Sample records for acoustics temporal patterns

  1. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    PubMed

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Syllable acoustics, temporal patterns, and call composition vary with behavioral context in Mexican free-tailed bats

    PubMed Central

    Bohn, Kirsten M.; Schmidt-French, Barbara; Ma, Sean T.; Pollak, George D.

    2008-01-01

    Recent research has shown that some bat species have rich vocal repertoires with diverse syllable acoustics. Few studies, however, have compared vocalizations across different behavioral contexts or examined the temporal emission patterns of vocalizations. In this paper, a comprehensive examination of the vocal repertoire of Mexican free-tailed bats, T. brasiliensis, is presented. Syllable acoustics and temporal emission patterns for 16 types of vocalizations including courtship song revealed three main findings. First, although in some cases syllables are unique to specific calls, other syllables are shared among different calls. Second, entire calls associated with one behavior can be embedded into more complex vocalizations used in entirely different behavioral contexts. Third, when different calls are composed of similar syllables, distinctive temporal emission patterns may facilitate call recognition. These results indicate that syllable acoustics alone do not likely provide enough information for call recognition; rather, the acoustic context and temporal emission patterns of vocalizations may affect meaning. PMID:19045674

  3. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    PubMed

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may

  4. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns

    PubMed Central

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may

  5. Temporal patterns in marine mammal sounds from long-term broadband recordings

    NASA Astrophysics Data System (ADS)

    Hildebrand, John A.; Wiggins, Sean; Oleson, Erin; Sirovic, Ana; Munger, Lisa; Soldevilla, Melissa; Burtenshaw, Jessica

    2005-09-01

    Recent advances in the technology for long-term underwater acoustic recording provide new data on the temporal patterns of marine mammal sounds. Autonomous acoustic recordings are now being made with broad frequency bandwidth up to 200-kHz sampling rates. These data allow sound recording from most marine mammal species, including, for instance, the echolocation clicks of odontocetes. Large data storage capacity up to 1280 Gbytes allow these recordings to be conducted over long time periods for study of diel and seasonal calling patterns. Examples will be presented of temporal patterns from long-term recordings collected in four regions: the Bering Sea, offshore southern California, the Gulf of California, and the Southern Ocean. These data provide new insight on marine mammal distribution, seasonality, and behavior.

  6. Acoustic and temporal partitioning of cicada assemblages in city and mountain environments.

    PubMed

    Shieh, Bao-Sen; Liang, Shih-Hsiung; Chiu, Yuh-Wen

    2015-01-01

    Comparing adaptations to noisy city environments with those to natural mountain environments on the community level can provide significant insights that allow an understanding of the impact of anthropogenic noise on invertebrates that employ loud calling songs for mate attraction, especially when each species has its distinct song, as in the case of cicadas. In this study, we investigated the partitioning strategy of cicada assemblages in city and mountain environments by comparing the acoustic features and calling activity patterns of each species, recorded using automated digital recording systems. Our comparison of activity patterns of seasonal and diel calling revealed that there was no significant temporal partitioning of cicada assemblages in either environment. In addition, there was no correlation between the acoustic distance based on spectral features and temporal segregation. Heterospecific spectral overlap was low in both city and mountain environments, although city and mountain cicada assemblages were subject to significantly different levels of anthropogenic or interspecific noise. Furthermore, for the common species found in both environments, the calling activity patterns at both seasonal and diel time scales were significantly consistent across sites and across environments. We suggest that the temporal calling activity is constrained by endogenous factors for each species and is less flexible in response to external factors, such as anthropogenic noise. As a result, cicada assemblages in city environments with low species diversity do not demonstrate a more significant temporal partitioning than those in mountain environments with high species diversity.

  7. Acoustic and Temporal Partitioning of Cicada Assemblages in City and Mountain Environments

    PubMed Central

    Shieh, Bao-Sen; Liang, Shih-Hsiung; Chiu, Yuh-Wen

    2015-01-01

    Comparing adaptations to noisy city environments with those to natural mountain environments on the community level can provide significant insights that allow an understanding of the impact of anthropogenic noise on invertebrates that employ loud calling songs for mate attraction, especially when each species has its distinct song, as in the case of cicadas. In this study, we investigated the partitioning strategy of cicada assemblages in city and mountain environments by comparing the acoustic features and calling activity patterns of each species, recorded using automated digital recording systems. Our comparison of activity patterns of seasonal and diel calling revealed that there was no significant temporal partitioning of cicada assemblages in either environment. In addition, there was no correlation between the acoustic distance based on spectral features and temporal segregation. Heterospecific spectral overlap was low in both city and mountain environments, although city and mountain cicada assemblages were subject to significantly different levels of anthropogenic or interspecific noise. Furthermore, for the common species found in both environments, the calling activity patterns at both seasonal and diel time scales were significantly consistent across sites and across environments. We suggest that the temporal calling activity is constrained by endogenous factors for each species and is less flexible in response to external factors, such as anthropogenic noise. As a result, cicada assemblages in city environments with low species diversity do not demonstrate a more significant temporal partitioning than those in mountain environments with high species diversity. PMID:25590620

  8. Discrimination of acoustic communication signals by grasshoppers (Chorthippus biguttulus): temporal resolution, temporal integration, and the impact of intrinsic noise.

    PubMed

    Ronacher, Bernhard; Wohlgemuth, Sandra; Vogel, Astrid; Krahe, Rüdiger

    2008-08-01

    A characteristic feature of hearing systems is their ability to resolve both fast and subtle amplitude modulations of acoustic signals. This applies also to grasshoppers, which for mate identification rely mainly on the characteristic temporal patterns of their communication signals. Usually the signals arriving at a receiver are contaminated by various kinds of noise. In addition to extrinsic noise, intrinsic noise caused by stochastic processes within the nervous system contributes to making signal recognition a difficult task. The authors asked to what degree intrinsic noise affects temporal resolution and, particularly, the discrimination of similar acoustic signals. This study aims at exploring the neuronal basis for sexual selection, which depends on exploiting subtle differences between basically similar signals. Applying a metric, by which the similarities of spike trains can be assessed, the authors investigated how well the communication signals of different individuals of the same species could be discriminated and correctly classified based on the responses of auditory neurons. This spike train metric yields clues to the optimal temporal resolution with which spike trains should be evaluated. (c) 2008 APA, all rights reserved

  9. Habitat-associated and temporal patterns of bat activity in a diverse forest landscape of southern New England, USA

    Treesearch

    Robert T. Brooks

    2009-01-01

    The development and use of acoustic recording technology, surveys have revealed the composition, relative levels of activity, and preliminary habitat use of bat communities of various forest locations. However, detailed examinations of acoustic surveys results to investigate temporal patterns of bat activity are rare. Initial active acoustic surveys of bat activity on...

  10. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    PubMed

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  11. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  12. Spatio-temporal dynamics of turbulence trapped in geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Kobayashi, T.; Itoh, K.; Kasuya, N.; Kosuga, Y.; Fujisawa, A.; Itoh, S.-I.

    2018-01-01

    The spatio-temporal dynamics of turbulence with the interaction of geodesic acoustic modes (GAMs) are investigated, focusing on the phase-space structure of turbulence, where the phase-space consists of real-space and wavenumber-space. Based on the wave-kinetic framework, the coupling equation between the GAM and the turbulence is numerically solved. The turbulence trapped by the GAM velocity field is obtained. Due to the trapping effect, the turbulence intensity increases where the second derivative of the GAM velocity (curvature of the GAM) is negative. While, in the positive-curvature region, the turbulence is suppressed. Since the trapped turbulence propagates with the GAMs, this relationship is sustained spatially and temporally. The dynamics of the turbulence in the wavenumber spectrum are converted in the evolution of the frequency spectrum, and the simulation result is compared with the experimental observation in JFT-2M tokamak, where the similar patterns are obtained. The turbulence trapping effect is a key to understand the spatial structure of the turbulence in the presence of sheared flows.

  13. The Interaction of Temporal and Spectral Acoustic Information with Word Predictability on Speech Intelligibility

    NASA Astrophysics Data System (ADS)

    Shahsavarani, Somayeh Bahar

    High-level, top-down information such as linguistic knowledge is a salient cortical resource that influences speech perception under most listening conditions. But, are all listeners able to exploit these resources for speech facilitation to the same extent? It was found that children with cochlear implants showed different patterns of benefit from contextual information in speech perception compared with their normal-haring peers. Previous studies have discussed the role of non-acoustic factors such as linguistic and cognitive capabilities to account for this discrepancy. Given the fact that the amount of acoustic information encoded and processed by auditory nerves of listeners with cochlear implants differs from normal-hearing listeners and even varies across individuals with cochlear implants, it is important to study the interaction of specific acoustic properties of the speech signal with contextual cues. This relationship has been mostly neglected in previous research. In this dissertation, we aimed to explore how different acoustic dimensions interact to affect listeners' abilities to combine top-down information with bottom-up information in speech perception beyond the known effects of linguistic and cognitive capacities shown previously. Specifically, the present study investigated whether there were any distinct context effects based on the resolution of spectral versus slowly-varying temporal information in perception of spectrally impoverished speech. To that end, two experiments were conducted. In both experiments, a noise-vocoded technique was adopted to generate spectrally-degraded speech to approximate acoustic cues delivered to listeners with cochlear implants. The frequency resolution was manipulated by varying the number of frequency channels. The temporal resolution was manipulated by low-pass filtering of amplitude envelope with varying low-pass cutoff frequencies. The stimuli were presented to normal-hearing native speakers of American

  14. Spectral and temporal resolutions of information-bearing acoustic changes for understanding vocoded sentencesa)

    PubMed Central

    Stilp, Christian E.; Goupell, Matthew J.

    2015-01-01

    Short-time spectral changes in the speech signal are important for understanding noise-vocoded sentences. These information-bearing acoustic changes, measured using cochlea-scaled entropy in cochlear implant simulations [CSECI; Stilp et al. (2013). J. Acoust. Soc. Am. 133(2), EL136–EL141; Stilp (2014). J. Acoust. Soc. Am. 135(3), 1518–1529], may offer better understanding of speech perception by cochlear implant (CI) users. However, perceptual importance of CSECI for normal-hearing listeners was tested at only one spectral resolution and one temporal resolution, limiting generalizability of results to CI users. Here, experiments investigated the importance of these informational changes for understanding noise-vocoded sentences at different spectral resolutions (4–24 spectral channels; Experiment 1), temporal resolutions (4–64 Hz cutoff for low-pass filters that extracted amplitude envelopes; Experiment 2), or when both parameters varied (6–12 channels, 8–32 Hz; Experiment 3). Sentence intelligibility was reduced more by replacing high-CSECI intervals with noise than replacing low-CSECI intervals, but only when sentences had sufficient spectral and/or temporal resolution. High-CSECI intervals were more important for speech understanding as spectral resolution worsened and temporal resolution improved. Trade-offs between CSECI and intermediate spectral and temporal resolutions were minimal. These results suggest that signal processing strategies that emphasize information-bearing acoustic changes in speech may improve speech perception for CI users. PMID:25698018

  15. Age-Related Neural Oscillation Patterns During the Processing of Temporally Manipulated Speech.

    PubMed

    Rufener, Katharina S; Oechslin, Mathias S; Wöstmann, Malte; Dellwo, Volker; Meyer, Martin

    2016-05-01

    This EEG-study aims to investigate age-related differences in the neural oscillation patterns during the processing of temporally modulated speech. Viewing from a lifespan perspective, we recorded the electroencephalogram (EEG) data of three age samples: young adults, middle-aged adults and older adults. Stimuli consisted of temporally degraded sentences in Swedish-a language unfamiliar to all participants. We found age-related differences in phonetic pattern matching when participants were presented with envelope-degraded sentences, whereas no such age-effect was observed in the processing of fine-structure-degraded sentences. Irrespective of age, during speech processing the EEG data revealed a relationship between envelope information and the theta band (4-8 Hz) activity. Additionally, an association between fine-structure information and the gamma band (30-48 Hz) activity was found. No interaction, however, was found between acoustic manipulation of stimuli and age. Importantly, our main finding was paralleled by an overall enhanced power in older adults in high frequencies (gamma: 30-48 Hz). This occurred irrespective of condition. For the most part, this result is in line with the Asymmetric Sampling in Time framework (Poeppel in Speech Commun 41:245-255, 2003), which assumes an isomorphic correspondence between frequency modulations in neurophysiological patterns and acoustic oscillations in spoken language. We conclude that speech-specific neural networks show strong stability over adulthood, despite initial processes of cortical degeneration indicated by enhanced gamma power. The results of our study therefore confirm the concept that sensory and cognitive processes undergo multidirectional trajectories within the context of healthy aging.

  16. Directional radiation pattern in structural-acoustic coupled system

    NASA Astrophysics Data System (ADS)

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-07-01

    In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm.

  17. Applying acoustic telemetry to understand contaminant exposure and bioaccumulation patterns in mobile fishes.

    PubMed

    Taylor, Matthew D; van der Meulen, Dylan E; Brodie, Stephanie; Cadiou, Gwenaël; Knott, Nathan A

    2018-06-01

    Contamination in urbanised estuaries presents a risk to human health, and to the viability of populations of exploited species. Assessing animal movements in relation to contaminated areas may help to explain patterns in bioaccumulation, and assist in the effective management of health risks associated with consumption of exploited species. Using polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/Fs) contamination in Sydney Harbour estuary as a case study, we present a study that links movement patterns resolved using acoustic telemetry to the accumulation of contaminants in mobile fish on a multi-species basis. Fifty-four individuals across six exploited species (Sea Mullet Mugil cephalus; Luderick Girella tricuspidata; Yellowfin Bream Acanthopagrus australis; Silver Trevally Pseudocaranx georgianus; Mulloway Argyrosomus japonicus; Yellowtail Kingfish Seriola lalandi) were tagged with acoustic transmitters, and their movements tracked for up to 3years. There was substantial inter-specific variation in fish distribution along the estuary. The proportion of distribution that overlapped with contaminated areas explained 84-98% of the inter-specific variation in lipid-standardised biota PCDD/F concentration. There was some seasonal variation in distribution along the estuary, but movement patterns indicated that Sea Mullet, Yellowfin Bream, Silver Trevally, and Mulloway were likely to be exposed to contaminated areas during the period of gonadal maturation. Acoustic telemetry allows examination of spatial and temporal patterns in exposure to contamination. When used alongside biota sampling and testing, this offers a powerful approach to assess exposure, bioaccumulation, and potential risks faced by different species, as well as human health risks associated with their consumption. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  18. Acoustic signalling for mate attraction in crickets: Abdominal ganglia control the timing of the calling song pattern.

    PubMed

    Jacob, Pedro F; Hedwig, Berthold

    2016-08-01

    Decoding the neural basis of behaviour requires analysing how the nervous system is organised and how the temporal structure of motor patterns emerges from its activity. The stereotypical patterns of the calling song behaviour of male crickets, which consists of chirps and pulses, is an ideal model to study this question. We applied selective lesions to the abdominal nervous system of field crickets and performed long-term acoustic recordings of the songs. Specific lesions to connectives or ganglia abolish singing or reliably alter the temporal features of the chirps and pulses. Singing motor control appears to be organised in a modular and hierarchically fashion, where more posterior ganglia control the timing of the chirp pattern and structure and anterior ganglia the timing of the pulses. This modular organisation may provide the substrate for song variants underlying calling, courtship and rivalry behaviour and for the species-specific song patterns in extant crickets. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Tunable Nanowire Patterning Using Standing Surface Acoustic Waves

    PubMed Central

    Chen, Yuchao; Ding, Xiaoyun; Lin, Sz-Chin Steven; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E.; Huang, Tony Jun

    2014-01-01

    Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 seconds. In this approach, SSAWs were generated by interdigital transducers (IDTs), which induced a periodic alternating current (AC) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shape nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications. PMID:23540330

  20. Use of principle velocity patterns in the analysis of structural acoustic optimization.

    PubMed

    Johnson, Wayne M; Cunefare, Kenneth A

    2007-02-01

    This work presents an application of principle velocity patterns in the analysis of the structural acoustic design optimization of an eight ply composite cylindrical shell. The approach consists of performing structural acoustic optimizations of a composite cylindrical shell subject to external harmonic monopole excitation. The ply angles are used as the design variables in the optimization. The results of the ply angle design variable formulation are interpreted using the singular value decomposition of the interior acoustic potential energy. The decomposition of the acoustic potential energy provides surface velocity patterns associated with lower levels of interior noise. These surface velocity patterns are shown to correspond to those from the structural acoustic optimization results. Thus, it is demonstrated that the capacity to design multi-ply composite cylinders for quiet interiors is determined by how well the cylinder be can designed to exhibit particular surface velocity patterns associated with lower noise levels.

  1. Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Collins, David J.; Ai, Ye; Neild, Adrian

    2017-04-01

    Periodic pattern generation using time-averaged acoustic forces conventionally requires the intersection of counterpropagating wave fields, where suspended micro-objects in a microfluidic system collect along force potential minimizing nodal or antinodal lines. Whereas this effect typically requires either multiple transducer elements or whole channel resonance, we report the generation of scalable periodic patterning positions without either of these conditions. A single propagating surface acoustic wave interacts with the proximal channel wall to produce a knife-edge effect according to the Huygens-Fresnel principle, where these cylindrically propagating waves interfere with classical wave fronts emanating from the substrate. We simulate these conditions and describe a model that accurately predicts the lateral spacing of these positions in a robust and novel approach to acoustic patterning.

  2. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  3. Multimodal far-field acoustic radiation pattern: An approximate equation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1977-01-01

    The far-field sound radiation theory for a circular duct was studied for both single mode and multimodal inputs. The investigation was intended to develop a method to determine the acoustic power produced by turbofans as a function of mode cut-off ratio. With reasonable simplifying assumptions the single mode radiation pattern was shown to be reducible to a function of mode cut-off ratio only. With modal cut-off ratio as the dominant variable, multimodal radiation patterns can be reduced to a simple explicit expression. This approximate expression provides excellent agreement with an exact calculation of the sound radiation pattern using equal acoustic power per mode.

  4. High temporal resolution of extreme rainfall rate variability and the acoustic classification of rainfall

    NASA Astrophysics Data System (ADS)

    Nystuen, Jeffrey A.; Amitai, Eyal

    2003-04-01

    The underwater sound generated by raindrop splashes on a water surface is loud and unique allowing detection, classification and quantification of rainfall. One of the advantages of the acoustic measurement is that the listening area, an effective catchment area, is proportional to the depth of the hydrophone and can be orders of magnitude greater than other in situ rain gauges. This feature allows high temporal resolution of the rainfall measurement. A series of rain events with extremely high rainfall rates, over 100 mm/hr, is examined acoustically. Rapid onset and cessation of rainfall intensity are detected within the convective cells of these storms with maximum 5-s resolution values exceeding 1000 mm/hr. The probability distribution functions (pdf) for rainfall rate occurrence and water volume using the longer temporal resolutions typical of other instruments do not include these extreme values. The variance of sound intensity within different acoustic frequency bands can be used as an aid to classify rainfall type. Objective acoustic classification algorithms are proposed. Within each rainfall classification the relationship between sound intensity and rainfall rate is nearly linear. The reflectivity factor, Z, also has a linear relationship with rainfall rate, R, for each rainfall classification.

  5. Spatio-temporal variation in click production rates of beaked whales: Implications for passive acoustic density estimation.

    PubMed

    Warren, Victoria E; Marques, Tiago A; Harris, Danielle; Thomas, Len; Tyack, Peter L; Aguilar de Soto, Natacha; Hickmott, Leigh S; Johnson, Mark P

    2017-03-01

    Passive acoustic monitoring has become an increasingly prevalent tool for estimating density of marine mammals, such as beaked whales, which vocalize often but are difficult to survey visually. Counts of acoustic cues (e.g., vocalizations), when corrected for detection probability, can be translated into animal density estimates by applying an individual cue production rate multiplier. It is essential to understand variation in these rates to avoid biased estimates. The most direct way to measure cue production rate is with animal-mounted acoustic recorders. This study utilized data from sound recording tags deployed on Blainville's (Mesoplodon densirostris, 19 deployments) and Cuvier's (Ziphius cavirostris, 16 deployments) beaked whales, in two locations per species, to explore spatial and temporal variation in click production rates. No spatial or temporal variation was detected within the average click production rate of Blainville's beaked whales when calculated over dive cycles (including silent periods between dives); however, spatial variation was detected when averaged only over vocal periods. Cuvier's beaked whales exhibited significant spatial and temporal variation in click production rates within vocal periods and when silent periods were included. This evidence of variation emphasizes the need to utilize appropriate cue production rates when estimating density from passive acoustic data.

  6. Occurrence Frequencies of Acoustic Patterns of Vocal Fry in American English Speakers.

    PubMed

    Abdelli-Beruh, Nassima B; Drugman, Thomas; Red Owl, R H

    2016-11-01

    The goal of this study was to analyze the occurrence frequencies of three individual acoustic patterns (A, B, C) and of vocal fry overall (A + B + C) as a function of gender, word position in the sentence (Not Last Word vs. Last Word), and sentence length (number of words in a sentence). This is an experimental design. Twenty-five male and 29 female American English (AE) speakers read the Grandfather Passage. The recordings were processed by a Matlab toolbox designed for the analysis and detection of creaky segments, automatically identified using the Kane-Drugman algorithm. The experiment produced subsamples of outcomes, three that reflect a single, discrete acoustic pattern (A, B, or C) and the fourth that reflects the occurrence frequency counts of Vocal Fry Overall without regard to any specific pattern. Zero-truncated Poisson regression analyses were conducted with Gender and Word Position as predictors and Sentence Length as a covariate. The results of the present study showed that the occurrence frequencies of the three acoustic patterns and vocal fry overall (A + B + C) are greatest at the end of sentences but are unaffected by sentence length. The findings also reveal that AE female speakers exhibit Pattern C significantly more frequently than Pattern B, and the converse holds for AE male speakers. Future studies are needed to confirm such outcomes, assess the perceptual salience of these acoustic patterns, and determine the physiological correlates of these acoustic patterns. The findings have implications for the design of new excitation models of vocal fry. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Impaired extraction of speech rhythm from temporal modulation patterns in speech in developmental dyslexia

    PubMed Central

    Leong, Victoria; Goswami, Usha

    2014-01-01

    Dyslexia is associated with impaired neural representation of the sound structure of words (phonology). The “phonological deficit” in dyslexia may arise in part from impaired speech rhythm perception, thought to depend on neural oscillatory phase-locking to slow amplitude modulation (AM) patterns in the speech envelope. Speech contains AM patterns at multiple temporal rates, and these different AM rates are associated with phonological units of different grain sizes, e.g., related to stress, syllables or phonemes. Here, we assess the ability of adults with dyslexia to use speech AMs to identify rhythm patterns (RPs). We study 3 important temporal rates: “Stress” (~2 Hz), “Syllable” (~4 Hz) and “Sub-beat” (reduced syllables, ~14 Hz). 21 dyslexics and 21 controls listened to nursery rhyme sentences that had been tone-vocoded using either single AM rates from the speech envelope (Stress only, Syllable only, Sub-beat only) or pairs of AM rates (Stress + Syllable, Syllable + Sub-beat). They were asked to use the acoustic rhythm of the stimulus to identity the original nursery rhyme sentence. The data showed that dyslexics were significantly poorer at detecting rhythm compared to controls when they had to utilize multi-rate temporal information from pairs of AMs (Stress + Syllable or Syllable + Sub-beat). These data suggest that dyslexia is associated with a reduced ability to utilize AMs <20 Hz for rhythm recognition. This perceptual deficit in utilizing AM patterns in speech could be underpinned by less efficient neuronal phase alignment and cross-frequency neuronal oscillatory synchronization in dyslexia. Dyslexics' perceptual difficulties in capturing the full spectro-temporal complexity of speech over multiple timescales could contribute to the development of impaired phonological representations for words, the cognitive hallmark of dyslexia across languages. PMID:24605099

  8. The Curious Acoustic Behavior of Estuarine Snapping Shrimp: Temporal Patterns of Snapping Shrimp Sound in Sub-Tidal Oyster Reef Habitat.

    PubMed

    Bohnenstiehl, DelWayne R; Lillis, Ashlee; Eggleston, David B

    2016-01-01

    Ocean soundscapes convey important sensory information to marine life. Like many mid-to-low latitude coastal areas worldwide, the high-frequency (>1.5 kHz) soundscape of oyster reef habitat within the West Bay Marine Reserve (36°N, 76°W) is dominated by the impulsive, short-duration signals generated by snapping shrimp. Between June 2011 and July 2012, a single hydrophone deployed within West Bay was programmed to record 60 or 30 seconds of acoustic data every 15 or 30 minutes. Envelope correlation and amplitude information were then used to count shrimp snaps within these recordings. The observed snap rates vary from 1500-2000 snaps per minute during summer to <100 snaps per minute during winter. Sound pressure levels are positively correlated with snap rate (r = 0.71-0.92) and vary seasonally by ~15 decibels in the 1.5-20 kHz range. Snap rates are positively correlated with water temperatures (r = 0.81-0.93), as well as potentially influenced by climate-driven changes in water quality. Light availability modulates snap rate on diurnal time scales, with most days exhibiting a significant preference for either nighttime or daytime snapping, and many showing additional crepuscular increases. During mid-summer, the number of snaps occurring at night is 5-10% more than predicted by a random model; however, this pattern is reversed between August and April, with an excess of up to 25% more snaps recorded during the day in the mid-winter. Diurnal variability in sound pressure levels is largest in the mid-winter, when the overall rate of snapping is at its lowest, and the percentage difference between daytime and nighttime activity is at its highest. This work highlights our lack of knowledge regarding the ecology and acoustic behavior of one of the most dominant soniforous invertebrate species in coastal systems. It also underscores the necessity of long-duration, high-temporal-resolution sampling in efforts to understand the bioacoustics of animal behaviors and

  9. The Curious Acoustic Behavior of Estuarine Snapping Shrimp: Temporal Patterns of Snapping Shrimp Sound in Sub-Tidal Oyster Reef Habitat

    PubMed Central

    Bohnenstiehl, DelWayne R.; Lillis, Ashlee; Eggleston, David B.

    2016-01-01

    Ocean soundscapes convey important sensory information to marine life. Like many mid-to-low latitude coastal areas worldwide, the high-frequency (>1.5 kHz) soundscape of oyster reef habitat within the West Bay Marine Reserve (36°N, 76°W) is dominated by the impulsive, short-duration signals generated by snapping shrimp. Between June 2011 and July 2012, a single hydrophone deployed within West Bay was programmed to record 60 or 30 seconds of acoustic data every 15 or 30 minutes. Envelope correlation and amplitude information were then used to count shrimp snaps within these recordings. The observed snap rates vary from 1500–2000 snaps per minute during summer to <100 snaps per minute during winter. Sound pressure levels are positively correlated with snap rate (r = 0.71–0.92) and vary seasonally by ~15 decibels in the 1.5–20 kHz range. Snap rates are positively correlated with water temperatures (r = 0.81–0.93), as well as potentially influenced by climate-driven changes in water quality. Light availability modulates snap rate on diurnal time scales, with most days exhibiting a significant preference for either nighttime or daytime snapping, and many showing additional crepuscular increases. During mid-summer, the number of snaps occurring at night is 5–10% more than predicted by a random model; however, this pattern is reversed between August and April, with an excess of up to 25% more snaps recorded during the day in the mid-winter. Diurnal variability in sound pressure levels is largest in the mid-winter, when the overall rate of snapping is at its lowest, and the percentage difference between daytime and nighttime activity is at its highest. This work highlights our lack of knowledge regarding the ecology and acoustic behavior of one of the most dominant soniforous invertebrate species in coastal systems. It also underscores the necessity of long-duration, high-temporal-resolution sampling in efforts to understand the bioacoustics of animal behaviors

  10. Laser-speckle-visibility acoustic spectroscopy in soft turbid media.

    PubMed

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  11. Laser-speckle-visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  12. Spectro-temporal modulation masking patterns reveal frequency selectivity.

    PubMed

    Oetjen, Arne; Verhey, Jesko L

    2015-02-01

    The present study investigated the possibility that the human auditory system demonstrates frequency selectivity to spectro-temporal amplitude modulations. Threshold modulation depth for detecting sinusoidal spectro-temporal modulations was measured using a generalized masked threshold pattern paradigm with narrowband masker modulations. Four target spectro-temporal modulations were examined, differing in their temporal and spectral modulation frequencies: a temporal modulation of -8, 8, or 16 Hz combined with a spectral modulation of 1 cycle/octave and a temporal modulation of 4 Hz combined with a spectral modulation of 0.5 cycles/octave. The temporal center frequencies of the masker modulation ranged from 0.25 to 4 times the target temporal modulation. The spectral masker-modulation center-frequencies were 0, 0.5, 1, 1.5, and 2 times the target spectral modulation. For all target modulations, the pattern of average thresholds for the eight normal-hearing listeners was consistent with the hypothesis of a spectro-temporal modulation filter. Such a pattern of modulation-frequency sensitivity was predicted on the basis of psychoacoustical data for purely temporal amplitude modulations and purely spectral amplitude modulations. An analysis of separability indicates that, for the present data set, selectivity in the spectro-temporal modulation domain can be described by a combination of a purely spectral and a purely temporal modulation filter function.

  13. Joint inversion for transponder localization and sound-speed profile temporal variation in high-precision acoustic surveys.

    PubMed

    Li, Zhao; Dosso, Stan E; Sun, Dajun

    2016-07-01

    This letter develops a Bayesian inversion for localizing underwater acoustic transponders using a surface ship which compensates for sound-speed profile (SSP) temporal variation during the survey. The method is based on dividing observed acoustic travel-time data into time segments and including depth-independent SSP variations for each segment as additional unknown parameters to approximate the SSP temporal variation. SSP variations are estimated jointly with transponder locations, rather than calculated separately as in existing two-step inversions. Simulation and sea-trial results show this localization/SSP joint inversion performs better than two-step inversion in terms of localization accuracy, agreement with measured SSP variations, and computational efficiency.

  14. Temporal patterns of the use of non-prescribed drugs.

    PubMed

    Sinnett, E R; Morris, J B

    1977-12-01

    Licit and illicit non-prescribed drugs, regardless of their classification, are used in a common temporal pattern with the possible exceptions of caffeine and cocaine. The temporal patterns of drug use are highly correlated with the nationwide temporal pattern of TV watching, suggesting a pleasure-oriented, recreational use. The peak times for substance use and abuse may have implications for the delivery of professional or paraprofessional services.

  15. Laser speckle visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-03-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light and the speckle visibility[2] is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam.[3] It may be applied to other kinds of acoustic wave in different forms of turbid soft matter, such as biological tissues, pastes or concentrated emulsions. Now at Université Lyon 1 (ILM).

  16. Patterning and manipulating microparticles into a three-dimensional matrix using standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Nguyen, T. D.; Tran, V. T.; Fu, Y. Q.; Du, H.

    2018-05-01

    A method based on standing surface acoustic waves (SSAWs) is proposed to pattern and manipulate microparticles into a three-dimensional (3D) matrix inside a microchamber. An optical prism is used to observe the 3D alignment and patterning of the microparticles in the vertical and horizontal planes simultaneously. The acoustic radiation force effectively patterns the microparticles into lines of 3D space or crystal-lattice-like matrix patterns. A microparticle can be positioned precisely at a specified vertical location by balancing the forces of acoustic radiation, drag, buoyancy, and gravity acting on the microparticle. Experiments and finite-element numerical simulations both show that the acoustic radiation force increases gradually from the bottom of the chamber to the top, and microparticles can be moved up or down simply by adjusting the applied SSAW power. Our method has great potential for acoustofluidic applications, building the large-scale structures associated with biological objects and artificial neuron networks.

  17. A Temporal Pattern Mining Approach for Classifying Electronic Health Record Data

    PubMed Central

    Batal, Iyad; Valizadegan, Hamed; Cooper, Gregory F.; Hauskrecht, Milos

    2013-01-01

    We study the problem of learning classification models from complex multivariate temporal data encountered in electronic health record systems. The challenge is to define a good set of features that are able to represent well the temporal aspect of the data. Our method relies on temporal abstractions and temporal pattern mining to extract the classification features. Temporal pattern mining usually returns a large number of temporal patterns, most of which may be irrelevant to the classification task. To address this problem, we present the Minimal Predictive Temporal Patterns framework to generate a small set of predictive and non-spurious patterns. We apply our approach to the real-world clinical task of predicting patients who are at risk of developing heparin induced thrombocytopenia. The results demonstrate the benefit of our approach in efficiently learning accurate classifiers, which is a key step for developing intelligent clinical monitoring systems. PMID:25309815

  18. Detection of spatio-temporal change of ocean acoustic velocity for observing seafloor crustal deformation applying seismological methods

    NASA Astrophysics Data System (ADS)

    Eto, S.; Nagai, S.; Tadokoro, K.

    2011-12-01

    Our group has developed a system for observing seafloor crustal deformation with a combination of acoustic ranging and kinematic GPS positioning techniques. One of the effective factors to reduce estimation error of submarine benchmark in our system is modeling variation of ocean acoustic velocity. We estimated various 1-dimensional velocity models with depth under some constraints, because it is difficult to estimate 3-dimensional acoustic velocity structure including temporal change due to our simple acquisition procedure of acoustic ranging data. We, then, applied the joint hypocenter determination method in seismology [Kissling et al., 1994] to acoustic ranging data. We assume two conditions as constraints in inversion procedure as follows: 1) fixed acoustic velocity in deeper part because it is usually stable both in space and time, 2) each inverted velocity model should be decreased with depth. The following two remarkable spatio-temporal changes of acoustic velocity 1) variations of travel-time residuals at the same points within short time and 2) larger differences between residuals at the neighboring points, which are one's of travel-time from different benchmarks. The First results cannot be explained only by the effect of atmospheric condition change including heating by sunlight. To verify the residual variations mentioned as the second result, we have performed forward modeling of acoustic ranging data with velocity models added velocity anomalies. We calculate travel time by a pseudo-bending ray tracing method [Um and Thurber, 1987] to examine effects of velocity anomaly on the travel-time differences. Comparison between these residuals and travel-time difference in forward modeling, velocity anomaly bodies in shallower depth can make these anomalous residuals, which may indicate moving water bodies. We need to apply an acoustic velocity structure model with velocity anomaly(s) in acoustic ranging data analysis and/or to develop a new system with a

  19. Acoustic Processing of Temporally Modulated Sounds in Infants: Evidence from a Combined Near-Infrared Spectroscopy and EEG Study

    PubMed Central

    Telkemeyer, Silke; Rossi, Sonja; Nierhaus, Till; Steinbrink, Jens; Obrig, Hellmuth; Wartenburger, Isabell

    2010-01-01

    Speech perception requires rapid extraction of the linguistic content from the acoustic signal. The ability to efficiently process rapid changes in auditory information is important for decoding speech and thereby crucial during language acquisition. Investigating functional networks of speech perception in infancy might elucidate neuronal ensembles supporting perceptual abilities that gate language acquisition. Interhemispheric specializations for language have been demonstrated in infants. How these asymmetries are shaped by basic temporal acoustic properties is under debate. We recently provided evidence that newborns process non-linguistic sounds sharing temporal features with language in a differential and lateralized fashion. The present study used the same material while measuring brain responses of 6 and 3 month old infants using simultaneous recordings of electroencephalography (EEG) and near-infrared spectroscopy (NIRS). NIRS reveals that the lateralization observed in newborns remains constant over the first months of life. While fast acoustic modulations elicit bilateral neuronal activations, slow modulations lead to right-lateralized responses. Additionally, auditory-evoked potentials and oscillatory EEG responses show differential responses for fast and slow modulations indicating a sensitivity for temporal acoustic variations. Oscillatory responses reveal an effect of development, that is, 6 but not 3 month old infants show stronger theta-band desynchronization for slowly modulated sounds. Whether this developmental effect is due to increasing fine-grained perception for spectrotemporal sounds in general remains speculative. Our findings support the notion that a more general specialization for acoustic properties can be considered the basis for lateralization of speech perception. The results show that concurrent assessment of vascular based imaging and electrophysiological responses have great potential in the research on language acquisition

  20. Mining Temporal Patterns to Improve Agents Behavior: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Fournier-Viger, Philippe; Nkambou, Roger; Faghihi, Usef; Nguifo, Engelbert Mephu

    We propose two mechanisms for agent learning based on the idea of mining temporal patterns from agent behavior. The first one consists of extracting temporal patterns from the perceived behavior of other agents accomplishing a task, to learn the task. The second learning mechanism consists in extracting temporal patterns from an agent's own behavior. In this case, the agent then reuses patterns that brought self-satisfaction. In both cases, no assumption is made on how the observed agents' behavior is internally generated. A case study with a real application is presented to illustrate each learning mechanism.

  1. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves

    PubMed Central

    Collins, David J.; Morahan, Belinda; Garcia-Bustos, Jose; Doerig, Christian; Plebanski, Magdalena; Neild, Adrian

    2015-01-01

    In single-cell analysis, cellular activity and parameters are assayed on an individual, rather than population-average basis. Essential to observing the activity of these cells over time is the ability to trap, pattern and retain them, for which previous single-cell-patterning work has principally made use of mechanical methods. While successful as a long-term cell-patterning strategy, these devices remain essentially single use. Here we introduce a new method for the patterning of multiple spatially separated single particles and cells using high-frequency acoustic fields with one cell per acoustic well. We characterize and demonstrate patterning for both a range of particle sizes and the capture and patterning of cells, including human lymphocytes and red blood cells infected by the malarial parasite Plasmodium falciparum. This ability is made possible by a hitherto unexplored regime where the acoustic wavelength is on the same order as the cell dimensions. PMID:26522429

  2. Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities

    PubMed Central

    Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing

    2010-01-01

    Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670

  3. Temporal Patterns of Behavior from the Scheduling of Psychology Quizzes

    ERIC Educational Resources Information Center

    Jarmolowicz, David P.; Hayashi, Yusuke; St. Peter Pipkin, Claire

    2010-01-01

    Temporal patterns of behavior have been observed in real-life performances such as bill passing in the U.S. Congress, in-class studying, and quiz taking. However, the practical utility of understanding these patterns has not been evaluated. The current study demonstrated the presence of temporal patterns of quiz taking in a university-level…

  4. An Efficient Pattern Mining Approach for Event Detection in Multivariate Temporal Data

    PubMed Central

    Batal, Iyad; Cooper, Gregory; Fradkin, Dmitriy; Harrison, James; Moerchen, Fabian; Hauskrecht, Milos

    2015-01-01

    This work proposes a pattern mining approach to learn event detection models from complex multivariate temporal data, such as electronic health records. We present Recent Temporal Pattern mining, a novel approach for efficiently finding predictive patterns for event detection problems. This approach first converts the time series data into time-interval sequences of temporal abstractions. It then constructs more complex time-interval patterns backward in time using temporal operators. We also present the Minimal Predictive Recent Temporal Patterns framework for selecting a small set of predictive and non-spurious patterns. We apply our methods for predicting adverse medical events in real-world clinical data. The results demonstrate the benefits of our methods in learning accurate event detection models, which is a key step for developing intelligent patient monitoring and decision support systems. PMID:26752800

  5. Temporal pattern processing in songbirds.

    PubMed

    Comins, Jordan A; Gentner, Timothy Q

    2014-10-01

    Understanding how the brain perceives, organizes and uses patterned information is directly related to the neurobiology of language. Given the present limitations, such knowledge at the scale of neurons, neural circuits and neural populations can only come from non-human models, focusing on shared capacities that are relevant to language processing. Here we review recent advances in the behavioral and neural basis of temporal pattern processing of natural auditory communication signals in songbirds, focusing on European starlings. We suggest a general inhibitory circuit for contextual modulation that can act to control sensory representations based on patterning rules. Copyright © 2014. Published by Elsevier Ltd.

  6. Mining Recent Temporal Patterns for Event Detection in Multivariate Time Series Data

    PubMed Central

    Batal, Iyad; Fradkin, Dmitriy; Harrison, James; Moerchen, Fabian; Hauskrecht, Milos

    2015-01-01

    Improving the performance of classifiers using pattern mining techniques has been an active topic of data mining research. In this work we introduce the recent temporal pattern mining framework for finding predictive patterns for monitoring and event detection problems in complex multivariate time series data. This framework first converts time series into time-interval sequences of temporal abstractions. It then constructs more complex temporal patterns backwards in time using temporal operators. We apply our framework to health care data of 13,558 diabetic patients and show its benefits by efficiently finding useful patterns for detecting and diagnosing adverse medical conditions that are associated with diabetes. PMID:25937993

  7. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    PubMed

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  8. Using Passive and Active Acoustics to Examine Relationships of Cetacean and Prey Densities

    DTIC Science & Technology

    2015-09-30

    modulation or production to the marine soundscape with daily, lunar, and seasonal patterns. We aim to document how presence and intensity of certain...sounds relate to spatio-temporal variability of active acoustic backscatter strength. Additionally, several marine mammal species are predators of deep...scattering layer (DSL) species as well as krill. We intend to investigate if passive acoustic marine mammal detections are related to increased

  9. Temporal and acoustic characteristics of Greek vowels produced by adults with cerebral palsy

    NASA Astrophysics Data System (ADS)

    Botinis, Antonis; Orfanidou, Ioanna; Fourakis, Marios; Fourakis, Marios

    2005-09-01

    The present investigation examined the temporal and spectral characteristics of Greek vowels as produced by speakers with intact (NO) versus cerebral palsy affected (CP) neuromuscular systems. Six NO and six CP native speakers of Greek produced the Greek vowels [i, e, a, o, u] in the first syllable of CVCV nonsense words in a short carrier phrase. Stress could be on either the first or second syllable. There were three female and three male speakers in each group. In terms of temporal characteristics, the results showed that: vowels produced by CP speakers were longer than vowels produced by NO speakers; stressed vowels were longer than unstressed vowels; vowels produced by female speakers were longer than vowels produced by male speakers. In terms of spectral characteristics the results showed that the vowel space of the CP speakers was smaller than that of the NO speakers. This is similar to the results recently reported by Liu et al. [J. Acoust. Soc. Am. 117, 3879-3889 (2005)] for CP speakers of Mandarin. There was also a reduction of the acoustic vowel space defined by unstressed vowels, but this reduction was much more pronounced in the vowel productions of CP speakers than NO speakers.

  10. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.

    PubMed

    Churchill, Tyler H; Kan, Alan; Goupell, Matthew J; Litovsky, Ruth Y

    2014-09-01

    Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.

  11. Macroscale patterns of synchrony identify complex relationships among spatial and temporal ecosystem drivers

    USGS Publications Warehouse

    Lottig, Noah R.; Tan, Pang-Ning; Wagner, Tyler; Cheruvelil, Kendra Spence; Soranno, Patricia A.; Stanley, Emily H.; Scott, Caren E.; Stow, Craig A.; Yuan, Shuai

    2017-01-01

    Ecology has a rich history of studying ecosystem dynamics across time and space that has been motivated by both practical management needs and the need to develop basic ideas about pattern and process in nature. In situations in which both spatial and temporal observations are available, similarities in temporal behavior among sites (i.e., synchrony) provide a means of understanding underlying processes that create patterns over space and time. We used pattern analysis algorithms and data spanning 22–25 yr from 601 lakes to ask three questions: What are the temporal patterns of lake water clarity at sub‐continental scales? What are the spatial patterns (i.e., geography) of synchrony for lake water clarity? And, what are the drivers of spatial and temporal patterns in lake water clarity? We found that the synchrony of water clarity among lakes is not spatially structured at sub‐continental scales. Our results also provide strong evidence that the drivers related to spatial patterns in water clarity are not related to the temporal patterns of water clarity. This analysis of long‐term patterns of water clarity and possible drivers contributes to understanding of broad‐scale spatial patterns in the geography of synchrony and complex relationships between spatial and temporal patterns across ecosystems.

  12. Learning Temporal Patterns of Risk in a Predator-Diverse Environment

    PubMed Central

    Bosiger, Yoland J.; Lonnstedt, Oona M.; McCormick, Mark I.; Ferrari, Maud C. O.

    2012-01-01

    Predation plays a major role in shaping prey behaviour. Temporal patterns of predation risk have been shown to drive daily activity and foraging patterns in prey. Yet the ability to respond to temporal patterns of predation risk in environments inhabited by highly diverse predator communities, such as rainforests and coral reefs, has received surprisingly little attention. In this study, we investigated whether juvenile marine fish, Pomacentrus moluccensis (lemon damselfish), have the ability to learn to adjust the intensity of their antipredator response to match the daily temporal patterns of predation risk they experience. Groups of lemon damselfish were exposed to one of two predictable temporal risk patterns for six days. “Morning risk” treatment prey were exposed to the odour of Cephalopholis cyanostigma (rockcod) paired with conspecific chemical alarm cues (simulating a rockcod present and feeding) during the morning, and rockcod odour only in the evening (simulating a rockcod present but not feeding). “Evening risk” treatment prey had the two stimuli presented to them in the opposite order. When tested individually for their response to rockcod odour alone, lemon damselfish from the morning risk treatment responded with a greater antipredator response intensity in the morning than in the evening. In contrast, those lemon damselfish previously exposed to the evening risk treatment subsequently responded with a greater antipredator response when tested in the evening. The results of this experiment demonstrate that P. moluccensis have the ability to learn temporal patterns of predation risk and can adjust their foraging patterns to match the threat posed by predators at a given time of day. Our results provide the first experimental demonstration of a mechanism by which prey in a complex, multi-predator environment can learn and respond to daily patterns of predation risk. PMID:22493699

  13. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…

  14. Acoustic beam steering by light refraction: illustration with directivity patterns of a tilted volume photoacoustic source.

    PubMed

    Raetz, Samuel; Dehoux, Thomas; Perton, Mathieu; Audoin, Bertrand

    2013-12-01

    The symmetry of a thermoelastic source resulting from laser absorption can be broken when the direction of light propagation in an elastic half-space is inclined relatively to the surface. This leads to an asymmetry of the directivity patterns of both compressional and shear acoustic waves. In contrast to classical surface acoustic sources, the tunable volume source allows one to take advantage of the mode conversion at the surface to control the directivity of specific modes. Physical interpretations of the evolution of the directivity patterns with the increasing light angle of incidence and of the relations between the preferential directions of compressional- and shear-wave emission are proposed. In order to compare calculated directivity patterns with measurements of normal displacement amplitudes performed on plates, a procedure is proposed to transform the directivity patterns into pseudo-directivity patterns representative of the experimental conditions. The comparison of the theoretical with measured pseudo-directivity patterns demonstrates the ability to enhance bulk-wave amplitudes and to steer specific bulk acoustic modes by adequately tuning light refraction.

  15. A model for optimizing file access patterns using spatio-temporal parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boonthanome, Nouanesengsy; Patchett, John; Geveci, Berk

    2013-01-01

    For many years now, I/O read time has been recognized as the primary bottleneck for parallel visualization and analysis of large-scale data. In this paper, we introduce a model that can estimate the read time for a file stored in a parallel filesystem when given the file access pattern. Read times ultimately depend on how the file is stored and the access pattern used to read the file. The file access pattern will be dictated by the type of parallel decomposition used. We employ spatio-temporal parallelism, which combines both spatial and temporal parallelism, to provide greater flexibility to possible filemore » access patterns. Using our model, we were able to configure the spatio-temporal parallelism to design optimized read access patterns that resulted in a speedup factor of approximately 400 over traditional file access patterns.« less

  16. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences.

    PubMed

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-11-05

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals' attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter's hypothesis to temporal networks.

  17. Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment

    NASA Astrophysics Data System (ADS)

    Luo, Jing

    Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.

  18. Acoustical Survey of Methane Plumes on North Hydrate Ridge: Constraining Temporal and Spatial Characteristics.

    NASA Astrophysics Data System (ADS)

    Kannberg, P. K.; Trehu, A. M.

    2008-12-01

    While methane plumes associated with hydrate formations have been acoustically imaged before, little is known about their temporal characteristics. Previous acoustic surveys have focused on determining plume location, but as far as we know, multiple, repeated surveys of the same plume have not been done prior to the survey presented here. In July 2008, we acquired sixteen identical surveys within 19 hours over the northern summit of Hydrate Ridge in the Cascadia accretionary complex using the onboard 3.5 and 12 kHz echosounders. As in previous studies, the plumes were invisible to the 3.5 kHz echosounder and clearly imaged with 12 kHz. Seafloor depth in this region is ~600 m. Three distinct plumes were detected close to where plumes were located by Heeschen et al. (2003) a decade ago. Two of the plumes disappeared at ~520 m water depth, which is the depth of the top of the gas hydrate stability as determined from CTD casts obtained during the cruise. This supports the conclusion of Heeschen et al. (2003) that the bubbles are armored by gas hydrate and that they dissolve in the water column when they leave the hydrate stability zone. One of the plumes near the northern summit, however, extended through this boundary to at least 400 m (the shallowest depth recorded). A similar phenomenon was observed in methane plumes in the Gulf of Mexico, where the methane was found to be armored by an oil skin. In addition to the steady plumes, two discrete "burps" were observed. One "burp" occurred approximately 600 m to the SSW of the northern summit. This was followed by a second strong event 300m to the north an hour later. To evaluate temporal and spatial patterns, we summed the power of the backscattered signal in different depth windows for each survey. We present the results as a movie in which the backscatter power is shown in map view as a function of time. The surveys encompassed two complete tidal cycles, but no correlation between plume location or intensity and tides

  19. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences

    PubMed Central

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-01-01

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals’ attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter’s hypothesis to temporal networks. PMID:24145424

  20. Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech

    PubMed Central

    Leong, Victoria; Goswami, Usha

    2015-01-01

    When acquiring language, young children may use acoustic spectro-temporal patterns in speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syllables, phonemes). Children appear to learn acoustic-phonological mappings rapidly, without direct instruction, yet the underlying developmental mechanisms remain unclear. Across different languages, a relationship between amplitude envelope sensitivity and phonological development has been found, suggesting that children may make use of amplitude modulation (AM) patterns within the envelope to develop a phonological system. Here we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model, a set of algorithms for deriving the dominant AM patterns in child-directed speech (CDS). Using Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy comprising 3 core modulation timescales. These timescales correspond to key phonological units: prosodic stress (Stress AM, ~2 Hz), syllables (Syllable AM, ~5 Hz) and onset-rime units (Phoneme AM, ~20 Hz). We argue that these AM patterns could in principle be used by naïve listeners to compute acoustic-phonological mappings without lexical knowledge. We then demonstrate that the modulation statistics within this AM hierarchy indeed parse the speech signal into a primitive hierarchically-organised phonological system comprising stress feet (proto-words), syllables and onset-rime units. We apply the S-AMPH model to two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately identified 72–82% (freely-read CDS) and 90–98% (rhythmically-regular CDS) stress patterns, syllables and onset-rime units. This in-principle demonstration that primitive phonology can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP) theory. AEP theory provides a set of methods for examining how early phonological development is shaped by the temporal modulation structure of speech across

  1. Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech.

    PubMed

    Leong, Victoria; Goswami, Usha

    2015-01-01

    When acquiring language, young children may use acoustic spectro-temporal patterns in speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syllables, phonemes). Children appear to learn acoustic-phonological mappings rapidly, without direct instruction, yet the underlying developmental mechanisms remain unclear. Across different languages, a relationship between amplitude envelope sensitivity and phonological development has been found, suggesting that children may make use of amplitude modulation (AM) patterns within the envelope to develop a phonological system. Here we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model, a set of algorithms for deriving the dominant AM patterns in child-directed speech (CDS). Using Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy comprising 3 core modulation timescales. These timescales correspond to key phonological units: prosodic stress (Stress AM, ~2 Hz), syllables (Syllable AM, ~5 Hz) and onset-rime units (Phoneme AM, ~20 Hz). We argue that these AM patterns could in principle be used by naïve listeners to compute acoustic-phonological mappings without lexical knowledge. We then demonstrate that the modulation statistics within this AM hierarchy indeed parse the speech signal into a primitive hierarchically-organised phonological system comprising stress feet (proto-words), syllables and onset-rime units. We apply the S-AMPH model to two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately identified 72-82% (freely-read CDS) and 90-98% (rhythmically-regular CDS) stress patterns, syllables and onset-rime units. This in-principle demonstration that primitive phonology can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP) theory. AEP theory provides a set of methods for examining how early phonological development is shaped by the temporal modulation structure of speech across

  2. 1988 Wet deposition temporal and spatial patterns in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-yearmore » (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.« less

  3. 1988 Wet deposition temporal and spatial patterns in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-yearmore » (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.« less

  4. An improved genetic algorithm for designing optimal temporal patterns of neural stimulation

    NASA Astrophysics Data System (ADS)

    Cassar, Isaac R.; Titus, Nathan D.; Grill, Warren M.

    2017-12-01

    Objective. Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. Approach. We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. Main results. The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. Significance. The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.

  5. Effects of spectral and temporal disruption on cortical encoding of gerbil vocalizations

    PubMed Central

    Ter-Mikaelian, Maria; Semple, Malcolm N.

    2013-01-01

    Animal communication sounds contain spectrotemporal fluctuations that provide powerful cues for detection and discrimination. Human perception of speech is influenced both by spectral and temporal acoustic features but is most critically dependent on envelope information. To investigate the neural coding principles underlying the perception of communication sounds, we explored the effect of disrupting the spectral or temporal content of five different gerbil call types on neural responses in the awake gerbil's primary auditory cortex (AI). The vocalizations were impoverished spectrally by reduction to 4 or 16 channels of band-passed noise. For this acoustic manipulation, an average firing rate of the neuron did not carry sufficient information to distinguish between call types. In contrast, the discharge patterns of individual AI neurons reliably categorized vocalizations composed of only four spectral bands with the appropriate natural token. The pooled responses of small populations of AI cells classified spectrally disrupted and natural calls with an accuracy that paralleled human performance on an analogous speech task. To assess whether discharge pattern was robust to temporal perturbations of an individual call, vocalizations were disrupted by time-reversing segments of variable duration. For this acoustic manipulation, cortical neurons were relatively insensitive to short reversal lengths. Consistent with human perception of speech, these results indicate that the stable representation of communication sounds in AI is more dependent on sensitivity to slow temporal envelopes than on spectral detail. PMID:23761696

  6. Pattern-histogram-based temporal change detection using personal chest radiographs

    NASA Astrophysics Data System (ADS)

    Ugurlu, Yucel; Obi, Takashi; Hasegawa, Akira; Yamaguchi, Masahiro; Ohyama, Nagaaki

    1999-05-01

    An accurate and reliable detection of temporal changes from a pair of images has considerable interest in the medical science. Traditional registration and subtraction techniques can be applied to extract temporal differences when,the object is rigid or corresponding points are obvious. However, in radiological imaging, loss of the depth information, the elasticity of object, the absence of clearly defined landmarks and three-dimensional positioning differences constraint the performance of conventional registration techniques. In this paper, we propose a new method in order to detect interval changes accurately without using an image registration technique. The method is based on construction of so-called pattern histogram and comparison procedure. The pattern histogram is a graphic representation of the frequency counts of all allowable patterns in the multi-dimensional pattern vector space. K-means algorithm is employed to partition pattern vector space successively. Any differences in the pattern histograms imply that different patterns are involved in the scenes. In our experiment, a pair of chest radiographs of pneumoconiosis is employed and the changing histogram bins are visualized on both of the images. We found that the method can be used as an alternative way of temporal change detection, particularly when the precise image registration is not available.

  7. Discovery of spatio-temporal patterns from location-based social networks

    NASA Astrophysics Data System (ADS)

    Béjar, J.; Álvarez, S.; García, D.; Gómez, I.; Oliva, L.; Tejeda, A.; Vázquez-Salceda, J.

    2016-03-01

    Location-based social networks (LBSNs) such as Twitter or Instagram are a good source for user spatio-temporal behaviour. These networks collect data from users in such a way that they can be seen as a set of collective and distributed sensors of a geographical area. A low rate sampling of user's location information can be obtained during large intervals of time that can be used to discover complex patterns, including mobility profiles, points of interest or unusual events. These patterns can be used as the elements of a knowledge base for different applications in different domains such as mobility route planning, touristic recommendation systems or city planning. The aim of this paper is twofold, first to analyse the frequent spatio-temporal patterns that users share when living and visiting a city. This behaviour is studied by means of frequent itemsets algorithms in order to establish some associations among visits that can be interpreted as interesting routes or spatio-temporal connections. Second, to analyse how the spatio-temporal behaviour of a large number of users can be segmented in different profiles. These behavioural profiles are obtained by means of clustering algorithms that show the different patterns of behaviour of visitors and citizens. The data analysed were obtained from the public data feeds of Twitter and Instagram within an area surrounding the cities of Barcelona and Milan for a period of several months. The analysis of these data shows that these kinds of algorithms can be successfully applied to data from any city (or general area) to discover useful patterns that can be interpreted on terms of singular places and areas and their temporal relationships.

  8. Combined electric and acoustic hearing performance with Zebra® speech processor: speech reception, place, and temporal coding evaluation.

    PubMed

    Vaerenberg, Bart; Péan, Vincent; Lesbros, Guillaume; De Ceulaer, Geert; Schauwers, Karen; Daemers, Kristin; Gnansia, Dan; Govaerts, Paul J

    2013-06-01

    To assess the auditory performance of Digisonic(®) cochlear implant users with electric stimulation (ES) and electro-acoustic stimulation (EAS) with special attention to the processing of low-frequency temporal fine structure. Six patients implanted with a Digisonic(®) SP implant and showing low-frequency residual hearing were fitted with the Zebra(®) speech processor providing both electric and acoustic stimulation. Assessment consisted of monosyllabic speech identification tests in quiet and in noise at different presentation levels, and a pitch discrimination task using harmonic and disharmonic intonating complex sounds ( Vaerenberg et al., 2011 ). These tests investigate place and time coding through pitch discrimination. All tasks were performed with ES only and with EAS. Speech results in noise showed significant improvement with EAS when compared to ES. Whereas EAS did not yield better results in the harmonic intonation test, the improvements in the disharmonic intonation test were remarkable, suggesting better coding of pitch cues requiring phase locking. These results suggest that patients with residual hearing in the low-frequency range still have good phase-locking capacities, allowing them to process fine temporal information. ES relies mainly on place coding but provides poor low-frequency temporal coding, whereas EAS also provides temporal coding in the low-frequency range. Patients with residual phase-locking capacities can make use of these cues.

