. militaris. The rhizosphere community included a low proportion of OrM symbionts that exhibited a slight temporal turnover in meadow habitats but not in forests. Habitat differences in OrM and all fungal associates are largely attributable to the greater proportion of ectomycorrhizal fungi in forests. Temporal changes in OrM fungal communities in roots of certain species indicate selection of suitable fungal species by plants. It remains to be elucidated whether these shifts depend on functional differences inside roots, seasonality, climate or succession. PMID:25546739

  3. Temporal stability of soil water content and soil water flux patterns across agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When an agricultural field is repeatedly surveyed for soil water content, sites often can be spotted where soil is consistently wetter or consistently dryer than average across the study area. Temporal stability presents significant interest for upscaling observed soil water content, improving soil ...

  4. Temporal stability of soil water contents as affected by weather patterns: a simulation study.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal stability of soil water content (TS SWC) is a natural phenomenon that recently attracts attention and finds multiple applications. Large variations in the interannual and interseasonal TS SWC have been encountered among locations studied by various authors. The objective of this work was ...

  5. Acoustic Differences In The Imitation Of Prosodic Patterns In Children With Autism Spectrum Disorders

    PubMed Central

    Diehl, Joshua John; Paul, Rhea

    2011-01-01

    In research, it has been difficult to characterize the prosodic production differences that have been observed clinically in Autism Spectrum Disorders (ASD). Moreover, the nature of these differences has been particularly hard to identify. This study examined one possible contributor to these perceived differences: motor planning. We examined the ability of children and adolescents with ASD to imitate prosodic patterns in comparison to a group with learning disabilities (LD) and a typically-developing (TD) comparison group. Overall, we found that both the ASD and LD groups were significantly worse at perceiving and imitating prosodic patterns than the TD comparison group. Similar to previous studies using non-imitative speech, participants with ASD showed a significantly longer duration of utterances than the two comparison groups when attempting to imitate an intonation pattern. The implications of differences in duration of utterances are discussed. This study also highlights the importance of using clinical comparison groups in studies of language performance in individuals with ASD. PMID:22125576

  6. Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Yang, Lianxiang; Chen, Xu; Xu, Nan; Wang, Yonghong

    2013-10-01

    High accuracy full field three dimensional (3D) deformation measurements have always been an essential problem for the manufacturing, instrument, and aerospace industry. 3D deformations, which can be translated further into 3D strain and stress, are the key parameter for design, manufacturing and quality control. Due to the fast development of the manufacturing industry, especially in the automobile and airspace industry, rapid design and optimization concepts have already widely accepted. These concepts all require the support of rapid, high sensitive and accuracy 3D deformation measurement. Advanced optical methods are gaining widely acceptance for deformation and stain measurement by industry due to the advantages of non-contact, full-field and high measurement sensitivity. Of these methods, Electronic Speckle Pattern Interferometry (ESPI) is the most sensitive and accurate method for 3D deformation measurement in micro and sub micro-level. ESPI measures deformation by evaluating the phase difference of two recorded speckle interferograms under different loading conditions. Combined with a phase shift technique, ESPI systems can measure the 3D deformation with dozens of nanometer level sensitivity. Cataloged by phase calculation methods, ESPI systems can be divided into temporal phase shift ESPI systems and spatial phase shift ESPI system. This article provides a review and a comparison of temporal and spatial phase shift speckle pattern interferometry for 3D deformation measurement. After an overview of the fundamentals of ESPI theory, temporal phase-shift and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI which is suited well for static measurement and by the spatial phase-shift ESPI which is particularly useful for dynamic measurement will be discussed in detail. Basic theory, brief derivation and different optical layouts for the two systems will be presented. The potentials and limitations of the both ESPI systems will be demonstrated by examples of precise and simultaneous measurement of 3D deformations under either static or dynamic loadings.

  7. Spatial and temporal patterns of chronic wasting disease: Fine-scale mapping of a wildlife epidemic in Wisconsin

    USGS Publications Warehouse

    Osnas, E.E.; Heisey, D.M.; Rolley, R.E.; Samuel, M.D.

    2009-01-01

    Emerging infectious diseases threaten wildlife populations and human health. Understanding the spatial distributions of these new diseases is important for disease management and policy makers; however, the data are complicated by heterogeneities across host classes, sampling variance, sampling biases, and the space-time epidemic process. Ignoring these issues can lead to false conclusions or obscure important patterns in the data, such as spatial variation in disease prevalence. Here, we applied hierarchical Bayesian disease mapping methods to account for risk factors and to estimate spatial and temporal patterns of infection by chronic wasting disease (CWD) in white-tailed deer (Odocoileus virginianus) of Wisconsin, USA. We found significant heterogeneities for infection due to age, sex, and spatial location. Infection probability increased with age for all young deer, increased with age faster for young males, and then declined for some older animals, as expected from disease-associated mortality and age-related changes in infection risk. We found that disease prevalence was clustered in a central location, as expected under a simple spatial epidemic process where disease prevalence should increase with time and expand spatially. However, we could not detect any consistent temporal or spatiotemporal trends in CWD prevalence. Estimates of the temporal trend indicated that prevalence may have decreased or increased with nearly equal posterior probability, and the model without temporal or spatiotemporal effects was nearly equivalent to models with these effects based on deviance information criteria. For maximum interpretability of the role of location as a disease risk factor, we used the technique of direct standardization for prevalence mapping, which we develop and describe. These mapping results allow disease management actions to be employed with reference to the estimated spatial distribution of the disease and to those host classes most at risk. Future wildlife epidemiology studies should employ hierarchical Bayesian methods to smooth estimated quantities across space and time, account for heterogeneities, and then report disease rates based on an appropriate standardization. ?? 2009 by the Ecological Society of America.

  8. Complex temporal and spatial patterns in nonequilibrium processes. Progress report, December 1, 1987--November 30, 1992

    SciTech Connect

    Swinney, H.L.

    1992-10-01

    We have used dynamical systems methods to study and characterize bifurcations and pattern formation in a variety of nonequilibrium systems. In this paper we describe our work on dynamical systems, chemical oscillations and chaos, chemical spatial patterns, instabilities in fluid dynamics, electrodeposition clusters, the ballast resistor, and crack propagation.

  9. Temporal Patterns of Subjective Experiences and Self-Regulation duri