  9. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals

    PubMed Central

    Baker, Christa A.; Ma, Lisa; Casareale, Chelsea R.

    2016-01-01

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8–12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. SIGNIFICANCE STATEMENT The timing patterns of action potentials, or spikes, play important

  10. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.

    PubMed

    Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A

    2016-08-24

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing

  11. The effects of morphine on fixed-interval patterning and temporal discrimination.

    PubMed Central

    Odum, A L; Schaal, D W

    2000-01-01

    Changes produced by drugs in response patterns under fixed-interval schedules of reinforcement have been interpreted to result from changes in temporal discrimination. To examine this possibility, this experiment determined the effects of morphine on the response patterning of 4 pigeons during a fixed-interval 1-min schedule of food delivery with interpolated temporal discrimination trials. Twenty of the 50 total intervals were interrupted by choice trials. Pecks to one key color produced food if the interval was interrupted after a short time (after 2 or 4.64 s). Pecks to another key color produced food if the interval was interrupted after a long time (after 24.99 or 58 s). Morphine (1.0 to 10.0 mg/kg) decreased the index of curvature (a measure of response patterning) during fixed intervals and accuracy during temporal discrimination trials. Accuracy was equally disrupted following short and long sample durations. Although morphine disrupted temporal discrimination in the context of a fixed-interval schedule, these effects are inconsistent with interpretations of the disruption of response patterning as a selective overestimation of elapsed time. The effects of morphine may be related to the effects of more conventional external stimuli on response patterning. PMID:11029024

  12. Dynamical Properties of Transient Spatio-Temporal Patterns in Bacterial Colony of Proteus mirabilis

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazuhiko; Wakita, Jun-ichi; Itoh, Hiroto; Shimada, Hirotoshi; Kurosu, Sayuri; Ikeda, Takemasa; Yamazaki, Yoshihiro; Matsuyama, Tohey; Matsushita, Mitsugu

    2002-02-01

    Spatio-temporal patterns emerged inside a colony of bacterial species Proteus mirabilis on the surface of nutrient-rich semisolid agar medium have been investigated. We observed various patterns composed of the following basic types: propagating stripe, propagating stripe with fixed dislocation, expanding and shrinking target, and rotating spiral. The remarkable point is that the pattern changes immediately when we alter the position for observation, but it returns to the original if we restore the observing position within a few minutes. We further investigated mesoscopic and microscopic properties of the spatio-temporal patterns. It turned out that whenever the spatio-temporal patterns are observed in a colony, the areas are composed of two superimposed monolayers of elongated bacterial cells. In each area they are aligned almost parallel with each other like a two-dimensional nematic liquid crystal, and move collectively and independently of another layer. It has been found that the observed spatio-temporal patterns are explained as the moiré effect.

  13. Dependence of the Startle Response on Temporal and Spectral Characteristics of Acoustic Modulatory Influences in Rats and Gerbils

    PubMed Central

    Steube, Natalie; Nowotny, Manuela; Pilz, Peter K. D.; Gaese, Bernhard H.

    2016-01-01

    The acoustic startle response (ASR) and its modulation by non-startling prepulses, presented shortly before the startle-eliciting stimulus, is a broadly applied test paradigm to determine changes in neural processing related to auditory or psychiatric disorders. Modulation by a gap in background noise as a prepulse is especially used for tinnitus assessment. However, the timing and frequency-related aspects of prepulses are not fully understood. The present study aims to investigate temporal and spectral characteristics of acoustic stimuli that modulate the ASR in rats and gerbils. For noise-burst prepulses, inhibition was frequency-independent in gerbils in the test range between 4 and 18 kHz. Prepulse inhibition (PPI) by noise-bursts in rats was constant in a comparable range (8–22 kHz), but lower outside this range. Purely temporal aspects of prepulse–startle-interactions were investigated for gap-prepulses focusing mainly on gap duration. While very short gaps had no (rats) or slightly facilitatory (gerbils) influence on the ASR, longer gaps always had a strong inhibitory effect. Inhibition increased with durations up to 75 ms and remained at a high level of inhibition for durations up to 1000 ms for both, rats and gerbils. Determining spectral influences on gap-prepulse inhibition (gap-PPI) revealed that gerbils were unaffected in the limited frequency range tested (4–18 kHz). The more detailed analysis in rats revealed a variety of frequency-dependent effects. Gaps in pure-tone background elicited constant and high inhibition (around 75%) over a broad frequency range (4–32 kHz). For gaps in noise-bands, on the other hand, a clear frequency-dependency was found: inhibition was around 50% at lower frequencies (6–14 kHz) and around 70% at high frequencies (16–20 kHz). This pattern of frequency-dependency in rats was specifically resulting from the inhibitory effect by the gaps, as revealed by detailed analysis of the underlying startle amplitudes. An

  14. Pattern-formation under acoustic driving forces

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  15. Spatial-temporal travel pattern mining using massive taxi trajectory data

    NASA Astrophysics Data System (ADS)

    Zheng, Linjiang; Xia, Dong; Zhao, Xin; Tan, Longyou; Li, Hang; Chen, Li; Liu, Weining

    2018-07-01

    Deep understanding of residents' travel patterns would provide helpful insights into the mechanisms of many socioeconomic phenomena. With the rapid development of location-aware computing technologies, researchers have easy access to large quantities of travel data. As an important data source, taxi trajectory data are featured by their high quality, good continuity and wide distribution, making it suitable for travel pattern mining. In this paper, we use taxi trajectory data to study spatial-temporal characterization of urban residents' travel patterns from two aspects: attractive areas and hot paths. Firstly, a framework of trajectory preprocessing, including data cleaning and extracting the taxi passenger pick-up/drop-off points, is presented to reduce the noise and redundancy in raw trajectory data. Then, a grid density based clustering algorithm is proposed to discover travel attractive areas in different periods of a day. On this basis, we put forward a spatial-temporal trajectory clustering method to discover hot paths among travel attractive areas. Compared with previous algorithms, which only consider the spatial constraint between trajectories, temporal constraint is also considered in our method. Through the experiments, we discuss how to determine the optimal parameters of the two clustering algorithms and verify the effectiveness of the algorithms using real data. Furthermore, we analyze spatial-temporal characterization of Chongqing residents' travel pattern.

  16. Acoustically Evoked Different Vibration Pattern Across the Width of the Cochlea Partition

    NASA Astrophysics Data System (ADS)

    Zha, Dingjun; Chen, Fangyi; Friderberg, Anders; Choudhury, Niloy; Nuttall, Alfred

    2011-11-01

    Using optical low coherence interferometry, the acoustically evoked vibration patterns of the basilar membrane (BM) and reticular lamina (RL) in the first turn of living guinea pigs were measured as function of the radial location. It was demonstrated that the vibration of the BM varied widely in amplitude, but little in phase across the width of the partition, while the RL had a different vibration pattern compared with the BM.

  17. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  18. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity.

    PubMed

    Gu, Feng; Zhang, Caicai; Hu, Axu; Zhao, Guoping

    2013-12-01

    For nontonal language speakers, speech processing is lateralized to the left hemisphere and musical processing is lateralized to the right hemisphere (i.e., function-dependent brain asymmetry). On the other hand, acoustic temporal processing is lateralized to the left hemisphere and spectral/pitch processing is lateralized to the right hemisphere (i.e., acoustic-dependent brain asymmetry). In this study, we examine whether the hemispheric lateralization of lexical pitch and acoustic pitch processing in tonal language speakers is consistent with the patterns of function- and acoustic-dependent brain asymmetry in nontonal language speakers. Pitch contrast in both speech stimuli (syllable /ji/ in Experiment 1) and nonspeech stimuli (harmonic tone in Experiment 1; pure tone in Experiment 2) was presented to native Cantonese speakers in passive oddball paradigms. We found that the mismatch negativity (MMN) elicited by lexical pitch contrast was lateralized to the left hemisphere, which is consistent with the pattern of function-dependent brain asymmetry (i.e., left hemisphere lateralization for speech processing) in nontonal language speakers. However, the MMN elicited by acoustic pitch contrast was also left hemisphere lateralized (harmonic tone in Experiment 1) or showed a tendency for left hemisphere lateralization (pure tone in Experiment 2), which is inconsistent with the pattern of acoustic-dependent brain asymmetry (i.e., right hemisphere lateralization for acoustic pitch processing) in nontonal language speakers. The consistent pattern of function-dependent brain asymmetry and the inconsistent pattern of acoustic-dependent brain asymmetry between tonal and nontonal language speakers can be explained by the hypothesis that the acoustic-dependent brain asymmetry is the consequence of a carryover effect from function-dependent brain asymmetry. Potential evolutionary implication of this hypothesis is discussed. © 2013.

  19. Suppressed Alpha Oscillations Predict Intelligibility of Speech and its Acoustic Details

    PubMed Central

    Weisz, Nathan

    2012-01-01

    Modulations of human alpha oscillations (8–13 Hz) accompany many cognitive processes, but their functional role in auditory perception has proven elusive: Do oscillatory dynamics of alpha reflect acoustic details of the speech signal and are they indicative of comprehension success? Acoustically presented words were degraded in acoustic envelope and spectrum in an orthogonal design, and electroencephalogram responses in the frequency domain were analyzed in 24 participants, who rated word comprehensibility after each trial. First, the alpha power suppression during and after a degraded word depended monotonically on spectral and, to a lesser extent, envelope detail. The magnitude of this alpha suppression exhibited an additional and independent influence on later comprehension ratings. Second, source localization of alpha suppression yielded superior parietal, prefrontal, as well as anterior temporal brain areas. Third, multivariate classification of the time–frequency pattern across participants showed that patterns of late posterior alpha power allowed best for above-chance classification of word intelligibility. Results suggest that both magnitude and topography of late alpha suppression in response to single words can indicate a listener's sensitivity to acoustic features and the ability to comprehend speech under adverse listening conditions. PMID:22100354

  20. Acoustic cue weighting in the singleton vs geminate contrast in Lebanese Arabic: The case of fricative consonants.

    PubMed

    Al-Tamimi, Jalal; Khattab, Ghada

    2015-07-01

    This paper is the first reported investigation of the role of non-temporal acoustic cues in the singleton-geminate contrast in Lebanese Arabic, alongside the more frequently reported temporal cues. The aim is to explore the extent to which singleton and geminate consonants show qualitative differences in a language where phonological length is prominent and where moraic structure governs segment timing and syllable weight. Twenty speakers (ten male, ten female) were recorded producing trochaic disyllables with medial singleton and geminate fricatives preceded by phonologically short and long vowels. The following acoustic measures were applied on the medial fricative and surrounding vowels: absolute duration; intensity; fundamental frequency; spectral peak and shape, dynamic amplitude, and voicing patterns of medial fricatives; and vowel quality and voice quality correlates of surrounding vowels. Discriminant analysis and receiver operating characteristics (ROC) curves were used to assess each acoustic cue's contribution to the singleton-geminate contrast. Classification rates of 89% and ROC curves with an area under the curve rate of 96% confirmed the major role played by temporal cues, with non-temporal cues contributing to the contrast but to a much lesser extent. These results confirm that the underlying contrast for gemination in Arabic is temporal, but highlight [+tense] (fortis) as a secondary feature.

  1. Acoustic reflex patterns in amyotrophic lateral sclerosis.

    PubMed

    Canale, Andrea; Albera, Roberto; Lacilla, Michelangelo; Canosa, Antonio; Albera, Andrea; Sacco, Francesca; Chiò, Adriano; Calvo, Andrea

    2017-02-01

    The aim of the study is to investigate acoustic reflex testing in amyotrophic lateral sclerosis patients. Amplitude, latency, and rise time of stapedial reflex were recorded for 500 and 1000 Hz contralateral stimulus. Statistical analysis was performed by the Wilcoxon test and the level of significance was set at 5 %. Fifty-one amyotrophic lateral sclerosis patients and ten sex- and age-matched control subjects were studied. Patients were further divided in two groups: amyotrophic lateral sclerosis-bulbar (38 cases, with bulbar signs at evaluation) and amyotrophic lateral sclerosis-spinal (13 cases, without bulbar signs at evaluation). Stapedial reflex was present in all patients. There was a statistically significant difference in the mean amplitude, latency, and rise time between the amyotrophic lateral sclerosis patients as compared with the controls. Amplitude was lower in both the amyotrophic lateral sclerosis-bulbar and the amyotrophic lateral sclerosis-spinal patients than in the controls (p < 0.05) and rise time was longer in both patient groups compared with the controls (p < 0.05). These results confirm the presence of abnormal acoustic reflex patterns in amyotrophic lateral sclerosis cases with bulbar signs and, moreover, suggesting a possible subclinical involvement of the stapedial motor neuron even in amyotrophic lateral sclerosis-spinal patients. Amplitude and rise time seem to be good sensitive parameters for investigating subclinical bulbar involvement.

  2. Tree invasion of a montane meadow complex: temporal trends, spatial patterns, and biotic interactions

    Treesearch

    Charles B. Halpern; Joseph A. Antos; Janine M. Rice; Ryan D. Haugo; Nicole L. Lang

    2010-01-01

    We combined spatial point pattern analysis, population age structures, and a time-series of stem maps to quantify spatial and temporal patterns of conifer invasion over a 200-yr period in three plots totaling 4 ha. In combination, spatial and temporal patterns of establishment suggest an invasion process shaped by biotic interactions, with facilitation promoting...

  3. Selective attention to temporal features on nested time scales.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2015-02-01

    Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Optimized temporal pattern of brain stimulation designed by computational evolution

    PubMed Central

    Brocker, David T.; Swan, Brandon D.; So, Rosa Q.; Turner, Dennis A.; Gross, Robert E.; Grill, Warren M.

    2017-01-01

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson’s disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We used the temporal pattern of stimulation as a novel parameter of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson’s disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in the parkinsonian rat and in patients. Both optimized and standard stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution to design temporal pattern of stimulation to increase the efficiency of brain stimulation in Parkinson’s disease, thereby requiring substantially less energy than traditional brain stimulation. PMID:28053151

  5. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior

    PubMed Central

    Carlson, Bruce A.

    2010-01-01

    Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge (EOD). In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals and band-pass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally-relevant stimulus information encoded into temporal patterns of activity by sensory neurons. PMID:19641105

  6. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior.

    PubMed

    Carlson, Bruce A

    2009-07-29

    Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge. In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals, and bandpass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally relevant stimulus information encoded into temporal patterns of activity by sensory neurons.

  7. Boundary-induced pattern formation from uniform temporal oscillation

    NASA Astrophysics Data System (ADS)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2018-04-01

    Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.

  8. Adaptive Temporal Matched Filtering for Noise Suppression in Fiber Optic Distributed Acoustic Sensing.

    PubMed

    Ölçer, İbrahim; Öncü, Ahmet

    2017-06-05

    Distributed vibration sensing based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ -OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ -OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems.

  9. Adaptive Temporal Matched Filtering for Noise Suppression in Fiber Optic Distributed Acoustic Sensing

    PubMed Central

    Ölçer, İbrahim; Öncü, Ahmet

    2017-01-01

    Distributed vibration sensing based on phase-sensitive optical time domain reflectometry (ϕ-OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ-OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ-OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems. PMID:28587240

  10. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  11. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    PubMed

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  12. Pen-chant: Acoustic emissions of handwriting and drawing

    NASA Astrophysics Data System (ADS)

    Seniuk, Andrew G.

    The sounds generated by a writing instrument ('pen-chant') provide a rich and underutilized source of information for pattern recognition. We examine the feasibility of recognition of handwritten cursive text, exclusively through an analysis of acoustic emissions. We design and implement a family of recognizers using a template matching approach, with templates and similarity measures derived variously from: smoothed amplitude signal with fixed resolution, discrete sequence of magnitudes obtained from peaks in the smoothed amplitude signal, and ordered tree obtained from a scale space signal representation. Test results are presented for recognition of isolated lowercase cursive characters and for whole words. We also present qualitative results for recognizing gestures such as circling, scratch-out, check-marks, and hatching. Our first set of results, using samples provided by the author, yield recognition rates of over 70% (alphabet) and 90% (26 words), with a confidence of +/-8%, based solely on acoustic emissions. Our second set of results uses data gathered from nine writers. These results demonstrate that acoustic emissions are a rich source of information, usable---on their own or in conjunction with image-based features---to solve pattern recognition problems. In future work, this approach can be applied to writer identification, handwriting and gesture-based computer input technology, emotion recognition, and temporal analysis of sketches.

  13. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images.

    PubMed

    Hesford, Andrew J; Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C

    2014-08-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast.

  14. Temporal eating patterns: associations with nutrient intakes, diet quality, and measures of adiposity.

    PubMed

    Leech, Rebecca M; Timperio, Anna; Livingstone, Katherine M; Worsley, Anthony; McNaughton, Sarah A

    2017-10-01

    Background: Some evidence suggests that higher energy intake (EI) later in the day is associated with poor diet quality and obesity. However, EI at one eating occasion (EO) is also dependent on EI at surrounding EOs. Studies that examine the distribution of EOs across the day are rare. Objective: The aim of this study was to examine associations between temporal eating patterns, nutrient intakes, diet quality, and measures of adiposity in a representative sample of Australian adults. Design: Dietary data from two 24-h recalls collected during the cross-sectional 2011-2012 Australian National Nutrition and Physical Activity Survey were analyzed ( n = 4544 adults, aged ≥19 y). Temporal eating patterns, based on the distribution of EOs across the day, were determined by using latent class analysis. Diet quality estimated adherence to healthy eating recommendations and was assessed by using the 2013 Dietary Guidelines Index (DGI). Multivariate regression models assessed associations between temporal eating patterns, nutrient intakes, diet quality, and adiposity (body mass index, waist circumference, weight status, and central weight status). Models were adjusted for potential confounders and energy misreporting. Results: Three patterns, labeled "conventional," "later lunch," and "grazing," were identified. Compared with a "conventional" or "later lunch" pattern, men and women with a "grazing" pattern had lower DGI scores and higher intakes of discretionary (noncore) foods ( P < 0.05). Among women, the "grazing" pattern was associated with overweight or obesity (OR: 1.57; 95% CI: 1.15, 2.13) and central overweight or obesity (OR: 1.73; 95% CI: 1.19, 2.50). These associations were attenuated after the exclusion of energy misreporters and adjustment for total EI. Conclusions: This study found that a "grazing" temporal eating pattern was modestly but significantly associated with poorer diet quality and adiposity among women, after adjustment for covariates and energy

  15. How females of chirping and trilling field crickets integrate the 'what' and 'where' of male acoustic signals during decision making.

    PubMed

    Gabel, Eileen; Gray, David A; Matthias Hennig, R

    2016-11-01

    In crickets acoustic communication serves mate selection. Female crickets have to perceive and integrate male cues relevant for mate choice while confronted with several different signals in an acoustically diverse background. Overall female decisions are based on the attractiveness of the temporal pattern (informative about the 'what') and on signal intensity (informative about the 'where') of male calling songs. Here, we investigated how the relevant cues for mate choice are integrated during the decision process by females of five different species of chirping and trilling field crickets. Using a behavioral design, female preferences in no-choice and choice situations for male calling songs differing in pulse rate, modulation depth, intensities, chirp/trill arrangements and temporal shifts were examined. Sensory processing underlying decisions in female field crickets is rather similar as combined evidence suggested that incoming song patterns were analyzed separately by bilaterally paired networks for pattern attractiveness and pattern intensity. A downstream gain control mechanism leads to a weighting of the intensity cue by pattern attractiveness. While remarkable differences between species were observed with respect to specific processing steps, closely related species exhibited more similar preferences than did more distantly related species.

  16. Study of acoustic correlates associate with emotional speech

    NASA Astrophysics Data System (ADS)

    Yildirim, Serdar; Lee, Sungbok; Lee, Chul Min; Bulut, Murtaza; Busso, Carlos; Kazemzadeh, Ebrahim; Narayanan, Shrikanth

    2004-10-01

    This study investigates the acoustic characteristics of four different emotions expressed in speech. The aim is to obtain detailed acoustic knowledge on how a speech signal is modulated by changes from neutral to a certain emotional state. Such knowledge is necessary for automatic emotion recognition and classification and emotional speech synthesis. Speech data obtained from two semi-professional actresses are analyzed and compared. Each subject produces 211 sentences with four different emotions; neutral, sad, angry, happy. We analyze changes in temporal and acoustic parameters such as magnitude and variability of segmental duration, fundamental frequency and the first three formant frequencies as a function of emotion. Acoustic differences among the emotions are also explored with mutual information computation, multidimensional scaling and acoustic likelihood comparison with normal speech. Results indicate that speech associated with anger and happiness is characterized by longer duration, shorter interword silence, higher pitch and rms energy with wider ranges. Sadness is distinguished from other emotions by lower rms energy and longer interword silence. Interestingly, the difference in formant pattern between [happiness/anger] and [neutral/sadness] are better reflected in back vowels such as /a/(/father/) than in front vowels. Detailed results on intra- and interspeaker variability will be reported.

  17. Spatial and temporal variation of acoustic backscatter in the STRESS experiment

    NASA Astrophysics Data System (ADS)

    Dworski, J. George; Jackson, Darrell R.

    1994-08-01

    Acoustic backscatter measurements were made of the seabed with a bottom mounted, circularly scanning sonar. The placement was at 91 m depth, mid-shelf of Northern California (38° 34'N), site C3 of the experiment STRESS I (1988-1989). Our expectation was that sonar images (70 m radius, 12,000 m 2) would provide a means of observing, over a large field of view, changes in the bottom due to storm-induced sediment transport and due to bioturbation. This expectation was supported in part by towed sonar measurements at 35 kHz over a sandy area in the North Sea, where dramatic spatial variation in the level of the backseattered signal was observed during an Autumn storm on scales of a few km with no concomitant change in sediment grain size [ JACKSONet al. (1986) The Journal of the Acoustical Society of America, 80, 1188-1199]. It appeared possible that storm-driven sediment transport might have been responsible for this patchiness, by altering bottom roughness and by redeposition of suspended material. At the California site, a conventional sonar processing of our data from the STRESS experiment reveals no such dramatic change in backscattered signal level due to storms. The sonar images contain random structures whose time evolution is subtle and difficult to interpret. A much clearer picture of temporal and spatial variations emerges from a processing scheme involving cross-correlation of time-separated acoustic views of the bottom. In effect, the sequence of correlation data images produces a movie in which patches of activity are seen to develop as functions of time. It appears that most of this activity is biological rather than hydrodynamic. A tentative explanation is two-fold. The bottom shear stress might have been considerably greater at the North Sea site (with depth only one-half of the California site). The seafloor at the California site was silty-clayey, and backscatter from such floor is less sensitive to the water-floor interface shape and roughness than

  18. Leaders and followers: quantifying consistency in spatio-temporal propagation patterns

    NASA Astrophysics Data System (ADS)

    Kreuz, Thomas; Satuvuori, Eero; Pofahl, Martin; Mulansky, Mario

    2017-04-01

    Repetitive spatio-temporal propagation patterns are encountered in fields as wide-ranging as climatology, social communication and network science. In neuroscience, perfectly consistent repetitions of the same global propagation pattern are called a synfire pattern. For any recording of sequences of discrete events (in neuroscience terminology: sets of spike trains) the questions arise how closely it resembles such a synfire pattern and which are the spike trains that lead/follow. Here we address these questions and introduce an algorithm built on two new indicators, termed SPIKE-order and spike train order, that define the synfire indicator value, which allows to sort multiple spike trains from leader to follower and to quantify the consistency of the temporal leader-follower relationships for both the original and the optimized sorting. We demonstrate our new approach using artificially generated datasets before we apply it to analyze the consistency of propagation patterns in two real datasets from neuroscience (giant depolarized potentials in mice slices) and climatology (El Niño sea surface temperature recordings). The new algorithm is distinguished by conceptual and practical simplicity, low computational cost, as well as flexibility and universality.

  19. Spatio-Temporal Patterns in Colonies of Rod-Shaped Bacteria

    NASA Astrophysics Data System (ADS)

    Kitsunezaki, S.

    In incubation experiments of bacterial colonies of Proteus Mirabilis, macroscopic spatio-temporal patterns, such as turbulent and unidirectional spiral patterns, appear in colonies. Considering only kinetic propeties of rod-shaped bacteria, we propose a phenomenological model for the directional and positional distributions. As the average density increases, homogeneous states bifurcate sub-critically into nonuniform states exhibiting localized collective motion, and spiral patterns appear for sufficiently large density. These patterns result from interactions between the local bacteria densities and the order parameter representing collective motion. Our model can be described by reduced equations using a perturbative method for large density. The unidirectionality of sprial rotation is also discussed.

  20. Temporal patterns of drug use - a pilot study.

    PubMed

    Sinnett, E R

    1976-12-01

    Examination of pilot data for classes of drugs showed significant coefficients of concordance for ranked times of most common to least common use. Marijuana, psychedelics, and amphetamines were used most commonly from 6 to 10 p.m., coincidental with temporal patterns for viewing television suggests recreational use. Use times for caffeine were completely different.

  1. Temporal and geographic patterns in population trends of brown-headed cowbirds

    USGS Publications Warehouse

    Peterjohn, B.G.; Sauer, J.R.; Schwarz, S.

    2000-01-01

    The temporal and geographic patterns in the population trends of Brown-headed Cowbirds are summarized from the North American Breeding Bird Survey. During 1966-1992, the survey-wide population declined significantly, a result of declining populations in the Eastern BBS Region, southern Great Plains, and the Pacific coast states. Increasing populations were most evident in the northern Great Plains. Cowbird populations were generally stable or increasing during 1966-1976, but their trends became more negative after 1976. The trends in cowbird populations were generally directly correlated with the trends of both host and nonhost species, suggesting that large-scale factors such as changing weather patterns, land use practices, or habitat availability were responsible for the observed temporal and geographic patterns in the trends of cowbirds and their hosts.

  2. Temporal patterns of phytoplankton abundance in the North Atlantic

    NASA Technical Reports Server (NTRS)

    Campbell, Janet W.

    1989-01-01

    A time series of CZCS images is being developed to study phytoplankton distribution patterns in the North Atlantic. The goal of this study is to observe temporal variability in phytoplankton pigments and other organic particulates, and to infer from these patterns the potential flux of biogenic materials from the euphotic layer to the deep ocean. Early results of this project are presented in this paper. Specifically, the satellite data used were 13 monthly composited images of CZCS data for the North Atlantic from January 1979 to January 1980. Results are presented for seasonal patterns along the 20 deg W meridian.

  3. Temporal and spatial variation of beaked and sperm whales foraging activity in Hawai'i, as determined with passive acoustics.

    PubMed

    Giorli, Giacomo; Neuheimer, Anna; Copeland, Adrienne; Au, Whitlow W L

    2016-10-01

    Beaked and sperm whales are top predators living in the waters off the Kona coast of Hawai'i. Temporal and spatial analyses of the foraging activity of these two species were studied with passive acoustics techniques. Three passive acoustics recorders moored to the ocean floor were used to monitor the foraging activity of these whales in three locations along the Kona coast of the island of Hawaii. Data were analyzed using automatic detector/classification systems: M3R (Marine Mammal Monitoring on Navy Ranges), and custom-designed Matlab programs. The temporal variation in foraging activity was species-specific: beaked whales foraged more at night in the north, and more during the day-time off Kailua-Kona. No day-time/night-time preference was found in the southern end of the sampling range. Sperm whales foraged mainly at night in the north, but no day-time/night-time preference was observed off Kailua-Kona and in the south. A Generalized Linear Model was then applied to assess whether location and chlorophyll concentration affected the foraging activity of each species. Chlorophyll concentration and location influenced the foraging activity of both these species of deep-diving odontocetes.

  4. Temporal Feeding Pattern May Influence Reproduction Efficiency, the Example of Breeding Mares

    PubMed Central

    Benhajali, Haifa; Ezzaouia, Mohammed; Lunel, Christophe; Charfi, Faouzia; Hausberger, Martine

    2013-01-01

    Discomfort in farm animals may be induced by inappropriate types or timing of food supplies. Thus, time restriction of meals and lack of roughage have been shown to be one source of emergence of oral stereotypies and abnormal behaviour in horses which have evolved to eat high-fibre diets in small amounts over long periods of time. This feeding pattern is often altered in domestic environment where horses are often fed low fibre meals that can be rapidly consumed. This study aimed at determining the effect of the temporal pattern of feeding on reproductive efficiency of breeding mares, One hundred Arab breeding mares were divided into two groups that differed only in the temporal pattern of roughage availability: only at night for the standard feeding pattern group (SFP mares), night and day for the “continuous feeding” group (CF mares). The total amount of roughage provided was the same as the CF mares received half of the hay during the day while in paddock (haynets). Mares were tested for oestrus detection by teasing with one stallion and were then examined clinically by rectal palpations and ultrasound before being mated naturally or inseminated by fresh or frozen semen. Multivariate logistic regression was used to analyse data. The treatment affected significantly the reproductive efficiency of the mares with fewer oestrus abnormalities (p = 0.0002) and more fertility (p = 0.024) in CF mares (conception rate = 81% versus 55% in SFP mares). Ensuring semi-continous feeding by providing roughage may be a way of fulfilling the basic physiological needs of the horses' digestive system, reducing stress and associated inhibitors of reproduction. To our knowledge, this study provides the first evidence of an impact of temporal feeding patterns on reproductive success in a Mammal. Temporal patterns of feeding may be a major and underestimated factor in breeding. PMID:24098636

  5. Sound production patterns from humpback whales in a high latitude foraging area

    NASA Astrophysics Data System (ADS)

    Stimpert, Alison K.; Wiley, David N.; Barton, Kira L.; Johnson, Mark P.; Lammers, Marc O.; Au, Whitlow W. L.

    2005-09-01

    Numerous studies have been conducted on humpback whale song, but substantially fewer have focused on the acoustic properties of non-song sound production (i.e., feeding and social sounds). Non-invasive digital acoustic recording tags (DTAGS) were attached to humpback whales on the western North Atlantics Great South Channel feeding grounds during July 2004. Acoustic records totaling 48.4 data hours from four of these attachments were aurally analyzed for temporal trends in whale signal production. A custom automatic detection function was also used to identify occurrences of specific signals and evaluate their temporal consistency. Patterns in sound usage varied by stage of foraging dive and by time of day. Amount of time with signals present was greater at the bottom of dives than during surface periods, indicating that sounds are probably related to foraging at depth. For the two tags that recorded at night, signals were present during a greater proportion of daylight hours than night hours. These results will be compared with previously published trends describing diel patterns in male humpback whale song chorusing on the breeding grounds. Data from the continuation of this research during the summer of 2005 will also be included.

  6. Patterns of acoustic variation in Cicada barbara Stål (Hemiptera, Cicadoidea) from the Iberian Peninsula and Morocco.

    PubMed

    Pinto-Juma, G A; Seabra, S G; Quartau, J A

    2008-02-01

    Field recordings of the calling song and of an amplitude modulated signal produced by males of Cicada barbara from North Africa and the Iberian Peninsula were analysed in order to assess the geographical acoustic variation and the potential usefulness of acoustic data in the discrimination of subspecies and populations. Sound recordings were digitized and the frequency and temporal properties of the calls of each cicada were analysed. In all regions studied, peak frequency, quartiles 25, 50 and 75% and syllable rate showed low coefficients of variation suggesting inherent static properties. All frequency variables were correlated with the latitude, decreasing from south to north. In addition, most acoustic variables of the calling song showed significant differences between regions, and PCA and DFA analyses supported a partitioning within this species between Iberian Peninsula+Ceuta and Morocco, corroborating mtDNA data on the same species. Therefore, the subspecific division of C. barbara into C. barbara barbara from Morocco and C. barbara lusitanica from Portugal, Spain and Ceuta finds support from the present acoustic analyses, a result which is also reinforced by molecular markers.

  7. Signals from the deep: Spatial and temporal acoustic occurrence of beaked whales off western Ireland.

    PubMed

    Kowarski, Katie; Delarue, Julien; Martin, Bruce; O'Brien, Joanne; Meade, Rossa; Ó Cadhla, Oliver; Berrow, Simon

    2018-01-01

    Little is known of the spatio-temporal occurrence of beaked whales off western Ireland, limiting the ability of Regulators to implement appropriate management and conservation measures. To address this knowledge gap, static acoustic monitoring was carried out using eight fixed bottom-mounted autonomous acoustic recorders: four from May to December 2015 on Ireland's northern slope and four from March to November 2016 on the western and southern slopes. Recorders ran for 205 to 230 days, resulting in 4.09 TB of data sampled at 250 kHz which could capture beaked whale acoustic signals. Zero-crossing-based automated detectors identified beaked whale clicks. A sample of detections was manually validated to evaluate and optimize detector performance. Analysis confirmed the occurrence of Sowerby's and Cuvier's beaked whales and Northern bottlenose whales. Northern bottlenose whale clicks occurred in late summer and autumn, but were too few to allow further analysis. Cuvier's and Sowerby's clicks occurred at all stations throughout the monitoring period. There was a significant effect of month and station (latitude) on the mean daily number of click detections for both species. Cuvier's clicks were more abundant at lower latitudes while Sowerby's were greater at higher latitudes, particularly in the spring, suggesting a spatial segregation between species, possibly driven by prey preference. Cuvier's occurrence increased in late autumn 2015 off northwest Porcupine Bank, a region of higher relative occurrence for each species. Seismic airgun shots, with daily sound exposure levels as high as 175 dB re 1 μPa2·s, did not appear to impact the mean daily number of Cuvier's or Sowerby's beaked whale click detections. This work provides insight into the significance of Irish waters for beaked whales and highlights the importance of using acoustics for beaked whale monitoring.

  8. Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate

    NASA Astrophysics Data System (ADS)

    Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei

    2018-05-01

    The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.

  9. Simulation of Acoustics for Ares I Scale Model Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Putnam, Gabriel; Strutzenberg, Louise L.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.

  10. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors

    PubMed Central

    Raman, Baranidharan; Joseph, Joby; Tang, Jeff; Stopfer, Mark

    2010-01-01

    Odorants are represented as spatiotemporal patterns of spikes in neurons of the antennal lobe (AL, insects) and olfactory bulb (OB, vertebrates). These response patterns have been thought to arise primarily from interactions within the AL/OB, an idea supported, in part, by the assumption that olfactory receptor neurons (ORNs) respond to odorants with simple firing patterns. However, activating the AL directly with simple pulses of current evoked responses in AL neurons that were much less diverse, complex, and enduring than responses elicited by odorants. Similarly, models of the AL driven by simplistic inputs generated relatively simple output. How then are dynamic neural codes for odors generated? Consistent with recent results from several other species, our recordings from locust ORNs showed a great diversity of temporal structure. Further, we found that, viewed as a population, many response features of ORNs were remarkably similar to those observed within the AL. Using a set of computational models constrained by our electrophysiological recordings, we found that the temporal heterogeneity of responses of ORNs critically underlies the generation of spatiotemporal odor codes in the AL. A test then performed in vivo confirmed that, given temporally homogeneous input, the AL cannot create diverse spatiotemporal patterns on its own; however, given temporally heterogeneous input, the AL generated realistic firing patterns. Finally, given the temporally structured input provided by ORNs, we clarified several separate, additional contributions of the AL to olfactory information processing. Thus, our results demonstrate the origin and subsequent reformatting of spatiotemporal neural codes for odors. PMID:20147528

  11. Acoustic holograms of active regions

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi

    2008-10-01

    We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.

  12. COMPOSE: Using temporal patterns for interpreting wearable sensor data with computer interpretable guidelines.

    PubMed

    Urovi, V; Jimenez-Del-Toro, O; Dubosson, F; Ruiz Torres, A; Schumacher, M I

    2017-02-01

    This paper describes a novel temporal logic-based framework for reasoning with continuous data collected from wearable sensors. The work is motivated by the Metabolic Syndrome, a cluster of conditions which are linked to obesity and unhealthy lifestyle. We assume that, by interpreting the physiological parameters of continuous monitoring, we can identify which patients have a higher risk of Metabolic Syndrome. We define temporal patterns for reasoning with continuous data and specify the coordination mechanisms for combining different sets of clinical guidelines that relate to this condition. The proposed solution is tested with data provided by twenty subjects, which used sensors for four days of continuous monitoring. The results are compared to the gold standard. The novelty of the framework stands in extending a temporal logic formalism, namely the Event Calculus, with temporal patterns. These patterns are helpful to specify the rules for reasoning with continuous data and in combining new knowledge into one consistent outcome that is tailored to the patient's profile. The overall approach opens new possibilities for delivering patient-tailored interventions and educational material before the patients present the symptoms of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand.

    PubMed

    Jeefoo, Phaisarn; Tripathi, Nitin Kumar; Souris, Marc

    2011-01-01

    In recent years, dengue has become a major international public health concern. In Thailand it is also an important concern as several dengue outbreaks were reported in last decade. This paper presents a GIS approach to analyze the spatial and temporal dynamics of dengue epidemics. The major objective of this study was to examine spatial diffusion patterns and hotspot identification for reported dengue cases. Geospatial diffusion pattern of the 2007 dengue outbreak was investigated. Map of daily cases was generated for the 153 days of the outbreak. Epidemiological data from Chachoengsao province, Thailand (reported dengue cases for the years 1999-2007) was used for this study. To analyze the dynamic space-time pattern of dengue outbreaks, all cases were positioned in space at a village level. After a general statistical analysis (by gender and age group), data was subsequently analyzed for temporal patterns and correlation with climatic data (especially rainfall), spatial patterns and cluster analysis, and spatio-temporal patterns of hotspots during epidemics. The results revealed spatial diffusion patterns during the years 1999-2007 representing spatially clustered patterns with significant differences by village. Villages on the urban fringe reported higher incidences. The space and time of the cases showed outbreak movement and spread patterns that could be related to entomologic and epidemiologic factors. The hotspots showed the spatial trend of dengue diffusion. This study presents useful information related to the dengue outbreak patterns in space and time and may help public health departments to plan strategies to control the spread of disease. The methodology is general for space-time analysis and can be applied for other infectious diseases as well.

  14. Minke whale song, spacing, and acoustic communication on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Gedamke, Jason

    An inquisitive population of minke whale (Balaenoptera acutorostrata ) that concentrates on the Great Barrier Reef during its suspected breeding season offered a unique opportunity to conduct a multi-faceted study of a little-known Balaenopteran species' acoustic behavior. Chapter one investigates whether the minke whale is the source of an unusual, complex, and stereotyped sound recorded, the "star-wars" vocalization. A hydrophone array was towed from a vessel to record sounds from circling whales for subsequent localization of sound sources. These acoustic locations were matched with shipboard and in-water observations of the minke whale, demonstrating the minke whale was the source of this unusual sound. Spectral and temporal features of this sound and the source levels at which it is produced are described. The repetitive "star-wars" vocalization appears similar to the songs of other whale species and has characteristics consistent with reproductive advertisement displays. Chapter two investigates whether song (i.e. the "star-wars" vocalization) has a spacing function through passive monitoring of singer spatial patterns with a moored five-sonobuoy array. Active song playback experiments to singers were also conducted to further test song function. This study demonstrated that singers naturally maintain spatial separations between them through a nearest-neighbor analysis and animated tracks of singer movements. In response to active song playbacks, singers generally moved away and repeated song more quickly suggesting that song repetition interval may help regulate spatial interaction and singer separation. These results further indicate the Great Barrier Reef may be an important reproductive habitat for this species. Chapter three investigates whether song is part of a potentially graded repertoire of acoustic signals. Utilizing both vessel-based recordings and remote recordings from the sonobuoy array, temporal and spectral features, source levels, and

  15. Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh–Nagumo oscillators

    PubMed Central

    Grace, Miriam; Hütt, Marc-Thorsten

    2013-01-01

    In many biological systems, variability of the components can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In pioneering work in the late 1990s, it was hypothesized that a drift of cellular parameters (along a ‘developmental path’), together with differences in cell properties (‘desynchronization’ of cells on the developmental path) can establish self-organized spatio-temporal patterns (in their example, spiral waves of cAMP in a colony of Dictyostelium discoideum cells) starting from a homogeneous state. Here, we embed a generic model of an excitable medium, a lattice of diffusively coupled FitzHugh–Nagumo oscillators, into a developmental-path framework. In this minimal model of spiral wave generation, we can now study the predictability of spatio-temporal patterns from cell properties as a function of desynchronization (or ‘spread’) of cells along the developmental path and the drift speed of cell properties on the path. As a function of drift speed and desynchronization, we observe systematically different routes towards fully established patterns, as well as strikingly different correlations between cell properties and pattern features. We show that the predictability of spatio-temporal patterns from cell properties contains important information on the pattern formation process as well as on the underlying dynamical system. PMID:23349439

  16. The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns.

    PubMed

    Noguchi, Rei; Kubota, Hiroyuki; Yugi, Katsuyuki; Toyoshima, Yu; Komori, Yasunori; Soga, Tomoyoshi; Kuroda, Shinya

    2013-05-14

    Insulin governs systemic glucose metabolism, including glycolysis, gluconeogenesis and glycogenesis, through temporal change and absolute concentration. However, how insulin-signalling pathway selectively regulates glycolysis, gluconeogenesis and glycogenesis remains to be elucidated. To address this issue, we experimentally measured metabolites in glucose metabolism in response to insulin. Step stimulation of insulin induced transient response of glycolysis and glycogenesis, and sustained response of gluconeogenesis and extracellular glucose concentration (GLC(ex)). Based on the experimental results, we constructed a simple computational model that characterises response of insulin-signalling-dependent glucose metabolism. The model revealed that the network motifs of glycolysis and glycogenesis pathways constitute a feedforward (FF) with substrate depletion and incoherent feedforward loop (iFFL), respectively, enabling glycolysis and glycogenesis responsive to temporal changes of insulin rather than its absolute concentration. In contrast, the network motifs of gluconeogenesis pathway constituted a FF inhibition, enabling gluconeogenesis responsive to absolute concentration of insulin regardless of its temporal patterns. GLC(ex) was regulated by gluconeogenesis and glycolysis. These results demonstrate the selective control mechanism of glucose metabolism by temporal patterns of insulin.

  17. The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns

    PubMed Central

    Noguchi, Rei; Kubota, Hiroyuki; Yugi, Katsuyuki; Toyoshima, Yu; Komori, Yasunori; Soga, Tomoyoshi; Kuroda, Shinya

    2013-01-01

    Insulin governs systemic glucose metabolism, including glycolysis, gluconeogenesis and glycogenesis, through temporal change and absolute concentration. However, how insulin-signalling pathway selectively regulates glycolysis, gluconeogenesis and glycogenesis remains to be elucidated. To address this issue, we experimentally measured metabolites in glucose metabolism in response to insulin. Step stimulation of insulin induced transient response of glycolysis and glycogenesis, and sustained response of gluconeogenesis and extracellular glucose concentration (GLCex). Based on the experimental results, we constructed a simple computational model that characterises response of insulin-signalling-dependent glucose metabolism. The model revealed that the network motifs of glycolysis and glycogenesis pathways constitute a feedforward (FF) with substrate depletion and incoherent feedforward loop (iFFL), respectively, enabling glycolysis and glycogenesis responsive to temporal changes of insulin rather than its absolute concentration. In contrast, the network motifs of gluconeogenesis pathway constituted a FF inhibition, enabling gluconeogenesis responsive to absolute concentration of insulin regardless of its temporal patterns. GLCex was regulated by gluconeogenesis and glycolysis. These results demonstrate the selective control mechanism of glucose metabolism by temporal patterns of insulin. PMID:23670537

  18. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  19. Material fabrication using acoustic radiation forces

    DOEpatents

    Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ

    2015-12-01

    Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.

  20. Diel patterns and temporal trends in spawning activities of Robust Redhorse and River Redhorse in Georgia, assessed using passive acoustic monitoring

    USGS Publications Warehouse

    Straight, Carrie A.; Jackson, C. Rhett; Freeman, Byron J.; Freeman, Mary C.

    2015-01-01

    The conservation of imperiled species depends upon understanding threats to the species at each stage of its life history. In the case of many imperiled migratory fishes, understanding how timing and environmental influences affect reproductive behavior could provide managers with information critical for species conservation. We used passive acoustic recorders to document spawning activities for two large-bodied catostomids (Robust Redhorse Moxostoma robustum in the Savannah and Broad rivers, Georgia, and River Redhorse M. carinatum in the Coosawattee River, Georgia) in relation to time of day, water temperature, discharge variation, moonlight, and weather. Robust Redhorse spawning activities in the Savannah and Broad rivers were more frequent at night or in the early morning (0100–0400 hours and 0800–1000 hours, respectively) and less frequent near midday (1300 hours). Spawning attempts in the Savannah and Broad rivers increased over a 3–4-d period and then declined. River Redhorse spawning activities in the Coosawattee River peaked on the first day of recording and declined over four subsequent days; diel patterns were less discernible, although moon illumination was positively associated with spawning rates, which was also observed for Robust Redhorses in the Savannah River. Spawning activity in the Savannah and Broad rivers was negatively associated with water temperature, and spawning activity increased in association with cloud cover in the Savannah River. A large variation in discharge was only measured in the flow-regulated Savannah River and was not associated with spawning attempts. To our knowledge, this is the first study to show diel and multiday patterns in spawning activities for anyMoxostoma species. These patterns and relationships between the environment and spawning activities could provide important information for the management of these species downstream of hydropower facilities.

  1. Recurrent Coupling Improves Discrimination of Temporal Spike Patterns

    PubMed Central

    Yuan, Chun-Wei; Leibold, Christian

    2012-01-01

    Despite the ubiquitous presence of recurrent synaptic connections in sensory neuronal systems, their general functional purpose is not well understood. A recent conceptual advance has been achieved by theories of reservoir computing in which recurrent networks have been proposed to generate short-term memory as well as to improve neuronal representation of the sensory input for subsequent computations. Here, we present a numerical study on the distinct effects of inhibitory and excitatory recurrence in a canonical linear classification task. It is found that both types of coupling improve the ability to discriminate temporal spike patterns as compared to a purely feed-forward system, although in different ways. For a large class of inhibitory networks, the network’s performance is optimal as long as a fraction of roughly 50% of neurons per stimulus is active in the resulting population code. Thereby the contribution of inactive neurons to the neural code is found to be even more informative than that of the active neurons, generating an inherent robustness of classification performance against temporal jitter of the input spikes. Excitatory couplings are found to not only produce a short-term memory buffer but also to improve linear separability of the population patterns by evoking more irregular firing as compared to the purely inhibitory case. As the excitatory connectivity becomes more sparse, firing becomes more variable, and pattern separability improves. We argue that the proposed paradigm is particularly well-suited as a conceptual framework for processing of sensory information in the auditory pathway. PMID:22586392

  2. Spatio-Temporal Patterns of Barmah Forest Virus Disease in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland. PMID:22022430

  3. Spatio-temporal patterns of Barmah Forest virus disease in Queensland, Australia.

    PubMed

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ(2) = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.

  4. The acoustic adaptation hypothesis in a widely distributed South American frog: Southernmost signals propagate better.

    PubMed

    Velásquez, Nelson A; Moreno-Gómez, Felipe N; Brunetti, Enzo; Penna, Mario

    2018-05-03

    Animal communication occurs in environments that affect the properties of signals as they propagate from senders to receivers. We studied the geographic variation of the advertisement calls of male Pleurodema thaul individuals from eight localities in Chile. Furthermore, by means of signal propagation experiments, we tested the hypothesis that local calls are better transmitted and less degraded than foreign calls (i.e. acoustic adaptation hypothesis). Overall, the advertisement calls varied greatly along the distribution of P. thaul in Chile, and it was possible to discriminate localities grouped into northern, central and southern stocks. Propagation distance affected signal amplitude and spectral degradation in all localities, but temporal degradation was only affected by propagation distance in one out of seven localities. Call origin affected signal amplitude in five out of seven localities and affected spectral and temporal degradation in six out of seven localities. In addition, in northern localities, local calls degraded more than foreign calls, and in southern localities the opposite was observed. The lack of a strict optimal relationship between signal characteristics and environment indicates partial concordance with the acoustic adaptation hypothesis. Inter-population differences in selectivity for call patterns may compensate for such environmental constraints on acoustic communication.

  5. Characteristics of spectro-temporal modulation frequency selectivity in humans.

    PubMed

    Oetjen, Arne; Verhey, Jesko L

    2017-03-01

    There is increasing evidence that the auditory system shows frequency selectivity for spectro-temporal modulations. A recent study of the authors has shown spectro-temporal modulation masking patterns that were in agreement with the hypothesis of spectro-temporal modulation filters in the human auditory system [Oetjen and Verhey (2015). J. Acoust. Soc. Am. 137(2), 714-723]. In the present study, that experimental data and additional data were used to model this spectro-temporal frequency selectivity. The additional data were collected to investigate to what extent the spectro-temporal modulation-frequency selectivity results from a combination of a purely temporal amplitude-modulation filter and a purely spectral amplitude-modulation filter. In contrast to the previous study, thresholds were measured for masker and target modulations with opposite directions, i.e., an upward pointing target modulation and a downward pointing masker modulation. The comparison of this data set with previous corresponding data with the same direction from target and masker modulations indicate that a specific spectro-temporal modulation filter is required to simulate all aspects of spectro-temporal modulation frequency selectivity. A model using a modified Gabor filter with a purely temporal and a purely spectral filter predicts the spectro-temporal modulation masking data.

  6. Enhanced tagging of light utilizing acoustic radiation force with speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Vakili, Ali; Hollmann, Joseph L.; Holt, R. Glynn; DiMarzio, Charles A.

    2017-10-01

    In optical imaging, the depth and resolution are limited due to scattering. Unlike light, scattering of ultrasound (US) waves in tissue is negligible. Hybrid imaging methods such as US-modulated optical tomography (UOT) use the advantages of both modalities. UOT tags light by inducing phase change caused by modulating the local index of refraction of the medium. The challenge in UOT is detecting the small signal. The displacement induced by the acoustic radiation force (ARF) is another US effect that can be utilized to tag the light. It induces greater phase change, resulting in a stronger signal. Moreover, the absorbed acoustic energy generates heat, resulting in change in the index of refraction and a strong phase change. The speckle pattern is governed by the phase of the interfering scattered waves; hence, speckle pattern analysis can obtain information about displacement and temperature changes. We have presented a model to simulate the insonation processes. Simulation results based on fixed-particle Monte Carlo and experimental results show that the signal acquired by utilizing ARF is stronger compared to UOT. The introduced mean irradiance change (MIC) signal reveals both thermal and mechanical effects of the focused US beam in different timescales. Simulation results suggest that variation in the MIC signal can be used to generate a displacement image of the medium.

  7. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H

    1987-12-01

    Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.

  8. Production and Perception of Temporal Patterns in Native and Non-Native Speech

    PubMed Central

    Bent, Tessa; Bradlow, Ann R.; Smith, Bruce L.

    2012-01-01

    Two experiments examined production and perception of English temporal patterns by native and non-native participants. Experiment 1 indicated that native and non-native (L1 = Chinese) talkers differed significantly in their production of one English duration pattern (i.e., vowel lengthening before voiced versus voiceless consonants) but not another (i.e., tense versus lax vowels). Experiment 2 tested native and non-native listener identification of words that differed in voicing of the final consonant by the native and non-native talkers whose productions were substantially different in experiment 1. Results indicated that differences in native and non-native intelligibility may be partially explained by temporal pattern differences in vowel duration although other cues such as presence of stop releases and burst duration may also contribute. Additionally, speech intelligibility depends on shared phonetic knowledge between talkers and listeners rather than only on accuracy relative to idealized production norms. PMID:18679042

  9. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  10. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  11. Temporal Patterns of Road Traffic Injuries in Iran

    PubMed Central

    Khorshidi, Ali; Ainy, Elaheh; Hashemi Nazari, Seyed Saeed; Soori, Hamid

    2016-01-01

    Background Road traffic injuries (RTIs) are the main causes of death and disability in Iran. However, very few studies about the temporal variations of RTIs have been published to date. Objectives This study was conducted to investigate the temporal pattern of RTIs in Iran in 2012. Materials and Methods All road traffic accidents (RTAs) reported to traffic police during a one-year period (March 21, 2012 through March 21, 2013) were investigated after obtaining permission from the law enforcement force of the Islamic Republic of Iran. Distributions of RTAs were obtained for season, month, week, and hour scales, and for long holidays (more than one day) and the day prior to long holidays (DPLH). The final analysis was carried out using the Poisson regression model to calculate incidence rate ratios for RTIs. All analyses were conducted using STATA 13.1 and Excel software; statistical significance was set at P < 0.05. Results A total of 452,192 RTAs were examined. The estimated rate of all accidents was 219 per 10,000 registered vehicles, or 595 per 100,000 people. About 28% of all RTAs, and more than one third of fatal RTAs, occurred during the summer months. The incidence rate for all traffic accidents on DPLH was 1.20, compared to workdays as a reference category, and it was 1.40 for fatal crashes. The rate of fatal road traffic accidents in outer cities was 3.2 times higher than in inner ones. Conclusions Our findings reveal that there are temporal variations in traffic accidents, and long holidays significantly influence accident rates. Traffic injuries have different patterns on outer/inner city roads, based on weekday and holiday status. Thus, these findings could be used to create effective initiatives aimed at traffic management. PMID:27703958

  12. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    PubMed

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  13. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    PubMed

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Spatio-Temporal Pattern Analysis for Regional Climate Change Using Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Das, M.; Ghosh, S. K.

    2015-07-01

    Of late, significant changes in climate with their grave consequences have posed great challenges on humankind. Thus, the detection and assessment of climatic changes on a regional scale is gaining importance, since it helps to adopt adequate mitigation and adaptation measures. In this paper, we have presented a novel approach for detecting spatio-temporal pattern of regional climate change by exploiting the theory of mathematical morphology. At first, the various climatic zones in the region have been identified by using multifractal cross-correlation analysis (MF-DXA) of different climate variables of interest. Then, the directional granulometry with four different structuring elements has been studied to detect the temporal changes in spatial distribution of the identified climatic zones in the region and further insights have been drawn with respect to morphological uncertainty index and Hurst exponent. The approach has been evaluated with the daily time series data of land surface temperature (LST) and precipitation rate, collected from Microsoft Research - Fetch Climate Explorer, to analyze the spatio-temporal climatic pattern-change in the Eastern and North-Eastern regions of India throughout four quarters of the 20th century.

  15. Spatial pattern and temporal trend of mortality due to tuberculosis 10

    PubMed Central

    de Queiroz, Ana Angélica Rêgo; Berra, Thaís Zamboni; Garcia, Maria Concebida da Cunha; Popolin, Marcela Paschoal; Belchior, Aylana de Souza; Yamamura, Mellina; dos Santos, Danielle Talita; Arroyo, Luiz Henrique; Arcêncio, Ricardo Alexandre

    2018-01-01

    ABSTRACT Objectives: To describe the epidemiological profile of mortality due to tuberculosis (TB), to analyze the spatial pattern of these deaths and to investigate the temporal trend in mortality due to tuberculosis in Northeast Brazil. Methods: An ecological study based on secondary mortality data. Deaths due to TB were included in the study. Descriptive statistics were calculated and gross mortality rates were estimated and smoothed by the Local Empirical Bayesian Method. Prais-Winsten’s regression was used to analyze the temporal trend in the TB mortality coefficients. The Kernel density technique was used to analyze the spatial distribution of TB mortality. Results: Tuberculosis was implicated in 236 deaths. The burden of tuberculosis deaths was higher amongst males, single people and people of mixed ethnicity, and the mean age at death was 51 years. TB deaths were clustered in the East, West and North health districts, and the tuberculosis mortality coefficient remained stable throughout the study period. Conclusions: Analyses of the spatial pattern and temporal trend in mortality revealed that certain areas have higher TB mortality rates, and should therefore be prioritized in public health interventions targeting the disease. PMID:29742272

  16. Acoustic estimates of zooplankton and micronekton biomass in cyclones and anticyclones of the northeastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ressler, Patrick Henry

    2001-12-01

    combination of acoustic and net sampling is a useful way to survey temporal and spatial patterns in zooplankton and micronekton biomass in coarse to mesoscale eddies. Further research should employ such a combination of methods to investigate plankton patterns in eddies and their implications for cetacean and seabird habitat.

  17. Spatio-Temporal Patterning in Primary Motor Cortex at Movement Onset.

    PubMed

    Best, Matthew D; Suminski, Aaron J; Takahashi, Kazutaka; Brown, Kevin A; Hatsopoulos, Nicholas G

    2017-02-01

    Voluntary movement initiation involves the engagement of large populations of motor cortical neurons around movement onset. Despite knowledge of the temporal dynamics that lead to movement, the spatial structure of these dynamics across the cortical surface remains unknown. In data from 4 rhesus macaques, we show that the timing of attenuation of beta frequency local field potential oscillations, a correlate of locally activated cortex, forms a spatial gradient across primary motor cortex (MI). We show that these spatio-temporal dynamics are recapitulated in the engagement order of ensembles of MI neurons. We demonstrate that these patterns are unique to movement onset and suggest that movement initiation requires a precise spatio-temporal sequential activation of neurons in MI. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Spatial and temporal patterns in preterm birth in the United States.

    PubMed

    Byrnes, John; Mahoney, Richard; Quaintance, Cele; Gould, Jeffrey B; Carmichael, Suzan; Shaw, Gary M; Showen, Amy; Phibbs, Ciaran; Stevenson, David K; Wise, Paul H

    2015-06-01

    Despite years of research, the etiologies of preterm birth remain unclear. In order to help generate new research hypotheses, this study explored spatial and temporal patterns of preterm birth in a large, total-population dataset. Data on 145 million US births in 3,000 counties from the Natality Files of the National Center for Health Statistics for 1971-2011 were examined. State trends in early (<34 wk) and late (34-36 wk) preterm birth rates were compared. K-means cluster analyses were conducted to identify gestational age distribution patterns for all US counties over time. A weak association was observed between state trends in <34 wk birth rates and the initial absolute <34 wk birth rate. Significant associations were observed between trends in <34 wk and 34-36 wk birth rates and between white and African American <34 wk births. Periodicity was observed in county-level trends in <34 wk birth rates. Cluster analyses identified periods of significant heterogeneity and homogeneity in gestational age distributional trends for US counties. The observed geographic and temporal patterns suggest periodicity and complex, shared influences among preterm birth rates in the United States. These patterns could provide insight into promising hypotheses for further research.

  19. The influence of gender on auditory and language cortical activation patterns: preliminary data.

    PubMed

    Kocak, Mehmet; Ulmer, John L; Biswal, Bharat B; Aralasmak, Ayse; Daniels, David L; Mark, Leighton P

    2005-10-01

    Intersex cortical and functional asymmetry is an ongoing topic of investigation. In this pilot study, we sought to determine the influence of acoustic scanner noise and sex on auditory and language cortical activation patterns of the dominant hemisphere. Echoplanar functional MR imaging (fMRI; 1.5T) was performed on 12 healthy right-handed subjects (6 men and 6 women). Passive text listening tasks were employed in 2 different background acoustic scanner noise conditions (12 sections/2 seconds TR [6 Hz] and 4 sections/2 seconds TR [2 Hz]), with the first 4 sections in identical locations in the left hemisphere. Cross-correlation analysis was used to construct activation maps in subregions of auditory and language relevant cortex of the dominant (left) hemisphere, and activation areas were calculated by using coefficient thresholds of 0.5, 0.6, and 0.7. Text listening caused robust activation in anatomically defined auditory cortex, and weaker activation in language relevant cortex of all 12 individuals. As a whole, there was no significant difference in regional cortical activation between the 2 background acoustic scanner noise conditions. When sex was considered, men showed a significantly (P < .01) greater change in left hemisphere activation during the high scanner noise rate condition than did women. This effect was significant (P < .05) in the left superior temporal gyrus, the posterior aspect of the left middle temporal gyrus and superior temporal sulcus, and the left inferior frontal gyrus. Increase in the rate of background acoustic scanner noise caused increased activation in auditory and language relevant cortex of the dominant hemisphere in men compared with women where no such change in activation was observed. Our preliminary data suggest possible methodologic confounds of fMRI research and calls for larger investigations to substantiate our findings and further characterize sex-based influences on hemispheric activation patterns.

  20. Effect of acoustic similarity on short-term auditory memory in the monkey

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2013-01-01

    Recent evidence suggests that the monkey’s short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey’s performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample’s trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. PMID:23376550

  1. Effect of acoustic similarity on short-term auditory memory in the monkey.

    PubMed

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2013-04-01

    Recent evidence suggests that the monkey's short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey's performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample's trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Propagation modeling for sperm whale acoustic clicks in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia A.; Udovydchenkov, Ilya A.; Rypina, Irina I.; Ioup, George E.; Ioup, Juliette W.; Caruthers, Jerald W.; Newcomb, Joal; Fisher, Robert

    2004-05-01

    Simulations of acoustic broadband (500-6000 Hz) pulse propagation in the northern Gulf of Mexico, based on environmental data collected as a part of the Littoral Acoustic Demonstration Center (LADC) experiments in the summers of 2001 and 2002, are presented. The results of the modeling support the hypothesis that consistent spectrogram interference patterns observed in the LADC marine mammal phonation data cannot be explained by the propagation effects for temporal analysis windows corresponding to the duration of an animal click, and may be due to a uniqueness of an individual animal phonation apparatus. The utilization of simulation data for the development of an animal tracking algorithm based on the acoustic recordings of a single bottom-moored hydrophone is discussed. The identification of the bottom and surface reflected clicks from the same animal is attempted. The critical ranges for listening to a deep-water forging animal by a surface receiving system are estimated. [Research supported by ONR.

  3. Increase in flood risk resulting from climate change in a developed urban watershed - the role of storm temporal patterns

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, Suresh; Wasko, Conrad; Sharma, Ashish

    2018-03-01

    The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA) Atlas 14 intensity-duration-frequency (IDF) relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1) How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2) Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081-2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results also show that regional

  4. Cortical Activation Patterns Evoked by Temporally Asymmetric Sounds and Their Modulation by Learning

    PubMed Central

    Horikawa, Junsei

    2017-01-01

    When complex sounds are reversed in time, the original and reversed versions are perceived differently in spectral and temporal dimensions despite their identical duration and long-term spectrum-power profiles. Spatiotemporal activation patterns evoked by temporally asymmetric sound pairs demonstrate how the temporal envelope determines the readout of the spectrum. We examined the patterns of activation evoked by a temporally asymmetric sound pair in the primary auditory field (AI) of anesthetized guinea pigs and determined how discrimination training modified these patterns. Optical imaging using a voltage-sensitive dye revealed that a forward ramped-down natural sound (F) consistently evoked much stronger responses than its time-reversed, ramped-up counterpart (revF). The spatiotemporal maximum peak (maxP) of F-evoked activation was always greater than that of revF-evoked activation, and these maxPs were significantly separated within the AI. Although discrimination training did not affect the absolute magnitude of these maxPs, the revF-to-F ratio of the activation peaks calculated at the location where hemispheres were maximally activated (i.e., F-evoked maxP) was significantly smaller in the trained group. The F-evoked activation propagated across the AI along the temporal axis to the ventroanterior belt field (VA), with the local activation peak within the VA being significantly larger in the trained than in the naïve group. These results suggest that the innate network is more responsive to natural sounds of ramped-down envelopes than their time-reversed, unnatural sounds. The VA belt field activation might play an important role in emotional learning of sounds through its connections with amygdala. PMID:28451640

  5. The impact of spatial and temporal patterns on multi-cellular behavior

    NASA Astrophysics Data System (ADS)

    Nikolic, Djordje L.

    What makes a fruit fly a fruit fly? Essentially this question stems from one of the most fascinating problems in biology: how a single cell (fertilized egg) can give rise to a fully grown animal. To be able to answer this question, the importance to how spatial and temporal patterns of gene and protein expression influence the development of an organism must be understood. After all, fruit fly larvae are segmented, while fertilized eggs are not. Pattern formation is fundamental to establishing this organization of the developing embryo with the ultimate goal being the precise arrangements of specialized cells and tissues within each organ in an adult organism. The research presented here showcases the examples of studies that assess the impact spatial and temporal protein patterns have on the behavior of a collection of cells. By introducing new experimental, non-traditional techniques we developed model systems that allowed us to examine the dependence of the strength of adhesion of cells on the protein organization on sub-cellular, micron length scales, and to investigate how epithelial cell sheets coordinate their migration incorporating individual cell locomotion, molecular signal propagation and different boundary conditions. The first part of this dissertation presents a photolithography-based silanization patterning technique that allowed us to homogeneously pattern large areas with high precision. This method is then applied to organizing cell adhesion-promoting proteins on surfaces for the purposes of studying and manipulating cell behavior. We show how the strength of adhesion is dependent on high local density of an adhesive extracellular matrix protein fibronectin. The varied appeal of this technique is exhibited by showing its applicability to pattern stretched DNA, too. The second part of this dissertation focuses on the impact of spatial and temporal propagation of a molecular signal (ERK 1/2 MAPK) in migrating epithelial sheets during wound healing

  6. Fine structure of acoustic signals caused by a drop falling onto the surface of water

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2015-08-01

    The temporal structure of sound radiation upon a drop falling onto a free liquid surface is investigated experimentally by high-resolution high-speed videorecording synchronized with a broad-band measurement of the acoustic pressure. Groups of short and relatively prolonged sound packets with frequency filling from 2 to 50 kHz and the corresponding flow patterns including the simultaneous formation of resonating bubbles and their interaction processes with an originating cavern are isolated. The temporal dependence of the determining parameter, i.e., the Weber number, which is stably reproduced in a series of experiments by a power function with a fractional index, is constructed.

  7. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  8. Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation

    PubMed Central

    Adamchic, Ilya; Toth, Timea; Hauptmann, Christian; Tass, Peter Alexander

    2014-01-01

    Acoustic Coordinated Reset (CR) neuromodulation is a patterned stimulation with tones adjusted to the patient's dominant tinnitus frequency, which aims at desynchronizing pathological neuronal synchronization. In a recent proof-of-concept study, CR therapy, delivered 4–6 h/day more than 12 weeks, induced a significant clinical improvement along with a significant long-lasting decrease of pathological oscillatory power in the low frequency as well as γ band and an increase of the α power in a network of tinnitus-related brain areas. As yet, it remains unclear whether CR shifts the brain activity toward physiological levels or whether it induces clinically beneficial, but nonetheless abnormal electroencephalographic (EEG) patterns, for example excessively decreased δ and/or γ. Here, we compared the patients' spontaneous EEG data at baseline as well as after 12 weeks of CR therapy with the spontaneous EEG of healthy controls by means of Brain Electrical Source Analysis source montage and standardized low-resolution brain electromagnetic tomography techniques. The relationship between changes in EEG power and clinical scores was investigated using a partial least squares approach. In this way, we show that acoustic CR neuromodulation leads to a normalization of the oscillatory power in the tinnitus-related network of brain areas, most prominently in temporal regions. A positive association was found between the changes in tinnitus severity and the normalization of δ and γ power in the temporal, parietal, and cingulate cortical regions. Our findings demonstrate a widespread CR-induced normalization of EEG power, significantly associated with a reduction of tinnitus severity. PMID:23907785

  9. TOOLS FOR PRESENTING SPATIAL AND TEMPORAL PATTERNS OF ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    The EPA Health Effects Research Laboratory has developed this data presentation tool for use with a variety of types of data which may contain spatial and temporal patterns of interest. he technology links mainframe computing power to the new generation of "desktop publishing" ha...

  10. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications.

    PubMed

    Segura-Garcia, Jaume; Navarro-Ruiz, Juan Miguel; Perez-Solano, Juan J; Montoya-Belmonte, Jose; Felici-Castell, Santiago; Cobos, Maximo; Torres-Aranda, Ana M

    2018-02-26

    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system.

  11. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications

    PubMed Central

    Montoya-Belmonte, Jose; Cobos, Maximo; Torres-Aranda, Ana M.

    2018-01-01

    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system. PMID:29495407

  12. Potential for application of an acoustic camera in particle tracking velocimetry.

    PubMed

    Wu, Fu-Chun; Shao, Yun-Chuan; Wang, Chi-Kuei; Liou, Jim

    2008-11-01

    We explored the potential and limitations for applying an acoustic camera as the imaging instrument of particle tracking velocimetry. The strength of the acoustic camera is its usability in low-visibility environments where conventional optical cameras are ineffective, while its applicability is limited by lower temporal and spatial resolutions. We conducted a series of experiments in which acoustic and optical cameras were used to simultaneously image the rotational motion of tracer particles, allowing for a comparison of the acoustic- and optical-based velocities. The results reveal that the greater fluctuations associated with the acoustic-based velocities are primarily attributed to the lower temporal resolution. The positive and negative biases induced by the lower spatial resolution are balanced, with the positive ones greater in magnitude but the negative ones greater in quantity. These biases reduce with the increase in the mean particle velocity and approach minimum as the mean velocity exceeds the threshold value that can be sensed by the acoustic camera.

  13. Optimization of the temporal pattern of applied dose for a single fraction of radiation: Implications for radiation therapy

    NASA Astrophysics Data System (ADS)

    Altman, Michael B.

    The increasing prevalence of intensity modulated radiation therapy (IMRT) as a treatment modality has led to a renewed interest in the potential for interaction between prolonged treatment time, as frequently associated with IMRT, and the underlying radiobiology of the irradiated tissue. A particularly relevant aspect of radiobiology is cell repair capacity, which influences cell survival, and thus directly relates to the ability to control tumors and spare normal tissues. For a single fraction of radiation, the linear quadratic (LQ) model is commonly used to relate the radiation dose to the fraction of cells surviving. The LQ model implies a dependence on two time-related factors which correlate to radiobiological effects: the duration of radiation application, and the functional form of how the dose is applied over that time (the "temporal pattern of applied dose"). Although the former has been well studied, the latter has not. Thus, the goal of this research is to investigate the impact of the temporal pattern of applied dose on the survival of human cells and to explore how the manipulation of this temporal dose pattern may be incorporated into an IMRT-based radiation therapy treatment planning scheme. The hypothesis is that the temporal pattern of applied dose in a single fraction of radiation can be optimized to maximize or minimize cell kill. Furthermore, techniques which utilize this effect could have clinical ramifications. In situations where increased cell kill is desirable, such as tumor control, or limiting the degree of cell kill is important, such as the sparing of normal tissue, temporal sequences of dose which maximize or minimize cell kill (temporally "optimized" sequences) may provide greater benefit than current clinically used radiation patterns. In the first part of this work, an LQ-based modeling analysis of effects of the temporal pattern of dose on cell kill is performed. Through this, patterns are identified for maximizing cell kill for a

  14. How can knowledge discovery methods uncover spatio-temporal patterns in environmental data?

    NASA Astrophysics Data System (ADS)

    Wachowicz, Monica

    2000-04-01

    This paper proposes the integration of KDD, GVis and STDB as a long-term strategy, which will allow users to apply knowledge discovery methods for uncovering spatio-temporal patterns in environmental data. The main goal is to combine innovative techniques and associated tools for exploring very large environmental data sets in order to arrive at valid, novel, potentially useful, and ultimately understandable spatio-temporal patterns. The GeoInsight approach is described using the principles and key developments in the research domains of KDD, GVis, and STDB. The GeoInsight approach aims at the integration of these research domains in order to provide tools for performing information retrieval, exploration, analysis, and visualization. The result is a knowledge-based design, which involves visual thinking (perceptual-cognitive process) and automated information processing (computer-analytical process).

  15. Prediction of Human Activity by Discovering Temporal Sequence Patterns.

    PubMed

    Li, Kang; Fu, Yun

    2014-08-01

    Early prediction of ongoing human activity has become more valuable in a large variety of time-critical applications. To build an effective representation for prediction, human activities can be characterized by a complex temporal composition of constituent simple actions and interacting objects. Different from early detection on short-duration simple actions, we propose a novel framework for long -duration complex activity prediction by discovering three key aspects of activity: Causality, Context-cue, and Predictability. The major contributions of our work include: (1) a general framework is proposed to systematically address the problem of complex activity prediction by mining temporal sequence patterns; (2) probabilistic suffix tree (PST) is introduced to model causal relationships between constituent actions, where both large and small order Markov dependencies between action units are captured; (3) the context-cue, especially interactive objects information, is modeled through sequential pattern mining (SPM), where a series of action and object co-occurrence are encoded as a complex symbolic sequence; (4) we also present a predictive accumulative function (PAF) to depict the predictability of each kind of activity. The effectiveness of our approach is evaluated on two experimental scenarios with two data sets for each: action-only prediction and context-aware prediction. Our method achieves superior performance for predicting global activity classes and local action units.

  16. Exploring Temporal Patterns of Stress in Adolescent Girls with Headache.

    PubMed

    Björling, Elin A; Singh, Narayan

    2017-02-01

    As part of a larger study on perceived stress and headaches in 2009, momentary perceived stress, head pain levels and stress-related symptom data were collected. This paper explores a temporal analysis of the patterns of stress, as well as an analysis of momentary and retrospective stress-related symptoms compared by level of headache activity. Adolescent girls (N = 31) ages 14-18 were randomly cued by electronic diaries 7 times per day over a 21-day period responding to momentary questions about level of head pain, perceived stress and stress-related symptoms. Multivariate general linear modelling was used to determine significant differences among headache groups in relation to temporal patterns of stress. Significant headache group differences were found on retrospective and momentary stress-related symptom measures. A total of 2841 diary responses captured stress levels, head pain and related symptoms. The chronic headache (CH) group reported the highest levels of hourly and daily stress, followed by the moderate headache (MH) and low headache (LH) groups. Patterns of stress for the three headache groups were statistically distinct, illustrating increased stress in girls with more frequent head pain. This evidence suggests that because of increased stress, girls with recurrent head pain are likely a vulnerable population who may benefit from stress-reducing interventions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Tearney, Guillermo J.; Bouma, Brett E.

    2002-04-01

    Improved methods are needed to identify the vulnerable coronary plaques responsible for acute myocardial infraction or sudden cardiac death. We describe a method for characterizing the structure and biomechanical properties of atherosclerotic plaques based on speckle pattern fluctuations. Near-field speckle images were acquired from five human aortic specimens ex vivo. The speckle decorrelation time constant varied significantly for vulnerable aortic plaques (τ = 40 ms) versus stable plaques (τ = 400 ms) and normal aorta (τ = 500 ms). These initial results indicate that different atherosclerotic plaque types may be distinguished by analysis of temporal and spatial speckle pattern fluctuations.

  18. Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension.

    PubMed

    Howard, Mary F; Poeppel, David

    2010-11-01

    Speech stimuli give rise to neural activity in the listener that can be observed as waveforms using magnetoencephalography. Although waveforms vary greatly from trial to trial due to activity unrelated to the stimulus, it has been demonstrated that spoken sentences can be discriminated based on theta-band (3-7 Hz) phase patterns in single-trial response waveforms. Furthermore, manipulations of the speech signal envelope and fine structure that reduced intelligibility were found to produce correlated reductions in discrimination performance, suggesting a relationship between theta-band phase patterns and speech comprehension. This study investigates the nature of this relationship, hypothesizing that theta-band phase patterns primarily reflect cortical processing of low-frequency (<40 Hz) modulations present in the acoustic signal and required for intelligibility, rather than processing exclusively related to comprehension (e.g., lexical, syntactic, semantic). Using stimuli that are quite similar to normal spoken sentences in terms of low-frequency modulation characteristics but are unintelligible (i.e., their time-inverted counterparts), we find that discrimination performance based on theta-band phase patterns is equal for both types of stimuli. Consistent with earlier findings, we also observe that whereas theta-band phase patterns differ across stimuli, power patterns do not. We use a simulation model of the single-trial response to spoken sentence stimuli to demonstrate that phase-locked responses to low-frequency modulations of the acoustic signal can account not only for the phase but also for the power results. The simulation offers insight into the interpretation of the empirical results with respect to phase-resetting and power-enhancement models of the evoked response.

  19. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  20. Investigating univariate temporal patterns for intrinsic connectivity networks based on complexity and low-frequency oscillation: a test-retest reliability study.

    PubMed

    Wang, X; Jiao, Y; Tang, T; Wang, H; Lu, Z

    2013-12-19

    Intrinsic connectivity networks (ICNs) are composed of spatial components and time courses. The spatial components of ICNs were discovered with moderate-to-high reliability. So far as we know, few studies focused on the reliability of the temporal patterns for ICNs based their individual time courses. The goals of this study were twofold: to investigate the test-retest reliability of temporal patterns for ICNs, and to analyze these informative univariate metrics. Additionally, a correlation analysis was performed to enhance interpretability. Our study included three datasets: (a) short- and long-term scans, (b) multi-band echo-planar imaging (mEPI), and (c) eyes open or closed. Using dual regression, we obtained the time courses of ICNs for each subject. To produce temporal patterns for ICNs, we applied two categories of univariate metrics: network-wise complexity and network-wise low-frequency oscillation. Furthermore, we validated the test-retest reliability for each metric. The network-wise temporal patterns for most ICNs (especially for default mode network, DMN) exhibited moderate-to-high reliability and reproducibility under different scan conditions. Network-wise complexity for DMN exhibited fair reliability (ICC<0.5) based on eyes-closed sessions. Specially, our results supported that mEPI could be a useful method with high reliability and reproducibility. In addition, these temporal patterns were with physiological meanings, and certain temporal patterns were correlated to the node strength of the corresponding ICN. Overall, network-wise temporal patterns of ICNs were reliable and informative and could be complementary to spatial patterns of ICNs for further study. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies

    NASA Astrophysics Data System (ADS)

    MacLeod, Katrina; Laurent, Gilles

    1996-11-01

    Stimulus-evoked oscillatory synchronization of neural assemblies and temporal patterns of neuronal activity have been observed in many sensory systems, such as the visual and auditory cortices of mammals or the olfactory system of insects. In the locust olfactory system, single odor puffs cause the immediate formation of odor-specific neural assemblies, defined both by their transient synchronized firing and their progressive transformation over the course of a response. The application of an antagonist of ionotropic γ-aminobutyric acid (GABA) receptors to the first olfactory relay neuropil selectively blocked the fast inhibitory synapse between local and projection neurons. This manipulation abolished the synchronization of the odor-coding neural ensembles but did not affect each neuron's temporal response patterns to odors, even when these patterns contained periods of inhibition. Fast GABA-mediated inhibition, therefore, appears to underlie neuronal synchronization but not response tuning in this olfactory system. The selective desynchronization of stimulus-evoked oscillating neural assemblies in vivo is now possible, enabling direct functional tests of their significance for sensation and perception.

  2. Spatial and temporal statistical analysis of bycatch data: Patterns of sea turtle bycatch in the North Atlantic

    USGS Publications Warehouse

    Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.

    2008-01-01

    Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.

  3. Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development

    NASA Technical Reports Server (NTRS)

    Putnam, G. C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.

  4. Cultural and environmental influences on temporal-spectral development patterns of corn and soybeans

    NASA Technical Reports Server (NTRS)

    Crist, E. P.

    1982-01-01

    A technique for evaluating crop temporal-spectral development patterns is described and applied to the analysis of cropping practices and environmental conditions as they affect reflectance characteristics of corn and soybean canopies. Typical variations in field conditions are shown to exert significant influences on the spectral development patterns, and thereby to affect the separability of the two crops.

  5. Temporal variability patterns in solar radiation estimations

    NASA Astrophysics Data System (ADS)

    Vindel, José M.; Navarro, Ana A.; Valenzuela, Rita X.; Zarzalejo, Luis F.

    2016-06-01

    In this work, solar radiation estimations obtained from a satellite and a numerical weather prediction model in mainland Spain have been compared. Similar comparisons have been formerly carried out, but in this case, the methodology used is different: the temporal variability of both sources of estimation has been compared with the annual evolution of the radiation associated to the different study climate zones. The methodology is based on obtaining behavior patterns, using a Principal Component Analysis, following the annual evolution of solar radiation estimations. Indeed, the adjustment degree to these patterns in each point (assessed from maps of correlation) may be associated with the annual radiation variation (assessed from the interquartile range), which is associated, in turn, to different climate zones. In addition, the goodness of each estimation source has been assessed comparing it with data obtained from the radiation measurements in ground by pyranometers. For the study, radiation data from Satellite Application Facilities and data corresponding to the reanalysis carried out by the European Centre for Medium-Range Weather Forecasts have been used.

  6. Spatial and Temporal Patterns In Ecohydrological Separation

    NASA Astrophysics Data System (ADS)

    Jarvis, S. K.; Barnard, H. R.; Singha, K.; Harmon, R. E.; Szutu, D.

    2017-12-01

    The model of ecohydrological separation suggests that trees source water from a different subsurface pool than what is contributing to stream flow during dry periods, however diel fluctuations in stream flow and transpiration are tightly coupled. To better understand the mechanism of this coupling, this study examines spatiotemporal patterns in water isotopic relationships between tree, soil, and stream water. Preliminary analysis of data collected in 2015 show a trend in δ18O enrichment in xylem water, suggesting an increased reliance on enriched soil water not flowing to the stream as the growing season progresses, while xylem samples from 2016, a particularly wet year, do not have this trend. Variations in these temporal trends are explored with regard to distance from stream, aspect of hillslope, position in the watershed, size of the tree, and soil depth. Additionally, a near-stream site is examined at high resolution using water isotope data, sap flow, and electrical resistivity surveying to examine soil moisture and water use patterns across the riparian-hillslope transition.

  7. Temporal and Spatial Acoustical Factors for Listeners in the Boxes of Historical Opera Theatres

    NASA Astrophysics Data System (ADS)

    Sakai, H.; Ando, Y.; Prodi, N.; Pompoli, R.

    2002-11-01

    Acoustical measurements were conducted in a horseshoe-shaped opera house to clarify the acoustical quality of a sound field for listeners inside the boxes of an historical opera house. In order to investigate the effects of multiple reflections between the walls inside a box and scattering by the heads of people, the location of the receiver and the number of persons in the box were varied. In each configuration, four orthogonal factors and supplementary factors were derived as temporal and spatial factors by analysis of binaural impulse responses. Each factor is compared to that at a typical location in the stalls of the same theatre. An omni-directional sound source was located on the stage to emulate a singer or in the orchestra pit to reproduce the location of the musicians. Thus, in this paper, temporal and spatial factors in relation to subjective evaluation are characterized against changes in the listening conditions inside a box, and procedures for improvement and design methods for boxes are proposed. The main conclusions reached are as follows. As strong reflections from the lateral walls of a hall are screened by the front or side walls of a box for a receiver in a seat deeper in the box, the maximum listening level ( LL) in the boxes was observed at the front of the box, and the maximum range of LL values for each box was found to be 5 dB. Concerning the initial time delay gap ( Δt1), a more uniform listening environment was obtained in boxes further back in the theatre than in one closer to the stage. The subsequent reverberation time ( Tsub) lengthens for boxes closer to the stage due to the stage house with its huge volume, and a peak is observed at 1 kHz. For the box at the back, Tsub monotonically decreases with frequency in the same way as in the stalls, and moreover, its values approach those in the stalls. As the contribution of multiple reflections relatively increases for a receiver deeper in the box, the IACC in such positions decreases in

  8. Spatial and temporal patterns of cloud cover and fog inundation in coastal California: Ecological implications

    USGS Publications Warehouse

    Rastogi, Bharat; Williams, A. Park; Fischer, Douglas T.; Iacobellis, Sam F.; McEachern, A. Kathryn; Carvalho, Leila; Jones, Charles Leslie; Baguskas, Sara A.; Still, Christopher J.

    2016-01-01

    The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in coastal California where forests are frequently shaded by low-lying clouds or immersed in fog during otherwise warm and dry summer months. Summer fog and stratus can ameliorate summer drought stress and enhance soil water budgets, and often have different spatial and temporal patterns. Here we use remote sensing datasets to characterize the spatial and temporal patterns of cloud cover over California’s northern Channel Islands. We found marine stratus to be persistent from May through September across the years 2001-2012. Stratus clouds were both most frequent and had the greatest spatial extent in July. Clouds typically formed in the evening, and dissipated by the following early afternoon. We present a novel method to downscale satellite imagery using atmospheric observations and discriminate patterns of fog from those of stratus and help explain patterns of fog deposition previously studied on the islands. The outcomes of this study contribute significantly to our ability to quantify the occurrence of coastal fog at biologically meaningful spatial and temporal scales that can improve our understanding of cloud-ecosystem interactions, species distributions and coastal ecohydrology.

  9. Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics.

    PubMed

    Ivanenko, Yuri P; Grasso, Renato; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2003-11-01

    What are the building blocks with which the human spinal cord constructs the motor patterns of locomotion? In principle, they could correspond to each individual activity pattern in dozens of different muscles. Alternatively, there could exist a small set of constituent temporal components that are common to all activation patterns and reflect global kinematic goals. To address this issue, we studied patients with spinal injury trained to step on a treadmill with body weight support. Patients learned to produce foot kinematics similar to that of healthy subjects but with activity patterns of individual muscles generally different from the control group. Hidden in the muscle patterns, we found a basic set of five temporal components, whose flexible combination accounted for the wide range of muscle patterns recorded in both controls and patients. Furthermore, two of the components were systematically related to foot kinematics across different stepping speeds and loading conditions. We suggest that the components are related to control signals output by spinal pattern generators, normally under the influence of descending and afferent inputs.

  10. Acoustic agglomeration methods and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  11. Automatic classification of acetowhite temporal patterns to identify precursor lesions of cervical cancer

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Fragoso, K.; Acosta-Mesa, H. G.; Cruz-Ramírez, N.; Hernández-Jiménez, R.

    2013-12-01

    Cervical cancer has remained, until now, as a serious public health problem in developing countries. The most common method of screening is the Pap test or cytology. When abnormalities are reported in the result, the patient is referred to a dysplasia clinic for colposcopy. During this test, a solution of acetic acid is applied, which produces a color change in the tissue and is known as acetowhitening phenomenon. This reaction aims to obtaining a sample of tissue and its histological analysis let to establish a final diagnosis. During the colposcopy test, digital images can be acquired to analyze the behavior of the acetowhitening reaction from a temporal approach. In this way, we try to identify precursor lesions of cervical cancer through a process of automatic classification of acetowhite temporal patterns. In this paper, we present the performance analysis of three classification methods: kNN, Naïve Bayes and C4.5. The results showed that there is similarity between some acetowhite temporal patterns of normal and abnormal tissues. Therefore we conclude that it is not sufficient to only consider the temporal dynamic of the acetowhitening reaction to establish a diagnosis by an automatic method. Information from cytologic, colposcopic and histopathologic disciplines should be integrated as well.

  12. Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone

    NASA Astrophysics Data System (ADS)

    Khorram, Saeed; Ergil, Mustafa

    2018-03-01

    A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.

  13. Buoyancy characteristics of the bloater (Coregonus hoyi) in relation to patterns of vertical migration and acoustic backscattering

    USGS Publications Warehouse

    Fleischer, Guy W.; TeWinkel, Leslie M.

    1998-01-01

    Acoustic studies in Lake Michigan found that bloaters (Coregonus hoyi) were less reflective per size than the other major pelagic species. This difference in in situ acoustic backscattering could indicate that the deep-water bloaters have compressed swimbladders for much of their vertical range with related implications on buoyancy. To test this hypothesis, the buoyancy characteristics of bloaters were determined with fish placed in a cage that was lowered to bottom and monitored with an underwater camera. We found bloaters were positively buoyant near surface, neutrally buoyant at intermediate strata, and negatively buoyant near bottom. This pattern was consistent for the range of depths bloaters occur. The depth of neutral buoyancy (near the 50-n strata) corresponds with the maximum extent of vertical migration for bloaters observed in acoustic surveys. Fish below this depth would be negatively buoyant which supports our contention that bloaters deeper in the water column have compressed swimbladders. Understanding the buoyancy characteristics of pelagic fishes will help to predict the effects of vertical migration on target strength measurement and confirms the use of acoustics as a tool to identify and quantify the ecological phenomenon of vertical migration.

  14. Capturing the Acoustic Radiation Pattern of Strombolian Eruptions using Infrasound Sensors Aboard a Tethered Aerostat, Yasur Volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Jolly, Arthur D.; Matoza, Robin S.; Fee, David; Kennedy, Ben M.; Iezzi, Alexandra M.; Fitzgerald, Rebecca H.; Austin, Allison C.; Johnson, Richard

    2017-10-01

    We obtained an unprecedented view of the acoustic radiation from persistent strombolian volcanic explosions at Yasur volcano, Vanuatu, from the deployment of infrasound sensors attached to a tethered aerostat. While traditional ground-based infrasound arrays may sample only a small portion of the eruption pressure wavefield, we were able to densely sample angular ranges of 200° in azimuth and 50° in takeoff angle by placing the aerostat at 38 tethered loiter positions around the active vent. The airborne data joined contemporaneously collected ground-based infrasound and video recordings over the period 29 July to 1 August 2016. We observe a persistent variation in the acoustic radiation pattern with average eastward directed root-mean-square pressures more than 2 times larger than in other directions. The observed radiation pattern may be related to both path effects from the crater walls, and source directionality.

  15. Temporal and nonlinear dispersal patterns of Ludwigia hexapetala in a regulated river

    USDA-ARS?s Scientific Manuscript database

    Rivers are vulnerable to biological invasion due to hydrologic connectivity, which facilitates post-entry movement of aquatic plant propagules by water currents. Ecological and watershed factors may influence spatial and temporal dispersal patterns. Field-based data on dispersal could improve risk...

  16. Meteor tracking via local pattern clustering in spatio-temporal domain

    NASA Astrophysics Data System (ADS)

    Kukal, Jaromír.; Klimt, Martin; Švihlík, Jan; Fliegel, Karel

    2016-09-01

    Reliable meteor detection is one of the crucial disciplines in astronomy. A variety of imaging systems is used for meteor path reconstruction. The traditional approach is based on analysis of 2D image sequences obtained from a double station video observation system. Precise localization of meteor path is difficult due to atmospheric turbulence and other factors causing spatio-temporal fluctuations of the image background. The proposed technique performs non-linear preprocessing of image intensity using Box-Cox transform as recommended in our previous work. Both symmetric and asymmetric spatio-temporal differences are designed to be robust in the statistical sense. Resulting local patterns are processed by data whitening technique and obtained vectors are classified via cluster analysis and Self-Organized Map (SOM).

  17. In-hive patterns of temporal polyethism in strains of honey bees (Apis mellifera) with distinct genetic backgrounds.

    PubMed

    Siegel, Adam J; Fondrk, M Kim; Amdam, Gro V; Page, Robert E

    2013-01-01

    Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging.

  18. Regulation of Chlamydia Gene Expression by Tandem Promoters with Different Temporal Patterns.

    PubMed

    Rosario, Christopher J; Tan, Ming

    2016-01-15

    Chlamydia is a genus of pathogenic bacteria with an unusual intracellular developmental cycle marked by temporal waves of gene expression. The three main temporal groups of chlamydial genes are proposed to be controlled by separate mechanisms of transcriptional regulation. However, we have noted genes with discrepancies, such as the early gene dnaK and the midcycle genes bioY and pgk, which have promoters controlled by the late transcriptional regulators EUO and σ(28). To resolve this issue, we analyzed the promoters of these three genes in vitro and in Chlamydia trachomatis bacteria grown in cell culture. Transcripts from the σ(28)-dependent promoter of each gene were detected only at late times in the intracellular infection, bolstering the role of σ(28) RNA polymerase in late gene expression. In each case, however, expression prior to late times was due to a second promoter that was transcribed by σ(66) RNA polymerase, which is the major form of chlamydial polymerase. These results demonstrate that chlamydial genes can be transcribed from tandem promoters with different temporal profiles, leading to a composite expression pattern that differs from the expression profile of a single promoter. In addition, tandem promoters allow a gene to be regulated by multiple mechanisms of transcriptional regulation, such as DNA supercoiling or late regulation by EUO and σ(28). We discuss how tandem promoters broaden the repertoire of temporal gene expression patterns in the chlamydial developmental cycle and can be used to fine-tune the expression of specific genes. Chlamydia is a pathogenic bacterium that is responsible for the majority of infectious disease cases reported to the CDC each year. It causes an intracellular infection that is characterized by coordinated expression of chlamydial genes in temporal waves. Chlamydial transcription has been shown to be regulated by DNA supercoiling, alternative forms of RNA polymerase, and transcription factors, but the number

  19. Temporal Dynamics and Persistence of Spatial Patterns: from Groundwater to Soil Moisture to Transpiration

    NASA Astrophysics Data System (ADS)

    Blume, T.; Hassler, S. K.; Weiler, M.

    2017-12-01

    Hydrological science still struggles with the fact that while we wish for spatially continuous images or movies of state variables and fluxes at the landscape scale, most of our direct measurements are point measurements. To date regional measurements resolving landscape scale patterns can only be obtained by remote sensing methods, with the common drawback that they remain near the earth surface and that temporal resolution is generally low. However, distributed monitoring networks at the landscape scale provide the opportunity for detailed and time-continuous pattern exploration. Even though measurements are spatially discontinuous, the large number of sampling points and experimental setups specifically designed for the purpose of landscape pattern investigation open up new avenues of regional hydrological analyses. The CAOS hydrological observatory in Luxembourg offers a unique setup to investigate questions of temporal stability, pattern evolution and persistence of certain states. The experimental setup consists of 45 sensor clusters. These sensor clusters cover three different geologies, two land use classes, five different landscape positions, and contrasting aspects. At each of these sensor clusters three soil moisture/soil temperature profiles, basic climate variables, sapflow, shallow groundwater, and stream water levels were measured continuously for the past 4 years. We will focus on characteristic landscape patterns of various hydrological state variables and fluxes, studying their temporal stability on the one hand and the dependence of patterns on hydrological states on the other hand (e.g. wet vs dry). This is extended to time-continuous pattern analysis based on time series of spatial rank correlation coefficients. Analyses focus on the absolute values of soil moisture, soil temperature, groundwater levels and sapflow, but also investigate the spatial pattern of the daily changes of these variables. The analysis aims at identifying hydrologic

  20. Spectral identification of sperm whales from Littoral Acoustic Demonstration Center passive acoustic recordings

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia A.; Richard, Blake; Ioup, George E.; Ioup, Juliette W.

    2005-09-01

    The Littoral Acoustic Demonstration Center (LADC) made a series of passive broadband acoustic recordings in the Gulf of Mexico and Ligurian Sea to study noise and marine mammal phonations. The collected data contain a large amount of various types of sperm whale phonations, such as isolated clicks and communication codas. It was previously reported that the spectrograms of the extracted clicks and codas contain well-defined null patterns that seem to be unique for individuals. The null pattern is formed due to individual features of the sound production organs of an animal. These observations motivated the present studies of adapting human speech identification techniques for deep-diving marine mammal phonations. A three-state trained hidden Markov model (HMM) was used with the phonation spectra of sperm whales. The HHM-algorithm gave 75% accuracy in identifying individuals when it had been initially tested for the acoustic data set correlated with visual observations of sperm whales. A comparison of the identification accuracy based on null-pattern similarity analysis and the HMM-algorithm is presented. The results can establish the foundation for developing an acoustic identification database for sperm whales and possibly other deep-diving marine mammals that would be difficult to observe visually. [Research supported by ONR.

  1. Recurrence plot analysis of nonstationary data: the understanding of curved patterns.

    PubMed

    Facchini, A; Kantz, H; Tiezzi, E

    2005-08-01

    Recurrence plots of the calls of the Nomascus concolor (Western black crested gibbon) and Hylobates lar (White-handed gibbon) show characteristic circular, curved, and hyperbolic patterns superimposed to the main temporal scale of the signal. It is shown that these patterns are related to particular nonstationarities in the signal. Some of them can be reproduced by artificial signals like frequency modulated sinusoids and sinusoids with time divergent frequency. These modulations are too faint to be resolved by conventional time-frequency analysis with similar precision. Therefore, recurrence plots act as a magnifying glass for the detection of multiple temporal scales in slightly modulated signals. The detected phenomena in these acoustic signals can be explained in the biomechanical context by taking in account the role of the muscles controlling the vocal folds.

  2. Science Enabled by Ocean Observatory Acoustics

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lee, C.; Gobat, J.; Freitag, L.; Miller, J. H.; Committee, I.

    2004-12-01

    Ocean observatories have the potential to examine the physical, chemical, biological, and geological parameters and processes of the ocean at time and space scales previously unexplored. Acoustics provides an efficient and cost-effective means by which these parameters and processes can be measured and information can be communicated. Integrated acoustics systems providing navigation and communications for mobile platforms and conducting acoustical measurements in support of science objectives are critical and essential elements of the ocean observatories presently in the planning and implementation stages. The ORION Workshop (Puerto Rico, 4-8 January 2004) developed science themes that can be addressed utilizing ocean observatory infrastructure. The use of acoustics to sense the 3-d/volumetric ocean environment on all temporal and spatial scales was discussed in many ORION working groups. Science themes that are related to acoustics and measurements using acoustics are reviewed and tabulated, as are the related and sometimes competing requirements for passive listening, acoustic navigation and acoustic communication around observatories. Sound in the sea, brought from observatories to universities and schools via the internet, will also be a major education and outreach mechanism.

  3. Temporal characteristics of Punjabi word-medial singletons and geminates.

    PubMed

    Hussain, Qandeel

    2015-10-01

    Many studies have investigated the temporal characteristics of the word-medial singletons and geminates in Indo-Aryan languages. However, little is known about the acoustic cues distinguishing between the word-medial singletons and geminates of Punjabi. The present study examines the temporal characteristics of Punjabi word-medial singleton and geminate stops in a C1V1C2V2 template. The results from five Punjabi speakers showed that, unlike previous studies of Indo-Aryan languages, the durations of C2 and V2 are the most important acoustic correlates of singleton and geminate stops in Punjabi. These findings therefore point towards the cross-linguistic differences in the acoustic correlates of singletons and geminates.

  4. Acoustic Signal Processing in Photorefractive Optical Systems.

    NASA Astrophysics Data System (ADS)

    Zhou, Gan

    This thesis discusses applications of the photorefractive effect in the context of acoustic signal processing. The devices and systems presented here illustrate the ideas and optical principles involved in holographic processing of acoustic information. The interest in optical processing stems from the similarities between holographic optical systems and contemporary models for massively parallel computation, in particular, neural networks. An initial step in acoustic processing is the transformation of acoustic signals into relevant optical forms. A fiber-optic transducer with photorefractive readout transforms acoustic signals into optical images corresponding to their short-time spectrum. The device analyzes complex sound signals and interfaces them with conventional optical correlators. The transducer consists of 130 multimode optical fibers sampling the spectral range of 100 Hz to 5 kHz logarithmically. A physical model of the human cochlea can help us understand some characteristics of human acoustic transduction and signal representation. We construct a life-sized cochlear model using elastic membranes coupled with two fluid-filled chambers, and use a photorefractive novelty filter to investigate its response. The detection sensitivity is determined to be 0.3 angstroms per root Hz at 2 kHz. Qualitative agreement is found between the model response and physiological data. Delay lines map time-domain signals into space -domain and permit holographic processing of temporal information. A parallel optical delay line using dynamic beam coupling in a rotating photorefractive crystal is presented. We experimentally demonstrate a 64 channel device with 0.5 seconds of time-delay and 167 Hz bandwidth. Acoustic signal recognition is described in a photorefractive system implementing the time-delay neural network model. The system consists of a photorefractive optical delay-line and a holographic correlator programmed in a LiNbO_3 crystal. We demonstrate the recognition

  5. Passive acoustic telemetry reveals highly variable home range and movement patterns among unicornfish within a marine reserve

    NASA Astrophysics Data System (ADS)

    Marshell, A.; Mills, J. S.; Rhodes, K. L.; McIlwain, J.

    2011-09-01

    Marine reserves are the primary management tool for Guam's reef fish fishery. While a build-up of fish biomass has occurred inside reserve boundaries, it is unknown whether reserve size matches the scale of movement of target species. Using passive acoustic telemetry, we quantified movement patterns and home range size of two heavily exploited unicornfish Naso unicornis and Naso lituratus. Fifteen fish ( N. unicornis: n = 7; N. lituratus: n = 4 male, n = 4 female) were fitted with internal acoustic tags and tracked continuously over four months within a remote acoustic receiver array located in a decade-old marine reserve. This approach provided robust estimates of unicornfish movement patterns and home range size. The mean home range of 3.2 ha for N. unicornis was almost ten times larger than that previously recorded from a three-week tracking study of the species in Hawaii. While N. lituratus were smaller in body size, their mean home range (6.8 ha) was over twice that of N. unicornis. Both species displayed strong site fidelity, particularly during nocturnal and crepuscular periods. Although there was some overlap, individual movement patterns and home range size were highly variable within species and between sexes. N. unicornis home range increased with body size, and only the three largest fish home ranges extended into the deeper outer reef slope beyond the shallow reef flat. Both Naso species favoured habitat dominated by corals. Some individuals made predictable daily crepuscular migrations between different locations or habitat types. There was no evidence of significant spillover from the marine reserve into adjacent fished areas. Strong site fidelity coupled with negligible spillover suggests that small-scale reserves, with natural habitat boundaries to emigration, are effective in protecting localized unicornfish populations.

  6. Temporal and Spatial patterns of Breeding Brown-Headed Cowbirds in the Midwestern United States

    Treesearch

    Frank R. Thompson

    1994-01-01

    Brown-headed Cowbirds (Molothrus ater) are an obligate brood parasite and a potential threat to some populations of migratory songbirds. I used radio-telemetry to study temporal patterns in behavior, habitat use, and sociality, as well as spatial patterns and movements among breeding, feeding, and roosting areas. I obtained a mean of 42 locations of...

  7. Increased frequency of temporal acoustic window failure in rheumatoid arthritis: a manifestation of altered bone metabolism?

    PubMed

    Kardos, Zsófia; Oláh, Csaba; Sepsi, Mariann; Sas, Attila; Kostyál, László; Bóta, Tünde; Bhattoa, Harjit Pal; Hodosi, Katalin; Kerekes, György; Tamási, László; Bereczki, Dániel; Szekanecz, Zoltán

    2018-05-01

    Assessment of intracranial vessels includes transcranial Doppler (TCD). TCD performance requires intact temporal acoustic windows (TAW). Failure of TAW (TAWF) is present in 8-20% of people. There have been no reports on TAWF in rheumatoid arthritis (RA). Altogether, 62 female RA patients were included. Among them, 20 were MTX-treated and biologic-free, 20 received infliximab, and 22 tocilizumab. The controls included 60 non-RA women. TAWF, temporal bone thickness, and texture were determined by ultrasound and CT. BMD and T-scores of multiple bones were determined by DEXA. Several bone biomarkers were assessed by ELISA. In RA, 54.8% of the patients had TAWF on at least one side. Neither TAW could be identified in 34% of RA subjects. In contrast, only 20.0% of control subjects had TAWF on either or both sides (p < 0.001). In RA vs controls, 53.0 vs 2.9% of subjects exerted the trilayer, "sandwich-like" structure of TAW (p < 0.001). Finally, in RA vs controls, the mean temporal bone thickness values of the right TAW were 3.58 ± 1.43 vs 2.92 ± 1.22 mm (p = NS), while those of the left TAW were 4.16 ± 1.56 vs 2.90 ± 1.16 mm (p = 0.001). There was close association between TAWF, bone thickness, and texture (p < 0.05). These TAW parameters all correlated with age; however, TAW failure and texture also correlated with serum osteoprotegerin. TAW bone thickness inversely correlated with hip BMD (p < 0.05). TAWF, thicker, and heterogeneous temporal bones were associated with RA. These features have been associated with bone loss and OPG production. Bone loss seen in RA may result in OPG release and stimulation of bone formation around TAW.

  8. Assessment of temporal state-dependent interactions between auditory fMRI responses to desired and undesired acoustic sources.

    PubMed

    Olulade, O; Hu, S; Gonzalez-Castillo, J; Tamer, G G; Luh, W-M; Ulmer, J L; Talavage, T M

    2011-07-01

    A confounding factor in auditory functional magnetic resonance imaging (fMRI) experiments is the presence of the acoustic noise inherently associated with the echo planar imaging acquisition technique. Previous studies have demonstrated that this noise can induce unwanted neuronal responses that can mask stimulus-induced responses. Similarly, activation accumulated over multiple stimuli has been demonstrated to elevate the baseline, thus reducing the dynamic range available for subsequent responses. To best evaluate responses to auditory stimuli, it is necessary to account for the presence of all recent acoustic stimulation, beginning with an understanding of the attenuating effects brought about by interaction between and among induced unwanted neuronal responses, and responses to desired auditory stimuli. This study focuses on the characterization of the duration of this temporal memory and qualitative assessment of the associated response attenuation. Two experimental parameters--inter-stimulus interval (ISI) and repetition time (TR)--were varied during an fMRI experiment in which participants were asked to passively attend to an auditory stimulus. Results present evidence of a state-dependent interaction between induced responses. As expected, attenuating effects of these interactions become less significant as TR and ISI increase and in contrast to previous work, persist up to 18s after a stimulus presentation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Spatio-Temporal Patterns of the International Merger and Acquisition Network.

    PubMed

    Dueñas, Marco; Mastrandrea, Rossana; Barigozzi, Matteo; Fagiolo, Giorgio

    2017-09-07

    This paper analyses the world web of mergers and acquisitions (M&As) using a complex network approach. We use data of M&As to build a temporal sequence of binary and weighted-directed networks for the period 1995-2010 and 224 countries (nodes) connected according to their M&As flows (links). We study different geographical and temporal aspects of the international M&A network (IMAN), building sequences of filtered sub-networks whose links belong to specific intervals of distance or time. Given that M&As and trade are complementary ways of reaching foreign markets, we perform our analysis using statistics employed for the study of the international trade network (ITN), highlighting the similarities and differences between the ITN and the IMAN. In contrast to the ITN, the IMAN is a low density network characterized by a persistent giant component with many external nodes and low reciprocity. Clustering patterns are very heterogeneous and dynamic. High-income economies are the main acquirers and are characterized by high connectivity, implying that most countries are targets of a few acquirers. Like in the ITN, geographical distance strongly impacts the structure of the IMAN: link-weights and node degrees have a non-linear relation with distance, and an assortative pattern is present at short distances.

  10. Dynamic patterns in a supported lipid bilayer driven by standing surface acoustic waves.

    PubMed

    Hennig, Martin; Neumann, Jürgen; Wixforth, Achim; Rädler, Joachim O; Schneider, Matthias F

    2009-11-07

    In the past decades supported lipid bilayers (SLBs) have been an important tool in order to study the physical properties of biological membranes and cells. So far, controlled manipulation of SLBs is very limited. Here we present a new technology to create lateral patterns in lipid membranes controllable in both space and time. Surface acoustic waves (SAWs) are used to generate lateral standing waves on a piezoelectric substrate which create local "traps" in the lipid bilayer and lead to a lateral modulation in lipid concentration. We demonstrate that pattern formation is reversible and does not affect the integrity of the lipid bilayer as shown by extracting the diffusion constant of fluid membranes. The described method could possibly be used to design switchable interfaces for the lateral transport and organization of membrane bound macromolecules to create dynamic bioarrays and control biofilm formation.

  11. Learning complex temporal patterns with resource-dependent spike timing-dependent plasticity.

    PubMed

    Hunzinger, Jason F; Chan, Victor H; Froemke, Robert C

    2012-07-01

    Studies of spike timing-dependent plasticity (STDP) have revealed that long-term changes in the strength of a synapse may be modulated substantially by temporal relationships between multiple presynaptic and postsynaptic spikes. Whereas long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength have been modeled as distinct or separate functional mechanisms, here, we propose a new shared resource model. A functional consequence of our model is fast, stable, and diverse unsupervised learning of temporal multispike patterns with a biologically consistent spiking neural network. Due to interdependencies between LTP and LTD, dendritic delays, and proactive homeostatic aspects of the model, neurons are equipped to learn to decode temporally coded information within spike bursts. Moreover, neurons learn spike timing with few exposures in substantial noise and jitter. Surprisingly, despite having only one parameter, the model also accurately predicts in vitro observations of STDP in more complex multispike trains, as well as rate-dependent effects. We discuss candidate commonalities in natural long-term plasticity mechanisms.

  12. Optimization of the temporal pattern of radiation: An IMRT based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, Michael B.; Chmura, Steven J.; Deasy, Joseph O.

    Purpose: To investigate how the temporal pattern of dose applied during a single-intensity modulated radiation therapy (IMRT) fraction can be arranged to maximize or minimize cell kill. Methods and Materials: Using the linear-quadratic repair-time model and a simplified IMRT delivery pattern model, the surviving fraction of cells for a single fraction was calculated for all permutations of the dose delivery pattern for an array of clinically based IMRT cases. Maximization of cell kill was achieved by concentrating the highest doses in the middle of a fraction, while minimization was achieved by spreading the highest doses between the beginning and end.more » The percent difference between maximum and minimum cell kill (%Diff{sub min/max}) and the difference between maximum and minimum total doses normalized to 2 Gy/fx ({delta}NTD{sub 2Gy}) was calculated for varying fraction durations (T), {alpha}/{beta} ratios, and doses/fx. Results: %Diff{sub min/max} and {delta}NTD{sub 2Gy} both increased with increasing T and with decreasing {alpha}/{beta}. The largest increases occurred with dose/fx. With {alpha}/{beta} = 3 Gy and 30 min/fx, %Diff{sub min/max} ranged from 2.7-5.3% for 2 Gy/fx to 48.6-74.1% for 10 Gy/fx, whereas {delta}NTD{sub 2Gy} ranged from 1.2 Gy-2.4 Gy for 30 fractions of 2 Gy/fx to 2.3-4.8 Gy for 2 fractions of 10.84 Gy/fx. Using {alpha}/{beta} = 1.5 Gy, an analysis of prostate hypofractionation schemes yielded differences in clinical outcome based on the pattern of applied dose ranging from 3.2%-6.1% of the treated population. Conclusions: Rearrangement of the temporal pattern of dose for a single IMRT fraction could be used to optimize cell kill and to directly, though modestly, affect treatment outcome.« less

  13. Acoustic measurements of the spatial and temporal structure of the near-bottom boundary layer in the 1990-1991 STRESS experiment

    NASA Astrophysics Data System (ADS)

    Lynch, James F.; Irish, James D.; Gross, Thomas F.; Wiberg, Patricia L.; Newhall, Arthur E.; Traykovski, Peter A.; Warren, Joseph D.

    1997-08-01

    As part of the 1990-1991 Sediment TRansport Events on Shelves and Slopes (STRESS) experiment, a 5 MHz Acoustic BackScatter System (ABSS) was deployed in 90 m of water to measure vertical profiles of near-bottom suspended sediment concentration. By looking at the vertical profile of concentration from 0 to 50 cm above bottom (cmab) with 1 cm vertical resolution, the ABSS was able to examine the detailed structure of the bottom boundary layer created by combined wave and current stresses. The acoustic profiles clearly showed the wave-current boundary layer, which extends to (order) 10 cmab. The profiles also showed evidence of an "intermediate" boundary layer, also influenced by combined wave and current stresses, just above the wave-current boundary layer. This paper examines the boundary-layer structure by comparing acoustic data obtained by the authors to a 1-D eddy viscosity model formulation. Specifically, these data are compared to a simple extension of the Grant-Glenn-Madsen model formulation. Also of interest is the appearance of apparently 3-D "advective plume" structures in these data. This is an interesting feature in a site which was initially chosen to be a good example of (temporally averaged) 1-D bottom boundary-layer dynamics. Computer modeling and sector-scanning sonar images are presented to justify the plausibility of observing 3-D structure at the STRESS site. 1997 Elsevier Science Ltd

  14. Dimensional analysis of acoustically propagated signals

    NASA Technical Reports Server (NTRS)

    Hansen, Scott D.; Thomson, Dennis W.

    1993-01-01

    Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.

  15. "Magnetic resonance imaging negative positron emission tomography positive" temporal lobe epilepsy: FDG-PET pattern differs from mesial temporal lobe epilepsy.

    PubMed

    Carne, R P; Cook, M J; MacGregor, L R; Kilpatrick, C J; Hicks, R J; O'Brien, T J

    2007-01-01

    Some patients with temporal lobe epilepsy (TLE) lack evidence of hippocampal sclerosis (HS) on MRI (HS-ve). We hypothesized that this group would have a different pattern of 2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-positron emission tomography (PET) hypometabolism than typical mesial TLE/HS patients with evidence of hippocampal atrophy on magnetic resonance imaging (MRI) (HS+ve), with a lateral temporal neocortical rather than mesial focus. Thirty consecutive HS-ve patients and 30 age- and sex-matched HS+ve patients with well-lateralized EEG were identified. FDG-PET was performed on 28 HS-ve patients and 24 HS+ve patients. Both groups were compared using statistical parametric mapping (SPM), directly and with FDG-PET from 20 healthy controls. Both groups showed lateralized temporal hypometabolism compared to controls. In HS+ve, this was antero-infero-mesial (T = 17.13); in HS-ve the main clustering was inferolateral (T = 17.63). When directly compared, HS+ve had greater hypometabolism inmesial temporal/hippocampal regions (T = 4.86); HS-ve had greater inferolateral temporal hypometabolism (T = 4.18). These data support the hypothesis that focal hypometabolism involves primarily lateal neocortical rather than mesial temporal structures in 'MRI-negative PET-positive TLE.'

  16. Enhanced dual-frequency pattern scheme based on spatial-temporal fringes method

    NASA Astrophysics Data System (ADS)

    Wang, Minmin; Zhou, Canlin; Si, Shuchun; Lei, Zhenkun; Li, Xiaolei; Li, Hui; Li, YanJie

    2018-07-01

    One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et al proposed a dual-frequency method based on the Fourier transform profilometry, yet the low-frequency lobes are close to each other for accurate band-pass filtering. In the light of this problem, a novel dual-frequency pattern based on the spatial-temporal fringes (STF) method is developed in this paper. Three fringe patterns with two different frequencies are required. The low-frequency phase is obtained from two low-frequency fringe patterns by the STF method, so the signal lobes can be extracted accurately as they are far away from each other. The high-frequency phase is retrieved from another fringe pattern without the impact of the DC component. Simulations and experiments are conducted to demonstrate the excellent precision of the proposed method.

  17. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex

    PubMed Central

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-01-01

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation. PMID:27282247

  18. Acoustic and Seismic Fields of Hydraulic Jumps at Varying Froude Numbers

    NASA Astrophysics Data System (ADS)

    Ronan, Timothy J.; Lees, Jonathan M.; Mikesell, T. Dylan; Anderson, Jacob F.; Johnson, Jeffrey B.

    2017-10-01

    Mechanisms that produce seismic and acoustic wavefields near rivers are poorly understood because of a lack of observations relating temporally dependent river conditions to the near-river seismoacoustic fields. This controlled study at the Harry W. Morrison Dam (HWMD) on the Boise River, Idaho, explores how temporal variation in fluvial systems affects surrounding acoustic and seismic fields. Adjusting the configuration of the HWMD changed the river bathymetry and therefore the form of the standing wave below the dam. The HWMD was adjusted to generate four distinct wave regimes that were parameterized through their dimensionless Froude numbers (Fr) and observations of the ambient seismic and acoustic wavefields at the study site. To generate detectable and coherent signals, a standing wave must exceed a threshold Fr value of 1.7, where a nonbreaking undular jump turns into a breaking weak hydraulic jump. Hydrodynamic processes may partially control the spectral content of the seismic and acoustic energies. Furthermore, spectra related to reproducible wave conditions can be used to calibrate and verify fluvial seismic and acoustic models.

  19. Snapping shrimp sound production patterns on Caribbean coral reefs: relationships with celestial cycles and environmental variables

    NASA Astrophysics Data System (ADS)

    Lillis, Ashlee; Mooney, T. Aran

    2018-06-01

    The rich acoustic environment of coral reefs, including the sounds of a variety of fish and invertebrates, is a reflection of the structural complexity and biological diversity of these habitats. Emerging interest in applying passive acoustic monitoring and soundscape analysis to measure coral reef habitat characteristics and track ecological patterns is hindered by a poor understanding of the most common and abundant sound producers on reefs—the snapping shrimp. Here, we sought to address several basic biophysical drivers of reef sound by investigating acoustic activity patterns of snapping shrimp populations on two adjacent coral reefs using a detailed snap detection analysis routine to a high-resolution 2.5-month acoustic dataset from the US Virgin Islands. The reefs exhibited strong diel and lunar periodicity in snap rates and clear spatial differences in snapping levels. Snap rates peaked at dawn and dusk and were higher overall during daytime versus nighttime, a seldom-reported pattern in earlier descriptions of diel snapping shrimp acoustic activity. Small differences between the sites in snap rate rhythms were detected and illustrate how analyses of specific soundscape elements might reveal subtle between-reef variation. Snap rates were highly correlated with environmental variables, including water temperature and light, and were found to be sensitive to changes in oceanographic forcing. This study further establishes snapping shrimp as key players in the coral reef chorus and provides evidence that their acoustic output reflects a combination of environmental conditions, celestial influences, and spatial habitat variation. Effective application of passive acoustic monitoring in coral reef habitats using snap rates or snapping-influenced acoustic metrics will require a mechanistic understanding of the underlying spatial and temporal variation in snapping shrimp sound production across multiple scales.

  20. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  1. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  2. Oscillatory patterns in temporal lobe reveal context reinstatement during memory search.

    PubMed

    Manning, Jeremy R; Polyn, Sean M; Baltuch, Gordon H; Litt, Brian; Kahana, Michael J

    2011-08-02

    Psychological theories of memory posit that when people recall a past event, they not only recover the features of the event itself, but also recover information associated with other events that occurred nearby in time. The events surrounding a target event, and the thoughts they evoke, may be considered to represent a context for the target event, helping to distinguish that event from similar events experienced at different times. The ability to reinstate this contextual information during memory search has been considered a hallmark of episodic, or event-based, memory. We sought to determine whether context reinstatement may be observed in electrical signals recorded from the human brain during episodic recall. Analyzing electrocorticographic recordings taken as 69 neurosurgical patients studied and recalled lists of words, we uncovered a neural signature of context reinstatement. Upon recalling a studied item, we found that the recorded patterns of brain activity were not only similar to the patterns observed when the item was studied, but were also similar to the patterns observed during study of neighboring list items, with similarity decreasing reliably with positional distance. The degree to which individual patients displayed this neural signature of context reinstatement was correlated with their tendency to recall neighboring list items successively. These effects were particularly strong in temporal lobe recordings. Our findings show that recalling a past event evokes a neural signature of the temporal context in which the event occurred, thus pointing to a neural basis for episodic memory.

  3. Levitation of objects using acoustic energy

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.

    1975-01-01

    Activated sound source establishes standing-wave pattern in gap between source and acoustic reflector. Solid or liquid material introduced in region will move to one of the low pressure areas produced at antinodes and remain suspended as long as acoustic signal is present.

  4. Temporal stability of Escherichia coli concentration patterns in two irrigation ponds in Maryland

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. We hypothesized that there is a temporally stable pattern of E.coli concentrations ...

  5. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under

  6. Acoustic habitat of an oceanic archipelago in the Southwestern Atlantic

    NASA Astrophysics Data System (ADS)

    Bittencourt, Lis; Barbosa, Mariana; Secchi, Eduardo; Lailson-Brito, José; Azevedo, Alexandre

    2016-09-01

    Underwater soundscapes can be highly variable, and in natural conditions are often dominated by biological signals and physical features of the environment. Few studies, however, focused on oceanic islands soundscapes. Islands in the middle of ocean basins can provide a good example of how untouched marine soundscapes are. Autonomous acoustic recordings were carried out in two different seasons in Trindade-Martin Vaz Archipelago, Southwestern Atlantic, providing nearly continuous data for both periods. Sound levels varied daily and between seasons. During summer, higher frequencies were noisier than lower frequencies, with snapping shrimp being the dominating sound source. During winter, lower frequencies were noisier than higher frequencies due to humpback whale constant singing. Biological signal detection had a marked temporal pattern, playing an important role in the soundscape. Over 1000 humpback whale sounds were detected hourly during winter. Fish vocalizations were detected mostly during night time during both summer and winter. The results show an acoustic habitat dominated by biological sound sources and highlight the importance of the island to humpback whales in winter.

  7. Reconstructing spatial and temporal patterns of paleoglaciation across Central Asia

    NASA Astrophysics Data System (ADS)

    Stroeven, Arjen P.

    2014-05-01

    Understanding the behaviour of mountain glaciers and ice caps, the evolution of mountain landscapes, and testing global climate models all require well-constrained information on past spatial and temporal patterns of glacier change. Particularly important are transitional regions that have high spatial and temporal variation in glacier activity and that can provide a sensitive record of past climate change. Central Asia is an extreme continental location with glaciers that have responded sensitively to variations in major regional climate systems. As an international team, we are reconstructing glacial histories of several areas of the Tibetan Plateau as well as along the Tian Shan, Altai and Kunlun Mountains. Building on previous work, we are using remote sensing-based geomorphological mapping augmented with field observations to map out glacial landforms and the maximum distributions of erratics. We then use cosmogenic nuclide Be-10 and Al-26, optically stimulated luminescence, and electron spin resonance dating of moraines and other landforms to compare dating techniques and to constrain the ages of defined extents of paleo-glaciers and ice caps. Comparing consistently dated glacial histories across central Asia provides an opportunity to examine shifts in the dominance patterns of climate systems over time in the region. Results to date show significant variations in the timing and extent of glaciation, including areas in the southeast Tibetan Plateau and Tian Shan with extensive valley and small polythermal ice cap glaciation during the global last glacial maximum in contrast to areas in central and northeast Tibetan Plateau that had very limited valley glacier expansion then. Initial numerical modelling attempting to simulate mapped and dated paleoglacial extents indicates that relatively limited cooling is sufficient to produce observed past expansions of glaciers across the Tibetan Plateau, and predicts complex basal thermal regimes in some locations that

  8. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    PubMed

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.

  9. Localized sources of propagating acoustic waves in the solar photosphere

    NASA Technical Reports Server (NTRS)

    Brown, Timothy M.; Bogdan, Thomas J.; Lites, Bruce W.; Thomas, John H.

    1992-01-01

    A time series of Doppler measurements of the solar photosphere with moderate spatial resolution is described which covers a portion of the solar disk surrounding a small sunspot group. At temporal frequencies above 5.5 mHz, the Doppler field probes the spatial and temporal distribution of regions that emit acoustic energy. In the frequency range between 5.5 and 7.5 mHz, inclusive, a small fraction of the surface area emits a disproportionate amount of acoustic energy. The regions with excess emission are characterized by a patchy structure at spatial scales of a few arcseconds and by association (but not exact co-location) with regions having substantial magnetic field strength. These observations bear on the conjecture that most of the acoustic energy driving solar p-modes is created in localized regions occupying a small fraction of the solar surface area.

  10. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    NASA Astrophysics Data System (ADS)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  11. Acoustic richness modulates the neural networks supporting intelligible speech processing.

    PubMed

    Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E

    2016-03-01

    The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier

  12. Temporal coherence among tropical coastal lagoons: a search for patterns and mechanisms.

    PubMed

    Caliman, A; Carneiro, L S; Santangelo, J M; Guariento, R D; Pires, A P F; Suhett, A L; Quesado, L B; Scofield, V; Fonte, E S; Lopes, P M; Sanches, L F; Azevedo, F D; Marinho, C C; Bozelli, R L; Esteves, F A; Farjalla, V F

    2010-10-01

    Temporal coherence (i.e., the degree of synchronicity of a given variable among ecological units within a predefined space) has been shown for several limnological features among temperate lakes, allowing predictions about the structure and function of ecosystems. However, there is little evidence of temporal coherence among tropical aquatic systems, where the climatic variability among seasons is less pronounced. Here, we used data from long-term monitoring of physical, chemical and biological variables to test the degree of temporal coherence among 18 tropical coastal lagoons. The water temperature and chlorophyll-a concentration had the highest and lowest temporal coherence among the lagoons, respectively, whereas the salinity and water colour had intermediate temporal coherence. The regional climactic factors were the main factors responsible for the coherence patterns in the water temperature and water colour, whereas the landscape position and morphometric characteristics explained much of the variation of the salinity and water colour among the lagoons. These results indicate that both local (lagoon morphometry) and regional (precipitation, air temperature) factors regulate the physical and chemical conditions of coastal lagoons by adjusting the terrestrial and marine subsidies at a landscape-scale. On the other hand, the chlorophyll-a concentration appears to be primarily regulated by specific local conditions resulting in a weak temporal coherence among the ecosystems. We concluded that temporal coherence in tropical ecosystems is possible, at least for some environmental features, and should be evaluated for other tropical ecosystems. Our results also reinforce that aquatic ecosystems should be studied more broadly to accomplish a full understanding of their structure and function.

  13. A review on the temporal pattern of deer-vehicle accidents: impact of seasonal, diurnal and lunar effects in cervids.

    PubMed

    Steiner, Wolfgang; Leisch, Friedrich; Hackländer, Klaus

    2014-05-01

    The increasing number of deer-vehicle-accidents (DVAs) and the resulting economic costs have promoted numerous studies on behavioural and environmental factors which may contribute to the quantity, spatiotemporal distribution and characteristics of DVAs. Contrary to the spatial pattern of DVAs, data of their temporal pattern is scarce and difficult to obtain because of insufficient accuracy in available datasets, missing standardization in data aquisition, legal terms and low reporting rates to authorities. Literature of deer-traffic collisions on roads and railways is reviewed to examine current understanding of DVA temporal trends. Seasonal, diurnal and lunar peak accident periods are identified for deer, although seasonal pattern are not consistent among and within species or regions and data on effects of lunar cycles on DVAs is almost non-existent. Cluster analysis of seasonal DVA data shows nine distinct clusters of different seasonal DVA pattern for cervid species within the reviewed literature. Studies analyzing the relationship between time-related traffic predictors and DVAs yield mixed results. Despite the seasonal dissimilarity, diurnal DVA pattern are comparatively constant in deer, resulting in pronounced DVA peaks during the hours of dusk and dawn frequently described as bimodal crepuscular pattern. Behavioural aspects in activity seem to have the highest impact in DVAs temporal trends. Differences and variations are related to habitat-, climatic- and traffic characteristics as well as effects of predation, hunting and disturbance. Knowledge of detailed temporal DVA pattern is essential for prevention management as well as for the application and evaluation of mitigation measures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Spike Train Similarity Space (SSIMS) Method Detects Effects of Obstacle Proximity and Experience on Temporal Patterning of Bat Biosonar

    PubMed Central

    Accomando, Alyssa W.; Vargas-Irwin, Carlos E.; Simmons, James A.

    2018-01-01

    Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus. In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape. PMID:29472848

  15. Spike Train Similarity Space (SSIMS) Method Detects Effects of Obstacle Proximity and Experience on Temporal Patterning of Bat Biosonar.

    PubMed

    Accomando, Alyssa W; Vargas-Irwin, Carlos E; Simmons, James A

    2018-01-01

    Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus . In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape.

  16. Passive Acoustic Monitoring the Diel, Lunar, Seasonal and Tidal Patterns in the Biosonar Activity of the Indo-Pacific Humpback Dolphins (Sousa chinensis) in the Pearl River Estuary, China.

    PubMed

    Wang, Zhi-Tao; Nachtigall, Paul E; Akamatsu, Tomonari; Wang, Ke-Xiong; Wu, Yu-Ping; Liu, Jian-Chang; Duan, Guo-Qin; Cao, Han-Jiang; Wang, Ding

    2015-01-01

    A growing demand for sustainable energy has led to an increase in construction of offshore windfarms. Guishan windmill farm will be constructed in the Pearl River Estuary, China, which sustains the world's largest known population of Indo-Pacific humpback dolphins (Sousa chinensis). Dolphin conservation is an urgent issue in this region. By using passive acoustic monitoring, a baseline distribution of data on this species in the Pearl River Estuary during pre-construction period had been collected. Dolphin biosonar detection and its diel, lunar, seasonal and tidal patterns were examined using a Generalized Linear Model. Significant higher echolocation detections at night than during the day, in winter-spring than in summer-autumn, at high tide than at flood tide were recognized. Significant higher echolocation detections during the new moon were recognized at night time. The diel, lunar and seasonal patterns for the echolocation encounter duration also significantly varied. These patterns could be due to the spatial-temporal variability of dolphin prey and illumination conditions. The baseline information will be useful for driving further effective action on the conservation of this species and in facilitating later assessments of the effects of the offshore windfarm on the dolphins by comparing the baseline to post construction and post mitigation efforts.

  17. Passive Acoustic Monitoring the Diel, Lunar, Seasonal and Tidal Patterns in the Biosonar Activity of the Indo-Pacific Humpback Dolphins (Sousa chinensis) in the Pearl River Estuary, China

    PubMed Central

    Wang, Zhi-Tao; Nachtigall, Paul E.; Akamatsu, Tomonari; Wang, Ke-Xiong; Wu, Yu-Ping; Liu, Jian-Chang; Duan, Guo-Qin; Cao, Han-Jiang; Wang, Ding

    2015-01-01

    A growing demand for sustainable energy has led to an increase in construction of offshore windfarms. Guishan windmill farm will be constructed in the Pearl River Estuary, China, which sustains the world’s largest known population of Indo-Pacific humpback dolphins (Sousa chinensis). Dolphin conservation is an urgent issue in this region. By using passive acoustic monitoring, a baseline distribution of data on this species in the Pearl River Estuary during pre-construction period had been collected. Dolphin biosonar detection and its diel, lunar, seasonal and tidal patterns were examined using a Generalized Linear Model. Significant higher echolocation detections at night than during the day, in winter-spring than in summer-autumn, at high tide than at flood tide were recognized. Significant higher echolocation detections during the new moon were recognized at night time. The diel, lunar and seasonal patterns for the echolocation encounter duration also significantly varied. These patterns could be due to the spatial-temporal variability of dolphin prey and illumination conditions. The baseline information will be useful for driving further effective action on the conservation of this species and in facilitating later assessments of the effects of the offshore windfarm on the dolphins by comparing the baseline to post construction and post mitigation efforts. PMID:26580966

  18. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, Vladmir

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  19. Acoustic detection of Oryctes rhinoceros (Coleoptera: Scarabaeidae: Dynastinae) and Nasutitermes luzonicus (Isoptera: Termitidae) in palm trees in urban Guam.

    PubMed

    Mankin, R W; Moore, A

    2010-08-01

    Adult and larval Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae: Dynastinae) were acoustically detected in live and dead palm trees and logs in recently invaded areas of Guam, along with Nasutitermes luzonicus Oshima (Isoptera: Termitidae), and other small, sound-producing invertebrates and invertebrates. The low-frequency, long-duration sound-impulse trains produced by large, active O. rhinoceros and the higher frequency, shorter impulse trains produced by feeding N. luzonicus had distinctive spectral and temporal patterns that facilitated their identification and discrimination from background noise, as well as from roaches, earwigs, and other small sound-producing organisms present in the trees and logs. The distinctiveness of the O. rhinoceros sounds enables current usage of acoustic detection as a tactic in Guam's ongoing O. rhinoceros eradication program.

  20. Grating-patterned FeCo coated surface acoustic wave device for sensing magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Jia, Yana; Xue, Xufeng; Liang, Yong; Du, Zhaofu

    2018-01-01

    This study addresses the theoretical and experimental investigations of grating-patterned magnetostrictive FeCo coated surface acoustic wave (SAW) device for sensing magnetic field. The proposed sensor is composed of a configuration of differential dual-delay-line oscillators, and a magnetostrictive FeCo grating array deposited along the SAW propagation path of the sensing device, which suppresses effectively the hysteresis effect by releasing the internal binding force in FeCo. The magnetostrictive strain and ΔE effect from the FeCo coating modulates the SAW propagation characteristic, and the corresponding shift in differential oscillation frequency was utilized to evaluate the measurant. A theoretical model is performed to investigate the wave propagation in layered structure of FeCo/LiNbO3 in the effect of magnetostrictive, and allowing determining the optimal structure. The experimental results indicate that higher sensitivity, excellent linearity, and lower hysteresis error over the typical FeCo thin-film coated sensor were achieved from the grating-patterned FeCo coated sensor successfully.

  1. Passive metamaterial-based acoustic holograms in ultrasound energy transfer systems

    NASA Astrophysics Data System (ADS)

    Bakhtiari-Nejad, Marjan; Elnahhas, Ahmed; Hajj, Muhammad R.; Shahab, Shima

    2018-03-01

    Contactless energy transfer (CET) is a technology that is particularly relevant in applications where wired electrical contact is dangerous or impractical. Furthermore, it would enhance the development, use, and reliability of low-power sensors in applications where changing batteries is not practical or may not be a viable option. One CET method that has recently attracted interest is the ultrasonic acoustic energy transfer, which is based on the reception of acoustic waves at ultrasonic frequencies by a piezoelectric receiver. Patterning and focusing the transmitted acoustic energy in space is one of the challenges for enhancing the power transmission and locally charging sensors or devices. We use a mathematically designed passive metamaterial-based acoustic hologram to selectively power an array of piezoelectric receivers using an unfocused transmitter. The acoustic hologram is employed to create a multifocal pressure pattern in the target plane where the receivers are located inside focal regions. We conduct multiphysics simulations in which a single transmitter is used to power multiple receivers with an arbitrary two-dimensional spatial pattern via wave controlling and manipulation, using the hologram. We show that the multi-focal pressure pattern created by the passive acoustic hologram will enhance the power transmission for most receivers.

  2. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain.

    PubMed

    Broderick, Patricia A

    2013-06-21

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters

  3. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    PubMed Central

    Broderick, Patricia A.

    2013-01-01

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters

  4. Differences between work and leisure in temporal patterns of objectively measured physical activity among blue-collar workers.

    PubMed

    Hallman, David M; Mathiassen, Svend Erik; Gupta, Nidhi; Korshøj, Mette; Holtermann, Andreas

    2015-09-28

    Leisure time physical activity (LTPA) is generally associated with favorable cardiovascular health outcomes, while occupational physical activity (OPA) shows less clear, or even opposite, cardiovascular effects. This apparent paradox is not sufficiently understood, but differences in temporal patterns of OPA and LTPA have been suggested as one explanation. Our aim was to investigate the extent to which work and leisure (non-occupational time) differ in temporal activity patterns among blue-collar workers, and to assess the modification of these patterns by age and gender. This study was conducted on a cross-sectional sample of male (n = 108) and female (n = 83) blue-collar workers, aged between 21 and 65 years. Physical activity and sedentary behavior were assessed using accelerometers (Actigraph GT3X+) worn on the thigh and trunk for four consecutive days. Temporal patterns of OPA and LTPA were retrieved using Exposure Variation Analysis (EVA), and expressed in terms of percentage of work and leisure time spent in uninterrupted periods of different durations (<1 min, 1-5 min, 5-10 min, 10-30 min, 30-60 min and > 60 min) of sitting, standing, and walking. Repeated measures ANOVA and linear regression analyses were used to test a) possible differences between OPA and LTPA in selected EVA derivatives, and b) the modification of these differences by age and gender. OPA showed a larger percentage time walking in brief (<5 min) periods [mean (SD): 33.4 % (12.2)], and less time in prolonged (>30 min) sitting [7.0 % (9.3)] than LTPA [walking 15.4 % (5.0); sitting 31.9 % (15.3)], even after adjustment for the difference between work and leisure in total time spent in each activity type. These marked differences in the temporal pattern of OPA and LTPA were modified by gender, but not age. We found that the temporal patterns of OPA and LTPA among blue-collar workers were markedly different even after adjustment for total physical activity time, and that this

  5. Temporal consistency of spatial pattern in growth of the mussel, Mytilus edulis: Implications for predictive modelling

    NASA Astrophysics Data System (ADS)

    Bergström, Per; Lindegarth, Susanne; Lindegarth, Mats

    2013-10-01

    Human pressures on coastal seas are increasing and methods for sustainable management, including spatial planning and mitigative actions, are therefore needed. In coastal areas worldwide, the development of mussel farming as an economically and ecologically sustainable industry requires geographic information on the growth and potential production capacity. In practice this means that coherent maps of temporally stable spatial patterns of growth need to be available in the planning process and that maps need to be based on mechanistic or empirical models. Therefore, as a first step towards development of models of growth, we assessed empirically the fundamental requirement that there are temporally consistent spatial patterns of growth in the blue mussel, Mytilus edulis. Using a pilot study we designed and dimensioned a transplant experiment, where the spatial consistency in the growth of mussels was evaluated at two resolutions. We found strong temporal and scale-dependent spatial variability in growth but patterns suggested that spatial patterns were uncoupled between growth of shell and that of soft tissue. Spatial patterns of shell growth were complex and largely inconsistent among years. Importantly, however, the growth of soft tissue was qualitatively consistent among years at the scale of km. The results suggest that processes affecting the whole coastal area cause substantial differences in growth of soft tissue among years but that factors varying at the scale of km create strong and persistent spatial patterns of growth, with a potential doubling of productivity by identifying the most suitable locations. We conclude that the observed spatial consistency provides a basis for further development of predictive modelling and mapping of soft tissue growth in these coastal areas. Potential causes of observed patterns, consequences for mussel-farming as a tool for mitigating eutrophication, aspects of precision of modelling and sampling of mussel growth as well

  6. Observing temporal patterns of vertical flux through streambed sediments using time-series analysis of temperature records

    NASA Astrophysics Data System (ADS)

    Lautz, Laura K.

    2012-09-01

    SummaryRates of water exchange between surface water and groundwater (SW-GW) can be highly variable over time due to temporal changes in streambed hydraulic conductivity, storm events, and oscillation of stage due to natural and regulated river flow. There are few effective field methods available to make continuous measurements of SW-GW exchange rates with the temporal resolution required in many field applications. Here, controlled laboratory experiments were used to explore the accuracy of analytical solutions to the one-dimensional heat transport model for capturing temporal variability of flux through porous media from propagation of a periodic temperature signal to depth. Column experiments were used to generate one-dimensional flow of water and heat through saturated sand with a quasi-sinusoidal temperature oscillation at the upstream boundary. Measured flux rates through the column were compared to modeled flux rates derived using the computer model VFLUX and the amplitude ratio between filtered temperature records from two depths in the column. Imposed temporal changes in water flux through the column were designed to replicate observed patterns of flux in the field, derived using the same methodology. Field observations of temporal changes in flux were made over multiple days during a large-scale storm event and diurnally during seasonal baseflow recession. Temporal changes in flux that occur gradually over days, sub-daily, and instantaneously in time can be accurately measured using the one-dimensional heat transport model, although those temporal changes may be slightly smoothed over time. Filtering methods effectively isolate the time-variable amplitude and phase of the periodic temperature signal, effectively eliminating artificial temporal flux patterns otherwise imposed by perturbations of the temperature signal, which result from typical weather patterns during field investigations. Although previous studies have indicated that sub

  7. Active chiral control of GHz acoustic whispering-gallery modes

    NASA Astrophysics Data System (ADS)

    Mezil, Sylvain; Fujita, Kentaro; Otsuka, Paul H.; Tomoda, Motonobu; Clark, Matt; Wright, Oliver B.; Matsuda, Osamu

    2017-10-01

    We selectively generate chiral surface-acoustic whispering-gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making use of an optical pump spatial profile in the form of a semicircular arc, positioned on the sample to break the symmetry of clockwise- and counterclockwise-propagating modes. Spatiotemporal Fourier transforms of the interferometrically monitored two-dimensional acoustic fields measured to micron resolution allow individual chiral modes and their azimuthal mode order, both positive and negative, to be distinguished. In particular, for modes with 15-fold rotational symmetry, we demonstrate ultrafast chiral control of surface acoustic waves in a micro-acoustic system with picosecond temporal resolution. Applications include nondestructive testing and surface acoustic wave devices.

  8. Use of implanted acoustic tags to assess platypus movement behaviour across spatial and temporal scales.

    PubMed

    Bino, Gilad; Kingsford, Richard T; Grant, Tom; Taylor, Matthew D; Vogelnest, Larry

    2018-03-23

    The platypus (Ornithorhynchus anatinus) is an evolutionarily distinct mammal, endemic to Australian freshwaters. Many aspects of its ecology and life-history, including detailed understanding of movements, are poorly known, hampered by its cryptic and mainly nocturnal habits and small numbers. We effectively trialled intraperitoneal implanted acoustic transmitters in nine platypuses in the Severn River (NSW), Australia, as a potential approach for studying movements in this challenging species. We tracked platypus movements over six months, at fine and broad spatial scales, using an array of acoustic sensors. Over six months (March-August 2016), four of five adult platypuses (two females\\three males) maintained localized movements (average monthly maximums 0.37 km ± 0.03 sd), while one adult, one sub-adult, and one juvenile (males) moved further: average monthly maxima 1.2 km ± 2.0 sd, 0.9 km ± 0.6 sd, 4.5 km ± 5.9 sd, respectively. The longest recorded movement was by a male adult, covering 11.1 km in three days and travelling a maximum distance of about 13 km between records. Only one implanted animal was not detected immediately after release, indicative of transmission failure rather than an adverse event. High cumulative daily movements (daily 1.9 km ± 0.8 sd) indicated high metabolic requirements, with implications for previous estimates of platypus abundances and carrying capacities, essential for effective conservation. This novel approach offers new avenues to investigate relating to mating, nesting, and intraspecific competition behaviours and their temporal and spatial variation.

  9. Temporal Patterns of Oak Mortality in a Southern Appalachian Forest (1991-2006).

    Treesearch

    Cathryn Greenberg; Tara L. Keyser; James Speer

    2011-01-01

    The sustainability of eastern oak-dominated forests is threatened by high oak mortality rates and widespread oak regeneration failure, and presents a challenge to natural area managers. We tracked the rate and cause of mortality of 287 mature oak trees of five species for 15 years to determine the temporal patterns and sources of mortality. We observed a 15.3% total...

  10. Temporal patterns of mental model convergence: implications for distributed teams interacting in electronic collaboration spaces.

    PubMed

    McComb, Sara; Kennedy, Deanna; Perryman, Rebecca; Warner, Norman; Letsky, Michael

    2010-04-01

    Our objective is to capture temporal patterns in mental model convergence processes and differences in these patterns between distributed teams using an electronic collaboration space and face-to-face teams with no interface. Distributed teams, as sociotechnical systems, collaborate via technology to work on their task. The way in which they process information to inform their mental models may be examined via team communication and may unfold differently than it does in face-to-face teams. We conducted our analysis on 32 three-member teams working on a planning task. Half of the teams worked as distributed teams in an electronic collaboration space, and the other half worked face-to-face without an interface. Using event history analysis, we found temporal interdependencies among the initial convergence points of the multiple mental models we examined. Furthermore, the timing of mental model convergence and the onset of task work discussions were related to team performance. Differences existed in the temporal patterns of convergence and task work discussions across conditions. Distributed teams interacting via an electronic interface and face-to-face teams with no interface converged on multiple mental models, but their communication patterns differed. In particular, distributed teams with an electronic interface required less overall communication, converged on all mental models later in their life cycles, and exhibited more linear cognitive processes than did face-to-face teams interacting verbally. Managers need unique strategies for facilitating communication and mental model convergence depending on teams' degrees of collocation and access to an interface, which in turn will enhance team performance.

  11. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments - a review

    NASA Astrophysics Data System (ADS)

    Fiener, P.; Auerswald, K.; van Oost, K.

    2009-04-01

    In many landscapes, land use creates a complex pattern in addition to the patterns resulting from soil, topography and rain. Despite the static layout of fields, a spatio-temporally highly variable situation regarding the surface runoff and erosion processes results from the asynchronous seasonal variation associated with different land uses. While the behaviour of individual land-uses and their seasonal variation is analyzed in many studies, the spatio-temporal interaction related to this pattern is rarely studied despite its crucial influence on hydrological and geomorphic response of catchments. The difficulty in studying such interactions mainly results from the fact that it is impossible to set up a replicated experiment on the landscape scale. The purpose of this review is to present the advances made thus far in quantifying the effects of patchiness of land use and management on surface runoff response in agricultural catchments. We will focus on the effects of spatio-temporal patterns in land use patches on hydraulic connectivity between patches and within catchments. This will include the temporal patterns in land management affecting infiltration, surface roughness and hence runoff concentration within single fields or land use patches insofar as these effects must be known to evaluate the combined effect of patch behaviour in space and time on catchment connectivity and surface runoff. Surface runoff effects of patchiness and connectivity between patches or within a catchment, can either be addressed by modelling studies or by comprehensive catchment field measurements, e.g. paired-watershed experiments or landscape scale studies on different scales. This limits our review to studies at the scale of small catchments < 10 km², where the time constant of the network (i.e. travel time through it) is smaller than the infiltration phase. Despite this limitation, these small catchments are important as they constitute 2/3 of the total surface of large water

  12. Temporal and spatial patterns in vegetation and atmospheric properties from AVIRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, D.A.; Green, R.O.; Adams, J.B.

    1997-12-01

    Little research has focused on the use of imaging spectrometry for change detection. In this paper, the authors apply Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to the monitoring of seasonal changes in atmospheric water vapor, liquid water, and surface cover in the vicinity of the Jasper Ridge, CA, for three dates in 1992. Apparent surface reflectance was retrieved and water vapor and liquid water mapped by using a radiative-transfer-based inversion that accounts for spatially variable atmospheres. Spectral mixture analysis (SMA) was used to model reflectance data as mixtures of green vegetation (GV), nonphotosynthetic vegetation (NPV), soil, and shade. Temporal andmore » spatial patterns in endmember fractions and liquid water were compared to the normalized difference vegetation index (NDVI). The reflectance retrieval algorithm was tested by using a temporally invariant target.« less

  13. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves.

    PubMed

    Guo, Feng; Zhou, Weijie; Li, Peng; Mao, Zhangming; Yennawar, Neela H; French, Jarrod B; Huang, Tony Jun

    2015-06-01

    Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming, a surface acoustic wave-based method for manipulating and patterning crystals is developed. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and submicrometer-sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but will also make it possible to collect data on samples that were previously intractable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Xia, K.; Young, R.

    2013-12-01

    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder

  15. Evolutionary diversification of the auditory organ sensilla in Neoconocephalus katydids (Orthoptera: Tettigoniidae) correlates with acoustic signal diversification over phylogenetic relatedness and life history.

    PubMed

    Strauß, J; Alt, J A; Ekschmitt, K; Schul, J; Lakes-Harlan, R

    2017-06-01

    Neoconocephalus Tettigoniidae are a model for the evolution of acoustic signals as male calls have diversified in temporal structure during the radiation of the genus. The call divergence and phylogeny in Neoconocephalus are established, but in tettigoniids in general, accompanying evolutionary changes in hearing organs are not studied. We investigated anatomical changes of the tympanal hearing organs during the evolutionary radiation and divergence of intraspecific acoustic signals. We compared the neuroanatomy of auditory sensilla (crista acustica) from nine Neoconocephalus species for the number of auditory sensilla and the crista acustica length. These parameters were correlated with differences in temporal call features, body size, life histories and different phylogenetic positions. By this, adaptive responses to shifting frequencies of male calls and changes in their temporal patterns can be evaluated against phylogenetic constraints and allometry. All species showed well-developed auditory sensilla, on average 32-35 between species. Crista acustica length and sensillum numbers correlated with body size, but not with phylogenetic position or life history. Statistically significant correlations existed also with specific call patterns: a higher number of auditory sensilla occurred in species with continuous calls or slow pulse rates, and a longer crista acustica occurred in species with double pulses or slow pulse rates. The auditory sensilla show significant differences between species despite their recent radiation, and morphological and ecological similarities. This indicates the responses to natural and sexual selection, including divergence of temporal and spectral signal properties. Phylogenetic constraints are unlikely to limit these changes of the auditory systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  16. Temporal coding of brain patterns for direct limb control in humans.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Pfurtscheller, Gert; Neuper, Christa

    2010-01-01

    For individuals with a high spinal cord injury (SCI) not only the lower limbs, but also the upper extremities are paralyzed. A neuroprosthesis can be used to restore the lost hand and arm function in those tetraplegics. The main problem for this group of individuals, however, is the reduced ability to voluntarily operate device controllers. A brain-computer interface provides a non-manual alternative to conventional input devices by translating brain activity patterns into control commands. We show that the temporal coding of individual mental imagery pattern can be used to control two independent degrees of freedom - grasp and elbow function - of an artificial robotic arm by utilizing a minimum number of EEG scalp electrodes. We describe the procedure from the initial screening to the final application. From eight naïve subjects participating online feedback experiments, four were able to voluntarily control an artificial arm by inducing one motor imagery pattern derived from one EEG derivation only.

  17. Patterns of acoustical activity of bats prior to and following White-nose Syndrome occurrence

    USGS Publications Warehouse

    Ford, W. Mark; Britzke, Eric R.; Dobony, Christopher A.; Rodrigue, Jane L.; Johnson, Joshua B.

    2011-01-01

    White-nose Syndrome (WNS), a wildlife health concern that has decimated cave-hibernating bat populations in eastern North America since 2006, began affecting source-caves for summer bat populations at Fort Drum, a U.S. Army installation in New York in the winter of 2007–2008. As regional die-offs of bats became evident, and Fort Drum's known populations began showing declines, we examined whether WNS-induced change in abundance patterns and seasonal timing of bat activity could be quantified using acoustical surveys, 2003–2010, at structurally uncluttered riparian–water habitats (i.e., streams, ponds, and wet meadows). As predicted, we observed significant declines in overall summer activity between pre-WNS and post-WNS years for little brown bats Myotis lucifugus, northern bats M. septentrionalis, and Indiana bats M. sodalis. We did not observe any significant change in activity patterns between pre-WNS and post-WNS years for big brown bats Eptesicus fuscus, eastern red bats Lasiurus borealis, or the small number of tri-colored bats Perimyotis subflavus. Activity of silver-haired bats Lasionycteris noctivagans increased from pre-WNS to post-WNS years. Activity levels of hoary bats Lasiurus cinereus significantly declined between pre- and post-WNS years. As a nonhibernating, migratory species, hoary bat declines might be correlated with wind-energy development impacts occurring in the same time frame rather than WNS. Intraseason activity patterns also were affected by WNS, though the results were highly variable among species. Little brown bats showed an overall increase in activity from early to late summer pre-WNS, presumably due to detections of newly volant young added to the local population. However, the opposite occurred post-WNS, indicating that reproduction among surviving little brown bats may be declining. Our data suggest that acoustical monitoring during the summer season can provide insights into species' relative abundance on the

  18. Contrast-enhanced optical coherence microangiography with acoustic-actuated microbubbles

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsuan; Zhang, Jia-Wei; Yeh, Chih-Kuang; Wei, Kuo-Chen; Liu, Hao-Li; Tsai, Meng-Tsan

    2017-04-01

    In this study, we propose to use gas-filled microbubbles (MBs) simultaneously actuated by the acoustic wave to enhance the imaging contrast of optical coherence tomography (OCT)-based angiography. In the phantom experiments, MBs can result in stronger backscattered intensity, enabling to enhance the contrast of OCT intensity image. Moreover, simultaneous application of low-intensity acoustic wave enables to temporally induce local vibration of particles and MBs in the vessels, resulting in time-variant OCT intensity which can be used for enhancing the contrast of OCT intensitybased angiography. Additionally, different acoustic modes and different acoustic powers to actuate MBs are performed and compared to investigate the feasibility of contrast enhancement. Finally, animal experiments are performed. The findings suggest that acoustic-actuated MBs can effectively enhance the imaging contrast of OCT-based angiography and the imaging depth of OCT angiography is also extended.

  19. TEMPORAL AND SPATIAL PATTERNS OF METHANE EMISSIONS FROM A RESERVOIR DRAINING AN AGRICULTURAL WATERSHED

    EPA Science Inventory

    We used multiple approaches to characterize temporal and spatial patterns in methane (CH4) emissions from a mid-latitude reservoir (William H. Harsha Lake, Ohio, USA) draining an agricultural watershed. Weekly to monthly monitoring at six sites in the reservoir during a 13 month...

  20. Streaming and particle motion in acoustically-actuated leaky systems

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Barnkob, Rune; Jun Huang, Tony; Kahler, Christian; Costanzo, Francesco

    2017-11-01

    The integration of acoustics with microfluidics has shown great promise for applications within biology, chemistry, and medicine. A commonly employed system to achieve this integration consists of a fluid-filled, polymer-walled microchannel that is acoustically actuated via standing surface acoustic waves. However, despite significant experimental advancements, the precise physical understanding of such systems remains a work in progress. In this work, we investigate the nature of acoustic fields that are setup inside the microchannel as well as the fundamental driving mechanism governing the fluid and particle motion in these systems. We provide an experimental benchmark using state-of-art 3D measurements of fluid and particle motion and present a Lagrangian velocity based temporal multiscale numerical framework to explain the experimental observations. Following verification and validation, we employ our numerical model to reveal the presence of a pseudo-standing acoustic wave that drives the acoustic streaming and particle motion in these systems.

  1. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  2. Distribution of an Acoustic Scattering Layer, Petermann Fjord, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Heffron, E.; Mayer, L. A.; Jakobsson, M.; Hogan, K.; Jerram, K.

    2017-12-01

    The Petermann 2015 Expedition was a comprehensive paleoceanographic and paleoclimatological study of the marine-terminating Petermann Glacier and its outlet system in Northwest Greenland carried out July-August 2015. The purpose was the reconstruction of glacial history and current glacial processes in Petermann Fjord to better understand the fate of the Petermann Glacier and its floating ice tongue that acts as a critical buttressing force to the outlet glacier draining about 4% of the Greenland Ice Sheet. Seafloor mapping was a critical component of the study and an EM122 multibeam sonar was utilized for this purpose; additionally, water column data were acquired with this sonar and an EK80 split-beam echosounder. During the expedition, the mapping team noted an acoustic scattering layer in the EK80 and EM122 water column data which was observed to change depth in a spatially consistent manner that appeared to be related to location. Initial onboard processing revealed what appears to be a strong spatial coherence in the layer distribution that corresponds to our understanding of the complex circulation pattern in the study area, including inflow of warmer Atlantic waters and outflow of subglacial waters. This initial processing was limited to observations at 46 discrete locations that corresponded to CTD stations, a very small subset of the 4800 line kilometers of data collected by each sonar. Both sonars were run 24 hours per day over the 30-day expedition, providing continuous time-varying acoustic coverage of the study area. Post-cruise additional data has been processed to extract the acoustic returns from the scattering layer using a combination of commercial sonar processing software and specialized MATLAB and Python routines. 3-D surfaces have been generated from the extracted points in order to visualize the continuous spatial and temporal distribution of the scattering layer across the entire study area. Multiple crossings of the same location at

  3. Central pattern generator for vocalization: Is there a vertebrate morphotype?

    PubMed Central

    Bass, Andrew H.

    2014-01-01

    Animals that generate acoustic signals for social communication are faced with two essential tasks: generate a temporally precise signal and inform the auditory system about the occurrence of one’s own sonic signal. Recent studies of sound producing fishes delineate a hindbrain network comprised of anatomically distinct compartments coding equally distinct neurophysiological properties that allow an organism to meet these behavioral demands. A set of neural characters comprising a vocal-sonic central pattern generator (CPG) morphotype is proposed for fishes and tetrapods that shares evolutionary developmental origins with pectoral appendage motor systems. PMID:25050813

  4. Temporal and spatial patterns of habitat use by juveniles of a small coastal shark (Mustelus lenticulatus) in an estuarine nursery.

    PubMed

    Francis, Malcolm P

    2013-01-01

    Juvenile rig (Mustelus lenticulatus) were internally tagged with acoustic transmitters and tracked with acoustic receivers deployed throughout two arms of Porirua Harbour, a small (7 km(2)) estuary in New Zealand. Ten rig were tracked for up to four months during summer-autumn to determine their spatial and temporal use of the habitat. The overall goal was to estimate the size of Marine Protected Areas required to protect rig nursery areas from direct human impacts. Rig showed clear site preferences, but those preferences varied among rig and over time. They spent most of their time in large basins and on shallow sand and mud flats around the margins, and avoided deep channels. Habitat range increased during autumn for many of the rig. Only one shark spent time in both harbour arms, indicating that there was little movement between the two. Rig home ranges were 2-7 km(2), suggesting that an effective MPA would need to cover the entire Porirua Harbour. They moved to outer harbour sites following some high river flow rates, and most left the harbour permanently during or soon after a river spike, suggesting that they were avoiding low salinity water. Rig showed strong diel movements during summer, although the diel pattern weakened in autumn. Persistent use of the same day and night sites indicates that diel movements are directed rather than random. Further research is required to determine the sizes of rig home ranges in larger harbours where nursery habitat is more extensive. Marine Protected Areas do not control land-based impacts such as accelerated sedimentation and heavy metal pollution, so integration of marine and terrestrial management tools across a range of government agencies is essential to fully protect nursery areas.

  5. Temporal and Spatial Patterns of Habitat Use by Juveniles of a Small Coastal Shark (Mustelus lenticulatus) in an Estuarine Nursery

    PubMed Central

    Francis, Malcolm P.

    2013-01-01

    Juvenile rig (Mustelus lenticulatus) were internally tagged with acoustic transmitters and tracked with acoustic receivers deployed throughout two arms of Porirua Harbour, a small (7 km2) estuary in New Zealand. Ten rig were tracked for up to four months during summer–autumn to determine their spatial and temporal use of the habitat. The overall goal was to estimate the size of Marine Protected Areas required to protect rig nursery areas from direct human impacts. Rig showed clear site preferences, but those preferences varied among rig and over time. They spent most of their time in large basins and on shallow sand and mud flats around the margins, and avoided deep channels. Habitat range increased during autumn for many of the rig. Only one shark spent time in both harbour arms, indicating that there was little movement between the two. Rig home ranges were 2–7 km2, suggesting that an effective MPA would need to cover the entire Porirua Harbour. They moved to outer harbour sites following some high river flow rates, and most left the harbour permanently during or soon after a river spike, suggesting that they were avoiding low salinity water. Rig showed strong diel movements during summer, although the diel pattern weakened in autumn. Persistent use of the same day and night sites indicates that diel movements are directed rather than random. Further research is required to determine the sizes of rig home ranges in larger harbours where nursery habitat is more extensive. Marine Protected Areas do not control land-based impacts such as accelerated sedimentation and heavy metal pollution, so integration of marine and terrestrial management tools across a range of government agencies is essential to fully protect nursery areas. PMID:23437298

  6. Mapping U.S. cattle shipment networks: Spatial and temporal patterns of trade communities from 2009 to 2011.

    PubMed

    Gorsich, Erin E; Luis, Angela D; Buhnerkempe, Michael G; Grear, Daniel A; Portacci, Katie; Miller, Ryan S; Webb, Colleen T

    2016-11-01

    The application of network analysis to cattle shipments broadens our understanding of shipment patterns beyond pairwise interactions to the network as a whole. Such a quantitative description of cattle shipments in the U.S. can identify trade communities, describe temporal shipment patterns, and inform the design of disease surveillance and control strategies. Here, we analyze a longitudinal dataset of beef and dairy cattle shipments from 2009 to 2011 in the United States to characterize communities within the broader cattle shipment network, which are groups of counties that ship mostly to each other. Because shipments occur over time, we aggregate the data at various temporal scales to examine the consistency of network and community structure over time. Our results identified nine large (>50 counties) communities based on shipments of beef cattle in 2009 aggregated into an annual network and nine large communities based on shipments of dairy cattle. The size and connectance of the shipment network was highly dynamic; monthly networks were smaller than yearly networks and revealed seasonal shipment patterns consistent across years. Comparison of the shipment network over time showed largely consistent shipping patterns, such that communities identified on annual networks of beef and diary shipments from 2009 still represented 41-95% of shipments in monthly networks from 2009 and 41-66% of shipments from networks in 2010 and 2011. The temporal aspects of cattle shipments suggest that future applications of the U.S. cattle shipment network should consider seasonal shipment patterns. However, the consistent within-community shipping patterns indicate that yearly communities could provide a reasonable way to group regions for management. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Methane Seeps in the Gulf of Mexico: repeat acoustic surveying shows highly temporally and spatially variable venting

    NASA Astrophysics Data System (ADS)

    Beaumont, B. C.; Raineault, N.

    2016-02-01

    Scientists have recognized that natural seeps account for a large amount of methane emissions. Despite their widespread occurrence in areas like the Gulf of Mexico, little is known about the temporal variability and site-scale spatial variability of venting over time. We used repeat acoustic surveys to compare multiple days of seep activity and determine the changes in the locus of methane emission and plume height. The Sleeping Dragon site was surveyed with an EM302 multibeam sonar on three consecutive days in 2014 and 4 days within one week in 2015. The data revealed three distinctive plume regions. The locus of venting varied by 10-60 meters at each site. The plume that exhibited the least spatial variability in venting, was also the most temporally variable. This seep was present in one-third of survey dates in 2014 and three quarters of survey dates in 2015, showing high day-to-day variability. The plume height was very consistent for this plume, whereas the other plumes were more consistent temporally, but varied in maximum plume height detection by 25-85 m. The single locus of emission at the site that had high day-to-day variability may be due to a single conduit for methane release, which is sometimes closed off by carbonate or clathrate hydrate formation. In addition to day-to-day temporal variability, the locus of emission at one site was observed to shift from a point-source in 2014 to a diffuse source in 2015 at a nearby location. ROV observations showed that one of the seep sites that closed off temporarily, experienced an explosive breakthrough of gas, releasing confined methane and blowing out rock. The mechanism that causes on/off behavior of certain plumes, combined with the spatial variability of the locus of methane release shown in this study may point to carbonate or hydrate formation in the seep plumbing system and should be further investigated.

  8. Understanding spatio-temporal mobility patterns for seniors, child/student and adult using smart card data

    NASA Astrophysics Data System (ADS)

    Huang, X.; Tan, J.

    2014-11-01

    Commutes in urban areas create interesting travel patterns that are often stored in regional transportation databases. These patterns can vary based on the day of the week, the time of the day, and commuter type. This study proposes methods to detect underlying spatio-temporal variability among three groups of commuters (senior citizens, child/students, and adults) using data mining and spatial analytics. Data from over 36 million individual trip records collected over one week (March 2012) on the Singapore bus and Mass Rapid Transit (MRT) system by the fare collection system were used. Analyses of such data are important for transportation and landuse designers and contribute to a better understanding of urban dynamics. Specifically, descriptive statistics, network analysis, and spatial analysis methods are presented. Descriptive variables were proposed such as density and duration to detect temporal features of people. A directed weighted graph G ≡ (N , L, W) was defined to analyze the global network properties of every pair of the transportation link in the city during an average workday for all three categories. Besides, spatial interpolation and spatial statistic tools were used to transform the discrete network nodes into structured human movement landscape to understand the role of transportation systems in urban areas. The travel behaviour of the three categories follows a certain degree of temporal and spatial universality but also displays unique patterns within their own specialties. Each category is characterized by their different peak hours, commute distances, and specific locations for travel on weekdays.

  9. A study of the acoustic-optic effect in nematics

    NASA Astrophysics Data System (ADS)

    Hayes, C. F.

    1980-12-01

    The program of this contract has been to study the acousto-optic effect which occurs in nematic liquid crystals when excited by acoustic waves. Both theory and practical application are presented. Hydrodynamic equations were solved which govern the streaming and obtained a solution for the magnitude of the fluid speed and flow pattern for a small disc shaped liquid crystal. A sample, doped with grains, was used to test the solution experimentally. A series of cells was constructed and tested which, in fact, showed that an acoustic wavefront pattern can be visualized with this technique. During the second year of the contract we developed and tested a mathematical model which prescribes how a cell should be constructed in terms of: the densities of the cell walls, liquid crystal, and surrounding fluids; the thickness of the cell walls and liquid crystal layer; the acoustic speeds in cell wall (shear and longitudinal), liquid crystal, and surrounding fluids; acoustic frequency; and the incident acoustic bean angle. Cells were also constructed and tested in which an electric field could be applied simultaneously with the acoustic wave in such a way that the sensitivity of the cell to the acoustic field could be adjusted.

  10. Geographic Variation in Daily Temporal Activity Patterns of a Neotropical Marsupial (Gracilinanus agilis)

    PubMed Central

    Vieira, Emerson M.; de Camargo, Nícholas F.; Colas, Paul F.; Ribeiro, Juliana F.; Cruz-Neto, Ariovaldo P.

    2017-01-01

    The temporal activity of animals is an outcome of both biotic and abiotic factors, which may vary along the geographic range of the species. Therefore, studies conducted with a species in different localities with distinct features could elucidate how animals deal with such factors. In this study, we used live traps equipped with timing devices to investigate the temporal activity patterns of the didelphid Gracilinanus agilis in two dry-woodland areas of the Brazilian savanna (Cerrado). These areas were located about 660 km apart, one in Central Brazil and the other in Southeastern Brazil. We compared such patterns considering both reproductive and non-reproductive periods, and how it varies as a function of temperature on a seasonal basis. In Central Brazil, we found a constant, and temperature-independent activity during the night in both reproductive and non-reproductive periods. On the other hand, in Southeastern Brazil, we detected a constant activity during the reproductive period, but in the non-reproductive period G. agilis presented a peak of activity between two and four hours after sunset. Moreover, in this latter we found a relation between temporal activity and temperature during the autumn and spring. These differences in temporal activity between areas, observed during the non-reproductive period, might be associated with the higher seasonal variability in temperature, and lower mean temperatures in the Southeastern site in comparison to the Central one. In Southeastern Brazil, the decrease in temperature during the non-reproductive season possibly forced G. agilis to be active only at certain hours of the night. However, likely due to the reproductive activities (intensive foraging and searching for mates) this marsupial showed constant, temperature-independent activity during the night in the reproductive period at both sites. PMID:28052077

  11. Spatial pattern of reference evapotranspiration change and its temporal evolution over Southwest China

    NASA Astrophysics Data System (ADS)

    Sun, Shanlei; Wang, Guojie; Huang, Jin; Mu, Mengyuan; Yan, Guixia; Liu, Chunwei; Gao, Chujie; Li, Xing; Yin, Yixing; Zhang, Fangmin; Zhu, Siguang; Hua, Wenjian

    2017-11-01

    Due to the close relationship of climate change with reference evapotranspiration (ETo), detecting changes in ETo spatial distribution and its temporal evolution at local and regional levels is favorable to comprehensively understand climate change-induced impacts on hydrology and agriculture. In this study, the objective is to identify whether climate change has caused variation of ETo spatial distribution in different analysis periods [i.e., long- (20-year), medium- (10-year), and short-term (5-year)] and to investigate its temporal evolution (namely, when these changes happened) at annual and monthly scales in Southwest China (SWC). First, we estimated ETo values using the United Nations Food and Agriculture Organization (FAO) Penman-Monteith equation, based on historical climate data measured at 269 weather sites during 1973-2012. The analysis of variance (ANOVA) results indicated that the spatial pattern of annual ETo had significantly changed during the past 40 years, particularly in west SWC for the long-term analysis period, and west and southeast SWC in both medium- and short-term periods, which corresponded to the percent area of significant differences which were 21.9, 58.0, and 48.2 %, respectively. For investigating temporal evolution of spatial patterns of annual ETo, Duncan's multiple range test was used, and we found that the most significant changes appeared during 1988-2002 with the significant area of higher than 25.0 %. In addition, for long-, medium-, and short-term analysis periods, the spatial distribution has significantly changed during March, September, November, and December, especially in the corresponding periods of 1988-1997, 1983-1992, 1973-1977, and 1988-2002. All in all, climate change has resulted in significant ETo changes in SWC since the 1970s. Knowledge of climate change-induced spatial distribution of ETo and its temporal evolution would aid in formulating strategies for water resources and agricultural managements.

  12. Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications.

    PubMed

    Smith, Kevin B; Abrantes, Antonio A M; Larraza, Andres

    2003-06-01

    The shallow water acoustic communication channel is characterized by strong signal degradation caused by multipath propagation and high spatial and temporal variability of the channel conditions. At the receiver, multipath propagation causes intersymbol interference and is considered the most important of the channel distortions. This paper examines the application of time-reversal acoustic (TRA) arrays, i.e., phase-conjugated arrays (PCAs), that generate a spatio-temporal focus of acoustic energy at the receiver location, eliminating distortions introduced by channel propagation. This technique is self-adaptive and automatically compensates for environmental effects and array imperfections without the need to explicitly characterize the environment. An attempt is made to characterize the influences of a PCA design on its focusing properties with particular attention given to applications in noncoherent underwater acoustic communication systems. Due to the PCA spatial diversity focusing properties, PC arrays may have an important role in an acoustic local area network. Each array is able to simultaneously transmit different messages that will focus only at the destination receiver node.

  13. Holocene forest dynamics in central and western Mediterranean: periodicity, spatio-temporal patterns and climate influence.

    PubMed

    Di Rita, Federico; Fletcher, William J; Aranbarri, Josu; Margaritelli, Giulia; Lirer, Fabrizio; Magri, Donatella

    2018-06-12

    It is well-known that the Holocene exhibits a millennial-scale climate variability. However, its periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet. Here we focus on the central and western Mediterranean. We show that recurrent forest declines from the Gulf of Gaeta (central Tyrrhenian Sea) reveal a 1860-yr periodicity, consistent with a ca. 1800-yr climate fluctuation induced by large-scale changes in climate modes, linked to solar activity and/or AMOC intensity. We show that recurrent forest declines and dry events are also recorded in several pollen and palaeohydrological proxy-records in the south-central Mediterranean. We found coeval events also in several palaeohydrological records from the south-western Mediterranean, which however show generally wet climate conditions, indicating a spatio-temporal hydrological pattern opposite to the south-central Mediterranean and suggesting that different expressions of climate modes occurred in the two regions at the same time. We propose that these opposite hydroclimate regimes point to a complex interplay of the prevailing or predominant phases of NAO-like circulation, East Atlantic pattern, and extension and location of the North African anticyclone. At a larger geographical scale, displacements of the ITCZ, modulated by solar activity and/or AMOC intensity, may have also indirectly influenced the observed pattern.

  14. Temporal Integration of Auditory Information Is Invariant to Temporal Grouping Cues

    PubMed

    Liu, Andrew S K; Tsunada, Joji; Gold, Joshua I; Cohen, Yale E

    2015-01-01

    Auditory perception depends on the temporal structure of incoming acoustic stimuli. Here, we examined whether a temporal manipulation that affects the perceptual grouping also affects the time dependence of decisions regarding those stimuli. We designed a novel discrimination task that required human listeners to decide whether a sequence of tone bursts was increasing or decreasing in frequency. We manipulated temporal perceptual-grouping cues by changing the time interval between the tone bursts, which led to listeners hearing the sequences as a single sound for short intervals or discrete sounds for longer intervals. Despite these strong perceptual differences, this manipulation did not affect the efficiency of how auditory information was integrated over time to form a decision. Instead, the grouping manipulation affected subjects' speed-accuracy trade-offs. These results indicate that the temporal dynamics of evidence accumulation for auditory perceptual decisions can be invariant to manipulations that affect the perceptual grouping of the evidence.

  15. Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones

    PubMed Central

    Elliott, Taffeta M.; Hamilton, Liberty S.; Theunissen, Frédéric E.

    2013-01-01

    Attempts to relate the perceptual dimensions of timbre to quantitative acoustical dimensions have been tenuous, leading to claims that timbre is an emergent property, if measurable at all. Here, a three-pronged analysis shows that the timbre space of sustained instrument tones occupies 5 dimensions and that a specific combination of acoustic properties uniquely determines gestalt perception of timbre. Firstly, multidimensional scaling (MDS) of dissimilarity judgments generated a perceptual timbre space in which 5 dimensions were cross-validated and selected by traditional model comparisons. Secondly, subjects rated tones on semantic scales. A discriminant function analysis (DFA) accounting for variance of these semantic ratings across instruments and between subjects also yielded 5 significant dimensions with similar stimulus ordination. The dimensions of timbre space were then interpreted semantically by rotational and reflectional projection of the MDS solution into two DFA dimensions. Thirdly, to relate this final space to acoustical structure, the perceptual MDS coordinates of each sound were regressed with its joint spectrotemporal modulation power spectrum. Sound structures correlated significantly with distances in perceptual timbre space. Contrary to previous studies, most perceptual timbre dimensions are not the result of purely temporal or spectral features but instead depend on signature spectrotemporal patterns. PMID:23297911

  16. Robust phase recovery in temporal speckle pattern interferometry using a 3D directional wavelet transform.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2009-08-01

    We propose an approach based on a 3D directional wavelet transform to retrieve optical phase distributions in temporal speckle pattern interferometry. We show that this approach can effectively recover phase distributions in time series of speckle interferograms that are affected by sets of adjacent nonmodulated pixels. The performance of this phase retrieval approach is analyzed by introducing a temporal carrier in the out-of-plane interferometer setup and assuming modulation loss and noise effects. The advantages and limitations of this approach are finally discussed.

  17. Uncovering Urban Temporal Patterns from Geo-Tagged Photography

    PubMed Central

    Paldino, Silvia; Kondor, Dániel; Sobolevsky, Stanislav; González, Marta C.; Ratti, Carlo

    2016-01-01

    We live in a world where digital trails of different forms of human activities compose big urban data, allowing us to detect many aspects of how people experience the city in which they live or come to visit. In this study we propose to enhance urban planning by taking into a consideration individual preferences using information from an unconventional big data source: dataset of geo-tagged photographs that people take in cities which we then use as a measure of urban attractiveness. We discover and compare a temporal behavior of residents and visitors in ten most photographed cities in the world. Looking at the periodicity in urban attractiveness, the results show that the strongest periodic patterns for visitors are usually weekly or monthly. Moreover, by dividing cities into two groups based on which continent they belong to (i.e., North America or Europe), it can be concluded that unlike European cities, behavior of visitors in the US cities in general is similar to the behavior of their residents. Finally, we apply two indices, called “dilatation attractiveness index” and “dilatation index”, to our dataset which tell us the spatial and temporal attractiveness pulsations in the city. The proposed methodology is not only important for urban planning, but also does support various business and public stakeholder decision processes, concentrated for example around the question how to attract more visitors to the city or estimate the impact of special events organized there. PMID:27935979

  18. Uncovering Urban Temporal Patterns from Geo-Tagged Photography.

    PubMed

    Paldino, Silvia; Kondor, Dániel; Bojic, Iva; Sobolevsky, Stanislav; González, Marta C; Ratti, Carlo

    2016-01-01

    We live in a world where digital trails of different forms of human activities compose big urban data, allowing us to detect many aspects of how people experience the city in which they live or come to visit. In this study we propose to enhance urban planning by taking into a consideration individual preferences using information from an unconventional big data source: dataset of geo-tagged photographs that people take in cities which we then use as a measure of urban attractiveness. We discover and compare a temporal behavior of residents and visitors in ten most photographed cities in the world. Looking at the periodicity in urban attractiveness, the results show that the strongest periodic patterns for visitors are usually weekly or monthly. Moreover, by dividing cities into two groups based on which continent they belong to (i.e., North America or Europe), it can be concluded that unlike European cities, behavior of visitors in the US cities in general is similar to the behavior of their residents. Finally, we apply two indices, called "dilatation attractiveness index" and "dilatation index", to our dataset which tell us the spatial and temporal attractiveness pulsations in the city. The proposed methodology is not only important for urban planning, but also does support various business and public stakeholder decision processes, concentrated for example around the question how to attract more visitors to the city or estimate the impact of special events organized there.

  19. Temporal variability in sung productions of adolescents who stutter.

    PubMed

    Falk, Simone; Maslow, Elena; Thum, Georg; Hoole, Philip

    2016-01-01

    Singing has long been used as a technique to enhance and reeducate temporal aspects of articulation in speech disorders. In the present study, differences in temporal structure of sung versus spoken speech were investigated in stuttering. In particular, the question was examined if singing helps to reduce VOT variability of voiceless plosives, which would indicate enhanced temporal coordination of oral and laryngeal processes. Eight German adolescents who stutter and eight typically fluent peers repeatedly spoke and sang a simple German congratulation formula in which a disyllabic target word (e.g., /'ki:ta/) was repeated five times. Every trial, the first syllable of the word was varied starting equally often with one of the three voiceless German stops /p/, /t/, /k/. Acoustic analyses showed that mean VOT and stop gap duration reduced during singing compared to speaking while mean vowel and utterance duration was prolonged in singing in both groups. Importantly, adolescents who stutter significantly reduced VOT variability (measured as the Coefficient of Variation) during sung productions compared to speaking in word-initial stressed positions while the control group showed a slight increase in VOT variability. However, in unstressed syllables, VOT variability increased in both adolescents who do and do not stutter from speech to song. In addition, vowel and utterance durational variability decreased in both groups, yet, adolescents who stutter were still more variable in utterance duration independent of the form of vocalization. These findings shed new light on how singing alters temporal structure and in particular, the coordination of laryngeal-oral timing in stuttering. Future perspectives for investigating how rhythmic aspects could aid the management of fluent speech in stuttering are discussed. Readers will be able to describe (1) current perspectives on singing and its effects on articulation and fluency in stuttering and (2) acoustic parameters such as

  20. Central hemimaxillectomy and reconstruction using a superficial temporal artery axial pattern flap in a domestic short hair cat.

    PubMed

    Lester, S; Pratschke, K

    2003-08-01

    A 2-year-old, neutered male domestic short hair cat presented with a large mass involving the right upper lip and underlying gingiva. A previous attempt at mass excision had failed, and the histopathological diagnosis was reported to be a fibrosarcoma. The cat was otherwise in good health.A central hemimaxillectomy was performed with extensive soft-tissue dissection and maxillofacial reconstruction achieved using an axial pattern flap based on the superficial temporal artery. This is the first reported clinical case of the use of the superficial temporal artery axial pattern flap in the cat. Histopathology identified a periodontal fibromatous epulis.

  1. Temporal patterns of mosquito landing on human hosts: implications for detection, monitoring, and vector control

    USDA-ARS?s Scientific Manuscript database

    Temporal patterns of landing activity on a human host by female Anopheles quadrimaculatus, Culex nigripalpus, Cx. quinquefasciatus, Ochlerotatus triseriatus and Aedes albopictus varied significantly throughout the diel period and with respect to time of collection within a 15 minute observation peri...

  2. Seasonal and temporal patterns of NDMA formation potentials in surface waters.

    PubMed

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2015-02-01

    The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (<100 ng/L). In most sources, NDMA FP showed more variability in spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) < 0.27). Multiple linear regression analysis using DOC and log [sucralose] yielded a better correlation with NDMA FP (R(2) = 0.53). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.

    1999-01-01

    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  4. Spatial and Temporal Variations in the Occurrence and Foraging Activity of Coastal Dolphins in Menai Bay, Zanzibar, Tanzania.

    PubMed

    Temple, Andrew J; Tregenza, Nick; Amir, Omar A; Jiddawi, Narriman; Berggren, Per

    2016-01-01

    Understanding temporal patterns in distribution, occurrence and behaviour is vital for the effective conservation of cetaceans. This study used cetacean click detectors (C-PODs) to investigate spatial and temporal variation in occurrence and foraging activity of the Indo-Pacific bottlenose (Tursiops aduncus) and Indian Ocean humpback (Sousa plumbea) dolphins resident in the Menai Bay Conservation Area (MBCA), Zanzibar, Tanzania. Occurrence was measured using detection positive minutes. Inter-click intervals were used to identify terminal buzz vocalisations, allowing for analysis of foraging activity. Data were analysed in relation to spatial (location) and temporal (monsoon season, diel phase and tidal phase) variables. Results showed significantly increased occurrence and foraging activity of dolphins in southern areas and during hours of darkness. Higher occurrence at night was not explained by diel variation in echolocation rate and so were considered representative of occurrence patterns. Both tidal phase and monsoon season influenced occurrence but results varied among sites, with no general patterns found. Foraging activity was greatest during hours of darkness, High water and Flood tidal phases. Comparisons of echolocation data among sites suggested differences in the broadband click spectra of MBCA dolphins, possibly indicative of species differences. These dolphin populations are threatened by unsustainable fisheries bycatch and tourism activities. The spatial and temporal patterns identified in this study have implications for future conservation and management actions with regards to these two threats. Further, the results indicate future potential for using passive acoustics to identify and monitor the occurrence of these two species in areas where they co-exist.

  5. Himalayan glaciers: understanding contrasting patterns of glacier behavior using multi-temporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Racoviteanu, A.

    2014-12-01

    High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m

  6. The Extended Concept Of Symmetropy And Its Application To Earthquakes And Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Nanjo, K.; Yodogawa, E.

    2003-12-01

    There is the notion of symmetropy that can be considered as a powerful tool to measure quantitatively entropic heterogeneity regarding symmetry of a pattern. It can be regarded as a quantitative measure to extract the feature of asymmetry of a pattern (Yodogawa, 1982; Nanjo et al., 2000, 2001, 2002 in press). In previous studies, symmetropy was estimated for the spatial distributions of acoustic emissions generated before the ultimate whole fracture of a rock specimen in the laboratory experiment and for the spatial distributions of earthquakes in the seismic source model with self-organized criticality (SOC). In each of these estimations, the outline of the region in which symmetropy is estimated for a pattern is determined to be equal to that of the rock specimen in which acoustic emissions are generated or that of the SOC seismic source model from which earthquakes emerge. When local seismicities like aftershocks, foreshocks and earthquake swarms in the Earth's crust are considered, it is difficult to determine objectively the outline of the region characterizing these local seismicities without the need of subjectiveness. So, the original concept of symmetropy is not appropriate to be directly applied to such local seismicities and the proper modification of the original one is needed. Here, we introduce the notion of symmetropy for the nonlinear geosciences and extend it for the purpose of the application to local seismicities such as aftershocks, foreshocks and earthquake swarms. We employ the extended concept to the spatial distributions of acoustic emissions generated in a previous laboratory experiment where the failure process in a brittle granite sample can be stabilized by controlling axial stress to maintain a constant rate of acoustic emissions and, as a result, detailed view of fracture nucleation and growth was observed. Moreover, it is applied to the temporal variations of spatial distributions of aftershocks and foreshocks of the main shocks

  7. Spatial-temporal evolution of self-organized loop-patterns on a water surface and a diffuse discharge in the gap

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Geng, Jinling; Jia, Pengying; Zhang, Panpan; Zhang, Qi; Li, Yaru

    2017-11-01

    Excited by an alternating current voltage, a patterned discharge and a diffuse discharge are generated in a needle to liquid configuration. Using an intensified charge-coupled device (ICCD), temporal evolution of the discharge between the two electrodes is investigated for the diffuse mode and the patterned mode, respectively. For the diffuse mode, the positive discharge is in a glow regime, and the negative discharge is in a Townsend discharge regime. For the patterned mode, the discharge always belongs to the Townsend discharge regime. Moreover, in the patterned mode, various patterns including the single loop, single loop with the surrounding corona, triple loops, and concentric loops with a central spot are observed on the water surface with the increasing positive peak-value of the applied voltage (Upp). Temporally resolved images of the loop-patterns are captured on the water surface. From the electrical measurements and the ICCD imaging, it is found that the loop pattern emerges after the discharge bridges the two electrodes. Then, it begins to evolve and finally degenerates with the decrease in the discharge current. The pattern does not disappear until the discharge quenches. Formation of the loop-patterns is attributed to the role of negative ions.

  8. Comparison of cosmology and seabed acoustics measurements using statistical inference from maximum entropy

    NASA Astrophysics Data System (ADS)

    Knobles, David; Stotts, Steven; Sagers, Jason

    2012-03-01

    Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.

  9. Concurrent temporal channels for auditory processing: Oscillatory neural entrainment reveals segregation of function at different scales

    PubMed Central

    Tian, Xing; Rowland, Jess; Poeppel, David

    2017-01-01

    Natural sounds convey perceptually relevant information over multiple timescales, and the necessary extraction of multi-timescale information requires the auditory system to work over distinct ranges. The simplest hypothesis suggests that temporal modulations are encoded in an equivalent manner within a reasonable intermediate range. We show that the human auditory system selectively and preferentially tracks acoustic dynamics concurrently at 2 timescales corresponding to the neurophysiological theta band (4–7 Hz) and gamma band ranges (31–45 Hz) but, contrary to expectation, not at the timescale corresponding to alpha (8–12 Hz), which has also been found to be related to auditory perception. Listeners heard synthetic acoustic stimuli with temporally modulated structures at 3 timescales (approximately 190-, approximately 100-, and approximately 30-ms modulation periods) and identified the stimuli while undergoing magnetoencephalography recording. There was strong intertrial phase coherence in the theta band for stimuli of all modulation rates and in the gamma band for stimuli with corresponding modulation rates. The alpha band did not respond in a similar manner. Classification analyses also revealed that oscillatory phase reliably tracked temporal dynamics but not equivalently across rates. Finally, mutual information analyses quantifying the relation between phase and cochlear-scaled correlations also showed preferential processing in 2 distinct regimes, with the alpha range again yielding different patterns. The results support the hypothesis that the human auditory system employs (at least) a 2-timescale processing mode, in which lower and higher perceptual sampling scales are segregated by an intermediate temporal regime in the alpha band that likely reflects different underlying computations. PMID:29095816

  10. Multi-voxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    PubMed Central

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350

  11. Phase recovery in temporal speckle pattern interferometry using the generalized S-transform.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2008-04-15

    We propose a novel approach based on the generalized S-transform to retrieve optical phase distributions in temporal speckle pattern interferometry. The performance of the proposed approach is compared with those given by well-known techniques based on the continuous wavelet, the Hilbert transforms, and a smoothed time-frequency distribution by analyzing interferometric data degraded by noise, nonmodulating pixels, and modulation loss. The advantages and limitations of the proposed phase retrieval approach are discussed.

  12. Dynamic speech representations in the human temporal lobe.

    PubMed

    Leonard, Matthew K; Chang, Edward F

    2014-09-01

    Speech perception requires rapid integration of acoustic input with context-dependent knowledge. Recent methodological advances have allowed researchers to identify underlying information representations in primary and secondary auditory cortex and to examine how context modulates these representations. We review recent studies that focus on contextual modulations of neural activity in the superior temporal gyrus (STG), a major hub for spectrotemporal encoding. Recent findings suggest a highly interactive flow of information processing through the auditory ventral stream, including influences of higher-level linguistic and metalinguistic knowledge, even within individual areas. Such mechanisms may give rise to more abstract representations, such as those for words. We discuss the importance of characterizing representations of context-dependent and dynamic patterns of neural activity in the approach to speech perception research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The acoustic features of human laughter

    NASA Astrophysics Data System (ADS)

    Bachorowski, Jo-Anne; Owren, Michael J.

    2002-05-01

    Remarkably little is known about the acoustic features of laughter, despite laughter's ubiquitous role in human vocal communication. Outcomes are described for 1024 naturally produced laugh bouts recorded from 97 young adults. Acoustic analysis focused on temporal characteristics, production modes, source- and filter-related effects, and indexical cues to laugher sex and individual identity. The results indicate that laughter is a remarkably complex vocal signal, with evident diversity in both production modes and fundamental frequency characteristics. Also of interest was finding a consistent lack of articulation effects in supralaryngeal filtering. Outcomes are compared to previously advanced hypotheses and conjectures about this species-typical vocal signal.

  14. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.

    PubMed

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-22

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  15. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    PubMed Central

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-01-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024

  16. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    NASA Astrophysics Data System (ADS)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  17. Laser acoustic emission thermal technique (LAETT): a technique for generating acoustic emission in dental composites.

    PubMed

    Duray, S J; Lee, S Y; Menis, D L; Gilbert, J L; Lautenschlager, E P; Greener, E H

    1996-01-01

    This study was designed to investigate a new method for generating interfacial debonding between the resin matrix and filler particles of dental composites. A pilot study was conducted to evaluate laser-induced acoustic emission in dental resins filled with varying quantities of particles. Model systems of 50/50 BisGMA/TEGDMA resin reinforced with 0, 25, and 75 wt% 5-10 micrometers silanated BaSiO(6) were analyzed. The sample size was 3.5 mm diameter x 0.25-0.28 mm thick. A continuous wave CO2 laser (Synrad Infrared Gas Laser Model 48-1) was used to heat the composite samples. Acoustic events were detected, recorded and processed by a model 4610 Smart Acoustic Monitor (SAM) with a 1220A preamp (Physical Acoustic Corp.) as a function of laser power. Initially, the acoustic signal from the model composites produced a burst pattern characteristic of fracturing, about 3.7 watts laser power. Acoustic emission increased with laser power up to about 6 watts. At laser powers above 6 watts, the acoustic emission remained constant. The amount of acoustic emission followed the trend: unfilled resin > composite with 25 wt% BaSiO(6) > composite with 75 wt% BaSiO(6). Acoustic emission generated by laser thermal heating is dependent on the weight percent of filler particles in the composite and the amount of laser power. For this reason, laser thermal acoustic emission might be useful as a nondestructive form of analysis of dental composites.

  18. Research on the Spatial-Temporal Distribution Pattern of the Network Attention of Fog and Haze in China

    NASA Astrophysics Data System (ADS)

    Weng, Lingyan; Han, Xugao

    2018-01-01

    Understanding the spatial-temporal distribution pattern of fog and haze is the base to deal with them by adjusting measures to local conditions. Taking 31 provinces in China mainland as the research areas, this paper collected data from Baidu index on the network attention of fog and haze in relevant areas from 2011 to 2016, and conducted an analysis of their spatial-temporal distribution pattern by using autocorrelation analysis. The results show that the network attention of fog and haze has an overall spatial distribution pattern of “higher in the eastern and central, lower in the western China”. There are regional differences in different provinces in terms of network attention. Network attention of fog and haze indicates an obvious geographical agglomeration phenomenon, which is a gradual enlargement of the agglomeration area of higher value with a slight shrinking of those lower value agglomeration areas.

  19. Informational approach to the analysis of acoustic signals

    NASA Astrophysics Data System (ADS)

    Senkevich, Yuriy; Dyuk, Vyacheslav; Mishchenko, Mikhail; Solodchuk, Alexandra

    2017-10-01

    The example of linguistic processing of acoustic signals of a seismic event would be an information approach to the processing of non-stationary signals. The method for converting an acoustic signal into an information message is described by identifying repetitive self-similar patterns. The definitions of the event selection indicators in the symbolic recording of the acoustic signal are given. The results of processing an acoustic signal by a computer program realizing the processing of linguistic data are shown. Advantages and disadvantages of using software algorithms are indicated.

  20. Age-related changes in trunk neuromuscular activation patterns during a controlled functional transfer task include amplitude and temporal synergies.

    PubMed

    Quirk, D Adam; Hubley-Kozey, Cheryl L

    2014-12-01

    While healthy aging is associated with physiological changes that can impair control of trunk motion, few studies examine how spinal muscle responses change with increasing age. This study examined whether older (over 65 years) compared to younger (20-45 years) adults had higher overall amplitude and altered temporal recruitment patterns of trunk musculature when performing a functional transfer task. Surface electromyograms from twelve bilateral trunk muscle (24) sites were analyzed using principal component analysis, extracting amplitude and temporal features (PCs) from electromyographic waveforms. Two PCs explained 96% of the waveform variance. Three factor ANOVA models tested main effects (group, muscle and reach) and interactions for PC scores. Significant (p<.0125) group interactions were found for all PC scores. Post hoc analysis revealed that relative to younger adults, older adults recruited higher agonist and antagonistic activity, demonstrated continuous activation levels in specific muscle sites despite changing external moments, and had altered temporal synergies within abdominal and back musculature. In summary both older and younger adults recruit highly organized activation patterns in response to changing external moments. Differences in temporal trunk musculature recruitment patterns suggest that older adults experience different dynamic spinal stiffness and loading compared to younger adults during a functional lifting task. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Temporal patterns in habitat use by small cetaceans at an oceanographically dynamic marine renewable energy test site in the Celtic Sea

    NASA Astrophysics Data System (ADS)

    Cox, S. L.; Witt, M. J.; Embling, C. B.; Godley, B. J.; Hosegood, P. J.; Miller, P. I.; Votier, S. C.; Ingram, S. N.

    2017-07-01

    Shelf-seas are highly dynamic and oceanographically complex environments, which likely influences the spatio-temporal distributions of marine megafauna such as marine mammals. As such, understanding natural patterns in habitat use by these animals is essential when attempting to ascertain and assess the impacts of anthropogenically induced disturbances, such as those associated with marine renewable energy installations (MREIs). This study uses a five year (2009-2013) passive acoustics (C-POD) dataset to examine the use of an oceanographically dynamic marine renewable energy test site by small cetaceans, dolphins (unspecified delphinids) and harbour porpoises Phocoena phocoena, in the southern Celtic Sea. To examine how temporal patterns in habitat use across the site related to oceanographic changes occurring over broad seasonal scales as well as those driven by fine scale (bi-weekly) localised processes (that may be masked by seasonal trends), separate analyses were conducted using (1) all daily animal detection rates spanning the entire five year dataset and (2) daily animal detection rates taken only during the summer months (defined as mid-June to mid-October) of 2010 (when continuous monitoring was carried out at multiple discrete locations across the site). In both instances, generalised additive mixed effects models (GAMMs) were used to link detection rates to a suite of environmental variables representative of the oceanography of the region. We show that increased harbour porpoise detection rates in the late winter/early spring (January-March) are associated with low sea surface temperatures (SST), whilst peaks in dolphin detection rates in the summer (July-September) coincide with increased SSTs and the presence of a tidal-mixing front. Moreover, across the summer months of 2010, dolphin detection rates were found to respond to small scale changes in SST and position in the spring-neap cycle, possibly reflective of a preference for the stratified waters

  2. Mobile acoustic transects miss rare bat species: implications of survey method and spatio-temporal sampling for monitoring bats

    PubMed Central

    Wallrichs, Megan A.; Ober, Holly K.; McCleery, Robert A.

    2017-01-01

    Due to increasing threats facing bats, long-term monitoring protocols are needed to inform conservation strategies. Effective monitoring should be easily repeatable while capturing spatio-temporal variation. Mobile acoustic driving transect surveys (‘mobile transects’) have been touted as a robust, cost-effective method to monitor bats; however, it is not clear how well mobile transects represent dynamic bat communities, especially when used as the sole survey approach. To assist biologists who must select a single survey method due to resource limitations, we assessed the effectiveness of three acoustic survey methods at detecting species richness in a vast protected area (Everglades National Park): (1) mobile transects, (2) stationary surveys that were strategically located by sources of open water and (3) stationary surveys that were replicated spatially across the landscape. We found that mobile transects underrepresented bat species richness compared to stationary surveys across all major vegetation communities and in two distinct seasons (dry/cool and wet/warm). Most critically, mobile transects failed to detect three rare bat species, one of which is federally endangered. Spatially replicated stationary surveys did not estimate higher species richness than strategically located stationary surveys, but increased the rate at which species were detected in one vegetation community. The survey strategy that detected maximum species richness and the highest mean nightly species richness with minimal effort was a strategically located stationary detector in each of two major vegetation communities during the wet/warm season. PMID:29134138

  3. Mobile acoustic transects miss rare bat species: implications of survey method and spatio-temporal sampling for monitoring bats.

    PubMed

    Braun de Torrez, Elizabeth C; Wallrichs, Megan A; Ober, Holly K; McCleery, Robert A

    2017-01-01

    Due to increasing threats facing bats, long-term monitoring protocols are needed to inform conservation strategies. Effective monitoring should be easily repeatable while capturing spatio-temporal variation. Mobile acoustic driving transect surveys ('mobile transects') have been touted as a robust, cost-effective method to monitor bats; however, it is not clear how well mobile transects represent dynamic bat communities, especially when used as the sole survey approach. To assist biologists who must select a single survey method due to resource limitations, we assessed the effectiveness of three acoustic survey methods at detecting species richness in a vast protected area (Everglades National Park): (1) mobile transects, (2) stationary surveys that were strategically located by sources of open water and (3) stationary surveys that were replicated spatially across the landscape. We found that mobile transects underrepresented bat species richness compared to stationary surveys across all major vegetation communities and in two distinct seasons (dry/cool and wet/warm). Most critically, mobile transects failed to detect three rare bat species, one of which is federally endangered. Spatially replicated stationary surveys did not estimate higher species richness than strategically located stationary surveys, but increased the rate at which species were detected in one vegetation community. The survey strategy that detected maximum species richness and the highest mean nightly species richness with minimal effort was a strategically located stationary detector in each of two major vegetation communities during the wet/warm season.

  4. Spatial and temporal patterns of dengue in Guangdong province of China.

    PubMed

    Wang, Chenggang; Yang, Weizhong; Fan, Jingchun; Wang, Furong; Jiang, Baofa; Liu, Qiyong

    2015-03-01

    The aim of the study was to describe the spatial and temporal patterns of dengue in Guangdong for 1978 to 2010. Time series analysis was performed using data on annual dengue incidence in Guangdong province for 1978-2010. Annual average dengue incidences for each city were mapped for 4 periods by using the geographical information system (GIS). Hot spot analysis was used to identify spatial patterns of dengue cases for 2005-2010 by using the CrimeStat III software. The incidence of dengue in Guangdong province had fallen steadily from 1978 to 2010. The time series was a random sequence without regularity and with no fixed cycle. The geographic range of dengue fever had expanded from 1978 to 2010. Cases were mostly concentrated in Zhanjiang and the developed regions of Pearl River Delta and Shantou. © 2013 APJPH.

  5. Remote Acoustic Imaging of Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Watson, Z.; Hart, M.

    Identification and characterization of orbiting objects that are not spatially resolved are challenging problems for traditional remote sensing methods. Hyper temporal imaging, enabled by fast, low-noise electro-optical detectors is a new sensing modality which may allow the direct detection of acoustic resonances on satellites enabling a new regime of signature and state detection. Detectable signatures may be caused by the oscillations of solar panels, high-gain antennae, or other on-board subsystems driven by thermal gradients, fluctuations in solar radiation pressure, worn reaction wheels, or orbit maneuvers. Herein we present the first hyper-temporal observations of geosynchronous satellites. Data were collected at the Kuiper 1.54-meter telescope in Arizona using an experimental dual-channel imaging instrument that simultaneously measures light in two orthogonally polarized beams at sampling rates extending up to 1 kHz. In these observations, we see evidence of acoustic resonances in the polarization state of satellites. The technique is expected to support object identification and characterization of on-board components and to act as a discriminant between active satellites, debris, and passive bodies.

  6. Top-down Processes in Simulated Electric-Acoustic Hearing: The Effect of Linguistic Context on Bimodal Benefit for Temporally Interrupted Speech

    PubMed Central

    Oh, Soo Hee; Donaldson, Gail S.; Kong, Ying-Yee

    2016-01-01

    Objectives Previous studies have documented the benefits of bimodal hearing as compared with a CI alone, but most have focused on the importance of bottom-up, low-frequency cues. The purpose of the present study was to evaluate the role of top-down processing in bimodal hearing by measuring the effect of sentence context on bimodal benefit for temporally interrupted sentences. It was hypothesized that low-frequency acoustic cues would facilitate the use of contextual information in the interrupted sentences, resulting in greater bimodal benefit for the higher context (CUNY) sentences than for the lower context (IEEE) sentences. Design Young normal-hearing listeners were tested in simulated bimodal listening conditions in which noise band vocoded sentences were presented to one ear with or without low-pass (LP) filtered speech or LP harmonic complexes (LPHCs) presented to the contralateral ear. Speech recognition scores were measured in three listening conditions: vocoder-alone, vocoder combined with LP speech, and vocoder combined with LPHCs. Temporally interrupted versions of the CUNY and IEEE sentences were used to assess listeners’ ability to fill in missing segments of speech by using top-down linguistic processing. Sentences were square-wave gated at a rate of 5 Hz with a 50 percent duty cycle. Three vocoder channel conditions were tested for each type of sentence (8, 12, and 16 channels for CUNY; 12, 16, and 32 channels for IEEE) and bimodal benefit was compared for similar amounts of spectral degradation (matched-channel comparisons) and similar ranges of baseline performance. Two gain measures, percentage-point gain and normalized gain, were examined. Results Significant effects of context on bimodal benefit were observed when LP speech was presented to the residual-hearing ear. For the matched-channel comparisons, CUNY sentences showed significantly higher normalized gains than IEEE sentences for both the 12-channel (20 points higher) and 16-channel (18

  7. Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

    NASA Astrophysics Data System (ADS)

    Blume, T.; Zehe, E.; Bronstert, A.

    2009-07-01

    Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self

  8. Acoustic particle separation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. (Inventor)

    1985-01-01

    A method is described which uses acoustic energy to separate particles of different sizes, densities, or the like. The method includes applying acoustic energy resonant to a chamber containing a liquid of gaseous medium to set up a standing wave pattern that includes a force potential well wherein particles within the well are urged towards the center, or position of minimum force potential. A group of particles to be separated is placed in the chamber, while a non-acoustic force such as gravity is applied, so that the particles separate with the larger or denser particles moving away from the center of the well to a position near its edge and progressively smaller lighter particles moving progressively closer to the center of the well. Particles are removed from different positions within the well, so that particles are separated according to the positions they occupy in the well.

  9. TEMPORAL AND SPATIAL PATTERNS OF METHANE EMISSIONS FROM A RESERVOIR DRAINING AN AGRICULTURAL WATERSHED (abstract)

    EPA Science Inventory

    We used multiple approaches to characterize temporal and spatial patterns in methane (CH4) emissions from a mid-latitude reservoir (William H. Harsha Lake, Ohio, USA) draining an agricultural watershed. Weekly to monthly monitoring at six sites in the reservoir during a 13 month...

  10. Trackline and point detection probabilities for acoustic surveys of Cuvier's and Blainville's beaked whales.

    PubMed

    Barlow, Jay; Tyack, Peter L; Johnson, Mark P; Baird, Robin W; Schorr, Gregory S; Andrews, Russel D; Aguilar de Soto, Natacha

    2013-09-01

    Acoustic survey methods can be used to estimate density and abundance using sounds produced by cetaceans and detected using hydrophones if the probability of detection can be estimated. For passive acoustic surveys, probability of detection at zero horizontal distance from a sensor, commonly called g(0), depends on the temporal patterns of vocalizations. Methods to estimate g(0) are developed based on the assumption that a beaked whale will be detected if it is producing regular echolocation clicks directly under or above a hydrophone. Data from acoustic recording tags placed on two species of beaked whales (Cuvier's beaked whale-Ziphius cavirostris and Blainville's beaked whale-Mesoplodon densirostris) are used to directly estimate the percentage of time they produce echolocation clicks. A model of vocal behavior for these species as a function of their diving behavior is applied to other types of dive data (from time-depth recorders and time-depth-transmitting satellite tags) to indirectly determine g(0) in other locations for low ambient noise conditions. Estimates of g(0) for a single instant in time are 0.28 [standard deviation (s.d.) = 0.05] for Cuvier's beaked whale and 0.19 (s.d. = 0.01) for Blainville's beaked whale.

  11. Acoustic reciprocity: An extension to spherical harmonics domain.

    PubMed

    Samarasinghe, Prasanga; Abhayapala, Thushara D; Kellermann, Walter

    2017-10-01

    Acoustic reciprocity is a fundamental property of acoustic wavefields that is commonly used to simplify the measurement process of many practical applications. Traditionally, the reciprocity theorem is defined between a monopole point source and a point receiver. Intuitively, it must apply to more complex transducers than monopoles. In this paper, the authors formulate the acoustic reciprocity theory in the spherical harmonics domain for directional sources and directional receivers with higher order directivity patterns.

  12. Hits to the left, flops to the right: different emotions during listening to music are reflected in cortical lateralisation patterns.

    PubMed

    Altenmüller, Eckart; Schürmann, Kristian; Lim, Vanessa K; Parlitz, Dietrich

    2002-01-01

    In order to investigate the neurobiological mechanisms accompanying emotional valence judgements during listening to complex auditory stimuli, cortical direct current (dc)-electroencephalography (EEG) activation patterns were recorded from 16 right-handed students. Students listened to 160 short sequences taken from the repertoires of jazz, rock-pop, classical music and environmental sounds (each n=40). Emotional valence of the perceived stimuli were rated on a 5-step scale after each sequence. Brain activation patterns during listening revealed widespread bilateral fronto-temporal activation, but a highly significant lateralisation effect: positive emotional attributions were accompanied by an increase in left temporal activation, negative by a more bilateral pattern with preponderance of the right fronto-temporal cortex. Female participants demonstrated greater valence-related differences than males. No differences related to the four stimulus categories could be detected, suggesting that the actual auditory brain activation patterns were more determined by their affective emotional valence than by differences in acoustical "fine" structure. The results are consistent with a model of hemispheric specialisation concerning perceived positive or negative emotions proposed by Heilman [Journal of Neuropsychiatry and Clinical Neuroscience 9 (1997) 439].

  13. Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Zhang, Tonghua; Tadé, Moses O.

    2009-12-01

    The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.

  14. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.

    PubMed

    Zamaninezhad, Ladan; Hohmann, Volker; Büchner, Andreas; Schädler, Marc René; Jürgens, Tim

    2017-02-01

    This study introduces a speech intelligibility model for cochlear implant users with ipsilateral preserved acoustic hearing that aims at simulating the observed speech-in-noise intelligibility benefit when receiving simultaneous electric and acoustic stimulation (EA-benefit). The model simulates the auditory nerve spiking in response to electric and/or acoustic stimulation. The temporally and spatially integrated spiking patterns were used as the final internal representation of noisy speech. Speech reception thresholds (SRTs) in stationary noise were predicted for a sentence test using an automatic speech recognition framework. The model was employed to systematically investigate the effect of three physiologically relevant model factors on simulated SRTs: (1) the spatial spread of the electric field which co-varies with the number of electrically stimulated auditory nerves, (2) the "internal" noise simulating the deprivation of auditory system, and (3) the upper bound frequency limit of acoustic hearing. The model results show that the simulated SRTs increase monotonically with increasing spatial spread for fixed internal noise, and also increase with increasing the internal noise strength for a fixed spatial spread. The predicted EA-benefit does not follow such a systematic trend and depends on the specific combination of the model parameters. Beyond 300 Hz, the upper bound limit for preserved acoustic hearing is less influential on speech intelligibility of EA-listeners in stationary noise. The proposed model-predicted EA-benefits are within the range of EA-benefits shown by 18 out of 21 actual cochlear implant listeners with preserved acoustic hearing. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).

    PubMed

    Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian

    2017-10-11

    Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.

  16. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  17. Seasonal and diel patterns in cetacean use and foraging at a potential marine renewable energy site.

    PubMed

    Nuuttila, Hanna K; Bertelli, Chiara M; Mendzil, Anouska; Dearle, Nessa

    2018-04-01

    Marine renewable energy (MRE) developments often coincide with sites frequented by small cetaceans. To understand habitat use and assess potential impact from development, echolocation clicks were recorded with acoustic click loggers (C-PODs) in Swansea Bay, Wales (UK). General Additive Models (GAMs) were applied to assess the effects of covariates including month, hour, tidal range and temperature. Analysis of inter-click intervals allowed the identification of potential foraging events as well as patterns of presence and absence. Data revealed year-round presence of porpoise, with distinct seasonal and diel patterns. Occasional acoustic encounters of dolphins were also recorded. This study provides further evidence of the need for assessing temporal trends in cetacean presence and habitat use in areas considered for development. These findings could assist MRE companies to monitor and mitigate against disturbance from construction, operation and decommissioning activities by avoiding times when porpoise presence and foraging activity is highest in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  19. Rich do not rise early: spatio-temporal patterns in the mobility networks of different socio-economic classes

    PubMed Central

    Hurtado, Rafael G.; Floría, Luis Mario

    2016-01-01

    We analyse the urban mobility in the cities of Medellín and Manizales (Colombia). Each city is represented by six mobility networks, each one encoding the origin-destination trips performed by a subset of the population corresponding to a particular socio-economic status. The nodes of each network are the different urban locations whereas links account for the existence of a trip between two different areas of the city. We study the main structural properties of these mobility networks by focusing on their spatio-temporal patterns. Our goal is to relate these patterns with the partition into six socio-economic compartments of these two societies. Our results show that spatial and temporal patterns vary across these socio-economic groups. In particular, the two datasets show that as wealth increases the early-morning activity is delayed, the midday peak becomes smoother and the spatial distribution of trips becomes more localized. PMID:27853531

  20. Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Müller, Björn

    2018-01-01

    We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.

  1. Central pattern generator for vocalization: is there a vertebrate morphotype?

    PubMed

    Bass, Andrew H

    2014-10-01

    Animals that generate acoustic signals for social communication are faced with two essential tasks: generate a temporally precise signal and inform the auditory system about the occurrence of one's own sonic signal. Recent studies of sound producing fishes delineate a hindbrain network comprised of anatomically distinct compartments coding equally distinct neurophysiological properties that allow an organism to meet these behavioral demands. A set of neural characters comprising a vocal-sonic central pattern generator (CPG) morphotype is proposed for fishes and tetrapods that shares evolutionary developmental origins with pectoral appendage motor systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Non-Linear Acoustic Concealed Weapons Detector

    DTIC Science & Technology

    2006-05-01

    signature analysis 8 the interactions of the beams with concealed objects. The Khokhlov- Zabolotskaya-Kuznetsov ( KZK ) equation is the most widely used...Hamilton developed a finite difference method based on the KZK equation to model pulsed acoustic emissions from axial symmetric sources. Using a...College of William & Mary, we have developed a simulation code using the KZK equation to model non-linear acoustic beams and visualize beam patterns

  3. [Temporal pattern of walking on various training facilities under the conditions of the earth's and simulated lunar gravity].

    PubMed

    Panfilov, V E; Gurfinkel', V S

    2009-01-01

    Eight test-subjects participated in 120 treadmill tests (drive power of 10 and 85 kW) aimed to compare the walking patterns at 1 and reduced gravity. The temporal pattern of steps was noted to change significantly on the low-power treadmill. On the strength of convergence of calculated and experimental data the suggestion has been made that the leg transfer movement follows the pattern of spontaneous oscillations.

  4. Imaging of acoustic fields using optical feedback interferometry.

    PubMed

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry

    2014-12-01

    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.

  5. Soil water content evaluation considering time-invariant spatial pattern and space-variant temporal change

    NASA Astrophysics Data System (ADS)

    Hu, W.; Si, B. C.

    2013-10-01

    Soil water content (SWC) varies in space and time. The objective of this study was to evaluate soil water content distribution using a statistical model. The model divides spatial SWC series into time-invariant spatial patterns, space-invariant temporal changes, and space- and time-dependent redistribution terms. The redistribution term is responsible for the temporal changes in spatial patterns of SWC. An empirical orthogonal function was used to separate the total variations of redistribution terms into the sum of the product of spatial structures (EOFs) and temporally-varying coefficients (ECs). Model performance was evaluated using SWC data of near-surface (0-0.2 m) and root-zone (0-1.0 m) from a Canadian Prairie landscape. Three significant EOFs were identified for redistribution term for both soil layers. EOF1 dominated the variations of redistribution terms and it resulted in more changes (recharge or discharge) in SWC at wetter locations. Depth to CaCO3 layer and organic carbon were the two most important controlling factors of EOF1, and together, they explained over 80% of the variations in EOF1. Weak correlation existed between either EOF2 or EOF3 and the observed factors. A reasonable prediction of SWC distribution was obtained with this model using cross validation. The model performed better in the root zone than in the near surface, and it outperformed conventional EOF method in case soil moisture deviated from the average conditions.

  6. Statistical methods for investigating quiescence and other temporal seismicity patterns

    USGS Publications Warehouse

    Matthews, M.V.; Reasenberg, P.A.

    1988-01-01

    We propose a statistical model and a technique for objective recognition of one of the most commonly cited seismicity patterns:microearthquake quiescence. We use a Poisson process model for seismicity and define a process with quiescence as one with a particular type of piece-wise constant intensity function. From this model, we derive a statistic for testing stationarity against a 'quiescence' alternative. The large-sample null distribution of this statistic is approximated from simulated distributions of appropriate functionals applied to Brownian bridge processes. We point out the restrictiveness of the particular model we propose and of the quiescence idea in general. The fact that there are many point processes which have neither constant nor quiescent rate functions underscores the need to test for and describe nonuniformity thoroughly. We advocate the use of the quiescence test in conjunction with various other tests for nonuniformity and with graphical methods such as density estimation. ideally these methods may promote accurate description of temporal seismicity distributions and useful characterizations of interesting patterns. ?? 1988 Birkha??user Verlag.

  7. Acoustically regulated optical emission dynamics from quantum dot-like emission centers in GaN/InGaN nanowire heterostructures

    NASA Astrophysics Data System (ADS)

    Lazić, S.; Chernysheva, E.; Hernández-Mínguez, A.; Santos, P. V.; van der Meulen, H. P.

    2018-03-01

    We report on experimental studies of the effects induced by surface acoustic waves on the optical emission dynamics of GaN/InGaN nanowire quantum dots. We employ stroboscopic optical excitation with either time-integrated or time-resolved photoluminescence detection. In the absence of the acoustic wave, the emission spectra reveal signatures originated from the recombination of neutral exciton and biexciton confined in the probed nanowire quantum dot. When the nanowire is perturbed by the propagating acoustic wave, the embedded quantum dot is periodically strained and its excitonic transitions are modulated by the acousto-mechanical coupling. Depending on the recombination lifetime of the involved optical transitions, we can resolve acoustically driven radiative processes over time scales defined by the acoustic cycle. At high acoustic amplitudes, we also observe distortions in the transmitted acoustic waveform, which are reflected in the time-dependent spectral response of our sensor quantum dot. In addition, the correlated intensity oscillations observed during temporal decay of the exciton and biexciton emission suggest an effect of the acoustic piezoelectric fields on the quantum dot charge population. The present results are relevant for the dynamic spectral and temporal control of photon emission in III-nitride semiconductor heterostructures.

  8. Temporal patterns and forecast of dengue infection in Northeastern Thailand.

    PubMed

    Silawan, Tassanee; Singhasivanon, Pratap; Kaewkungwal, Jaranit; Nimmanitya, Suchitra; Suwonkerd, Wanapa

    2008-01-01

    This study aimed to determine temporal patterns and develop a forecasting model for dengue incidence in northeastern Thailand. Reported cases were obtained from the Thailand national surveillance system. The temporal patterns were displayed by plotting monthly rates, the seasonal-trend decomposition procedure based on loess (STL) was performed using R 2.2.1 software, and the trend was assessed using Poisson regression. The forecasting model for dengue incidence was performed in R 2.2.1 and Intercooled Stata 9.2 using the seasonal Autoregressive Integrated Moving Average (ARIMA) model. The model was evaluated by comparing predicted versus actual rates of dengue for 1996 to 2005 and used to forecast monthly rates during January to December 2006. The results reveal that epidemics occurred every two years, with approximately three years per epidemic, and that the next epidemic will take place in 2006 to 2008. It was found that if a month increased, the rate ratio for dengue infection decreased by a factor 0.9919 for overall region and 0.9776 to 0.9984 for individual provinces. The amplitude of the peak, which was evident in June or July, was 11.32 to 88.08 times greater than the rest of the year. The seasonal ARIMA (2, 1, 0) (0, 1, 1)12 model was model with the best fit for regionwide data of total dengue incidence whereas the models with the best fit varied by province. The forecasted regional monthly rates during January to December 2006 should range from 0.27 to 17.89 per 100,000 population. The peak for 2006 should be much higher than the peak for 2005. The highest peaks in 2006 should be in Loei, Buri Ram, Surin, Nakhon Phanom, and Ubon Ratchathani Provinces.

  9. Analysis of Spatio-Temporal Traffic Patterns Based on Pedestrian Trajectories

    NASA Astrophysics Data System (ADS)

    Busch, S.; Schindler, T.; Klinger, T.; Brenner, C.

    2016-06-01

    For driver assistance and autonomous driving systems, it is essential to predict the behaviour of other traffic participants. Usually, standard filter approaches are used to this end, however, in many cases, these are not sufficient. For example, pedestrians are able to change their speed or direction instantly. Also, there may be not enough observation data to determine the state of an object reliably, e.g. in case of occlusions. In those cases, it is very useful if a prior model exists, which suggests certain outcomes. For example, it is useful to know that pedestrians are usually crossing the road at a certain location and at certain times. This information can then be stored in a map which then can be used as a prior in scene analysis, or in practical terms to reduce the speed of a vehicle in advance in order to minimize critical situations. In this paper, we present an approach to derive such a spatio-temporal map automatically from the observed behaviour of traffic participants in everyday traffic situations. In our experiments, we use one stationary camera to observe a complex junction, where cars, public transportation and pedestrians interact. We concentrate on the pedestrians trajectories to map traffic patterns. In the first step, we extract trajectory segments from the video data. These segments are then clustered in order to derive a spatial model of the scene, in terms of a spatially embedded graph. In the second step, we analyse the temporal patterns of pedestrian movement on this graph. We are able to derive traffic light sequences as well as the timetables of nearby public transportation. To evaluate our approach, we used a 4 hour video sequence. We show that we are able to derive traffic light sequences as well as time tables of nearby public transportation.

  10. Drag Measurements of Porous Plate Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Wolter, John D.

    2005-01-01

    This paper presents the results of direct drag measurements on a variety of porous plate acoustic liners. The existing literature describes numerous studies of drag on porous walls with injection or suction, but relatively few of drag on porous plates with neither injection nor suction. Furthermore, the porosity of the porous plate in existing studies is much lower than typically used in acoustic liners. In the present work, the acoustic liners consisted of a perforated face sheet covering a bulk acoustic absorber material. Factors that were varied in the experiment were hole diameter, hole pattern, face sheet thickness, bulk material type, and size of the gap (if any) between the face sheet and the absorber material.

  11. Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Erin Hoffmann

    In this report, we study the correlation between thunderstorm activity and ionospheric gravity and acoustic waves in the low-latitude ionosphere. We use ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World- Wide Lightning Location Network (WWLLN). We find that ionospheric acoustic waves show a strong diurnal pattern in summer, peaking in the pre-midnight time period. However, the peak magnitude does not correspond to thunderstorm area, and the peak time is significantly after the peak in thunderstorm activity. Wintertime acoustic wave activity has no discernable pattern in these data. Themore » coverage area of ionospheric gravity waves in the summer was found to increase with increasing thunderstorm activity. Wintertime gravity wave activity has an observable diurnal pattern unrelated to thunderstorm activity. These findings show that while thunderstorms are not the only, or dominant source of ionospheric perturbations at low-latitudes, they do have an observable effect on gravity wave activity and could be influential in acoustic wave activity.« less

  12. Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines.

    PubMed

    Carvajal, Thaddeus M; Viacrusis, Katherine M; Hernandez, Lara Fides T; Ho, Howell T; Amalin, Divina M; Watanabe, Kozo

    2018-04-17

    Several studies have applied ecological factors such as meteorological variables to develop models and accurately predict the temporal pattern of dengue incidence or occurrence. With the vast amount of studies that investigated this premise, the modeling approaches differ from each study and only use a single statistical technique. It raises the question of whether which technique would be robust and reliable. Hence, our study aims to compare the predictive accuracy of the temporal pattern of Dengue incidence in Metropolitan Manila as influenced by meteorological factors from four modeling techniques, (a) General Additive Modeling, (b) Seasonal Autoregressive Integrated Moving Average with exogenous variables (c) Random Forest and (d) Gradient Boosting. Dengue incidence and meteorological data (flood, precipitation, temperature, southern oscillation index, relative humidity, wind speed and direction) of Metropolitan Manila from January 1, 2009 - December 31, 2013 were obtained from respective government agencies. Two types of datasets were used in the analysis; observed meteorological factors (MF) and its corresponding delayed or lagged effect (LG). After which, these datasets were subjected to the four modeling techniques. The predictive accuracy and variable importance of each modeling technique were calculated and evaluated. Among the statistical modeling techniques, Random Forest showed the best predictive accuracy. Moreover, the delayed or lag effects of the meteorological variables was shown to be the best dataset to use for such purpose. Thus, the model of Random Forest with delayed meteorological effects (RF-LG) was deemed the best among all assessed models. Relative humidity was shown to be the top-most important meteorological factor in the best model. The study exhibited that there are indeed different predictive outcomes generated from each statistical modeling technique and it further revealed that the Random forest model with delayed meteorological

  13. A descriptive analysis of temporal and spatial patterns of variability in Puget Sound oceanographic properties

    Treesearch

    Stephanie Moore; Nathan J. Mantua; Jan A. Newton; Mitsuhiro Kawase; Mark J. Warner; Jonathan P. Kellogg

    2008-01-01

    Temporal and spatial patterns of variability in Puget Sound's oceanographic properties are determined using continuous vertical profile data from two long-term monitoring programs; monthly observations at 16 stations from 1993 to 2002, and biannual observations at 40 stations from 1998 to 2003. Climatological monthly means of temperature, salinity, and density...

  14. DATA-DRIVEN DISCOVERY OF TEMPORAL AND GEOSPATIAL PATTERNS OF DISEASE TRANSMISSION: WEST NILE VIRUS IN MARYLAND

    EPA Science Inventory

    The necessity of rapid response to a developing disease outbreak often precludes systematic investigation of the mechanisms and patterns (temporal and geospatial) of spread. In order to deploy the most rapid response possible, we must exploit existing data to its maximum extent....

  15. Fire, native species, and soil resource interactions influence the spatio-temporal invasion pattern of Bromus tectorum

    Treesearch

    Michael J. Gundale; Steve Sutherland; Thomas H. DeLuca; others

    2008-01-01

    Bromus tectorum (cheatgrass) is an invasive annual that occupies perennial grass and shrub communities throughout the western United States. Bromus tectorum exhibits an intriguing spatio-temporal pattern of invasion in low elevation ponderosa pine Pinus ponderosa/bunchgrass communities in western Montana where it...

  16. Hierarchical organization in the temporal structure of infant-direct speech and song.

    PubMed

    Falk, Simone; Kello, Christopher T

    2017-06-01

    Caregivers alter the temporal structure of their utterances when talking and singing to infants compared with adult communication. The present study tested whether temporal variability in infant-directed registers serves to emphasize the hierarchical temporal structure of speech. Fifteen German-speaking mothers sang a play song and told a story to their 6-months-old infants, or to an adult. Recordings were analyzed using a recently developed method that determines the degree of nested clustering of temporal events in speech. Events were defined as peaks in the amplitude envelope, and clusters of various sizes related to periods of acoustic speech energy at varying timescales. Infant-directed speech and song clearly showed greater event clustering compared with adult-directed registers, at multiple timescales of hundreds of milliseconds to tens of seconds. We discuss the relation of this newly discovered acoustic property to temporal variability in linguistic units and its potential implications for parent-infant communication and infants learning the hierarchical structures of speech and language. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network

    NASA Astrophysics Data System (ADS)

    Wei, Qi; Tian, Ye; Zuo, Shu-Yu; Cheng, Ying; Liu, Xiao-Jun

    2017-03-01

    Acoustic topological states support sound propagation along the boundary in a one-way direction with inherent robustness against defects and disorders, leading to the revolution of the manipulation on acoustic waves. A variety of acoustic topological states relying on circulating fluid, chiral coupling, or temporal modulation have been proposed theoretically. However, experimental demonstration has so far remained a significant challenge, due to the critical limitations such as structural complexity and high losses. Here, we experimentally demonstrate an acoustic anomalous Floquet topological insulator in a waveguide network. The acoustic gapless edge states can be found in the band gap when the waveguides are strongly coupled. The scheme features simple structure and high-energy throughput, leading to the experimental demonstration of efficient and robust topologically protected sound propagation along the boundary. The proposal may offer a unique, promising application for design of acoustic devices in acoustic guiding, switching, isolating, filtering, etc.

  18. Passive acoustic monitoring of bed load for fluvial applications

    USDA-ARS?s Scientific Manuscript database

    The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...

  19. Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.

    PubMed

    de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca

    2018-05-01

    Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.

  20. Comparison between psycho-acoustics and physio-acoustic measurement to determine optimum reverberation time of pentatonic angklung music concert hall

    NASA Astrophysics Data System (ADS)

    Sudarsono, Anugrah S.; Merthayasa, I. G. N.; Suprijanto

    2015-09-01

    This research tried to compare psycho-acoustics and Physio-acoustic measurement to find the optimum reverberation time of soundfield from angklung music. Psycho-acoustic measurement was conducted using a paired comparison method and Physio-acoustic measurement was conducted with EEG Measurement on T3, T4, FP1, and FP2 measurement points. EEG measurement was conducted with 5 persons. Pentatonic angklung music was used as a stimulus with reverberation time variation. The variation was between 0.8 s - 1.6 s with 0.2 s step. EEG signal was analysed using a Power Spectral Density method on Alpha Wave, High Alpha Wave, and Theta Wave. Psycho-acoustic measurement on 50 persons showed that reverberation time preference of pentatonic angklung music was 1.2 second. The result was similar to Theta Wave measurement on FP2 measurement point. High Alpha wave on T4 measurement gave different results, but had similar patterns with psycho-acoustic measurement

  1. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  2. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron.

    PubMed

    Hayden, Todd A; Holbrook, Christopher M; Fielder, David G; Vandergoot, Christopher S; Bergstedt, Roger A; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  3. Impedance matched joined drill pipe for improved acoustic transmission

    DOEpatents

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  4. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  5. Temporal separation of two fin whale call types across the eastern North Pacific.

    PubMed

    Sirović, Ana; Williams, Lauren N; Kerosky, Sara M; Wiggins, Sean M; Hildebrand, John A

    2013-01-01

    Fin whales ( Balaenoptera physalus ) produce a variety of low-frequency, short-duration, frequency-modulated calls. The differences in temporal patterns between two fin whale call types are described from long-term passive acoustic data collected intermittently between 2005 and 2011 at three locations across the eastern North Pacific: the Bering Sea, off Southern California, and in Canal de Ballenas in the northern Gulf of California. Fin whale calls were detected at all sites year-round, during all periods with recordings. At all three locations, 40-Hz calls peaked in June, preceding a peak in 20-Hz calls by 3-5 months. Monitoring both call types may provide a more accurate insight into the seasonal presence of fin whales across the eastern North Pacific than can be obtained from a single call type. The 40-Hz call may be associated with a foraging function, and temporal separation between 40- and 20-Hz calls may indicate the separation between predominately feeding behavior and other social interactions.

  6. Transmission and scattering of acoustic energy in turbulent flows

    NASA Astrophysics Data System (ADS)

    Gaitonde, Datta; Unnikrishnan, S.

    2017-11-01

    Sound scattering and transmission in turbulent jets are explored through a control volume analysis of a Large-Eddy Simulation. The fluctuating momentum flux across any control surface is first split into its rotational turbulent ((ρu)'H) and the irrotational-isentropic acoustic ((ρu)'A) components using momentum potential theory (MPT). The former has low spatio-temporal coherence, while the latter exhibits a persistent wavepacket form. The energy variable, specifically, total fluctuating enthalpy, is also split into its turbulent and acoustic modes, HH' and HA' respectively. Scattering of acoustic energy is then (ρu)'HHA' , and transmission is (ρu)'AHA' . This facilitates a quantitative comparison of scattering versus transmission in the presence of acoustic energy sources, also obtained from MPT, in any turbulent scenario. The wavepacket converts stochastic sound sources into coherent sound radiation. Turbulent eddies are not only sources of sound, but also play a strong role in scattering, particularly near the lipline. The net acoustic flux from the jet is the transport of HA' by the wavepacket, whose axisymmetric and higher azimuthal modes contribute to downstream and sideline radiation respectively.

  7. Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice.

    PubMed

    Bedrosian, Tracy A; Herring, Kamillya L; Weil, Zachary M; Nelson, Randy J

    2011-07-12

    Both normal aging and dementia are associated with dysregulation of the biological clock, which contributes to disrupted circadian organization of physiology and behavior. Diminished circadian organization in conjunction with the loss of cholinergic input to the cortex likely contributes to impaired cognition and behavior. One especially notable and relatively common circadian disturbance among the aged is "sundowning syndrome," which is characterized by exacerbated anxiety, agitation, locomotor activity, and delirium during the hours before bedtime. Sundowning has been reported in both dementia patients and cognitively intact elderly individuals living in institutions; however, little is known about temporal patterns in anxiety and agitation, and the neurobiological basis of these rhythms remains unspecified. In the present study, we explored the diurnal pattern of anxiety-like behavior in aged and amyloid precursor protein (APP) transgenic mice. We then attempted to treat the observed behavioral disturbances in the aged mice using chronic nightly melatonin treatment. Finally, we tested the hypothesis that time-of-day differences in acetylcholinesterase and choline acetyltransferase expression and general neuronal activation (i.e., c-Fos expression) coincide with the behavioral symptoms. Our results show a temporal pattern of anxiety-like behavior that emerges in elderly mice. This behavioral pattern coincides with elevated locomotor activity relative to adult mice near the end of the dark phase, and with time-dependent changes in basal forebrain acetylcholinesterase expression. Transgenic APP mice show a similar behavioral phenomenon that is not observed among age-matched wild-type mice. These results may have useful applications to the study and treatment of age- and dementia-related circadian behavioral disturbances, namely, sundowning syndrome.

  8. Frequency and time pattern differences in acoustic signals produced by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) in stored maize

    USDA-ARS?s Scientific Manuscript database

    The acoustic signals emitted by the last stage larval instars and adults of Prostephanus truncatus and Sitophilus zeamais in stored maize were investigated. Analyses were performed to identify brief, 1-10-ms broadband sound impulses of five different frequency patterns produced by larvae and adults,...

  9. T-pattern analysis for the study of temporal structure of animal and human behavior: a comprehensive review.

    PubMed

    Casarrubea, M; Jonsson, G K; Faulisi, F; Sorbera, F; Di Giovanni, G; Benigno, A; Crescimanno, G; Magnusson, M S

    2015-01-15

    A basic tenet in the realm of modern behavioral sciences is that behavior consists of patterns in time. For this reason, investigations of behavior deal with sequences that are not easily perceivable by the unaided observer. This problem calls for improved means of detection, data handling and analysis. This review focuses on the analysis of the temporal structure of behavior carried out by means of a multivariate approach known as T-pattern analysis. Using this technique, recurring sequences of behavioral events, usually hard to detect, can be unveiled and carefully described. T-pattern analysis has been successfully applied in the study of various aspects of human or animal behavior such as behavioral modifications in neuro-psychiatric diseases, route-tracing stereotypy in mice, interaction between human subjects and animal or artificial agents, hormonal-behavioral interactions, patterns of behavior associated with emesis and, in our laboratories, exploration and anxiety-related behaviors in rodents. After describing the theory and concepts of T-pattern analysis, this review will focus on the application of the analysis to the study of the temporal characteristics of behavior in different species from rodents to human beings. This work could represent a useful background for researchers who intend to employ such a refined multivariate approach to the study of behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Gravity enhanced acoustic levitation method and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.; Granett, D. (Inventor)

    1985-01-01

    An acoustic levitation system is provided for acoustically levitating an object by applying a single frequency from a transducer into a resonant chamber surrounding the object. The chamber includes a stabilizer location along its height, where the side walls of the chamber are angled so they converge in an upward direction. When an acoustic standing wave pattern is applied between the top and bottom of the chamber, a levitation surface within the stabilizer does not lie on a horizontal plane, but instead is curved with a lowermost portion near the vertical axis of the chamber. As a result, an acoustically levitated object is urged by gravity towards the lowermost location on the levitation surface, so the object is kept away from the side walls of the chamber.

  11. Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data

    PubMed Central

    Zhong, Chen; Batty, Michael; Manley, Ed; Wang, Jiaqiu; Wang, Zijia; Chen, Feng; Schmitt, Gerhard

    2016-01-01

    To discover regularities in human mobility is of fundamental importance to our understanding of urban dynamics, and essential to city and transport planning, urban management and policymaking. Previous research has revealed universal regularities at mainly aggregated spatio-temporal scales but when we zoom into finer scales, considerable heterogeneity and diversity is observed instead. The fundamental question we address in this paper is at what scales are the regularities we detect stable, explicable, and sustainable. This paper thus proposes a basic measure of variability to assess the stability of such regularities focusing mainly on changes over a range of temporal scales. We demonstrate this by comparing regularities in the urban mobility patterns in three world cities, namely London, Singapore and Beijing using one-week of smart-card data. The results show that variations in regularity scale as non-linear functions of the temporal resolution, which we measure over a scale from 1 minute to 24 hours thus reflecting the diurnal cycle of human mobility. A particularly dramatic increase in variability occurs up to the temporal scale of about 15 minutes in all three cities and this implies that limits exist when we look forward or backward with respect to making short-term predictions. The degree of regularity varies in fact from city to city with Beijing and Singapore showing higher regularity in comparison to London across all temporal scales. A detailed discussion is provided, which relates the analysis to various characteristics of the three cities. In summary, this work contributes to a deeper understanding of regularities in patterns of transit use from variations in volumes of travellers entering subway stations, it establishes a generic analytical framework for comparative studies using urban mobility data, and it provides key points for the management of variability by policy-makers intent on for making the travel experience more amenable. PMID:26872333

  12. Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data.

    PubMed

    Zhong, Chen; Batty, Michael; Manley, Ed; Wang, Jiaqiu; Wang, Zijia; Chen, Feng; Schmitt, Gerhard

    2016-01-01

    To discover regularities in human mobility is of fundamental importance to our understanding of urban dynamics, and essential to city and transport planning, urban management and policymaking. Previous research has revealed universal regularities at mainly aggregated spatio-temporal scales but when we zoom into finer scales, considerable heterogeneity and diversity is observed instead. The fundamental question we address in this paper is at what scales are the regularities we detect stable, explicable, and sustainable. This paper thus proposes a basic measure of variability to assess the stability of such regularities focusing mainly on changes over a range of temporal scales. We demonstrate this by comparing regularities in the urban mobility patterns in three world cities, namely London, Singapore and Beijing using one-week of smart-card data. The results show that variations in regularity scale as non-linear functions of the temporal resolution, which we measure over a scale from 1 minute to 24 hours thus reflecting the diurnal cycle of human mobility. A particularly dramatic increase in variability occurs up to the temporal scale of about 15 minutes in all three cities and this implies that limits exist when we look forward or backward with respect to making short-term predictions. The degree of regularity varies in fact from city to city with Beijing and Singapore showing higher regularity in comparison to London across all temporal scales. A detailed discussion is provided, which relates the analysis to various characteristics of the three cities. In summary, this work contributes to a deeper understanding of regularities in patterns of transit use from variations in volumes of travellers entering subway stations, it establishes a generic analytical framework for comparative studies using urban mobility data, and it provides key points for the management of variability by policy-makers intent on for making the travel experience more amenable.

  13. Quantifying positional and temporal movement patterns in professional rugby union using global positioning system.

    PubMed

    Jones, Marc R; West, Daniel J; Crewther, Blair T; Cook, Christian J; Kilduff, Liam P

    2015-01-01

    This study assessed the positional and temporal movement patterns of professional rugby union players during competition using global positioning system (GPS) units. GPS data were collected from 33 professional rugby players from 13 matches throughout the 2012-2013 season sampling at 10 Hz. Players wore GPS units from which information on distances, velocities, accelerations, exertion index, player load, contacts, sprinting and repeated high-intensity efforts (RHIE) were derived. Data files from players who played over 60 min (n = 112) were separated into five positional groups (tight and loose forwards; half, inside and outside backs) for match analysis. A further comparison of temporal changes in movement patterns was also performed using data files from those who played full games (n = 71). Significant positional differences were found for movement characteristics during performance (P < 0.05). Results demonstrate that inside and outside backs have greatest high-speed running demands; however, RHIE and contact demands are greatest in loose forwards during match play. Temporal analysis of all players displayed significant differences in player load, cruising and striding between halves, with measures of low- and high-intensity movement and acceleration/deceleration significantly declining throughout each half. Our data demonstrate significant positional differences for a number of key movement variables which provide a greater understanding of positional requirements of performance. This in turn may be used to develop progressive position-specific drills that elicit specific adaptations and provide objective measures of preparedness. Knowledge of performance changes may be used when developing drills and should be considered when monitoring and evaluating performance.

  14. Temporal changes of diffusion patterns in mild traumatic brain injury via group-based semi-blind source separation.

    PubMed

    Jing, Min; McGinnity, T Martin; Coleman, Sonya; Fuchs, Armin; Kelso, J A Scott

    2015-07-01

    Despite the emerging applications of diffusion tensor imaging (DTI) to mild traumatic brain injury (mTBI), very few investigations have been reported related to temporal changes in quantitative diffusion patterns, which may help to assess recovery from head injury and the long term impact associated with cognitive and behavioral impairments caused by mTBI. Most existing methods are focused on detection of mTBI affected regions rather than quantification of temporal changes following head injury. Furthermore, most methods rely on large data samples as required for statistical analysis and, thus, are less suitable for individual case studies. In this paper, we introduce an approach based on spatial group independent component analysis (GICA), in which the diffusion scalar maps from an individual mTBI subject and the average of a group of controls are arranged according to their data collection time points. In addition, we propose a constrained GICA (CGICA) model by introducing the prior information into the GICA decomposition process, thus taking available knowledge of mTBI into account. The proposed method is evaluated based on DTI data collected from American football players including eight controls and three mTBI subjects (at three time points post injury). The results show that common spatial patterns within the diffusion maps were extracted as spatially independent components (ICs) by GICA. The temporal change of diffusion patterns during recovery is revealed by the time course of the selected IC. The results also demonstrate that the temporal change can be further influenced by incorporating the prior knowledge of mTBI (if available) based on the proposed CGICA model. Although a small sample of mTBI subjects is studied, as a proof of concept, the preliminary results provide promising insight for applications of DTI to study recovery from mTBI and may have potential for individual case studies in practice.

  15. Temporal Integration of Auditory Information Is Invariant to Temporal Grouping Cues1,2,3

    PubMed Central

    Tsunada, Joji

    2015-01-01

    Abstract Auditory perception depends on the temporal structure of incoming acoustic stimuli. Here, we examined whether a temporal manipulation that affects the perceptual grouping also affects the time dependence of decisions regarding those stimuli. We designed a novel discrimination task that required human listeners to decide whether a sequence of tone bursts was increasing or decreasing in frequency. We manipulated temporal perceptual-grouping cues by changing the time interval between the tone bursts, which led to listeners hearing the sequences as a single sound for short intervals or discrete sounds for longer intervals. Despite these strong perceptual differences, this manipulation did not affect the efficiency of how auditory information was integrated over time to form a decision. Instead, the grouping manipulation affected subjects’ speed−accuracy trade-offs. These results indicate that the temporal dynamics of evidence accumulation for auditory perceptual decisions can be invariant to manipulations that affect the perceptual grouping of the evidence. PMID:26464975

  16. Reconstructing spatial and temporal patterns of paleoglaciation along the Tian Shan

    NASA Astrophysics Data System (ADS)

    Harbor, J.; Stroeven, A. P.; Beel, C.; Blomdin, R.; Caffee, M. W.; Chen, Y.; Codilean, A.; Gribenski, N.; Hattestrand, C.; Heyman, J.; Ivanov, M.; Kassab, C.; Li, Y.; Lifton, N. A.; Liu, G.; Petrakov, D.; Rogozhina, I.; Usubaliev, R.

    2012-12-01

    Testing and calibrating global climate models require well-constrained information on past climates of key regions around the world. Particularly important are transitional regions that provide a sensitive record of past climate change. Central Asia is an extreme continental location with glaciers and rivers that respond sensitively to temporal variations in the dominance of several major climate systems. As an international team initiative, we are reconstructing the glacial history of the Kyrgyz and Chinese Tian Shan, based on mapping and dating of key localities along the range. Remote-sensing-based geomorphological mapping, building on previous maps produced by Kyrgyz, Russian, Chinese and German scholars, is being augmented with field observations of glacial geomorphology and the maximum distribution of erratics. We are using cosmogenic nuclide (CN) 10Be dating of moraines and other landforms that constrain the former maximum extents of glaciers. Study sites include the Ala-Archa, Ak-Shyrak and Inylchek/Sary-Dzaz areas in Kyrgyzstan and the Urumqi valley (as well as its upland and southern slopes), and the Tumur and Bogeda peak areas in China. Comparing consistently dated glacial histories along and across the range will allow us to examine potential shifts in the dominance patterns of climate systems over time in Central Asia. We are also comparing ages based on CN with optically stimulated luminescence (OSL) and electron spin resonance (ESR) dates. The final stage of this project will use intermediate complexity glacier flow models to examine paleoclimatic implications of the observed spatial and temporal patterns of glacier changes across Central Asia and eastern Tibet, focused in particular on the last glacial cycle.

  17. Temporal pattern of toxicity in runoff from the Tijuana River Watershed.

    PubMed

    Gersberg, Richard M; Daft, Daniel; Yorkey, Darryl

    2004-02-01

    Samples were collected from the Tijuana River under both dry weather (baseflow) conditions and during wet weather, and tested for toxicity using Ceriodaphnia dubia tests. Toxicity of waters in the Tijuana River was generally low under baseflow conditions, but increased markedly during high flow runoff events. In order to determine the temporal pattern of toxicity during individual rain events, sequential grab samples were collected using an autosampler at 5-7 h intervals after the start of the rain event, and tested for acute toxicity. In all cases, peak toxicity values (ranging from 2.8 to 5.8TU) for each storm occurred within the first 1-2 h of initiation of the rain event, and were statistically higher (using the 95% CL) for each of the pre-storm base flow values. However, there was no statistically significant correlation (p<0.05) between flow rate and toxicity when all storm data was pooled. Additionally, we used toxicity identification evaluation (TIE) procedures to attempt to identify the classes of chemicals that account for this early storm toxicity. Solid phase extraction was the only treatment that showed consistent and significant (P<0.05) removal of toxicity. These TIEs, conducted on the most toxic sample of the river's flow during runoff events, suggest that non-polar organics may be responsible for such toxicity. The temporal pattern of toxicity, both during a given storm event and seasonally, indicates that wash-off from the watershed by rainfall may deplete the supply of toxicity available for wash-off in subsequent events, so that a clearly consistent relationship between flow and toxicity was not evident.

  18. Decision making and preferences for acoustic signals in choice situations by female crickets.

    PubMed

    Gabel, Eileen; Kuntze, Janine; Hennig, R Matthias

    2015-08-01

    Multiple attributes usually have to be assessed when choosing a mate. Efficient choice of the best mate is complicated if the available cues are not positively correlated, as is often the case during acoustic communication. Because of varying distances of signalers, a female may be confronted with signals of diverse quality at different intensities. Here, we examined how available cues are weighted for a decision by female crickets. Two songs with different temporal patterns and/or sound intensities were presented in a choice paradigm and compared with female responses from a no-choice test. When both patterns were presented at equal intensity, preference functions became wider in choice situations compared with a no-choice paradigm. When the stimuli in two-choice tests were presented at different intensities, this effect was counteracted as preference functions became narrower compared with choice tests using stimuli of equal intensity. The weighting of intensity differences depended on pattern quality and was therefore non-linear. A simple computational model based on pattern and intensity cues reliably predicted female decisions. A comparison of processing schemes suggested that the computations for pattern recognition and directionality are performed in a network with parallel topology. However, the computational flow of information corresponded to serial processing. © 2015. Published by The Company of Biologists Ltd.

  19. Temporal Differences in MicroRNA Expression Patterns in Astrocytes and Neurons after Ischemic Injury

    PubMed Central

    Ziu, Mateo; Fletcher, Lauren; Rana, Shushan; Jimenez, David F.; Digicaylioglu, Murat

    2011-01-01

    MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that modulate gene translation. Their expression is altered in many central nervous system (CNS) injuries suggesting a role in the cellular response to stress. Current studies in brain tissue have not yet described the cell-specific temporal miRNA expression patterns following ischemic injury. In this study, we analyzed the expression alterations of a set of miRNAs in neurons and astrocytes subjected to 60 minutes of ischemia and collected at different time-points following this injury. To mimic ischemic conditions and reperfusion in vitro, cortical primary neuronal and astrocytic cultures prepared from fetal rats were first placed in oxygen and glucose deprived (OGD) medium for 60 minutes, followed by their transfer into normoxic pre-conditioned medium. Total RNA was extracted at different time-points after the termination of the ischemic insult and the expression levels of miRNAs were measured. In neurons exposed to OGD, expression of miR-29b was upregulated 2-fold within 6 h and up to 4-fold at 24 h post-OGD, whereas induction of miR-21 was upregulated 2-fold after 24 h when compared to expression in neurons under normoxic conditions. In contrast, in astrocytes, miR-29b and miR-21 were upregulated only after 12 h. MiR-30b, 107, and 137 showed expression alteration in astrocytes, but not in neurons. Furthermore, we show that expression of miR-29b was significantly decreased in neurons exposed to Insulin-Like Growth Factor I (IGF-I), a well documented neuroprotectant in ischemic models. Our study indicates that miRNAs expression is altered in neurons and astrocytes after ischemic injury. Furthermore, we found that following OGD, specific miRNAs have unique cell-specific temporal expression patterns in CNS. Therefore the specific role of each miRNA in different intracellular processes in ischemic brain and the relevance of their temporal and spatial expression patterns warrant further investigation that

  20. Spatio-temporal patterns of key exploited marine species in the Northwestern Mediterranean Sea.

    PubMed

    Morfin, Marie; Fromentin, Jean-Marc; Jadaud, Angélique; Bez, Nicolas

    2012-01-01

    This study analyzes the temporal variability/stability of the spatial distributions of key exploited species in the Gulf of Lions (Northwestern Mediterranean Sea). To do so, we analyzed data from the MEDITS bottom-trawl scientific surveys from 1994 to 2010 at 66 fixed stations and selected 12 key exploited species. We proposed a geostatistical approach to handle zero-inflated and non-stationary distributions and to test for the temporal stability of the spatial structures. Empirical Orthogonal Functions and other descriptors were then applied to investigate the temporal persistence and the characteristics of the spatial patterns. The spatial structure of the distribution (i.e. the pattern of spatial autocorrelation) of the 12 key species studied remained highly stable over the time period sampled. The spatial distributions of all species obtained through kriging also appeared to be stable over time, while each species displayed a specific spatial distribution. Furthermore, adults were generally more densely concentrated than juveniles and occupied areas included in the distribution of juveniles. Despite the strong persistence of spatial distributions, we also observed that the area occupied by each species was correlated to its abundance: the more abundant the species, the larger the occupation area. Such a result tends to support MacCall's basin theory, according to which density-dependence responses would drive the expansion of those 12 key species in the Gulf of Lions. Further analyses showed that these species never saturated their habitats, suggesting that they are below their carrying capacity; an assumption in agreement with the overexploitation of several of these species. Finally, the stability of their spatial distributions over time and their potential ability to diffuse outside their main habitats give support to Marine Protected Areas as a potential pertinent management tool.

  1. Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron

    PubMed Central

    Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913

  2. Temporal lobe sulcal pattern and the bony impressions in the middle cranial fossa: the case of the el Sidrón (Spain) neandertal sample.

    PubMed

    Rosas, Antonio; Peña-Melián, Angel; García-Tabernero, Antonio; Bastir, Markus; De La Rasilla, Marco

    2014-12-01

    Correspondence between temporal lobe sulcal pattern and bony impressions on the middle cranial fossae (MCF) was analyzed. MCF bone remains (SD-359, SD-315, and SD-1219) from the El Sidrón (Spain) neandertal site are analyzed in this context. Direct comparison of the soft and hard tissues from the same individual was studied by means of: 1) dissection of two human heads; 2) optic (white light) surface scans; 3) computed tomography and magnetic resonance of the same head. The inferior temporal sulcus and gyrus are the features most strongly influencing MCF bone surface. The Superior temporal sulcus and middle temporal and fusiform gyri also leave imprints. Temporal lobe form differs between Homo sapiens and neandertals. A wider and larger post-arcuate fossa (posterior limit of Brodmann area 20 and the anterior portion of area 37) is present in modern humans as compared to neandertals. However other traits of the MCF surface are similar in these two large-brained human groups. A conspicuous variation is appreciated in the more vertical location of the inferior temporal gyrus in H. sapiens. In parallel, structures of the lower surface of the temporal lobe are more sagittally orientated. Grooves accommodating the fusiform and the lower temporal sulci become grossly parallel to the temporal squama. These differences can be understood within the context of a supero-lateral deployment of the lobe in H. sapiens, a pattern previously identified (Bastir et al., Nat Commun 2 (2011) 588-595). Regarding dural sinus pattern, a higher incidence of petrosquamous sinus is detected in neandertal samples. © 2014 Wiley Periodicals, Inc.

  3. Resection planning for robotic acoustic neuroma surgery

    NASA Astrophysics Data System (ADS)

    McBrayer, Kepra L.; Wanna, George B.; Dawant, Benoit M.; Balachandran, Ramya; Labadie, Robert F.; Noble, Jack H.

    2016-03-01

    Acoustic neuroma surgery is a procedure in which a benign mass is removed from the Internal Auditory Canal (IAC). Currently this surgical procedure requires manual drilling of the temporal bone followed by exposure and removal of the acoustic neuroma. This procedure is physically and mentally taxing to the surgeon. Our group is working to develop an Acoustic Neuroma Surgery Robot (ANSR) to perform the initial drilling procedure. Planning the ANSR's drilling region using pre-operative CT requires expertise and around 35 minutes' time. We propose an approach for automatically producing a resection plan for the ANSR that would avoid damage to sensitive ear structures and require minimal editing by the surgeon. We first compute an atlas-based segmentation of the mastoid section of the temporal bone, refine it based on the position of anatomical landmarks, and apply a safety margin to the result to produce the automatic resection plan. In experiments with CTs from 9 subjects, our automated process resulted in a resection plan that was verified to be safe in every case. Approximately 2 minutes were required in each case for the surgeon to verify and edit the plan to permit functional access to the IAC. We measured a mean Dice coefficient of 0.99 and surface error of 0.08 mm between the final and automatically proposed plans. These preliminary results indicate that our approach is a viable method for resection planning for the ANSR and drastically reduces the surgeon's planning effort.

  4. The role of temporal call structure in species recognition of male Allobates talamancae (Cope, 1875): (Anura: Dendrobatidae).

    PubMed

    Kollarits, Dennis; Wappl, Christian; Ringler, Max

    2017-01-30

    Acoustic species recognition in anurans depends on spectral and temporal characteristics of the advertisement call. The recognition space of a species is shaped by the likelihood of heterospecific acoustic interference. The dendrobatid frogs Allobates talamancae (Cope, 1875) and Silverstoneia flotator (Dunn, 1931) occur syntopically in south-west Costa Rica. A previous study showed that these two species avoid acoustic interference by spectral stratification. In this study, the role of the temporal call structure in the advertisement call of A. talamancae was analyzed, in particular the internote-interval duration in providing species specific temporal cues. In playback trials, artificial advertisement calls with internote-intervals deviating up to ± 90 % from the population mean internote-interval were broadcast to vocally active territorial males. The phonotactic reactions of the males indicated that, unlike in closely related species, internote-interval duration is not a call property essential for species recognition in A. talamancae . However, temporal call structure may be used for species recognition when the likelihood of heterospecific interference is high. Also, the close-encounter courtship call of male A. talamancae is described.

  5. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.

    PubMed

    Khalighinejad, Bahar; Cruzatto da Silva, Guilherme; Mesgarani, Nima

    2017-02-22

    Humans are unique in their ability to communicate using spoken language. However, it remains unclear how the speech signal is transformed and represented in the brain at different stages of the auditory pathway. In this study, we characterized electroencephalography responses to continuous speech by obtaining the time-locked responses to phoneme instances (phoneme-related potential). We showed that responses to different phoneme categories are organized by phonetic features. We found that each instance of a phoneme in continuous speech produces multiple distinguishable neural responses occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Comparing the patterns of phoneme similarity in the neural responses and the acoustic signals confirms a repetitive appearance of acoustic distinctions of phonemes in the neural data. Analysis of the phonetic and speaker information in neural activations revealed that different time intervals jointly encode the acoustic similarity of both phonetic and speaker categories. These findings provide evidence for a dynamic neural transformation of low-level speech features as they propagate along the auditory pathway, and form an empirical framework to study the representational changes in learning, attention, and speech disorders. SIGNIFICANCE STATEMENT We characterized the properties of evoked neural responses to phoneme instances in continuous speech. We show that each instance of a phoneme in continuous speech produces several observable neural responses at different times occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Each temporal event explicitly encodes the acoustic similarity of phonemes, and linguistic and nonlinguistic information are best represented at different time intervals. Finally, we show a joint encoding of phonetic and speaker information, where the neural representation of speakers is dependent on phoneme category. These findings provide compelling new evidence for

  6. Validation of high temporal resolution spiral phase velocity mapping of temporal patterns of left and right coronary artery blood flow against Doppler guidewire.

    PubMed

    Keegan, Jennifer; Raphael, Claire E; Parker, Kim; Simpson, Robin M; Strain, Stephen; de Silva, Ranil; Di Mario, Carlo; Collinson, Julian; Stables, Rod H; Wage, Ricardo; Drivas, Peter; Sugathapala, Malindie; Prasad, Sanjay K; Firmin, David N

    2015-10-02

    Temporal patterns of coronary blood flow velocity can provide important information on disease state and are currently assessed invasively using a Doppler guidewire. A non-invasive alternative would be beneficial as it would allow study of a wider patient population and serial scanning. A retrospectively-gated breath-hold spiral phase velocity mapping sequence (TR 19 ms) was developed at 3 Tesla. Velocity maps were acquired in 8 proximal right and 15 proximal left coronary arteries of 18 subjects who had previously had a Doppler guidewire study at the time of coronary angiography. Cardiovascular magnetic resonance (CMR) velocity-time curves were processed semi-automatically and compared with corresponding invasive Doppler data. When corrected for differences in heart rate between the two studies, CMR mean velocity through the cardiac cycle, peak systolic velocity (PSV) and peak diastolic velocity (PDV) were approximately 40 % of the peak Doppler values with a moderate - good linear relationship between the two techniques (R(2): 0.57, 0.64 and 0.79 respectively). CMR values of PDV/PSV showed a strong linear relationship with Doppler values with a slope close to unity (0.89 and 0.90 for right and left arteries respectively). In individual vessels, plots of CMR velocities at all cardiac phases against corresponding Doppler velocities showed a consistent linear relationship between the two with high R(2) values (mean +/-SD: 0.79 +/-.13). High temporal resolution breath-hold spiral phase velocity mapping underestimates absolute values of coronary flow velocity but allows accurate assessment of the temporal patterns of blood flow.

  7. Enhancement pattern of the normal facial nerve at 3.0 T temporal MRI.

    PubMed

    Hong, H S; Yi, B-H; Cha, J-G; Park, S-J; Kim, D H; Lee, H K; Lee, J-D

    2010-02-01

    The purpose of this study was to evaluate the enhancement pattern of the normal facial nerve at 3.0 T temporal MRI. We reviewed the medical records of 20 patients and evaluated 40 clinically normal facial nerves demonstrated by 3.0 T temporal MRI. The grade of enhancement of the facial nerve was visually scaled from 0 to 3. The patients comprised 11 men and 9 women, and the mean age was 39.7 years. The reasons for the MRI were sudden hearing loss (11 patients), Méniàre's disease (6) and tinnitus (7). Temporal MR scans were obtained by fluid-attenuated inversion-recovery (FLAIR) and diffusion-weighted imaging of the brain; three-dimensional (3D) fast imaging employing steady-state acquisition (FIESTA) images of the temporal bone with a 0.77 mm thickness, and pre-contrast and contrast-enhanced 3D spoiled gradient record acquisition in the steady state (SPGR) of the temporal bone with a 1 mm thickness, were obtained with 3.0 T MR scanning. 40 nerves (100%) were visibly enhanced along at least one segment of the facial nerve. The enhanced segments included the geniculate ganglion (77.5%), tympanic segment (37.5%) and mastoid segment (100%). Even the facial nerve in the internal auditory canal (15%) and labyrinthine segments (5%) showed mild enhancement. The use of high-resolution, high signal-to-noise ratio (with 3 T MRI), thin-section contrast-enhanced 3D SPGR sequences showed enhancement of the normal facial nerve along the whole course of the nerve; however, only mild enhancement was observed in areas associated with acute neuritis, namely the canalicular and labyrinthine segment.

  8. Psychological distress through immigration: the two-phase temporal pattern?

    PubMed

    Ritsner, M; Ponizovsky, A

    1999-01-01

    A large community sample, cross-sectional and in part longitudinal design, and comparison groups was used to determine the timing of psychological distress among immigrants. A total of 2,378 adult immigrants from the former Soviet Union to Israel completed the self-administered questionnaire Talbieh Brief Distress Inventory. The aggregate levels of distress and six psychological symptoms--obsessiveness, hostility, interpersonal sensitivity, depression, anxiety, and paranoid ideation--were compared at 20 intervals covering 1 to 60 months after resettlement. The level of psychological distress was significantly higher in the immigrants than that of Israeli natives but not in the potential immigrant controls. A two-phase temporal pattern of development of psychological distress was revealed consisting of escalation and reduction phases. The escalation phase was characterized by an increase in distress levels until the 27th month after arrival (a peak) and the reduction phase led to a decline returning to normal levels. The 1-month prevalence rate was 15.6% for the total sample, and for highly distressed subjects it reached 24% at the 27th month after arrival, and it declined to 4% at the 44th month. The time pattern of distress shared males and females, married and divorced/widowed (but not singles), as well as subjects of all age groups (except for immigrants in their forties). The two-phase pattern of distress obtained according to cross-sectional data was indirectly confirmed through a longitudinal way. Claims of early euphoric or distress-free period followed by mental health crisis frequently referred to in the literature on migration was not supported by this study.

  9. Validation and Simulation of Ares I Scale Model Acoustic Test - 2 - Simulations at 5 Foot Elevation for Evaluation of Launch Mount Effects

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Putman, Gabriel C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the direction of the launch tower. These tests have been performed without water suppression and have compared the acoustic emissions for launch structures with and without launch mounts. In addition, simulation results have also been compared to acoustic and imagery data collected from similar live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic environment experienced by the vehicle and the formation of highly directed acoustic waves moving across the platform deck. Comparisons of simulation results to live-fire test data showed good amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths showed qualitative capture of all plume and pressure wave evolution features.

  10. Temporal modulations in speech and music.

    PubMed

    Ding, Nai; Patel, Aniruddh D; Chen, Lin; Butler, Henry; Luo, Cheng; Poeppel, David

    2017-10-01

    Speech and music have structured rhythms. Here we discuss a major acoustic correlate of spoken and musical rhythms, the slow (0.25-32Hz) temporal modulations in sound intensity and compare the modulation properties of speech and music. We analyze these modulations using over 25h of speech and over 39h of recordings of Western music. We show that the speech modulation spectrum is highly consistent across 9 languages (including languages with typologically different rhythmic characteristics). A different, but similarly consistent modulation spectrum is observed for music, including classical music played by single instruments of different types, symphonic, jazz, and rock. The temporal modulations of speech and music show broad but well-separated peaks around 5 and 2Hz, respectively. These acoustically dominant time scales may be intrinsic features of speech and music, a possibility which should be investigated using more culturally diverse samples in each domain. Distinct modulation timescales for speech and music could facilitate their perceptual analysis and its neural processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Compressive Strength Estimation of Marble Specimens using Acoustic Emission Hits in Time and Natural Time Domains: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Hloupis, George; Stavrakas, Ilias; Vallianatos, Filippos; Triantis, Dimos

    2013-04-01

    The current study deals with preliminary results of characteristic patterns derived from acoustic emissions during compressional stress. Two loading cycles were applied to a specimen of 4cm x 4cm x 10 cm Dionysos marble while acoustic emissions (AE) were recorded using one acoustic sensor coupled at the expected direction of the main crack (at the center of the specimen). The produced time series comprised from the number of counts per AE hit under increasing and constant load. Processing took place in two domains: in conventional time domain (t), using multiresolution wavelet analysis for the study of temporal variation of the wavelet-coefficients' standard deviation (SDEV) [1] and in natural time domain (χ), using the variance (κ1) of natural-time transformed time-series [2,3]. Results in both cases, dictate that identification of the region where the increasing stress (σ), exceeds 40% of the ultimate compressional strength (σ*), is possible. More specific, in conventional time domain, the temporal evolution of SDEV presents a sharp change around σ* during first loading cycle and less than σ* during second loading cycle. In natural time domain, the κ1 value clearly oscillate around 0.07 at natural time indexes corresponding to σ* during first loading cycle. Merging both results leads to a preliminary observation that we have an identification of the time when the compressional stress exceeds σ*. References [1] Telesca, L., Hloupis, G., Nikolintaga, I., Vallianatos, F.,."Temporal patterns in southern Aegean seismicity revealed by the multiresolution wavelet analysis", Communications in Nonlinear Science and Numerical Simulation, vol. 12, issue 8, pp 1418-1426, 2007 [2] P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, "Natural Time Analysis: The New View of Time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series", Springer-Verlag, Berlin, Heidelberg, 2011. [3] N. V. Sarlis, P. A. Varotsos, and E. S. Skordas, "Flux Avalances in

  12. Temporal pattern and effect of sex on lipopolysaccharide-induced stress hormone and cytokine response in pigs

    USDA-ARS?s Scientific Manuscript database

    The temporal pattern and gender effect of immune and stress hormone responses to a lipopolysaccharide (LPS) challenge were assessed using a pig model. Secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 increased in a time-dependent manner f...

  13. Spatial and temporal patterns of carbon storage in forest ecosystems on Hainan island, southern China.

    PubMed

    Ren, Hai; Li, Linjun; Liu, Qiang; Wang, Xu; Li, Yide; Hui, Dafeng; Jian, Shuguang; Wang, Jun; Yang, Huai; Lu, Hongfang; Zhou, Guoyi; Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices.

  14. Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

    PubMed Central

    Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628

  15. Temporal patterns in adult salmon migration timing across southeast Alaska

    USGS Publications Warehouse

    Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David

    2015-01-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon

  16. Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants.

    PubMed

    Jiao, Shuo; Luo, Yantao; Lu, Mingmei; Xiao, Xiao; Lin, Yanbing; Chen, Weimin; Wei, Gehong

    2017-06-01

    Elucidating the driving forces behind the temporal dynamics of abundant and rare microbes is essential for understanding the assembly and succession of microbial communities. Here, we explored the successional trajectories and mechanisms of abundant and rare bacteria via soil-enrichment subcultures in response to various pollutants (phenanthrene, n-octadecane, and CdCl 2 ) using time-series Illumina sequencing datasets. The results reveal different successional patterns of abundant and rare sub-communities in eighty pollutant-degrading consortia and two original soil samples. A temporal decrease in α-diversity and high turnover rate for β-diversity indicate that deterministic processes are the main drivers of the succession of the abundant sub-community; however, the high cumulative species richness indicates that stochastic processes drive the succession of the rare sub-community. A functional prediction showed that abundant bacteria contribute primary functions to the pollutant-degrading consortia, such as amino acid metabolism, cellular responses to stress, and hydrocarbon degradation. Meanwhile, rare bacteria contribute a substantial fraction of auxiliary functions, such as carbohydrate-active enzymes, fermentation, and homoacetogenesis, which indicates their roles as a source of functional diversity. Our study suggests that the temporal succession of microbes in polluted microcosms is mainly associated with abundant bacteria rather than the high proportion of rare taxa. The major forces (i.e., stochastic or deterministic processes) driving microbial succession could be dependent on the low- or high-abundance community members in temporal microcosms with pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of Biological Acoustic Impedance Microscope and its Error Estimation

    NASA Astrophysics Data System (ADS)

    Hozumi, Naohiro; Nakano, Aiko; Terauchi, Satoshi; Nagao, Masayuki; Yoshida, Sachiko; Kobayashi, Kazuto; Yamamoto, Seiji; Saijo, Yoshifumi

    This report deals with the scanning acoustic microscope for imaging cross sectional acoustic impedance of biological soft tissues. A focused acoustic beam was transmitted to the tissue object mounted on the "rear surface" of plastic substrate. A cerebellum tissue of rat and a reference material were observed at the same time under the same condition. As the incidence is not vertical, not only longitudinal wave but also transversal wave is generated in the substrate. The error in acoustic impedance assuming vertical incidence was estimated. It was proved that the error can precisely be compensated, if the beam pattern and acoustic parameters of coupling medium and substrate had been known.

  18. Patterns of Occurrence and Marine Mammal Acoustic Behavior in Relation to Navy Sonar Activity Off Jacksonville, Florida.

    PubMed

    Oswald, Julie N; Norris, Thomas F; Yack, Tina M; Ferguson, Elizabeth L; Kumar, Anurag; Nissen, Jene; Bell, Joel

    2016-01-01

    Passive acoustic data collected from marine autonomous recording units deployed off Jacksonville, FL (from 13 September to 8 October 2009 and 3 December 2009 to 8 January 2010), were analyzed for detection of cetaceans and Navy sonar. Cetaceans detected included Balaenoptera acutorostrata, Eubalaena glacialis, B. borealis, Physeter macrocephalus, blackfish, and delphinids. E. glacialis were detected at shallow and, somewhat unexpectedly, deep sites. P. macrocephalus were characterized by a strong diel pattern. B. acutorostrata showed the strongest relationship between sonar activity and vocal behavior. These results provide a preliminary assessment of cetacean occurrence off Jacksonville and new insights on vocal responses to sonar.

  19. Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal

    PubMed Central

    2015-01-01

    Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis) to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The ‘classical’ features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions). Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum) enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired) speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the ‘classical’ aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception performance between

  20. The Chronotron: A Neuron That Learns to Fire Temporally Precise Spike Patterns

    PubMed Central

    Florian, Răzvan V.

    2012-01-01

    In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that provides high memory capacity (E-learning), and one that has a higher biological plausibility (I-learning). With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm. PMID:22879876

  1. Autonomous acoustic recorders reveal complex patterns in avian detection probability

    USGS Publications Warehouse

    Thompson, Sarah J.; Handel, Colleen M.; McNew, Lance B.

    2017-01-01

    Avian point‐count surveys are typically designed to occur during periods when birds are consistently active and singing, but seasonal and diurnal patterns of detection probability are often not well understood and may vary regionally or between years. We deployed autonomous acoustic recorders to assess how avian availability for detection (i.e., the probability that a bird signals its presence during a recording) varied during the breeding season with time of day, date, and weather‐related variables at multiple subarctic tundra sites in Alaska, USA, 2013–2014. A single observer processed 2,692 10‐minute recordings across 11 site‐years. We used time‐removal methods to assess availability and used generalized additive models to examine patterns of detectability (joint probability of presence, availability, and detection) for 16 common species. Despite lack of distinct dawn or dusk, most species displayed circadian vocalization patterns, with detection rates generally peaking between 0800 hours and 1200 hours but remaining high as late as 2000 hours for some species. Between 2200 hours and 0500 hours, most species’ detection rates dropped to near 0, signaling a distinctive rest period. Detectability dropped sharply for most species in early July. For all species considered, time‐removal analysis indicated nearly 100% likelihood of detection during a 10‐minute recording conducted in June, between 0500 hours and 2000 hours. This indicates that non‐detections during appropriate survey times and dates were attributable to the species’ absence or that silent birds were unlikely to initiate singing during a 10‐minute interval, whereas vocally active birds were singing very frequently. Systematic recordings revealed a gradient of species’ presence at each site, from ubiquitous to incidental. Although the total number of species detected at a site ranged from 16 to 27, we detected only 4 to 15 species on ≥5% of the site's recordings. Recordings

  2. Temporal patterns of caffeine intake in the United States.

    PubMed

    Martyn, Danika; Lau, Annette; Richardson, Philip; Roberts, Ashley

    2018-01-01

    To investigate whether caffeine intake among adolescents and adults in the U.S. varies across the week or throughout the day, data from a 7-day online beverage consumption survey (2010-2011) were analyzed. Mean (206.8-213.0 mg/day) and 90th percentile (437.4-452.6 mg/day) daily caffeine intakes among consumers 13 years and older were relatively constant across the week with no marked difference among weekdays versus weekend days. Percent consumers of caffeinated beverages likewise remained stable across the week. Mean daily caffeine intake for coffee and energy drink consumers 13 years and older was higher than contributions for tea and carbonated soft drink consumers. Caffeinated beverage consumers (13 + yrs) consumed most of their caffeine in the morning (61% versus 21% and 18% in the afternoon and evening) which was driven by coffee. Caffeinated beverage consumption patterns among adolescents (13-17 yrs) - who typically consume less daily caffeine - were more evenly distributed throughout the day. These findings provide insight into U.S. temporal caffeine consumption patterns among specific caffeinated beverage consumers and different age brackets. These data suggest that while caffeine intakes do not vary from day-to-day, mornings generally drive the daily caffeine intake of adults and is predominantly attributed to coffee. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Observation of topological edge states of acoustic metamaterials at subwavelength scale

    NASA Astrophysics Data System (ADS)

    Dai, Hongqing; Jiao, Junrui; Xia, Baizhan; Liu, Tingting; Zheng, Shengjie; Yu, Dejie

    2018-05-01

    Topological states are of key importance for acoustic wave systems owing to their unique transport properties. In this study, we develop a hexagonal array of hexagonal columns with Helmholtz resonators to obtain subwavelength Dirac cones. Rotation operations are performed to open the Dirac cones and obtain acoustic valley vortex states. In addition, we calculate the angular-dependent frequencies for the band edges at the K-point. Through a topological phase transition, the topological phase of pattern A can change into that of pattern B. The calculations for the bulk dispersion curves show that the acoustic metamaterials exhibit BA-type and AB-type topological edge states. Experimental results demonstrate that a sound wave can transmit well along the topological path. This study could reveal a simple approach to create acoustic topological edge states at the subwavelength scale.

  4. Taking advantage of acoustic inhomogeneities in photoacoustic measurements

    NASA Astrophysics Data System (ADS)

    Da Silva, Anabela; Handschin, Charles; Riedinger, Christophe; Piasecki, Julien; Mensah, Serge; Litman, Amélie; Akhouayri, Hassan

    2016-03-01

    Photoacoustic offers promising perspectives in probing and imaging subsurface optically absorbing structures in biological tissues. The optical uence absorbed is partly dissipated into heat accompanied with microdilatations that generate acoustic pressure waves, the intensity which is related to the amount of fluuence absorbed. Hence the photoacoustic signal measured offers access, at least potentially, to a local monitoring of the absorption coefficient, in 3D if tomographic measurements are considered. However, due to both the diffusing and absorbing nature of the surrounding tissues, the major part of the uence is deposited locally at the periphery of the tissue, generating an intense acoustic pressure wave that may hide relevant photoacoustic signals. Experimental strategies have been developed in order to measure exclusively the photoacoustic waves generated by the structure of interest (orthogonal illumination and detection). Temporal or more sophisticated filters (wavelets) can also be applied. However, the measurement of this primary acoustic wave carries a lot of information about the acoustically inhomogeneous nature of the medium. We propose a protocol that includes the processing of this primary intense acoustic wave, leading to the quantification of the surrounding medium sound speed, and, if appropriate to an acoustical parametric image of the heterogeneities. This information is then included as prior knowledge in the photoacoustic reconstruction scheme to improve the localization and quantification.

  5. Variability in English vowels is comparable in articulation and acoustics

    PubMed Central

    Noiray, Aude; Iskarous, Khalil; Whalen, D. H.

    2014-01-01

    The nature of the links between speech production and perception has been the subject of longstanding debate. The present study investigated the articulatory parameter of tongue height and the acoustic F1-F0 difference for the phonological distinction of vowel height in American English front vowels. Multiple repetitions of /i, ɪ, e, ε, æ/ in [(h)Vd] sequences were recorded in seven adult speakers. Articulatory (ultrasound) and acoustic data were collected simultaneously to provide a direct comparison of variability in vowel production in both domains. Results showed idiosyncratic patterns of articulation for contrasting the three front vowel pairs /i-ɪ/, /e-ε/ and /ε-æ/ across subjects, with the degree of variability in vowel articulation comparable to that observed in the acoustics for all seven participants. However, contrary to what was expected, some speakers showed reversals for tongue height for /ɪ/-/e/ that was also reflected in acoustics with F1 higher for /ɪ/ than for /e/. The data suggest the phonological distinction of height is conveyed via speaker-specific articulatory-acoustic patterns that do not strictly match features descriptions. However, the acoustic signal is faithful to the articulatory configuration that generated it, carrying the crucial information for perceptual contrast. PMID:25101144

  6. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics

    PubMed Central

    Bian, Yusheng; Guo, Feng; Yang, Shujie; Mao, Zhangming; Bachman, Hunter; Tang, Shi-Yang; Ren, Liqiang; Zhang, Bin; Gong, Jianying; Guo, Xiasheng

    2017-01-01

    The precise manipulation of acoustic fields in microfluidics is of critical importance for the realization of many biomedical applications. Despite the tremendous efforts devoted to the field of acoustofluidics during recent years, dexterous control, with an arbitrary and complex acoustic wavefront, in a prescribed, microscale region is still out of reach. Here, we introduce the concept of acoustofluidic waveguide, a three-dimensional compact configuration that is capable of locally guiding acoustic waves into a fluidic environment. Through comprehensive numerical simulations, we revealed the possibility of forming complex field patterns with defined pressure nodes within a highly localized, pre-determined region inside the microfluidic chamber. We also demonstrated the tunability of the acoustic field profile through controlling the size and shape of the waveguide geometry, as well as the operational frequency of the acoustic wave. The feasibility of the waveguide concept was experimentally verified via microparticle trapping and patterning. Our acoustofluidic waveguiding structures can be readily integrated with other microfluidic configurations and can be further designed into more complex types of passive acoustofluidic devices. The waveguide platform provides a promising alternative to current acoustic manipulation techniques and is useful in many applications such as single-cell analysis, point-of-care diagnostics, and studies of cell–cell interactions. PMID:29358901

  7. Listening in on Friction: Stick-Slip Acoustical Signatures in Velcro

    NASA Astrophysics Data System (ADS)

    Hurtado Parra, Sebastian; Morrow, Leslie; Radziwanowski, Miles; Angiolillo, Paul

    2013-03-01

    The onset of kinetic friction and the possible resulting stick-slip motion remain mysterious phenomena. Moreover, stick-slip dynamics are typically accompanied by acoustic bursts that occur temporally with the slip event. The dry sliding dynamics of the hook-and-loop system, as exemplified by Velcro, manifest stick-slip behavior along with audible bursts that are easily micrphonically collected. Synchronized measurements of the friction force and acoustic emissions were collected as hooked Velcro was driven at constant velocity over a bed of looped Velcro in an anechoic chamber. Not surprising, the envelope of the acoustic bursts maps well onto the slip events of the friction force time series and the intensity of the bursts trends with the magnitude of the difference of the friction force during a stick-slip event. However, the analysis of the acoustic emission can serve as a sensitive tool for revealing some of the hidden details of the evolution of the transition from static to kinetic friction. For instance, small acoustic bursts are seen prior to the Amontons-Coulomb threshold, signaling precursor events prior to the onset of macroscopically observed motion. Preliminary spectral analysis of the acoustic emissions including intensity-frequency data will be presented.

  8. Improved acoustic levitation apparatus

    NASA Technical Reports Server (NTRS)

    Berge, L. H.; Johnson, J. L.; Oran, W. A.; Reiss, D. A.

    1980-01-01

    Concave driver and reflector enhance and shape levitation forces in acoustic resonance system. Single-mode standing-wave pattern is focused by ring element situated between driver and reflector. Concave surfaces increase levitating forces up to factor of 6 as opposed to conventional flat surfaces, making it possible to suspend heavier objects.

  9. Speaker compensation for local perturbation of fricative acoustic feedback.

    PubMed

    Casserly, Elizabeth D

    2011-04-01

    Feedback perturbation studies of speech acoustics have revealed a great deal about how speakers monitor and control their productions of segmental (e.g., formant frequencies) and non-segmental (e.g., pitch) linguistic elements. The majority of previous work, however, overlooks the role of acoustic feedback in consonant production and makes use of acoustic manipulations that effect either entire utterances or the entire acoustic signal, rather than more temporally and phonetically restricted alterations. This study, therefore, seeks to expand the feedback perturbation literature by examining perturbation of consonant acoustics that is applied in a time-restricted and phonetically specific manner. The spectral center of the alveopalatal fricative [∫] produced in vowel-fricative-vowel nonwords was incrementally raised until it reached the potential for [s]-like frequencies, but the characteristics of high-frequency energy outside the target fricative remained unaltered. An "offline," more widely accessible signal processing method was developed to perform this manipulation. The local feedback perturbation resulted in changes to speakers' fricative production that were more variable, idiosyncratic, and restricted than the compensation seen in more global acoustic manipulations reported in the literature. Implications and interpretations of the results, as well as future directions for research based on the findings, are discussed.

  10. The effect of habitat acoustics on common marmoset vocal signal transmission.

    PubMed

    Morrill, Ryan J; Thomas, A Wren; Schiel, Nicola; Souto, Antonio; Miller, Cory T

    2013-09-01

    Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets. © 2013

  11. The Effect of Habitat Acoustics on Common Marmoset Vocal Signal Transmission

    PubMed Central

    MORRILL, RYAN J.; THOMAS, A. WREN; SCHIEL, NICOLA; SOUTO, ANTONIO; MILLER, CORY T.

    2013-01-01

    Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets. PMID

  12. Acoustic fatigue: Overview of activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Roussos, Louis A.

    1987-01-01

    A number of aircraft and spacecraft configurations are being considered for future development. These include high-speed turboprop aircraft, advanced vertical take-off and landing fighter aircraft, and aerospace planes for hypersonic intercontinental cruise or flight to orbit and return. Review of the acoustic environment expected for these vehicles indicates levels high enough that acoustic fatigue must be considered. Unfortunately, the sonic fatique design technology used for current aircraft may not be adequate for these future vehicles. This has resulted in renewed emphasis on acoustic fatigue research at the NASA Langley Research Center. The overall objective of the Langley program is to develop methods and information for design of aerospace vehicles that will resist acoustic fatigue. The program includes definition of the acoustic loads acting on structures due to exhaust jets of boundary layers, and subsequent determination of the stresses within the structure due to these acoustic loads. Material fatigue associated with the high frequency structural stress reversal patterns resulting from acoustic loadings is considered to be an area requiring study, but no activity is currently underway.

  13. Multivariate Pattern Analysis Reveals Category-Related Organization of Semantic Representations in Anterior Temporal Cortex.

    PubMed

    Malone, Patrick S; Glezer, Laurie S; Kim, Judy; Jiang, Xiong; Riesenhuber, Maximilian

    2016-09-28

    The neural substrates of semantic representation have been the subject of much controversy. The study of semantic representations is complicated by difficulty in disentangling perceptual and semantic influences on neural activity, as well as in identifying stimulus-driven, "bottom-up" semantic selectivity unconfounded by top-down task-related modulations. To address these challenges, we trained human subjects to associate pseudowords (TPWs) with various animal and tool categories. To decode semantic representations of these TPWs, we used multivariate pattern classification of fMRI data acquired while subjects performed a semantic oddball detection task. Crucially, the classifier was trained and tested on disjoint sets of TPWs, so that the classifier had to use the semantic information from the training set to correctly classify the test set. Animal and tool TPWs were successfully decoded based on fMRI activity in spatially distinct subregions of the left medial anterior temporal lobe (LATL). In addition, tools (but not animals) were successfully decoded from activity in the left inferior parietal lobule. The tool-selective LATL subregion showed greater functional connectivity with left inferior parietal lobule and ventral premotor cortex, indicating that each LATL subregion exhibits distinct patterns of connectivity. Our findings demonstrate category-selective organization of semantic representations in LATL into spatially distinct subregions, continuing the lateral-medial segregation of activation in posterior temporal cortex previously observed in response to images of animals and tools, respectively. Together, our results provide evidence for segregation of processing hierarchies for different classes of objects and the existence of multiple, category-specific semantic networks in the brain. The location and specificity of semantic representations in the brain are still widely debated. We trained human participants to associate specific pseudowords with various

  14. The Use of Census Migration Data to Approximate Human Movement Patterns across Temporal Scales

    PubMed Central

    Wesolowski, Amy; Buckee, Caroline O.; Pindolia, Deepa K.; Eagle, Nathan; Smith, David L.; Garcia, Andres J.; Tatem, Andrew J.

    2013-01-01

    Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data. PMID:23326367

  15. First images of thunder: Acoustic imaging of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  16. Optimization of Classification Strategies of Acetowhite Temporal Patterns towards Improving Diagnostic Performance of Colposcopy

    PubMed Central

    Acosta-Mesa, Héctor Gabriel; Cruz-Ramírez, Nicandro; Hernández-Jiménez, Rodolfo

    2017-01-01

    Efforts have been being made to improve the diagnostic performance of colposcopy, trying to help better diagnose cervical cancer, particularly in developing countries. However, improvements in a number of areas are still necessary, such as the time it takes to process the full digital image of the cervix, the performance of the computing systems used to identify different kinds of tissues, and biopsy sampling. In this paper, we explore three different, well-known automatic classification methods (k-Nearest Neighbors, Naïve Bayes, and C4.5), in addition to different data models that take full advantage of this information and improve the diagnostic performance of colposcopy based on acetowhite temporal patterns. Based on the ROC and PRC area scores, the k-Nearest Neighbors and discrete PLA representation performed better than other methods. The values of sensitivity, specificity, and accuracy reached using this method were 60% (95% CI 50–70), 79% (95% CI 71–86), and 70% (95% CI 60–80), respectively. The acetowhitening phenomenon is not exclusive to high-grade lesions, and we have found acetowhite temporal patterns of epithelial changes that are not precancerous lesions but that are similar to positive ones. These findings need to be considered when developing more robust computing systems in the future. PMID:28744318

  17. Temporal variations in patterns of Escherichia coli strain diversity and antimicrobial resistance in the migrant Egyptian vulture

    PubMed Central

    Maherchandani, Sunil; Shringi, B. N.; Kashyap, Sudhir Kumar

    2018-01-01

    ABSTRACT Aims: Multiple antimicrobial resistance in Escherichia coli of wild vertebrates is a global concern with scarce assessments on the subject from developing countries that have high human-wild species interactions. We studied the ecology of E. coli in a wintering population of Egyptian Vultures in India to understand temporal changes in both E. coli strains and patterns of antimicrobial resistance. Methods and Results: We ribotyped E. coli strains and assessed antimicrobial resistance from wintering vultures at a highly synanthropic carcass dump in north-west India. Both E. coli occurence (90.32%) and resistance to multiple antimicrobials (71.43%) were very high. Clear temporal patterns were apparent. Diversity of strains changed and homogenized at the end of the Vultures’ wintering period, while the resistance pattern showed significantly difference inter-annually, as well as between arrival and departing individuals within a wintering cycle. Significance of study: The carcass dump environment altered both E. coli strains and multiple antimicrobial resistance in migratory Egyptian Vultures within a season. Long-distance migratory species could therefore disseminate resistant E. coli strains across broad geographical scales rendering regional mitigation strategies to control multiple antimicrobial resistance in bacteria ineffective. PMID:29755700

  18. Spatial and temporal patterns of endocrine active chemicals in small streams indicate differential exposure to aquatic organisms

    USGS Publications Warehouse

    Lee, K.E.; Barber, L.B.; Schoenfuss, H.L.

    2014-01-01

    Alkylphenolic chemicals (APCs) and hormones were measured six times from February through October 2007 in three Minnesota streams receiving wastewater to identify spatial and temporal patterns in concentrations and in estrogen equivalency. Fish were collected once during the study to evaluate endpoints indicative of endocrine disruption. The most commonly detected APCs were 4-tert-octylphenol and 4-nonylphenol and the most commonly detected hormones were estrone and androstenedione. Chemical concentrations were greatest for nonylphenol ethoxycarboxylates (NPECs) (5,000-140,000 ng/l), followed by 4-nonlylphenol and 4-nonylphenolethoxylates (50-880 ng/l), 4-tert-octylphenol and 4-tert-octylphenolethoxylates with concentrations as great as 130 ng/l, and hormones (0.1-54 ng/l). Patterns in chemicals and estrogen equivalency indicated that wastewater effluent is a pathway of APCs and hormones to downstream locations in this study. However, upstream contributions can be equally or more important indicating alternative sources. This study indicates that aquatic organisms experience both spatially and temporally variable exposures in the number of compounds, total concentrations, and estrogenicity. This variability was evident in fish collected from the three rivers as no clear upstream to downstream pattern of endocrine disruption endpoints emerged.

  19. Associations between tongue movement pattern consistency and formant movement pattern consistency in response to speech behavioral modificationsa)

    PubMed Central

    Mefferd, Antje S.

    2016-01-01

    The degree of speech movement pattern consistency can provide information about speech motor control. Although tongue motor control is particularly important because of the tongue's primary contribution to the speech acoustic signal, capturing tongue movements during speech remains difficult and costly. This study sought to determine if formant movements could be used to estimate tongue movement pattern consistency indirectly. Two age groups (seven young adults and seven older adults) and six speech conditions (typical, slow, loud, clear, fast, bite block speech) were selected to elicit an age- and task-dependent performance range in tongue movement pattern consistency. Kinematic and acoustic spatiotemporal indexes (STI) were calculated based on sentence-length tongue movement and formant movement signals, respectively. Kinematic and acoustic STI values showed strong associations across talkers and moderate to strong associations for each talker across speech tasks; although, in cases where task-related tongue motor performance changes were relatively small, the acoustic STI values were poorly associated with kinematic STI values. These findings suggest that, depending on the sensitivity needs, formant movement pattern consistency could be used in lieu of direct kinematic analysis to indirectly examine speech motor control. PMID:27908069

  20. Spatial and Temporal Microbial Patterns in a Tropical Macrotidal Estuary Subject to Urbanization

    PubMed Central

    Kaestli, Mirjam; Skillington, Anna; Kennedy, Karen; Majid, Matthew; Williams, David; McGuinness, Keith; Munksgaard, Niels; Gibb, Karen

    2017-01-01

    Darwin Harbour in northern Australia is an estuary in the wet-dry tropics subject to increasing urbanization with localized water quality degradation due to increased nutrient loads from urban runoff and treated sewage effluent. Tropical estuaries are poorly studied compared to temperate systems and little is known about the microbial community-level response to nutrients. We aimed to examine the spatial and temporal patterns of the bacterial community and its association with abiotic factors. Since Darwin Harbour is macrotidal with strong seasonal patterns and mixing, we sought to determine if a human impact signal was discernible in the microbiota despite the strong hydrodynamic forces. Adopting a single impact–double reference design, we investigated the bacterial community using next-generation sequencing of the 16S rRNA gene from water and sediment from reference creeks and creeks affected by effluent and urban runoff. Samples were collected over two years during neap and spring tides, in the dry and wet seasons. Temporal drivers, namely seasons and tides had the strongest relationship to the water microbiota, reflecting the macrotidal nature of the estuary and its location in the wet-dry tropics. The neap-tide water microbiota provided the clearest spatial resolution while the sediment microbiota reflected current and past water conditions. Differences in patterns of the microbiota between different parts of the harbor reflected the harbor's complex hydrodynamics and bathymetry. Despite these variations, a microbial signature was discernible relating to specific effluent sources and urban runoff, and the composite of nutrient levels accounted for the major part of the explained variation in the microbiota followed by salinity. Our results confirm an overall good water quality but they also reflect the extent of some hypereutrophic areas. Our results show that the microbiota is a sensitive indicator to assess ecosystem health even in this dynamic and complex

  1. Spatio-Temporal Evolution of Sound Speed Channels on the Chukchi Shelf

    NASA Astrophysics Data System (ADS)

    Eickmeier, J.; Badiey, M.; Wan, L.

    2017-12-01

    The physics of an acoustic waveguide are influenced by various boundary conditions as well as spatial and temporal fluctuations in temperature and salinity profiles the water column. The shallow water Canadian Basin Acoustic Propagation Experiment (CANAPE) experiment was designed to study the effect of oceanographic variability on the acoustic field. A pilot study was conducted in the summer of 2015, full deployment of acoustic and environmental moorings took place in 2016, and recovery will occur in late 2017. An example of strong oceanographic variability in the SW region is depicted in Figure 1. Over the course of 7 days, warm Bering Sea water arrived on the Chukchi Shelf and sank in the water column to between 25 m and 125 m depth. This warm water spread to a range of 10 km and a potential eddy of warm water formed causing an increase in sound speed between 15 km and 20 km range in Fig. 1(b). Due to the increased sound speed, a strong sound channel evolved between 100 m and 200 m for acoustic waves arriving from off the shelf, deep water sources. In Fig. 1(a), the initial formation of the acoustic channel is only evident in 50 m to 100 m of water out to a range of 5 km. Recorded environmental data will be used to study fluctuations in sound speed channel formation on the Chukchi Shelf. Data collected in 2015 and 2016 have shown sound duct evolution over 7 days and over a one-month period. Analysis is projected to show sound channel formation over a new range of spatio-temporal scales. This analysis will show a cycle of sound channels opening and closing on the shelf, where this cycle strongly influences the propagation path, range and attenuation of acoustic waves.

  2. Temporal Dynamics Assessment of Spatial Overlap Pattern of Functional Brain Networks Reveals Novel Functional Architecture of Cerebral Cortex.

    PubMed

    Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhao, Shijie; Zhang, Shu; Zhang, Wei; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2018-06-01

    Various studies in the brain mapping field have demonstrated that there exist multiple concurrent functional networks that are spatially overlapped and interacting with each other during specific task performance to jointly realize the total brain function. Assessing such spatial overlap patterns of functional networks (SOPFNs) based on functional magnetic resonance imaging (fMRI) has thus received increasing interest for brain function studies. However, there are still two crucial issues to be addressed. First, the SOPFNs are assessed over the entire fMRI scan assuming the temporal stationarity, while possibly time-dependent dynamics of the SOPFNs is not sufficiently explored. Second, the SOPFNs are assessed within individual subjects, while group-wise consistency of the SOPFNs is largely unknown. To address the two issues, we propose a novel computational framework of group-wise sparse representation of whole-brain fMRI temporal segments to assess the temporal dynamic spatial patterns of SOPFNs that are consistent across different subjects. Experimental results based on the recently publicly released Human Connectome Project grayordinate task fMRI data demonstrate that meaningful SOPFNs exhibiting dynamic spatial patterns across different time periods are effectively and robustly identified based on the reconstructed concurrent functional networks via the proposed framework. Specifically, those SOPFNs locate significantly more on gyral regions than on sulcal regions across different time periods. These results reveal novel functional architecture of cortical gyri and sulci. Moreover, these results help better understand functional dynamics mechanisms of cerebral cortex in the future.

  3. Temporal resolution in individuals with neurological disorders

    PubMed Central

    Rabelo, Camila Maia; Weihing, Jeffrey A; Schochat, Eliane

    2015-01-01

    OBJECTIVE: Temporal processing refers to the ability of the central auditory nervous system to encode and detect subtle changes in acoustic signals. This study aims to investigate the temporal resolution ability of individuals with mesial temporal sclerosis and to determine the sensitivity and specificity of the gaps-in-noise test in identifying this type of lesion. METHOD: This prospective study investigated differences in temporal resolution between 30 individuals with normal hearing and without neurological lesions (G1) and 16 individuals with both normal hearing and mesial temporal sclerosis (G2). Test performances were compared, and the sensitivity and specificity were calculated. RESULTS: There was no difference in gap detection thresholds between the two groups, although G1 revealed better average thresholds than G2 did. The sensitivity and specificity of the gaps-in-noise test for neurological lesions were 68% and 98%, respectively. CONCLUSIONS: Temporal resolution ability is compromised in individuals with neurological lesions caused by mesial temporal sclerosis. The gaps-in-noise test was shown to be a sensitive and specific measure of central auditory dysfunction in these patients. PMID:26375561

  4. A MEMS Condenser Microphone-Based Intracochlear Acoustic Receiver.

    PubMed

    Pfiffner, Flurin; Prochazka, Lukas; Peus, Dominik; Dobrev, Ivo; Dalbert, Adrian; Sim, Jae Hoon; Kesterke, Rahel; Walraevens, Joris; Harris, Francesca; Roosli, Christof; Obrist, Dominik; Huber, Alexander

    2017-10-01

    Intracochlear sound pressure (ICSP) measurements are limited by the small dimensions of the human inner ear and the requirements imposed by the liquid medium. A robust intracochlear acoustic receiver (ICAR) for repeated use with a simple data acquisition system that provides the required high sensitivity and small dimensions does not yet exist. The work described in this report aims to fill this gap and presents a new microelectromechanical systems (MEMS) condenser microphone (CMIC)-based ICAR concept suitable for ICSP measurements in human temporal bones. The ICAR head consisted of a passive protective diaphragm (PD) sealing the MEMS CMIC against the liquid medium, enabling insertion into the inner ear. The components of the MEMS CMIC-based ICAR were expressed by a lumped element model (LEM) and compared to the performance of successfully fabricated ICARs. Good agreement was achieved between the LEM and the measurements with different sizes of the PD. The ICSP measurements in a human cadaver temporal bone yielded data in agreement with the literature. Our results confirm that the presented MEMS CMIC-based ICAR is a promising technology for measuring ICSP in human temporal bones in the audible frequency range. A sensor for evaluation of the biomechanical hearing process by quantification of ICSP is presented. The concept has potential as an acoustic receiver in totally implantable cochlear implants.

  5. Different spatio-temporal electroencephalography features drive the successful decoding of binaural and monaural cues for sound localization.

    PubMed

    Bednar, Adam; Boland, Francis M; Lalor, Edmund C

    2017-03-01

    The human ability to localize sound is essential for monitoring our environment and helps us to analyse complex auditory scenes. Although the acoustic cues mediating sound localization have been established, it remains unknown how these cues are represented in human cortex. In particular, it is still a point of contention whether binaural and monaural cues are processed by the same or distinct cortical networks. In this study, participants listened to a sequence of auditory stimuli from different spatial locations while we recorded their neural activity using electroencephalography (EEG). The stimuli were presented over a loudspeaker array, which allowed us to deliver realistic, free-field stimuli in both the horizontal and vertical planes. Using a multivariate classification approach, we showed that it is possible to decode sound source location from scalp-recorded EEG. Robust and consistent decoding was shown for stimuli that provide binaural cues (i.e. Left vs. Right stimuli). Decoding location when only monaural cues were available (i.e. Front vs. Rear and elevational stimuli) was successful for a subset of subjects and showed less consistency. Notably, the spatio-temporal pattern of EEG features that facilitated decoding differed based on the availability of binaural and monaural cues. In particular, we identified neural processing of binaural cues at around 120 ms post-stimulus and found that monaural cues are processed later between 150 and 200 ms. Furthermore, different spatial activation patterns emerged for binaural and monaural cue processing. These spatio-temporal dissimilarities suggest the involvement of separate cortical mechanisms in monaural and binaural acoustic cue processing. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Acoustic metamaterials with circular sector cavities and programmable densities.

    PubMed

    Akl, W; Elsabbagh, A; Baz, A

    2012-10-01

    Considerable interest has been devoted to the development of various classes of acoustic metamaterials that can control the propagation of acoustical wave energy throughout fluid domains. However, all the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of composite one-dimensional acoustic metamaterials with effective densities that are programmed to adapt to any prescribed pattern along the metamaterial. The proposed acoustic metamaterial is composed of a periodic arrangement of cell structures, in which each cell consists of a circular sector cavity bounded by actively controlled flexible panels to provide the capability for manipulating the overall effective dynamic density. The theoretical analysis of this class of multilayered composite active acoustic metamaterials (CAAMM) is presented and the theoretical predictions are determined for a cascading array of fluid cavities coupled to flexible piezoelectric active boundaries forming the metamaterial domain with programmable dynamic density. The stiffness of the piezoelectric boundaries is electrically manipulated to control the overall density of the individual cells utilizing the strong coupling with the fluid domain and using direct acoustic pressure feedback. The interaction between the neighboring cells of the composite metamaterial is modeled using a lumped-parameter approach. Numerical examples are presented to demonstrate the performance characteristics of the proposed CAAMM and its potential for generating prescribed spatial and spectral patterns of density variation.

  7. Robust Sensing of Approaching Vehicles Relying on Acoustic Cues

    PubMed Central

    Mizumachi, Mitsunori; Kaminuma, Atsunobu; Ono, Nobutaka; Ando, Shigeru

    2014-01-01

    The latest developments in automobile design have allowed them to be equipped with various sensing devices. Multiple sensors such as cameras and radar systems can be simultaneously used for active safety systems in order to overcome blind spots of individual sensors. This paper proposes a novel sensing technique for catching up and tracking an approaching vehicle relying on an acoustic cue. First, it is necessary to extract a robust spatial feature from noisy acoustical observations. In this paper, the spatio-temporal gradient method is employed for the feature extraction. Then, the spatial feature is filtered out through sequential state estimation. A particle filter is employed to cope with a highly non-linear problem. Feasibility of the proposed method has been confirmed with real acoustical observations, which are obtained by microphones outside a cruising vehicle. PMID:24887038

  8. Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko

    2006-11-01

    Three-oscillator systems with plasmodia of true slime mold, Physarum polycephalum, which is an oscillatory amoeba-like unicellular organism, were experimentally constructed and their spatio-temporal patterns were investigated. Three typical spatio-temporal patterns were found: rotation ( R), partial in-phase ( PI), and partial anti-phase with double frequency ( PA). In pattern R, phase differences between adjacent oscillators were almost 120 ∘. In pattern PI, two oscillators were in-phase and the third oscillator showed anti-phase against the two oscillators. In pattern PA, two oscillators showed anti-phase and the third oscillator showed frequency doubling oscillation with small amplitude. Actually each pattern is not perfectly stable but quasi-stable. Interestingly, the system shows spontaneous switching among the multiple quasi-stable patterns. Statistical analyses revealed a characteristic in the residence time of each pattern: the histograms seem to have Gamma-like distribution form but with a sharp peak and a tail on the side of long period. That suggests the attractor of this system has complex structure composed of at least three types of sub-attractors: a “Gamma attractor”-involved with several Poisson processes, a “deterministic attractor”-the residence time is deterministic, and a “stable attractor”-each pattern is stable. When the coupling strength was small, only the Gamma attractor was observed and switching behavior among patterns R, PI, and PA almost always via an asynchronous pattern named O. A conjecture is as follows: Internal/external noise exposes each pattern of R, PI, and PA coexisting around bifurcation points: That is observed as the Gamma attractor. As coupling strength increases, the deterministic attractor appears then followed by the stable attractor, always accompanied with the Gamma attractor. Switching behavior could be caused by regular existence of the Gamma attractor.

  9. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance.

    PubMed

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  10. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance

    PubMed Central

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists. PMID:27516736

  11. Can a model of overlapping gestures account for scanning speech patterns?

    PubMed

    Tjaden, K

    1999-06-01

    A simple acoustic model of overlapping, sliding gestures was used to evaluate whether coproduction was reduced for neurologic speakers with scanning speech patterns. F2 onset frequency was used as an acoustic measure of coproduction or gesture overlap. The effects of speaking rate (habitual versus fast) and utterance position (initial versus medial) on F2 frequency, and presumably gesture overlap, were examined. Regression analyses also were used to evaluate the extent to which across-repetition temporal variability in F2 trajectories could be explained as variation in coproduction for consonants and vowels. The lower F2 onset frequencies for disordered speakers suggested that gesture overlap was reduced for neurologic individuals with scanning speech. Speaking rate change did not influence F2 onset frequencies, and presumably gesture overlap, for healthy or disordered speakers. F2 onset frequency differences for utterance-initial and -medial repetitions were interpreted to suggest reduced coproduction for the utterance-initial position. The utterance-position effects on F2 onset frequency, however, likely were complicated by position-related differences in articulatory scaling. The results of the regression analysis indicated that gesture sliding accounts, in part, for temporal variability in F2 trajectories. Taken together, the results of this study provide support for the idea that speech production theory for healthy talkers helps to account for disordered speech production.

  12. Open-field temporal pattern of ambulation in Japanese quail genetically selected for contrasting adrenocortical responsiveness to brief manual restraint.

    PubMed

    Kembro, J M; Satterlee, D G; Schmidt, J B; Perillo, M A; Marin, R H

    2008-11-01

    Japanese quail selected for a low-stress (LS), rather than a high-stress (HS), plasma corticosterone response to brief restraint have been shown to possess lower fearfulness and a nonspecific reduction in stress responsiveness. Detrended fluctuation analysis provides information on the organization and complexity of temporal patterns of behavior. The present study evaluated the temporal pattern of ambulation of LS and HS quail in an open field that represented a novel environment. Time series of 4,200 data points were collected for each bird by registering the distance ambulated every 0.5 s during a 35-min test period. Consistent with their known reduced fearfulness, the LS quail initiated ambulation significantly sooner (P < 0.02) and tended to ambulate more (P < 0.09) than did their HS counterparts. Detrended fluctuation analyses showed a monofractal series (i.e., a series with similar complexity at different temporal scales) in 72% of the birds. These birds initiated their ambulatory activity in less than 600 s. Among these birds, a lower (P < 0.03) autosimilarity coefficient (alpha) was found in the LS quail than in their HS counterparts (alpha = 0.76 +/- 0.03 and 0.87 +/- 0.03, respectively), suggesting a more complex (less regular) ambulatory pattern in the LS quail. However, when the patterns of ambulation were reexamined by considering only the active period of the time series (i.e., after the birds had initiated their ambulatory activity), monofractal patterns were observed in 97% of the birds, and no differences were found between the lines. Collectively, the results suggest that during the active period of open-field testing, during which fear responses are likely less strong and other motivations are the driving forces of ambulation, the LS and HS lines have similar ambulatory organization.

  13. Picosecond ultrasonic study of surface acoustic waves on periodically patterned layered nanostructures.

    PubMed

    Colletta, Michael; Gachuhi, Wanjiru; Gartenstein, Samuel A; James, Molly M; Szwed, Erik A; Daly, Brian C; Cui, Weili; Antonelli, George A

    2018-07-01

    We have used the ultrafast pump-probe technique known as picosecond ultrasonics to generate and detect surface acoustic waves on a structure consisting of nanoscale Al lines on SiO 2 on Si. We report results from ten samples with varying pitch (1000-140 nm) and SiO 2 film thickness (112 nm or 60 nm), and compare our results to an isotropic elastic calculation and a coarse-grained molecular dynamics simulation. In all cases we are able to detect and identify a Rayleigh-like surface acoustic wave with wavelength equal to the pitch of the lines and frequency in the range of 5-24 GHz. In some samples, we are able to detect additional, higher frequency surface acoustic waves or independent modes of the Al lines with frequencies close to 50 GHz. We also describe the effects of probe beam polarization on the measurement's sensitivity to the different surface modes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Comparing different snow products to assess spatio-temporal snow cover patterns in the Central Taurus Mountains, Turkey

    NASA Astrophysics Data System (ADS)

    Sturm, K.; Helmschrot, J.

    2013-12-01

    Snow and its spatial and temporal patterns are important for catchment hydrology in the semi-arid eastern Mediterranean. Since most of the annual rainfall is stored as snow during winter and released during drier conditions in spring and summer, downstream regions of the Taurus Mountains relying on snow water temporarily stored in reservoirs for agricultural use are heavily dependent on the timing of snowmelt discharge. Runoff is controlled by the amount of accumulated snow, its distribution, and the climatic conditions controlling spring snowmelt. Thus, knowledge about spatial and temporal snow cover dynamics is essential for sustainable water resources management. The lack of observations in high-altitude regions reinforces the application of different snow products for a better assessment of spatio-temporal snow cover patterns. To better assess the quality of such products, simulated daily snow cover and EO-based snow cover products were compared for the Egribuk subcatchment, in the Central Taurus Mountains, Turkey. Daily information on snow cover, depths, and snow water equivalent was derived from distributed hydrological modeling using the J2000 model. Furthermore, 8-day MODIS snow cover data from Terra (MOD10A2) and Aqua (MYD10A2) satellites at a spatial resolution of 500 m were synchronized to receive cloud-free images. From this effort, 253 images covering the period between 07/04/2002 and 12/27/2007 were used for further analyses. The products were analyzed individually to determine the number of snow-covered days in relation to freezing days, spring snowmelt onsets, and temporal patterns, reflecting the effect of altitude on the percentage snow-covered area (SCA) along a topographic gradient at various time-steps. Monthly and 8-day spatial patterns of a single snow season were also examined. When SCA peaks at all altitudes, in February and March, the results of both products show a good agreement regarding SCA extent. In contrast, the extent of SCA

  15. Adjustment of spatio-temporal precipitation patterns in a high Alpine environment

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter

    2018-01-01

    This contribution presents a method for correcting the spatial and temporal distribution of precipitation fields in a mountainous environment. The approach is applied within a flood forecasting model in the Upper Enns catchment in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in water balance estimation and stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. For the presented study a multiplicative, stepwise linear correction model is implemented in the rainfall-runoff model COSERO to adjust the precipitation pattern as a function of elevation. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore, additionally, separate correction factors for winter and summer months are estimated. Significant improvements in the runoff simulations could be achieved, not only in the long-term water balance simulation and the overall model performance, but also in the simulation of flood peaks.

  16. Fatigue level estimation of monetary bills based on frequency band acoustic signals with feature selection by supervised SOM

    NASA Astrophysics Data System (ADS)

    Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa

    Fatigued monetary bills adversely affect the daily operation of automated teller machines (ATMs). In order to make the classification of fatigued bills more efficient, the development of an automatic fatigued monetary bill classification method is desirable. We propose a new method by which to estimate the fatigue level of monetary bills from the feature-selected frequency band acoustic energy pattern of banking machines. By using a supervised self-organizing map (SOM), we effectively estimate the fatigue level using only the feature-selected frequency band acoustic energy pattern. Furthermore, the feature-selected frequency band acoustic energy pattern improves the estimation accuracy of the fatigue level of monetary bills by adding frequency domain information to the acoustic energy pattern. The experimental results with real monetary bill samples reveal the effectiveness of the proposed method.

  17. Opposite patterns of hemisphere dominance for early auditory processing of lexical tones and consonants

    PubMed Central

    Luo, Hao; Ni, Jing-Tian; Li, Zhi-Hao; Li, Xiao-Ou; Zhang, Da-Ren; Zeng, Fan-Gang; Chen, Lin

    2006-01-01

    In tonal languages such as Mandarin Chinese, a lexical tone carries semantic information and is preferentially processed in the left brain hemisphere of native speakers as revealed by the functional MRI or positron emission tomography studies, which likely measure the temporally aggregated neural events including those at an attentive stage of auditory processing. Here, we demonstrate that early auditory processing of a lexical tone at a preattentive stage is actually lateralized to the right hemisphere. We frequently presented to native Mandarin Chinese speakers a meaningful auditory word with a consonant-vowel structure and infrequently varied either its lexical tone or initial consonant using an odd-ball paradigm to create a contrast resulting in a change in word meaning. The lexical tone contrast evoked a stronger preattentive response, as revealed by whole-head electric recordings of the mismatch negativity, in the right hemisphere than in the left hemisphere, whereas the consonant contrast produced an opposite pattern. Given the distinct acoustic features between a lexical tone and a consonant, this opposite lateralization pattern suggests the dependence of hemisphere dominance mainly on acoustic cues before speech input is mapped into a semantic representation in the processing stream. PMID:17159136

  18. Spatial and Temporal Patterns of Throughfall Amounts and Solutes in a Tropical Montane Forest - Comparisons with Findings From Lowland Rain Forests

    NASA Astrophysics Data System (ADS)

    Zimmermann, A.

    2007-05-01

    The diverse tree species composition, irregular shaped tree crowns and a multi-layered forest structure affect the redistribution of rainfall in lower montane rain forests. In addition, abundant epiphyte biomass and associated canopy humus influence spatial patterns of throughfall. The spatial variability of throughfall amounts controls spatial patterns of solute concentrations and deposition. Moreover, the living and dead biomass interacts with the rainwater during the passage through the canopy and creates a chemical variability of its own. Since spatial and temporal patterns are intimately linked, the analysis of temporal solute concentration dynamics is an important step to understand the emerging spatial patterns. I hypothesized that: (1) the spatial variability of volumes and chemical composition of throughfall is particularly high compared with other forests because of the high biodiversity and epiphytism, (2) the temporal stability of the spatial pattern is high because of stable structures in the canopy (e.g. large epiphytes) that show only minor changes during the short term observation period, and (3) the element concentrations decrease with increasing rainfall because of exhausting element pools in the canopy. The study area at 1950 m above sea level is located in the south Ecuadorian Andes far away from anthropogenic emission sources and marine influences. Rain and throughfall were collected from August to October 2005 on an event and within-event basis for five precipitation periods and analyzed for pH, K, Na, Ca, Mg, NH4+, Cl-, NO3-, PO43-, TN, TP and TOC. Throughfall amounts and most of the solutes showed a high spatial variability, thereby the variability of H+, K, Ca, Mg, Cl- and NO3- exceeded those from a Brazilian tropical rain forest. The temporal persistence of the spatial patterns was high for throughfall amounts and varied depending on the solute. Highly persistent time stability patterns were detected for K, Mg and TOC concentrations. Time

  19. Acoustic detail guides attention allocation in a selective listening task.

    PubMed

    Wöstmann, Malte; Schröger, Erich; Obleser, Jonas

    2015-05-01

    The flexible allocation of attention enables us to perceive and behave successfully despite irrelevant distractors. How do acoustic challenges influence this allocation of attention, and to what extent is this ability preserved in normally aging listeners? Younger and healthy older participants performed a masked auditory number comparison while EEG was recorded. To vary selective attention demands, we manipulated perceptual separability of spoken digits from a masking talker by varying acoustic detail (temporal fine structure). Listening conditions were adjusted individually to equalize stimulus audibility as well as the overall level of performance across participants. Accuracy increased, and response times decreased with more acoustic detail. The decrease in response times with more acoustic detail was stronger in the group of older participants. The onset of the distracting speech masker triggered a prominent contingent negative variation (CNV) in the EEG. Notably, CNV magnitude decreased parametrically with increasing acoustic detail in both age groups. Within identical levels of acoustic detail, larger CNV magnitude was associated with improved accuracy. Across age groups, neuropsychological markers further linked early CNV magnitude directly to individual attentional capacity. Results demonstrate for the first time that, in a demanding listening task, instantaneous acoustic conditions guide the allocation of attention. Second, such basic neural mechanisms of preparatory attention allocation seem preserved in healthy aging, despite impending sensory decline.

  20. Temporal patterns of physical activity in Olympic dinghy racing.

    PubMed

    Legg, S; Mackie, H; Smith, P

    1999-12-01

    The objective of the present study was to determine the temporal patterns of physical activity in four classes of Olympic racing dinghy. Descriptive. A field (on-water) study. Nineteen elite New Zealand sailors (fifteen male and four female). Not applicable. The temporal pattern (duration and frequency) and nature of the physical activities of each sailor during each leg of simulated races were recorded on video tape and subsequently systematically quantified and categorised using notational analysis. The accumulated percentage of total leg time spent sitting (upright or leaning backwards), hiking (upright or fully extended) whilst trimming and whilst pumping the mainsheet and for the time spent on rig adjustments, tacking and gybing were calculated for both up-wind and off-wind sailing. When sailing up-wind, the most time was spent hiking upright (average 29-66% of total leg time) while trimming the mainsheet. During off-wind sailing, sailors spent the most time sitting upright while trimming the mainsheet (average 29-55% total leg time). Hiking upright while trimming the mainsheet was executed the greatest number of times (average 15.8-23.9) when sailing up-wind and sitting upright while trimming was executed the most times (average 3.5-7.4) when sailing off-wind. The most lengthy continuous activity was hiking upright while trimming the mainsheet when sailing up-wind (9-18 seconds) and sitting upright while trimming the mainsheet when sailing off-wind (17-34 seconds). The most physically demanding aspect of Olympic yacht racing is hiking. It occurs for the majority of up-wind legs when the wind starts to exceed approximately 8 knots. The only respite that the sailor gets from hiking is during tacking, rig adjustments or sitting in-board for brief periods when the wind is low. Sustained hiking tends to last for no more than approximately 20 seconds before the sailor changes to either a more extended or more upright hiking posture. The physical demands during off

  1. Searching Electronic Health Records for Temporal Patterns in Patient Histories: A Case Study with Microsoft Amalga

    PubMed Central

    Plaisant, Catherine; Lam, Stanley; Shneiderman, Ben; Smith, Mark S.; Roseman, David; Marchand, Greg; Gillam, Michael; Feied, Craig; Handler, Jonathan; Rappaport, Hank

    2008-01-01

    As electronic health records (EHR) become more widespread, they enable clinicians and researchers to pose complex queries that can benefit immediate patient care and deepen understanding of medical treatment and outcomes. However, current query tools make complex temporal queries difficult to pose, and physicians have to rely on computer professionals to specify the queries for them. This paper describes our efforts to develop a novel query tool implemented in a large operational system at the Washington Hospital Center (Microsoft Amalga, formerly known as Azyxxi). We describe our design of the interface to specify temporal patterns and the visual presentation of results, and report on a pilot user study looking for adverse reactions following radiology studies using contrast. PMID:18999158

  2. Soundscapes from a Tropical Eastern Pacific reef and a Caribbean Sea reef

    NASA Astrophysics Data System (ADS)

    Staaterman, E.; Rice, A. N.; Mann, D. A.; Paris, C. B.

    2013-06-01

    Underwater soundscapes vary due to the abiotic and biological components of the habitat. We quantitatively characterized the acoustic environments of two coral reef habitats, one in the Tropical Eastern Pacific (Panama) and one in the Caribbean (Florida Keys), over 2-day recording durations in July 2011. We examined the frequency distribution, temporal variability, and biological patterns of sound production and found clear differences. The Pacific reef exhibited clear biological patterns and high temporal variability, such as the onset of snapping shrimp noise at night, as well as a 400-Hz daytime band likely produced by damselfish. In contrast, the Caribbean reef had high sound levels in the lowest frequencies, but lacked clear temporal patterns. We suggest that acoustic measures are an important element to include in reef monitoring programs, as the acoustic environment plays an important role in the ecology of reef organisms at multiple life-history stages.

  3. Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE.

    PubMed

    Quaglio, Pietro; Yegenoglu, Alper; Torre, Emiliano; Endres, Dominik M; Grün, Sonja

    2017-01-01

    Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons). In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST). We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE) analysis.

  4. Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE

    PubMed Central

    Quaglio, Pietro; Yegenoglu, Alper; Torre, Emiliano; Endres, Dominik M.; Grün, Sonja

    2017-01-01

    Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons). In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST). We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE) analysis. PMID:28596729

  5. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning

    PubMed Central

    Tian, Liangfei; Martin, Nicolas; Bassindale, Philip G.; Patil, Avinash J.; Li, Mei; Barnes, Adrian; Drinkwater, Bruce W.; Mann, Stephen

    2016-01-01

    The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of ‘water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour. PMID:27708286

  6. Near-Term Fetuses Process Temporal Features of Speech

    ERIC Educational Resources Information Center

    Granier-Deferre, Carolyn; Ribeiro, Aurelie; Jacquet, Anne-Yvonne; Bassereau, Sophie

    2011-01-01

    The perception of speech and music requires processing of variations in spectra and amplitude over different time intervals. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, but whether they can process complex auditory streams, such as speech sequences and more specifically their temporal variations, fast or…

  7. Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing

    PubMed Central

    Doelling, Keith; Arnal, Luc; Ghitza, Oded; Poeppel, David

    2013-01-01

    A growing body of research suggests that intrinsic neuronal slow (< 10 Hz) oscillations in auditory cortex appear to track incoming speech and other spectro-temporally complex auditory signals. Within this framework, several recent studies have identified critical-band temporal envelopes as the specific acoustic feature being reflected by the phase of these oscillations. However, how this alignment between speech acoustics and neural oscillations might underpin intelligibility is unclear. Here we test the hypothesis that the ‘sharpness’ of temporal fluctuations in the critical band envelope acts as a temporal cue to speech syllabic rate, driving delta-theta rhythms to track the stimulus and facilitate intelligibility. We interpret our findings as evidence that sharp events in the stimulus cause cortical rhythms to re-align and parse the stimulus into syllable-sized chunks for further decoding. Using magnetoencephalographic recordings, we show that by removing temporal fluctuations that occur at the syllabic rate, envelope-tracking activity is reduced. By artificially reinstating these temporal fluctuations, envelope-tracking activity is regained. These changes in tracking correlate with intelligibility of the stimulus. Together, the results suggest that the sharpness of fluctuations in the stimulus, as reflected in the cochlear output, drive oscillatory activity to track and entrain to the stimulus, at its syllabic rate. This process likely facilitates parsing of the stimulus into meaningful chunks appropriate for subsequent decoding, enhancing perception and intelligibility. PMID:23791839

  8. A possible role for a paralemniscal auditory pathway in the coding of slow temporal information

    PubMed Central

    Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina

    2010-01-01

    Low frequency temporal information present in speech is critical for normal perception, however the neural mechanism underlying the differentiation of slow rates in acoustic signals is not known. Data from the rat trigeminal system suggest that the paralemniscal pathway may be specifically tuned to code low-frequency temporal information. We tested whether this phenomenon occurs in the auditory system by measuring the representation of temporal rate in lemniscal and paralemniscal auditory thalamus and cortex in guinea pig. Similar to the trigeminal system, responses measured in auditory thalamus indicate that slow rates are differentially represented in a paralemniscal pathway. In cortex, both lemniscal and paralemniscal neurons indicated sensitivity to slow rates. We speculate that a paralemniscal pathway in the auditory system may be specifically tuned to code low frequency temporal information present in acoustic signals. These data suggest that somatosensory and auditory modalities have parallel sub-cortical pathways that separately process slow rates and the spatial representation of the sensory periphery. PMID:21094680

  9. Spontaneous generalization of abstract multimodal patterns in young domestic chicks.

    PubMed

    Versace, Elisabetta; Spierings, Michelle J; Caffini, Matteo; Ten Cate, Carel; Vallortigara, Giorgio

    2017-05-01

    From the early stages of life, learning the regularities associated with specific objects is crucial for making sense of experiences. Through filial imprinting, young precocial birds quickly learn the features of their social partners by mere exposure. It is not clear though to what extent chicks can extract abstract patterns of the visual and acoustic stimuli present in the imprinting object, and how they combine them. To investigate this issue, we exposed chicks (Gallus gallus) to three days of visual and acoustic imprinting, using either patterns with two identical items or patterns with two different items, presented visually, acoustically or in both modalities. Next, chicks were given a choice between the familiar and the unfamiliar pattern, present in either the multimodal, visual or acoustic modality. The responses to the novel stimuli were affected by their imprinting experience, and the effect was stronger for chicks imprinted with multimodal patterns than for the other groups. Interestingly, males and females adopted a different strategy, with males more attracted by unfamiliar patterns and females more attracted by familiar patterns. Our data show that chicks can generalize abstract patterns by mere exposure through filial imprinting and that multimodal stimulation is more effective than unimodal stimulation for pattern learning.

  10. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances

    NASA Technical Reports Server (NTRS)

    Balakamar, P.; Kegerise, Michael A.

    2011-01-01

    Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum.

  11. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.

    PubMed

    Tillein, J; Hartmann, R; Kral, A

    2015-04-01

    The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue

  12. Spatial and temporal patterns of North Carolina pedestrian and bicycle plans.

    PubMed

    Aytur, Semra A; Rodriguez, Daniel A; Kerr, Zachary Y; Ji, Kai; Evenson, Kelly R

    2013-01-01

    Pedestrian and bicycle plans support community-level physical activity. In North Carolina, pedestrian/bicycle plans are becoming more prevalent. However, no studies have examined the spatial and temporal diffusion of pedestrian/bicycle plans. This study assessed (a) temporal trends associated with municipal pedestrian/bicycle planning from 1974 to 2011 and (b) spatial patterns associated with municipal plans, specifically, whether the publication of a pedestrian/bicycle plan in a given year was associated with the number of neighboring municipalities with plans. North Carolina from 1974 to 2011. The main outcome was date of publication of all North Carolina municipal pedestrian and bicycle plans (1974-2011). We calculated Euclidean distances from each municipality center to all other municipality centers to derive whether municipalities were within 20 and 50 miles of each other. Sociodemographic covariates (eg, education, grant funding status, poverty, urbanicity, racial composition, population size, population growth) were collected from the US Census of Population (1980-2010) and the American Community Survey (2006-2010). Time series models fitted by generalized estimating equations were used to assess relationships between plan presence and the temporal and spatial predictor variables. The number of pedestrian and bicycle plans significantly increased over time, especially after 2006 when a state grant funding program was initiated. Unadjusted models indicated that municipalities were significantly more likely to have a pedestrian plan if higher numbers of neighboring municipalities had pedestrian plans. After adjustment for sociodemographic covariates and funding source, this relationship was attenuated but remained statistically significant. For bicycle plans, no significant associations were observed between plan presence and the number of neighboring municipalities with bicycle plans in adjusted models. Findings from this study can be used to generate

  13. Aberrant topological patterns of brain structural network in temporal lobe epilepsy.

    PubMed

    Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William

    2015-12-01

    Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of

  14. Effect of Temporal Pattern of Radiation in Intensity Modulated Radiotherapy on Cell Cycle Progression and Apoptosis of ACHN Renal Cell Carcinoma Cell Line.

    PubMed

    Khorramizadeh, Maryam; Saberi, Alihossein; Tahmasebi-Birgani, Mohammadjavad; Shokrani, Parvaneh; Amouhedari, Alireza

    The existence of a hypersensitive radiation response to doses below 1 Gy is well established for many normal and tumor cell lines. The aim of this study was to ascertain the impact of temporal pattern modeling IMRT on survival, cell cycle and apoptosis of human RCC cell line ACHN, so as to provide radiobiological basis for optimizing IMRT plans for this disease. The ACHN renal cell carcinoma cell line was used in this study. Impact of the triangle, V, small-large or large-small temporal patterns in the presence and absence of threshold dose of hyper-radiosensitivity at the beginning of patterns were studied using soft agarclonogenic assays. Cell cycle and apoptosis analysis were performed after irradiation with the temporal patterns. For triangle and small-large dose sequences, survival fraction was significantly reduced after irradiation with or without threshold dose of hyper-radiosensitivity at the beginning of the patterns. In all of the dose patterns, cell cycle distributions and the percentage of apoptotic cells at 24 h after irradiation with or without priming dose of hyper-radiosensitivity showed no significant difference. However, apoptotic cells were increased when beams with the smallest dose applied at the beginning of dose pattern like triangle and small-large dose sequence. These data show that the biologic effects of single fraction may differ in clinical settings depending on the size and sequence of the partial fractions. Doses at the beginning but not at the end of sequences may change cytotoxicity effects of radiation.

  15. Effects of Temporal Sequencing and Auditory Discrimination on Children's Memory Patterns for Tones, Numbers, and Nonsense Words

    ERIC Educational Resources Information Center

    Gromko, Joyce Eastlund; Hansen, Dee; Tortora, Anne Halloran; Higgins, Daniel; Boccia, Eric

    2009-01-01

    The purpose of this study was to determine whether children's recall of tones, numbers, and words was supported by a common temporal sequencing mechanism; whether children's patterns of memory for tones, numbers, and nonsense words were the same despite differences in symbol systems; and whether children's recall of tones, numbers, and nonsense…

  16. Biophysical modeling of the temporal niche: from first principles to the evolution of activity patterns.

    PubMed

    Levy, Ofir; Dayan, Tamar; Kronfeld-Schor, Noga; Porter, Warren P

    2012-06-01

    Most mammals can be characterized as nocturnal or diurnal. However infrequently, species may overcome evolutionary constraints and alter their activity patterns. We modeled the fundamental temporal niche of a diurnal desert rodent, the golden spiny mouse, Acomys russatus. This species can shift into nocturnal activity in the absence of its congener, the common spiny mouse, Acomys cahirinus, suggesting that it was competitively driven into diurnality and that this shift in a small desert rodent may involve physiological costs. Therefore, we compared metabolic costs of diurnal versus nocturnal activity using a biophysical model to evaluate the preferred temporal niche of this species. The model predicted that energy expenditure during foraging is almost always lower during the day except during midday in summer at the less sheltered microhabitat. We also found that a shift in summer to foraging in less sheltered microhabitats in response to predation pressure and food availability involves a significant physiological cost moderated by midday reduction in activity. Thus, adaptation to diurnality may reflect the "ghost of competition past"; climate-driven diurnality is an alternative but less likely hypothesis. While climate is considered to play a major role in the physiology and evolution of mammals, this is the first study to model its potential to affect the evolution of activity patterns of mammals.

  17. Restoration of Central Programmed Movement Pattern by Temporal Electrical Stimulation-Assisted Training in Patients with Spinal Cerebellar Atrophy.

    PubMed

    Huang, Ying-Zu; Chang, Yao-Shun; Hsu, Miao-Ju; Wong, Alice M K; Chang, Ya-Ju

    2015-01-01

    Disrupted triphasic electromyography (EMG) patterns of agonist and antagonist muscle pairs during fast goal-directed movements have been found in patients with hypermetria. Since peripheral electrical stimulation (ES) and motor training may modulate motor cortical excitability through plasticity mechanisms, we aimed to investigate whether temporal ES-assisted movement training could influence premovement cortical excitability and alleviate hypermetria in patients with spinal cerebellar ataxia (SCA). The EMG of the agonist extensor carpi radialis muscle and antagonist flexor carpi radialis muscle, premovement motor evoked potentials (MEPs) of the flexor carpi radialis muscle, and the constant and variable errors of movements were assessed before and after 4 weeks of ES-assisted fast goal-directed wrist extension training in the training group and of general health education in the control group. After training, the premovement MEPs of the antagonist muscle were facilitated at 50 ms before the onset of movement. In addition, the EMG onset latency of the antagonist muscle shifted earlier and the constant error decreased significantly. In summary, temporal ES-assisted training alleviated hypermetria by restoring antagonist premovement and temporal triphasic EMG patterns in SCA patients. This technique may be applied to treat hypermetria in cerebellar disorders. (This trial is registered with NCT01983670.).

  18. Unravelling spatio-temporal evapotranspiration patterns in topographically complex landscapes

    NASA Astrophysics Data System (ADS)

    Metzen, Daniel; Sheridan, Gary; Nyman, Petter; Lane, Patrick

    2016-04-01

    Vegetation co-evolves with soils and topography under a given long-term climatic forcing. Previous studies demonstrated a strong eco-hydrologic feedback between topography, vegetation and energy and water fluxes. Slope orientation (aspect and gradient) alter the magnitude of incoming solar radiation resulting in larger evaporative losses and less water availability on equator-facing slopes. Furthermore, non-local water inputs from upslope areas potentially contribute to available water at downslope positions. The combined effect of slope orientation and drainage position creates complex spatial patterns in biological productivity and pedogenesis, which in turn alter the local hydrology. In complex upland landscapes, topographic alteration of incoming radiation can cause substantial aridity index (ratio of potential evapotranspiration to precipitation) variations over small spatial extents. Most of the upland forests in south-east Australia are located in an aridity index (AI) range of 1-2, around the energy limited to water limited boundary, where forested systems are expected to be most sensitive to AI changes. In this research we aim to improve the fundamental understanding of spatio-temporal evolution of evapotranspiration (ET) patterns in complex terrain, accounting for local topographic effects on system properties (e.g. soil depth, sapwood area, leaf area) and variation in energy and water exchange processes due to slope orientation and drainage position. Six measurement plots were set-up in a mixed species eucalypt forest on a polar and equatorial-facing hillslope (AI ˜1.3 vs. 1.8) at varying drainage position (ridge, mid-slope, gully), while minimizing variations in other factors, e.g. geology and weather patterns. Sap flow, soil water content, incoming solar radiation and throughfall were continuously monitored at field sites spanning a wide range of soil depth (0.5 - >3m), maximum tree heights (17 - 51m) and LAI (1.2 - 4.6). Site-specific response curves

  19. Temporal patterns of charcoal burning suicides among the working age population in Hong Kong SAR: the influence of economic activity status and sex

    PubMed Central

    2012-01-01

    Background Charcoal burning in a sealed room has recently emerged as the second most common suicide means in Hong Kong, causing approximately 200 deaths each year. As charcoal burning suicide victims have a unique sociodemographic profile (i.e., predominantly economically active men), they may commit suicide at specific times. However, little is known about the temporal patterns of charcoal burning suicides. Methods Suicide data from 2001 to 2008 on victims of usual working age (20–59) were obtained from the registered death files of the Census and Statistics Department of Hong Kong. A total of 1649 cases of charcoal burning suicide were analyzed using a two-step procedure, which first examined the temporal asymmetries in the incidence of suicide, and second investigated whether these asymmetries were influenced by sex and/or economic activity status. Poisson regression analyses were employed to model the monthly and daily patterns of suicide by economic activity status and sex. Results Our findings revealed pronounced monthly and daily temporal variations in the pattern of charcoal burning suicides in Hong Kong. Consistent with previous findings on overall suicide deaths, there was an overall spring peak in April, and Monday was the common high risk day for all groups. Although sex determined the pattern of variation in charcoal burning suicides, the magnitude of the variation was influenced by the economic activity status of the victims. Conclusion The traditional classification of suicide methods as either violent or nonviolent tends to elide the temporal variations of specific methods. The interaction between sex and economic activity status observed in the present study indicates that sex should be taken into consideration when investigating the influence of economic activity status on temporal variations of suicide. This finding also suggests that suicide prevention efforts should be both time- and subgroup-specific. PMID:22770504

  20. Temporal patterns of charcoal burning suicides among the working age population in Hong Kong SAR: the influence of economic activity status and sex.

    PubMed

    Law, Chi-kin; Leung, Candi M C

    2012-07-06

    Charcoal burning in a sealed room has recently emerged as the second most common suicide means in Hong Kong, causing approximately 200 deaths each year. As charcoal burning suicide victims have a unique sociodemographic profile (i.e., predominantly economically active men), they may commit suicide at specific times. However, little is known about the temporal patterns of charcoal burning suicides. Suicide data from 2001 to 2008 on victims of usual working age (20-59) were obtained from the registered death files of the Census and Statistics Department of Hong Kong. A total of 1649 cases of charcoal burning suicide were analyzed using a two-step procedure, which first examined the temporal asymmetries in the incidence of suicide, and second investigated whether these asymmetries were influenced by sex and/or economic activity status. Poisson regression analyses were employed to model the monthly and daily patterns of suicide by economic activity status and sex. Our findings revealed pronounced monthly and daily temporal variations in the pattern of charcoal burning suicides in Hong Kong. Consistent with previous findings on overall suicide deaths, there was an overall spring peak in April, and Monday was the common high risk day for all groups. Although sex determined the pattern of variation in charcoal burning suicides, the magnitude of the variation was influenced by the economic activity status of the victims. The traditional classification of suicide methods as either violent or nonviolent tends to elide the temporal variations of specific methods. The interaction between sex and economic activity status observed in the present study indicates that sex should be taken into consideration when investigating the influence of economic activity status on temporal variations of suicide. This finding also suggests that suicide prevention efforts should be both time- and subgroup-specific.

  1. Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity

    PubMed Central

    Keller, Stefanie; Bartolino, Valerio; Hidalgo, Manuel; Bitetto, Isabella; Casciaro, Loredana; Cuccu, Danila; Esteban, Antonio; Garcia, Cristina; Garofalo, Germana; Josephides, Marios; Jadaud, Angelique; Lefkaditou, Evgenia; Maiorano, Porzia; Manfredi, Chiara; Marceta, Bojan; Massutí, Enric; Micallef, Reno; Peristeraki, Panagiota; Relini, Giulio; Sartor, Paolo; Spedicato, Maria Teresa; Tserpes, George; Quetglas, Antoni

    2016-01-01

    Species diversity is widely recognized as an important trait of ecosystems’ functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200–400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversity. PMID:26760965

  2. Prosodic domain-initial effects on the acoustic structure of vowels

    NASA Astrophysics Data System (ADS)

    Fox, Robert Allen; Jacewicz, Ewa; Salmons, Joseph

    2003-10-01

    In the process of language change, vowels tend to shift in ``chains,'' leading to reorganizations of entire vowel systems over time. A long research tradition has described such patterns, but little is understood about what factors motivate such shifts. Drawing data from changes in progress in American English dialects, the broad hypothesis is tested that changes in vowel systems are related to prosodic organization and stress patterns. Changes in vowels under greater prosodic prominence correlate directly with, and likely underlie, historical patterns of shift. This study examines acoustic characteristics of vowels at initial edges of prosodic domains [Fougeron and Keating, J. Acoust. Soc. Am. 101, 3728-3740 (1997)]. The investigation is restricted to three distinct prosodic levels: utterance (sentence-initial), phonological phrase (strong branch of a foot), and syllable (weak branch of a foot). The predicted changes in vowels /e/ and /ɛ/ in two American English dialects (from Ohio and Wisconsin) are examined along a set of acoustic parameters: duration, formant frequencies (including dynamic changes over time), and fundamental frequency (F0). In addition to traditional methodology which elicits list-like intonation, a design is adapted to examine prosodic patterns in more typical sentence intonations. [Work partially supported by NIDCD R03 DC005560-01.

  3. Spatial Patterns of Inshore Marine Soundscapes.

    PubMed

    McWilliam, Jamie

    2016-01-01

    Passive acoustic monitoring was employed to investigate spatial patterns of soundscapes within a marine reserve. High energy level broadband snaps dominated nearly all habitat soundscapes. Snaps, the principal acoustic feature of soundscapes, were primarily responsible for the observed spatial patterns, and soundscapes appeared to retain a level of compositional and configurational stability. In the presence of high-level broadband snaps, soundscape composition was more influenced by geographic location than habitat type. Future research should focus on investigating the spatial patterns of soundscapes across a wider range of coastal and offshore seascapes containing a variety of distinct ecosystems and habitats.

  4. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat

    USGS Publications Warehouse

    Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.

    2016-01-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef

  5. Investigating the Temporal Patterns within and between Intrinsic Connectivity Networks under Eyes-Open and Eyes-Closed Resting States: A Dynamical Functional Connectivity Study Based on Phase Synchronization

    PubMed Central

    Wang, Xun-Heng; Li, Lihua; Xu, Tao; Ding, Zhongxiang

    2015-01-01

    The brain active patterns were organized differently under resting states of eyes open (EO) and eyes closed (EC). The altered voxel-wise and regional-wise resting state active patterns under EO/EC were found by static analysis. More importantly, dynamical spontaneous functional connectivity has been observed in the resting brain. To the best of our knowledge, the dynamical mechanisms of intrinsic connectivity networks (ICNs) under EO/EC remain largely unexplored. The goals of this paper were twofold: 1) investigating the dynamical intra-ICN and inter-ICN temporal patterns during resting state; 2) analyzing the altered dynamical temporal patterns of ICNs under EO/EC. To this end, a cohort of healthy subjects with scan conditions of EO/EC were recruited from 1000 Functional Connectomes Project. Through Hilbert transform, time-varying phase synchronization (PS) was applied to evaluate the inter-ICN synchrony. Meanwhile, time-varying amplitude was analyzed as dynamical intra-ICN temporal patterns. The results found six micro-states of inter-ICN synchrony. The medial visual network (MVN) showed decreased intra-ICN amplitude during EC relative to EO. The sensory-motor network (SMN) and auditory network (AN) exhibited enhanced intra-ICN amplitude during EC relative to EO. Altered inter-ICN PS was found between certain ICNs. Particularly, the SMN and AN exhibited enhanced PS to other ICNs during EC relative to EO. In addition, the intra-ICN amplitude might influence the inter-ICN synchrony. Moreover, default mode network (DMN) might play an important role in information processing during EO/EC. Together, the dynamical temporal patterns within and between ICNs were altered during different scan conditions of EO/EC. Overall, the dynamical intra-ICN and inter-ICN temporal patterns could benefit resting state fMRI-related research, and could be potential biomarkers for human functional connectome. PMID:26469182

  6. Impacts of short-time scale water column variability on broadband high-frequency acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Eickmeier, Justin

    Acoustical oceanography is one way to study the ocean, its internal layers, boundaries and all processes occurring within using underwater acoustics. Acoustical sensing techniques allows for the measurement of ocean processes from within that logistically or financially preclude traditional in-situ measurements. Acoustic signals propagate as pressure wavefronts from a source to a receiver through an ocean medium with variable physical parameters. The water column physical parameters that change acoustic wave propagation in the ocean include temperature, salinity, current, surface roughness, seafloor bathymetry, and vertical stratification over variable time scales. The impacts of short-time scale water column variability on acoustic wave propagation include coherent and incoherent surface reflections, wavefront arrival time delay, focusing or defocusing of the intensity of acoustic beams and refraction of acoustic rays. This study focuses on high-frequency broadband acoustic waves, and examines the influence of short-time scale water column variability on broadband high-frequency acoustics, wavefronts, from 7 to 28 kHz, in shallow water. Short-time scale variability is on the order of seconds to hours and the short-spatial scale variability is on the order of few centimeters. Experimental results were collected during an acoustic experiment along 100 m isobaths and data analysis was conducted using available acoustic wave propagation models. Three main topics are studied to show that acoustic waves are viable as a remote sensing tool to measure oceanographic parameters in shallow water. First, coherent surface reflections forming striation patterns, from multipath receptions, through rough surface interaction of broadband acoustic signals with the dynamic sea surface are analyzed. Matched filtered results of received acoustic waves are compared with a ray tracing numerical model using a sea surface boundary generated from measured water wave spectra at the time of

  7. Long-term analysis of spatio-temporal patterns in population dynamics and demography of juvenile Pinfish (Lagodon rhomboides)

    NASA Astrophysics Data System (ADS)

    Chacin, D. H.; Switzer, T. S.; Ainsworth, C. H.; Stallings, C. D.

    2016-12-01

    In estuarine systems, proximity to the ocean has the potential to directly and indirectly drive patterns of fish distribution and population dynamics. To test this hypothesis, we conducted a comprehensive analysis of fisheries-independent data and quantified patterns of density, biomass, and growth rates of juvenile Pinfish (Lagodon rhomboides) across spatial and temporal scales in Tampa Bay, Florida, USA. Spatially, the highest density and biomass were found in the outermost regions (closest to the Gulf of Mexico) of the Bay, and these patterns were generally consistent temporally. Inter-annually, Pinfish density and biomass were the highest during periods coinciding with favorable oceanographic conditions (e.g., anomalously intense and prolonged upwelling) for across-shelf transport of larvae from spawning grounds in the Gulf to Tampa Bay. Intra-annually, density and biomass were the highest during spring and summer likely due to the combined effects of spawning timing (and delivery of new settlers), and high somatic growth fueled by increased secondary and primary productivity. Declines in density and biomass during the late summer through early winter were possibly due to high post-settlement mortality and egress to offshore habitats. Pinfish increased predictably in size across the months of the calendar year, and tended to be larger and grew faster in the innermost regions of the Bay, which were located farthest from the Gulf. Pinfish density was related to the proximity to the Gulf of Mexico, with the outermost regions of the Bay having greater seagrass cover, higher salinity, and being closer to the offshore larval pool where spawning occurs. Thus, this study provided evidence that distance to the ocean was an important driver of biotic and abiotic factors that influenced Pinfish demographic rates across spatial and temporal scales in the largest estuary in Florida.

  8. Transient Auditory Storage of Acoustic Details Is Associated with Release of Speech from Informational Masking in Reverberant Conditions

    ERIC Educational Resources Information Center

    Huang, Ying; Huang, Qiang; Chen, Xun; Wu, Xihong; Li, Liang

    2009-01-01

    Perceptual integration of the sound directly emanating from the source with reflections needs both temporal storage and correlation computation of acoustic details. We examined whether the temporal storage is frequency dependent and associated with speech unmasking. In Experiment 1, a break in correlation (BIC) between interaurally correlated…

  9. Multi-instrument Method to Map Spatial and Temporal Patterns of Snowmelt Infiltration

    NASA Astrophysics Data System (ADS)

    Hyde, K.; Beverly, D.; Thayer, D.; Speckman, H. N.; Parsekian, A.; Kelleners, T.

    2015-12-01

    Mapping spatial patterns of relative soil moisture over time may improve understanding of snowmelt infiltration processes in heterogeneous systems. Conventional soil water measurement methods disturb soil properties and rocky materials generally limit installation of monitoring instruments to shallow depths in mountainous landscapes with snowmelt dominated hydrology. Modifications to existing technology combined with low impact installation methods provide high temporal and spatial resolution of relative soil moisture as well as a temperature profile and water table level. Closely spaced (10cm) electrical resistance pads are combined in a small diameter (2.54 cm) tube with temperature probes each 50cm, a pressure transducer, and a tube to extract groundwater for stable isotope analysis. This vertical probe array (VPA) extends 3.2m and is installed in a small diameter (4 cm) bore using a backpack drill limiting soil disturbance. Two VPAs are installed in the Snowy Range of Wyoming, one in a forested mountainous environment impacted by mortality by insects and disease and the other (limited to resistance pads only) in recently burned sagelands. Each VPA is co-located with meteorological stations. Eddy-covariance, sap flux, electrical resistivity, snowpack survey, and other hillslope eco-hydrology measurements accompany the fully instrumented VPA. Data are sampled and recorded at 5 or 15 minute intervals starting in December 2014. Over the winter both sites exhibit highly variable patterns of relatively dry soils with steady increase in wetness. Abrupt increases in relative wetness occurred with short periods of warming temperatures in Spring. Following a temperature increase in the forested site the relative moisture dramatically increased over a period of several hours at all depths as water level rose 1m within 8 hours. In contrast, following snowmelt relative moisture in the sageland site increased gradually and systematically with depth over a period of two weeks

  10. a Three-Step Spatial-Temporal Clustering Method for Human Activity Pattern Analysis

    NASA Astrophysics Data System (ADS)

    Huang, W.; Li, S.; Xu, S.

    2016-06-01

    How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time) to four dimensions (space, time and semantics). More specifically, not only a location and time that people stay and spend are collected, but also what people "say" for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The results show that the

  11. Temporal patterns in appearance of sooty blotch and flyspeck fungi on apples.

    PubMed

    Batzer, J C; Sisson, A J; Harrington, T C; Mayfield, D A; Gleason, M L

    2012-11-01

    Sooty blotch and flyspeck (SBFS) is a complex of about 80 fungal species that blemish the surface of apple fruit in humid regions worldwide. The dark colonies become visible in mid- to late summer, reducing the value of fresh fruit. Although many SBFS species can co-occur in the same orchard and even on the same apple, little is known about temporal patterns of these species, including the timing of colony appearance. To test the hypothesis that colonies of SBFS species appear on apples at characteristic times during the growing season, 50 apples were monitored weekly at three Iowa orchards in 2006 and six orchards in 2007 and 2008. However, a mean of 24.3 apples per orchard was assessed at harvest because of apple drop throughout the season. Colonies were marked with colored pens as they appeared. After harvest and after storage of apples at 2 °C for 3 months, SBFS colonies on each fruit were counted and classified by morphology, and a representative subset of colonies was excised from the fruit and preserved on dried peels for species identification using rDNA. Seventeen species were identified. Stomiopeltis spp. RS1 and RS2 appeared on apples 10 to 14 days before other SBFS taxa. Dissoconium aciculare was generally the last species to appear on apple fruit, and it continued to appear during postharvest storage. The most prevalent taxa in Iowa orchards were also the most abundant. Diversity of SBFS fungi in an orchard was positively correlated with cumulative hours of surface wetness hours due to rainfall or dew, which is believed to favor growth of SBFS fungi. Species-specific information about temporal patterns of appearance on apple fruit may lead to improved SBFS management strategies.

  12. Acoustic Tomography in the Canary Basin: Meddies and Tides

    NASA Astrophysics Data System (ADS)

    Dushaw, Brian D.; Gaillard, Fabienne; Terre, Thierry

    2017-11-01

    An acoustic propagation experiment over 308 km range conducted in the Canary Basin in 1997-1998 was used to assess the ability of ocean acoustic tomography to measure the flux of Mediterranean water and Meddies. Instruments on a mooring adjacent to the acoustic path measured the southwestward passage of a strong Meddy in temperature, salinity, and current. Over 9 months of transmissions, the acoustic arrival pattern was an initial broad stochastic pulse varying in duration by 250-500 ms, followed eight stable, identified-ray arrivals. Small-scale sound speed fluctuations from Mediterranean water parcels littered around the sound channel axis caused acoustic scattering. Internal waves contributed more modest acoustic scattering. Based on simulations, the main effect of a Meddy passing across the acoustic path is the formation of many early-arriving, near-axis rays, but these rays are thoroughly scattered by the small-scale Mediterranean-water fluctuations. A Meddy decreases the deep-turning ray travel times by 10-30 ms. The dominant acoustic signature of a Meddy is therefore the expansion of the width of the initial stochastic pulse. While this signature appears inseparable from the other effects of Mediterranean water in this region, the acoustic time series indicates the steady passage of Mediterranean water across the acoustic path. Tidal variations caused by the mode-1 internal tides were measured by the acoustic travel times. The observed internal tides were partly predicted using a recent global model for such tides derived from satellite altimetry.

  13. Deep learning on temporal-spectral data for anomaly detection

    NASA Astrophysics Data System (ADS)

    Ma, King; Leung, Henry; Jalilian, Ehsan; Huang, Daniel

    2017-05-01

    Detecting anomalies is important for continuous monitoring of sensor systems. One significant challenge is to use sensor data and autonomously detect changes that cause different conditions to occur. Using deep learning methods, we are able to monitor and detect changes as a result of some disturbance in the system. We utilize deep neural networks for sequence analysis of time series. We use a multi-step method for anomaly detection. We train the network to learn spectral and temporal features from the acoustic time series. We test our method using fiber-optic acoustic data from a pipeline.

  14. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics: Proof-of-Concept Progress

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    A CFD-based simulation of single-stage turbine was done using the TURBO code to assess its viability for determining acoustic transmission through blade rows. Temporal and spectral analysis of the unsteady pressure data from the numerical simulations showed the allowable Tyler-Sofrin modes that are consistent with expectations. This indicated that high-fidelity acoustic transmission calculations are feasible with TURBO.

  15. Contactless microparticle control via ultrahigh frequency needle type single beam acoustic tweezers

    NASA Astrophysics Data System (ADS)

    Fei, Chunlong; Li, Ying; Zhu, Benpeng; Chiu, Chi Tat; Chen, Zeyu; Li, Di; Yang, Yintang; Kirk Shung, K.; Zhou, Qifa

    2016-10-01

    This paper reports on contactless microparticle manipulation including single-particle controlled trapping, transportation, and patterning via single beam acoustic radiation forces. As the core component of single beam acoustic tweezers, a needle type ultrasonic transducer was designed and fabricated with center frequency higher than 300 MHz and -6 dB fractional bandwidth as large as 64%. The transducer was built for an f-number close to 1.0, and the desired focal depth was achieved by press-focusing technology. Its lateral resolution was measured to be better than 6.7 μm by scanning a 4 μm tungsten wire target. Tightly focused acoustic beam produced by the transducer was shown to be capable of manipulating individual microspheres as small as 3 μm. "USC" patterning with 15 μm microspheres was demonstrated without affecting nearby microspheres. These promising results may expand the applications in biomedical and biophysical research of single beam acoustic tweezers.

  16. A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system.

    PubMed

    Dicke, Ulrike; Ewert, Stephan D; Dau, Torsten; Kollmeier, Birger

    2007-01-01

    Periodic amplitude modulations (AMs) of an acoustic stimulus are presumed to be encoded in temporal activity patterns of neurons in the cochlear nucleus. Physiological recordings indicate that this temporal AM code is transformed into a rate-based periodicity code along the ascending auditory pathway. The present study suggests a neural circuit for the transformation from the temporal to the rate-based code. Due to the neural connectivity of the circuit, bandpass shaped rate modulation transfer functions are obtained that correspond to recorded functions of inferior colliculus (IC) neurons. In contrast to previous modeling studies, the present circuit does not employ a continuously changing temporal parameter to obtain different best modulation frequencies (BMFs) of the IC bandpass units. Instead, different BMFs are yielded from varying the number of input units projecting onto different bandpass units. In order to investigate the compatibility of the neural circuit with a linear modulation filterbank analysis as proposed in psychophysical studies, complex stimuli such as tones modulated by the sum of two sinusoids, narrowband noise, and iterated rippled noise were processed by the model. The model accounts for the encoding of AM depth over a large dynamic range and for modulation frequency selective processing of complex sounds.

  17. Short-Term Fidelity, Habitat Use and Vertical Movement Behavior of the Black Rockfish Sebastes schlegelii as Determined by Acoustic Telemetry

    PubMed Central

    Zhang, Yingqiu; Xu, Qiang; Alós, Josep; Liu, Hui; Xu, Qinzeng; Yang, Hongsheng

    2015-01-01

    The recent miniaturization of acoustic tracking devices has allowed fishery managers and scientists to collect spatial and temporal data for sustainable fishery management. The spatial and temporal dimensions of fish behavior (movement and/or vertical migrations) are particularly relevant for rockfishes (Sebastes spp.) because most rockfish species are long-lived and have high site fidelity, increasing their vulnerability to overexploitation. In this study, we describe the short-term (with a tracking period of up to 46 d) spatial behavior, as determined by acoustic tracking, of the black rockfish Sebastes schlegelii, a species subject to overexploitation in the Yellow Sea of China. The average residence index (the ratio of detected days to the total period from release to the last detection) in the study area was 0.92 ± 0.13, and most of the tagged fish were detected by only one region of the acoustic receiver array, suggesting relatively high site fidelity to the study area. Acoustic tracking also suggested that this species is more frequently detected during the day than at night in our study area. However, the diel detection periodicity (24 h) was only evident for certain periods of the tracking time, as revealed by a continuous wavelet transform. The habitat selection index of tagged S. schlegelii suggested that S. schlegelii preferred natural reefs, mixed sand/artificial reef bottoms and mixed bottoms of boulder, cobble, gravel and artificial reefs. The preference of this species for the artificial reefs that were recently deployed in the study area suggests that artificial seascapes may be effective management tools to attract individuals. The vertical movement of tagged S. schlegelii was mostly characterized by bottom dwelling behavior, and there was high individual variability in the vertical migration pattern. Our results have important implications for S. schlegelii catchability, the implementation of marine protected areas, and the identification of key

  18. CHROMOSPHERIC HEATING BY ACOUSTIC WAVES COMPARED TO RADIATIVE COOLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobotka, M.; Heinzel, P.; Švanda, M.

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra ofmore » Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.« less

  19. Shelf-Scale Mapping of Fish Distribution Using Active and Passive Acoustics

    NASA Astrophysics Data System (ADS)

    Wall, Carrie C.

    Fish sound production has been associated with courtship and spawning behavior. Acoustic recordings of fish sounds can be used to identify distribution and behavior. Passive acoustic monitoring (PAM) can record large amounts of acoustic data in a specific area for days to years. These data can be collected in remote locations under potentially unsafe seas throughout a 24-hour period providing datasets unattainable using observer-based methods. However, the instruments must withstand the caustic ocean environment and be retrieved to obtain the recorded data. This can prove difficult due to the risk of PAMs being lost, stolen or damaged, especially in highly active areas. In addition, point-source sound recordings are only one aspect of fish biogeography. Passive acoustic platforms that produce low self-generated noise, have high retrieval rates, and are equipped with a suite of environmental sensors are needed to relate patterns in fish sound production to concurrently collected oceanographic conditions on large, synoptic scales. The association of sound with reproduction further invokes the need for such non-invasive, near-real time datasets that can be used to enhance current management methods limited by survey bias, inaccurate fisher reports, and extensive delays between fisheries data collection and population assessment. Red grouper (Epinephelus morio) exhibit the distinctive behavior of digging holes and producing a unique sound during courtship. These behaviors can be used to identify red grouper distribution and potential spawning habitat over large spatial scales. The goal of this research was to provide a greater understanding of the temporal and spatial distribution of red grouper sound production and holes on the central West Florida Shelf (WFS) using active sonar and passive acoustic recorders. The technology demonstrated here establishes the necessary methods to map shelf-scale fish sound production. The results of this work could aid resource

  20. Bayesian Ising approximation for learning dictionaries of multispike timing patterns in premotor neurons

    NASA Astrophysics Data System (ADS)

    Hernandez Lahme, Damian; Sober, Samuel; Nemenman, Ilya

    Important questions in computational neuroscience are whether, how much, and how information is encoded in the precise timing of neural action potentials. We recently demonstrated that, in the premotor cortex during vocal control in songbirds, spike timing is far more informative about upcoming behavior than is spike rate (Tang et al, 2014). However, identification of complete dictionaries that relate spike timing patterns with the controled behavior remains an elusive problem. Here we present a computational approach to deciphering such codes for individual neurons in the songbird premotor area RA, an analog of mammalian primary motor cortex. Specifically, we analyze which multispike patterns of neural activity predict features of the upcoming vocalization, and hence are important codewords. We use a recently introduced Bayesian Ising Approximation, which properly accounts for the fact that many codewords overlap and hence are not independent. Our results show which complex, temporally precise multispike combinations are used by individual neurons to control acoustic features of the produced song, and that these code words are different across individual neurons and across different acoustic features. This work was supported, in part, by JSMF Grant 220020321, NSF Grant 1208126, NIH Grant NS084844 and NIH Grant 1 R01 EB022872.

  1. Flow profiling of a surface-acoustic-wave nanopump.

    PubMed

    Guttenberg, Z; Rathgeber, A; Keller, S; Rädler, J O; Wixforth, A; Kostur, M; Schindler, M; Talkner, P

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  2. Flow profiling of a surface-acoustic-wave nanopump

    NASA Astrophysics Data System (ADS)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  3. A framework for the assessment of the spatial and temporal patterns of threatened coastal delphinids.

    PubMed

    Wang, Jingzhen; Yang, Yingting; Yang, Feng; Li, Yuelin; Li, Lianjie; Lin, Derun; He, Tangtian; Liang, Bo; Zhang, Tao; Lin, Yao; Li, Ping; Liu, Wenhua

    2016-01-25

    The massively accelerated biodiversity loss rate in the Anthropocene calls for an efficient and effective way to identify the spatial and temporal dynamics of endangered species. To this end, we developed a useful identification framework based on a case study of locally endangered Sousa chinensis by combining both LEK (local ecological knowledge) evaluation and regional boat-based survey methods. Our study investigated the basic ecological information of Sousa chinensis in the estuaries of eastern Guangdong that had previously been neglected, which could guide the future study and conservation. Based on the statistical testing of reported spatial and temporal dolphins sighting data from fishermen and the ecological monitoring analyses, including sighting rate, site fidelity and residence time estimations, some of the current Sousa chinensis units are likely to be geographically isolated and critically endangered, which calls for much greater conservation efforts. Given the accelerated population extinction rate and increasing budgetary constraints, our survey pattern can be applied in a timely and economically acceptable manner to the spatial and temporal assessment of other threatened coastal delphinids, particularly when population distributions are on a large scale and traditional sampling methods are difficult to implement.

  4. A framework for the assessment of the spatial and temporal patterns of threatened coastal delphinids

    NASA Astrophysics Data System (ADS)

    Wang, Jingzhen; Yang, Yingting; Yang, Feng; Li, Yuelin; Li, Lianjie; Lin, Derun; He, Tangtian; Liang, Bo; Zhang, Tao; Lin, Yao; Li, Ping; Liu, Wenhua

    2016-01-01

    The massively accelerated biodiversity loss rate in the Anthropocene calls for an efficient and effective way to identify the spatial and temporal dynamics of endangered species. To this end, we developed a useful identification framework based on a case study of locally endangered Sousa chinensis by combining both LEK (local ecological knowledge) evaluation and regional boat-based survey methods. Our study investigated the basic ecological information of Sousa chinensis in the estuaries of eastern Guangdong that had previously been neglected, which could guide the future study and conservation. Based on the statistical testing of reported spatial and temporal dolphins sighting data from fishermen and the ecological monitoring analyses, including sighting rate, site fidelity and residence time estimations, some of the current Sousa chinensis units are likely to be geographically isolated and critically endangered, which calls for much greater conservation efforts. Given the accelerated population extinction rate and increasing budgetary constraints, our survey pattern can be applied in a timely and economically acceptable manner to the spatial and temporal assessment of other threatened coastal delphinids, particularly when population distributions are on a large scale and traditional sampling methods are difficult to implement.

  5. The monaural temporal window based on masking period pattern data in school-aged children and adults.

    PubMed

    Buss, Emily; He, Shuman; Grose, John H; Hall, Joseph W

    2013-03-01

    Several lines of evidence indicate that auditory temporal resolution improves over childhood, whereas other data implicate the development of processing efficiency. The present study used the masking period pattern paradigm to examine the maturation of temporal processing in normal-hearing children (4.8 to 10.7 yrs) compared to adults. Thresholds for a brief tone were measured at 6 temporal positions relative to the period of a 5-Hz quasi-square-wave masker envelope, with a 20-dB modulation depth, as well as in 2 steady maskers. The signal was a pure tone at either 1000 or 6500 Hz, and the masker was a band of noise, either spectrally wide or narrow (21.3 and 1.4 equivalent rectangular bandwidths, respectively). Masker modulation improved thresholds more for wide than narrow bandwidths, and adults tended to receive more benefit from modulation than young children. Fits to data for the wide maskers indicated a change in window symmetry with development, reflecting relatively greater backward masking for the youngest listeners. Data for children >6.5 yrs of age appeared more adult-like for the 6500- than the 1000-Hz signal. Differences in temporal window asymmetry with listener age cannot be entirely explained as a consequence of a higher criterion for detection in children, a form of inefficiency.

  6. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Valente, Giancarlo; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2017-01-01

    Ethological views of brain functioning suggest that sound representations and computations in the auditory neural system are optimized finely to process and discriminate behaviorally relevant acoustic features and sounds (e.g., spectrotemporal modulations in the songs of zebra finches). Here, we show that modeling of neural sound representations in terms of frequency-specific spectrotemporal modulations enables accurate and specific reconstruction of real-life sounds from high-resolution functional magnetic resonance imaging (fMRI) response patterns in the human auditory cortex. Region-based analyses indicated that response patterns in separate portions of the auditory cortex are informative of distinctive sets of spectrotemporal modulations. Most relevantly, results revealed that in early auditory regions, and progressively more in surrounding regions, temporal modulations in a range relevant for speech analysis (∼2–4 Hz) were reconstructed more faithfully than other temporal modulations. In early auditory regions, this effect was frequency-dependent and only present for lower frequencies (<∼2 kHz), whereas for higher frequencies, reconstruction accuracy was higher for faster temporal modulations. Further analyses suggested that auditory cortical processing optimized for the fine-grained discrimination of speech and vocal sounds underlies this enhanced reconstruction accuracy. In sum, the present study introduces an approach to embed models of neural sound representations in the analysis of fMRI response patterns. Furthermore, it reveals that, in the human brain, even general purpose and fundamental neural processing mechanisms are shaped by the physical features of real-world stimuli that are most relevant for behavior (i.e., speech, voice). PMID:28420788

  7. Multivariate temporal pattern analysis applied to the study of rat behavior in the elevated plus maze: methodological and conceptual highlights.

    PubMed

    Casarrubea, M; Magnusson, M S; Roy, V; Arabo, A; Sorbera, F; Santangelo, A; Faulisi, F; Crescimanno, G

    2014-08-30

    Aim of this article is to illustrate the application of a multivariate approach known as t-pattern analysis in the study of rat behavior in elevated plus maze. By means of this multivariate approach, significant relationships among behavioral events in the course of time can be described. Both quantitative and t-pattern analyses were utilized to analyze data obtained from fifteen male Wistar rats following a trial 1-trial 2 protocol. In trial 2, in comparison with the initial exposure, mean occurrences of behavioral elements performed in protected zones of the maze showed a significant increase counterbalanced by a significant decrease of mean occurrences of behavioral elements in unprotected zones. Multivariate t-pattern analysis, in trial 1, revealed the presence of 134 t-patterns of different composition. In trial 2, the temporal structure of behavior become more simple, being present only 32 different t-patterns. Behavioral strings and stripes (i.e. graphical representation of each t-pattern onset) of all t-patterns were presented both for trial 1 and trial 2 as well. Finally, percent distributions in the three zones of the maze show a clear-cut increase of t-patterns in closed arm and a significant reduction in the remaining zones. Results show that previous experience deeply modifies the temporal structure of rat behavior in the elevated plus maze. In addition, this article, by highlighting several conceptual, methodological and illustrative aspects on the utilization of t-pattern analysis, could represent a useful background to employ such a refined approach in the study of rat behavior in elevated plus maze. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Time-resolved measurement of global synchronization in the dust acoustic wave

    NASA Astrophysics Data System (ADS)

    Williams, J. D.

    2014-10-01

    A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.

  9. Demonstration of a directional sonic prism in two dimensions using an air-acoustic leaky wave antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naify, Christina J., E-mail: christina.naify@nrl.navy.mil; Rohde, Charles A.; Calvo, David C.

    Analysis and experimental demonstration of a two-dimensional acoustic leaky wave antenna is presented for use in air. The antenna is comprised of a two-dimensional waveguide patterned with radiating acoustic shunts. When excited using a single acoustic source within the waveguide, the antenna acts as a sonic prism that exhibits frequency steering. This design allows for control of acoustic steering angle using only a single source transducer and a patterned aperture. Aperture design was determined using transmission line analysis and finite element methods. The designed antenna was fabricated and the steering angle measured. The performance of the measured aperture was withinmore » 9% of predicted angle magnitudes over all examined frequencies.« less

  10. Measurement of thin films using very long acoustic wavelengths

    NASA Astrophysics Data System (ADS)

    Clement, G. T.; Nomura, H.; Adachi, H.; Kamakura, T.

    2013-12-01

    A procedure for measuring material thickness by means of necessarily long acoustic wavelengths is examined. The approach utilizes a temporal phase lag caused by the impulse time of wave momentum transferred through a thin layer that is much denser than its surrounding medium. In air, it is predicted that solid or liquid layers below approximately 1/2000 of the acoustic wavelength will exhibit a phase shift with an arctangent functional dependence on thickness and layer density. The effect is verified for thin films on the scale of 10 μm using audible frequency sound (7 kHz). Soap films as thin as 100 nm are then measured using 40 kHz air ultrasound. The method's potential for imaging applications is demonstrated by combining the approach with near-field holography, resulting in reconstructions with sub-wavelength resolution in both the depth and lateral directions. Potential implications at very high and very low acoustic frequencies are discussed.

  11. Obesity and chronic stress are able to desynchronize the temporal pattern of serum levels of leptin and triglycerides.

    PubMed

    de Oliveira, Carla; Scarabelot, Vanessa Leal; de Souza, Andressa; de Oliveira, Cleverson Moraes; Medeiros, Liciane Fernandes; de Macedo, Isabel Cristina; Marques Filho, Paulo Ricardo; Cioato, Stefania Giotti; Caumo, Wolnei; Torres, Iraci L S

    2014-01-01

    Disruption of the circadian system can lead to metabolic dysfunction as a response to environmental alterations. This study assessed the effects of the association between obesity and chronic stress on the temporal pattern of serum levels of adipogenic markers and corticosterone in rats. We evaluated weekly weight, delta weight, Lee index, and weight fractions of adipose tissue (mesenteric, MAT; subcutaneous, SAT; and pericardial, PAT) to control for hypercaloric diet-induced obesity model efficacy. Wistar rats were divided into four groups: standard chow (C), hypercaloric diet (HD), stress plus standard chow (S), and stress plus hypercaloric diet (SHD), and analyzed at three time points: ZT0, ZT12, and ZT18. Stressed animals were subjected to chronic stress for 1h per day, 5 days per week, during 80 days. The chronic exposure to a hypercaloric diet was an effective model for the induction of obesity and metabolic syndrome, increasing delta weight, Lee index, weight fractions of adipose tissue, and triglycerides and leptin levels. We confirmed the presence of a temporal pattern in the release of triglycerides, corticosterone, leptin, and adiponectin in naïve animals. Chronic stress reduced delta weight, MAT weight, and levels of triglycerides, total cholesterol, and leptin. There were interactions between chronic stress and obesity and serum total cholesterol levels, between time points and obesity and adiponectin and corticosterone levels, and between time points and chronic stress and serum leptin levels. In conclusion, both parameters were able to desynchronize the temporal pattern of leptin and triglyceride release, which could contribute to the development of metabolic diseases such as obesity and metabolic syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. [Acoustic characteristics of adductor spasmodic dysphonia].

    PubMed

    Yang, Yang; Wang, Li-Ping

    2008-06-01

    To explore the acoustic characteristics of adductor spasmodic dysphonia. The acoustic characteristics, including acoustic signal of recorded voice, three-dimensional sonogram patterns and subjective assessment of voice, between 10 patients (7 women, 3 men) with adductor spasmodic dysphonia and 10 healthy volunteers (5 women, 5 men), were compared. The main clinical manifestation of adductor spasmodic dysphonia included the disorders of sound quality, rhyme and fluency. It demonstrated the tension dysphonia when reading, acoustic jitter, momentary fluctuation of frequency and volume, voice squeezing, interruption, voice prolongation, and losing normal chime. Among 10 patients, there were 1 mild dysphonia (abnormal syllable number < 25%), 6 moderate dysphonia (abnormal syllable number 25%-49%), 1 severe dysphonia (abnormal syllable number 50%-74%) and 2 extremely severe dysphonia (abnormal syllable number > or = 75%). The average reading time in 10 patients was 49 s, with reading time extension and aphasia area interruption in acoustic signals, whereas the average reading time in health control group was 30 s, without voice interruption. The aphasia ratio averaged 42%. The respective symptom syllable in different patients demonstrated in the three-dimensional sonogram. There were voice onset time prolongation, irregular, interrupted and even absent vowel formants. The consonant of symptom syllables displayed absence or prolongation of friction murmur in the block-friction murmur occasionally. The acoustic characteristics of adductor spasmodic dysphonia is the disorders of sound quality, rhyme and fluency. The three-dimensional sonogram of the symptom syllables show distinctive changes of proportional vowels or consonant phonemes.

  13. [Characteristics of temporal-spatial differentiation in landscape pattern vulnerability in Nansihu Lake wetland, China.

    PubMed

    Liang, Jia Xin; Li, Xin Ju

    2018-02-01

    With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.

  14. Acoustic emission data assisted process monitoring.

    PubMed

    Yen, Gary G; Lu, Haiming

    2002-07-01

    Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.

  15. Relative contributions of acoustic temporal fine structure and envelope cues for lexical tone perception in noise

    PubMed Central

    Qi, Beier; Mao, Yitao; Liu, Jiaxing; Liu, Bo; Xu, Li

    2017-01-01

    Previous studies have shown that lexical tone perception in quiet relies on the acoustic temporal fine structure (TFS) but not on the envelope (E) cues. The contributions of TFS to speech recognition in noise are under debate. In the present study, Mandarin tone tokens were mixed with speech-shaped noise (SSN) or two-talker babble (TTB) at five signal-to-noise ratios (SNRs; −18 to +6 dB). The TFS and E were then extracted from each of the 30 bands using Hilbert transform. Twenty-five combinations of TFS and E from the sound mixtures of the same tone tokens at various SNRs were created. Twenty normal-hearing, native-Mandarin-speaking listeners participated in the tone-recognition test. Results showed that tone-recognition performance improved as the SNRs in either TFS or E increased. The masking effects on tone perception for the TTB were weaker than those for the SSN. For both types of masker, the perceptual weights of TFS and E in tone perception in noise was nearly equivalent, with E playing a slightly greater role than TFS. Thus, the relative contributions of TFS and E cues to lexical tone perception in noise or in competing-talker maskers differ from those in quiet and those to speech perception of non-tonal languages. PMID:28599529

  16. Fractal structure enables temporal prediction in music.

    PubMed

    Rankin, Summer K; Fink, Philip W; Large, Edward W

    2014-10-01

    1/f serial correlations and statistical self-similarity (fractal structure) have been measured in various dimensions of musical compositions. Musical performances also display 1/f properties in expressive tempo fluctuations, and listeners predict tempo changes when synchronizing. Here the authors show that the 1/f structure is sufficient for listeners to predict the onset times of upcoming musical events. These results reveal what information listeners use to anticipate events in complex, non-isochronous acoustic rhythms, and this will entail innovative models of temporal synchronization. This finding could improve therapies for Parkinson's and related disorders and inform deeper understanding of how endogenous neural rhythms anticipate events in complex, temporally structured communication signals.

  17. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    PubMed

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  18. Global Incidence and Mortality for Prostate Cancer: Analysis of Temporal Patterns and Trends in 36 Countries.

    PubMed

    Wong, Martin C S; Goggins, William B; Wang, Harry H X; Fung, Franklin D H; Leung, Colette; Wong, Samuel Y S; Ng, Chi Fai; Sung, Joseph J Y

    2016-11-01

    Prostate cancer (PCa) is a leading cause of mortality and morbidity globally, but its specific geographic patterns and temporal trends are under-researched. To test the hypotheses that PCa incidence is higher and PCa mortality is lower in countries with higher socioeconomic development, and that temporal trends for PCa incidence have increased while mortality has decreased over time. Data on age-standardized incidence and mortality rates in 2012 were retrieved from the GLOBOCAN database. Temporal patterns were assessed for 36 countries using data obtained from Cancer incidence in five continents volumes I-X and the World Health Organization mortality database. Correlations between incidence or mortality rates and socioeconomic indicators (human development index [HDI] and gross domestic product [GDP]) were evaluated. The average annual percent change in PCa incidence and mortality in the most recent 10 yr according to join-point regression. Reported PCa incidence rates varied more than 25-fold worldwide in 2012, with the highest incidence rates observed in Micronesia/Polynesia, the USA, and European countries. Mortality rates paralleled the incidence rates except for Africa, where PCa mortality rates were the highest. Countries with higher HDI (r=0.58) and per capita GDP (r=0.62) reported greater incidence rates. According to the most recent 10-yr temporal data available, most countries experienced increases in incidence, with sharp rises in incidence rates in Asia and Northern and Western Europe. A substantial reduction in mortality rates was reported in most countries, except in some Asian countries and Eastern Europe, where mortality increased. Data in regional registries could be underestimated. PCa incidence has increased while PCa mortality has decreased in most countries. The reported incidence was higher in countries with higher socioeconomic development. The incidence of prostate cancer has shown high variations geographically and over time, with smaller

  19. [Unconscious Acoustical Stimuli Effects on Event-related Potentials in Humans].

    PubMed

    Kopeikina, E A; Choroshich, V V; Aleksandrov, A Y; Ivanova, V Y

    2015-01-01

    Unconscious perception essentially affects human behavior. The main results in this area obtained in experiments with visual stimuli. However, the acoustical stimuli play not less important role in behavior. The main idea of this paper is the electroencephalographic investigation of unconscious acoustical stimulation effects on electro-physiological activity of the brain. For this purpose, the event-related potentials were acquired under unconscious stimulus priming paradigm. The one syllable, three letter length, Russian words and pseudo-words with single letter substitution were used as primes and targets. As a result, we find out that repetition and alternative priming similarly affects the event-related potential's component with 200 ms latency after target application in frontal parietal and temporal areas. Under alternative priming the direction of potential amplitude modification nearby 400 ms was altered for word and semi-word targets. Alternative priming reliably increase ERP's amplitude in 400 ms locality with pseudo-word targets and decrease it under word targets. Taking into account, that all participants were unable to distinguish the applied prime stimuli, we can assume that the event-related potential changes evoked by unconscious perception of acoustical stimuli. The ERP amplitude dynamics revealed in current investigation demonstrate the opportunity of subliminal acoustical stimuli to modulate the electrical activity evoked by verbal acoustical stimulation.

  20. Critical Song Features for Auditory Pattern Recognition in Crickets

    PubMed Central

    Meckenhäuser, Gundula; Hennig, R. Matthias; Nawrot, Martin P.

    2013-01-01

    Many different invertebrate and vertebrate species use acoustic communication for pair formation. In the cricket Gryllus bimaculatus, females recognize their species-specific calling song and localize singing males by positive phonotaxis. The song pattern of males has a clear structure consisting of brief and regular pulses that are grouped into repetitive chirps. Information is thus present on a short and a long time scale. Here, we ask which structural features of the song critically determine the phonotactic performance. To this end we employed artificial neural networks to analyze a large body of behavioral data that measured females’ phonotactic behavior under systematic variation of artificially generated song patterns. In a first step we used four non-redundant descriptive temporal features to predict the female response. The model prediction showed a high correlation with the experimental results. We used this behavioral model to explore the integration of the two different time scales. Our result suggested that only an attractive pulse structure in combination with an attractive chirp structure reliably induced phonotactic behavior to signals. In a further step we investigated all feature sets, each one consisting of a different combination of eight proposed temporal features. We identified feature sets of size two, three, and four that achieve highest prediction power by using the pulse period from the short time scale plus additional information from the long time scale. PMID:23437054

  1. Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an Arctic predator.

    PubMed

    Giroux, Marie-Andrée; Berteaux, Dominique; Lecomte, Nicolas; Gauthier, Gilles; Szor, Guillaume; Bêty, Joël

    2012-05-01

    1. Flows of nutrients and energy across ecosystem boundaries have the potential to subsidize consumer populations and modify the dynamics of food webs, but how spatio-temporal variations in autochthonous and allochthonous resources affect consumers' subsidization remains largely unexplored. 2. We studied spatio-temporal patterns in the allochthonous subsidization of a predator living in a relatively simple ecosystem. We worked on Bylot Island (Nunavut, Canada), where arctic foxes (Vulpes lagopus L.) feed preferentially on lemmings (Lemmus trimucronatus and Dicrostonyx groenlandicus Traill), and alternatively on colonial greater snow geese (Anser caerulescens atlanticus L.). Geese migrate annually from their wintering grounds (where they feed on farmlands and marshes) to the Canadian Arctic, thus generating a strong flow of nutrients and energy across ecosystem boundaries. 3. We examined the influence of spatial variations in availability of geese on the diet of fox cubs (2003-2005) and on fox reproductive output (1996-2005) during different phases of the lemming cycle. 4. Using stable isotope analysis and a simple statistical routine developed to analyse the outputs of a multisource mixing model (SIAR), we showed that the contribution of geese to the diet of arctic fox cubs decreased with distance from the goose colony. 5. The probability that a den was used for reproduction by foxes decreased with distance from the subsidized goose colony and increased with lemming abundance. When lemmings were highly abundant, the effect of distance from the colony disappeared. The goose colony thus generated a spatial patterning of reproduction probability of foxes, while the lemming cycle generated a strong temporal variation of reproduction probability of foxes. 6. This study shows how the input of energy owing to the large-scale migration of prey affects the functional and reproductive responses of an opportunistic consumer, and how this input is spatially and

  2. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    PubMed Central

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  3. Temporal Patterns in Diversity Change on Earth Over Time

    NASA Astrophysics Data System (ADS)

    Bambach, Richard

    2007-05-01

    Multi-celled animals and plants did not originate until about 600 million years ago. Since then the diversity of life has expanded greatly, but this has not been a monotonic increase. Diversity, as taxonomic variety or richness, is produced by the interaction of origination and extinction. Origination and extinction are almost equally balanced; it has taken 600 million years to accumulate 10 to 30 million living species. With most species life spans in the range of one to fifteen million years most species that have ever originated are extinct and global diversity has “turned over” many times. Paleontologists recognize about 18 short-term events of elevated extinction intensity and diversity loss of sufficient magnitude to warrant the term “mass extinction.” Interestingly, in only one instance, the end-Cretaceous extinction, is there a consensus for the triggering event, but the kill mechanism or mechanisms that caused the widespread death of lineages is not established. We know less about the cause-effect relationships for other events. Recently a 62 million-year periodicity in the fluctuation of diversity has been documented, expressed primarily in the variation of diversity of marine genera that survived 45 million years or less. Analysis of the pattern of diversity change at the finest temporal scale possible suggests that the short-term mass extinctions are superimposed on this regular pattern of diversity fluctuations, rather than causal of them. However, most mass extinctions (14 of 18) occurred during the intervals of general diversity loss. It remains to be seen how origination and extinction interact to produce the periodic fluctuation in diversity.

  4. Spatio-temporal Analysis for New York State SPARCS Data

    PubMed Central

    Chen, Xin; Wang, Yu; Schoenfeld, Elinor; Saltz, Mary; Saltz, Joel; Wang, Fusheng

    2017-01-01

    Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient level detail on patient demographics, diagnoses, services, and charges for each hospital inpatient stay and outpatient visit. Such data also provides home addresses for each patient. This paper presents our preliminary work on spatial, temporal, and spatial-temporal analysis of disease patterns for New York State using SPARCS data. We analyzed spatial distribution patterns of typical diseases at ZIP code level. We performed temporal analysis of common diseases based on 12 years’ historical data. We then compared the spatial variations for diseases with different levels of clustering tendency, and studied the evolution history of such spatial patterns. Case studies based on asthma demonstrated that the discovered spatial clusters are consistent with prior studies. We visualized our spatial-temporal patterns as animations through videos. PMID:28815148

  5. Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array

    NASA Astrophysics Data System (ADS)

    Gallaudet, Timothy Cole

    2001-10-01

    The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360° imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and horizontal and vertical planes in the volume are constructed from data obtained in 200m deep waters in the Northeastern Gulf of Mexico when the TVSS was towed 78m below the surface, 735m astern of a towship. The processed imagery provide a quasi-synoptic characterization of the spatial and temporal structure of boundary and volume acoustic backscatter and reverberation. Diffraction, element patterns, and high sidelobe levels are shown to be the most serious problems affecting cylindrical arrays such as the TVSS, and an amplitude shading method is presented for reducing the peak sidelobe levels of irregular-line and non-coplanar arrays. Errors in the towfish's attitude and motion sensor, and irregularities in the TVSS's transmitted beampattern produce artifacts in the TVSS-derived bathymetry and seafloor acoustic backscatter imagery. Correction strategies for these problems are described, which are unique in that they use environmental information extracted from both ocean boundaries. Sea surface and volume acoustic backscatter imagery are used to explore and characterize the structure of near-surface bubble clouds, schooling fish, and zooplankton. The simultaneous horizontal and vertical coverage provided by the TVSS is shown to be a primary advantage, motivating further use of multibeam sonars in these applications. Whereas boundary backscatter fluctuations are well described by Weibull, K, and Rayleigh mixture probability distributions, those corresponding to volume backscatter are

  6. Identification of Damaged Wheat Kernels and Cracked-Shell Hazelnuts with Impact Acoustics Time-Frequency Patterns

    USDA-ARS?s Scientific Manuscript database

    A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with ...

  7. Particle separation by phase modulated surface acoustic waves.

    PubMed

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  8. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006

    USGS Publications Warehouse

    Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping

    2014-01-01

    Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  9. Spatial and temporal patterns of hydrologic connectivity between upland landscapes and stream networks (Invited)

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; Nippgen, F.; Jencso, K. G.; Emanuel, R. E.

    2013-12-01

    Congress enacted the Clean Water Act (CWA) 'to restore and maintain the chemical, physical, and biological integrity of the Nation's waters'. A recent Supreme Court decision further described protection for waters with 'a significant nexus to navigable waters" if they are in the same watershed and have an effect on the chemical, physical, or biological integrity of traditional navigable waters or interstate waters that is more than 'speculative or insubstantial.' Evolving interpretation of the CWA and 'significant nexus' (connectivity) requires investigation and understanding of the spatial and temporal patterns of hydrologic connectivity between upland landscapes and stream networks that mediate streamflow magnitude and composition. While hydrologic connectivity is a continuum, strong non-linearities including the shift from unsaturated to saturated flow conditions lead to threshold or transient connectivity behavior and orders of magnitude changes in flow velocities and source water compositions. Here we illustrate the spatial and temporal dynamics of hydrologic connectivity between upland landscapes and stream networks that provide direct and proximate links between streamflow composition and its watershed sources. We suggest that adjacency alone does not determine influence on hydrologic response and streamwater composition and that new understanding and communication of the temporal and spatial dynamics of watershed connectivity are required to address urgent needs at the interface of the CWA, science, and society.

  10. A polarized digital shearing speckle pattern interferometry system based on temporal wavelet transformation.

    PubMed

    Feng, Ziang; Gao, Zhan; Zhang, Xiaoqiong; Wang, Shengjia; Yang, Dong; Yuan, Hao; Qin, Jie

    2015-09-01

    Digital shearing speckle pattern interferometry (DSSPI) has been recognized as a practical tool in testing strain. The DSSPI system which is based on temporal analysis is attractive because of its ability to measure strain dynamically. In this paper, such a DSSPI system with Wollaston prism has been built. The principles and system arrangement are described and the preliminary experimental result of the displacement-derivative test of an aluminum plate is shown with the wavelet transformation method and the Fourier transformation method. The simulations have been conducted with the finite element method. The comparison of the results shows that quantitative measurement of displacement-derivative has been realized.

  11. Use of large-scale acoustic monitoring to assess anthropogenic pressures on Orthoptera communities.

    PubMed

    Penone, Caterina; Le Viol, Isabelle; Pellissier, Vincent; Julien, Jean-François; Bas, Yves; Kerbiriou, Christian

    2013-10-01

    Biodiversity monitoring at large spatial and temporal scales is greatly needed in the context of global changes. Although insects are a species-rich group and are important for ecosystem functioning, they have been largely neglected in conservation studies and policies, mainly due to technical and methodological constraints. Sound detection, a nondestructive method, is easily applied within a citizen-science framework and could be an interesting solution for insect monitoring. However, it has not yet been tested at a large scale. We assessed the value of a citizen-science program in which Orthoptera species (Tettigoniidae) were monitored acoustically along roads. We used Bayesian model-averaging analyses to test whether we could detect widely known patterns of anthropogenic effects on insects, such as the negative effects of urbanization or intensive agriculture on Orthoptera populations and communities. We also examined site-abundance correlations between years and estimated the biases in species detection to evaluate and improve the protocol. Urbanization and intensive agricultural landscapes negatively affected Orthoptera species richness, diversity, and abundance. This finding is consistent with results of previous studies of Orthoptera, vertebrates, carabids, and butterflies. The average mass of communities decreased as urbanization increased. The dispersal ability of communities increased as the percentage of agricultural land and, to a lesser extent, urban area increased. Despite changes in abundances over time, we found significant correlations between yearly abundances. We identified biases linked to the protocol (e.g., car speed or temperature) that can be accounted for ease in analyses. We argue that acoustic monitoring of Orthoptera along roads offers several advantages for assessing Orthoptera biodiversity at large spatial and temporal extents, particularly in a citizen science framework. © 2013 Society for Conservation Biology.

  12. Zebrafish: an exciting model for investigating the spatio-temporal pattern of enteric nervous system development.

    PubMed

    Doodnath, Reshma; Dervan, Adrian; Wride, Michael A; Puri, Prem

    2010-12-01

    Recently, the zebrafish (Danio rerio) has been shown to be an excellent model for human paediatric research. Advantages over other models include its small size, externally visually accessible development and ease of experimental manipulation. The enteric nervous system (ENS) consists of neurons and enteric glia. Glial cells permit cell bodies and processes of neurons to be arranged and maintained in a proper spatial arrangement, and are essential in the maintenance of basic physiological functions of neurons. Glial fibrillary acidic protein (GFAP) is expressed in astrocytes, but also expressed outside of the central nervous system. The aim of this study was to investigate the spatio-temporal pattern of GFAP expression in developing zebrafish ENS from 24 h post-fertilization (hpf), using transgenic fish that express green fluorescent protein (GFP). Zebrafish embryos were collected from transgenic GFP Tg(GFAP:GFP)(mi2001) adult zebrafish from 24 to 120 hpf, fixed and processed for whole mount immunohistochemistry. Antibodies to Phox2b were used to identify enteric neurons. Specimens were mounted on slides and imaging was performed using a fluorescent laser confocal microscope. GFAP:GFP labelling outside the spinal cord was identified in embryos from 48 hpf. The patterning was intracellular and consisted of elongated profiles that appeared to migrate away from the spinal cord into the periphery. At 72 and 96 hpf, GFAP:GFP was expressed dorsally and ventrally to the intestinal tract. At 120 hpf, GFAP:GFP was expressed throughout the intestinal wall, and clusters of enteric neurons were identified using Phox2b immunofluorescence along the pathway of GFAP:GFP positive processes, indicative of a migratory pathway of ENS precursors from the spinal cord into the intestine. The pattern of migration of GFAP:GFP expressing cells outside the spinal cord suggests an organized, early developing migratory pathway to the ENS. This shows for the first time that Tg(GFAP:GFP)(mi2001

  13. Portable Multi Hydrophone Array for Field and Laboratory Measurements of Odontocete Acoustic Signals

    DTIC Science & Technology

    2014-09-30

    false killer whale . Our analysis will also be conducted with current passive acoustic monitoring detectors and classifiers in order to assess if the...obtain horizontal and vertical beam patterns of acoustic signals of a false killer whale and a bottlenose dolphin. The data is currently being

  14. Space-based constraints on spatial and temporal patterns of NO(x) emissions in California, 2005-2008.

    PubMed

    Russell, Ashley R; Valin, Lukas C; Bucsela, Eric J; Wenig, Mark O; Cohen, Ronald C

    2010-05-01

    We describe ground and space-based measurements of spatial and temporal variation of NO(2) in four California metropolitan regions. The measurements of weekly cycles and trends over the years 2005-2008 observed both from the surface and from space are nearly identical to each other. Observed decreases in Los Angeles and the surrounding cities are 46% on weekends and 9%/year from 2005-2008. Similar decreases are observed in the San Francisco Bay area and in Sacramento. In the San Joaquin Valley cities of Fresno and Bakersfield weekend decreases are much smaller, only 27%, and the decreasing trend is only 4%/year. We describe evidence that the satellite observations provide a uniquely complete view of changes in spatial patterns over time. For example, we observe variations in the spatial pattern of weekday-weekend concentrations in the Los Angeles basin with much steeper weekend decreases at the eastern edge of the basin. We also observe that the spatial extent of high NO(2) in the San Joaquin Valley has not receded as much as it has for other regions in the state. Analysis of these measurements is used to describe observational constraints on temporal trends in emission sources in the different regions.

  15. Recurring patterns in the songs of humpback whales (Megaptera novaeangliae).

    PubMed

    Green, Sean R; Mercado, Eduardo; Pack, Adam A; Herman, Louis M

    2011-02-01

    Humpback whales, unlike most mammalian species, learn new songs as adults. Populations of singers progressively and collectively change the sounds and patterns within their songs throughout their lives and across generations. In this study, humpback whale songs recorded in Hawaii from 1985 to 1995 were analyzed using self-organizing maps (SOMs) to classify the sounds within songs, and to identify sound patterns that were present across multiple years. These analyses supported the hypothesis that recurring, persistent patterns exist within whale songs, and that these patterns are defined at least in part by acoustic relationships between adjacent sounds within songs. Sound classification based on acoustic differences between adjacent sounds yielded patterns within songs that were more consistent from year to year than classifications based on the properties of single sounds. Maintenance of fixed ratios of acoustic modulation across sounds, despite large variations in individual sounds, suggests intrinsic constraints on how sounds change within songs. Such acoustically invariant cues may enable whales to recognize and assess variations in songs despite propagation-related distortion of individual sounds and yearly changes in songs. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Spatial and temporal coherence in perceptual binding

    PubMed Central

    Blake, Randolph; Yang, Yuede

    1997-01-01

    Component visual features of objects are registered by distributed patterns of activity among neurons comprising multiple pathways and visual areas. How these distributed patterns of activity give rise to unified representations of objects remains unresolved, although one recent, controversial view posits temporal coherence of neural activity as a binding agent. Motivated by the possible role of temporal coherence in feature binding, we devised a novel psychophysical task that requires the detection of temporal coherence among features comprising complex visual images. Results show that human observers can more easily detect synchronized patterns of temporal contrast modulation within hybrid visual images composed of two components when those components are drawn from the same original picture. Evidently, time-varying changes within spatially coherent features produce more salient neural signals. PMID:9192701

  17. Automated pattern analysis: A newsilent partner in insect acoustic detection studies

    USDA-ARS?s Scientific Manuscript database

    This seminar reviews methods that have been developed for automated analysis of field-collected sounds used to estimate pest populations and guide insect pest management decisions. Several examples are presented of successful usage of acoustic technology to map insect distributions in field environ...

  18. Temporal and spatial patterns of wetland sedimentation, West Tennessee

    USGS Publications Warehouse

    Hupp, C.R.; Bazemore, D.E.

    1993-01-01

    Dendrogeomorphic techniques were used to describe and interpret patterns of sedimentation rates at two forested wetland sites in West Tennessee. Fifty-five sampling stations were established along transects upstream and downstream from bridge structures, and 515 trees were examined for depth of sediment accretion and cored for age determination. Temporal variation in sedimentation rate may be related more to stream channelization and agricultural activity than to bridge and causeway construction. Sedimentation rates have increased substantially in the last 28 years, although channelized streams may have overall lower rates than unchannelized streams. Comparisons of sedimentation rates from deposition over artificial markers (short term) with those determined from tree-ring analysis (long-term) indicate that trends are similar where hydrogeomorphic conditions have not been altered substantially. No tendency for increased sedimentation upstream from bridges was observed. Deposition rates were inversely correlated with elevation and degree of ponding. Downstream deposition of sand splays appears to be related to flow constrictions and may be extensive. Mean overall rates of sedimentation (between 0.24 and 0.28 cm year-1), determined dendrogeomorphically, are comparable with other published rates. ?? 1993.

  19. Spatio-temporal segregation of calling behavior at a multispecies fish spawning site in Little Cayman

    NASA Astrophysics Data System (ADS)

    Cameron, K. C.; Sirovic, A.; Jaffe, J. S.; Semmens, B.; Pattengill-Semmens, C.; Gibb, J.

    2016-02-01

    Fish spawning aggregation (FSA) sites are extremely vulnerable to over-exploitation. Accurate understanding of the spatial and temporal use of such sites is necessary for effective species management. The size of FSAs can be on the order of kilometers and peak spawning often occurs at night, posing challenges to visual observation. Passive acoustics are an alternative method for dealing with these challenges. An array of passive acoustic recorders and GoPro cameras were deployed during Nassau grouper (Epinephelus striatus) spawning from February 7th to 12th, 2015 at a multispecies spawning aggregation site in Little Cayman, Cayman Islands. In addition to Nassau grouper, at least 10 other species are known to spawn at this location including tiger grouper (Mycteroperca tigris), red hind (Epinephelus guttatus), black grouper (Mycteroperca bonaci), and yellowfin grouper (Mycteroperca venenosa). During 5 days of continuous recordings, over 21,000 fish calls were detected. These calls were classified into 15 common types. Species identification and behavioral context of unknown common call types were determined by coupling video recordings collected during this time with call localizations. There are distinct temporal patterns in call production of different species. For example, red hind and yellowfin grouper call predominately at night with yellowfin call rates increasing after midnight, and black grouper call primarily during dusk and dawn. In addition, localization methods were used to reveal how the FSA area was divided among species. These findings facilitate a better understanding of the behavior of these important reef fish species allowing policymakers to more effectively manage and protect them.

  20. Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics

    NASA Technical Reports Server (NTRS)

    Kenny, Robert Jeremy

    2009-01-01

    NASA's current models to predict lift-off acoustics for launch vehicles are currently being updated using several numerical and empirical inputs. One empirical input comes from free-field acoustic data measured at three Space Shuttle Reusable Solid Rocket Motor (RSRM) static firings. The measurements were collected by a joint collaboration between NASA - Marshall Space Flight Center, Wyle Labs, and ATK Launch Systems. For the first time NASA measured large-thrust solid rocket motor plume acoustics for evaluation of both noise sources and acoustic radiation properties. Over sixty acoustic free-field measurements were taken over the three static firings to support evaluation of acoustic radiation near the rocket plume, far-field acoustic radiation patterns, plume acoustic power efficiencies, and apparent noise source locations within the plume. At approximately 67 m off nozzle centerline and 70 m downstream of the nozzle exit plan, the measured overall sound pressure level of the RSRM was 155 dB. Peak overall levels in the far field were over 140 dB at 300 m and 50-deg off of the RSRM thrust centerline. The successful collaboration has yielded valuable data that are being implemented into NASA's lift-off acoustic models, which will then be used to update predictions for Ares I and Ares V liftoff acoustic environments.

  1. Triad Resonance in the Gravity-Acoustic Family

    NASA Astrophysics Data System (ADS)

    Kadri, U.

    2015-12-01

    Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic

  2. Temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy field at Kelantan, Malaysia.

    PubMed

    Hussain, Hazilia; Yusoff, Mohd Kamil; Ramli, Mohd Firuz; Abd Latif, Puziah; Juahir, Hafizan; Zawawi, Mohamed Azwan Mohammed

    2013-11-15

    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate.

  3. Evidence for Neural Computations of Temporal Coherence in an Auditory Scene and Their Enhancement during Active Listening.

    PubMed

    O'Sullivan, James A; Shamma, Shihab A; Lalor, Edmund C

    2015-05-06

    The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene. Copyright © 2015 the authors 0270-6474/15/357256-08$15.00/0.

  4. Effects of nitrogen on temporal and spatial patterns of nitrate in streams and soil solution of a central hardwood forest

    Treesearch

    Frank S. Gilliam; Mary Beth Adams

    2011-01-01

    This study examined changes in stream and soil water NO3- and their relationship to temporal and spatial patterns of NO3- in soil solution of watersheds at the Fernow Experimental Forest, West Virginia. Following tenfold increases in stream NO3

  5. Wildlife in the Matrix: Spatio-Temporal Patterns of Herbivore Occurrence in Karnataka, India.

    PubMed

    Karanth, Krithi K

    2016-01-01

    Wildlife reserves are becoming increasingly isolated from the surrounding human-dominated landscapes particularly in Asia. It is imperative to understand how species are distributed spatially and temporally in and outside reserves, and what factors influence their occurrence. This study surveyed 7500 km(2) landscape surrounding five reserves in the Western Ghats to examine patterns of occurrence of five herbivores: elephant, gaur, sambar, chital, and pig. Species distributions are modeled spatio-temporally using an occupancy approach. Trained field teams conducted 3860 interview-based occupancy surveys in a 10-km buffer surrounding these five reserves in 2012. I found gaur and wild pig to be the least and most wide-ranging species, respectively. Elephant and chital exhibit seasonal differences in spatial distribution unlike the other three species. As predicted, distance to reserve, the reserve itself, and forest cover were associated with higher occupancy of all species, and higher densities of people negatively influenced occurrence of all species. Park management, species protection, and conflict mitigation efforts in this landscape need to incorporate temporal and spatial understanding of species distributions. All species are known crop raiders and conflict prone locations with resources (such as water and forage) have to be monitored and managed carefully. Wildlife reserves and adjacent areas are critical for long-term persistence and habitat use for all five herbivores and must be monitored to ensure wildlife can move freely. Such a large-scale approach to map and monitor species distributions can be adapted to other landscapes to identify and monitor critical habitats shared by people and wildlife.

  6. Wildlife in the Matrix: Spatio-Temporal Patterns of Herbivore Occurrence in Karnataka, India

    NASA Astrophysics Data System (ADS)

    Karanth, Krithi K.

    2016-01-01

    Wildlife reserves are becoming increasingly isolated from the surrounding human-dominated landscapes particularly in Asia. It is imperative to understand how species are distributed spatially and temporally in and outside reserves, and what factors influence their occurrence. This study surveyed 7500 km2 landscape surrounding five reserves in the Western Ghats to examine patterns of occurrence of five herbivores: elephant, gaur, sambar, chital, and pig. Species distributions are modeled spatio-temporally using an occupancy approach. Trained field teams conducted 3860 interview-based occupancy surveys in a 10-km buffer surrounding these five reserves in 2012. I found gaur and wild pig to be the least and most wide-ranging species, respectively. Elephant and chital exhibit seasonal differences in spatial distribution unlike the other three species. As predicted, distance to reserve, the reserve itself, and forest cover were associated with higher occupancy of all species, and higher densities of people negatively influenced occurrence of all species. Park management, species protection, and conflict mitigation efforts in this landscape need to incorporate temporal and spatial understanding of species distributions. All species are known crop raiders and conflict prone locations with resources (such as water and forage) have to be monitored and managed carefully. Wildlife reserves and adjacent areas are critical for long-term persistence and habitat use for all five herbivores and must be monitored to ensure wildlife can move freely. Such a large-scale approach to map and monitor species distributions can be adapted to other landscapes to identify and monitor critical habitats shared by people and wildlife.

  7. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  8. Temporal patterns of human and canine Giardia infection in the United States: 2003-2009.

    PubMed

    Mohamed, Ahmed S; Levine, Michael; Camp, Joseph W; Lund, Elisabeth; Yoder, Jonathan S; Glickman, Larry T; Moore, George E

    2014-02-01

    Giardia protozoa have been suspected to be of zoonotic transmission, including transmission from companion animals such as pet dogs to humans. Patterns of infection have been previously described for dogs and humans, but such investigations have used different time periods and locations for these two species. Our objective was to describe and compare the overall trend and seasonality of Giardia species infection among dogs and humans in the United States from 2003 through 2009 in an ecological study using public health surveillance data and medical records of pet dogs visiting a large nationwide private veterinary hospital. Canine data were obtained from all dogs visiting Banfield hospitals in the United States with fecal test results for Giardia species, from January 2003 through December 2009. Incidence data of human cases from the same time period were obtained from the CDC. Descriptive time plots, a seasonal trend decomposition (STL) procedure, and seasonal autoregressive moving-average (SARIMA) models were used to assess the temporal characteristics of Giardia infection in the two species. Canine incidence showed a gradual decline from 2003 to 2009 with no significant/distinct regular seasonal component. By contrast, human incidence showed a stable annual rate with a significant regular seasonal cycle, peaking in August and September. Different temporal patterns in human and canine Giardia cases observed in this study suggest that the epidemiological disease processes underlying both series might be different, and Giardia transmission between humans and their companion dogs seems uncommon. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Spatial and temporal patterns of locally-acquired dengue transmission in northern Queensland, Australia, 1993-2012.

    PubMed

    Naish, Suchithra; Dale, Pat; Mackenzie, John S; McBride, John; Mengersen, Kerrie; Tong, Shilu

    2014-01-01

    Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993-2012. Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ(2) = 15.17, d.f.  = 1, p<0.01). Differences were observed among age groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue incidence for the four sub-periods, with the Moran's I statistic ranging from 0.011 to 0.463 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the northern Queensland. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas.

  10. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.

    PubMed

    Robson, Anthony G; Kulikowski, Janus J

    2012-11-01

    The aim was to investigate the temporal response properties of magnocellular, parvocellular, and koniocellular visual pathways using increment/decrement changes in contrast to elicit visual evoked potentials (VEPs). Static achromatic and isoluminant chromatic gratings were generated on a monitor. Chromatic gratings were modulated along red/green (R/G) or subject-specific tritanopic confusion axes, established using a minimum distinct border criterion. Isoluminance was determined using minimum flicker photometry. Achromatic and chromatic VEPs were recorded to contrast increments and decrements of 0.1 or 0.2 superimposed on the static gratings (masking contrast 0-0.6). Achromatic increment/decrement changes in contrast evoked a percept of apparent motion when the spatial frequency was low; VEPs to such stimuli were positive in polarity and largely unaffected by high levels of static contrast, consistent with transient response mechanisms. VEPs to finer achromatic gratings showed marked attenuation as static contrast was increased. Chromatic VEPs to R/G or tritan chromatic contrast increments were of negative polarity and showed progressive attenuation as static contrast was increased, in keeping with increasing desensitization of the sustained responses of the color-opponent visual pathways. Chromatic contrast decrement VEPs were of positive polarity and less sensitive to pattern adaptation. The relative contribution of sustained/transient mechanisms to achromatic processing is spatial frequency dependent. Chromatic contrast increment VEPs reflect the sustained temporal response properties of parvocellular and koniocellular pathways. Cortical VEPs can provide an objective measure of pattern adaptation and can be used to probe the temporal response characteristics of different visual pathways.

  11. Hydrodynamic Model of Spatio-Temporal Evolution of Two-Plasmon Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, D. R.; Maluckov, A. A.

    A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is constructed in order to gain better insight into the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The influence of laser and plasma parameters on the evolution of the amplitudes of the participating waves is discussed. The secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is assumed to be the principal mechanism of saturation of the instability. The impact of the inherently nonresonant nature of this secondary coupling on the development ofmore » TPD is investigated and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to nonuniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.« less

  12. Translational illusion of acoustic sources by transformation acoustics.

    PubMed

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  13. Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection

    PubMed Central

    Denison, Rachel N.; Driver, Jon; Ruff, Christian C.

    2013-01-01

    Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067

  14. Prediction of the Acoustic Field Associated with Instability Wave Source Model for a Compressible Jet

    NASA Technical Reports Server (NTRS)

    Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.

  15. Remote sensing captures varying temporal patterns of vegetation between human-altered and natural landscapes.

    PubMed

    Leong, Misha; Roderick, George K

    2015-01-01

    Global change has led to shifts in phenology, potentially disrupting species interactions such as plant-pollinator relationships. Advances in remote sensing techniques allow one to detect vegetation phenological diversity between different land use types, but it is not clear how this translates to other communities in the ecosystem. Here, we investigated the phenological diversity of the vegetation across a human-altered landscape including urban, agricultural, and natural land use types. We found that the patterns of change in the vegetation indices (EVI and NDVI) of human-altered landscapes are out of synchronization with the phenology in neighboring natural California grassland habitat. Comparing these findings to a spatio-temporal pollinator distribution dataset, EVI and NDVI were significant predictors of total bee abundance, a relationship that improved with time lags. This evidence supports the importance of differences in temporal dynamics between land use types. These findings also highlight the potential to utilize remote sensing data to make predictions for components of biodiversity that have tight vegetation associations, such as pollinators.

  16. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    PubMed

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  17. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    PubMed Central

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-01-01

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738

  18. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.

    PubMed

    Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver

    2016-10-15

    Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Low Frequency Vibrations Disrupt Left-Right Patterning in the Xenopus Embryo

    PubMed Central

    Vandenberg, Laura N.; Pennarola, Brian W.; Levin, Michael

    2011-01-01

    The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs. PMID:21826245

  20. A statistical-based approach for acoustic tomography of the atmosphere.

    PubMed

    Kolouri, Soheil; Azimi-Sadjadi, Mahmood R; Ziemann, Astrid

    2014-01-01

    Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a statistical-based acoustic travel-time tomography algorithm based on dual state-parameter unscented Kalman filter (UKF) which is capable of reconstructing and tracking, in time, temperature, and wind velocity fields (state variables) as well as the dynamic model parameters within a specified investigation area. An adaptive 3-D spatial-temporal autoregressive model is used to capture the state evolution in the UKF. The observations used in the dual state-parameter UKF process consist of the acoustic time of arrivals measured for every pair of transmitter/receiver nodes deployed in the investigation area. The proposed method is then applied to the data set collected at the Meteorological Observatory Lindenberg, Germany, as part of the STINHO experiment, and the reconstruction results are presented.